ACUTE EXPOSURE GUIDELINE LEVELS (AEGLs)

PROPOSED

RED PHOSPHORUS (CAS Reg. No. 7723-14-0)

1	
2	
3	
4	
5	
	DDODOGED
6	PROPOSED
7	
8	ACUTE EXPOSURE GUIDELINE LEVELS
9	(AEGLs)
10	
11	
	Ded Dheamheans
12	Red Phosphorus
13	
14	(CAS Reg. No. 7723-14-0)
15 16	
10	
18	
19	
20	
21	
22	
23 24	
24 25	

1 2

3

15

21

PREFACE

Under the authority of the Federal Advisory Committee Act (FACA) P. L. 92-463 of
1972, the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous
Substances (NAC/AEGL Committee) has been established to identify, review and interpret
relevant toxicologic and other scientific data and develop AEGLs for high priority, acutely toxic
chemicals.

AEGLs represent threshold exposure limits for the general public and are applicable to emergency exposure periods ranging from 10 minutes to 8 hours. Three levels C AEGL-1, AEGL-2 and AEGL-3 C are developed for each of five exposure periods (10 and 30 minutes, 1 hour, 4 hours, and 8 hours) and are distinguished by varying degrees of severity of toxic effects. The three AEGLs are defined as follows:

AEGL-1 is the airborne concentration (expressed as parts per million or milligrams per cubic meter [ppm or mg/m³]) of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort,
 irritation, or certain asymptomatic, non-sensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure.

- AEGL-2 is the airborne concentration (expressed as ppm or mg/m³) of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.
- AEGL-3 is the airborne concentration (expressed as ppm or mg/m³) of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death.
- 30

26

Airborne concentrations below the AEGL-1 represent exposure levels that could produce 31 32 mild and progressively increasing but transient and nondisabling odor, taste, and sensory 33 irritation or certain asymptomatic, non-sensory effects. With increasing airborne concentrations 34 above each AEGL, there is a progressive increase in the likelihood of occurrence and the 35 severity of effects described for each corresponding AEGL. Although the AEGL values 36 represent threshold levels for the general public, including susceptible subpopulations, such as 37 infants, children, the elderly, persons with asthma, and those with other illnesses, it is recognized 38 that individuals, subject to unique or idiosyncratic responses, could experience the effects 39 described at concentrations below the corresponding AEGL. 40

1	TABLE OF CONTENTS	
2	PREFACE	
3	LIST OF TABLES	6
4	EXECUTIVE SUMMARY	7
5	1. INTRODUCTION	
6	2. HUMAN TOXICITY DATA	
7	2.1. Acute Lethality	
8	2.2. Nonlethal Toxicity	
9	2.3. Developmental/Reproductive Effects	
10	2.4. Genotoxicity	
11	2.5. Carcinogenicity	
12	2.6. Summary	
13	3. ANIMAL TOXICITY DATA	
14 15 16 17 18	3.1. Acute Lethality 3.1.1 Rats 3.1.2 Mice 3.1.3 Rabbits 3.1.4 Guinea Pigs	
19 20 21 22 23 24	3.2. Nonlethal Toxicity	
25	3.3. Summary of Toxicity in Animals	
26	3.4. Developmental/Reproductive Effects	
27	3.5. Genotoxicity	
28	3.6. Carcinogenicity	
29	4. SPECIAL CONSIDERATIONS	
30	4.1. Metabolism and Disposition	
31	4.2. Mechanism of Toxicity	24
32	4.3. Structure-Activity Relationships	24
33	4.4. Other Relevant Information	24

1	4.4	4.1. Species Variability	
2		1.2. Susceptible Populations	
3	4.4	4.3. Concurrent Exposure Issues	
4	5. DA	ATA ANALYSIS FOR AEGL-1	
5	5.1.	Human Data Relevant to AEGL-1	
6	5.2.	Animal Data Relevant to AEGL-1	
7	5.3.	Derivation of AEGL-1 Values	
8	6. DA	ATA ANALYSIS FOR AEGL-2	
9	6.1.	Human Data Relevant to AEGL-2	
10	6.2.	Animal Data Relevant to AEGL-2	
11	6.3.	Derivation of AEGL-2 Values	
12	7. DA	ATA ANALYSIS FOR AEGL-3	
13	7.1.	Human Data Relevant to AEGL-3	27
14	7.2.	Animal Data Relevant to AEGL-3	
15	7.3.	Derivation of AEGL-3 Values	
16	8. SU	JMMARY OF AEGLs	
17	8.1.	AEGL Values and Toxicity Endpoints	
18	8.2.	Comparisons with Other Standards and Guidelines	
19	8.3.	Data Adequacy and Research Needs	
20	9. RE	EFERENCES	
21	APPENI	DIX A: DERIVATION OF AEGL VALUES	
22	APPENI	DIX B: TIME SCALING CALCULATIONS	
23	APPENI	DIX C: DERIVATION SUMMARY TABLES	
24	APPENI	DIX D: CATEGORY PLOT	
25 26	APPENI	DIX E: BENCHMARK ANALYSES	

1 2		LIST OF TABLES	
$\frac{2}{3}$	TABLE S 1.	AEGL Values for Red Phosphorus (mg/m ³)	9
4	TABLE 1.	Chemical and Physical Data for Red Phosphorus	10
5	TABLE 2.	Mortality in Rats Following Acute Inhalation Exposure to Red Phosphorus/Butyl Rubber Smoke	12
6	TABLE 3.	Mortality of Rats Exposed to Red Phosphorus/Butyl Rubber Smoke	13
7	TABLE 4.	Mortality and Mean Survival Time of Rats Exposed to Red Phosphorus/Butyl Rubber Aerosol	14
8	TABLE 5.	Mortality and Histopathology in Rats Following 1-Hour Exposure to Red Phosphorus Smoke	15
9 10	TABLE 6.	Mortality and Histopathologic Findings in Mice Following 1-Hour Inhalation Exposure to Red Phosphorus Smoke	16
11	TABLE 7.	Mortality and Histopathology in Rabbits Exposed to Red Phosphorus Smoke for 1 Hour	17
12	TABLE 8.	Mortality in Guinea Pigs Following Acute Exposure to Red Phosphorus/Butyl Rubber Smoke	18
13	TABLE 9.	Mortality and Histopathology in Guinea Pigs Exposed to Red Phosphorus Smoke for 1 Hour	19
14	TABLE 10.	Response of Beagle Dogs Following Acute Exposure to Red Phosphorus Smoke	20
15 16	TABLE 11.	Summary of Lethal Toxicity of Red Phosphorus or Red Phosphorus/Butyl Rubber Smoke in Animals	22
17 18	TABLE 12.	Summary of Nonlethal Toxicity of Red Phosphorus or Red Phosphorus/Butyl Rubber Smoke in Animals	23
19	TABLE 13.	AEGL-1 VALUES for Red Phosphorus	26
20	TABLE 14.	AEGL-2 VALUES for Red Phosphorus (mg/m3)	27
21	TABLE 15.	AEGL-3 VALUES for Red Phosphorus (mg/m ³)	28
22	TABLE 16.	AEGL Values for Red Phosphorus (mg/m ³)	29
23	TABLE 17.	Extant Standards and Guidelines for Red Phosphorus (mg/m ³)	29
24			

EXECUTIVE SUMMARY

Red phosphorus consists of randomly arranged arrays of phosphorus tetrahedra in the
form of connected chains and rings. Along with white phosphorus, it is an allotropic form of
phosphorus. At normal temperature and humidity, red phosphorus reacts very slowly with water
vapor and air to form phosphine and various phosphorus oxyacids. Red phosphorus smoke is
used as a military screen. The smoke is generated by combustion of red phosphorus/butyl rubber
(RP/BR) containing 5% BR, about 1.25% insulating oil, and about 1% talc or silica. Other uses
include manufacturing of pyrotechnics, safety matches, and fertilizers.

12 Red phosphorus and red phosphorus/butyl rubber smoke have high phosphoric acid 13 content. Ortho-phosphoric acid is a corrosive mineral acid and is likely the cause of the irritation 14 and inflammation to the respiratory tract that occurs following inhalation of red phosphorus 15 smoke while the cellular toxicity of red phosphorus is likely due to its activity as a reducing 16 agent resulting in disruption of oxidative processes.

17

1 2

3

18 Reports of human exposure lack definitive exposure terms. Acute inhalation exposure 19 (duration not specified) to 1000 mg red phosphorus/m³ was considered intolerable. Another 20 report noted that workers experienced significant but reversible symptoms of respiratory distress 21 and irritation of the eyes and mucous membranes following exposure to red phosphorus smoke at 22 concentrations of 100 - 700 mg/m³ for less than 15 minutes. Other reports described 23 concentrations greater than 100 mg/m³ to be intolerable.

24

25 Acute inhalation toxicity data are available for rats, mice, dogs, guinea pigs, and rabbits. 26 Regardless of the species, inhalation exposure to red phosphorus smoke or smoke from red 27 phosphorus/butyl rubber formulations consistently produced irritation and inflammation of the 28 respiratory tract and, at higher concentrations, was lethal. Where histopathologic analysis was 29 performed, lethality in rats, mice, and rabbits was associated with severe necrotic and 30 inflammatory lesions in the larynx and trachea, and pulmonary congestion and edema. 31 Considerable species variability in the response severity to inhaled red phosphorus or red 32 phosphorus butyl rubber formulations was reported. The guinea pig was generally considered a 33 uniquely sensitive species and not appropriate for human health risk assessment. The toxic 34 responses to red phosphorus and red phosphorus/butyl rubber smoke are generally attributed to 35 the high phosphoric acid content.

36

Acute inhalation toxicity studies were primarily lethality bioassays with little focus on assessing exposure-response relationships for nonlethal effects. Histopathological assessments provided insight into mode of action, and for animals surviving the test exposures, identified critical effects for nonlethal exposures. However, identification of thresholds for nonlethal toxicity were poorly defined.

42

Data were unavailable with which to directly derive AEGL-1 values for red phosphorus.
 A 3-fold reduction of the AEGL-2 values was considered a justified approach for deriving the
 AEGL-1 values because the progression of effects from AEGL-1 severity to AEGL-2 severity
 represents a continuum of the same mode of action (contact irritation) and effect. Comparison

of the AEGL-1 values to the limited human exposure data indicates that notable effects (greater
 than those characterizing the AEGL-1 tier) would be unlikely following exposure to AEGL-1
 concentrations.

4

5 Information regarding the response of humans to red phosphorus or red phosphorus/butyl 6 rubber smoke lacked definitive exposure terms and was not considered sufficient for 7 development of AEGL-2 values. The AEGL-2 severity effects in animals (necrosis, hemorrhage, 8 and edema in the respiratory tract) were consistently associated with exposures that also caused 9 deaths. Necropsies of animals surviving through the post-exposure observation period generally 10 revealed only minor signs of toxicity that were not consistent with AEGL-2 severity but clearly 11 showed the respiratory tract as a target of toxicity. Results from the multispecies study by Ballantvne (1998), showed no lethality and only pulmonary congestion in mice exposed one 12 13 hour to smoke of unformulated red phosphorus (111 mg/m^3). The data reported by Ballantyne 14 (1998) were also considered the most relevant for deriving AEGL values for red phosphorus 15 because pure unformulated red phosphorus was used rather than the butyl rubber formulations. Mice appeared to be more sensitive than rabbits, dogs, or rats. The 1-hour exposure of mice to 16 111 mg red phosphorus/m³ that resulted in pulmonary congestion was considered an appropriate 17 point-of-departure (POD) for AEGL-2 derivation with a total uncertainty factor application of 10 18 19 (3 for intraspecies variability and 3 for interspecies variability).

20

21 Red phosphorus is a direct-contact irritant which is primarily due to the formation of 22 ortho-phosphoric acid. The toxicodynamic aspect of exposure to red phosphorus is a greater 23 determinant of the toxic response than is toxicokinetics which justifies an intraspecies 24 uncertainty factor of 3. Because the mouse appeared to be a sensitive species and the critical 25 effect associated with the POD are of minimal severity for the AEGL-2 tier, the interspecies uncertainty factor of 3 is considered adequate. Further reduction of the AEGL-2 values by 26 27 additional uncertainty adjustment would result in AEGL-2 values inconsistent with the limited 28 information available for humans. Data were unavailable with which to empirically derive a time scaling exponent, n, in the equation $C^n x t = k$. The exposure concentration-exposure 29 30 duration relationship for many irritant and systemically acting vapors and gases may be 31 described by $C^n x t = k$, where the exponent, n, ranges from 0.8 to 3.5 (ten Berge et al., 1986). In 32 the absence of an empirically derived exponent (n), temporal scaling from the experimental 33 durations of the respective PODs to AEGL-specific durations was performed using n = 3 when 34 extrapolating to shorter time points and n = 1 when extrapolating to longer time points using the 35 $C^n x t = k$ equation (NRC, 2001).

36

37 For AEGL-3 development, human data lacked definitive exposure terms but served 38 as supporting data. As for AEGL-2, the Ballantyne (1998) study was considered more relevant 39 for deriving AEGL values for red phosphorus due to its use of pure unformulated red phosphorus 40 rather than the butyl rubber formulations. The 1-hour BMLC₀₅ of 469 mg/m³ for rats exposed to 41 red phosphorus smoke was used as the POD for AEGL-3 derivation. Although results of the 42 Ballantyne (1998) study indicated the mouse is a more sensitive species, the BMC analyses of 43 the mouse data showed the BMC model to be a poor fit (p=0.09 for the mouse data vs p=0.66 for 44 the rat data). Furthermore, overall data in rats are more robust. The lethality benchmark values from the Ballantyne data are lower than those from other studies. 45

1 Animal lethality data exhibited considerable variability that would normally warrant an 2 interspecies uncertainty factor of 10. However, this would result in AEGL-3 values inconsistent 3 with human occupational data. The interspecies variability is primarily the result of the extreme 4 sensitivity of guinea pigs which the investigators and the NRC (1997a) considered uniquely 5 susceptible and inappropriate for human health risk assessment. Therefore, the interspecies 6 uncertainty factor was limited to 3. Red phosphorus is a direct-contact irritant which is a 7 function of the formation of ortho-phosphoric acid. The toxicodynamic aspect of exposure to red 8 phosphorus was considered a greater determinant of the toxic response than toxicokinetics. 9 thereby justifying an intraspecies uncertainty factor of 3. As previously noted, greater 10 uncertainty application would result in AEGL-3 values inconsistent with the human experience data. Time scaling was performed as described for AEGL-2. 11

12

12

14

The AEGL values for red phosphorus are summarized in Table S-1.

TABLE S 1. AEGL Values For Red Phosphorus (mg/m ³)							
Classification 10-min 30-min 1-hr 4-hr 8-hr			Endpoint (Reference)				
AEGL-1 (Nondisabling)	6.7	4.7	3.7	0.93	0.47	3-fold reduction of the AEGL-2 values as a protective estimate of AEGL-1 severity	
AEGL-2 (Disabling)	20	14	11	2.8	1.4	Mild pulmonary congestion in mice; 1-hr exposure to 111 mg/m ³ (Ballantyne, 1998); UF= 3 x 3; n=1 or 3	
AEGL-3 (Lethality)	85	59	47	12	5.9	Rat 1-hr BMCL ₀₅ of 469 mg/m ³ (Ballantyne, 1998); UF= 3 x 3; n=1 or 3	

15

16

17 **References**

18

Ballantyne, B. 1998. Acute inhalation toxicity of red phosphorus smoke. Toxic Subst. Mech.
17:251-266.

- NRC (National Research Council). 1997a. Guidelines for developing community emergency
 exposure levels for hazardous substances. Committee on Toxicology, Board on
 Toxicology and Environmental Health Hazards, Commission on Life Sciences, National
 Research Council. National Academy Press, Washington, DC.
- NRC (National Research Council). 2001. Standing operating procedures for developing acute exposure
 guideline levels for hazardous chemicals. Committee on Toxicology, Board on Toxicology and
 Environmental Health Hazards, Commission on Life Sciences, National Research Council.
 National Academy Press, Washington, DC.

1. **INTRODUCTION**

3 Red phosphorus consists of randomly arranged arrays of phosphorus tetrahedra in the 4 form of connected chains and rings. Along with white phosphorus, it is an allotropic form of 5 phosphorus. It is produced by closed system heating of white phosphorus to 400°C for several 6 hours (Berkowitz et al., 1981). The properties of red phosphorus are intermediate between those 7 of white and black phosphorus (O'Neil, et al., 2001). Red phosphorus is more stable than white 8 phosphorus and considered less toxic (Dalhamn and Holma, 1959). At normal temperature and 9 humidity, red phosphorus reacts very slowly with water vapor and air to form phosphine and 10 various phosphorus oxyacids (Ballou 1991). It may be ignited by friction, static electricity, 11 heating or by oxidizing agents (Bingham, 2001).

