Test Material:	Fluazinam
MRID:	48635802
Title:	Robaugh, D.A. 2011. Independent laboratory validation of enforcement method for the analysis of fluazinam and five metabolites in water.
MRID:	48635802 – Appendix A
Title:	Schoenau, E.A. 2011. Analytical procedure for the determination of fluazinam and five metabolites (AMPA, DAPA, CAPA, DCPA, HYPA) in water. GLP-MTH-077.
EPA PC Code:	129098
OCSPP Guideline:	850.6100

For Cambridge Environmental

Primary Reviewer: Lynne Binari

Signature:

Zymme Dinai

Date: 5/14/12

Secondary Reviewer: Kathleen Ferguson

Signature:

Karnlun P. Jerguson

Date: 5/14/12

QC/QA Manager: Joan Gaidos

Signature:

Joudit

Date: 5/14/12

EPA MRID Number 48635802 (ECM/ILV)

Data Requirement:	EPA Guideline: OECD Data Point:	850.6100 IIA 4.5
Test material:		
Common name:	Fluazinam	
Chemical name:	3-Chloro-N-[3-chloro (trifluoromethyl)-2-py	-2,6-dinitro-4-(trifluoromethyl)phenyl]-5- yridinamine.
IUPAC:	3-Chloro-N-(3-chloro 2,6-dinitro-p-toluiding	-5-trifluoromethyl-2-pyridyl)-α,α,α-trifluoro- e (Appendix A, p. 88).

Final Reviewer: José L. Meléndez

Signature:

José fais Melendez

Environmental Risk Branch V

Date: 04/09/2013

ANALYTICAL METHOD: EPA MRID No. 48635802 – Appendix A. Schoenau, E.A. 2011. Analytical procedure for the determination of fluazinam and five metabolites (AMPA, DAPA, CAPA, DCPA, HYPA) in water. GPL-MTH-077. Report prepared by Golden Pacific Laboratories, LLC, Fresno, California, sponsored by Ishihara Sangyo Kaisha, Ltd., Osaka, Japan, and submitted by ISK Biosciences Corporation, Concord, Ohio; 15 pages (p. 1A; Appendix A, pp. 87-101). Final report issued May 24, 2011 (Appendix A, p. 87).

INDEPENDENT LABORATORY VALIDATION: EPA MRID No. 48635802. Robaugh, D.A. 2011. Independent laboratory validation of enforcement method for the analysis of fluazinam and five metabolites in water. Report prepared by Pyxant Labs Inc., Colorado Springs, Colorado, sponsored by Ishihara Sangyo Kaisha, Ltd., Osaka, Japan, and submitted by ISK Biosciences Corporation, Concord, Ohio; 120 pages. Final report issued September 30, 2011.

SYNOPSIS

This analytical method, "Analytical procedure for the determination of fluazinam and five metabolites (AMPA, DAPA, CAPA, DCPA, HYPA) in water", is designed for the quantitative determination of fluazinam and its transformation products AMPA, DAPA, CAPA, DCPA, HYPA in water using LC/MS/MS (see **Table 1**). The method appears to be quantitative for the above mentioned compounds at the stated LOQ of 0.10 μ g/L for each analyte. The LOQs are less than the lowest toxicological level of ecological concern in water. However, issues were noted as indicated below under "Method Acceptability". The data on the ECM were incomplete. The registrant should address these issues in order to upgrade the study.

Analyte	MR Environmental Chemistry	ID Independent Laboratory	EPA Review	Matrix	Method Date	Registrant	Analysis	Limit of Quantitation
	Method	Validation						(LOQ)
Fluazinam, AMPA, DAPA, CAPA, DCPA, HYPA	48635802, Appendix A	48635802		Water	05/24/11	ISK Biosciences Corp.	LC/MS/ MS	0.10 μg/L ¹

Fable 1	. Anal	lytical	Method	Summary
----------------	--------	---------	--------	---------

1. The registrant must provide additional data regarding the environmental chemistry method. Available data are incomplete.

EXECUTIVE SUMMARY

This method is designed for the quantitative determination of residues of fluazinam and its five transformation products AMPA, DAPA, CAPA, DCPA and HYPA in water. The method was validated by Golden Pacific Laboratories, LLC, for Ishihara Sangyo Kaisha, Ltd.; no regulatory guidelines were cited in the ECM (Appendix A, pp. 87-101). An independent laboratory validation (ILV), performed by Pyxant Labs Inc., was submitted with the method. The Agency finds that this method is **supplemental** for fluazinam, AMPA, DAPA, CAPA, DCPA and HYPA. The registrant must provide the analytical results of the environmental chemistry method and address certain issues found, as described below under "Method Acceptability".

Method Summary: Water is combined with 0.2% formic acid in acetonitrile at a ratio of 9:1 (v:v), then analyzed directly for fluazinam, AMPA, DAPA, CAPA, DCPA and HYPA using LC/MS/MS (Appendix A, pp. 90, 92). The ECM defined a limit of quantitation (LOQ) of 0.10 μ g/L for the six analytes in water, with a limit of detection (LOD) of 0.0556 μ g/L, which were supported by the ILV (Appendix A, p. 97).

METHOD ACCEPTABILITY/DEFICIENCIES/CLARIFICATIONS

For the ECM, performance data were incomplete with only results from one water sample fortified at the LOQ with all six compounds reported (Appendix A, pp. 99-101). Chromatograms of standards and method and matrix blank samples were not provided. Calibration curves and linear regression analyses were not provided. Results from the confirmatory method were not reported. The source and characterization of the water matrix were not reported.

For the ILV, acceptance criteria were met (matrix spike recoveries ranging between 70% to 120% and relative standard deviations of $\leq 20\%$) at the LOQ and 10 x LOQ for all analytes, except for two of the five fortifications for HYPA at the LOQ (Tables 1-6, pp. 23-26). Quantitative results from the confirmatory method were not reported and data on the representative chromatograms were illegible (Figures 49-54, pp. 81-86). The tap water matrix was not further characterized.

The ILV found that no substitutions should be made for glass equipment due to adsorption of all six analytes to plastics.

COMPLIANCE

No regulatory guidelines were cited in the ECM.

A. BACKGROUND INFORMATION

TABLE A.1. Test Compound Nomenclature			
Parameter	Value		
Common name	Fluazinam		
Company experimental name	IKF-1216 PAI, IKF-1216, B1216, PP192 (p. 1A; Appendix B, p. 102).		
IUPAC name	3-Chloro-N-(3-chloro-5-trifluoromethyl-2-pyridyl)-α,α,α-trifluoro- 2,6-dinitro-p-toluidine.		
CAS Name	3-Chloro-N-[3-chloro-2,6-dinitro-4-(trifluoromethyl)phenyl]-5- (trifluoromethyl)-2-pyridinamine.		

