

### 1 2 PREFACE 3 4 Under the authority of the Federal Advisory Committee Act (FACA) P. L. 92-463 of 5 1972, the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous 6 Substances (NAC/AEGL Committee) has been established to identify, review and interpret 7 relevant toxicologic and other scientific data and develop AEGLs for high priority, acutely toxic 8 chemicals. 9 10 AEGLs represent threshold exposure limits for the general public and are applicable to 11 emergency exposure periods ranging from 10 minutes to 8 hours. Three levels – AEGL-1, AEGL-2 and AEGL-3 – are developed for each of five exposure periods (10 and 30 minutes, 1 12 13 hour, 4 hours, and 8 hours) and are distinguished by varying degrees of severity of toxic effects. 14 The three AEGLs are defined as follows: 15 16 AEGL-1 is the airborne concentration (expressed as parts per million or milligrams per 17 cubic meter [ppm or $mg/m^3$ ]) of a substance above which it is predicted that the general 18 population, including susceptible individuals, could experience notable discomfort, irritation, or 19 certain asymptomatic, non-sensory effects. However, the effects are not disabling and are 20 transient and reversible upon cessation of exposure. 21 22 AEGL-2 is the airborne concentration (expressed as ppm or $mg/m^3$ ) of a substance above 23 which it is predicted that the general population, including susceptible individuals, could 24 experience irreversible or other serious, long-lasting adverse health effects or an impaired ability 25 to escape. 26 AEGL-3 is the airborne concentration (expressed as ppm or $mg/m^3$ ) of a substance above 27 28 which it is predicted that the general population, including susceptible individuals, could 29 experience life-threatening health effects or death. 30 31 Airborne concentrations below the AEGL-1 represent exposure levels that could produce 32 mild and progressively increasing but transient and nondisabling odor, taste, and sensory 33 irritation or certain asymptomatic, non-sensory effects. With increasing airborne concentrations 34 above each AEGL, there is a progressive increase in the likelihood of occurrence and the 35 severity of effects described for each corresponding AEGL. Although the AEGL values represent threshold levels for the general public, including susceptible subpopulations, such as 36 37 infants, children, the elderly, persons with asthma, and those with other illnesses, it is recognized 38 that individuals, subject to unique or idiosyncratic responses, could experience the effects 39 described at concentrations below the corresponding AEGL. 40

| 1                          |                              | TABLE OF CONTENTS                                                                                                                                                      |    |
|----------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 2                          | PREFAC                       | Е                                                                                                                                                                      | 2  |
| 3                          | SUMMA                        | RY                                                                                                                                                                     | 6  |
| 4                          | 1. INT                       | RODUCTION                                                                                                                                                              | 7  |
| 5                          | 2. HUI                       | MAN TOXICITY DATA                                                                                                                                                      |    |
| 6                          | 3. ANI                       | IMAL TOXICITY DATA                                                                                                                                                     | 9  |
| 7                          | 3.1.                         | Acute Toxicity                                                                                                                                                         | 9  |
| 8                          | 3.2.                         | Repeat-Exposure Studies                                                                                                                                                |    |
| 9                          | 3.3.                         | Neurotoxicity                                                                                                                                                          |    |
| 10                         | 3.4.                         | Developmental/Reproductive Toxicity                                                                                                                                    |    |
| 11                         | 3.5.                         | Genotoxicity                                                                                                                                                           |    |
| 12                         | 3.6.                         | Chronic Toxicity/Carcinogenicity                                                                                                                                       |    |
| 13                         | 3.7.                         | Summary                                                                                                                                                                |    |
| 14                         | 4. SPE                       | ECIAL CONSIDERATIONS                                                                                                                                                   | 14 |
| 15                         | 4.1.                         | Metabolism and Disposition                                                                                                                                             | 14 |
| 16                         | 4.2.                         | Mechanism of Toxicity                                                                                                                                                  | 14 |
| 17                         | 4.3.                         | Structure-Activity Relationships                                                                                                                                       |    |
| 18<br>19<br>20<br>21<br>22 | 4.4.<br>4.4.<br>4.4.<br>4.4. | Other Relevant Information<br>1. Species Variability<br>2. Susceptible Populations<br>3. Concentration-Exposure Duration Relationship<br>4. Concurrent Exposure Issues |    |
| 23                         | 5. DA                        | TA ANALYSIS FOR AEGL-1                                                                                                                                                 |    |
| 24                         | 5.1.                         | Summary of Human Data Relevant to AEGL-1                                                                                                                               |    |
| 25                         | 5.2.                         | Summary of Animal Data Relevant to AEGL-1                                                                                                                              |    |
| 26                         | 5.3.                         | Derivation of AEGL-1                                                                                                                                                   |    |
| 27                         | 6. DA                        | TA ANALYSIS FOR AEGL-2                                                                                                                                                 | 17 |
| 28                         | 6.1.                         | Summary of Human Data Relevant to AEGL-2                                                                                                                               |    |
| 29                         | 6.2.                         | Summary of Animal Data Relevant to AEGL-2                                                                                                                              |    |
| 30                         | 6.3.                         | Derivation of AEGL-2                                                                                                                                                   |    |
| 31                         | 7. DA                        | TA ANALYSIS FOR AEGL-3                                                                                                                                                 |    |

| 1  | 7.1.   | Summary of Human Data Relevant to AEGL-3               |    |
|----|--------|--------------------------------------------------------|----|
| 2  | 7.2.   | Summary of Animal Data Relevant to AEGL-3              |    |
| 3  | 7.3.   | Derivation of AEGL-3                                   | 19 |
| 4  | 8. SUI | MMARY OF AEGLs                                         | 19 |
| 5  | 8.1.   | AEGL Values and Toxicity Endpoints                     | 19 |
| 6  | 8.2.   | Comparison with Other Standards and Guidelines         | 20 |
| 7  | 8.3.   | Data Adequacy and Research Needs                       | 21 |
| 8  | 9. REI | FERENCES                                               | 21 |
| 9  | APPEND | DIX A: Derivation of Methomyl AEGLs                    | 25 |
| 10 | APPEND | DIX B: Category Graph of AEGL Values and Toxicity Data | 27 |
| 11 | APPEND | DIX C: Benchmark Concentration Calculations            | 29 |
| 12 | APPEND | DIX D: Derivation Summary for Methomyl AEGLs           |    |

### LIST OF TABLES

| 2  | S 1. Summary of AEGL Values for Methomyl                                                                                 | 7          |
|----|--------------------------------------------------------------------------------------------------------------------------|------------|
| 3  | TABLE 1. Chemical and Physical Properties                                                                                | 8          |
| 4  | TABLE 2. Acute Toxicity of Methomyl to Rats Exposed for 4 Hours                                                          | 11         |
| 5  | TABLE 3. Adult Rat and Human BMD <sub>10</sub> and BMDL <sub>10</sub> Values for Cholinesterase Activity Inhibition with | <i>N</i> - |
| 6  | Methyl Carbamate Pesticides (Oral Dosing)                                                                                | 15         |
| 7  | TABLE 4. AEGL-1 Values for Methomyl                                                                                      | 17         |
| 8  | TABLE 5. AEGL-2 Values for Methomyl                                                                                      | 18         |
| 9  | TABLE 6. AEGL-3 Values for Methomyl                                                                                      | 19         |
| 10 | TABLE 7. Summary of AEGL Values for Methomyl                                                                             | 20         |
| 11 | TABLE 8. Standards and Guidelines for Methomyl                                                                           | 20         |
| 12 |                                                                                                                          |            |
| 13 |                                                                                                                          |            |
| 14 |                                                                                                                          |            |
| 15 |                                                                                                                          |            |

### SUMMARY

Methomyl (CAS No. 16752-77-5) is a crystalline solid *N*-methyl carbamate insecticide with a slightly sulfurous odor. Methomyl is used as an insecticide on field crops such as vegetables, soybeans, and cotton and on some fruits and ornamentals. Technical methomyl is commercially available as a solid, dust or granular formulation, and as a water soluble concentrate. Methomyl is manufactured commercially by the reaction of methyl thiomethyl oxime with methyl isocyanate. An estimated 2.5 to 3.5 million pounds of active ingredient are applied annually in the United States.

10

1

2

11 Methomyl and other carbamate pesticides are neurotoxic in that they are inhibitors of the enzyme acetylcholinesterase. Inhibition of acetylcholinesterase, responsible for termination of 12 13 the biological activity of the neurotransmitter acetylcholine at various nerve endings, results in 14 sustained stimulation of electrical activity. Depending on concentrations administered, 15 symptoms following acute exposure of rats to methomyl may include salivation, lacrimation, gasping and tremors or convulsions. Inhibition of acetylcholinesterase activity is reversible. In 16 17 humans, inhibition of erythrocyte acetylcholinesterase activity is used as a biomarker of methyl 18 carbamate exposure. Based on oral studies, the half-life for methomyl-induced inhibition of 19 erythrocyte acetylcholinesterase activity in humans is 1.6 hours. No inhalation studies involving 20 human subjects were located. Given that methyl carbamate pesticides do not have a port of entry 21 effect, are expected to be rapidly absorbed, and do not require activation, relative 22 acetylcholinesterase activity inhibition levels measured in oral studies with humans and adult 23 and juvenile rodents are applicable for determination of interspecies and intraspecies uncertainty 24 factors. Four inhalation rat studies with methomyl administered in different physical forms 25 provided consistent, concentration-related effects. All exposure durations were for 4 hours. 26 27 No studies that adequately reported details of methomyl exposure and effects consistent

28 29 No studies that adequately reported details of methomyl exposure and effects consistent with the definition of AEGL-1 were located. Therefore, AEGL-1 values are not recommended.

30 The lethality study of DuPont (1991) in which methomyl was administered to rats via the 31 inhalation route shows that methomyl has a steep concentration-response curve. In the absence 32 of other relevant data, AEGL-2 values for chemicals with a steep concentration-response curve 33 may be derived by dividing the AEGL-3 values by 3 (NRC 2001). For consistency with the 34 aerosol study used to derive AEGL-3 values, the AEGL-2 values were derived by dividing the 35 AEGL-3 values by 3. The AEGL-2 values are supported by the vapor study of DuPont (1966a) in which all six rats exposed to 44 mg/m<sup>3</sup> of methomyl vapor for 4 hours displayed clinical signs 36 of slight salivation and lacrimation, slight to moderate hyperpnea, and mild dyspnea. 37 38 Application of the same uncertainty factors and time scaling relationship to the 4-hour 44 mg/m<sup>3</sup> 39 value results in AEGL-2 values similar to those derived by dividing the AEGL-3 by 3 (10-40 minute through 8-hour values of 5.9, 5.9, 4.7, 2.9, and  $1.5 \text{ mg/m}^3$ ).

41

The exposure of rats for 4 hours to a range of aqueous aerosol concentrations that resulted in lethality at the higher concentrations (DuPont 1991; Panepinto 1991) was chosen as the key study for derivation of AEGL-3 values. The study used an adequate number of rats of both sexes and five test concentrations. Mortality in rats inhaling 137, 181, 182, 232, or 326 mg/m<sup>3</sup> of an aqueous aerosol of methomyl for 4 hours showed mortality of 0/10, 0/10, 1/10, 6/10, and 7/10, respectively. The benchmark concentration program was used to estimate the

### METHOMYL

- 1 threshold for lethality. The benchmark concentration program was run with and without the 2 highest value of  $326 \text{ mg/m}^3$ . Omitting the highest value resulted in a better fit of the data to the
- highest value of 326 mg/m<sup>3</sup>. Omitting the highest value resulted in a better fit of the data to t curve. The calculated 4-hour BMCL<sub>05</sub> was 157.3 mg/m<sup>3</sup>, and the BMC<sub>01</sub> was 166.51 mg/m<sup>3</sup>.
- 4 The BMCL<sub>05</sub> was considered the threshold for lethality. The 4-hour 157.3 mg/m<sup>3</sup> value was
- 5 divided by inter- and intraspecies uncertainty factors of 5 and 3.05, respectively, for a total of 15.
- 6 The methomyl-specific uncertainty factors were derived by U.S. EPA (2007). The methomyl-
- 7 specific interspecies inhalation uncertainty factor of 5 was based on differences in modeled
- 8 values for erythrocyte acetylcholinesterase activity inhibition between rats and humans. The
- 9 intraspecies uncertainty factor was based on comparative brain acetylcholinesterase activity
   10 inhibition in post-natal day 11 juvenile rats and adult rats; the U.S. EPA calculated an
- inhibition in post-natal day 11 juvenile rats and adult rats; the U.S. EPA calculated an
   uncertainty factor of 3.05 to protect sensitive young. The resulting 4-hour 10.48 mg/m<sup>3</sup> value
- 12 uncertainty factor of 5.05 to protect sensitive young. The resulting 4-nour 10.48 mg/m value 12 was time-scaled ( $C^n x t = k$ ) using the default values of 3 and 1 for longer and shorter exposure
- 13 durations, respectively (NRC 2001).
- 14
- 15 16

The calculated values are listed in the table below.

| S 1. Summary of AEGL Values for Methomyl |                      |                      |                      |                      |                      |                                   |  |
|------------------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|-----------------------------------|--|
| Classification                           | 10-min               | 30-min               | 1-h                  | 4-h                  | 8-h                  | Endpoint (Reference)              |  |
| AEGL-1                                   | Not                  | Not                  | Not                  | Not                  | Not                  | Inadequate data                   |  |
| (Nondisabling)                           | recommended          | recommended          | recommended          | recommended          | recommended          |                                   |  |
| AEGL-2                                   | $7.0 \text{ mg/m}^3$ | $7.0 \text{ mg/m}^3$ | $5.7 \text{ mg/m}^3$ | $3.3 \text{ mg/m}^3$ | $1.7 \text{ mg/m}^3$ | AEGL-3 values divided             |  |
| (Disabling)                              |                      | 1                    |                      |                      |                      | by 3 (based on steep              |  |
|                                          |                      | 1                    |                      |                      |                      | concentration-response            |  |
|                                          |                      |                      |                      |                      |                      | curve)                            |  |
| AEGL-3                                   | $21 \text{ mg/m}^3$  | $21 \text{ mg/m}^3$  | $17 \text{ mg/m}^3$  | $10 \text{ mg/m}^3$  | $5.2 \text{ mg/m}^3$ | Calculated BMCL <sub>05</sub> for |  |
| (Lethal)                                 |                      | 1                    |                      |                      |                      | lethality - rat (DuPont           |  |
|                                          | 1                    | 1                    | ľ                    |                      | 1                    | 1991)                             |  |

Not recommended: absence of AEGL-1 values does not imply that exposure below AEGL-2 levels is without effect. All values were derived from 4-hour studies.