12

1

2

Red phosphorus smoke is used as a military screen. The smoke is generated by
combustion of red phosphorus/butyl rubber (RP/BR) containing 5% BR, about 1.25% insulating
oil, and about 1% talc or silica (NRC, 1997b). The butyl rubber alters the dispersion
characteristics of the smoke. The organic components reportedly comprise less than 0.04% of
the particulate phase of the smoke, while the remainder is a complex mixture of orthophosphoric, pyrophosphoric, tripolyphosphoric, tetrapolyphosphoric and higher phosphoric acids

19 in varying percentages depending on the combustion conditions (Brazell et al., 1984, 1986,

20 Mitchell and Burrows, 1990). The composition of RP/BR smoke generated under experimental

21 and field conditions was qualitatively and quantitatively similar with the exception that higher

22 polymeric forms were generally absent under field conditions (Brazell et al., 1984). Other uses

23 include manufacturing of pyrotechnics, safety matches, and fertilizers (Mitchell and

- 24 Burrows, 1990).
- 25

TABLE 1. Chemical and Physical Data for Red Phosphorus							
Parameter	Value	Reference					
Synonyms	Yellow phosphorus; white phosphorus; tetraphosphorus	Mitchell and Burrows (1990)					
Chemical formula	Polymeric $(P_4)_n$	Mitchell and Burrows (1990)					
Molecular weight	$(123.9)_{n}$	Mitchell and Burrows (1990)					
CAS Registry No.	7723-14-0	Mitchell and Burrows (1990)					
Physical state	solid	Mitchell and Burrows (1990)					
Solubility in water	Negligible	Mitchell and Burrows (1990)					
Vapor pressure	0.05 mm Hg @ 25°C	Mitchell and Burrows (1990)					
Density	2.34 g/cm^3	Mitchell and Burrows (1990)					
Boiling point/Freezing point	280°C/	Mitchell and Burrows (1990)					

26

27

28 2. HUMAN TOXICITY DATA

29 **2.1.** Acute Lethality

30

Dalhamn and Holma (1959) reported four cases of acute, atypical sudden-onset
 pneumonia (verified by x-ray) in a factory where red phosphorus was produced via sublimation
 of white phosphorus. One death occurred. Because red phosphorus concentrations up to 40
 mg/m³ were detected, it was considered a possible cause. However, the workers also were

exposed to white phosphorus.

3 Mitchell and Burrows (1990) estimated that death may occur in humans exposed to 4 2,000 mg/m³ of RP/BR smoke for more than 15 minutes but no details regarding this assessment 5 were provided.

2.2. **Nonlethal Toxicity**

9 Mitchell and Burrows (1990) considered that acute exposure (specific duration not specified) to 1000 mg red phosphorus/m³ would be intolerable. Uhrmacher et al. (1985) reported that workers experienced significant but reversible symptoms of respiratory distress and irritation of the eyes and mucous membranes following exposure to red phosphorus smoke at concentrations of 100 - 700 mg/m³ for less than 15 minutes. Exposure to red phosphorus concentrations greater than 100 mg/m³ were considered intolerable for workers, although accommodation to some effects was implied (ACGIH, 1991); additional information was unavailable regarding this report.

19 20

21

22 23

24

29 30

31

32 33

34

Developmental/Reproductive Effects 2.3.

Data on developmental/reproductive toxicity of red phosphorus in humans were not available.

2.4. Genotoxicity

25 No information regarding potential genotoxicity of red phosphorus in humans was 26 available. 27

28 Carcinogenicity 2.5.

No information regarding the carcinogenic potential of red phosphorus in humans was available.

2.6. **Summary**

35 No definitive exposure-response data are available regarding the toxicity of red phosphorus in humans following inhalation exposure. Acute exposure to 40 mg/m^3 was 36 associated with chemical pneumonia and exposure to 100-700 mg/m³ was reportedly intolerable 37 38 and resulted in reversible respiratory distress and ocular irritation.

39

40 3. ANIMAL TOXICITY DATA

41 3.1. **Acute Lethality**

- 42 3.1.1 Rats
- 43

44 Weimer et al. (1977) examined the effects of red phosphorus/butyl rubber (360 g)/black 45 powder (15 g) mixture smoke on rats. Groups of five male and five female Sprague-Dawley albino rats were exposed in a static chamber to 1128-1882 mg/m³ for 60-240 minutes 46

1

2

6 7

1 (Ct = $67,685-451,680 \text{ mg} \cong \text{min/m}^3$) and observed for 2 weeks post exposure. A red

2 phosphorus/butyl rubber (360 g) and black powder (15 g) mixture was ignited in the chambers

3 and specific exposure concentrations maintained for specified durations. The exposure

4 concentrations were monitored by measuring the total particulate matter and phosphoric acid

content. The MMAD was reported as 1.1 μm. Respiratory distress was observed in rats of all
 treatment groups (Table 2). As the total Ct exposure product increased, respiratory distress

treatment groups (Table 2). As the total Ct exposure product increased, respiratory distress
became more severe, leading to prostration and death in some rats. In addition to respiratory

8 effects, transient hypoactivity, salivation, and conjunctivitis were observed in rats of the 1813

9 and 1882 mg/m^3 treatment groups. There were no treatment-related effects on body weight.

10 hematologic or clinical chemistry indices, organ weights, or gross or microscopic lesions. Most

11 of the deaths occurred during exposure, but latency of 1 to 13 days was also observed.

12

TABLE 2. Mortality in Rats Following Acute Inhalation Exposure to Red Phosphorus/Butyl Rubber Smoke							
Concentration (mg/m ³)	Duration (minutes)	Ct (mg≅min/m ³)	Mortality ^a				
1128	60	67685	0/10				
1537	60	92225	1/10				
1846	90	166180	0/10				
1676	120	201085	4/10				
1625	150	148813	5/10				
1572	180	283000	8/10				
1813	180	326340	9/10				
1882	240	451680	10/10				

Weimer et al., 1977

^a no. of deaths/no. exposed

13

14

15 In a study by Burton et al. (1982; also reported by Ballou, 1981) groups of five male and 16 five female Sprague-Dawley rats were exposed to an to aerosol generated by combustion of red phosphorus/butyl rubber (95% red phosphorus and 5% butyl rubber with 1% mineral oil added 17 as a die extruder lubricant and 1% talc powder as a coating). Nominal exposure concentrations 18 19 were 3.15, 4.33 (only ten males tested at this exposure), 5.36, or 8.46 mg/L for 1 hour or 1.53 mg/L for 4 hours (equivalent to 3150, 4330, 5360, and 8460 mg/m³ for 1 hour and 1530 mg/m³ 20 for 4 hours). Analytical concentrations (as phosphoric acid) were 2720 mg/m³, 4030, 4410, and 21 22 6420 mg/m³, respectively, for the 1-hour study and 1210 mg/m³ for the 4-hour study. Analysis 23 of the chamber atmosphere (gravimetric analysis followed by gas chromatographic analysis) 24 showed a mixture of phosphorus pentoxide, phosphoric acid, and other hydrolysis products 25 including trace amounts of phosphine, but no white phosphorus or other volatiles. The MMAD 26 of the aerosols ranged from 1.0-1.4 μ m (1.5 – 1.7 geometric standard deviation) for the 1-hour 27 exposure and 0.9 µm for the 4-hour exposure. Post exposure observation was 14 days. All rats 28 were subjected to gross examination. 29

30 Mortality ratios for rats in the Burton et al. (1982) study was 2/10, 5/10, 7/10, and 9/10

for the 1-hour exposure to 3150, 4330, 5360, or 8460 mg/L, respectively. Rats died at 1 to 11

32 days postexposure (Table 3). The 1-hour LC_{50} calculated using the method of Litchfield and

1 Wilcoxon (1949) was 4597 mg/m³ (as red phosphorus/butyl rubber smoke; see Appendix E).

2 Two rats died after a 4-hour exposure to 1.53 mg/L; one during exposure and one at 7 days post

3 exposure. There were gross findings in the larynx and epiglottis of animals in all groups, and in

4 the trachea of rats in the 8460 mg/m³ group. In rats of the 1-hour exposure groups and the 4-

5 hour 1530 mg/m³ group, the epiglottis was slightly to moderately deformed, blunted on the tip,

6 or partially to virtually absent; this was accompanied by ulceration and edema. Laryngeal

7 lesions consisted of severe ulceration and edema with a fibrin substance on the mucosal surface

8 of the ventral larynx. Moderate to severe pulmonary congestion, edema, and hemorrhage were 9 observed in some rats exposed for 1 hour to 5360 and 8460 mg/m³ but no further details were

10 provided. No histopathological lesions were observed in the eyes, nares, or turbinates.

11

Т	TABLE 3. Mortality of Rats Exposed to Red Phosphorus/Butyl Rubber Smoke						
Exposure time (hrs) Exposure concentration (mg/m ³) Lethality Time of death							
1	3150	2/10	post-exposure day 6 and 10				
1	1 4330 5/10 2 during exposure; 3 at 7-10 days post exposure						
1	5360	7/10	1 at end of exposure; 1 at day 7, 2 at day 8; 3 at day 9				
1 8460 9/10 6 at end of exposure; 3 within 2 days post exposure							
4	1530	2/10	1 during exposure; 1 at day 7 post exposure				

 $1-hr LC_{50} = 4597 mg/m^3$

Burton et al.,1982

12 13

14 Groups of five female Porton Wistar-derived rats (170-190g) were exposed for 15 30 minutes to combustion aerosols of two red phosphorus compositions (Marrs, 1984). Surviving rats were sacrificed at 24 hours and 14 days after exposure. Groups of five female rats 16 served as controls. The test aerosols were generated by combustion of 95% red phosphorus and 17 18 5% butyl rubber (composition I) or 97% red phosphorus and 3% butadiene styrene (composition 19 II). Exposure duration for all tests was 30 minutes. Air was drawn through filter paper and the impacted material weighed. The chamber atmosphere for composition I and II was 3.2 and 3.1 20 g/m^3 (3200 and 3100 mg/m³, respectively) as solid material and 0.68 and 0.67 g/m³ (680 and 670 21 22 mg/m^3 , respectively) as phosphorus. All rats were necropsied and microscopic examination was conducted on the larynx, trachea, lungs, liver, kidney, adrenals, spleen, and pancreas. One rat 23 24 exposed to composition I died during exposure and four rats exposed to composition II died 25 within the first 24 hours. Necropsy findings in rats that died as a result of treatment included 26 larvngeal inflammation, blood in the tracheal lumen, severe pulmonary congestion, pulmonary 27 edema, and hepatic congestion. With the exception of pulmonary edema, similar findings were seen in the four remaining rats in the composition I group and in the one surviving rat (killed at 28 29 24 hours) of the composition II group. The rats surviving 14 days after exposure to composition 30 I exhibited mild to moderate laryngeal inflammation and severe pulmonary congestion. The rats 31 surviving 14 days after exposure to composition II exhibited laryngeal inflammation, mild 32 alveolitis, and pulmonary congestion. The 30-minute exposure of rats to aerosols from either 33 test composition resulted in severe damage to the respiratory tract and death. 34

Aranyi (1983) conducted acute and repeated inhalation exposure experiments in rats exposed to combustion aerosols of red phosphorus/butyl rubber. A standardized protocol was

- 1 established such that homogeneity of the chamber atmosphere could be maintained within $\forall 20\%$
- 2 both within and between chambers (Aranyi, 1983). Chamber temperatures were 24-27°C, 40-
- 3 60% relative humidity, and oxygen content about 21%. The median aerodynamic diameter of
- 4 the aerosol ranged from 0.3 to 0.6 μ m. A series of range-finding inhalation studies with red
- 5 phosphorus/butyl rubber aerosol was conducted. In one experiment, male and female rats (10-20
- 6 per group) were exposed to red phosphorus/butyl rubber combustion aerosol at concentrations of 7 2.00, 2.22, 2.62, 3.09, or 3.15 mg/L (2000, 2200, 2620, 3090, or 3150 mg/m³) for 1 hour (1.2
- 8 hours at 3.15 mg/L) or 8.8 mg/L (880 mg/m³) for 4 hours, and observed for 14 days. No
- 9 animals died after exposure to 2000 or 2220 mg/m³, 6% (1/18) died after exposure to 2620
- 10 mg/m^3 , and 20% (5/20) died after exposure to 3090 and 20% (2/10) died in the 3150 mg/m³
- exposure group (Table 4). Because no animals died after a single 4-hour exposure to 880 mg/m^3
- 12 (a cumulative exposure similar to a 1-hour exposure to $3090 \text{ or } 3150 \text{ mg/m}^3$), the investigators
- 13 concluded that exposure concentration rather than duration was the determining factor for
- 14 lethality. There did not appear to be gender-related variability in the inhalation toxicity of red
- 15 phosphorus aerosol.
- 16

TABLE 4. Mortality and Mean Survival Time of Rats Exposed to Red Phosphorus/Butyl Rubber Aerosol ^a							
Exposure conc. (mg/m ³)	Exposure duration (hrs)	Mortality ^b	Survival time (days)				
2,000	1.0	0/20	15.0				
2220	1.1	0/18	15.0				
2620	1.0	1/18	14.6				
3090	1.0	5/20	11.6				
3150	1.2	2/10	12.7				
880	4.0	0/8	15.0				

^a Whole-body exposure, males and females combined; 14-day post exposure observation ^b No dead/no. exposed

Aranyi, 1983

Aranyi, 198

17 18

10

In an acute inhalation study, Ballantyne (1998) exposed groups of 12, 10, 9, and 12

20 Porton-strain rats to unformulated pure red phosphorus smoke at concentrations of 1422, 2749,

21 5056, or 6731 mg/m³ (as ortho-phosphoric acid) or 450, 870, 1600, or 2130 mg/m³, respectively,

as phosphorus for 1 hour (Table 5). The study used the unformulated pure red phosphorus to

23 avoid the presence of combustion products from formulated red phosphorus compounds.

Exposure was whole body in a 10 m^3 chamber. The post exposure observation period was 14

25 days. The smoke was generated by combustion of unformulated pure red phosphorus by

26 electrical heating via a resistance wire. The resulting atmosphere distributed by a fan was

sampled and analyzed (spectrophotometric analysis of material trapped in filters) every 5
 minutes to determine chamber ortho-phosphoric acid and phosphorus concentration.

Homogeneous distribution of the smoke was confirmed (±5%) in preliminary tests without

30 animals in the chamber. The animals were observed 14 days and all animals including those that

31 died were subjected to necropsy and the larynx, trachea, lungs, liver, and kidneys were processed

32 for microscopic examination. The effects of inhalation exposure to unformulated red phosphorus

33 smoke are presented in Table 5. Damage to the respiratory tract (necrosis and inflammation in

34 the larynx and trachea, pulmonary congestion, hemorrhage, edema, and pneumonitis) were

35 detected in rats of all treatment groups. There was necrosis in the subepithelial layer of the

1 larynx and trachea at the higher concentrations but only in the epithelial layer at the lower 2

concentrations. Deaths occurred in all treatment groups except the 450-mg/m³ exposure group.

The LC₅₀ for a 1-hour exposure to red phosphorus aerosol was 1217 mg/m³ as phosphorus (1422) 3

4 mg/m^3 as ortho-phosphoric acid). No clinical observations were reported. Except for the liver 5

and kidney, microscopic effects were limited to the respiratory tract of exposed animals.

6

TABLE 5. Mortality and Histopathology in Rats Following 1-Hour Exposure to Red Phosphorus Smoke						
Parameter	Concentration (mg/m ³ as phosphorus)					
	450	870	1600	2130		
No. animals/group	12	10	9	12		
No. dead	0	2	6	12		
LC_{50} & LCt_{50} (expressed as ortho phosphoric acid)	$LC_{50} = 3846 \text{ m}$	mg/m^3 ; LCt ₅₀ =	231,429 mg•min/m	1 ³		
LC_{50} & LCt_{50} (expressed as	$LC_{50} = 1217 \text{ t}$	mg/m^3 ; LCt ₅₀ =	73,237mg•min/m ³			
phosphorus) Histopathology ^a						
Larynx						
Necrosis	0	2 (++,+++)	4 (+, ++)	11 (+,++)		
Inflammation	1 (+)	2 (+, +++)		7 (+, ++, +++)		
Trachea						
Necrosis	0	1 (++)	6 (+, ++)	9 (+)		
Inflammation	1 (+)	2 (+, ++)	7 (+, ++)	2 (+, ++)		
Lungs						
Congestion	5 (+)	5 (+, +++)		11 (+, ++)		
Hemorrhage	0	2 (++)		10 (+, ++)		
Edema	0	1 (+)	2 (+, ++)	5 (+, ++)		
Pneumonitis	0	1 (+++)	3 (++, +++)	10 (+, ++)		
Liver						
Congestion	0	1 (+)	5 (++, +++)	11 (++, +++)		
Kidney						
Congestion	0	0	0	2 (+)		

Ballantyne, 1998.