TABLE A.1. Test Compound Nomenclature			
Parameter	Value		
CAS #	79622-59-6		
Structure			
Common name	AMPA		
Company experimental name	IKF-1216 Metabolite-AMPA (Appendix B, p. 103).		
IUPAC name	2-(6-Amino-3-chloro-α,α,α-trifluoro-2-nitro-p-toluidino)-3-chloro- 5-(trifluoro-methyl)pyridine.		
CAS Name	2-(6-Amino-3-chloro- α , α , α -trifluoro-2-nitro- ρ -toluidino)-3-chloro- 5-trifluoro-methylpyridine.		
CAS #	Not reported.		
Structure			
Common name	DAPA		
Company experimental name	IKF-1216 Metabolite-DAPA (Appendix B, p. 104).		

TABLE A.1. Test Compound Nomenclature			
Parameter	Value		
IUPAC name	3-Chloro-2-(2,6-diamino-3-chloro-α,α,α-trifluoro-p-toluidino)-5- (trifluoromethyl)-pyridine.		
CAS Name	3-Chloro-2-(2,6-diamino-3-chloro- α , α , α -trifluoro- ρ -toluidino)-5-trifluoromethyl-pyridine.		
CAS #	Not reported.		
Structure			
Common name	САРА		
Company experimental name	None reported (Appendix B, p. 105).		
IUPAC name	5-Chloro-6-(3-chloro- α, α, α -trifluoro-2,6-dinitro-p-toluidino)- nicotinic acid.		
CAS Name	5-Chloro-6-[[3-chloro-2,6-dinitro-4- (trifluoromethyl)phenyl]amino]-3-pyridinecarboxylic acid.		
CAS #	Not reported.		

TABLE A.1. Test Compound Nomenclature				
Parameter	Value			
Structure				
Common name	DCPA			
Company experimental name	None reported (Appendix B, p. 106).			
IUPAC name	6-(4-Carboxy-3-chloro-2,6-dinitroanilino)-5-chloronicotinic acid.			
CAS Name	6-[(4-Carboxy-3-chloro-2,6-dinitrophenyl)-amino]-5-chloro-3- pyridinecarboxylic acid.			
CAS #	Not reported.			
Structure				
Common name	НУРА			
Company experimental name	None reported (Appendix B, p. 107).			
IUPAC name	5-((3-Chloro-5-(trifluoromethyl)-2-pyridyl)amino)- α , α , α -trifluoro-4,6-dinitro-o-cresol.			

TABLE A.1. Test Compound Nomenclature			
Parameter	Value		
CAS Name	3-[[3-Chloro-5-(trifluoromethyl)-2-pyridinyl]amino]-2,4-dinitro-6-(trifluoro-methyl)phenol.		
CAS #	79614-99-6		
Structure	$F + F$ $CI + N$ $O + N$ H_{N} $O + F + F$ $F + F$		

Information obtained from p. 1A; Appendix B, pp. 102-107 of the study report. Except for DCPA, CAS names obtained from Fluazinam structures[1].doc, as well as HYPA CAS No.

TABLE A.2. Physicochemical Properties of the Technical Grade Test Compound			
Parameter	Value		
Melting point/range (°C)	Not reported.		
pH	Not reported.		
Density (g/cm^3)	Not reported.		
Water solubility at 20°C (mg/L)	Not reported.		
Solvent solubility at 20 °C (mg/L)	Not reported.		
Vapor pressure at°C (torr)	Not reported.		
Dissociation constant (pK _a)	Not reported.		
Octanol/water partition coefficient	Not reported.		
UV/visible absorption spectrum (nm)	Not reported.		

B. MATERIALS AND METHODS

B.1. Principle of Method

The water sample is combined with 0.2% formic acid in acetonitrile at a ratio of 9:1 (v:v), then analyzed directly for fluazinam, AMPA, DAPA, CAPA, DCPA and HYPA by LC/MS/MS-ESI⁺ using a Phenomenex Synergi Polar-RP column (Appendix A, pp. 92-

93). For each compound, two ion transitions are monitored for quantitation and confirmation (Appendix A, pp. 94-95).

TABLE B.1. Summary Parameters for the Analytical Method Used for theQuantitation of Chemical Residues in Matrices Studied			
Parameter	Value		
Method ID	Analytical procedure for the determination of fluazinam and five metabolites (AMPA, DAPA, CAPA, DCPA, HYPA) in water. GPL-MTH-077 (Appendix A, p. 87).		
Analyte(s)	Fluazinam, AMPA, DAPA, CAPA, DCPA and HYPA.		
Extraction solvent/technique	Water (9 mL) is transferred to a glass tube, combined with 0.2% formic acid in acetonitrile (1 mL) and shaken for 30 seconds (Appendix A, p. 92).		
Cleanup strategies	As needed, filter sample through glass fiber filter $(1-\mu m, 25-mm)$ using a glass syringe to remove particulates (Appendix A, pp. 90, 92).		
Instrument/Detector	Shimadzu HPLC system with Phenomenex Synergi Polar-RP column (2 x 50 mm, 4-μm, 80 Å) and Applied Biosystems (AB) Sciex API5000 LC/MS/MS equipped with Turbo Spray electrospray ionization in positive ion mode (ESI ⁺) and multiple reaction monitoring (MRM; Appendix A, pp. 90, 92-93).		

Information obtained from Appendix A, pp. 87, 90, 92-93 of the study report.

C. RESULTS AND DISCUSSION

C.1. Recovery Results Summary

TABLE C.1. Recovery Results from Method Validation for the Determination of Fluazinam, AMPA, DAPA, CAPA, DCPA and HYPA in Water $(n = 1)^1$				
Analyte	Spiking Level (µg a.i./L)	Recoveries Obtained (%)	Relative Standard Deviation	
Fluazinam	0.10 (LOQ)	102		
1 10021110111	1.0			
AMPA	0.10 (LOQ)	96.9		
	1.0			
	0.10 (LOQ)	102		
	1.0			
САРА	0.10 (LOQ)	95.2		
	1.0			
DCPA	0.10 (LOQ)	72.8		
	1.0			
НҮРА	0.10 (LOQ)	85.5		
	1.0			

Results from Appendix A, pp. 99-101 of the study report.

-- = Not reported.

1 Only results from one water sample fortified at a nominal 0.1 µg a.i./L were reported (Appendix A, pp. 99-101). Results could not be verified by reviewer because supporting data were not provided.

Results from the confirmatory method were not reported.

