Combining multiple studies to derive toxicity values: Path forward as envisioned by the NRC

IRIS Workshop on the NRC Recommendations 2014.10.16 Yiliang Zhu (yzhu@health.usf.edu) College of Public Health University of South Florida

NRC Formaldehyde Committee (2011) Recommendation

Integrate information across multiple studies to derive toxicity values (reference values & unit risks)

- A single study is unlikely to trumpet all others
- Multiple studies and multiple endpoints afford more robust and sufficient dose-response information
- As a result , toxicity values are more reliability, and support evaluation of uncertainty and variability

NRC IRIS Committee (2014)

- EPA made substantial efforts to change and improve the IRIS process following the "road map" suggested by the NRC Formaldehyde Committee (2011)
- The NRC IRIS committee was charged to reviewed the progress made to IRIS process and to provide additional recommendations
- The report contains discussions and illustrations of relevant technical approaches to integrating multiple studies in deriving toxicity values

System Integration: A Simple Bayes Model Frame to Integrating Multiple Studies (Fig 7-3)

$$\beta_{animal} / \beta_{htp} = 0_1 \qquad \beta \text{ can be any appropriate} \beta_{human} / \beta_{animal} = 0_2 \qquad \beta \text{ can be any appropriate} \beta_{buman} / \beta_{animal} = 0_2 \qquad \text{such as BMD}$$

Table 7-3: An Example

Data systems	Param. BMD ₁₀	BMDL (95%)	Uncertain. Ratio U	Human- equiv. RfD	Prior (log) for human
High-throughput data only	0.1	0.07	U ₁ =1000	0.000007	$Log BMD_{10}+logU_1+logU_2 \sim N(-2.30,3.71^2)$
Animal assays only	0.85	0.15	U ₂ =10	0.015	
Bayes Integration HTP + animal	0.85	0.048		0.048	log BMD _{aniaml} +logU ₂ ~ N(-1.65, 1.46 ²)
Human studies only	0.05	0.019		0.019	
Byes Integration HTP + animal + Human	0.066	0.026		0.026	

Bayes Priors and Posteriors in the Example

Data	Statistics	Prior distribution	Posterior distribution
systems		(for human)	(for human)
High-	BMD=0.1;	log	_
throughput	BMDL=0.07;	BMD _{htp} +logU ₁ +logU ₂	
data only	U=1000	~ N(-2.30,3.71 ²)	
HTP+animal	Log(BMD)=-0.161; SD=0.9	log BMD _{aniaml} +logU ₂ ~ N(-1.65, 1.46 ²)	log BMD _{animal} is the posterior based on the prior log BMD _{htp} +logU ₁
HTP + animal + Human studies	Log(BMD)=-3.0; SD=0.5		log BMD _{human} ~ N(-2.72, 0.224)

The NRC Envisions

- Existing methods in principle can be adapted to integrate multiple studies systematically
- New methods are needed in the toobox
- Applications require case-by-case adaptation
- Experience-based guidance needed for appropriate methods
- A critical role EPA plays in this effort