17

# 18

# 19 **1. INTRODUCTION**

20

21 Technical methomyl (CAS No. 16752-77-5) is a crystalline solid *N*-methyl carbamate 22 insecticide with a slight sulfurous odor. Methomyl is a broad-spectrum insecticide used on 23 vegetables, soybeans, cotton and other field crops and on some fruits and ornamentals. The technical material is formulated as a bait/solid, dust, or granular formulation, and as a water 24 25 soluble concentrate liquid. Formulated products such as Lannate<sup>™</sup> contain 90% methomyl (U.S. 26 EPA 1998; O'Neil 2001 et al.; DuPont 2007). Methomyl is available as wettable powder (25%), soluble concentrate (200 g/L), and water soluble powder (deVreede et al. 1988). Dilution 27 instructions are: soluble concentrate, 100-150 mL/100 L water and wettable powder, 80-120 28 29 g/100 L water. Products are intended for occupational use only and not for homeowner use. Methomyl is also a degradate of the pesticide thiodicarb (U.S. EPA 1998). Chemical and 30 31 physical properties are listed in Table 1.

32

Methomyl is manufactured commercially by the reaction of methyl thiomethyl oxime
 with methyl isocyanate (HSDB 2009). An estimated 2.5 to 3.5 million pounds of active

35 ingredient of methomyl are applied annually in the United States (U.S. EPA 1998).

|  | 4 |  |
|--|---|--|
|  |   |  |
|  |   |  |

| []                         | TABLE 1. Chemical and Physical Properties |                     |  |  |  |  |  |
|----------------------------|-------------------------------------------|---------------------|--|--|--|--|--|
| Parameter                  | Value                                     | Reference           |  |  |  |  |  |
| Synonyms                   | N-[[(Methylamino)carbonyl]oxy]            | O'Neil et al. 2001; |  |  |  |  |  |
|                            | ethanimidothioic acid methyl ester; N-    | DuPont 2007         |  |  |  |  |  |
|                            | [(methylcarbamoly)oxy]thioacetimidic      |                     |  |  |  |  |  |
|                            | acid methyl ester; S-methyl N-            |                     |  |  |  |  |  |
|                            | [(methylcarbamoyl)oxy]thioacetimidate;    |                     |  |  |  |  |  |
|                            | methyl O-(methylcarbamyl)thiol            |                     |  |  |  |  |  |
|                            | acetohydroxamate; Methyl carbamic acid,   |                     |  |  |  |  |  |
|                            | ester with oxime function of              |                     |  |  |  |  |  |
|                            | thiolacetohydroxamic acid, S-methyl       |                     |  |  |  |  |  |
|                            | ester; DuPont 1179; Lannate; Nudrin;      |                     |  |  |  |  |  |
|                            | DPX-X1179; INX-1179                       |                     |  |  |  |  |  |
| Chemical formula           | $C_5H_{10}N_2O_2S$                        | O'Neil et al. 2001  |  |  |  |  |  |
| Molecular weight           | 162.21                                    | O'Neil et al. 2001  |  |  |  |  |  |
| CAS Reg. No.               | 16752-77-5                                | O'Neil et al. 2001  |  |  |  |  |  |
| Physical state             | crystalline solid                         | O'Neil et al. 2001  |  |  |  |  |  |
| Solubility in water        | 58 g/L                                    | O'Neil et al. 2001  |  |  |  |  |  |
| Vapor pressure             | $5 \ge 10^{-5}$ torr at 25°C              | ACGIH 1992          |  |  |  |  |  |
| Vapor density (air =1)     | No data                                   |                     |  |  |  |  |  |
| Liquid density (water =1)  | 1.2946 at 25°C                            | DuPont 2007         |  |  |  |  |  |
| Melting point              | 78-79°C                                   | O'Neil et al. 2001  |  |  |  |  |  |
| Boiling point              | 136 °C (autodecomposition)                | DuPont 2007         |  |  |  |  |  |
| Flammability limits in air | 0.096 g/L (lower explosive limit)         | DuPont 2007         |  |  |  |  |  |
| Conversion factors         | $1 \text{ ppm} = 6.63 \text{ mg/m}^3$     | Calculated          |  |  |  |  |  |
|                            | $1 \text{ mg/m}^3 = 0.15 \text{ ppm}$     |                     |  |  |  |  |  |

### 2. HUMAN TOXICITY DATA

6 No inhalation studies other than accidental exposures were located. Most of these 7 accidental exposures lacked information on concentrations. A pilot who was spraying methomyl 8 and Bravo (chlorothalonil) accidently crashed and died (Driskell et al. 1991). Gas 9 chromatography/flame ionization analysis of the pilot's blood revealed a methomyl 10 concentration of 570 ng/mL of blood. Blood was not analyzed for Bravo. A farmer who died following several days of application of methomyl in his greenhouse had a blood methomyl 11 concentration of 1.6 mg/L and 89% blood cholinesterase activity inhibition upon admittance to 12 the hospital in an unconscious state (Tsatsakis et al. 2001). Death was attributed to inhalation 13 14 and dermal exposure as the farmer's hair and clothes were wet with pesticide and no methomyl was found in his stomach. An oral lethal dose for humans has been estimated at 12 to 15 mg/kg 15 16 (ACGIH 1992).

17

In a double-blind human oral dosing study, 19 healthy male volunteers, ages 18-40 years
ingested a single oral dose of methomyl formulation (89% a.i.) (McFarlane et al. 1998, reviewed
in U.S. EPA 2005). Five subjects comprised each treated group; there were four control
subjects. Doses of 0, 0.1, 0.2, or 0.3 mg/kg body weight were ingested in capsule form along
with a light breakfast. Clinical symptoms were recorded pre-dose and at set times post-dose.
Plasma and erythrocyte cholinesterase activity were assayed pre-dose and at set times post-dose
as were clinical chemistry and hematology parameters. One subject in the 0.3 mg/kg group

1 reported a headache at one hour. The only dose-related clinical sign was an increase in saliva in

2 the 0.3 mg/kg group at 1-hour post dose. Dose-related inhibition of plasma and erythrocyte

3 cholinesterase activity peaked at 45 minutes post dose. At that time, plasma cholinesterase

4 activity in the 0.1, 0.2, and 0.3 mg/kg dose groups were -5.6, -11.5, and -21% of baseline.

5 Respective decreases in erythrocyte cholinesterase activity were -2.5, -20, and -35%. However,

- 6 erythrocyte acetylcholinesterase activity in the 0.1 and 0.2 mg/kg groups was inhibited by 19%
  7 (75 minutes post dose) and 28% (90 minutes post dose), respectively. The Human Studies
- 8 Review Board (HSRB 2006) reviewed the study and found it met ethical considerations.
- 9 10

11

### 3. ANIMAL TOXICITY DATA

12 Using standard protocols, methomyl has been tested for ocular and dermal irritation in 13 the rabbit and dermal sensitization with the guinea pig (Kaplan and Sherman 1977; U.S. EPA 14 1998). In studies summarized by U.S. EPA (1998), methomyl induced transient corneal opacity 15 of the rabbit eye following instillation of 10 mg, but failed to induce skin irritation or skin sensitization. A female rabbit treated with 15 mg technical methomyl in the eye died within 20 16 17 minutes with typical cholinergic symptoms indicative of neurotoxicity. The oral  $LD_{50}$  in male 18 and female rats was 20 mg/kg, and the dermal  $LD_{50}$  in rabbits as an aqueous suspension was 19 >5000 mg/kg (Kaplan and Sherman 1977). 20

# 21 **3.1.** Acute Toxicity 22

23 All inhalation studies were conducted with rats (Table 2). Studies were conducted with 24 methomyl vapor (one study), dust/powder (one study), or mist/aerosol (three studies). Methomyl has a low vapor pressure and vapor atmospheres high enough to cause clinical signs are difficult 25 to sustain. In the vapor study, two groups of six male ChR-CD rats inhaled methomyl vapor at 26 nominal concentrations of 36 or 44  $mg/m^3$  for 4 hours (DuPont 1966a). The vapor was 27 28 generated by passing dry air through a tube of the test material. Exposures were conducted in a 29 whole-body 16-L chamber. No deaths occurred. Clinical signs during exposure included face-30 pawing, slight salivation and lacrimation, hyperemia, hyperpnea, and mild dyspnea in all rats in 31 the 44 mg/m<sup>3</sup> group and in one of six rats in the 36 mg/m<sup>3</sup> group. Mild hyperpnea and 32 exophthalmos lasted up to 30 minutes post-exposure. No gross effects attributed to exposure 33 were seen at necropsy. Microscopically, lung and tracheal tissue were similar to those of control 34 rats in other studies conducted by the same laboratory. The atmospheres were characterized as 35 one-tenth of the approximate lethal concentration and almost six times the saturated vapor pressure of 7 x  $10^{-4}$  mm Hg at 35°C cited in this study. 36

37

Fifteen male Wistar rats inhaled 9.9 mg/m<sup>3</sup> methomyl dust/powder for 4 hours in a 0.43 38 m<sup>3</sup> exposure chamber (Ta'naka et al. 1987). The powder concentration was monitored with a 39 40 light scattering system. The mass median aerodynamic diameter of the particles was  $4.4\pm 2.9$ 41 μm. Rats were sacrificed at 0, 1, 2, 4, or 20 hours post-exposure, and erythrocyte and plasma 42 cholinesterase activities were measured by the Ellman method at each time point. Plasma 43 acetylcholinesterase activity was inhibited at 0, 1, 2, and 4 hours by approximately 50% (values read from graph), but had recovered by 20 hours post-exposure. Erythrocyte 44 45 acetylcholinesterase activity was either not inhibited or only slightly inhibited depending on 46 erythrocyte preparation procedures. Erythrocytes were washed three times with isotonic saline 47 prior to hemolysis. Repeated washing may have removed some of the enzyme from the cell

membrane. Histologic findings in major organs were unremarkable. Clinical signs, if present,
 were not described.