C.1.1. Method Characteristics

TABLE C.2. Method Characteristics			
Parameter	Value		
Analyte(s)	Fluazinam, AMPA, DAPA, CAPA, DCPA and HYPA.		
Limit of Quantitation (LOQ)	0.10 μg a.i./L (Appendix A, p. 97).		
Limit of Detection (LOD)	0.0556 μg a.i./L (Appendix A, p. 97).		
Accuracy/Precision at LOQ	<u>ECM</u> : Acceptance criteria (EFED-ECM 2, Version 1, December 2010, p. 5; OCSPP 850.6100) were met at the LOQ with matrix spike recoveries ranging between 70% to 120%; however, relative standard deviations were not reported and could not be determined by the reviewer due to insufficient reported results (Appendix A, pp. 99-101).		
Reliability of the Method/[ILV]	<u>ILV</u> : For fluazinam, AMPA, DAPA, DAPA and DCPA, acceptance criteria were met at the LOQ with matrix spike recoveries ranging between 70% to 120% and relative standard deviations of \leq 20% (Tables 1-5, pp. 23-25). For HYPA, two of the five fortifications had recoveries >120% (LOQ-1 121%, LOQ-5 123%; Table 6, p. 26). The method was validated after two trials. In the first trial, fluazinam and its products were found to adsorb to polypropylene (p. 20).		
Linearity	<u>ECM</u> : not reported. <u>ILV</u> : Linear regression: $r = 0.9957-0.9994$ (p. 17; Figures 1-6, pp. 33-38).		
Specificity	<u>ECM</u> : could not be determined because quantitative results and chromatograms for standards and method and matrix blank samples were not provided. <u>ILV</u> : Comparison of chromatograms produced for standards and control and fortified samples demonstrates that the method, based on LC/MS/MS, is highly specific for the analysis of fluazinam and its products AMPA, DAPA, CAPA, DCPA and HYPA (Figures 7-48, pp. 39-80). Method and matrix blank controls showed no significant interferences (<0.01 μ g/L) at the retention times of the six analytes (Tables 7-12, pp. 27-32; Figures 13-24, pp. 45-56; DER Attachment 2).		

Information obtained from pp. 17, 20; Tables 1-12, pp. 23-32; Figures 1-48, pp. 33-80; Appendix A, pp. 97, 99-101 of the study report and DER Attachment 2.

C.2. Independent Laboratory Validation (ILV)

The ILV was conducted in compliance with USEPA GLP Standards 40 CFR, Part 160, OPPTS 850.7100 and OPPTS 835.6200 guidelines, and PR Notice 96-1 (pp. 3, 12, 21-22). [Reviewed under OCSPP 850.6100.]

TABLE C.3. Recovery Results of the Method Obtained by an IndependentLaboratory Validation for the Determination of Residues in Tap Water ($n = 5$)						
AnalyteSpiking Level (µg a.i./L)Mean Recoveries Obtained (%)Relative State Deviation						
Elucation	0.10 (LOQ)	86	0.94			
Fluazinani	1.0	94	4.5			
	0.10 (LOQ)	111	1.2			
AMPA	1.0	101	2.3			
DADA	0.10 (LOQ)	99	2.4			
DAPA	1.0	103	1.8			
CARA	0.10 (LOQ)	110	2.9			
CAPA	1.0	102	1.6			
DCDA	0.10 (LOQ)	109	7.0			
DCPA	1.0	106	6.1			
	0.10 (LOQ)	116	5.7			
ΠΙΓΑ	1.0	112	3.5			

Results obtained from Tables 1-6, pp. 23-26; reported results verified by reviewer (DER Attachment 2).

Quantitative results from the confirmatory method were not reported and data on representative chromatograms were illegible (Figures 49-54, pp. 81-86).

D. CONCLUSION

This method is designed for the quantitative determination of residues of fluazinam and its products AMPA, DAPA, CAPA, DCPA and HYPA in water. The Agency finds that this method is **supplemental** for fluazinam, AMPA, DAPA, CAPA, DCPA and HYPA in water. For HYPA, two of the five fortifications at the LOQ were not within acceptance criteria (*i.e.*, <70% or >120% recovery; EFED-ECM 2, Version 1, December 2010, p. 5; OCSPP 850.6100).

[Refer to the attached review checklist.]

ENVIRONMENTAL CHEMISTRY METHOD (ECM) STANDARD EVALUATION PROCEDURE (SEP) CHECKLIST: BACKGROUND AND INITIAL REVIEW INFORMATION

I. Background Information

A.	Title of Method	Analytical procedure for the determination of fluazinam and five metabolites (AMPA, DAPA, CAPA, DCPA, HYPA) in water. GPL-MTH-077 (Appendix A, p. 87).				
В.	ECM No. [ECB use]					
С.	MRID No.	48635802				
D.	Matrix	Water				
Е.	Analyte(s) detected	Compound:				
		Common name:	Fluazinam			
		IUPAC name:	3-Chloro-N-(3-chloro-5-trifluoromethyl-2- pyridyl)-α,α,α-trifluoro-2,6-dinitro-p- toluidine (Appendix B, p. 102).			
		CAS name: 3-Chloro-N-[3-chloro-2,6-dinitro-4- (trifluoromethyl)phenyl]-5- (trifluoromethyl)-2-pyridinamine.				
		CAS No:	79622-59-6			
		Synonyms:	IKF-1216 PAI, IKF-1216, B1216, PP192 (p. 1A; Appendix B, p. 102).			

Con	npound:				
Co	ommon name:	AMPA			
IU	PAC name:	AC name: 2-(6-Amino-3-chloro-α,α,α-trifluoro-2- nitro-p-toluidino)-3-chloro-5-(trifluoro- methyl)pyridine (Appendix B, p. 103).			
CA	AS name:	2-(6-Amino-3-chloro-α,α,α-trifluoro-2- nitro-ρ-toluidino)-3-chloro-5-trifluoro- methylpyridine.			
CA	AS No:	Not reported.			
Sy	monyms:	IKF-1216 Metabolite-AMPA			
Con	npound:				
Co	ommon name:	DAPA			
IU	PAC name:	3-Chloro-2-(2,6-diamino-3-chloro-α,α,α- trifluoro-p-toluidino)-5-(trifluoromethyl)- pyridine (Appendix B, p. 104).			
CA	AS name:	3-Chloro-2-(2,6-diamino-3-chloro-α,α,α- trifluoro-ρ-toluidino)-5-trifluoromethyl- pyridine.			
CA	AS No:	Not reported.			
Sy	monyms:	IKF-1216 Metabolite-DAPA			

1		
	Common name:	DCPA
	IUPAC name:	6-(4-Carboxy-3-chloro-2,6-dinitroanilino)- 5-chloronicotinic acid (Appendix B, p. 106).
	CAS name:	6-[(4-Carboxy-3-chloro-2,6-dinitrophenyl)- amino]-5-chloro-3-pyridinecarboxylic acid.
	CAS No:	Not reported.
	Synonyms:	None reported.
	Commonwedu	
	Common name:	НҮРА
	IUPAC name:	5-((3-Chloro-5-(trifluoromethyl)-2- pyridyl)amino)-α,α,α-trifluoro-4,6-dinitro-o- cresol (Appendix B, p. 107).
	CAS name:	3-[[3-Chloro-5-(trifluoromethyl)-2- pyridinyl]amino]-2,4-dinitro-6-(trifluoro- methyl)phenol.
	CAS No:	79614-99-6
	Synonyms:	None reported.