^aSeverity grade: + mild, ++ moderate, +++ severe

7 8

3.1.2 Mice

9 10

Ballantyne (1998) exposed Porton-strain mice (20, 50, 50, 20, and 20/group) to aerosols 11 of unformulated pure red phosphorus (351, 430, 695, 1422, or 2749 mg/m³ as ortho-phosphoric 12 13 acid; 111, 136, 220, 450, 870 mg/m³ as phosphorus. The exposure system was as described for rats (section 3.1.1). The post exposure observation period was 14 days. The LC_{50} for a 1-hour 14 exposure to red phosphorus smoke was 856 mg/m³ (as ortho-phosphoric acid). None of the mice 15 exposed to 111 mg/m³ died, 1 of 50 (2%) exposed to 136 mg/m³ died, and 44-100% died after 16 17 exposure to 220-870 mg/m³. The effects of exposure are summarized in Table 6. The incidence 18 and severity of tracheal and larvngeal necrosis, and inflammation increased with exposure

- 19 concentration.
- 20

TABLE 6. Mortality and Histopathologic Findings in Mice Following 1-Hour Inhalation Exposure to Red Phosphorus Smoke						
Parameter	Concentration (mg/m ³ as phosphorus)					
	111	136	220	450	870	
No. animals/group	20	50	50	20	20	
No. Dead (%)	0	1 (2)	22 (44)	15 (75)	20 (100)	
LC ₅₀ & LCt ₅₀ (expressed as ortho phosphoric acid eq.)		$LC_{50} = 850$	6 mg/m^3 ; LCt ₅₀ =	51,944 mg•min	$/m^3$	
LC ₅₀ & LCt ₅₀ values (expressed as phosphorus)		$LC_{50} = 27$	1 mg/m^3 ; LCt ₅₀ =	=16,438 mg•min/	/m ³	
Histopathology ^a						
Larynx Necrosis Inflammation	0 0		24 (+, ++, +++) 26 (+, ++, +++)	13 (+, ++) 8 (+, ++, +++)	19(+, ++) 17 (+, ++, +++)	
Trachea Necrosis Inflammation	0 0	6 (+, ++) 6 (+, ++)	24 (+, ++) 28 (+, ++)	5 (+, ++) 7 (+, ++)	14 (+, ++) 14 (+, ++)	
Lungs Congestion Hemorrhage Edema Pneumonitis	6 (+) 0 0	50 (++, +++) 1 (+) 0 0	50 (++, +++) 20 (++, +++) 4 (+) 1 (+)	17 (+, ++) 0 0 0	20 (+, ++) 3 (+) 4 (+) 2 (+)	
Liver Congestion	0	1 (+)	14 (+, ++)	0	8 (++)	
Kidney Congestion Cortical necrosis	0 0	0 0	6 (+) 7 (+, ++)	0	8 (+)	

Source: Ballantyne, 1998.

^aSeverity grade: + mild, ++ moderate, +++ severe

3.1.3 **Rabbits**

Ballantyne (1998) reported on the effects of red phosphorus smoke on groups of 10 New Zealand White rabbits exposed for 1 hour to concentrations of 1422, 2749, 5056, or 6731 mg/m³ (as ortho-phosphoric acid) (450, 870, 1600, or 2130 mg/m³, as phosphorus). The post exposure observation period was 14 days. The results of this experiment are summarized in Table 7. The 1-hr LC₅₀ was 5337 mg/m³ expressed as ortho-phosphoric acid and 1689 mg/m³ expressed as phosphorus. Deaths occurred in all exposure groups. Clinical observations were not reported. 10 With the exception of the mild to moderate congestion in the liver (observed only in rabbits that 11 12 died), and mild congestion and cortical neurosis in the kidney, microscopic effects were limited to the respiratory tract.

- 13
- 14

¹ 2 3 4 5 6 7 8 9

TABLE 7. Mortality and Histopathology in Rabbits Exposed to Red Phosphorus Smoke for 1 Hour						
Parameter	Concentration (mg/m ³ as phosphorus)					
1 al ameter	450 870		1600	2130		
No. animals/group	10	10	10	10		
No. dead (%)	1 (10)	1 (10)	3 (30)	8 (80)		
LC ₅₀ & LCt ₅₀ (expressed as ortho phosphoric acid eq.)	$LC_{50} = 5337 \text{ m}$	g/m^3 ; LCt ₅₀ = 321	,906 mg•min/m ³			
LC ₅₀ & LCt ₅₀ (expressed as phosphorus)	$LC_{50} = 1689 \text{ m}$	g/m^3 ; LCt ₅₀ = 101	,869 mg•min/m ³			
Histopathology ^a						
Larynx						
Necrosis	0	0	3 (++, +++)	8 (+, ++, +++)		
Inflammation	1 (++)	0	10 (+. +++)	10 (+, ++, +++)		
Trachea						
Necrosis	0	2 (+, ++)	5 (+, +++)	7 (+, ++)		
Inflammation	1 (++)	1 (++)	9 (+, +++)	9 (+, +++)		
Lungs						
Congestion	2 (+)		7 (+, ++, +++)	10 (+, ++, +++)		
Hemorrhage	0	2 (++, +++)	2 (++)	8 (+, ++)		
Edema	0	1 (+)	4 (+. ++, +++)	7 (+, ++, +++)		
Pneumonitis	2 (++)	0	2 (+++)	7 (+, ++)		
Liver						
Congestion	0	0	1 (++)	8 (+)		
Kidney						
Congestion	0	0	0	8 (+)		

Ballantyne, 1998.

^aSeverity grade: + mild, ++ moderate, +++ severe

1 2 3 4

3.1.4 Guinea Pigs

5 Weimer et al. (1977) exposed (see section 3.1.1 for experimental protocol) groups of five 6 male and five female Hartley albino guinea pigs to red phosphorus/butyl rubber smoke at the 7 concentrations 120-2277 mg/m³ for 5-150 minutes (Ct = 600-222,415 mg \cong min/m³). A majority 8 of the deaths occurred during exposure with the remaining deaths occurring within 1 day after 9 exposure (Table 8). The primary sign of toxicity, similar to rats and dogs, was respiratory 10 distress at all concentrations and durations, and which became more severe as the Ct product

11 increased.

TABLE 8. Mortality in	Guinea Pigs Following Acut	e Exposure to Red Phosphoru	ıs/Butyl Rubber Smoke
Concentration (mg/m ³)	Duration (minutes)	C×t (mg≅min/m³)	Mortality ^a
120	5	600	0/10
352	10	3,520	4/10
485	15	7,275	7/10
797	10	7,970	9/10
737	30	22,123	10/10
1,576	30	47,280	8/10
2,277	30	68,313	9/10
1,479	60	88,748	9/10
1,846	90	166,180	8/10
1,483	150	222,415	10/10

Weimer et al., 1977

^aIncidence: no. of deaths/no. exposed

3 Ballantyne (1998) exposed groups of 20, 20, 10, and 10 Dunkin-Hartley guinea pigs to 4 unformulated pure red phosphorus smoke at concentrations of 114, 164, 351, or 1422 mg/m³ (as 5 ortho-phosphoric acid) (36, 52, 111, or 450 mg/m³, respectively, as phosphorus). The animals 6 were observed 14 days post exposure. Necropsies was performed on all animals, and the larynx, 7 trachea, lungs, liver, and kidneys were examined microscopically. The 1-hour LC_{50} expressed as 8 ortho-phosphoric acid was 193 mg/m³ and the 1-hour LC₅₀ expressed phosphorus was 61 mg/m³. 9 Results of this experiment are summarized in Table 9. Respiratory tract lesions were less severe 10 in guinea pigs than in other species tested; all lesions observed in guinea pigs were mild to moderate in severity. Those that died exhibited few or no tracheal or laryngeal lesions but did 11 show notable pulmonary congestion. Mild liver and kidney congestion was observed in one to 12 three guinea pigs exposed to $52-450 \text{ mg/m}^3$. Toxicity was observed in guinea pigs of all test 13 14 groups. Based upon the histopathologic findings, the investigators considered the guinea pig deaths a consequence of asphyxia secondary to laryngospasm. 15

TABLE 9. Mortality and Histopat	hology in Guinea Pi	igs Exposed to Red	Phosphorus Smo	oke for 1 Hour	
Parameter	Concentration (mg/m ³)				
	36	52	111	450	
Animals/group	20	20	10	10	
Number dead (%)	0	9 (45)	9 (90)	10 (100)	
LC ₅₀ & LCt ₅₀ values (expressed as ortho phosphoric acid eq.)	$LC_{50} = 193 \text{ mg/m}$	h^3 ; LCt ₅₀ = 11,506	mg•min/m ³		
LC ₅₀ & LCt ₅₀ values (expressed as phosphorus)	$LC_{50} = 61 \text{ mg/m}^3$; LCt ₅₀ = 3,641 mg	g•min/m ³		
Histopathology ^a					
Larynx					
Necrosis	4 (+)	5 (+)	0	0	
Inflammation	4 (+)	7 (+, ++)	0	0	
Trachea					
Necrosis	8 (+)	7 (+)	0	0	
Inflammation	18 (+)	8 (+)	0	0	
Lungs					
Congestion	20 (+, ++)	13 (+, ++)	10 (+)	3 (+)	
Hemorrhage	2 (+)	1 (+)	0	0	
Edema	4 (+)	0	0	0	
Inflammation	0	2 (++)	0	0	
Liver					
Congestion	0	3 (+)	1 (++)	1 (+)	
Kidney					
Congestion	0	1 (++)	2 (+, ++)	2 (+)	

Ballantyne, 1998.

3.2.1. Dogs

^aSeverity grade: + mild, ++ moderate, +++ severe

Nonlethal Toxicity

1 2 3 4

3.2.

5

6 Beagle dogs (6/group; predominately males) were exposed in a static chamber to red phosphorus smoke at 1212-1882 mg/m³ for 30-240 minutes (Ct = 45,580-451,680 mg \cong min/m³) 7 8 and observed for 2 weeks following exposure (Weimer et al., 1977). A red phosphorus/butyl 9 rubber (360 g) and black powder (15 g) mixture was ignited in the chambers and specific 10 exposure concentrations maintained for specified durations. The exposure concentrations were 11 monitored by measuring the total particulate matter and phosphoric acid content. The MMAD was 1.1 μ m. Results of this experiment are summarized in Table 10. One dog in the 1572 mg/m³ 12 13 (180-min) exposure group died 4 days after exposure but investigators did not consider it treatment related. The remaining dogs survived the duration of the study. Signs of toxicity were 14 primarily those of respiratory distress although there were no exposure-related lesions in the 15 16 respiratory tract. There were no treatment-related changes in body weight, hematologic or clinical indices, organ weights, or gross or microscopic lesions. Conjunctivitis was observed in 17 18 dogs exposed to the highest ct product $(451,680 \text{ mg}\cdot\text{min/m}^3)$ but this resolved by 3 days post 19 exposure.

TABLE 10. R	esponse of Beagle Dogs Foll	owing Acute Exposure	to Red Phosphorus Smoke
Concentration (mg/m ³)	Duration (minutes)	Ct (mg≅min/m ³)	Lethality ^a
1519	30	45,570	0/6
1212	90	109,080	0/6
1483	150	222,415	0/6
1572	180	283,000	1/6 (4 days post exposure)
1813	180	326,340	0/6
1882	240	451,680	0/6 (reversible conjunctivitis)

Weimer et al., 1977

^a no. of deaths/no. exposed

1

3.2.2. Rats

No deaths occurred in groups of 10 rats exposed for 60 minutes to red phosphorus smoke at a concentration of 1128 mg/m³ (Section 3.1.1; Table 2). Weimer et al. (1977) noted that conjunctivitis was observed in rats exposed to ct products at or above 326,340 mg·min/m³. The conjunctivitis resolved by 3 days post exposure.

In a study by Aranyi (1983), male and female rats were exposed to red phosphorus/butyl rubber combustion aerosol at concentrations of 2.00, 2.22, 2.62, 3.09, or 3.15 mg/L (2000, 2200, 2620, 3090, or 3150 mg/m³) for 1 hour and observed for 14 days (see Section 3.1.1; Table 4). No rats died after exposure to 2000 or 2220 mg/m³ and there were no deaths after a single 4-hour exposure to 880 mg/m³ (a cumulative exposure similar to that of a 1-hour exposure to 3090 or 3150 mg/m³). Surviving rats, however, exhibited marked decreases in body weight immediately after the exposure with gradual recovery starting about 9 days later.

17

18 In an acute inhalation study, male Sprague-Dawley rats (number not reported) were exposed whole-body to 1000 mg/m³ of red phosphorus/butyl rubber (95%/5%) aerosol for 3.5 19 20 hours (Aranyi et al., 1988). Controls were exposed to filtered air. The MMAD was 0.5 µm with 21 a geometric standard deviation of 1.8. The mean concentration of red phosphorus/butyl rubber 22 was reportedly within 5% of target. The phosphoric acid content was 70% and the oxygen concentration was 21%. Bactericidal activity in rats inhaling [³⁵S] *Klebsiella pneumoniae* was 23 24 significantly decreased in RP/BR-exposed rats (~30% killed bacteria) compared with that of 25 controls (~80% killed bacteria). Total cell count and macrophage 5'-nucleotidase activity were significantly decreased in rats exposed to 1000 mg/m³, and the alveolar macrophage ATP was 26 27 significantly increased in exposed rats.

28

In the acute inhalation study (see Section 3.1.1) reported by Ballantyne (1998), there were no deaths in a group of 12 Porton-strain rats exposed for 1 hour to red phosphorus smoke at concentrations of 1422 mg/m³ as ortho-phosphoric acid (450 mg/m³ as phosphorus). However, these rats did exhibit mild inflammation of the trachea and mild pulmonary congestion (Table 5).

3.2.3. Mice

In a 1-hour inhalation study there were no deaths among 20 Porton-strain mice exposed to aerosols of unformulated pure red phosphorus (351 mg/m³ as ortho-phosphoric acid or 111 mg/m³ as phosphorus) (Ballantyne, 1998). The exposure system was as described for rats (Section 3.1.1). The post exposure observation period was 14 days at which time necropsy revealed mild pulmonary congestion (Table 6).

9 **3.2.4.** Rabbits

10

1

2

11 Groups of five female New Zealand white rabbits (230-240 g) were exposed (whole body) to aerosols generated from red phosphorus/butyl rubber compositions I and II as described 12 for rats in Section 3.1.1 (Marrs, 1984). The chamber concentrations were 3200 and 3100 mg/m³ 13 as solid material and 680 and 670 mg/m^3 as phosphorus for compositions I and II, respectively. 14 A control group consisted of five female rabbits. There were no treatment-related deaths in 15 16 either test group. Four rabbits exposed to composition I and sacrificed at 24 hours showed 17 laryngeal inflammation with evidence of progression to epithelial necrosis. Tracheal 18 inflammation was observed in these rabbits with three of five also exhibiting alveolitis, and one 19 bronchopneumonia. Two of five rabbits killed on day 14 had laryngeal inflammation, three had 20 tracheal inflammation, and all had alveolitis. For composition II, effects were qualitatively 21 similar with the exception that one rabbit killed at 14 days post exposure exhibited pulmonary focal hemorrhage. Overall, severe respiratory damage was observed after a single 30-minute 22 23 exposure to either composition.

24

25 **3.2.5.** Guinea Pigs

26

In the study by Weimer et al. (1977) (see section 3.1.1 for experimental protocol), there were no deaths among ten (5 male; 5 female) Hartley guinea pigs exposed for 5 minutes to red phosphorus/butyl rubber smoke at a concentration of 120 mg/m but the animals did exhibit signs of respiratory distress.

31

Ballantyne (1998) exposed groups of 20 Dunkin-Hartley guinea pigs to unformulated pure red phosphorus smoke at a concentration of 114 mg/m³ (as ortho-phosphoric acid or 36 mg/m³ as phosphorus). The animals were observed 14 days post exposure. Necropsy findings in guinea pigs surviving to the Day 14 termination included mild laryngeal inflammation and necrosis; mild tracheal inflammation and necrosis; and mild to moderate pulmonary congestion, hemorrhage and edema (Table 9).

38 39

3.3. Summary of Toxicity in Animals

40

The inhalation toxicity data for red phosphorus in animals is summarized in Tables 11 and 12. Regardless of the species, inhalation exposure to red phosphorus smoke or smoke from red phosphorus/butyl rubber consistently produced irritation and inflammation of the respiratory tract and, at higher concentrations, was lethal. Where histopathologic analysis was performed, lethality in rats, mice, and rabbits was associated with severe necrotic and inflammatory lesions in the larynx and trachea, and pulmonary congestion and edema. However, guinea pigs that died 1 exhibited only alveolar congestion in the lungs and no laryngeal or tracheal lesions. Ballantyne

2 (1998) stated that minimal histopathologic findings in animals surviving potentially lethal

3 exposures suggests that lesions may be reversible although they may predispose the animals to

4 secondary infection. The toxic responses to red phosphorus and red phosphorus/butyl rubber

5 smoke are generally attributed to the high phosphoric acid content (NRC, 1997b).