4 Groups of five male and five female CrL:CD rats inhaled methomyl mist, nose-only, at 5 concentrations of 137, 181, 182, 232, or 326 mg/m<sup>3</sup> for 4 hours (DuPont 1991; Panepinto 1991). The study adhered to U.S. EPA's Good Laboratory Practice (GLP) standards. Purity of the test 6 7 material was 97.7%. Atmospheres were generated by suspending the milled solid material at a 8 concentration of 3% in water and maintaining suspensions with a nebulizer. Aerosol 9 atmospheres were measured with a gravimetric method. Mass median aerodynamic diameter of 10 the particles ranged from 1.3 to 3.8  $\mu$ . Surviving rats were observed for 14 days post-exposure. 11 There was a moderate weight loss in most rats during the first two days post-exposure. No rats died at the two lower concentrations. In these two groups, clinical signs observed during the 12 13 first two days post-exposure included diarrhea and stained, ruffled, or wet fur, and discharge 14 from the eyes or nose, the latter in a few males on days 1, 2, or 3. Mortalities were 1/10, 6/10,15 and 7/10 at the three highest concentrations, with mortality comparable between the sexes. 16 Clinical signs among rats that died included those seen at the lower concentrations and in 17 addition, abnormal gait, tremors, hyperactivity, hyperreactivity, muscle fasciculations, and 18 hunched posture. The calculated 4-hour LC<sub>50</sub> was 258 mg/m<sup>3</sup>. 19

20 Groups of six male ChR-CD rats inhaled an aerosol of methomyl, whole-body, for 4 21 hours (DuPont 1966b). Concentrations were 250, 300, 350, and 560 mg/m<sup>3</sup>. The atmospheres 22 were generated by melting 20 grams of the test material followed by aerosolization of the heated 23 compound with a nebulizer in a heated air stream. A second unheated air stream carried the 24 aerosol into a 16-L exposure chamber containing the rats. Aerosol particle size ranged from 1.1-25 6.8 µ. Gross and histologic examinations were performed on selected rats. No rats died following the 4-hour exposure to 250 mg/m<sup>3</sup>. The approximate  $LC_{50}$  was 300 mg/m<sup>3</sup>. Clinical 26 signs observed in dying rats were ptosis, face-pawing, lacrimation and salivation, moderate to 27 28 heavy dyspnea, gasping, hyperemia with slight cyanosis, red discharge from the nostrils, and 29 tremor with mild convulsions followed by terminal convulsions. Similar, but milder signs were 30 seen at the non-lethal concentrations. Gross effects at necropsy included slight pulmonary hyperinflation with irregular congestion. 31

32

33 Groups of six male rats (strain not identified) inhaled an aqueous spray mist of methomyl, whole-body in a 16 m<sup>3</sup> chamber for 4 hours (DuPont 1967; Hornberger 1967; 34 35 summarized in Kaplan and Sherman 1977). The respirable mist of average mass median diameter of 3.2-6.3 µ in the different trials was generated with a nebulizer. Atmospheres were 36 37 measured gravimetrically. Concentrations were 97, 130, 333, 420, 540, 600, and 950 mg/m<sup>3</sup>. 38 Respective mortality was 0/6, 0/6, 1/6, 2/6, 5/6. 5/6, and 6/6. Clinical signs during the first 39 minutes of exposure included rapid tremors, irregular breathing, increased grooming, salivation, 40 and lacrimation. Irregular breathing was observed throughout the exposure. Deaths occurred 41 only during the first 150 minutes of the 4-hour exposure. Surviving rats were maintained for two weeks during which time they displayed normal growth. A second study in the same report 42 indicated that all six rats exposed head-only to 450 mg/m<sup>3</sup> generated as non-respirable droplets 43 44  $>100 \mu$  in size died within 18 minutes. All exposed areas were wet.

- 45
- 46
- 47

|               | TABLE 2. Acute Toxicity of Methomyl in Rats Exposed for 4 Hours |                                       |                     |  |  |  |  |
|---------------|-----------------------------------------------------------------|---------------------------------------|---------------------|--|--|--|--|
| Concentration |                                                                 |                                       |                     |  |  |  |  |
| $(mg/m^3)$    | Effect or Mortality                                             | LC <sub>50</sub> (mg/m <sup>3</sup> ) | Reference           |  |  |  |  |
|               | Vapor                                                           |                                       |                     |  |  |  |  |
| 36            | No mortality, face-pawing, slight salivation                    | _                                     | DuPont 1966a        |  |  |  |  |
|               | and lacrimation hyperemia, hyperpnea, mild                      |                                       |                     |  |  |  |  |
|               | dyspnea (1 of 6 animals)                                        |                                       |                     |  |  |  |  |
| 44            | No mortality; above clinical signs in 6 of 6                    |                                       |                     |  |  |  |  |
|               | rats                                                            |                                       |                     |  |  |  |  |
|               | Powder                                                          |                                       |                     |  |  |  |  |
| 9.9           | Transient plasma acetylcholinesterase                           | _                                     | Ta'naka et al. 1987 |  |  |  |  |
|               | activity inhibition (50%); little or no effect                  |                                       |                     |  |  |  |  |
|               | on erythrocyte acetylcholinesterase activity <sup>a</sup>       |                                       |                     |  |  |  |  |
|               | Mist/Liquid Aeros                                               | ol                                    |                     |  |  |  |  |
| 137           | No mortality; diarrhea, ruffled fur                             | 258                                   | DuPont 1991;        |  |  |  |  |
| 181           | No mortality; diarrhea, ruffled fur                             |                                       | Panepinto 1991      |  |  |  |  |
| 182           | Mortality: 1 of 10 rats; stained fur                            |                                       | -                   |  |  |  |  |
| 232           | Mortality: 6 of 10 rats; clinical signs                         |                                       |                     |  |  |  |  |
|               | including tremors in one female (day 1)                         |                                       |                     |  |  |  |  |
| 326           | Mortality: 7 of 10 rats; tremors, clinical                      |                                       |                     |  |  |  |  |
|               | signs including tremors in one male and one                     |                                       |                     |  |  |  |  |
|               | female (day 1)                                                  |                                       |                     |  |  |  |  |
| 250           | No mortality                                                    | 300                                   | DuPont 1966b        |  |  |  |  |
| 300           | Mortality: 3 of 6 rats                                          |                                       |                     |  |  |  |  |
| 350           | Mortality: 6 of 6 rats                                          |                                       |                     |  |  |  |  |
| 560           | Mortality: 6 of 6 rats                                          |                                       |                     |  |  |  |  |
| 97            | No mortality                                                    | 450                                   | DuPont 1967;        |  |  |  |  |
| 130           | No mortality                                                    |                                       | Hornberger 1967     |  |  |  |  |
| 333           | Mortality of 1 of 6 rats                                        |                                       |                     |  |  |  |  |
| 420           | Mortality of 2 of 6 rats                                        |                                       |                     |  |  |  |  |
| 540           | Mortality of 5 of 6 rats                                        |                                       |                     |  |  |  |  |
| 600           | Mortality of 5 of 6 rats                                        |                                       |                     |  |  |  |  |
| 950           | Mortality of 6 of 6 rats                                        |                                       |                     |  |  |  |  |

<sup>a</sup> The values for erythrocyte cholinesterase activity inhibition are questionable due to repeated washing of the cells.

### 3.2. Repeat-Exposure Studies

6 Ten male Wistar rats inhaled 14.8  $mg/m^3$  methomyl powder for 4 hours/day, 5 days/week 7 for 3 months (Ta'naka et al. 1987). The powder concentration in the chamber was monitored 8 with a light scattering system. The mass median aerodynamic diameter of the particles was 9 4.4±2.9 μ. Rats were weighed and sacrificed 4 hours after the last exposure, and erythrocyte and 10 plasma cholinesterase activity were measured by the Ellman method. Major organs were weighed and examined microscopically and lungs were analyzed for lipid concentration. No 11 12 statistically significant differences were found between the control and exposed groups in body or organ weights. At 4 hours post-exposure, mean plasma cholinesterase activity was inhibited 13 by 28% and erythrocyte acetylcholinesterase activity was inhibited by 8%. There were no 14 15 histopathologic changes in major organs and no accumulation of lipids in the lungs. The authors 16 concluded that the effects of methomyl exposure are not cumulative.

17

### METHOMYL

For comparison to the inhalation route, a repeat exposure dermal study and a repeat 1 2 exposure dietary toxicity study are provided. In a 21-day dermal toxicity study with New 3 Zealand rabbits, the NOAEL was 90 mg/kg/day, the highest dose tested. There were no 4 mortalities and no toxicologically significant inhibition of plasma, erythrocyte, or brain 5 cholinesterase activity. In a 90-day feeding study with CD rats, the NOAEL was 6.25 mg/kg/day 6 (summarized in U.S. EPA 1998), based on lower body weight gain in both sexes and erythroid 7 hyperplasia in male rats at the next higher dose of 12.5 mg/kg/day. There were no mortalities 8 and no inhibition of cholinesterase activity.

9 10

11

### 3.3. Neurotoxicity

Acute toxicity studies (see Section 3.1) showed that methomyl is neurotoxic. Although no clinical signs were reported in rats inhaling methomyl dust at 9.9 mg/m<sup>3</sup> for 4 hours (Ta'naka et al. 1987), higher concentrations including vapor concentration as low as 36 mg/m<sup>3</sup> and dust aerosols as low as 137 mg/m<sup>3</sup> induced clinical signs consistent with cholinesterase activity inhibition (See Section 4.1 for the mode of action of carbamate insecticides).

17

In a study of gavage administration of methomyl to male Long-Evans rats, motor activity in the period 15 minutes to 35 minutes post-dosing was a reliable predictor of brain and erythrocyte cholinesterase activity inhibition (McDaniel et al. 2007). Doses were 0.10, 0.25, 0.60, 1.25, or 2.50 mg/kg. Cholinesterase activity inhibition and related decreased motor activity were dose dependent above 0.10 mg/kg. Brain and erythrocyte cholinesterase activity were similarly inhibited at the higher doses. At 2.50 mg/kg, vertical motor activity was 20% of the control value and brain and erythrocyte cholinesterase were 50-60% of the control value.

25 26

27

### 3.4. Developmental/Reproductive Toxicity

28 No inhalation studies were conducted that addressed the developmental/reproductive 29 toxicity of methomyl. Reproductive and developmental toxicity studies that used the oral route 30 of administration were reviewed by Kaplan and Sherman (1977) and U.S. EPA (1998). In 31 developmental studies, pregnant CD rats were administered methomyl at concentrations of 0, 32 4.9, 9.4, or 33.9 mg/kg/day on gestation days 6-19. The maternal LOAEL was 33.9 mg/kg/day 33 based on decreased body weight gain and food consumption; the developmental NOAEL was 34 33.9 mg/kg/day. In a recent study, pregnant New Zealand rabbits were administered 0, 2, 6, or 35 16 mg/kg/day by stomach tube on gestation days 7-19. The maternal LOAEL was 16 mg/kg/day based on mortality and clinical signs indicating neurotoxicity. The developmental NOAEL was 36 37 16 mg/kg/day, the highest dose tested. In a two-generation reproduction study, the  $F_0$  generation 38 of Sprague-Dawley rats was fed methomyl at dose levels of 0, 3.75, 30, or 60 mg/kg/day. The F<sub>1</sub> 39 offspring were treated at the same dosage. The parental NOAEL and LOAEL were 3.75 and 30 40 mg/kg/day, respectively; the LOAEL was based on decreased body weight and food 41 consumption and altered hematology parameters. The offspring NOAEL and LOAEL were also 3.75 and 30 mg/kg/day, based on a decrease in mean number of pups and decreased pup body 42 43 weight at 30 mg/kg/day. The U.S. EPA concluded that the data provided no indication of 44 increased sensitivity of rats or rabbits to *in utero* or postnatal exposure to methomyl. There was 45 no assessment of functional development.

### 3.5. Genotoxicity

2 3 Methomyl has been tested in a range of *in vitro* genotoxicity assays (IPCS 1996; 2001; U.S. 4 EPA 1998; HSDB 2009). Most assays were conducted both with and without metabolic 5 activation. Methomyl did not cause mutagenicity or primary DNA damage in bacterial or 6 mammalian cells. Assay results were negative for point mutations in Salmonella typhimurium 7 (TA98, TA100, TA1535, TA1537, and TA1538) and Escherichia coli WP2 uvrA. Results were 8 negative for DNA damage in E. coli; Bacillus subtilis; Saccharomyces cerevisiae; human lung 9 fibroblasts, lymphocytes, and skin cells; and rat hepatocytes. Methomyl assay results were 10 negative in gene mutation tests with Chinese hamster V79 and ovary cells and in a sister-11 chromatid exchange assay in human lymphocytes. Methomyl showed cytogenetic potential in human lymphocytes in vitro as indicated by an increase in micronuclei and chromosomal 12 13 aberrations.

14

1

### 15 **3.6.** Chronic Toxicity/Carcinogenicity

16 17 Methomyl was tested for chronic toxicity and carcinogenicity in two-year dietary studies 18 with male and female beagle dogs, male and female CD rats, and male and female CD-1 mice 19 (Kaplan and Sherman 1977; ACGIH 1992; U.S. EPA 1998). No increased tumor incidence 20 occurred in any study. Dogs fed  $\geq 10 \text{ mg/kg/day}$  showed microscopic changes in the kidneys, 21 spleen and liver. The NOAEL for dogs was 5 mg/kg/day. The NOAEL for rats was 5 22 mg/kg/day based on depressed body weight gain in both sexes at higher doses. No effects were 23 observed in mice at the highest dose, 120 mg/kg/day. The U.S. EPA has classified methomyl in 24 Group E, not likely to be carcinogenic to humans via relevant routes of exposure. The 25 carcinogenicity of methomyl has not been evaluated by the International Agency for Research on 26 Cancer. 27

### 28 **3.7.** Summary

29 Acute inhalation lethality studies were conducted with the rat. The 4-hour LC<sub>50</sub> values 30 for rats ranged from 258 to 510 mg/m<sup>3</sup> for methomyl suspended as a mist or aerosol (DuPont 31 32 1966b; Kaplan and Sherman 1977; DuPont 1991). During exposure rats showed signs 33 indicative of cholinesterase activity inhibition. In another study, clinical signs were either not 34 described or not observed in rats exposed to 9.9 mg/m<sup>3</sup> of dust for 4 hours (Ta'naka et al. 1987). 35 Plasma cholinesterase activity inhibition was greater (50%) following the acute exposure than following exposure to 14.8 mg/m<sup>3</sup> for 4 hours/day, 5 days/week for 3 months (28%). A study 36 37 with the saturated vapor of methomyl (36 or 44  $mg/m^3$ ) did not attain concentrations high 38 enough to elicit mortality, although clinical signs indicative of acetylcholinesterase activity inhibition were evident (DuPont 1966a). 39

40

No evidence of teratogenicity was observed in either rats or rabbits treated in the diet with methomyl (rats, up to 60 mg/kg/day) even in the presence of maternal toxicity. A range of genotoxicity assays provided mostly negative results. In 2-year feeding studies with the dog, rat, and mouse at concentrations that approached toxic, there was no evidence of a tumorigenic response.

