FAA Perspective on ICAO's Progress on NOx Emissions as well as on Efforts for CO₂, Particulate Matter, and Noise Standards

Presented to: EPA's Mobile Sources Technical Review Subcommittee (MSTRS)

By: Curtis Holsclaw Manager, Emissions Division AEE-300

Date:

May 4, 2010 Crystal City, VA

Federal Aviation Administration

Key Drivers

- Next Generation Air Transportation System
- International Civil Aviation
 Organization's Committee on Aviation
 Environmental Protection (CAEP)

Environmental Challenges

NextGen goal to increase capacity is dependent upon addressing & mitigating aviation environmental impacts & dealing with related energy issues

NextGen environmental goals

- Absolute reduction of significant *community* noise and *air quality* emissions impacts
- Improve NAS *energy* efficiency and, supply of and access to, alternative fuel sources
- Limit or reduce the impact of aviation GHG emissions on the *global climate*
- Reduce significant aviation impacts associated with *water quality*

5-Pillar approach to develop solutions

- P1 Improved science and modeling
- P2 Accelerated maturation of new aircraft technologies
- P3 Renewable fuels
- P4 Accelerated ATM Improvements and Efficiencies
- P5 Policies, Environmental Standards, Market Based Measures and Environmental Management System

Environment & Energy R&D Program Structure

Characterize the problem and assess related risks

- P1: Improved science and modeling capability
- P1: Aircraft noise and emissions analyses
- P1: Aviation noise and emissions impacts metrics & characterization

Develop solutions and analyze their benefits

- P2: Mature certifiable aircraft technologies
- P3: Develop alternative fuels
- P4: Environmentally efficient operational procedures
- **P5:** Environmental standards, market based options and policies
- P2-P5: Local to NAS-wide assessment of environmental benefits

Manage environmental goals

 P5: Develop and implement Environmental Management Systems (EMS) and verify performance against dynamic environmental targets

Key Areas of Emissions Research

- CO₂ emission metrics for commercial aircraft certification
- Gaps associated with aviation climate impacts, focusing on non-CO₂
- Sampling/measurement of particulate matter emissions
- Emission scenarios to support NextGen Goals/Targets
- Plume-regional scale change in air quality
- Impacts of non-LTO emissions on air quality and health
- Reducing the sulfur content of conventional jet fuel and alternative fuels

Key Areas of Development

- Technology
 - CLEEN
 - NASA
- Fuels
 - Commercial Aviation Alternative Fuels Initiative (CAAFI)
- Operations
 - Surface Management
 - Continuous Descent Arrivals
 - En route Optimization

Perspective On NO_x Emissions

- Decision taken at CAEP/8 to increase the stringency of the NO_x emissions standard highlighted:
 - Primary and secondary impacts
 - Greater number of current engines effected
 - Expanded view of technologically feasible
 - Industry costs
- Moving forward there may be more focus placed on the goal-setting process

Key Outcomes from CAEP/8

- CAEP/6 NOx production cutoff effective
 12/31/2012
- Increased stringency of the NOx emissions standard effective 12/31/2013
 - no production cut-off before year end 2018
- Future work on developing an aircraft CO₂ emissions standard by 2013
- Future work on engine certification requirement for non-volatile particulate matter emissions
- Future work on aircraft noise stringency

Perspective on PM Emissions

- FAA fully supports the work conducted by SAE E-31
- Sampling and measurement methods for future certification requirements
- Research gaps identified in AIR6037 have been funded in support of E-31
- Coordinated/shared funding responsibilities with other agencies
- Dedicated R&D resources to develop measurement procedures that address total PM, underpinned by:
 - sound science related to PM emissions,
 - feasibility of implementation, and
 - efficiency of implementing within an engine certification regime

Perspective on PM Emissions

- Development of ARPs for total PM measurement techniques can most effectively be addressed in stages
- Develop techniques that address both direct emissions of non-volatile PM and the gaseous precursors at the exit plane
 - NON-VOLATILE PM: FAA, EPA and EASA strongly encourage E-31 to complete the ARP on non-volatile PM by end of 2011
 - GASEOUS SOx PRECURSORS: Controlled via more stringent fuel sulfur content standards
 - GASEOUS HC PRECURSORS: Controlled via more stringent HC emission standards
 - GASEOUS NOx PRECURSORS: Controlled via more stringent NOx emission standards
- Develop a singular total PM measurement technique(?)