6

		mary of Lethal Toxicity of Red Phosphorus phorus/Butyl Rubber Smoke in Animals	or
Species	Exposure	Effects	Reference
Rat	Ct of 67685-451680 mg/m ³ ; 60-240 min ^a	NOAEL: 1128 mg/m ³ ; 60 min LOAEL: 1537 mg/m ³ ; 60 min (10% lethality)	Weimer et al., 1977
	2720-6420 mg/m ³ ;1 hr ^a	NOAEL: not identified LOAEL : 2720 mg/m ³ ; 1 hr (20% lethality) LC_{50} : 4597 mg/m ³	Ballou, 1981; Burton et al., 1982
	1210 mg/m ³ ; 4 hrs ^a	20% lethality	Ballou, 1981; Burton et al., 1982
	680 mg/m ³ ; 30 min ^a 670 mg/m ³ ; 30 min ^a	20% lethality 80% lethality	Marrs, 1984
	2000-3150 mg/m ³ ; 1 hr ^a	NOAEL: 2200 mg/m ³ ; 1 hr LOAEL: 2620 mg/m ³ ; 1 hr (6% lethality)	Aranyi, 1983
	450-2130 mg/m ³ ; 1 hr ^b	NOAEL: 450 mg/m^3 ; 1 hr LOAEL: 870 mg/m^3 ; 1 hr (20% lethality) LC ₅₀ : 1217 mg/m ³ (as phosphorus) LC ₅₀ : 3846 mg/m ³ (as phosphoric acid)	Ballantyne, 1998
Mouse	111-870 mg/m ³ ; 1 hr ^b	NOAEL: 111 mg/m ³ ; 1 hr LOAEL: 136 mg/m ³ ; 1 hr (2% lethality) LC_{50} : 271 mg/m ³ (as phosphorus) LC_{50} : 856 mg/m ³ (as phosphoric acid)	Ballantyne, 1998
Rabbit	450-2130 mg/m ³ ; 1 hr ^b	NOAEL: - LOAEL: 450 mg/m ³ ; 1 hr (10% lethality) LC_{50} : 1689 mg/m ³ (as phosphorus) LC_{50} : 5337 mg/m ³ (as phosphoric acid)	Ballantyne, 1998
Guinea pig	Ct of 600-222,415 ^a mg/m ³ ; 5-150 min	NOAEL: 120 mg/m ³ ; 5 min LOAEL 352 mg/m ³ ; 10 min (40% lethality)	Weimer et al., 1977
	36-450 mg/m ³ ; 1 hr ^b	NOAEL: 36 mg/m^3 ; 1 hr LOAEL: 52 mg/m^3 ; 1 hr (45% lethality) LC ₅₀ : 61 mg/m^3 (as phosphorus) LC ₅₀ : 193 mg/m^3 (as phosphoric acid)	Ballantyne, 1998

^aRed phosphorus/butyl rubber smoke test atmosphere; ^bred phosphorus smoke test atmosphere NOAEL and LOAEL values are for death

		mary of Nonlethal Toxicity of Red Phosphorus or osphorus/Butyl Rubber Smoke in Animals	
Species	Exposure	Effects	Reference
Dog	Ct of 45570—451,680 mg/m ³ ; 30-240 min ^a	NOAEL: not identified LOAEL:1519 mg/m ³ ; 30 min.(respiratory distress); 1882 mg/m ³ ; 240 min.(conjunctivitis)	Weimer et al., 1977
Rat	Ct of 67685-451680 mg/m ³ ; 60-240 min ^a	NOAEL: not identified LOAEL: 1128 mg/m ³ ; 60 min (respiratory distress) 1813 mg/m ³ ; 180 min. (conjunctivitis)	Weimer et al., 1977
	2000-3150 mg/m ³ ; 1 hr ^a	no deaths; no additional information	Aranyi, 1986
	1000 mg/m ³ ; 3.5 hrs ^a	compromised alveolar macrophage function	Aranyi et al, 1988
	450-2130 mg/m ³ ; 1 hr ^b	NOAEL: not identified LOAEL: 450 mg/m ³ ; 1 hr (laryngeal and tracheal inflammation)	Ballantyne, 1998
Mouse	11-870 mg/m ³ ; 1 hr ^b	NOAEL: not identified LOAEL: 111 mg/m ³ ; 1 hr (mild pulmonary congestion);	Ballantyne, 1998
Rabbit	450-2130 mg/m ³ ; 1 hr ^b	all exposure tested resulted in lethality	Ballantyne, 1998
	680 mg/m ³ ; 30 min ^a 670 mg/m ³ ; 30 min ^a	laryngeal inflammation with evidence of progression to epithelial necrosis at 12 hrs; laryngeal inflammation, tracheal inflammation, and alveolitis at 14 days post exposure; no deaths	Marrs, 1984
Guinea pig	120 mg/m ³ ; 5 min. ^a	no deaths (exposure to 352 mg/m ³ for 10 min. caused 40% lethality)	Weimer et al., 1977
	36 mg/m ³ ; 1 hr ^b	no deaths; mild to moderate histopathology in larynx, trachea, and lungs; 1-hr exposure to 52 mg/m ³ caused 45% lethality	Ballantyne, 1998

^aRed phosphorus/butyl rubber smoke test atmosphere; ^bred phosphorus smoke test atmosphere NOAEL and LOAEL value are for effects other than death.

3.4. **Developmental/Reproductive Effects**

There are no data suggesting that a single inhalation exposure to red phosphorus would cause developmental or reproductive toxicity. The NRC (1997b) and Ballantyne and Salem (2008) reviewed single generation reproductive and developmental studies in rats as well as gestational exposure studies in rats exposed to red phosphorus/butyl rubber smoke. No reproductive effects or dose-related malformations were observed.

3.5. Genotoxicity

12 13 Information regarding the potential genotoxicity of red phosphorus following inhalation exposure is limited to a study by Aranyi (1984) in which female rats were exposed to red 14 phosphorus/butyl rubber at 1000 mg/m³ over a 2-week period. It was concluded (Aranyi, 1984; 15 16 NRC, 1997b; Ballantyne and Salem, 2008) that the formulation was a weak clastogen 17

3.6. Carcinogenicity

Information regarding the potential carcinogenicity of red phosphorus following inhalation exposure is not available.

4. SPECIAL CONSIDERATIONS

4.1. Metabolism and Disposition

9 Information regarding the metabolism and disposition of red phosphorus following 10 inhalation exposure was provided by an experiment by Dalhamn and Holma (1959) in which 15 mice were exposed for 1 hour to $[^{32}P]$ -red phosphorus aerosol (5 mg/m³; maximum particle size 11 12 of 1 μ m and mean diameter of 0.46±0.28 μ m). Groups of three mice were killed immediately after exposure and at 20 minutes, 40 minutes, 2 hours, 48 hours, and 10 days post exposure. 13 14 Whole body autoradiography showed radioactivity in the lungs and gastrointestinal tract 15 immediately after exposure and at each interval up to 2 hours after exposure. Radioactivity 16 remained in the lungs of mice examined at 48 hours and at 10 days after exposure. There was no 17 radioactivity detected in the gastrointestinal tract or other organs.

18 19

20

1

2 3

4

5 6

7

8

4.2. Mechanism of Toxicity

Red phosphorus and red phosphorus/butyl rubber smoke have high phosphoric acid content. Ortho-phosphoric acid is a corrosive mineral acid and is likely the cause of the irritation and inflammation to the respiratory tract that occurs following inhalation of red phosphorus smoke (Marrs, 1984; NRC, 1997b). Bingham (2001) noted that the cellular toxicity of red phosphorus is likely due to its activity as a reducing agent, resulting in disruption of oxidative processes.

27 28

29

4.3. Structure-Activity Relationships

There are no structure-activity data available useful to developing AEGL values for red phosphorus. As noted in Section 1, red phosphorus is not toxicologically or chemically equivalent to white or black phosphorus. The formation of phosphoric acid combustion products vary sufficiently such that AEGL values for any one would not necessarily be reflective of the responses to red phosphorus or the red phosphorus/butyl rubber formulations. Although phosphine is a known degradation product of red phosphorus, its formation is considered too slow to be of toxicologic concern (Mitchell and Burrows, 1990).

37

38 4.4. Other Relevant Information

- 39 4.4.1. Species Variability
- 40

Ballantyne (1998) showed that the comparative sensitivity of four species exposed to red phosphorus smoke was guinea pig>mouse>rat>rabbit based upon 1-hr LC_{50} values (expressed as mg phosphorus) of 61, 271, 1217, and 1689 mg/m³, respectively. Based upon these data, the variability in the lethal response to red phosphorus/butyl rubber smoke may up to 27-fold when considering the uniquely sensitive guinea pig, but only abut 4-fold between rats and mice. Signs of toxicity were primarily in the respiratory tract although some effects were observed in the

1 liver and kidney in all species. Ballantyne (1998) also noted that the histopathology findings in 2 guinea pigs suggested this species to be uniquely sensitive (asphyxial death due to 3 laryngospasm) to the effects of red phosphorus smoke. In development of Emergency Exposure 4 Guideline Levels, the NRC (1997a) considered the guinea pig to be uniquely sensitive and 5 inappropriate as a model for human health risk. Based upon the results reported by Weimer et al. 6 (1977), dogs are notably less sensitive than rats. A comparison of Ct products and responses 7 shows that the Ct product causing only reversible conjunctivitis in dogs considerably exceeds the 8 LCt₅₀ of all rodent species. 9 10 4.4.2. Susceptible Populations 11 12 No data were found regarding variability in individual responses to the inhalation of red phosphorus smoke or red phosphorus/butyl rubber smoke. The corrosive/irritating properties of 13 these smokes would likely predispose individuals with preexisting respiratory problems to 14 15 greater risk for adverse effects or more severe responses. Because red phosphorus smoke appears to act as direct-contact irritant, variability in the responses of most individuals would be 16 17 more a function of dosimetric factors rather than toxicodynamic processes. 18 19 4.4.3. Concurrent Exposure Issues 20 21 Concurrent exposure to any chemical affecting the respiratory tract would logically 22 exacerbate the affects of red phosphorus smoke. 23 24 **DATA ANALYSIS FOR AEGL-1** 5. 25 5.1. Human Data Relevant to AEGL-1 26 27 All reports regarding human exposure described effects of greater severity than the 28 AEGL-1 tier. Furthermore, reported exposure parameters and responses were imprecise. 29 30 5.2. **Animal Data Relevant to AEGL-1** 31 32 There are no dose-response data for AEGL-1 severity effects in animals. In a study by 33 Ballantyne (1998), histological examination of six of 20 mice exposed to unformulated red phosphorus smoke (111 mg/m³) for one hour showed pulmonary congestion at the 14-day post 34 exposure termination. The next higher exposure (136 mg/m^3) resulted in notable increases in 35 number and severity of respiratory tract lesions as well as the death of one animal. For nonlethal 36 37 exposure in other species (rats, rabbits, guinea pigs), similar lesions were reported even in 38 exposures not producing a lethal response, or no information was provided regarding nonlethal 39 effects. The available data were lacking in the reporting of clinical observations that might have

- 40 been instrumental in developing AEGL-1 values.
- 42 **5.3.** Derivation of AEGL-1 Values

41

43
44 Data were unavailable with which to directly derive AEGL-1 values for red phosphorus.
45 Alternately, a 3-fold reduction of the AEGL-2 values was considered a justified approach for
46 deriving the AEGL-1 values because the progression of effects from AEGL-1 severity to AEGL-

1 2 severity represent a continuum of the same mode of action (contact irritation) and effect.

2 Further, comparison of the AEGL-1 values to the limited human exposure data suggests that

3 notable effects would be unlikely following exposure to AEGL-1 concentrations. The AEGL-1

4 values are shown in Table 13.

_	
`	
\mathcal{I}	

TABLE 13. AEGL-1 VALUES for Red Phosphorus					
Classification10-min30-min1-h4-h8-h					
AEGL-1	6.7	4.7	3.7	0.93	0.47

6

- 7
- 8 6. DATA ANALYSIS FOR AEGL-2

9 6.1. Human Data Relevant to AEGL-2

10

11 Human data regarding serious but nonlethal effects of inhalation exposure to red phosphorus lack definitive exposure terms. Mitchell and Burrows (1990) reported that acute 12 exposure (specific duration not specified) to 1000 mg red phosphorus/m³ was "intolerable". 13 14 Uhrmacher et al. (1985) reported that human volunteers experienced significant but reversible 15 symptoms of respiratory distress and irritation of the eyes and mucous membranes following exposure to red phosphorus smoke at concentrations of $100 - 700 \text{ mg/m}^3$ for less than 15 16 minutes. Exposure to red phosphorus concentrations greater than 100 mg/m³ reportedly are not 17 tolerated by workers, although accommodation to some effects was implied (ACGIH, 1991). 18 19 Additional information was unavailable regarding these human experience reports.

20

21 6.2. Animal Data Relevant to AEGL-2

22

23 Most of the lethality bioassays also provided some information about nonlethal effects in 24 laboratory species following acute exposure to red phosphorus smoke or red phosphorus/butyl 25 rubber smoke (Table 12). Irritation of the respiratory tract was consistently noted in all species tested and, with the exception of guinea pigs, was qualitatively similar across species. Where 26 27 available, necropsy results for animals surviving the red phosphorus exposures were indicative of respiratory tract damage that was reversible. One-hour exposure of rats to red phosphorus or 28 red phosphorus/butyl rubber smoke at concentrations of $450-2000 \text{ mg/m}^3$ caused effects such as 29 respiratory distress and pulmonary congestion but no deaths, while pulmonary congestion was 30 reported for mice exposed to only 111 mg/m³ for one hour. Dogs exhibited only conjunctivitis 31 32 after a 240-minute exposure to 1882 mg/m³, or respiratory distress at 1519 mg/m³ for 30 33 minutes.

34

35 6.3. Derivation of AEGL-2 Values

36

Information regarding the response of humans to red phosphorus or red phosphorus/butyl
 rubber smoke lacked definitive exposure terms and was not considered sufficient for

39 development of AEGL-2 values. Based upon results from studies with laboratory species,

40 AEGL-2 severity effects (necrosis, hemorrhage, and edema in the respiratory tract) were

41 consistently associated with exposures that also caused deaths. Necropsies of animals surviving

42 through the post-exposure observation period generally revealed only minor signs of toxicity that

1 were not consistent with AEGL-2 severity but clearly showed the respiratory tract as a target of 2 toxicity. Results from the multispecies study by Ballantyne (1998), showed no lethality and only pulmonary congestion in mice exposed one hour to smoke of unformulated red phosphorus (111 3 4 mg/m^3). Mice appeared to be more sensitive than rabbits, dogs, or rats. Guinea pigs were 5 considered uniquely sensitive species and not considered for AEGL development (see Section 4.4.1). The 1-hour exposure of mice to 111 mg red phosphorus/ m^3 which resulted in pulmonary 6 congestion was considered an appropriate POD for AEGL-2 derivation with a total uncertainty 7 8 factor application of 10 (3 for intraspecies variability and 3 for interspecies variability). 9 10 Red phosphorus is a direct-contact irritant, primarily due to the formation of orthophosphoric acid. The toxicodynamic aspect of exposure to red phosphorus is a greater 11 determinant of the toxic response than is toxicokinetics, and justifies an intraspecies uncertainty

determinant of the toxic response than is toxicokinetics, and justifies an intraspecies uncertaint
 factor of 3. Because the mouse appeared to be a sensitive species and the critical effects

- 14 associated with the POD are of minimal severity for the AEGL-2 tier, the interspecies
- 15 uncertainty factor of 3 is considered adequate. Further reduction of the AEGL-2 values by 16 additional uncertainty adjustment would result in AEGL-2 values inconsistent with the limited
- 17 information available for humans. Data were unavailable to empirically derive a time scaling
- exponent, *n*, in the equation $C^n x t = k$. The exposure concentration-exposure duration relationship for many irritant and systemically acting vapors and gases may be described by $C^n x$
- t = k, where the exponent, *n*, ranges from 0.8 to 3.5 (ten Berge et al., 1986). In the absence of an
- 21 empirically derived exponent (*n*), temporal scaling from the experimental durations of the
- respective PODs to AEGL-specific durations was performed using n = 3 when extrapolating to
- 23 shorter time points and n = 1 when extrapolating to longer time points using the $C^n x t = k$
- equation (NRC, 2001). The AEGL-2 values for red phosphorus are presented in Table 14 and
- 25 their derivation summarized in Appendices A and C.
- 26

	TABLE 14.	AEGL-2 VALUES	5 for Red Phosph	orus (mg/m3)	
Classification	10-min	30-min	1-h	4-h	8-h
AEGL-2	20	14	11	2.8	1.4

27 28

30

31

29 7. DATA ANALYSIS FOR AEGL-3

7.1. Human Data Relevant to AEGL-3

No human data were available for derivation of AEGL-3 values for red phosphorus.
 Reports of exposures associated with human lethality (or estimates of lethal exposures) were
 not verifiable.