### 1 4. SPECIAL CONSIDERATIONS

### 2 4.1. Metabolism and Disposition

3

4 Inhalation studies with methomyl that addressed metabolism were not located. Oral 5 absorption is near complete (95-98%) and most of the compound is eliminated in 24 hours 6 (ACGIH 1992). The N-methyl carbamates do not have a port of entry effect, are expected to be 7 rapidly absorbed, and do not require activation (U.S. EPA 2007). Unlike some organophosphate 8 pesticides that are metabolized by A-esterases which show great inter-individual variation, the 9 biotransformation of the carbamate pesticides does not involve these esterases. Metabolism was 10 outlined following oral dosing of male and female CD rats (Harvey et al. 1973) and male and female Sprague-Dawley rats (Jaglan and Arnold 1984) with radiolabeled methomyl. Syn-11 methomyl, the form of methomyl that is produced and sold, is hydrolyzed at the ester linkage to 12 13 give rise to an oxime which is metabolized to CO<sub>2</sub>. Approximately 34-54% of the label is 14 eliminated in the urine as the oxime or conjugates of the oxime and 20-39% is eliminated as 15 expired  $CO_2$  and acetonitrile (ratio 2:1). The major urinary metabolite was the mercapturic acid derivative of methomyl (IPCS 1996). Acetonitrile is likely formed following partial conversion 16 17 of the syn-isomer to the anti-isomer prior to hydrolysis at the ester linkage. Two to three percent 18 of the radiolabel is eliminated in the feces, and less than 10% remains in the carcass. 19 20 Metabolism pathways in the monkey were similar to those of the rat, but with differences 21 in the percent of metabolites formed (IPCS 1996). Following administration of an oral dose of 5

mg/kg body weight, expired air contained 32-38% of the dose as CO<sub>2</sub> and 4-7% of the dose as
acetonitrile. Eighteen metabolites were characterized in the urine, with no metabolite
representing more than 4% of the dose. Most of the metabolites were eliminated in the first 24
hours post-exposure.

26

In addition to hydrolysis of the carbamate ester linkage, several oxidation and reduction
reactions involving cytochrome P450-related monooxygenases can form polar metabolites
(Costa 2008). Methyl and *N*-methyl side chains undergo hydroxylation, followed by conjugation
with glucuronide or sulfate derivatives.

31 32

### 4.2. Mechanism of Toxicity

33 34 Methomyl is an *N*-methyl carbamate insecticide. The mode of action of carbamate 35 pesticides involves cholinesterase inhibition (U.S. EPA 2007; Costa 2008). Carbamic acid esters attach to the serine hydroxyl group of the reactive site of acetylcholinesterase, the enzyme 36 37 responsible for the destruction and termination of the biological activity of the neurotransmitter 38 acetylcholine. When unbound acetylcholine accumulates at the cholinergic nerve endings, there 39 is continual stimulation of electrical activity. The resulting signs of toxicity resulting from 40 stimulation of the muscarinic receptors of the parasympathetic autonomic nervous system are 41 manifest as increased secretions, bronchoconstriction, miosis, gastrointestinal cramps, diarrhea, 42 urination, and bradycardia. Stimulation of the parasympathetic junctions of the autonomic nervous system as well as the junctions between nerves and muscles cause tachycardia, 43 44 hypertension, muscle fasciculation, tremors, muscle weakness, and flaccid paralysis. Signs and 45 symptoms resulting from effects on the central nervous system include restlessness, emotional 46 lability, ataxia, lethargy, mental confusion, loss of memory, generalized weakness, convulsion, 47 cyanosis, and coma.

1 2 Inhibition of acetylcholinesterase activity is transient and reversible because there is 3 rapid reactivation of the carbamylated enzyme in the presence of water. Maximum inhibition 4 typically occurs between 15 and 45 minutes after exposure. Carbamates also inhibit 5 butylcholinesterase, the primary form found in blood plasma. The toxicological significance of 6 butylcholinesterase activity inhibition is unknown. Acetylcholinesterase is the primary form of 7 cholinesterase found in erythrocytes and is present at neuromuscular and nerve-nerve junctions. 8 A review of studies submitted to U.S. EPA (2007) for pesticide registration shows that clinical 9 signs and behavioral effects are not evident below 10% cholinesterase activity inhibition, but in 10 most studies a 10% brain cholinesterase activity inhibition can be reliably detected. Due to 11 human variability, it is difficult to measure erythrocyte acetylcholinesterase activity inhibition of 12 <20% (U.S. EPA 2000). At greater than 30% erythrocyte or 50% plasma cholinesterase activity 13 inhibition, workers are withdrawn from pesticide application areas (U.S. EPA 2000). 14

In adult Long-Evans rats dosed orally with 3 mg/kg methomyl, brain and erythrocyte acetylcholinesterase activity were approximately 47 and 33% of control values, respectively, at 0.5 hours; activity in both compartments returned to the level of control values by 4 hours postdosing (Padilla et al. 2007).

### 20 4.3. Structure-Activity Relationships

Organophosphate and carbamate pesticides have a common mode of action (Costa 2008). Compared to organophosphate ester pesticides, the carbamic acid esters are poor substrates for cholinesterase-type enzymes. The carbamic acid esters which attach to the reactive site of acetyl cholinesterase undergo fairly rapid hydrolysis; the carbamylated (inhibited) enzyme is decarbamylated fairly rapidly with the generation of the free, active enzyme.

27

21

28 Information is available on the relative oral toxicity of three *N*-methyl carbamate 29 pesticides (HSRB 2006; U.S. EPA 2007). The endpoints were brain and erythrocyte 30 cholinesterase activity inhibition in the rat and erythrocyte cholinesterase activity inhibition in 31 humans. Raw data consisting of erythrocyte cholinesterase activity inhibition were not provided 32 for all three chemicals, but relative toxicity can be derived from the benchmark doses (BMD<sub>10</sub> 33 and BMDL<sub>10</sub>) calculated by U.S. EPA (2007) from a range of oral doses (Table 3). For 34 methomyl and oxamyl, rat data on brain and erythrocyte cholinesterase activity are presented by 35 McDaniel et al. (2007). If oxamyl is assigned a relative oral potency factor of 1, then the oral 36 potencies of aldicarb and methomyl are 4 and 0.67, respectively (U.S. EPA 2007).

| TABLE 3. Adult Rat and Human BMD <sub>10</sub> and BMDL <sub>10</sub> Values for Cholinesterase Activity Inhibition with N- |                            |              |                            |              |                            |              |  |  |
|-----------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------|----------------------------|--------------|----------------------------|--------------|--|--|
| Methyl Carbamate Pesticides (Oral Dosing)                                                                                   |                            |              |                            |              |                            |              |  |  |
| Rat Human                                                                                                                   |                            |              |                            |              |                            |              |  |  |
| Brain Erythrocyte Erythrocyte                                                                                               |                            |              |                            |              | yte                        |              |  |  |
| Chemical                                                                                                                    | Benchmark                  | Half-life    | Benchmark                  | Half-life    | Benchmark                  | Half-life    |  |  |
|                                                                                                                             | Dose (mg/kg)               | ( <b>h</b> ) | Dose (mg/kg)               | ( <b>h</b> ) | Dose (mg/kg)               | ( <b>h</b> ) |  |  |
| Aldicarb                                                                                                                    | BMD <sub>10:</sub> 0.052   | 1.5          | BMD <sub>10</sub> : 0.031  | 1.1          | BMD <sub>10</sub> : 0.016  | 1.7          |  |  |
|                                                                                                                             | BMDL <sub>10</sub> : 0.035 |              | BMDL <sub>10</sub> : 0.020 |              | BMDL <sub>10</sub> : 0.013 |              |  |  |
| Methomyl                                                                                                                    | BMD <sub>10</sub> : 0.486  | 1.0          | BMD <sub>10</sub> : 0.204  | 0.8          | BMD <sub>10</sub> : 0.040  | 1.6          |  |  |
| -                                                                                                                           | BMDL <sub>10</sub> : 0.331 |              | BMDL <sub>10</sub> : 0.112 |              | BMDL <sub>10</sub> : 0.028 |              |  |  |
| Oxamyl                                                                                                                      | BMD <sub>10</sub> : 0.165  | 0.9          | BMD <sub>10</sub> : 0.278  | 0.8          | BMD <sub>10</sub> : 0.083  | 2.4          |  |  |

 BMDL<sub>10</sub>: 0.127
 BMDL<sub>10</sub>: 0.158
 BMDL<sub>10</sub>: 0.068

 Benchmark dose data for brain cholinesterase activity for aldicarb and oxamyl are the average of male and female rat values.
 Values

The BMDL<sub>10</sub> for 10% brain cholinesterase activity inhibition was used as the point of departure for U.S. EPA (2007) risk assessment.

values.
The BMDL<sub>10</sub> for 10% brain cholinesterase actirisk assessment.
Source: Table 1.B-9, page 50, U.S. EPA 2007.

### 7 **4.4. Other Relevant Information**

# 8 4.4.1. Species Variability9

10 Inhalation studies were conducted only with rats. Subchronic and chronic feeding studies 11 with the rat, mouse, and dog showed little difference in toxicity among the species. The extent of hydrolysis of carbamate ester insecticides varies between species, ranging from 30 to 95%, 12 13 and is chemical specific (Costa 2008). Baseline erythrocyte acetylcholinesterase activity is 14 higher in humans than in other species (Ellin 1981). The U.S. EPA Office of Pesticide Programs 15 (U.S. EPA 2007) compared the toxicity (endpoint cholinesterase activity inhibition) of three N-16 methyl carbamate pesticides, oxamyl, methomyl, and aldicarb, using oral dosing in humans and 17 in juvenile and adult rats. Most data were available for oxamyl which was used as the index 18 chemical. Benchmark doses were calculated for brain and erythrocyte acetylcholinesterase 19 activity inhibition in juvenile and adult rats and erythrocyte cholinesterase activity inhibition in 20 humans. Based on the comparative erythrocyte acetylcholinesterase activity inhibition for equal oral doses in adult rats and humans, the U.S. EPA calculated a chemical-specific interspecies 21 22 uncertainty factor of 5 for methomyl. For most of these chemicals, the interspecies uncertainty 23 factor is used for all routes of exposure. The half-lives for regeneration of erythrocyte 24 acetylcholinesterase activity in rats and humans were 0.8 and 1.6 hours, respectively.

