Anaerobic Digestion Performance on a Sand Bedded Dairy Farm

5th AgSTAR National Conference Green Bay, Wisconsin April 28, 2010

Dana M Kirk Michigan State University Biosystems and Agricultural Engineering Anaerobic Digestion Research and Education Center

Sand bedding benefits

- O Sand advantages: animal health, cow comfort and milk production^{1,2}
 - Increased milk production of 1.4 to 1.8 kg/cow/d³
 - Somatic cell count reductions 50,000 cells per mL³
 - Reduced lameness saving \$82.50/cow4 (2001 dollars)⁴
 - \$152/cow/yr (2004 dollars) benefit of sand⁵
- O Sand usage averages 49 lb/cow/d (22 kg)⁶

1) Inglis et al. 2006., 2) Wedel. 2001., 3) Stone. 2003., 4) Cook. 2001.,

2) 5) Cook and Nordlund. 2004., 6) MWPS-18, 2000

Disadvantages of sand bedding^{1,2}

- O Sand laden dairy manure (SLDM) is abrasive
- O SLDM is not pumpable or stackable
- O Sand tends to settle, clogging pipes reducing volume
- O Settled sand is difficult to resuspend often requiring physical excavation
- O Sand is inorganic, no biogas potential

1) Inglis et al. 2006., 2) Karim et al. 2005a &b.

Sand manure separation

O Process steps¹

- Metering
- Mixing (agitation and turbulence)
- Sedimentation
- Sediment (sand) removal
- O System types
 - Mechanical
 - O Counter current upflow and hydrocyclones
 - O Capable of removing 80 to 90% of bedding sand²

Passive

- O Settling basins and sand lanes
- O Capable of removing 71 to 75% of bedding sand³

Factors affecting biogas potential


- O Digester type/design
- O Addition of dilution water
- O Manure collection and conveyance
- O Feedstock or blend of feedstock
- O Bedding material and usage
- O System management
- O Organic conversion efficiency
- O Biogas utilization

Green Meadow Farms (GMF) farm summary

O Livestock

- 2,900 milk cows on sand
- 300 dry cows on sand and bedded pack
- O Manure management system
 - Manure collection: scrape
 - Manure conveyance: auger/pump
 - Treatment:
 - OMechanical sand separation (3 levels)
 - OAnaerobic digestion
 - OPhosphorus separation
 - Storage: synthetic/clay lined storages
 - Disposal: land application

GMF process flow diagram

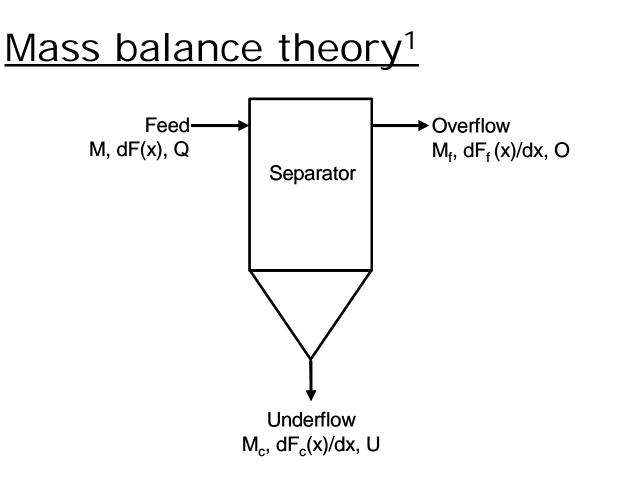
Green Meadow Farms Anaerobic Digester

3 tank complete mix
Capacity of 2.7 million gallons
22 to 26 day HRT
CAT 3516 engine-generator
Heating