Perspective on CO₂ Emissions

- An aviation related CO₂ emissions certification standard must be based on the aircraft versus the engine
- Similar to other environmental standards for aviation, the CO₂ standard should be developed under ICAO
- The expected timescales for developing the standard are overly aggressive and will require dedicated resources and priority

Aircraft CO₂ Emissions Standard

- In 2009 FAA initiated a project under the PARTNER Center of Excellence to study aircraft CO₂ emissions metrics
- Identify and assess a set of aircraft CO₂ emission metrics and evaluate potential use for:
 - setting standards for the certification of new commercial aircraft (and benchmarking existing aircraft)
 - monitoring the operational performance of the fleet
- Inform decision-making processes of domestic and international aviation communities
 - developing metrics and setting standards are related yet distinctively separate steps

Objectives

- I. Generate options for CO₂ metrics
- II. Identify judging criteria (cost, fairness, robustness, etc.)
- **III.** Assess relationship of metrics to the *current fleet*
- IV. Assess impacts these metrics may have on *future vehicle development and fleet evolution*
- V. Identify and assess <u>equity issues</u>, and provisions that might allow for <u>unintended manipulation</u> and <u>negative incentives</u>
- VI. Analyze *interdependencies* with other environmental objectives
- VII. Provide a <u>comprehensive assessment</u> of the metrics as part of a basis for considering standards

Potential Implications

- <u>Poorly defined metrics</u> can create equity issues and opportunities for manipulation, potentially reducing the effectiveness of policies and resulting in unintended consequences
- From a policy standpoint, an aircraft CO₂ standard is only <u>part of the solution</u> in achieving far-term targets. Consideration of the broader framework for CO₂ reductions is important
- The concepts on which *levels* of a standard is based on
 - Existing technology
 - New certification
 - Current production
 - In-service aircraft
 - Technology forcing

Perspective on Noise

- Premature to develop more stringent standards beyond Chapter 4 at this time
- Uncertainty in configurations, and low level of technological maturity for new replacements, especially open rotor engines and geared turbofans
- Significant number of aircraft would be unable to meet even a modest increase of stringency
 - the minimum stringency increase was 9 dB cumulative between Chapters 2 and 3, and 10 dB cumulative between Chapters 3 and 4
- ICAO has other higher priorities (e.g. CO₂ emissions)
- A significant amount of preparatory work needed in order to assess technology response

Conclusions

- FAA commitment to assessing and mitigating environmental impacts of aviation
- Working through ICAO to establish and maintain emissions standard for aircraft and aircraft engines
- Conducting research and development through the 5-pillar approach
- Aviation environmental issues becoming more complex and challenging with multiple interdependencies

Appendix

Goal-Setting Process

- Underlying ICAO CAEP principles for standardsetting
 - Technological feasibility
 - Economic reasonableness
 - Environmental benefits
 - Environmental interrelationships and tradeoffs
- Technology goals for emissions reduction; complement the long-standing standard-setting process
- Degree to which emissions could be reduced including potential benefits and tradeoffs, taking into account the likely timescale for introduction
- Relationship between goals and standard-setting processes

Goal-Setting Process

- Use of the Technology Readiness Level (TRL) scale
- Transition from long term to mid term goals, to consideration of certification standards
- Transition points
- Recognition that goal-setting will involve some degree of judgment on the performance outcome
- Independent Expert process employed to facilitate goal-setting

Technology Readiness Scale

- 9 Actual system "flight proven" on operational flight
- 8 Actual system completed and "flight qualified" through test and demonstration
- 7 System prototype demonstrated in flight environment

Figure 1. Technology readiness levels

Technology Goals for NOx Reduction

Standard Development

Standard Development

Decision on NOx Stringency

- Aircraft contribution to local air pollution and move meaningfully towards the long term technology goals
- Tension for fuel efficiency improvements and NOx emissions reduction
- Cost-effectiveness in line with previous decisions; APMT-Economics confirmed
- Qualitative use of APMT-Impacts analysis indicated a more stringent scenario