25 26

27

### 4.4.2. Susceptible Populations

28 Humans are known to vary by gender, age, and genetic make-up in their sensitivity to 29 cholinesterase inhibitors. The erythrocyte acetylcholinesterase activity of adults  $(153\pm24)$ 30 activity units; substrate acetylthiocholine) is greater than that of healthy newborn infants ( $97\pm15$ 31 activity units) by a factor of 1.6 (Herz et al. 1975). The U.S. EPA (2007) identified infants and juveniles as the population most sensitive to the anticholinesterase effects of N-methyl carbamate 32 33 pesticides. In so doing, they evaluated the relative sensitivity of juvenile and adult rats to N-34 methyl carbamate pesticides including methomyl. Developmental neurotoxicity studies showed 35 that protection of the rat dam against cholinesterase activity inhibition is protective against pup acetylcholinesterase activity inhibition in utero. Therefore, intraspecies uncertainty factors were 36 37 based on relative juvenile and adult rat sensitivity to brain acetylcholinesterase activity inhibition. Based on comparative brain acetylcholinesterase activity inhibition in methomyl-38 39 treated post-natal day 11 juvenile rats and adult rats, the U.S. EPA calculated a Food Quality 40 Protection Act (FQPA) uncertainty factor for children of 3.05. This uncertainty factor corresponds to an AEGL intraspecies uncertainty factor. The estimated half-life for recovery of 41 brain acetylcholinesterase activity in juvenile rats was 0.4 hours (U.S. EPA 2007). 42

43

### 44 **4.4.3.** Concentration-Exposure Duration Relationship

45

46 No data were available for evaluating the relationship between ambient concentrations of
 47 methomyl and exposure duration for a single endpoint. The concentration-time relationship for a

single endpoint for many irritant and systemically acting vapors and gases may be described by 1 2  $C^n x t = k$ . In the absence of empirical data, the time scaling factors of n = 3 and n = 1 are used 3 to scale to shorter and longer exposure durations respectively (NRC 2001). 4 5 4.4.4. Concurrent Exposure Issues 6 7 Dermal absorption may occur, but toxicity is low compared to inhalation exposure as 8 indicated by a dermal LD<sub>50</sub> of >5000 mg/kg in rabbits (Kaplan and Sherman 1977). Concurrent 9 exposure to other N-methyl carbamates in proportion to their potency indicates that they follow a 10 dose-additive model of brain cholinesterase inhibition (Padilla et al. 2006; U.S. EPA 2007). 11 12 5. **DATA ANALYSIS FOR AEGL-1** 13 5.1. **Summary of Human Data Relevant to AEGL-1** 14 15 No human inhalation studies were located in the available literature. No occupational 16 monitoring data were presented by U.S. EPA (1998). 17 18 5.2. **Summary of Animal Data Relevant to AEGL-1** 19 20 Ta'naka et al. (1987) exposed rats to an atmosphere of methomyl powder for 4 hours. Rats inhaling 9.9 mg/m<sup>3</sup> for 4 hours showed plasma cholinesterase activity inhibited by 21 22 approximately 50%, but erythrocyte acetylcholinesterase activity was reported as either not 23 affected or only slightly inhibited. No clinical signs were described. In the human oral dosing 24 study (McFarlane et al. 1998), plasma cholinesterase activity inhibition was accompanied by a 25 corresponding inhibition in erythrocyte acetylcholinesterase activity. These results raise some questions about the rat inhalation study in which plasma but not erythrocyte activity was 26 27 significantly inhibited. 28 29 5.3. **Derivation of AEGL-1** 

30

The study of Ta'naka et al. (1987) in which rats inhaled 9.9  $mg/m^3$  methomyl powder 31 32 for 4 hours was considered inadequate for derivation of AEGL-1 values. The study did not 33 appear to accurately report erythrocyte acetylcholinesterase activity inhibition. In addition, the 34 presence or absence of clinical signs was not clearly stated. No other studies addressed effects 35 defined by the AEGL-1. Therefore, AEGL-1 values are not recommended.

36

| TABLE 4. AEGL-1 Values for Methomyl                                                                           |                                                                 |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--|--|--|--|--|
| 10-min 30-min 1-h 4-h 8-hour                                                                                  |                                                                 |  |  |  |  |  |
| Not recommended                                                                                               | Not recommended Not recommended Not recommended Not recommended |  |  |  |  |  |
| Not recommended: absence of AEGL-1 values does not imply that exposure below AEGL-2 levels is without effect. |                                                                 |  |  |  |  |  |

38

### 39 6. **DATA ANALYSIS FOR AEGL-2**

### 40 **Summary of Human Data Relevant to AEGL-2 6.1**.

41 42

37

No human inhalation studies were located in the available literature.

- 43
- 44

### 6.2. Summary of Animal Data Relevant to AEGL-2

No inhalation studies with methomyl dust that addressed effects consistent with the
definition of the AEGL-2 were reported in the available literature. One of six rats exposed to a
nominal concentration of 36 mg/m<sup>3</sup> of methomyl vapor showed mild signs of cholinesterase
activity inhibition. These signs included face-pawing, slight salivation and slight lacrimation
and mild dyspnea (DuPont 1966a). At the higher concentration of 44 mg/m<sup>3</sup>, all six rats showed
these clinical signs, and the signs were more severe, but recovery within 14 days was complete.
Higher vapor atmospheres could not be attained.

10

1

The lethality study with an aqueous aerosol of methomyl (DuPont 1991; Panepinto
1991), showed a steep concentration-response relationship. No mortality occurred at 181 mg/m<sup>3</sup>,
but six of ten rats died at 232 mg/m<sup>3</sup>.

### 15 6.3. Derivation of AEGL-2

16 17 Lethality data show that methomyl has a steep concentration-response curve. In the absence of other relevant data, AEGL-2 values for chemicals with a steep concentration-18 19 response curve may be derived by dividing the AEGL-3 values by 3 (NRC 2001). For 20 consistency with the study used to derive AEGL-3 values, the AEGL-2 values were derived by 21 dividing the AEGL-3 values by 3. Values are summarized in Table 5, calculations are in 22 Appendix A, and a category graph of the toxicity data in relation to AEGL values is in Appendix 23 B 24

| TABLE 5. AEGL-2 Values for Methomyl |                           |                      |                      |                      |  |  |  |
|-------------------------------------|---------------------------|----------------------|----------------------|----------------------|--|--|--|
| 10-min                              | 10-min 30-min 1-h 4-h 8-h |                      |                      |                      |  |  |  |
| $7.0 \text{ mg/m}^3$                | $7.0 \text{ mg/m}^3$      | $5.7 \text{ mg/m}^3$ | $3.3 \text{ mg/m}^3$ | $1.7 \text{ mg/m}^3$ |  |  |  |

25

26 The vapor study of DuPont (1966a) supports the values derived by dividing the AEGL-3 by 3. Inhalation exposure of rats to of 44 mg/m<sup>3</sup> over a period of 4 hours induced clinical signs 27 consistent with the definition of the AEGL-2. Dividing the 4-hour 44  $mg/m^3$  value by 15 (see 28 Section 7.3 for discussion of uncertainty factors) and time-scaling using the default values of 3 29 and 1 for shorter and longer exposure durations, respectively, results in 10-minute through 8-30 31 hour values of 5.9, 5.9, 4.7, 2.9, and 1.5  $mg/m^3$ . These values are comparable with the derived 32 values shown in Table 5. The fact that no rats died at the lowest tested concentration of 137 33  $mg/m^3$  in the study by DuPont (1991) also supports the AEGL-2 values.

34 35

## 7. DATA ANALYSIS FOR AEGL-3

36 7.1. Summary of Human Data Relevant to AEGL-3
 37

38 No human inhalation studies relevant to development of AEGL-3 values were located in
 39 the available literature.

- 40
- 41 **7.2.** Summary of Animal Data Relevant to AEGL-3
  42

43 Three studies with methomyl as a mist or liquid aerosol addressed lethality in the rat. All 44 studies were for 4 hours. Four-hour  $LC_{50}$  values were 258 mg/m<sup>3</sup> (DuPont 1991; Panepinto METHOMYL

1991), 300 mg/m<sup>3</sup> (DuPont 1966b), and 450 mg/m<sup>3</sup> (DuPont 1967; Hornberger 1967). Although
performed at different times, the three studies by DuPont give consistent values. The 1991 GLP
study by DuPont used both sexes of rats and provides good dose-response information. There
was little difference in toxicity between the sexes. Tested concentrations were 137, 181, 182,
232, and 326 mg/m<sup>3</sup> and respective mortalities were 0/10, 0/10, 1/10, 6/10, and 7/10 rats.

6 7

8

### 7.3. Derivation of AEGL-3

9 The GLP study of DuPont 1991 (Panepinto 1991) was chosen as the basis for AEGL-3 10 values. In that study, male and female rats inhaled an aerosol of methomyl generated by 11 suspending the solid in water. Benchmark concentrations were calculated (1) using all of the data and (2) deleting the highest value of  $326 \text{ mg/m}^3$ . Omitting the highest value provided a 12 better mathematical fit of the data to a curve. With omission of the highest value, the calculated 13 4-hour BMCL<sub>05</sub> is 157.26 mg/m<sup>3</sup>, and the BMC<sub>01</sub> is 166.51 mg/m<sup>3</sup> (Appendix C). The 14 NAC/AEGL committee generally uses the BMCL<sub>05</sub> as the estimate at which lethality is not 15 likely to be observed (NRC 2001). 16

17

The 157.3 mg/m<sup>3</sup> value was divided by inter- and intraspecies uncertainty factors of 5 18 and 3.05, respectively, for a total of 15. The U.S. EPA (2007) derived an interspecies 19 20 uncertainty factor of 5 for methomyl based on differences in modeled red blood cell values for 21 acetylcholinesterase activity inhibition between the rat and humans (See section 4.4.1). Based 22 on comparative brain cholinesterase activity inhibition in post-natal day 11 juvenile rats and 23 adult rats, the U.S. EPA calculated an uncertainty factor of 3.05 to protect sensitive young (See 24 section 4.4.2). The combined uncertainty factor is 15. The data set with application of an 25 uncertainty factor that protects sensitive juveniles provides a reasonable estimate of lethality. The resulting value of 10.49 mg/m<sup>3</sup> (157.3 mg/m<sup>3</sup>/15) was time-scaled ( $C^n x t = k$ ) from the 4-26 hour data point to 1 hour and to 30 minutes using the default n value of 3 and to the 8-hour 27 28 exposure duration using the default value of 1 (NRC 2001). Because the key study was 4 hours, 29 the 10-minute value was set equal to the 30-minute value. Values are summarized in Table 6, 30 calculations are in Appendix A, and a category graph of the toxicity data in relation to AEGL values is in Appendix B. 31

32

| TABLE 6. AEGL-3 Values for Methomyl |                     |                     |                     |                      |  |  |
|-------------------------------------|---------------------|---------------------|---------------------|----------------------|--|--|
| 10-min 30-min 1-h 4-h 8-h           |                     |                     |                     |                      |  |  |
| $21 \text{ mg/m}^3$                 | $21 \text{ mg/m}^3$ | $17 \text{ mg/m}^3$ | $10 \text{ mg/m}^3$ | $5.2 \text{ mg/m}^3$ |  |  |

AEGL values are summarized in Table 7. Derivations are summarized in Appendix D.

33

The BMCL<sub>05</sub> value of 157.3 mg/m<sup>3</sup> is higher than the lowest concentration causing no mortality  $(137 \text{ mg/m}^3)$  in the key study. No deaths occurred at  $181 \text{ mg/m}^3$ , but this value is virtually identical with the  $182 \text{ mg/m}^3$  value that resulted in the death of 1 of 10 rats.

38 8. SUMMARY OF AEGLs

**AEGL Values and Toxicity Endpoints** 

39 40 8.1.

- .
- 41
- 42
- 43
- 44

| TABLE 7. Summary of AEGL Values for Methomyl |                      |                      |                       |                      |                       |  |
|----------------------------------------------|----------------------|----------------------|-----------------------|----------------------|-----------------------|--|
| Exposure Duration                            |                      |                      |                       |                      |                       |  |
| Classification                               | 10-min               | 30-min               | 1-h                   | 4-h                  | 8-h                   |  |
| AEGL-1<br>(Nondisabling)                     | Not<br>recommended   | Not<br>recommended   | Not<br>recommended    | Not<br>recommended   | Not<br>recommended    |  |
| AEGL-2<br>(Disabling)                        | $7.0 \text{ mg/m}^3$ | $7.0 \text{ mg/m}^3$ | 5.7 mg/m <sup>3</sup> | $3.3 \text{ mg/m}^3$ | $1.7 \text{ mg/m}^3$  |  |
| AEGL-3<br>(Lethal)                           | 21 mg/m <sup>3</sup> | 21 mg/m <sup>3</sup> | 17 mg/m <sup>3</sup>  | $10 \text{ mg/m}^3$  | 5.2 mg/m <sup>3</sup> |  |

Not recommended: absence of AEGL-1 values does not imply that exposure below AEGL-2 levels is without effect.

### 8.2. Comparison with Other Standards and Guidelines

5 Standards and guidelines for methomyl are listed in Table 8. The American Conference of 6 Government Industrial Hygienists (ACGIH 1992) Threshold Limit Value-Time Weighted Average (TLV-TWA) is 2.5 mg/m<sup>3</sup>. Although far less than the no-adverse-effect-level identified 7 8 in animal studies, this value incorporates a margin of safety in view of doses associated with 9 human poisoning. This 8-hour value is for healthy adults, whereas the lower AEGL-2 value of  $1.7 \text{ mg/m}^3$  is protective of infants and children. The ACGIH has derived a Biological Exposure 10 Index (BEI) for workers based on erythrocyte cholinesterase activity of acetylcholinesterase 11 inhibiting chemicals (ACGIH 2008). The value is  $\leq 70\%$  of an individual's baseline red blood 12 13 cell acetylcholinesterase activity.