35

36 7.2. Animal Data Relevant to AEGL-3

Several studies (Weimer et al., 1977; Burton et al., 1982; Marrs, 1984; Aranyi, 1984;
Ballantyne, 1998) provided animal lethality data for red phosphorus/butyl rubber smoke or for
the combustion aerosol of pure red phosphorus. Data in several species (rat, mouse, rabbit,
guinea pig) revealed notable differences in susceptibility (up to 28-fold difference in 1-hour LC₅₀
values) among these species. Rabbits and dogs appeared to be less sensitive than rodents while
guinea pigs were considered by investigators to be uniquely sensitive. In evaluating these data,

the NRC (1997b) considered the guinea pig data inappropriate for assessing human health risk.
Benchmark estimates of lethality thresholds were calculated (U.S. EPA, 2007) for rat data
(Burton et al., 1982; Aranyi, 1984; Ballantyne, 1998) and mouse data (Ballantyne, 1998) and are
shown in Appendix E. Rabbits were a notably less sensitive species (Ballantyne, 1998) and were
not further considered.

7.3. Derivation of AEGL-3 Values

8 9 Information on the inhalation toxicity of red phosphorus in humans lacked definitive 10 exposure terms and, therefore, was not used to define a POD for AEGL-3 derivation but served as supporting data. Lethality assays in laboratory species utilized both red phosphorus/butyl 11 12 rubber smoke (Weimer et al., 1977; Marrs, 1984; Aranyi, 1984) and pure unformulated red 13 phosphorus smoke (Ballantyne, 1998). The data reported by Ballantyne (1998) were the most 14 relevant for deriving AEGL values for red phosphorus in that it used pure unformulated red phosphorus rather than the butyl rubber formulations. The 1-hour BMLC₀₅ of 469 mg/m³ for 15 rats exposed to red phosphorus smoke was the POD for AEGL-3 derivation (Appendix E). 16 17 Although results of the Ballantyne (1998) study suggested the mouse to be a more sensitive 18 species, the BMC analyses of the mouse data showed the BMC model to be a poor fit to the data 19 from mice (p=0.09 for the mouse data vs p=0.66 for the rat data). Furthermore, data for rats are 20 more robust. The lethality benchmark values from the Ballantyne data are lower than those from 21 the Aranyi (1984) report (Appendix E).

22

6 7

23 Toxicity data for multiple species showed a wide range of susceptibility to red 24 phosphorus and red phosphorus/butyl rubber smoke. However, the responses of the dog, rabbit 25 and guinea pig represented extremes; dogs and rabbits were notably less sensitive and guinea pigs were the most sensitive species tested. Although such variability would normally warrant 26 an interspecies uncertainty factor of 10, this would result in AEGL-3 values inconsistent with 27 28 human data; 15-minute exposures to 100-700 mg/m³ produced ocular and nasal irritation but no 29 mortality (see Section 2.2). Further, the interspecies variability is primarily the result of the 30 extreme sensitivity of guinea pigs (see Section 4.4.1). Therefore, the interspecies uncertainty 31 factor was limited to 3. Red phosphorus is a direct-contact irritant which is primarily due to the 32 formation of ortho-phosphoric acid. The toxicodynamic aspect of exposure to red phosphorus is 33 a greater determinant of the toxic response than is toxicokinetics thereby justifying an 34 intraspecies uncertainty factor of 3. As previously noted, application of greater uncertainty 35 factors would result in AEGL-3 values inconsistent with the human experience data. Time 36 scaling was performed as described for AEGL-2.

37

	TABLE 15.	AEGL-3 VALUES	5 for Red Phospho	rus (mg/m ³)	
Classification	10-min	30-min	1-h	4-h	8-h
AEGL-3	85	59	47	12	5.9

8. **SUMMARY OF AEGLs**

2 8.1. **AEGL Values and Toxicity Endpoints** 3

4 AEGL-1 values for red phosphorus were derived by a 3-fold reduction of the AZEGL-2 5 values. This approach was considered justified because the progression of effects from AEGL-1 6 severity to AEGL-2 severity represents a continuum of the same mode of action (contact 7 irritation) and effect. The AEGL-2 values were based upon reversible pulmonary congestion in 8 mice which was considered a protective critical effect for AEGL-2 development. Although 9 some studies in animals described effects more consistent with AEGL-2 tier severity (notable 10 histopathologic findings in the respiratory tract), these exposures were also associated with lethality. The AEGL-3 values were based upon a BMCL₀₅ for lethality in rats following a 1-11 12 hour exposure to unformulated red phosphorus smoke. Considerable species variability was apparent with dogs and rabbits being less sensitive than rodent species. Guinea pigs were 13 14 considered uniquely sensitive, and not further considered for AEGL development. The AEGL 15 values for red phosphorus are summarized in Table 16

16

1

	TABLE 1	6. AEGL Values f	or Red Phosphoru	is (mg/m^3)	
Classification	10-min	30-min	1-h	4-h	8-h
AEGL-1	6.7	4.7	3.7	0.93	0.47
(Nondisabling)					
AEGL-2	20	14	11	2.8	1.4
(Disabling)					
AEGL-3	85	59	47	12	5.9
(Lethality)					

17

18

19

20

8.2. **Comparisons with Other Standards and Guidelines**

21 A summary of currently available standards and guidelines for red phosphorus is in Table 22 17. The values other than AEGL values are based upon data for red phosphorus/butyl rubber 23 smoke formulations (the analyses for developing these exposure values were conducted prior to 24 the 1998 publication by Ballantyne).

25

TA	ABLE 17. Extant Stand	ards and Guide	elines for Red P	hosphorus (mg/m³)	
]	Exposure Durat	tion	
Guideline	10 min	30 min	1 h	4 h	8 h
AEGL-1	6.7	4.7	3.7	0.93	0.47
AEGL-2	20	14	11	2.8	1.4
AEGL-3	85	59	47	12	5.9
EEGL ^a	40 (15-min)		10	2 (6-hrs)	
PEGL					1.0 ^b
SPEGL ^c	4.0 (15-min)		1.0	0.2 (6-hrs)	
PPEGL					0.1 ^d

26 27 28

^a EEGL (Emergency Exposure Guidance Level, National Research Council) (NRC, 1997b) is the concentration of contaminants that can cause discomfort or other evidence of irritation or intoxication in or around the workplace, but

avoids death, other severe acute effects and long-term or chronic injury; established for 15-min. 1-hr, and 6-hr durations.

 $\begin{array}{r}
 1 \\
 2 \\
 3 \\
 4 \\
 5 \\
 6 \\
 7 \\
 8 \\
 9 \\
 10 \\
 \end{array}$ ^b PEGL (Permissible Emergency Guidance Level, National Research Council) (NRC, 1997b) is defined as a concentration (8 hrs/day, 5 days/week) that will protect specific populations (military personnel and workers) from adverse health effects.

^c SPEGL (Short-term Public Exposure Guidance Level, National Research Council) (NRC, 1993) is defined as a

suitable concentration for unpredicted, single, short-term emergency exposure of 1 to 24 hours of the general

public. SPEGLs take into account the wide range of susceptibility of the general public and are generally estimated by applying an uncertainty factor of two to ten to the EEGL to account for sensitive groups.

^d PPEGL (Permissible Public Exposure Guidance Level, National Research Council) (NRC, 1997b) is defined as an 11 exposure concentration (8 hrs/day, 5 days/week for perhaps a lifetime) that will be without adverse health effects in 12 the general public including sensitive individuals.

13 14

15

16

21 22

23 24

25

26

27

40

44

47

8.3. **Data Adequacy and Research Needs**

17 Data are adequate for deriving AEGL-2 and AEGL-3 values for red phosphorus although 18 definitive exposure terms are lacking for the limited data regarding human exposures. A 19 threshold for AEGL-2 tier effects was not clearly defined and assessment of an exposure-20 response relationship for AEGL-1 tier effects was not possible with the available data.

9. REFERENCES

- ACGIH (American Conference of Governmental Industrial Hygienists). 1991. Documentations of the Threshold Limit Values and Biological Exposure Indices, 6th Ed. American Conference of Governmental Industrial Hygienists, Cincinnati, OH. (cited in NRC, 1997b)
- 28 Aranyi, C. 1983. Research and development on inhalation toxicologic evaluation of red 29 phosphorus/butyl rubber combustion products. Phase II Report. U. S. Army Medical 30 Research and Development Command, Fort Detrick, Frederick, MD. ADA158323.
- 31 32 Aranyi, C. 1984. Research and development on inhalation toxicologic evaluation of red 33 phosphorus/butyl rubber combustion products. Phase III Report. U. S. Army Medical 34 Research and Development Command, Fort Detrick, Frederick, MD. AD-A173549. 35
- 36 Aranyi, C. 1986. Research and development on inhalation toxicologic evaluation of red 37 phosphorus/butyl rubber combustion products. Final Report (Phase IV). U. S. Army 38 Medical Research and Development Command, Fort Detrick, Frederick, MD. NTIS/AD-39 A189 254/6.
- 41 Aranyi, C., Vana, S.N., Bradof, J.N., Sherwood, R. 1988. Effects of inhalation of red 42 phosphorus/butyl rubber combustion products on alveolar macrophage responses in rats. 43 J. Appl. Toxicol. 8:393-398.

45 Ballantyne, B. 1998. Acute inhalation toxicity of red phosphorus smoke. Toxic Subst. Mech. 46 17:251-266.

48 Ballantyne, B. Salem, H. 2008. Screening smokes: Applications, toxicology, clinical 49 considerations, and medical management. In: J.A. Romano, Jr., B. Lukey, H. Salem, eds. **RED PHOSPHORUS**

1 2 3	Chemical Warfare Agents; Chemistry, pharmacology, Toxicology, and Therapeutics. 2 nd Ed. CRC Press, Boca, Raton, FL, pp. 469-500.
4 5 6 7	Ballou, J.E. 1981. Chemical characterization and toxicologic evaluation of airborne mixtures. Final Report. U. S. Army Medical Research and Development Command, Fort Detrick, Frederick, MD. NTIS/AD-A102 678.
8 9 10 11 12 13 14	 Berkowitz, J.B., Young, G.S., Anderson, R.C., Colella, A.J., Lyman, W.J., Preston, A.L., Steber, W.D., Thomas, R.G., and Vranka, R.G. 1981. Research and development for health and environmental hazard assessment. Task Order 5. Occupational and environmental hazards associated with the formulation and use of white phosphorus-felt and red phosphorus-butyl rubber screening smokes. Final Report. U. S. Army Medical Research and Development Command, Fort Detrick, Frederick, MD. NTIS/AD-A116 956/4.
15 16 17 18	Bingham, E. 2001. Phosphorus, selenium, tellurium, and sulfur. In: Patty's Toxicology, 5th ed. Volume 3. E. Bingham, B. Cohrssen, and C.H. Powell, Eds. Wiley Interscience, New York. pp. 459-464.
19 20 21 22	Brazell, R.S., Holmberg, R.W., and Moneyhun, J.H. 1986. Chemical characterization of selected military obscurants. Oak Ridge National Laboratory, Oak Ridge, TN. NTIS: DE84003202.
23 24 25	Brazell, R.S., Moneyhun, J.H., and Holmberg, R.W. 1984. Chemical and physical characterization of phosphorus smokes for inhalation exposure and toxicology studies. Final Report. U. S. Army Medical Research and Development.
26 27 28 29 20	Burton, F.G., Clark, M.L., Miller, and R.A., Schirmer, R.E. 1982. Generation and characterization of red phosphorus smoke aerosols for inhalation exposure of laboratory animals. Am. Ind. Hyg. Assoc. J. 43:767-772.
30 31 32	Dalhamn, T., and Holma, B.O. 1959. Animal experiments on the spread of inhaled radioactive red phosphorus in the body. A.M.A. Arch. Ind. Health. 20: 429-431.
33 34 35 36 37	Haber, F.R. 1924. Zur geschichte des gaskrieges [On the history of the gas war]. In: Fuenf Vortraege aus den Jahren 1920-23 [Five lectures from the years 1920-1923]. Berlin, Germany: Verlag von Julius Springer; pp. 76-92.
38 39 40	Litchfield, J.T.; Wilcoxon, F. 1949. Simplified method of evaluating dose-effect experiments. J. Pharmacol. Exp. Ther. 96: 99-113.
40 41 42 43	Marrs, T.C. 1984. Histological changes produced by exposure of rabbits and rats to smokes produced from red phosphorus. Toxicol. Lett. 21:141-146
44 45 46 47	Mitchell, W.R. and Burrows, E.P. 1990. Assessment of red phosphorus in the environment. U. S. Army Medical Research and Development Command, Fort Detrick, Frederick, MD. NTIS/AD-A221704.

1	NRC (National Research Council). 1993. Guidelines for Developing Community Emergency
2	Exposure Levels for Hazardous Substances. Committee on Toxicology, Board on
3	Toxicology and Environmental Health Hazards, Commission on Life Sciences, National
4	Research Council. National Academy Press, Washington, DC.
5	NRC (National Research Council). 1997a. Guidelines for developing community emergency
6	exposure levels for hazardous substances. Committee on Toxicology, Board on
7	Toxicology and Environmental Health Hazards, Commission on Life Sciences, National
8	Research Council. National Academy Press, Washington, DC.
9	NRC (National Research Council). 1997b. Toxicity of military smokes and obscurants. Volume
10	1. Committee on Toxicology, Board on Toxicology and Environmental Health Hazards,
11	Commission on Life Sciences, National Research Council. National Academy Press,
12	Washington, DC.
13 14 15 16	NRC (National Research Council). 2001. Standing operating procedures for developing acute exposure guideline levels for hazardous chemicals. Committee on Toxicology, Board on Toxicology and Environmental Health Hazards, Commission on Life Sciences, National Research Council. National Academy Press, Washington, DC.
17 18 19 20	O'Neil, M.J., A.M. Smith, P.E. Heckelman, et al. 2001. The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals. Thirteenth Ed., Merck & Co. Inc., Whitehouse Station, NJ.
20 21 22 23	Rinehart, W. E., Hatch, T. 1964. Concentration-time product (CT) as an expression of dose in sublethal exposures to phosgene. Ind. Hyg. J. 25: 545-553.
24	ten Berge, W.F., Zwart, A., Appelman, L.M. 1986. Concentration-time mortality response
25	relationship of irritant and systemically acting vapours and gases. J. Hazard. Materials
26	13: 301-309.
27	Uhrmacher, J.C., Werschulz, P.P., Schultz, D.O., Weber, D.O. 1985. Red Phosphorus. A health
28	and environmental effects data base assessment of U.S. Army waste material. Final
29	Report. Pp. 49-1 – 49-9. U.S. Army Medical Research and Development command, Fort
30	Detrick, Frederick, MD. AD-A175274.
31 32 33 34	U.S. EPA (U.S. Environmental Protection Agency). 2007. Benchmark Dose Software. Version 1.4.1 National Center for Environmental Assessment, Office of Research and Development. [Online]. Available: <u>http://www.epa.gov/ncea/bmds.htm</u> .
35	Weimer, J.T, Affleck, G. Preston, J., Lucey, J., and Manthei, J. 1977. The acute effects of
36	single exposures to United Kingdom red phosphorus screening smoke in rats, guinea
37	pigs, rabbits, and dogs. Army Armament Research and Development Command,
38	Chemical Systems Lab, Aberdeen Proving Ground MD. AD-B020755. Limited
39	Distribution.