- •Hot water to sludge
- •Sludge to sludge
- •In wall & floor heat

•Prop style mixers

GMF system evaluation


OSand removal efficiency OChange in sand composition OLoss of volatile solids

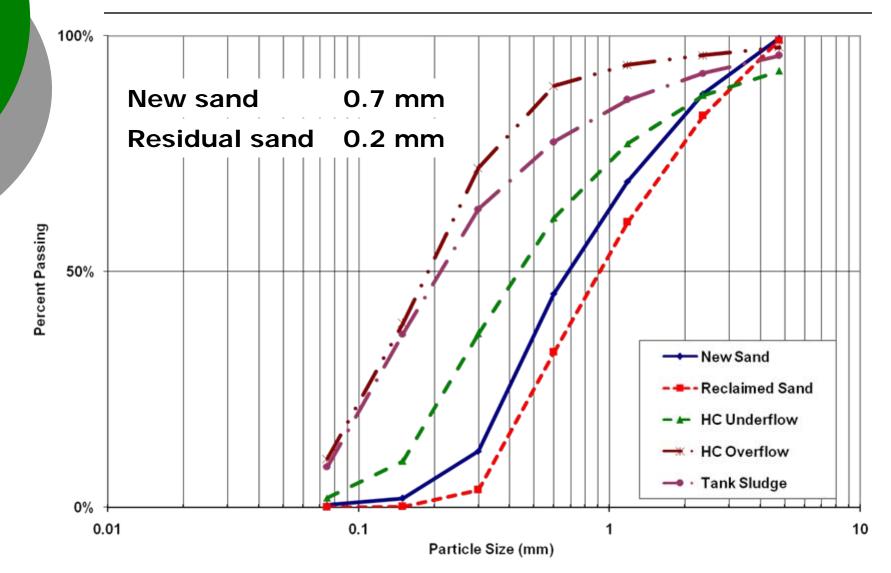
Assumptions & data collection challenges

OAssumptions

- No storage in the sand separation system units
- Fixed solids contribution primarily from sand
- Industry standards used when data collection not possible
- **O** Challenges
 - System complexity
 - Access to sample locations (safety)
 - Operations

Determination of sand separation efficiency

1) Svarovsky. 1990.


Sand removal efficiency

OFixed solid (FS) analysis

Sample Location	Mean	Standard		
	FS	Deviation	Median	Count
	(%)	(%)	(%)	
Feces	2.1	1.0	1.9	67
SLDM	20.0	9.7	21.6	67
SMS	2.2	1.1	2.0	53
MINI	1.5	0.4	1.4	70
HC Overflow	1.1	0.5	1.2	40

OSeparation Efficiency
 SMS 87% (83-90)
 MINI 94% (92-95)
 HC 97% (96-98)

Sand particle size distribution change

Volatile solid changes due to sand separation

OVolatile solid (VS) analysis

Sample Location	Mean	Standard	Madian	Count
	VS (%)	Deviation (%)	Median (%)	Count
Feces	12.6	1.7	12.5	68
SLDM	7.6	1.4	8.0	69
SMS	3.7	0.9	3.8	54
MINI	3.4	1.0	3.5	70
HC Overflow	3.0	1.1	3.2	40

Conclusions

- O Manure from sand bedded dairy farms can be digested
- O Successfully heating dilute feedstock
 - Frozen manure is a problem
 - Sludge to sludge heat recovery difficult/abandon
- O Effective sand removal
 - 100% removal not achievable
 - Law of diminishing returns
- O Reduction in residual sand particle size
 - Reduced settling & scour velocity
 - Conventional mixing sufficient
 - Field verification of minimal sand accumulation

Conclusions

O Volatile solids losses do occur

- Volatile solids are removed with sand
- System design & operation leading cause
 OSystem designed between 1998 & 2001
 OMaximum sand removal objective, sand quality a distant second
- Electrical generation potential reduced by about 25% compared to theoretical whole manure

Conclusions

- O System evaluation required to understand the dynamic of sand bedding and biogas production
 - Site specific conditions
 - O Addition of dilution water
 - O Sand particle size
 - O Management objectives
 - Determination sand removal level necessary
 - System design can minimize VS losses
 - Biogas production model and verification
- O Benefits of sand bedding for cow comfort exceed the potential loss of biogas potential

Dana M Kirk Biosystems Engineering Michigan State University Manager, ADREC <u>kirkdana@msu.edu</u> 517.432.6530