14

| TABLE 8. Standards and Guidelines for Methomyl |                      |                      |                      |                      |                      |  |  |
|------------------------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|--|--|
|                                                |                      | Exposure Duration    |                      |                      |                      |  |  |
| Guideline                                      | 10 min               | 30 min               | 1 h                  | 4 h                  | 8 h                  |  |  |
| AEGL-1                                         | Not                  | Not                  | Not                  | Not                  | Not                  |  |  |
|                                                | recommended          | recommended          | recommended          | recommended          | recommended          |  |  |
| AEGL-2                                         | $7.0 \text{ mg/m}^3$ | $7.0 \text{ mg/m}^3$ | $5.7 \text{ mg/m}^3$ | $3.3 \text{ mg/m}^3$ | $1.7 \text{ mg/m}^3$ |  |  |
| AEGL-3                                         | $21 \text{ mg/m}^3$  | $21 \text{ mg/m}^3$  | $17 \text{ mg/m}^3$  | $10 \text{ mg/m}^3$  | $5.2 \text{ mg/m}^3$ |  |  |
| ERPG-1 (AIHA) <sup>a</sup>                     |                      |                      | _                    |                      |                      |  |  |
| ERPG-2 (AIHA)                                  |                      |                      | —                    |                      |                      |  |  |
| ERPG-3 (AIHA)                                  |                      |                      | —                    |                      |                      |  |  |
| IDLH                                           |                      | —                    |                      |                      |                      |  |  |
| (NIOSH) <sup>b</sup>                           |                      |                      |                      |                      |                      |  |  |
| REL-TWA                                        |                      |                      |                      |                      | $2.5 \text{ mg/m}^3$ |  |  |
| (NIOSH) <sup>c</sup>                           |                      |                      |                      |                      |                      |  |  |
| OSHA PEL                                       |                      |                      |                      |                      | —                    |  |  |
| (NIOSH) <sup>d</sup>                           |                      |                      |                      |                      |                      |  |  |
| TLV-TWA                                        |                      |                      |                      |                      | $2.5 \text{ mg/m}^3$ |  |  |
| (ACGIH) <sup>e</sup>                           |                      |                      |                      |                      |                      |  |  |
| MAK (Germany) <sup>f</sup>                     |                      |                      |                      |                      | —                    |  |  |
| MAC (The                                       |                      |                      |                      |                      | $2.5 \text{ mg/m}^3$ |  |  |
| Netherlands) <sup>g</sup>                      |                      |                      |                      |                      |                      |  |  |

Not recommended: absence of AEGL-1 values does not imply that exposure below AEGL-2 levels is without effect.

15 16

### 17 **a**ERPG (Emergency Response Planning Guidelines, American Industrial Hygiene Association

18 The ERPG-1 is the maximum airborne concentration below which it is believed nearly all individuals could be

19 exposed for up to one hour without experiencing other than mild, transient adverse health effects or without

20 perceiving a clearly defined objectionable odor.

21 The ERPG-2 is the maximum airborne concentration below which it is believed nearly all individuals could be

22 exposed for up to one hour without experiencing or developing irreversible or other serious health effects or

### **METHOMYL**

symptoms that could impair an individual's ability to take protective action.

The ERPG-3 is the maximum airborne concentration below which it is believed nearly all individuals could be exposed for up to one hour without experiencing or developing life-threatening health effects.

<sup>b</sup>IDLH (Immediately Dangerous to Life and Health, National Institute of Occupational Safety and Health) represents the maximum concentration from which one could escape within 30 minutes without any escapeimpairing symptoms, or any irreversible health effects.

<sup>c</sup>NIOSH REL-TWA (National Institute of Occupational Safety and Health, Recommended Exposure Limits -Time Weighted Average) (NIOSH 2008) is defined analogous to the ACGIH-TLV-TWA.

<sup>d</sup>OSHA PEL-TWA (Occupational Safety and Health Administration, Permissible Exposure Limits - Time Weighted Average) is defined analogous to the ACGIH-TLV-TWA, but is for exposures of no more than 10 hours/day, 40 hours/week.

15 16 <sup>e</sup>ACGIH TLV-TWA (American Conference of Governmental Industrial Hygienists, Threshold Limit Value -Time Weighted Average) (ACGIH 1992) is the time-weighted average concentration for a normal 8-hour workday 18 and a 40-hour workweek, to which nearly all workers may be repeatedly exposed, day after day, without adverse 19 effect. 20

<sup>f</sup>MAK (Maximale Arbeitsplatzkonzentration [Maximum Workplace Concentration]) (Deutsche Forschungsgemeinschaft [German Research Association]) is defined analogous to the ACGIH-TLV-TWA.

<sup>g</sup>MAC (Maximaal Aanvaarde Concentratie [Maximal Accepted Concentration]) (SDU Uitgevers [under the auspices of the Ministry of Social Affairs and Employment], The Hague, The Netherlands 2000) is defined similar to the ACGIH TLV.

26 27 28

29

 $\begin{array}{r}
 1 \\
 2 \\
 3 \\
 4 \\
 5 \\
 6 \\
 7 \\
 8 \\
 9 \\
 10 \\
 \end{array}$ 

11 12

13

14

17

21 22

23 24

25

### 8.3. **Data Adequacy and Research Needs**

30 Methomyl has a low vapor pressure and no suitable studies involving inhalation exposure 31 of humans were located in the available literature. An oral dosing study with human volunteers 32 addressed effects consistent with cholinesterase activity inhibition. Five inhalation studies with 33 rats as the test species were sufficient for derivation of two AEGL levels for five timepoints. 34 Studies involving comparisons of cholinesterase activity inhibition between juvenile and adult 35 rats and between rats and humans addressed chemical-specific uncertainty factors. Metabolism 36 pathways and mode of action are well understood. 37

- 38 9. REFERENCES
- 39 40 ACGIH (American Conference of Government and Industrial Hygienists). 1992. Methomyl. 41 Documentation of the Threshold Limit Values and Biological Exposure Indices. Cincinnati, OH: 42 ACGIH.
- 44 ACGIH (American Conference of Government and Industrial Hygienists). 2008. TLVs and BEIs Based 45 on the Documentation of the Threshold Limit Values for Chemical Substances and Physical Agents & 46 Biological Exposure Indices. Cincinnati, OH: ACGIH. 47
- 48 Costa, L.G. 2008. Chapter 22: Toxic Effects of Pesticides. In Casarett & Doull's Toxicology, The Basic 49 Science of Poisons. 7<sup>th</sup> Ed. New York: McGraw-Hill. 50
- 51 de Vreede, J.A.F., D.H. Brouwer, H. Stevenson, and J.J. van Hemmen. 1998. Exposure and risk 52 estimation for pesticides in high-volume spraying. Ann. Occup. Hyg. 42:151-157.
- 53

2 3 4

5

6 7

8

9

- Driskell, W.J., D.F. Groce, R.H. Hill, Jr., and M.M. Birky. 1991. Methomyl in the blood of a pilot who crashed during aerial spraying. J. Anal. Toxicol. 15:339-340.
- DuPont. 1966a. Acute Inhalation Toxicity. Haskell Laboratory Report No. 214-66. Haskell Laboratory for Toxicology and Industrial Medicine, Newark, DE.
- DuPont. 1966b. Acute Inhalation Toxicity (Progress Report). Haskell Laboratory Report No. 73-66. Haskell Laboratory for Toxicology and Industrial Medicine, Newark, DE.
- 10 DuPont. 1967. Acute Inhalation Toxicity Study of Aqueous Spray Mist. Haskell Laboratory Report No. 11 171-67. Haskell Laboratory for Toxicology and Industrial Medicine, Newark, DE. (Same as 12 Hornberger 1967). 13
- 14 DuPont. 1991. Acute Inhalation Toxicity Study with DPX-X1179-427 in Rats. Haskell Laboratory 15 Report No. 678-91. Haskell Laboratory for Toxicology and Industrial Medicine, Newark, DE. 16 (Same as Panepinto 1991). 17
- 18 DuPont. 2007. Material Safety Data Sheet: DuPont Lannate SP Insecticide. Available online, Dupont 19 Chemical Co. 20
- 21 Ellin, R.I. 1981. Anomalies in theories and therapy of intoxication by potent organophosphorus 22 anticholinesterase compounds. U.S. Army Medical Research and Development Command, 23 Biomedical Laboratory Report No. USABML-SP-81-003. Available from the Defense Technical 24 Information Center, AD A1013364. 25
- 26 Harvey, J., A.G. Jeinek and H. Sherman. 1973. Metabolism of methomyl in the rat. Agric. Food Chem. 27 21:769-775. 28
- 29 Herz, F., E. Kaplan, and E.S. Scheve. 1975. A longitudinal study of red cell enzymes in infants of low 30 birth weight. Z. Kinderheilk. 120: 217-221.
- 32 Hornberger, C.S. 1967. Acute Inhalation Toxicity Study of Aqueous Spray Mist. Haskell Laboratory 33 Report No. 171-67. Haskell Laboratory for Toxicology and Industrial Medicine, Newark, DE. 34 (Same as DuPont 1967). 35
- 36 HSDB (Hazardous Substances Data Bank). 2009. Methomyl. National Library of Medicine. Available 37 online: http://toxnet/nlm.nih.gov/cgi-bin/sis/download.txt. 38
- 39 HSRB (Human Studies Review Board). 2006. Report of the Human Studies Review Board April 4-6, 40 2006, regarding chemicals aldicarb, methomyl, oxamyl, azinphos-methyl, DDVP, ethephon, 41 hydrogen cyanide, and amitraz. Available online: http://www.epa.gov/osa/hsrb/files/meeting-42
  - materials/apr-4-6-2006-public-meeting/april2006mtgfinalreport62606.pdf.
- 43

31

- 44 IPCS (International Program on Chemical Safety). 1996. Environmental Health Criteria 178: Methomyl. 45 World Health Organization. Available online: 46 http://www.inchem.org/documents/ehc/ehc/ehc178.htm.
- 48 IPCS (International Program on Chemical Safety). 2001. Pesticide residues in food - 2001-
- 49 Toxicological Evaluations: Methomyl (addendum). Joint Meeting on Pesticide Residues. World
- 50 Health Organization. Available online:
- 51 http://www.inchem.org/documents/jmpr/jmpmono/2001pr08.htm.
- 52

| 1<br>2<br>3<br>4           | Jaglan, P.S. and T.S. Arnold. 1984. Metabolism of the insecticidal carbamate methyl <i>N</i> -[[[[(1,1-dimethylethyl)(5,5-dimethyl-2-thioxo-1,3,2-dioxaphosphorinan-2yl)-<br>amino]thio]methylamino]carbonyl]oxy]ethanimidothioate in rats. J. Agric. Food Chem. 32:618-622.                                             |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5<br>6<br>7                | Kaplan, A.M. and H. Sherman. 1977. Toxicity studies with methyl <i>N</i> -<br>[[(methylamino)carbonyl]oxy]ethanimidothioate. Toxicol. Appl. Pharmacol. 40:1-17.                                                                                                                                                          |
| 8<br>9<br>10<br>11         | McDaniel, K.L., S. Padilla, R.S. Marshall, P.M. Phillips, L. Podhorniak, Y. Qian, and V.C. Moser. 2007.<br>Comparison of acute neurobehavioral and cholinesterase inhibitory effects of <i>N</i> -methylcarbamates in rat. Toxicol. Sci. 98:552-560.                                                                     |
| 12<br>13<br>14<br>15       | McFarlane, P., J.B. Sanderson, and S. Freestone. 1998. A randomized double blind ascending oral dose<br>study with methomyl to establish a no adverse effect level. Inveresk Clinical Research, Riccarton,<br>Edinburgh, Scotland. HLO-1998-00969. (Summarized in U.S. EPA 2005, MRID 44721401).                         |
| 16<br>17<br>18             | NIOSH (National Institute for Occupational Safety and Health). 2008. NIOSH Pocket Guide to Chemical Hazards. Available online: <u>http://www.cdc.gov/niosh/npgd0455.html</u> .                                                                                                                                           |
| 19<br>20<br>21             | NRC (National Research Council). 2001. Standing Operating Procedures for Developing Acute<br>Exposure Guideline Levels for Hazardous Chemicals. Washington, DC: National Academy Press.                                                                                                                                  |
| 22<br>23<br>24             | O'Neil, M.J., A. Smith, and P.E. Heckelman. 2001. Methomyl. The Merck Index. Whitehouse Station, NJ: Merck & Co., Inc., p. 6015.                                                                                                                                                                                         |
| 25<br>26<br>27<br>28       | Padilla, S., W. Setzer, R.S. Marshall, D. Hunter, P. Phillips, K. McDaniel, V.C. Moser, and A. Lowit.<br>2006. A dose-response study of the toxicity of a mixture of 7 <i>N</i> -methyl carbamates in adult, male<br>rats. Presented at the 45 <sup>th</sup> Annual Meeting of the Society of Toxicology, San Diego, CA. |
| 20<br>29<br>30<br>31<br>22 | Padilla, S., R.S. Marshall, D.L. Hunter, and A. Lowit. 2007. Time course of cholinesterase inhibition in<br>adult rats treated acutely with carbaryl, carbofuran, formetanate, methomyl, methiocarb, oxamyl, or<br>propoxur. Toxicol. Appl. Pharmacol. 219:202-209.                                                      |
| 32<br>33<br>34<br>35<br>36 | Panepinto, A.S. 1991. Acute Inhalation Toxicity Study with DPX-X1179-427 in Rats. Haskell<br>Laboratory Report No. 678-91. Haskell Laboratory for Toxicology and Industrial Medicine, Newark,<br>DE. (Same as DuPont 1991).                                                                                              |
| 37<br>38<br>39             | SDU Uitgevers. 2000. Nationale MAC List. Under the auspices of the Ministry of Social Affairs and Employment. The Netherlands: The Hague.                                                                                                                                                                                |
| 40<br>41<br>42<br>43       | Ta'naka, I., H. Igisu, J. Haratake, S. Cho, K. Mori, K. Fujishiro, N. Inoue, A. Horie, and T. Akiyama.<br>1987. Cumulative toxicity potential of methomyl aerosol by repeated inhalation. Am. Ind. Hyg. J.<br>48:330-334.                                                                                                |
| 44<br>45<br>46<br>47       | Tsatsakis, A.M., G.K. Bertsias, I.N. Mammas, I. Stiakakis, and D.B. Georgopoulos. 2001. Acute fatal poisoning by methomyl caused by inhalation and transdermal absorption. Bull. Environ. Contam. Toxicol. 66:415-420.                                                                                                   |
| 48<br>49<br>50             | U.S. EPA (U.S. Environmental Protection Agency). 1991. Methomyl. In Drinking Water Health<br>Advisory: Pesticides. Chelsea, MI: Lewis Publishers, pp. 521-539.                                                                                                                                                           |
| 51<br>52                   | U.S. EPA (U.S. Environmental Protection Agency). 1998. Reregistration Eligibility Decision (RED) for Methomyl. Available online: <u>www.epa.gov/pesticides/reregistration/REDs/methomyl_red.pdf</u> .                                                                                                                    |