1 **APPENDIX A: DERIVATION OF AEGL VALUES** 2 **Derivation of AEGL-1 Values for Red phosphorus** 3 Data were unavailable with which to directly derive AEGL-1 values for red phosphorus. A 3-4 fold reduction of the AEGL-2 values was considered a justified approach for deriving the 5 AEGL-1 values because the progression of effects from AEGL-1 severity to AEGL-2 severity 6 represent a continuum of the same mode of action (contact irritation) and effect. AEGL-2 7 uncertainty factors were considered appropriate for lesser severity effects consistent with the 8 AEGL-1 tier. Further, comparison of the AEGL-1 values to the limited human exposure data 9 suggests that notable effects would be unlikely following exposure to AEGL-1 concentrations. 10 11 10-min AEGL-1 $20 \text{ mg/m}^3 \div 3 = 6.7 \text{ mg/m}^3$ 12 13 14 15 16 **30-min AEGL-1** $14 \text{ mg/m}^3 \div 3 = 4.7 \text{ mg/m}^3$ 17 18 19 20 21 1-hr AEGL-1 $11 \text{ mg/m}^3 \div 3 = 3.7 \text{ mg/m}^3$ 22 23 24 25 26 4-hr AEGL-1 $2.8 \text{ mg/m}^3 \div 3 = 0.93 \text{ mg/m}^3$ 27 28 29 30 31 8-hr AEGL-1 $1.4 \text{ mg/m}^3 \div 3 = 0.47 \text{ mg/m}^3$ 32 33

1				
2		Derivation of AEGL-2 Values for Red phosphorus		
3				
4 5 6	Key Study:	Ballantyne, B. 1998. Acute inhalation toxicity of red phosphorus smoke. Toxic Subst. Mech.17:251-266.		
0 7 8 9 10	Critical effect:	Pulmonary congestion in mice exposed one hour to smoke of unformulated red phosphorus (111 mg/m ³); 2% lethality at the next higher exposure level (136 mg/m ³).		
10 11 12 13 14 15 16 17 18 19 20 21	Time scaling:	Data were unavailable with which to empirically derive a time scaling exponent, n , in the equation $C^n x t = k$. The exposure concentration- exposure duration relationship for many irritant and systemically acting vapors and gases may be described by $C^n x t = k$, where the exponent, n , ranges from 0.8 to 3.5 (ten Berge et al., 1986). In the absence of an empirically derived exponent (n), temporal scaling from the experimental durations of the respective PODs to AEGL-specific durations was performed using $n = 3$ when extrapolating to shorter time points and $n = 1$ when extrapolating to longer time points using the $C^n x$ t = k equation (NRC, 2001).		
22 23 24 25 26 27 28	Uncertainty factors: <u>Interspecies</u> :	Total uncertainty factor of 10. 3; Because the mouse is a sensitive species and the critical effect associated with the POD is of minimal severity for the AEGL-2 tier, the interspecies uncertainty factor of 3 is considered adequate. Further reduction of the AEGL-2 values by additional uncertainty adjustment would result in AEGL-2 values inconsistent with the limited information available for humans.		
29 30 31 32 33	<u>Intraspecies</u> :	3; The toxicodynamic aspect of exposure to red phosphorus is a greater determinant of the toxic response than is toxicokinetics, which justifies an intraspecies uncertainty factor of 3.		
34 35	Modifying Factor:	None applied		
36 37 38	Calculation:	$(111 \text{ mg/m}^3)^1 \ge 1 \text{ hr} = 111 \text{ mg} \cdot \text{hrs/m}^3$ $(111 \text{ mg/m}^3)^3 \ge 1 \text{ hr} = 1,367,631 \text{ mg}^3 \cdot \text{hrs/m}^3$		
 39 40 41 42 43 44 	<u> 10-min AEGL-2</u>	$(C mg/m^3)^3 \ge 0.1167 hrs = 1,367,631 mg^3 \cdot hrs/m^3$ $(C mg/m^3)^3 = 8,204,145 mg^3 \cdot hrs/m^3$ $C = 201.69 mg/m^3$ $C = 201.69 mg/m^3 \div 10 = 20 mg/m^3$		

1	<u> 30-min AEGL-2</u>	
2		$(C \text{ mg/m}^3)^3 \times 0.5 \text{ hrs} = 1,367,631 \text{ mg}^3 \cdot \text{hrs/m}^3$
3		$(C mg/m^3)^3 = 2,735,263 mg^3 \cdot hrs/m^3$
4		$C = 139.85 \text{ mg/m}^3$
5		$C = 139.85 \text{ mg/m}^3 \div 10 = 14 \text{ mg/m}^3$
6		
7	<u>1-hr AEGL-2</u>	
7 8 9		$(C mg/m^3)^1 x 1 hr = 111 mg^3 \cdot hrs/m^3$
9		$(C mg/m^3)^1 = 111 mg^3 \cdot hrs/m^3$
10		$C = 111 \text{ mg/m}^3$
11		$C = 111 \text{ mg/m}^3 \div 10 = 11 \text{ mg/m}^3$
12		
13	4-hr AEGL-2	
14		$(C mg/m^3)^1 x 4 hrs = 111 mg^3 \cdot hrs/m^3$
15		$(C mg/m^3)^1 = 27.75 mg^3 \cdot hrs/m^3$
16		$C = 27.75 \text{ mg/m}^3 \div 10 = 2.8 \text{ mg/m}^3$
17		
18	<u>8-hr AEGL-2</u>	
19		$(C mg/m^3)^1 \ge 8 hrs = 111 mg^3 \cdot hrs/m^3$
20		$(C \text{ mg/m}^3)^1 = 13.88 \text{ mg}^3 \cdot \text{hrs/m}^3$
21		$C = 13.88 \text{ mg/m}^3 \div 10 = 1.4 \text{ mg/m}^3$

1 2 3 4	D	Perivation of AEGL-3 Values for Red phosphorus
4 5 6 7	Key Study:	Ballantyne, B. 1998. Acute inhalation toxicity of red phosphorus smoke. Toxic Subst. Mech.17:251-266.
8 9 10 11	Critical effect:	A 1-hour $BMLC_{05}$ of 469 mg/m ³ for rats exposed to red phosphorus smoke was used as an estimate of the lethality threshold and POD for AEGL-3 derivation.
12 13 14 15 16 17 18 19 20 21 22	Time scaling:	Data were unavailable with which to empirically derive a time scaling exponent, n , in the equation $C^n x t = k$. The exposure concentration-exposure duration relationship for many irritant and systemically acting vapors and gases may be described by $C^n x t = k$, where the exponent, n , ranges from 0.8 to 3.5 (ten Berge et al., 1986). In the absence of an empirically derived exponent (n), temporal scaling from the experimental durations of the respective PODs to AEGL-specific durations was performed using $n = 3$ when extrapolating to shorter time points and $n = 1$ when extrapolating to longer time points using the $C^n x t = k$ equation (NRC, 2001).
22 23 24	Uncertainty factors:	
25 26 27 28 29 30 31 32 33	Total uncertainty factor Interspecies:	 of 10. 3;. Toxicity data in multiple species showed a wide range of susceptibility to red phosphorus and red phosphorus/butyl rubber smoke. The responses of the dog, rabbit and guinea pig represented extremes; dogs and rabbits were notably less sensitive and guinea pigs were the most sensitive species tested. Although such variability would normally warrant an interspecies uncertainty factor of 10, this would result in AEGL-3 values inconsistent with human data; 15-minute exposures to 100-700 mg/m³ produced ocular and nasal irritation but no lethalities
34 35 36 37		(see Section 2.2). Further, the interspecies variability is primarily the result of the extreme sensitivity of guinea pigs (see Section 4.4.1). Therefore, the interspecies uncertainty factor was limited to 3.
38 39 40 41	<u>Intraspecies</u> :	3; The toxicodynamic aspect of exposure to red phosphorus is a greater determinant of the toxic response than is toxicokinetics, which justifies an intraspecies uncertainty factor of 3.
41 42 43	Modifying Factor:	None applied
44 45 46	Calculation:	$(469 \text{ mg/m}^3)^1 \text{ x } 1 \text{ hr} = 469 \text{ mg} \cdot \text{hrs/m}^3$ (469 mg/m ³) ³ x 1 hr = 103,161,709 mg ³ \cdot \text{hrs/m}^3

1		
2	10-min AEGL-3	
3		$(C \text{ mg/m}^3)^3 \ge 0.1167 \text{ hrs} = 103,161,709 \text{ mg}^3 \text{ hrs/m}^3$
4		$(C \text{ mg/m}^3)^3 = 618,846,485 \text{ mg}^3 \cdot \text{hrs/m}^3$
5		$C = 852 \text{ mg/m}^3$
6		$C = 852 \text{ mg/m}^3 \div 10 = 85 \text{ mg/m}^3$
7		
2 3 4 5 6 7 8 9	<u>30-min AEGL-3</u>	
9		$(C \text{ mg/m}^3)^3 \ge 0.5 \text{ hrs} = 103,161,709 \text{ mg}^3 \cdot \text{hrs/m}^3$
10		$(C \text{ mg/m}^3)^3 = 206,323,418 \text{ mg}^3 \cdot \text{hrs/m}^3$
11		$C = 590.09 \text{ mg/m}^3$
12		$C = 590.09 \text{ mg/m}^3 \div 10 = 59 \text{ mg/m}^3$
13		
14	<u>1-hr AEGL-3</u>	
15		$(C mg/m^3)^1 \ge 1 hr = 469 mg^3 \cdot hrs/m^3$
16		$(C mg/m^3) = 469 mg/m^3$
17		$C = 469 \text{ mg/m}^3 \div 10 = 47 \text{ mg/m}^3$
18		
19	4-hr AEGL-3	
20		$(C mg/m^3)^1 x 4 hrs = 469 mg^3 \cdot hrs/m^3$
21		$(C mg/m^3)^1 = 117.25 mg^3 \cdot hrs/m^3$
22		$C = 117.25 \text{ mg/m}^3 \div 10 = 12 \text{ mg/m}^3$
23		
24	8-hr AEGL-3	
25		$(C mg/m^3)^1 \ge 8 hrs = 469 mg^3 \cdot hrs/m^3$
26		$(C mg/m^3)^1 = 58.6 mg^3 \cdot hrs/m^3$
27		$C = 58.6 \text{ mg/m}^3 \div 10 = 5.9 \text{ mg/m}^3$

1

APPENDIX B: TIME SCALING CALCULATIONS

4 The relationship between dose and time for any given chemical is a function of the 5 physical and chemical properties of the substance and the unique toxicological and 6 pharmacological properties of the individual substance. Historically, the relationship according 7 to Haber (1924), commonly called Haber=s Law or Haber=s Rule ($C \times t = k$, where C =8 exposure concentration, t = exposure duration, and k = a constant) has been used to relate 9 exposure concentration and duration to effect (Rinehart and Hatch, 1964). This concept states 10 that exposure concentration and exposure duration may be reciprocally adjusted to maintain a cumulative exposure constant (k) and that this cumulative exposure constant will always reflect a 11 12 specific quantitative and qualitative response. This inverse relationship of concentration and 13 time may be valid when the toxic response to a chemical is equally dependent upon the 14 concentration and the exposure duration. However, an assessment by ten Berge et al. (1986) of 15 LC₅₀ data for certain chemicals revealed chemical-specific relationships between exposure 16 concentration and exposure duration that were often exponential. This relationship can be expressed by the equation $C^n x t = k$, where *n* represents a chemical specific, and even a toxic 17 18 endpoint specific, exponent. The relationship described by this equation is basically in the form 19 of a linear regression analysis of the log-log transformation of a plot of C vs t. ten Berge et al. 20 (1986) examined the airborne concentration (C) and short-term exposure duration (t) relationship 21 relative to death for approximately 20 chemicals and found that the empirically derived value of 22 *n* ranged from 0.8 to 3.5 among this group of chemicals. Hence, the value of the exponent (*n*) in 23 the equation $C^n x t = k$ quantitatively defines the relationship between exposure concentration 24 and exposure duration for a given chemical and for a specific health effect endpoint. Haber's 25 Rule is the special case where n = 1. As the value of *n* increases, the plot of concentration vs 26 time yields a progressive decrease in the slope of the curve. 27

28 The available data do not allow for empirical derivation of a temporal scaling factor (n)

for red phosphorus. The concentration-exposure time relationship for many irritant and systemically acting vapors and gases may be described by $C^n x t = k$, where the exponent n

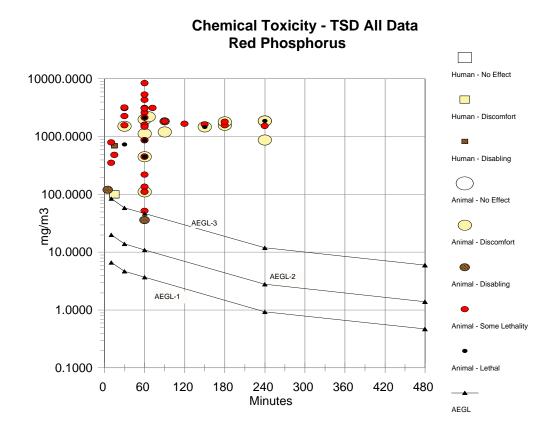
30 systemically acting vapors and gases may be described by $C^n x t = k$, where the exponent n 31 ranges from 0.8 to 3.5 (ten Berge et al. 1986). Data are unavailable with which to evaluate the

31 ranges from 0.8 to 5.5 (ten berge et al. 1986). Data are unavariable with which to evaluate the 32 exposure time-exposure concentration relationship and empirical derivation of the exponent, n,

for the relationship $C^n \ge t = k$ is not possible. In the absence of definitive data, temporal scaling

default exponents of n = 3 are typically applied when extrapolating to shorter time points and n

35 = 1 when extrapolating to longer time points (NRC 2001).


APPENDIX C: DERIVATION SUMMARY TABLES

	AEGL-1 VALUE	S FOR RED PHOS	PHORUS (ppm)								
10 min	30 min	1 h	4 h	8 h							
6.7	6.7 4.7 3.7 0.93 0.47										
Reference: NA											
Test Species/Strain/	Number: NA										
Exposure Route/Con	ncentrations/Durations:	NA									
Effects: NA											
approach for	Endpoint/Concentration/Rationale: a 3-fold reduction of the AEGL-2 values was considered a justified approach for deriving the AEGL-1 values because the progression of effects from AEGL-1 severity to										
AEGL-2 sev	verity represent a continuu	im of the same mode	of action (contact irrita	tion) and effect.							
Uncertainty Factors	/Rationale: 10 total; 3 for	r interspecies and 3 for	or intraspecies (see AEC	iL-2)							
Modifying Factor: N	IA										
Animal to Human D	osimetric Adjustment: r	ot applicable									
Time Scaling: NA											
Data Adequacy: Dat	a were unavailable with w	which to derive AEGL	-1 values for red phosp	horus							

AEGL-2 VALUES FOR RED PHOSPHORUS (mg/m ³)									
10 min	30 min	1 h	4 h	8 h					
20	14	11	2.8	1.4					
Reference: Ballantyne, B. 1998. Acute inhalation toxicity of red phosphorus smoke. Toxic Subst. Mech.17:251-266.									
Test Species/Strain/I	Number: mouse/Porton-	-strain/20 -50 per grou	ıp						
Exposure Route/Con	centrations/Durations	: whole-body inhalat	ion/111,136,220,450,870) mg/m ³ /1-hr					
Effects: conc. (mg/n		E ffect							
111*		y congestion in 6 of 2							
136			nation, hemorrhage in res						
220			istopathologic changes ir						
450			istopathologic changes in	n resp. tract					
870	100% lethality	(20/20)							
* POD for AEGL-2 d									
Endpoint/Concentrat	tion/Rationale: 1-hr exp	posure to 111 mg/m ³	caused only mild pulmor	nary congestion					
Uncertainty Factors	/Rationale: 10								
of minimal se Further reduc	everity for the AEGL-2 tion of the AEGL-2 val	tier, the interspecies uses by additional unce	the critical effect associa incertainty factor of 3 is ertainty adjustment would	considered adequate.					
	istent with the limited i			1					
			phosphorus is a greater						
		s which justifies an int	raspecies uncertainty fac	ctor of 3.					
Modifying Factor: N		NT / 11 11							
	osimetric Adjustment								
equation C ⁿ x t = systemically acti to 3.5 (ten Berge the experimental	k. The exposure conce ng vapors and gases ma et al., 1986). In the ab durations of the respec- ng to shorter time point	entration-exposure dur y be described by C ⁿ sence of an empiricall tive PODs to AEGL-s	erive a time scaling exponent ration relationship for mark $t = k$, where the exponent y derived exponent (n), the pecific durations was per apolating to longer time periods and the periods of the per	any irritant and ent, n, ranges from 0.8 emporal scaling from rformed using $n = 3$					
Data Adequacy: Suf effects.	ficient; the mouse was o	considered a sensitive	species for assessment o	f AEGL-2 severity					

AEGL-3 VALUES RED PHOSPHORUS (mg/m ³)											
10 min	30 min	1 h	4 h	8 h							
85	59	47	12	5.9							
	Key Study: Ballantyne, B. 1998. Acute inhalation toxicity of red phosphorus smoke Toxic Subst. Mech.17:251-266.										
	Test Species/Strain/Sex/Number: rats/Porton strain/9-12 per group/										
Exposure Route/Concentrations/Durations: 1-hr whole-body exposure to 450, 870, 1600, or 2130 mg/m ³											
Effects:	,										
<u>conc. (mg/m</u>		Effec									
450		on (larynx, trachea) and									
870				itis hemorrhage resp. tract							
1600		9); mild- severe histopa	athologic changes in res	sp. tract							
2130	100% lethality (3								
		r BMCL ₀₅ of 469 mg/m									
Endpoint/Concentrat		ACL_{05} of 469 mg/m ³ us	ed as estimated of letha	lity threshold in rats							
Uncertainty Factors/											
				ity to red phosphorus and							
				ig represented response							
				ost sensitive species tested.							
				or of 10, this would result in							
				g/m ³ produced ocular and							
				ility is primarily the result of							
	sensitivity of guinea pig	gs (see Section 4.4.1).	Therefore, the interspec	eies uncertainty factor was							
limited to 3.											
				determinant of the toxic							
*		ch justifies an intraspeci	es uncertainty factor of	f 3.							
Modifying Factor: No											
Animal to Human Do											
				nent, n, in the equation $C^n x$							
				l systemically acting vapors							
	and gases may be described by $C^n x t = k$, where the exponent, n, ranges from 0.8 to 3.5 (ten Berge et al., 1986). In										
		ponent (n), temporal sc									
				lating to shorter time points							
		ime points using the C ⁿ									
		se data were sufficient bassays were available i		ty threshold using U.S. EPA nultiple laboratories.							