ENVIRONMENTAL CHEMISTRY METHOD REVIEW CHECKLIST

Information obtained from p. 1A; Appendix A, p. 87; Appendix B, pp. 102-107 of the study report. Except for DCPA, CAS names obtained from Fluazinam structures[1].doc, as well as HYPA CAS No.

II. Information about the Laboratory

Α.	Name	Golden Pacific Laboratories, LLC (Appendix A, p. 87).
В.	Address	4720 West Jennifer Ave., Suite 105, Fresno, California 93722.
C.	Telephone No.	559-275-9091
D.	Name of the Study Director	Not reported.
Е.	Name of the Lead Chemist	Elisabeth A. Schoenau (Appendix A, p. 87).
F.	Laboratory Validation:	Not provided.

Information obtained from Appendix A, p. 87 of the study report; address and telephone number from GPL website.

III. Method Summary Information for Analyte(s): Fluazinam and its products AMPA, DAPA, CAPA, DCPA and HYPA.

A.	Statement of Data Confidentiality	Yes (p. 2).
1.	Is the Method Classified or Confidential?	No.
2.	Submitted Prior to 2008 with a Non-Standard Claim of Confidentiality?	No.

B .	Sample Preparation	Samples should not be collected or analyzed in plastic bottles as fluazinam and AMPA may absorb to the plastic (Appendix A, p. 92). Water (100 mL) was fortified with a mixed standard solution of fluazinam, AMPA, DAPA, CAPA, DCPA and HYPA, in acetonitrile, at 0.10 and 1.0 µg a.i./L (Appendix A, pp. 91-92). Application solution volumes were not reported.					
C.	Sample Extraction	Water (9 mL) 0.2% formic a seconds (Appe	transferred to a cid in acetonitri endix A, p. 92).	glass tube, com le (1 mL) and sl	bined with haken for 30		
D.	Sample Cleanup	As needed, filt mm) using a g A, pp. 90, 92).	ter sample throu lass syringe to r	igh glass fiber fi emove particula	ilter (1-μm, 25- ates (Appendix		
Е.	Sample Derivatization (if applicable)	None reported.					
F.	Sample Analysis	LC/MS/MS (Appendix A, p. 92).					
1.	Instrumentation	Shimadzu HPLC system and Applied Biosystems (AB) Sciex API5000 LC/MS/MS equipped with Turbo Spray electrospray ionization in positive ion mode (ESI ⁺ ; Appendix A, pp. 90, 92-93)					
2.	Primary Column	Phenomenex S 80 Å; Append	Synergi Polar-R ix A, p. 93).	P column (2 x 5	0 mm, 4 μm,		
3.	Confirmatory Column (if any)	None reported					
4.	Detector	Multiple Reac	tion Monitoring	g (MRM; Appen	dix A, p. 93).		
5.	Other Confirmatory Techniques (if any)	For each comp quantitation ar	oound, two ion t d confirmation	ransitions were (Appendix A, p	monitored for op. 94-95).		
6.	Other Relevant	Compound	Ions moni	tored (m/z)	Retention		
	Information	Quantitation Confirmation time (min.)					
		Fluazinam 465.0 > 373.0 465.0 > 338.0 ca. 4.3					
		AMPA 435.0 > 373.0 435.0 > 354.0 ca. 4.0		<i>ca</i> . 4.0			
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					
		НҮРА	447.1 > 382.9	447.1 > 355.1	<i>ca</i> . 3.4		
G.	Detection and Quantitation Limits		202.)				

1.	Limit of Quantitation (LOQ)			
	Claimed in Method	0.1 μg/L (Appendix A, p. 97).	Estimated	No justification for selected LOQ was provided.
2.	Limit of Detection (LOD)			
	Claimed in Method	0.0556 μg/L (Appendix A, p. 97).	Estimated	Estimated from lowest calibration standard (0.05 µg/L; Appendix A, p. 91)

H.	Recovery (Accuracy)/Precision Data; expressed as percentage of applied $(n = 1)^1$							
	Spiking Level (µg a.i./L)	Parameter	Fluazinam	AMPA	DAPA	САРА	DCPA	НҮРА
	0.1 (LOQ)	Range	102	96.9	102	95.2	72.8	85.5
		Mean						
		SD						
		RSD						
		Range						
	1.0	Mean						
		SD						
		RSD						

Information obtained from p. 2; Appendix A, pp. 90-95, 97, 99-101 of the study report.

-- = Not reported.

1 Only results from one water sample fortified at a nominal 0.1 μg a.i./L were reported (Appendix A, pp. 99-101). Results could not be verified by reviewer because supporting data were not provided.

IV. Detailed Information about the Method

		YES	NO	REVIEW FURTHER
А.	Does the method require spiking with the analytes(s) of interest?	Х		Appendix A, p. 92.
В.	If the method requires explosive or carcinogenic reagents, are proper precautions explained?			Not applicable.
C.	Is the following information supplied?			

		YES	NO	REVIEW FURTHER
1.	Detailed stepwise description of:			
a.	The sample preparation procedure?	Х		Appendix A, p. 92.
b.	The sample spiking procedure?	X		Application solution volumes not reported (Appendix A, p. 92).
c.	The extraction procedure?	Х		Appendix A, p. 92.
d.	The derivatization procedure?			Not applicable.
e.	The clean-up procedure?	Х		Appendix A, p. 92.
f.	The analysis procedure?	Х		Appendix A, pp. 92-95.
2.	Procedures for:		1	
a.	Preparation of standards?	Х		Appendix A, p. 91.
b.	Calibration of instrument?	Х		Appendix A, p. 95.
3.	List of glassware and chemicals	х		Appendix A, pp. 90-91.
a.	Are sources recommended?	Chemicals	Glassware	
b.	Are they commercially available?	Х		
4.	Name, model, <i>etc.</i> , of the instrument, column, detector, <i>etc.</i> , used?	х		Appendix A, pp. 90, 93.
a.	Are sources recommended?	Х		
b.	Are they commercially available?	Х		
5.	LOD			-
a.	Is there an explanation of how it was calculated?	х		Appendix A, p. 97.
b.	Is it a scientifically accepted procedure?	Х		
c.	Is the matrix blank free of interference(s) at the retention time, wavelength, <i>etc.</i> , of the analyte(s) of interest?	ILV (Figures 19-24, pp. 51-56)		ECM: Results from matrix blanks not reported.