U.S. EPA (U.S. Environmental Protection Agency). 2000. Office of Pesticide Programs Science Policy
 on The Use of Data on Cholinesterase Inhibition for Risk Assessments of Organophosphorous and
 Carbamate Pesticides. Washington, DC: U.S. Environmental Protection Agency. Available online:
 http://www.epa.gov/pesticides/trac/science/cholin.pdf.

# 6 7 U.S. EPA (U.S. Environmental Protection Agency). 2005. Data Evaluation Record: Methomyl/90301 8 (MRID 44721401). Available online: Regulations.gov/methomyl 90301. Citation: McFarlane et al. 9 1998. A randomized double blind ascending oral dose study with methomyl. Inveresk Clinical 10 Research, Riccarton, Edinburgh, Scotland. Laboratory Project ID: HLO-1998-00969, November 30, 11 1998.

- U.S. EPA (U.S. Environmental Protection Agency). 2007. Revised *N*-Methyl Carbamate Cumulative
   Risk Assessment. Office of Pesticide Programs. Available online:
   http://www.epa.gov/oppsrtd1/REDs/nmc\_revised\_cra.pdf.
- 16 17

| 1<br>2   | <b>APPENDIX A: Derivation of Methomyl AEGLs</b> |                                                                           |  |  |  |  |  |  |
|----------|-------------------------------------------------|---------------------------------------------------------------------------|--|--|--|--|--|--|
| 3        | •                                               |                                                                           |  |  |  |  |  |  |
| 4        | <b>Derivation of AEGL-1 Values</b>              |                                                                           |  |  |  |  |  |  |
| 5        |                                                 |                                                                           |  |  |  |  |  |  |
| 6        | No human inhalat                                | tion studies or adequately reported animal studies were located that      |  |  |  |  |  |  |
| 7        | reported effects consisten                      | t with the definition of the AEGL-1. Therefore, AEGL-1 values are not     |  |  |  |  |  |  |
| 8        | recommended.                                    |                                                                           |  |  |  |  |  |  |
| 9        |                                                 |                                                                           |  |  |  |  |  |  |
| 10       |                                                 |                                                                           |  |  |  |  |  |  |
| 11       |                                                 | Derivation of AEGL-2 Values                                               |  |  |  |  |  |  |
| 12       |                                                 |                                                                           |  |  |  |  |  |  |
| 13       | Key Study:                                      | DuPont. 1991. Acute Inhalation Toxicity Study with DPX-X1179-427 in       |  |  |  |  |  |  |
| 14       |                                                 | Rats. Haskell Laboratory Report No. 678-91. Haskell Laboratory for        |  |  |  |  |  |  |
| 15       |                                                 | Toxicology and Industrial Medicine, Newark, DE. (same as Panepinto 1991). |  |  |  |  |  |  |
| 10       | Toxicity and point:                             | AEGL 2 values divided by 2. The steep concentration response line curve   |  |  |  |  |  |  |
| 18       | Toxicity endpoint.                              | by the DuPont 1991 data justifies deriving AFGL-2 values by dividing the  |  |  |  |  |  |  |
| 19       |                                                 | AEGL-3 values by 3 (NRC 2001)                                             |  |  |  |  |  |  |
| 20       |                                                 |                                                                           |  |  |  |  |  |  |
| 21       | Time scaling                                    | See AEGL-3 derivation, next page                                          |  |  |  |  |  |  |
| 22       | C                                               |                                                                           |  |  |  |  |  |  |
| 23       | Uncertainty factors:                            | Total uncertainty factor: 15 (See AEGL-3 derivation, next page).          |  |  |  |  |  |  |
| 24       |                                                 |                                                                           |  |  |  |  |  |  |
| 25       | Calculations:                                   | AEGL-3 values divided by 3                                                |  |  |  |  |  |  |
| 26       | 10 min AECL 2                                   | $C = 21 \dots (m^3/2 - 7.0) \dots (m^3)$                                  |  |  |  |  |  |  |
| 21<br>28 | 10-min AEGL-2:                                  | C = 21  mg/m / 3 = 7.0  mg/m                                              |  |  |  |  |  |  |
| 28<br>29 | 30-min AEGL-2.                                  | $C = 21 \text{ mg/m}^3/3 = 7.0 \text{ mg/m}^3$                            |  |  |  |  |  |  |
| 30       | 50-mm / REGE-2.                                 |                                                                           |  |  |  |  |  |  |
| 31       | 1-h AEGL-2:                                     | $C = 17 \text{ mg/m}^3/3 = 5.7 \text{ mg/m}^3$                            |  |  |  |  |  |  |
| 32       |                                                 |                                                                           |  |  |  |  |  |  |
| 33       | 4-h AEGL-2:                                     | $C = 10 \text{ mg/m}^3/3 = 3.3 \text{ mg/m}^3$                            |  |  |  |  |  |  |
| 34       |                                                 |                                                                           |  |  |  |  |  |  |
| 35       | 8-h AEGL-2:                                     | $C = 5.2 \text{ mg/m}^3/3 = 1.7 \text{ mg/m}^3$                           |  |  |  |  |  |  |
| 36       |                                                 |                                                                           |  |  |  |  |  |  |

| 1<br>2                                       |                      | Derivation of AEGL-3 Values                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3                                            |                      |                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4<br>5<br>6<br>7                             | Key Study:           | DuPont. 1991. Acute Inhalation Toxicity Study with DPX-X1179-427 in<br>Rats. Haskell Laboratory Report No. 678-91. Haskell Laboratory for<br>Toxicology and Industrial Medicine, Newark, DE (same as Panepinto 1991).                                                                                                                                                                                                       |
| 8<br>9<br>10                                 | Toxicity endpoint:   | Threshold for lethality in rats at the BMCL <sub>05</sub> of 157.264 mg/m <sup>3</sup> calculated from the rat lethality data of DuPont (1991) (with omission of the highest value).                                                                                                                                                                                                                                        |
| 12<br>13<br>14                               | Time scaling         | $C^n x t = k$ where $n = 3$ and 1 for shorter and longer exposure durations, respectively                                                                                                                                                                                                                                                                                                                                   |
| 15<br>16<br>17<br>18<br>19<br>20<br>21<br>22 | Uncertainty factors: | Total uncertainty factor: 15<br>Interspecies: 5 – Based on differences in modeled values for red blood cell<br>cholinesterase activity inhibition between rats and humans following oral<br>ingestion of methomyl (U.S. EPA 2007).<br>Intraspecies: 3.05 – Based on comparative brain acetylcholinesterase activity<br>inhibition in post-natal day 11 juvenile rats and adult rats exposed to<br>methomyl (U.S. EPA 2007). |
| 22<br>23<br>24                               | Modifying factor:    | None applied                                                                                                                                                                                                                                                                                                                                                                                                                |
| 25<br>26<br>27                               | Calculations:        | $(157.264 \text{ mg/m}^3/15)^3 \text{ x } 240 \text{ minutes} = (27.66 \text{ x } 10^4) \text{ mg/m}^3 \cdot \text{min}$<br>$(157.264 \text{ mg/m}^3/15)^1 \text{ x } 240 \text{ minutes} = 2516.22 \text{ mg/m}^3 \cdot \text{min}$                                                                                                                                                                                        |
| 28<br>29<br>30                               | 10-min AEGL-3:       | $C = 21 \text{ mg/m}^3$ (set equal to the 30-minute value because of the long study duration)                                                                                                                                                                                                                                                                                                                               |
| 30<br>31<br>32                               | 30-min AEGL-3:       | $C = {}^{3}\sqrt{(27.66 \text{ x } 10^{4} \text{ mg/m}^{3} \cdot \text{min})} = 21 \text{ mg/m}^{3}$                                                                                                                                                                                                                                                                                                                        |
| 33<br>34                                     | 1-h AEGL-3:          | $C = {}^{3}\sqrt{(27.66 \text{ x } 10^{4} \text{ mg/m}^{3} \cdot \text{min})} = 17 \text{ mg/m}^{3}$                                                                                                                                                                                                                                                                                                                        |
| 35<br>36                                     | 4-h AEGL-3:          | $C = 157.264 \text{ mg/m}^3/15 = 10 \text{ mg/m}^3$                                                                                                                                                                                                                                                                                                                                                                         |
| 37<br>38                                     | 8-h AEGL-3:          | $C = 2516.22 \text{ mg/m}^3 \cdot \text{min}/480 \text{ min} = 5.2 \text{ mg/m}^3$                                                                                                                                                                                                                                                                                                                                          |



### 

### Data:

| For Category: 0 = No effect, 1 = Discomfort, 2 = Disabling, SL = Some Lethality, 3 = Lethal |         |                   |         |          |
|---------------------------------------------------------------------------------------------|---------|-------------------|---------|----------|
| Source                                                                                      | Species | mg/m <sup>3</sup> | Minutes | Category |
|                                                                                             |         |                   |         |          |
| NAC/AEGL-1                                                                                  |         | NR                | 10      | AEGL     |
| NAC/AEGL-1                                                                                  |         | NR                | 30      | AEGL     |
| NAC/AEGL-1                                                                                  |         | NR                | 60      | AEGL     |
| NAC/AEGL-1                                                                                  |         | NR                | 240     | AEGL     |
| NAC/AEGL-1                                                                                  |         | NR                | 480     | AEGL     |
|                                                                                             |         |                   |         |          |
| NAC/AEGL-2                                                                                  |         | 7.0               | 10      | AEGL     |
| NAC/AEGL-2                                                                                  |         | 7.0               | 30      | AEGL     |
| NAC/AEGL-2                                                                                  |         | 5.7               | 60      | AEGL     |
| NAC/AEGL-2                                                                                  |         | 3.3               | 240     | AEGL     |
| NAC/AEGL-2                                                                                  |         | 1.7               | 480     | AEGL     |
|                                                                                             |         |                   |         |          |
| NAC/AEGL-3                                                                                  |         | 21                | 10      | AEGL     |
| NAC/AEGL-3                                                                                  |         | 21                | 30      | AEGL     |
| NAC/AEGL-3                                                                                  |         | 17                | 60      | AEGL     |
| NAC/AEGL-3                                                                                  |         | 10                | 240     | AEGL     |
| NAC/AEGL-3                                                                                  |         | 5.2               | 480     | AEGL     |

| Ta'naka et al. 1987 | rat | 9.9 | 240 | 0 (clinical signs either absent  |
|---------------------|-----|-----|-----|----------------------------------|
|                     |     |     |     | or not described)                |
| DuPont 1966a        | rat | 36  | 240 | 1 (slight lacrimation,           |
|                     |     |     |     | salivation, mild dyspnea in 1    |
|                     |     |     |     | of 6 rats)                       |
|                     | rat | 44  | 240 | 1 (slight lacrimation,           |
|                     |     |     |     | salivation, mild dyspnea in 6    |
|                     |     |     |     | of 6 rats)                       |
| DuPont 1966b        | rat | 250 | 240 | 2 (lacrimation, salivation, mild |
|                     |     |     |     | to moderate dyspnea, tremor,     |
|                     |     | 200 | 240 | convulsions)                     |
|                     | rat | 300 | 240 | SL (death of 3 of 6 rats)        |
|                     | rat | 350 | 240 | 3 (death of 6 of 6 rats)         |
|                     | rat | 560 | 240 | 3 (death of 6 of 6 rats)         |
| DuPont 1967;        | rat | 97  | 240 | 2 (tremors, lacrimation,         |
| Hornberger 1967     |     |     |     | salivation)                      |
|                     | rat | 130 | 240 | 2 (tremors, lacrimation,         |
|                     |     |     |     | salivation)                      |
|                     | rat | 333 | 240 | SL (death of 1 of 6 rats)        |
|                     | rat | 420 | 240 | SL (death of 2 of 6 rats)        |
|                     | rat | 540 | 240 | SL (death of 5 of 6 rats)        |
|                     | rat | 600 | 240 | SL (death of 5 of 6 rats)        |
|                     | rat | 950 | 240 | 3 (death of 6 of 6 rats)         |
| DuPont 1991         | rat | 137 | 240 | 2 (diarrhea, ruffled fur)        |
|                     | rat | 181 | 240 | 2 (diarrhea, ruffled fur)        |
|                     | rat | 182 | 240 | SL (death of 1 of 10 rats))      |
|                     | rat | 232 | 240 | SL (death of 6 of 10 rats)       |
|                     | rat | 326 | 240 | SL (death of 7 of 10 rats)       |

Atmospheres of methomyl include powder (Ta'naka et al. 1987), vapor (DuPont 1966a), and mist or liquid aerosol (DuPont 1966b; 1967; 1991).