APPENDIX D: CATEGORY PLOT

Red phosphorus

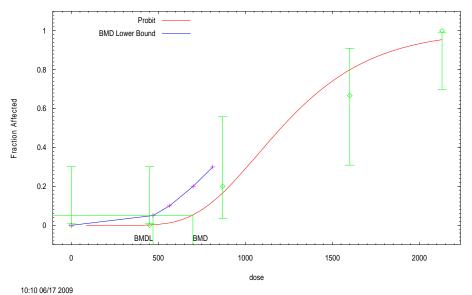
For Category Source	0 = No e Species	Sex	#	mg/m ³		-	L = Partially Lethal, 3 = Lethal y Comments
		-	Expos	8.			
NAC/AEGL-1	1			6.7	10	AEGL	
NAC/AEGL-2	1			4.7	30	AEGL	
NAC/AEGL-	1			3.7	60	AEGL	
NAC/AEGL-				0.93	240	AEGL	
NAC/AEGL-	1			0.47	480	AEGL	
NAC/AEGL-2	2			20	10	AEGL	
NAC/AEGL-2	2			14	30	AEGL	
NAC/AEGL-2	2			11	60	AEGL	
NAC/AEGL-2	2			2.8	240	AEGL	
NAC/AEGL-2	2			1.4	480	AEGL	
NAC/AEGL-3	3			85	10	AEGL	
NAC/AEGL-3	3			59	30	AEGL	
NAC/AEGL-3	3			47	60	AEGL	
NAC/AEGL-3	3			12	240	AEGL	
NAC/AEGL-3	3			5.9	480	AEGL	
	human		1	100	15	1	respiratory distress, ocular/nasal irritation (Uhrmacher et al., 1985)
	human		1	700	15	2	respiratory distress, ocular/nasal irritation (Uhrmacher et al., 1985)
	rat	m&f	1	1128	60	1	assumed mild respiratory tract/ocular effects (Weimer et al., 1977)*
	rat	m&f	1	1537	60	PL	10% lethality (Weimer et al., 1977)*
	rat	m&f	1	1846	90	2	assumed moderate respiratory tract/ocular effects (Weimer et al., 1977)*
	rat	m&f	1	1676	120	PL	40% lethality (Weimer et al., 1977)*
	rat	m&f	1	1625	150	PL	50% lethality (Weimer et al., 1977)8
	rat	m&f	1	1572	180	PL	80% lethality (Weimer et al., 1977)*
	rat	m&f	1	1813	180	PL	90% lethality (Weimer et al., 1977)*
	rat	m&f	1	1882	240	3	100% lethality (Weimer et al., 1977)*
	rat	m&f	1	3150	60	PL	20% lethality (Burton et al., 1982)*
	rat	m&f	1	4330	60	PL	50% lethality (Burton et al., 1982)*
	rat	m&f	1	5360	60	PL	70% lethality (Burton et al., 1982)*
	rat	m&f	1	8460	60	PL	90% lethality (Burton et al., 1982)*
	rat	m&f	1	1530	240	PL	20% lethality (Burton et al., 1982)*
	rat	f	1	3100	30	PL	20% lethality (Marrs, 1984)*
	rat	f	1	3200	30	PL	80% lethality (Marrs, 1984)*
	rat	m&f	1	2000	60	1	reversible body weight loss; no further details (Aranyi, 1983)*
	rat	m&f	1	2220	66	1	reversible body weight loss; no further details (Aranyi, 1983)*
	rat	m&f	1	2620	60	PL	1/18 dead at 14 days (Aranyi, 1983)*
	rat	m&f	1	3090	60	PL	5/20 dead at 11 days (Aranyi, 1983)*
	rat	m&f	1	3150	72	PL	2/10 dead at 13 days (Aranyi, 1983)*
	rat	m	1	880	240	1	assumed mild or reversible effects (Aranyi, 1983)*
	rat	m	1	450	60	1	mild pulmonary congestion (Ballantyne, 1998)
	rat	m	1	870	60	PL	20% lethality (2/10) (Ballantyne, 1998)

rat	m	1	1600	60	PL	66% lethality (6/9) (Ballantyne, 1998)
rat	m	1	2130	60	3	100% lethality (12/12) (Ballantyne, 1998)
mouse	m	1	111	60	1	mild pulmonary congestion (Ballantyne, 1998)
mouse	m	1	136	60	PL	2% lethality (1/50) (Ballantyne, 1998)
mouse	m	1	220	60	PL	44% lethality (22/50) (Ballantyne, 1998)
mouse	m	1	450	60	PL	75% lethality (15/20) (Ballantyne, 1998)
mouse	m	1	870	60	3	100% lethality (20/20) (Ballantyne, 1998)
rabbit	m	1	450	60	PL	10% lethality (1/10) (Ballantyne, 1998)
rabbit	m	1	870	60	PL	10% lethality (1/10) (Ballantyne, 1998)
rabbit	m	1	1600	60	PL	30% lethality (3/10) (Ballantyne, 1998)
rabbit	m	1	2130	60	PL	80% lethality (8/10) (Ballantyne, 1998)
guinea pig	m&f	1	120	5	2	respiratory distress (Weimer et al., 1977)*
guinea pig	m&f	1	352	10	PL	40% lethality (4/10) (Weimer et al., 1977)*
guinea pig	m&f	1	485	15	PL	70% lethality (7/10) (Weimer et al., 1977)*
guinea pig	m&f	1	797	10	PL	90% lethality (9/10) (Weimer et al., 1977)*
guinea pig	m&f	1	737	30	3	100% lethality (10/10) (Weimer et al., 1977)*
guinea	m&f	1	1576	30	PL	80% lethality (8/10) (Weimer et al., 1977)*
pig guinea	m&f	1	2277	30	PL	90% lethality (9/10) (Weimer et al., 1977)*
pig guinea	m&f	1	1479	60	PL	90% lethality (9/10) (Weimer et al., 1977)*
pig guinea	m&f	1	1846	90	PL	80% lethality (8/10) (Weimer et al., 1977)*
pig		1	1402	150	2	1000/ 1-4-14- (10/10) (Weissen -4-1-1077)*
guinea pig	m&f	1	1483	150	3	100% lethality (10/10) (Weimer et al., 1977)*
guinea pig	m	1	36	60	2	mild to moderate histopath. throughout resp. tract (Ballantyne, 1998)
guinea pig	m	1	52	60	PL	45% lethality (9/20) (Ballantyne, 1998)
guinea pig	m	1	111	60	PL	90% lethality (9/10) (Ballantyne, 1998)
guinea pig	m	1	450	60	3	100% lethality (10/10) (Ballantyne, 1998)
dog	m&f	1	1519	30	1	respiratory distress without lesions (Weimer et al., 1977)*
dog	m&f	1	1212	90	1	respiratory distress without lesions (Weimer et al., 1977)*
dog	m&f	1	1483	150	1	respiratory distress without lesions (Weimer et al., 1977)*
dog	m&f	1	1572	180	1	respiratory distress without lesions (Weimer et al., 1977)*
dog	m&f	1	1813	180	1	respiratory distress without lesions (Weimer et al., 1977)*
dog	m&f	1	1882	240	1	respiratory distress, without lesions; conjunctivitis (Weimer et al., 1977)
0		-				\mathbf{r}

* red phosphorus/butyl rubber formulation tested

- 1 2 3 4

	Model. (Vers							
	Data File: C:\E ot Plotting File		VEDI.(d) UNSAVED1.p	t				
1	•		•	We	ed Jun	17 10:10):33 2009	
BMDS MODEI	L RUN		~~~~~~~					
The form of th	e probability f	unction is:						
P[response] = where CumNo						lope*Lo	g(Dose)),	
Dependent var								
Independent va Slope paramete								
Total number of	fobservation	a — 5						
Total number of			es = 0					
Maximum nun			c 3 0					
Relative Funct			et to: 1e-008					
Parameter Con	0							
User has chose	en the log trans	sformed mode	1					
			rameter Values					
	ekground =							
	ercept =							
	Slope =	2.18725						
			ameter Estimat		. 1	. 1	1 .	
by the user, and				en estin	nated a	it a bour	idary point,	, or have been speci
-	intercent	alama						
intercept	intercept 1	slope -1						
slope	-1	-1						
	Pa	rameter Estim	ates					
			nfidence Interv	al				
Variable	Estimate		Lower Conf. Li		Jpper C	Conf. Lir	nit	
background	0	NA						
intercept	-21.044	5.50834	-31.8402		-10.24			
slope	2.96205	0.766325	1.46008		4.46	402		
NA - Indicates th has no standa		eter has hit a b	ound implied b	y some	e inequ	ality co	nstraint and	d thus
	Analys	sis of Devianc	e Table					
Model	Log(likel	ihood) #Para		iance	Т	ſest d.f.	P-value	
Full model Fitted model	-10.732 -11.781		• •	9835		3	0.5522	
		v ')		1X 4 5		4	11 5577	


Reduced model	-36.0515	1	50.6377	4	<.0001
AIC:	27.5637				

			Scaled	1	
Dose	EstProb.	Expected	Observed	Size	Residua
0.0000	0.0000	0.000	0	12	0.000
450.0000	0.0016	0.019	0	12	-0.139
870.0000	0.1598	1.598	2	10	0.347
1600.0000	0.7908	7.117	6	9	-0.916
2130.0000	0.9512	11.415	12	12	0.784

 $\begin{array}{c}1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\16\end{array}$ Chi^2 = 1.59 d.f. = 3 P-value = 0.6608 Benchmark Dose Computation

17	Specified effect	=	0.05
18	Risk Type	=	Extra risk
19	Confidence level	=	0.95
20	BMC	=	698.713
21	BMCL ₀₅	=	469.332
22			
23			

Probit Model with 0.95 Confidence Level

24 25

55

56

Reduced model

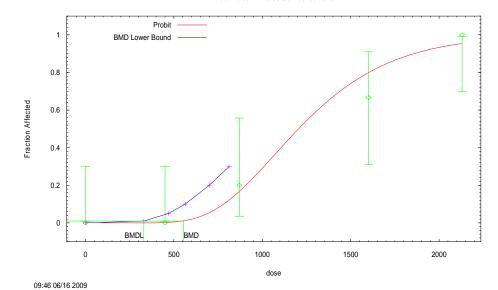
AIC:

-36.0515

27.5637

1

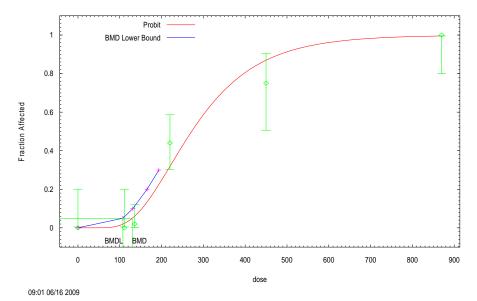
50.6377

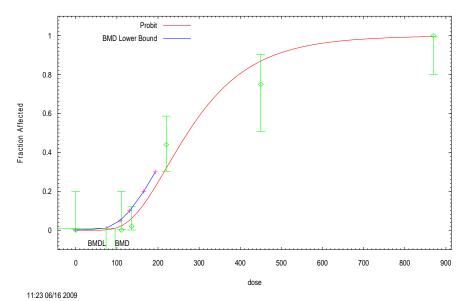

4

<.0001

Ballantyne (1998); pure red phosphorus; rats; BMC₀₁ Probit Model. (Version: 2.8; Date: 02/20/2007) Input Data File: C:\BMDS\UNSAVED1.(d) Gnuplot Plotting File: C:\BMDS\UNSAVED1.plt Tue Jun 16 09:46:30 2009 BMDS MODEL RUN The form of the probability function is: P[response] = Background + (1-Background) * CumNorm(Intercept+Slope*Log(Dose)), where CumNorm(.) is the cumulative normal distribution function Dependent variable = COLUMN3 Independent variable = COLUMN1 Slope parameter is not restricted Total number of observations = 5Total number of records with missing values = 0Maximum number of iterations = 250Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 User has chosen the log transformed model Default Initial (and Specified) Parameter Values Background = 0 Intercept = -15.333 Slope = 2.18725 Asymptotic Correlation Matrix of Parameter Estimates (*** The model parameter(s) -background have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix) intercept slope intercept 1 -1 -1 1 slope Parameter Estimates 95.0% Wald Confidence Interval Variable Std. Err. Lower Conf. Limit Upper Conf. Limit Estimate background NA 0 intercept 5.50834 -21.044 -31.8402 -10.2479 slope 2.96205 0.766325 1.46008 4.46402 NA - Indicates that this parameter has hit a bound implied by some inequality constraint and thus has no standard error. Analysis of Deviance Table Model Log(likelihood) # Param's Deviance Test d.f. P-value Full model -10.7327 5 Fitted model -11.7818 2 2.09835 3 0.5522

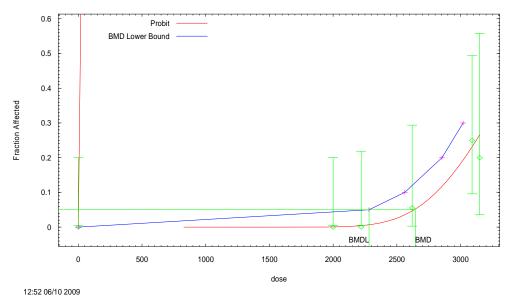
1 2		G	oodness of	Fit			
3				Sc	aled		
4 5	Dose	EstProb.	Expected	Observ	ed S	Size R	esidual
6	0.0000	0.0000	0.000	0	12	0.000	
7	450.0000	0.0016	0.019	0	12	-0.139	
7 8 9	870.0000	0.1598	1.598	2	10	0.347	
9	1600.0000	0.7908	7.117	6	9	-0.916	
10	2130.0000	0.9512	11.415	12	12	0.784	
11							
12	$Chi^{2} = 1.2$	59 d.f. =	3 P-val	lue = 0.6	608		
13							
14	Benchma	rk Dose Coi	nputation				
15	Specified e	ffect =	0.01				
16	Risk Type	=	Extra risk				
17	Confidence	level =	0.95				
18	BM	$C_{01} =$	555.109				
19	BM	CL =	330.165				
20							
21							




Input	Data File: C:\l	ion: 2.8; Date: 02 3MDS\UNSAVEI e: C:\BMDS\UNS	D1.(d) SAVED1.plt	ue Jun 16	09:01:08 2009	
BMDS MODE	L RUN					=
		function is: (1-Background) *	CumNorm(Inter		pe*Log(Dose)), where	CumNorm(.) is the
Independent v	riable = COLU ariable = COL ter is not restric	UMN1				
Total number Maximum nu	nber of iteration	n missing values =				
		been set to: 1e-00				
User has chos	en the log tran	sformed model				
Ba	ckground =	Specified) Param 0 -11.8628 2.07748	eter Values			
Asympto	tic Correlation	Matrix of Parame	eter Estimates			
(*** Th by the user, and	e model param do not appear	eter(s) -background in the correlation	nd have been es matrix)	timated at	a boundary point, or	have been specified
	intercept	slope				
intercept slope	1 -1	-1 1				
-		arameter Estimate .0% Wald Confide				
Variable	Estimate	Std. Err. Low	er Conf. Limit	Upper Co	onf. Limit	
background	0 -12.51	NA 1.72041	15 0102	0 1000	20	
intercept slope	2.2331	1.73941 0.321125	-15.9192 1.6037	-9.1008 2.86249		
NA - Indicates has no stand		eter has hit a boun	d implied by so	me inequa	ality constraint and thu	us
	Analysis of De					
Model		lihood) # Param's	Deviance	e Test d.f.	P-value	
Full model Fitted model	-50.445 -54.633		8.37626	5 4	0.07873	
Reduced mode			125.382	5	<.0001	
	3.267	-		-	-	

1 2						
2 3 4 5 6 7 8 9		G	oodness of	Fit		
4				Scale	d	
5	Dose	EstProb.	Expected	Observed	Size	Residual
6						
7	0.0000	0.0000	0.000	0	20	0.000
8	111.0000	0.0231	0.462	0	20	-0.688
	136.0000	0.0618	3.092	1	50	-1.228
10	220.0000	0.3208	16.039	22	50	1.806
11	450.0000	0.8713	17.426	15	20	-1.620
12	870.0000	0.9954	19.908	20	20	0.304
13						
14	$Chi^{2} = 7.$.96 d.f. =	4 P-val	ue = 0.093	l	
15						
16	Benchma	irk Dose Co	mputation			
17	Specified e	effect =	0.05			
18	Risk Type	=	Extra risk			
19	Confidence	e level =	0.95			
20	BM	IC =	129.736			
21	BM	$ICL_{05} =$	107.699			
22						
23						
24						
∠4						