		YES	NO	REVIEW
6.	LOO			TORTHER
a.	Is there an explanation of how it was calculated?		х	
b.	Is it a scientifically accepted procedure?			
7.	Precision and accuracy data		-	
a.	Were there an adequate number of spiked samples analyzed?			ECM: Number of fortified samples not reported.
b.	Are the mean recoveries between 70-120%?			ECM: Only results from one water sample fortified at the LOQ with all six compounds were reported.
c.	Are the RSDs of the replicates 20% or less at or above the LOQ?			
8.	Description and/or explanation of:			
a.	Areas where problems may be encountered?	x Only glass equipment may be used.		ECM stated water samples should not be collected or analyzed in plastic, as fluazinam and AMPA may adsorb (Appendix A, p. 92). ILV found all analytes adsorbed to polypropylene (p. 20).
b.	Steps that are critical?			None specified.
c.	Interferences that may be encountered?			None reported.

		YES	NO	REVIEW FURTHER
9.	Characterization of the Matrix(ces)?		х	ECM: Source and characterization of the test water were not reported. ILV: Test (tap) water was not characterized.

Information obtained from p. 20; Figures 19-24, pp. 51-56; Appendix A, pp. 90-95, 97 of the study report.

V. Representative Chromatograms

		YES	NO	REVIEW FURTHER
A.	Are there representative chromatograms for:			
1.	Analyte(s) in each matrix at the LOQ and 10 x LOQ?	ECM: LOQ ILV: Both	ECM: 10 x LOQ	Figures 25-48, pp. 57-80; Appendix A, pp. 99-101.
2.	Method blanks?	ILV	ECM	Figures 13-18, pp. 45-50.
3.	Matrix blanks?	ILV	ECM	Figures 19-24, pp. 51-56.
4.	Standard curves?	ILV	ECM	Figures 1-6, pp. 33-38.
a.	Do the standard curves have acceptable linearity?	ILV		r = 0.9957-0.9994
5.	Standards that can be used to recalculate some of the values for analyte(s) in the sample chromatograms?	ILV	ECM	DER Attachment 2
В.	Can the responses of the analytes(s) in the chromatograms of the lowest spiking level be accurately measured?	x		Tables 7-11, pp. 27-31; Appendix A, pp. 99-101.

Information obtained from Tables 7-11, pp. 27-31; Figures 1-6, pp. 33-38; 13-48, pp. 45-80; Appendix A, pp. 99-101 of the study report.

VI. Good Laboratory Practice (GLP) Standards

		YES	NO	REVIEW FURTHER
А.	Is there a statement of adherence to the FIFRA GLP standards?	ILV	ECM	

Information obtained from p. 3 of the study report.

VII. Independent Lab Validation (ILV)

					Yl	ES		NO	REV FURT	IEW HER
А.	Was an ILV p	erformed?			2	K				
B.	Was the validation of the second seco	ation indepe	ndent?		У	K			p. 12.	
C.	Did the ILV's precision/accuracy data meet the criteria established in OCSPP Guideline 850.6100?				2	K				
D.	Were recomm minor modific by the indeper ILV? If majo suggested, what	endations of cations to the ndent lab per r modificatio at were they	major or method ma forming the ons were ?	ide e	2	¢			There shou substitutior glass equip 20).	ld be no as for ment (p.
Е.	Recovery (Ad	ccuracy)/Pr	ecision Dat	ta; e	expres	sed as	per	centage o	of applied	$(n = 5)^1$
	Spiking Level (µg a.i./L)	Parameter	Fluazinam	A	MPA	DAF	PA	САРА	DCPA	НҮРА
		Range	85-87	11	0-113	96-1	02	107-114	96-115	109-123
	0.10	Mean	86		111	99		110	109	116
	(LOQ)	SD	0.80		1.3	2.4	ŀ	3.2	7.6	6.5
		RSD	0.94		1.2	2.4	ŀ	2.9	7.0	5.7
		Range	87-98	98	8-104	100-1	05	101-105	99-113	108-117
	1.0	Mean	94		101	103	3	102	106	112
	1.0	SD	4.2		2.3	1.8	8	1.6	6.5	3.9
		RSD	4.5		2.3	1.8	8	1.6	6.1	3.5

Information obtained from pp. 12, 20 of the study report. Shaded values are off acceptable limits.

1 Results obtained from Tables 1-6, pp. 23-26 of the study report; reported results verified by reviewer (DER Attachment 2). Recoveries from reagent blank samples fortified at 0.1 μg a.i./L were 95.0%, 99.0%, 75.9%, 85.9%, 42.5% and 64.4% for fluazinam, AMPA, DAPA, CAPA, DCPA and HYPA, respectively (Tables 7-12, pp. 27-32).

One step of sample transfer was saved by adding 0.2% formic acid in acetonitrile directly to the water (p. 20).

VIII. Completeness

		YES	NO	REVIEW FURTHER
А.	Has enough information been supplied to do a proper review?		X	See section <i>IX</i> . <i>Recommendations</i> (below).
В.	Has enough information been supplied to do a laboratory evaluation, if requested? [BEAD ECB determination.]			
C.	Are all steps in the method scientifically sound?	Х		
D.	Is a confirmatory method or technique provided?	Х		However, adequate supporting results were not provided.
Е.	Check the category below which best describes this ECM.			
1.	Satisfactory [Agency determination]		X	Study is considered supplemental. Additional data should be provided to upgrade the studies.
2.	Major Deficiencies	Х		See section <i>IX</i> . <i>Recommendations</i>
3.	Minor Deficiencies	Х		See section <i>IX</i> . <i>Recommendations</i> (below).

IX. Recommendations

- 1. For the ECM:
 - a) Performance data were incomplete with only results from one water sample fortified at a nominal 0.1 µg a.i./L (LOQ) with all six compounds reported (Appendix A, pp. 99-101).
 - b) The reported results could not be verified by the reviewer because supporting data were not provided.
 - c) The number of fortified samples was not reported.
 - d) Chromatograms of standards and method and matrix blank samples were not provided.
 - e) Calibration curves and linear regression analyses were not provided.
 - f) The source and characterization of the water matrix were not reported.
 - g) No results from the confirmatory method were provided.
 - h) No justification for selection of the LOQ concentration was provided.
 - i) No regulatory guidelines were cited in the ECM (Appendix A, pp. 87-101).
- 2. For the ILV:
 - a) For HYPA, two of the five fortifications at the LOQ (LOQ-1 121%, LOQ-5 123%) were not within acceptance criteria (*i.e.*, <70% or >120% recovery; EFED-ECM 2, Version 1, December 2010, p. 5; OCSPP 850.6100).
 - b) Quantitative results from the confirmatory method were not reported and data on the representative chromatograms were illegible (Figures 49-54, pp. 81-86).
 - c) Data on all chromatograms were for the most part illegible; therefore, verification of results using the chromatograms was done using Peak Area counts reported in Tables 7-12, pp. 27-32 of the study report (DER Attachment 2).
 - d) The water matrix was not characterized, except for the source (tap).

Final Reviewer: José L. Meléndez Date: 04/09/2013

José fais Melendez

Chemical: Fluazinam

PC: 129098

MRID: 48635802

Guideline: 850.6100

Independent laboratory validation for determination of fluazinam and its products AMPA, DAPA, CAPA, DCPA and HYPA in water.

Fortified		Fluazir	nam				AMF	PΑ				DAP	Ϋ́Α		
	Measured	Recovery	Mean	SD1	RSD ²	Measured	Recovery	Mean	SD	RSD	Measured	Recovery	Mean	SD	RSD
(μg a.i./L)	(µg/L)	(%)	(%)	(%)	(%)	(µg/L)	(%)	(%)	(%)	(%)	(µg/L)	(%)	(%)	(%)	(%)
0.1	0.0868	87				0.113	113				0.0979	98			
	0.0859	86				0.110	110				0.102	102			
	0.0847	85				0.110	110				0.0956	96			
	0.0853	85				0.111	111				0.100	100			
	0.0852	85	86	0.80	0.94	0.110	110	111	1.3	1.2	0.0999	100	99	2.4	2.4
1.0	0.922	92				1.01	101				1.02	102			
	0.870	87				0.976	98				1.00	100			
	0.975	98				1.01	101				1.05	105			
	0.955	96				1.00	100				1.03	103			
	0.959	96	94	4.2	4.5	1.04	104	101	2.3	2.3	1.03	103	103	1.8	1.8
Overall mean		90					106					101			
SD		5.1					5.6					2.7			
RSD		5.7					5.3					2.7			
Max		98					113					105			
Min		85					98					96			
n =		10					10					10			
												НҮРА			
Eortified		CAP	Ϋ́Α				DCF	PA				HYP	A		
Fortified	Measured	CAP Recovery	'A Mean	SD	RSD	Measured	DCF Recovery	A Mean	SD	RSD	Measured	HYP Recovery	'A Mean	SD	RSD
Fortified (μg a.i./L)	Measured (µg/L)	CAP Recovery (%)	A Mean (%)	SD (%)	RSD (%)	Measured (µg/L)	DCF Recovery (%)	PA Mean (%)	SD (%)	RSD (%)	Measured (µg/L)	HYP Recovery (%)	A Mean (%)	SD (%)	RSD (%)
Fortified (μg a.i./L) 0.1	Measured (μg/L) 0.112	CAP Recovery (%) 112	A Mean (%)	SD (%)	RSD (%)	Measured (μg/L) 0.113	DCF Recovery (%) 113	A Mean (%)	SD (%)	RSD (%)	Measured (μg/L) 0.121	HYP Recovery (%) 121	A Mean (%)	SD (%)	RSD (%)
Fortified (µg a.i./L)	Measured (μg/L) 0.112 0.107	CAP Recovery (%) 112 107	A Mean (%)	SD (%)	RSD (%)	Measured (μg/L) 0.113 0.110	DCF Recovery (%) 113 110	A Mean (%)	SD (%)	RSD (%)	Measured (μg/L) 0.121 0.109	HYP Recovery (%) 121 109	A Mean (%)	SD (%)	RSD (%)
Fortified (μg a.i./L)	Measured (μg/L) 0.112 0.107 0.107	CAP Recovery (%) 112 107 107	A Mean (%)	SD (%)	RSD (%)	Measured (μg/L) 0.113 0.110 0.0957	DCF Recovery (%) 113 110 96	A Mean (%)	SD (%)	RSD (%)	Measured (μg/L) 0.121 0.109 0.109	HYP Recovery (%) 121 109 109	PA Mean (%)	SD (%)	RSD (%)
Fortified (μg a.i./L) 0.1	Measured (μg/L) 0.112 0.107 0.107 0.112	CAF Recovery (%) 112 107 107 112	A Mean (%)	SD (%)	RSD (%)	Measured (μg/L) 0.113 0.110 0.0957 0.110	DCF Recovery (%) 113 110 96 110	PA Mean (%)	SD (%)	RSD (%)	Measured (μg/L) 0.121 0.109 0.109 0.116	HYP Recovery (%) 121 109 109 116	A Mean (%)	SD (%)	RSD (%)
Fortified (μg a.i./L) 0.1	Measured (μg/L) 0.112 0.107 0.107 0.112 0.114	CAF Recovery (%) 112 107 107 112 114	A Mean (%) 110	SD (%) 3.2	RSD (%) 2.9	Measured (μg/L) 0.113 0.110 0.0957 0.110 0.115	DCF Recovery (%) 113 110 96 110 115	PA Mean (%) 109	SD (%) 7.6	RSD (%) 7.0	Measured (μg/L) 0.121 0.109 0.109 0.116 0.123	HYP Recovery (%) 121 109 109 116 123	A Mean (%) 116	SD (%) 6.5	RSD (%) 5.7
Fortified (µg a.i./L) 0.1	Measured (μg/L) 0.112 0.107 0.107 0.112 0.114 1.02	CAF Recovery (%) 112 107 107 112 114 102	A Mean (%) 110	SD (%) 3.2	RSD (%) 2.9	Measured (μg/L) 0.113 0.110 0.0957 0.110 0.115 1.11	DCF Recovery (%) 113 110 96 110 115 111	PA Mean (%) 109	SD (%) 7.6	RSD (%) 7.0	Measured (μg/L) 0.121 0.109 0.109 0.116 0.123 1.17	HYP Recovery (%) 121 109 109 116 123 117	A Mean (%) 116	SD (%) 6.5	RSD (%) 5.7
Fortified (µg a.i./L) 0.1	Measured (μg/L) 0.112 0.107 0.107 0.112 0.114 1.02 1.02	CAF Recovery (%) 112 107 107 112 114 102 102	A Mean (%) 110	SD (%) 3.2	RSD (%) 2.9	Measured (μg/L) 0.113 0.110 0.0957 0.110 0.115 1.11 1.07	DCF Recovery (%) 113 110 96 110 115 111 107	A Mean (%) 109	SD (%) 7.6	RSD (%) 7.0	Measured (μg/L) 0.121 0.109 0.109 0.116 0.123 1.17 1.11	HYP Recovery (%) 121 109 109 116 123 117 111	PA Mean (%) 116	SD (%) 6.5	RSD (%) 5.7
Fortified (µg a.i./L) 0.1	Measured (μg/L) 0.112 0.107 0.107 0.112 0.114 1.02 1.02 1.01	CAF Recovery (%) 112 107 107 112 114 102 102 102 101	A Mean (%) 110	SD (%) 3.2	RSD (%) 2.9	Measured (μg/L) 0.113 0.110 0.0957 0.110 0.115 1.11 1.07 0.991	DCF Recovery (%) 113 110 96 110 115 111 107 99	A Mean (%) 109	SD (%) 7.6	RSD (%) 7.0	Measured (μg/L) 0.121 0.109 0.109 0.116 0.123 1.17 1.11 1.08	HYP Recovery (%) 121 109 109 116 123 117 111 108	A Mean (%) 116	SD (%) 6.5	RSD (%) 5.7