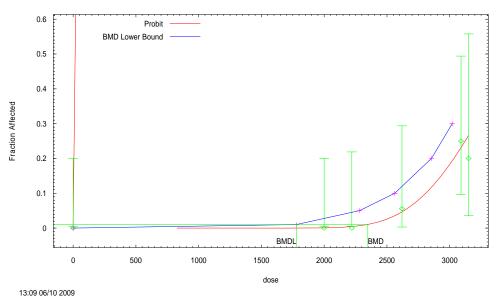
Input	Data File: C:\E	on: 2.8; Date: 0 BMDS\UNSAV e: C:\BMDS\U	ED1.(d)	Tua I	un 16 1	1:23:34 2009	
BMDS MODE							=
~~~~~~~~~~~~			~~~~~~~~~			~~~~~~~	
P[response] =		unction is: (1-Background mulative norma			ot+Slop	e*Log(Dose)),	
Dependent va	riable = COLU	MN3					
	variable = COL						
Slope parame	ter is not restric	eted					
Total number	of observations	s = 6					
		missing values	s = 0				
	mber of iteratio						
		nce has been set					
Parameter Co	nvergence has l	been set to: 1e-0	008				
User has chos	en the log trans	formed model					
Defa	ult Initial (and )	Specified) Para	neter Values				
	ckground =	0					
	tercept =	-11.8628					
	Slope =						
Asympto	tic Correlation	Matrix of Para	neter Estimates				
					ited at a	boundary point, or	have been specified
by the user, and				••••		,	
	intercept	slope					
intercept	1	-1					
slope	-1	1					
		ameter Estimat					
<b></b>		0% Wald Confi			~	ст: :/	
Variable	Estimate		ower Conf. Lim	it Upp	er Con	t. Limit	
background	0	NA 1 72041	15 0102		0 1000	<b>`</b>	
intercept slope	-12.51 2.2331	1.73941 0.321125	-15.9192 1.6037		9.10082 2.86249		
siope	2.2331	0.321123	1.0037	2	2.00245	•	
NA - Indicates has no stand	-	eter has hit a bo	und implied by	some i	nequali	ity constraint and th	us
1	Analysis of Dev	viance Table					
Model		ihood) # Param	's Devia	nce Te	st d.f.	P-value	
Full model	-50.4451						
Fitted model	-54.6333			7626	4	0.07873	
Reduced mode		6 1	125.3	382	5	<.0001	
AIC: 1	3.267						


1		G	oodness of	Fit		
2				Scale	d	
3	Dose	EstProb.	Expected	Observed	Size	Residual
4 5						
5	0.0000	0.0000	0.000	0	20	0.000
6	111.0000	0.0231	0.462	0	20	-0.688
7	136.0000	0.0618	3.092	1	50	-1.228
7 8 9	220.0000	0.3208	16.039	22	50	1.806
9	450.0000	0.8713	17.426	15	20	-1.620
10	870.0000	0.9954	19.908	20	20	0.304
11	$Chi^{2} = 7.$	96 d.f. =	4 P-val	ue = 0.0931		
12						
13	Benchma	rk Dose Co	mputation			
14	Specified e	ffect =	0.01			
15	Risk Type	=	Extra risk			
16	Confidence	e level =	0.95			
17	BN	$4C_{01} =$	95.6145			
18	BM	[CL =	73.6406			
19						
20						
20						





Inp	ut Data File: C	rsion: 2.8; Date: \BMDS\UNSAV ile: C:\BMDS\U	ED1.(d) NSAVED1.plt	Wed Jun 10 12:52:38 2009	
BMDS MOD					===
				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
The form of	the probability	function is:			
			d) * CumNorm(Ii Il distribution fun	ntercept+Slope*Log(Dose)), ction	
Dependent	ariable = COL	UMN3			
Independent	variable = CO	LUMN1			
Slope param	eter is not rest	ricted			
	er of observatio				
		ith missing values	s = 0		
	umber of iterat				
		ence has been set	t to: 1e-008		
		s been set to: 1e-			
User has che	osen the log tra	nsformed model			
		nd Specified) Para	ameter Values		
	Background =				
		-24.5057			
	Slope =	2.94275			
		on Matrix of Para			1 1
				stimated at a boundary point, o	or have been specifi
by the user, a	nd do not appe	ar in the correlati	on matrix)		
	intoreart	alama			
intercept	intercept 1	slope -1			
slope	-1	-1			
siope	-1	1			
	Paramet	er Estimates			
			ald Confidence Ir	iterval	
Variable	Estimate			Upper Conf. Limit	
backgroun	d 0	NA			
intercept	-46.7355	19.6316	-85.2127	-8.25818	
slope	5.72203	2.45465	0.911006	10.5331	
	s that this parandard error.	neter has hit a bo	ound implied by s	ome inequality constraint and	thus


1		Analysis of	Deviance T	able				
	Model			d) # Param	s	Deviance	Test d.f.	P-value
3	Full mo		-20.1128	6				
4	Fitted mo	odel	-20.3531	2		0.480567	4	0.9754
5	Reduced	model	-28.3622	1		16.4988	5	0.005555
6	AIC:	44.7062						
7								
2 3 4 5 6 7 8 9								
		G	oodness of	Fit				
10				Scaled	1			
11	Dose	EstProb.	Expected	Observed	Size	Residua	1	
12								
13	0.0000	0.0000	0.000	0	20	0.000		
14	2000.0000		0.012	0	20	-0.109		
15	2220.0000		0.073	0	18	-0.271		
16	2620.0000		0.806	1	18	0.221		
17	3090.0000		4.511	5	20	0.262		
18	3150.0000	0.2599	2.599	2	10	-0.432		
19								
20	$Chi^2 = 0.$.39 d.f. =	4 P-val	ue = 0.9833				
21								
22		ark Dose Co	-					
23	Specified e		0.05					
24	Risk Type	=	Extra risk					
25	Confidence		0.95					
26		AC =	2644.33					
27	BN	$ICL_{05} =$	2281.42					
28								

Input	Data File: C:\	BMDS\ARAN	ARANYI_RED_P	ATS_BMCL05.(d) HOS_RATS_BMCL05.plt Wed Jun 10 13:09:08 2009	
BMDS MODE				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
The form of th	ne probability	function is:			
			nd) * CumNorm(In nal distribution fund	tercept+Slope*Log(Dose)), ction	
Dependent var	riable = COLU	JMN3			
Independent v					
Slope paramet					
Total number	of observation	s = 6			
Total number	of records wit	h missing valu	les = 0		
Maximum nur					
Relative Func	tion Converge	nce has been	set to: 1e-008		
Parameter Con	nvergence has	been set to: 1	e-008		
User has chos	en the log tran	sformed mode	el		
Defa	ult Initial (and	Specified) P	arameter Values		
	ckground =				
		-24.5057			
		2.94275			
Asympto	tic Correlation	Matrix of Pa	rameter Estimates		
				stimated at a boundary point, c	or have been specifi
by the user, and	do not appear	in the correla	tion matrix)	, contract at a countainty point, c	i nave oeen speeni
-,,			,		
	intercept	slope			
intercept	1	-1			
slope	-1	1			
	Paramete	r Estimates			
			Wald Confidence In		
Variable	Estimate		Lower Conf. Limit	Upper Conf. Limit	
background	0	NA			
intercept	-46.7355	19.6316	-85.2127	-8.25818	
slope	5.72203	2.45465	0.911006	10.5331	

has no standard error.

1 2 3 4 5 6 7 8 9		Analys	is of Devianc	e Table				
5	Model		Log(likelihoo	d) # Par	ram's	Deviance	Test d.f.	P-value
6	Full mo		-20.1128	6				
7	Fitted mo	odel	-20.3531	2		0.480567	4	0.9754
8	Reduced	model	-28.3622	1		16.4988	5	0.005555
9	AIC	2: 44.7	062					
10								
11								
12		(Goodness of	Fit				
13				Sc	aled			
14 15	Dose	EstProb.	Expected	Observ	ed	Size Re	esidual	
15	0.0000	0.0000	0.000	0	20	0.000	-	
17	2000.0000	0.0006	0.012	0	20	-0.109		
18	2220.0000	0.0041	0.073	0	18	-0.271		
19	2620.0000	0.0448	0.806	1	18	0.221		
20	3090.0000	0.2255	4.511	5	20	0.262		
21	3150.0000	0.2599	2.599	2	10	-0.432		
22								
23 24	$Chi^2 = 0.$.39 d.f. =	= 4 P-val	ue = 0.93	833			
25	Benchma	urk Dose Co	mputation					
26	Specified e		0.01					
27	Risk Type		xtra risk					
28	Confidence		0.95					
29			2347.43					
30			1777.72					
31	Ditt							
~ 1								

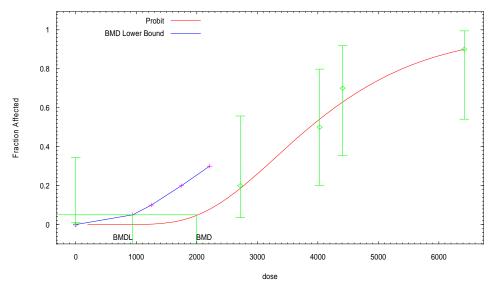
$\frac{1}{2}$		
$\frac{2}{3}$		
4		
6		
7		
9		
10		
12		
13 14		
15		
16		
18		
19 20		
21		
22 23		
24		
25 26		
27		
28 29		
$\begin{array}{c}1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\2\\13\\4\\5\\6\\7\\8\\9\\0\\11\\2\\2\\3\\2\\4\\2\\5\\2\\6\\2\\7\\8\\9\\0\\3\\1\\3\\2\\3\\3\\4\\5\\6\\7\\8\\9\\0\\3\\3\\3\\3\\6\\7\\8\\9\\0\\3\\3\\3\\3\\3\\6\\7\\8\\9\\0\\3\\3\\3\\3\\3\\3\\3\\3\\3\\3\\3\\3\\3\\3\\3\\3\\3\\3$		
31 32		
33		
34 35		
36		
38		
39 40		
<i>4</i> 1		
42 43		
44		
45 46		
47		
48 49		
50		
49 50 51 52		

Input	Model. (Versi Data File: C:\E ot Plotting File	BMDS\UNSAV	VED1.(d) JNSAVED1.plt	
			· -====================================	Thu Jun 11 13:59:37 2009
BMDS MODEI	L RUN			
The form of the P[response] = I where CumNo	Background +	(1-Background	d) * CumNorm(Inte al distribution func	ercept+Slope*Log(Dose)), ction
Dependent var Independent va Slope paramet	ariable = COL	UMN1		
Total number of Total number of Maximum num Relative Funct Parameter Com	of records with ober of iteratio ion Converger	missing value ns = 250 nce has been se	et to: 1e-008	
User has chose	en the log trans	formed model		
Bac Int	ekground = ercept =	0	rameter Values	
Asymptot	ic Correlation	Matrix of Para	ameter Estimates	
(*** The model by the user, and				d at a boundary point, or have been specific
intercept slope	intercept 1 -1	slope -1 1		
		Estimates	danaa Intarral	
Variable background	95.0 Estimate 0		idence Interval Lower Conf. Limit	Upper Conf. Limit
intercept slope	-20.8672 2.53033	6.73841 0.810428	-34.0742 0.941915	-7.66013 4.11874

NA - Indicates that this parameter has hit a bound implied by some inequality constraint and thus has no standard error.

Analysis of Deviance Table

Model	Log(likelihood)	# Param's	Deviance	Test d.f.	P-value
Full model	-21.295	5			
Fitted model	-21.4313	2	0.272686	3	0.9651
Reduced model	-34.4972	1	26.4044	4	<.0001
AIC:	46.8626				

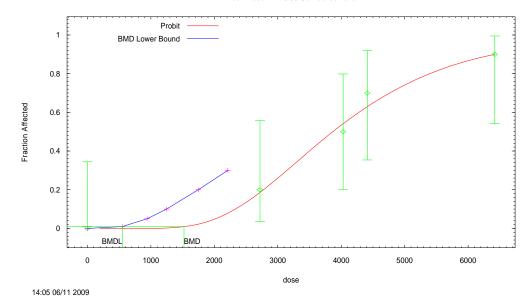

Goodness of Fit										
		Scaled								
Dose	EstProb.	Expected	Observe	ed	Size Residua	al				
0.0000	0.0000	0.000	0	10	0.000					
2720.0000	0.1959	1.959	2	10	0.033					
4030.0000	0.5550	5.550	5	10	-0.350					
4410.0000	0.6430	6.430	7	10	0.376					
6420.0000	0.9060	9.060	9	10	-0.065					

 $Chi^{2} = 0.27$ d.f. = 3 P-value = 0.9656

Benchmark Dose Computation

Specified effect	=	0.05
Risk Type	=	Extra risk
Confidence level	=	0.95
BMC	=	1991.77
BMCL ₀₅	=	940.832

Probit Model with 0.95 Confidence Level



13:59 06/11 2009

In	obit Model. (Vers put Data File: C:\\ nuplot Plotting Fil	BMDS\UNS	AVED1.(d)	.plt	Thu Jun 11 14:05:00 2009
BMDS MO					
The form of P[response	of the probability = = Background + nNorm(.) is the cu	(1-Backgro			ntercept+Slope*Log(Dose)),
Independe	variable = COLU nt variable = COL meter is not restri	UMN1			
Total num Maximum Relative F	ber of observation ber of records with number of iteration unction Converge Convergence has	n missing va ons = 250 nce has been	set to: 1e-008		
User has c	hosen the log tran	sformed mod	lel		
Asyn	Slope =	0 -20.6913 2.50922 Matrix of P	arameter Estir	nates	
	** The model par- cified by the user,				n estimated at a boundary point, or have bee tion matrix)
intercept slope	intercept slop 1 -1 -1 1	e			
	Paramete	r Estimates 95 0%	Wald Confide	ence In	nterval
Variable backgrou	nd 0	Std. Err. NA	Lower Conf.	Limit	t Upper Conf. Limit
intercept slope	-20.8672 2.53033	6.73841 0.810428	-34.074 0.9419		-7.66013 4.11874
	es that this param andard error.	eter has hit a	bound implie	d by so	ome inequality constraint and thus
Model Full mod	Analysis of De Log(likelihood e -21.295			est d.f.	P-value
Fitted mod Reduced m		2	0.272686 26.4044	3 4	0.9651 <.0001
AIC:	46.8626		20.0011	·	

$\frac{1}{2}$		G	oodness of	Fit					
3	Scaled								
	Dose H	Tet Proh	Expected	Observ		ize R	esidual		
4 5	2030 1		Expected	00501	<u> </u>				
6	0.0000	0.0000	0.000	0	10	0.000			
7	2720.0000	0.1959	1.959	2	10	0.033			
7 8 9	4030.0000	0.5550	5.550	5	10	-0.350			
9	4410.0000	0.6430	6.430	7	10	0.376			
10	6420.0000	0.9060	9.060	9	10	-0.065			
11	$Chi^{2} = 0.2$	d.f. =	3 P-val	ue = 0.9	656				
12									
13									
14	Benchmar	k Dose Cor	nputation						
15	Specified eff		0.01						
16	Risk Type	=	Extra risk						
17	Confidence	level =	0.95						
18	BM	$C_{01} =$	1521.49						
19	BMC	CL =	551.729						
20									
21									

1 Burton et al. 1982 rats; red phosphorus/butyl rubber smoke lethality 1-hr inhalation 2 3 4 LC₅₀ determination using Litchfield and Wilcoxon (1949) Dose Mortality Observed% Expected% Observed-Expected Chi-Square _____ 5 3150.000 2/10 6.00 7.13 -1.13 0.0019 6 7 4330.000 5/10 50.00 39.99 10.01 0.0417 5360.000 7/10 70.00 73.96 -3.96 0.0081 8 9 8460.000 0/ 1 0(98.40) 98.44 -0.04 0.0000 10 Values in parentheses are corrected for 0 or 100 percent Total = 0.051811 12 $1-hr LC_{50} = 4596.573(4062.857 - 5200.401)*$ 13 $Slope = 1.28(1.17 - 1.40)^*$ 14 * These values are 95 percent confidence limits 15 16 Total animals = 31Total doses = 4 Animals/dose = 7.7517 Chi-square = total chi-square X animals/dose = 0.401518 Table value for Chi-square with 2 Degrees of Freedom = 5.9900 19 20 $LC_{84} = 5867.117$ $LC_{16} = 3601.170$ FED = 1.13 FS = 1.10 A = 1.07 21 22 99.99+ 23 24 99.94+ 25 26 99.60 +27 28 97.56+ * 0 29 30 86.35+ 31 32 50.06 +33 34 13.71 +35 0 * 36 2.46 +37 38 0.40 +39 40 0.06 +41 42 43 3150 3477 3838 4237 4677 5162 5698 6290 6943 7664 8460 44 DOSE 45 46 Expected Lethal Dose Values 47 LC0.1 1662.919 48 2336.999 LC1.0 49 LC5.0 2979.820 50 LC10 3326.297 51 LC25 3910.188 52 LC50 4596.573 53 LC75 5403.445 54 LC90 6351.954 55 LC99 9040.861