Fortified (µg a.i./L) 0.1	Measured (μg/L) 0.112 0.107 0.107 0.112 0.114 1.02 1.02 1.01 1.01	CAF Recovery (%) 112 107 107 112 114 102 102 102 101 101	A Mean (%) 110	SD (%) 3.2	RSD (%) 2.9	Measured (μg/L) 0.113 0.110 0.0957 0.110 0.115 1.11 1.07 0.991 0.993	DCF Recovery (%) 113 110 96 110 115 111 107 99 99	A Mean (%) 109	SD (%) 7.6	RSD (%) 7.0	Measured (μg/L) 0.121 0.109 0.109 0.116 0.123 1.17 1.11 1.08 1.15	HYP Recovery (%) 121 109 109 116 123 117 111 108 115	A Mean (%) 116	SD (%) 6.5	RSD (%) 5.7
Fortified (µg a.i./L) 0.1	Measured (μg/L) 0.112 0.107 0.107 0.112 0.114 1.02 1.02 1.01 1.01 1.05	CAF Recovery (%) 112 107 107 112 114 102 102 101 101 105	A Mean (%) 110	SD (%) 3.2	RSD (%) 2.9	Measured (μg/L) 0.113 0.110 0.0957 0.110 0.115 1.11 1.07 0.991 0.993 1.13	DCF Recovery (%) 113 110 96 110 115 111 107 99 99 113	A Mean (%) 109 106	SD (%) 7.6	RSD (%) 7.0	Measured (μg/L) 0.121 0.109 0.109 0.116 0.123 1.17 1.11 1.08 1.15 1.09	HYP Recovery (%) 121 109 109 116 123 117 111 108 115 109	A Mean (%) 116 112	SD (%) 6.5 3.9	RSD (%) 5.7 3.5
Fortified (µg a.i./L) 0.1 1.0 Overall mean	Measured (μg/L) 0.112 0.107 0.107 0.112 0.114 1.02 1.02 1.01 1.01 1.05	CAF Recovery (%) 112 107 107 112 114 102 102 101 101 105 106	A Mean (%) 110 102	SD (%) 3.2 1.6	RSD (%) 2.9 1.6	Measured (μg/L) 0.113 0.110 0.0957 0.110 0.115 1.11 1.07 0.991 0.993 1.13	DCF Recovery (%) 113 110 96 110 115 111 107 99 99 113 107	A Mean (%) 109 106	SD (%) 7.6 6.5	RSD (%) 7.0 6.1	Measured (μg/L) 0.121 0.109 0.109 0.116 0.123 1.17 1.11 1.08 1.15 1.09	HYP Recovery (%) 121 109 109 116 123 117 111 108 115 109 114	A Mean (%) 116 112	SD (%) 6.5 3.9	RSD (%) 5.7 3.5
Fortified (µg a.i./L) 0.1 1.0 Overall mean SD	Measured (μg/L) 0.112 0.107 0.107 0.112 0.114 1.02 1.02 1.01 1.01 1.05	CAF Recovery (%) 112 107 107 112 114 102 102 101 101 105 106 4.9	A Mean (%) 110 102	SD (%) 3.2 1.6	RSD (%) 2.9 1.6	Measured (μg/L) 0.113 0.110 0.0957 0.110 0.115 1.11 1.07 0.991 0.993 1.13	DCF Recovery (%) 113 110 96 110 115 111 107 99 99 113 107 6.8	A Mean (%) 109 106	SD (%) 7.6 6.5	RSD (%) 7.0 6.1	Measured (μg/L) 0.121 0.109 0.109 0.116 0.123 1.17 1.11 1.08 1.15 1.09	HYP Recovery (%) 121 109 109 116 123 117 111 108 115 109 114 5.4	A Mean (%) 116 112	SD (%) 6.5 3.9	RSD (%) 5.7 3.5
Fortified (µg a.i./L) 0.1 1.0 Overall mean SD RSD	Measured (μg/L) 0.112 0.107 0.107 0.112 0.114 1.02 1.02 1.01 1.01 1.05	CAF Recovery (%) 112 107 107 112 114 102 102 101 101 105 106 4.9 4.7	A Mean (%) 110 102	SD (%) 3.2	RSD (%) 2.9 1.6	Measured (μg/L) 0.113 0.110 0.0957 0.110 0.115 1.11 1.07 0.991 0.993 1.13	DCF Recovery (%) 113 110 96 110 115 111 107 99 99 113 107 6.8 6.4	A Mean (%) 109 106	SD (%) 7.6 6.5	RSD (%) 7.0 6.1	Measured (μg/L) 0.121 0.109 0.109 0.116 0.123 1.17 1.11 1.08 1.15 1.09	HYP Recovery (%) 121 109 109 116 123 117 111 108 115 109 114 5.4 4.8	A Mean (%) 116 112	SD (%) 6.5 3.9	RSD (%) 5.7 3.5
Fortified (µg a.i./L) 0.1 1.0 Overall mean SD RSD Max	Measured (μg/L) 0.112 0.107 0.107 0.112 0.114 1.02 1.02 1.01 1.01 1.05	CAF Recovery (%) 112 107 107 112 114 102 102 101 101 105 106 4.9 4.7 114	A Mean (%) 110	SD (%) 3.2 1.6	RSD (%) 2.9	Measured (μg/L) 0.113 0.110 0.0957 0.110 0.115 1.11 1.07 0.991 0.993 1.13	DCF Recovery (%) 113 110 96 110 115 111 107 99 99 91 13 107 6.8 6.4 115	A Mean (%) 109 106	SD (%) 7.6 6.5	RSD (%) 7.0 6.1	Measured (μg/L) 0.121 0.109 0.109 0.116 0.123 1.17 1.11 1.08 1.15 1.09	HYP Recovery (%) 121 109 109 116 123 117 111 108 115 109 114 5.4 4.8 123	A Mean (%) 116	SD (%) 6.5 3.9	RSD (%) 5.7 3.5
Fortified (µg a.i./L) 0.1 1.0 Overall mean SD RSD Max Min	Measured (μg/L) 0.112 0.107 0.107 0.112 0.114 1.02 1.02 1.01 1.01 1.05	CAF Recovery (%) 112 107 107 112 114 102 102 101 101 105 106 4.9 4.7 114 101	A Mean (%) 110	SD (%) 3.2 1.6	RSD (%) 2.9 1.6	Measured (μg/L) 0.113 0.110 0.0957 0.110 0.115 1.11 1.07 0.991 0.993 1.13	DCF Recovery (%) 113 110 96 110 115 111 107 99 99 91 13 107 6.8 6.4 115 96	A (%) 109 106	SD (%) 7.6 6.5	RSD (%) 7.0 6.1	Measured (μg/L) 0.121 0.109 0.109 0.116 0.123 1.17 1.11 1.08 1.15 1.09	HYP Recovery (%) 121 109 109 116 123 117 111 108 115 109 114 5.4 4.8 123 108	A (%) 116 112	SD (%) 6.5 3.9	RSD (%) 5.7 3.5

Results (Calculated Concentration) from Tables 1-6, pp. 23-26 of the study report. Means and standard deviations calculated using Microsoft program functions =AVERAGE(A1:A2) and =STDEV(A1:A2).

1 SD = Standard Deviation; determined using the "unbiased" or "n-1" method.

2 RSD = Relative Standard Deviation; calculated as (SD/mean) x 100.

Shaded cells mean they are off the recommended ranges.

Chemical: Fluazinam PC: 129098 MRID: 48635802 Guideline: 850.6100

Verification of ILV recoveries in fortified water using chromatogram "Area" and calibration curve regression equations.

Fortified			Poak Area	Revi	ewer	Reported		
(ug a i /L)	Analyte	Sample	r eak Alea	Measured	Recovery	Measured	Recovery	
(μy a.i./∟)			(counts)	(µg/L)	(%)	(µg/L)	(%)	
0.1	Eluazinam	LOQ-1	15900	0.0871	87.1	0.0868	86.8	
	Tuazinani	LOQ-2	15700	0.0860	86.0	0.0859	85.9	
		LOQ-1	31700	0.113	113	0.113	113	
		LOQ-2	30800	0.110	110	0.110	110	
		LOQ-1	15100	0.0982	98.2	0.0979	97.9	
	DAFA	LOQ-2	15600	0.102	102	0.102	102	
	CAPA	LOQ-1	20100	0.113	113	0.112	112	
	UAP A	LOQ-2	18900	0.106	106	0.107	107	
		LOQ-1	4380	0.113	113	0.113	113	
	DOPA	LOQ-2	4270	0.110	110	0.110	110	
	нурл	LOQ-2	5650	0.109	109	0.109	109	
	IIIFA	LOQ-3	5660	0.110	110	0.109	109	
1.0	Eluazinam	LOQ-1	171000	0.922	92.2	0.922	92.2	
	Tuazinani	LOQ-2	162000	0.874	87.4	0.870	87.0	
	AMPA	LOQ-1	323000	1.01	101	1.01	101	
		LOQ-2	311000	0.974	97.4	0.976	97.6	
		LOQ-1	151000	1.03	103	1.02	102	
	DAFA	LOQ-2	147000	1.00	100	1.00	100	
		LOQ-1	196000	1.02	102	1.02	102	
	UAP A	LOQ-2	196000	1.02	102	1.02	102	
		LOQ-1	44200	1.11	111	1.11	111	
	DOFA	LOQ-2	42700	1.07	107	1.07	107	
		LOQ-1	51300	1.17	117	1.17	117	
	ПГА	LOQ-2	48500	1.11	111	1.11	111	

Peak Area, Reported Measured (Calculated Concentration) and Reported Recovery (Accuracy) from

Tables 7-12, pp. 27-32 for Figures 25-48, pp. 57-80 of the study report.

Linear regression coefficients from Figures 1-6, pp. 33-38 of the study report.

Measured calculated as using reported equations (p. 18).

Chemical: Fluazinam PC: 129098 MRID: 48635802 Guideline: 850.6100

.'		5.					
Γ		Fluazinam	AMPA	DAPA	CAPA	DCPA	HYPA
	Concentration	Peak Area					
	(ng/mL)	(counts)	(counts)	(counts)	(counts)	(counts)	(counts)
Γ	0.05	1.19E+04	1.71E+04	9.31E+03	1.05E+04	2.24E+03	3.66E+03
	0.20	4.06E+04	6.17E+04	3.24E+04	3.66E+04	8.30E+03	9.63E+03
	0.10	1.90E+04	2.99E+04	1.87E+04	2.09E+04	4.46E+03	
	1.00	1.84E+05	3.28E+05	1.62E+05	2.06E+05	4.59E+04	4.60E+04
	0.50	1.01E+05	1.66E+05	7.25E+04	1.01E+05	2.09E+04	2.50E+04
	2.00	4.44E+05	7.65E+05	3.42E+05	4.48E+05	9.02E+04	1.01E+05
-							

Results from Figures 1-6, pp. 33-38 of the study report.

Chemical: Fluazinam PC: 129098 MRID: 48635802 <u>Guideline: 850.6100</u>

ILV method (reagent) and matrix blank samples.

Analyta	Sampla	Peak Area	Measured	Reported
Analyte	Sample	(counts)	(µg/L)	(µg/L)
	Reagent blank	1330	0.00865	N/A
Fluazinam	Matrix blank	667	0.00508	0.00508
	Matrix blank	0		No Peak
	Reagent blank	0		N/A
AMPA	Matrix blank	0		No Peak
	Matrix blank	0		No Peak
	Reagent blank	0		N/A
DAPA	Matrix blank	0		No Peak
	Matrix blank	0		No Peak
	Reagent blank	0		N/A
CAPA	Matrix blank	0		No Peak
	Matrix blank	0		No Peak
	Reagent blank	0		N/A
DCPA	Matrix blank	0		No Peak
	Matrix blank	0		No Peak
	Reagent blank	0		N/A
HYPA	Matrix blank	0		No Peak
	Matrix blank	0		No Peak

Peak Area and Reported (Calculated Concentration) from Tables 7-12, pp. 27-32 of the study report. Linear regression coefficients from Figure 1, p. 33 of the study report. Measured calculated as using reported equations (p. 18).