NR = not recommended. Absence of AEGL-1 values does not imply that exposure below AEGL-2 levels is without effect.

| A<br>Calculation of<br>Rat lethality da | Calculation of BMCL <sub>05</sub><br>Rat lethality data (DuPont 1991; Panepinto 1991) |                                          |                                                                          |  |  |
|-----------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------|--|--|
| Probit I<br>Input D<br>Gnuplo           | Model. (Versi<br>Data File: C:\E<br>ot Plotting File                                  | ion: 2.8; Dat<br>3MDS\UNSA<br>e: C:\BMDS | e: 02/20/2007)<br>AVED1.(d)<br>\UNSAVED1.plt<br>Thu Apr 23 09:12:05 2009 |  |  |
| BMDS MODE                               | L RUN                                                                                 |                                          |                                                                          |  |  |
| The form of th                          | he probability                                                                        | function is:                             | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                  |  |  |
| P[response] =<br>where CumNo            | Background<br>orm(.) is the c                                                         | + (1-Backgro<br>umulative no             | ound) CumNorm(Intercept+Slope*Log(Dose)),<br>ormal distribution function |  |  |
| Dependent va                            | riable – COU                                                                          | I IMNI3                                  |                                                                          |  |  |
| Independent va                          | radium = COL                                                                          |                                          |                                                                          |  |  |
| Slope paramet                           | ter is not restr                                                                      | ricted                                   |                                                                          |  |  |
| Stope parame                            |                                                                                       | leteu                                    |                                                                          |  |  |
| Total number                            | of observatio                                                                         | ns = 5                                   |                                                                          |  |  |
| Total number                            | of records wi                                                                         | th missing va                            | alues = 0                                                                |  |  |
| Maximum nui                             | mber of iterati                                                                       | ions = 250                               |                                                                          |  |  |
| Relative Func                           | tion Converge                                                                         | ence has been                            | n set to: 1e-008                                                         |  |  |
| Parameter Con                           | nvergence has                                                                         | s been set to:                           | 1e-008                                                                   |  |  |
|                                         | -                                                                                     |                                          |                                                                          |  |  |
| User has chos                           | en the log trai                                                                       | nsformed mo                              | del                                                                      |  |  |
|                                         |                                                                                       |                                          |                                                                          |  |  |
| Default Initia                          | ll (and Specifi                                                                       | ed) Paramete                             | er Values                                                                |  |  |
| Ba                                      | ckground                                                                              | = 0                                      | _                                                                        |  |  |
| in                                      | tercept                                                                               | = -19.747                                | 5                                                                        |  |  |
|                                         | slope                                                                                 | = 3.5909                                 | 2                                                                        |  |  |
| A                                       | C 1 - 4: M                                                                            | La fuiliar a C Da una                    | mater Fatimates                                                          |  |  |
| Asymptotic                              | dol noromotor                                                                         | aurix or Para                            | indices Estimated at a houndary point or                                 |  |  |
| have bee                                | an spacified by                                                                       | (s) -Dackgro                             | and have been estimated at a boundary point, or                          |  |  |
| nave bee                                | in specified b                                                                        | y the user, a                            | ind do not appear in the correlation matrix )                            |  |  |
|                                         | intercent                                                                             | slope                                    |                                                                          |  |  |
| intercept                               | 1                                                                                     | -1                                       |                                                                          |  |  |
| slope                                   | -1                                                                                    | 1                                        |                                                                          |  |  |
| <b>r</b> -                              |                                                                                       |                                          |                                                                          |  |  |
|                                         | Paramete                                                                              | er Estimates                             |                                                                          |  |  |
|                                         |                                                                                       |                                          |                                                                          |  |  |
|                                         |                                                                                       | 95.0%                                    | Wald Confidence Interval                                                 |  |  |
| Variable                                | Estimate                                                                              | Std. Err.                                | Lower Conf. Limit Upper Conf. Limit                                      |  |  |
| background                              | 0                                                                                     | NA                                       |                                                                          |  |  |

|                                              | METHOMYL                                                                     |                                                         |                                                                   |                            |                     | N                         | AC Prop       | oosed 1: June 2009/ Page 3 | 0 of 35 |
|----------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------|----------------------------|---------------------|---------------------------|---------------|----------------------------|---------|
| 1<br>2<br>3                                  | intercept<br>slope                                                           | -42.1<br>7.789                                          | 724 1<br>999 2.                                                   | 3.4943<br>52426            | -68.62<br>2.8425    | 207<br>3                  | -15.<br>12.73 | 7242<br>374                |         |
| 5<br>4<br>5<br>6                             | NA - Indicat<br>has no stand                                                 | tes that this ard error.                                | a parameter                                                       | has hit a bo               | und impl            | ied by s                  | ome in        | equality constraint an     | d thus  |
| 0<br>7<br>8                                  | Model                                                                        | Analysis<br>Log(                                        | s of Devian<br>likelihood)                                        | ce Table<br># Parar        | n's Devia           | ince Te                   | est d.f.      | P-value                    |         |
| 9<br>10<br>11<br>12<br>13                    | Fitted mod<br>Reduced m<br>AIC:                                              | lel -10<br>lodel -20<br>25.31                           | .6556<br>.2482<br>12                                              | 2<br>1                     | 1.349<br>20.53      | 926<br>345                | 3<br>4        | 0.7175<br>0.0003916        |         |
| 14<br>15<br>16<br>17                         | Dose E                                                                       | G<br>EstProb.                                           | oodness of<br>Expected                                            | Fit<br>Scaled<br>Observed  | Size                | Resid                     | lual          |                            |         |
| 18<br>19<br>20                               | 0.0000 137.0000 181.0000                                                     | 0.0000<br>0.0001                                        | 0.000<br>0.001                                                    | 0<br>0                     | 10<br>10<br>10      | 0.000                     | )<br>5        |                            |         |
| 21<br>22<br>23<br>24                         | 181.0000<br>182.0000<br>232.0000<br>Chi^2 = 0.9                              | 0.0408<br>0.0512<br>0.6016<br>8 d.f. =                  | 0.408<br>0.512<br>6.016<br>3 P-va                                 | $1 \\ 6 \\ 1ue = 0.805$    | 10<br>10<br>10<br>5 | -0.700<br>0.700<br>-0.011 | 1<br>)<br>[   |                            |         |
| 25<br>26<br>27<br>28<br>29<br>30<br>31<br>32 | Benchmar<br>Specified eff<br>Risk Type<br>Confidence<br>BMC0:<br><b>BMCI</b> | k Dose Con<br>fect =<br>= Ex<br>level =<br>5 =<br>205 = | mputation<br>0.05<br>tra risk<br>0.95<br>181.73<br><b>157.264</b> |                            |                     |                           |               |                            |         |
|                                              | 0.8                                                                          | Probit<br>BMD Lower Bound                               | Probit Mod                                                        | el with 0.95 Confidence Le | /el                 | · · · · · · ·             |               |                            |         |
|                                              | Laction Affected                                                             |                                                         |                                                                   | Т                          | Ţ                   | +                         |               |                            |         |

BMDL

150

BMD

200

0.2

0

09:12 04/23 2009

0

50

100

dose

| Probit M<br>Input D<br>Gnuplo                                       | Model. (Vers<br>pata File: C:\<br>t Plotting Fi               | sion: 2.8; Date<br>BMDS\UNSA<br>le: C:\BMDS\\      | : 02/20/2007)<br>VED1.(d)<br>JNSAVED1.plt<br>Thu App  | r 23 09:21:15 2009                        |  |
|---------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------|-------------------------------------------|--|
| BMDS MODEI                                                          | L RUN                                                         | ~~~~~~                                             | ~~~~~~~~~~                                            |                                           |  |
| The form of th<br>P[respor<br>CumNor<br>distributi                  | e probability<br>nse] = Backg<br>m(Intercept-<br>ion function | y function is:<br>ground + (1-Ba<br>+Slope*Log(Do  | uckground) *<br>ose)), where Cum                      | Norm(.) is the cumulative norma           |  |
| Dependent var                                                       | riable = COI                                                  | LUMN3                                              |                                                       |                                           |  |
| Independent variable = COLUMN1<br>Slope parameter is not restricted |                                                               |                                                    |                                                       |                                           |  |
| Total number                                                        | of observation                                                | ons = 5                                            |                                                       |                                           |  |
| Total number                                                        | of records w                                                  | ith missing val                                    | ues = 0                                               |                                           |  |
| Maximum nur                                                         | nber of itera                                                 | tions = $250$                                      |                                                       |                                           |  |
| Relative Funct                                                      | tion Converg                                                  | gence has been                                     | set to: 1e-008                                        |                                           |  |
| Parameter Cor                                                       | nvergence ha                                                  | as been set to: 1                                  | e-008                                                 |                                           |  |
| User has chose                                                      | en the log tra                                                | ansformed mod                                      | el                                                    |                                           |  |
| Defa                                                                | ult Initial (aı                                               | nd Specified) P                                    | arameter Values                                       |                                           |  |
| Bac                                                                 | ckground                                                      | = 0                                                |                                                       |                                           |  |
| Int                                                                 | tercept                                                       | = -19.74                                           | 75                                                    |                                           |  |
|                                                                     | Slope                                                         | = 3.59092                                          | 2                                                     |                                           |  |
| Asymptotic Corr<br>The model parar<br>specified by the              | relation Mat<br>meter(s) -ba<br>user, and de                  | rix of Paramete<br>ckground hav<br>o not appear in | er Estimates<br>e been estimated<br>the correlation m | at a boundary point, or have been atrix ) |  |
|                                                                     | intercept                                                     | slope                                              |                                                       |                                           |  |
| intercept                                                           | 1                                                             | -1                                                 |                                                       |                                           |  |
| slope                                                               | -1                                                            | 1                                                  |                                                       |                                           |  |
| -                                                                   |                                                               |                                                    |                                                       |                                           |  |
|                                                                     | Paramet                                                       | ter Estimates                                      |                                                       |                                           |  |
|                                                                     |                                                               | 95.0% Wald                                         | Confidence Inte                                       | rval                                      |  |
| Variable                                                            | Estimate                                                      | Std. Err.                                          | Lower Conf. Lin                                       | nit Upper Conf. Limit                     |  |
| background                                                          | 0                                                             | NA                                                 |                                                       |                                           |  |
| intercept                                                           | -42.1724                                                      | 13.4943                                            | -68.6207                                              | -15.7242                                  |  |

|                  | METHOMY                    | L                           |                      |                          |             | NAC I     | Proposed 1: June 200 | )9/ Page 32 of 35 |
|------------------|----------------------------|-----------------------------|----------------------|--------------------------|-------------|-----------|----------------------|-------------------|
| 1                | slope                      | e 7.78                      | 999 2.:              | 52426                    | 2.84253     | 12        | 2.7374               |                   |
| 2<br>3<br>4<br>5 | NA - Indic<br>thus has no  | ates that thi<br>standard e | s parameter<br>rror. | has hit a bo             | ound implie | ed by som | e inequality cons    | traint and        |
| 6                |                            | Analys                      | is of Devian         | ce Table                 |             |           |                      |                   |
| 7                | Model                      | Log                         | g(likelihood)        | # Param's                | Deviance    | Test d.f. | P-value              |                   |
| 8                | Full mo                    | del                         | -9.98095             | 5                        |             |           |                      |                   |
| 9                | Fitted mo                  | odel -                      | 10.6556              | 2                        | 1.34926     | 3         | 0.7175               |                   |
| 10               | Reduced                    | model .                     | -20.2482             | 1                        | 20.5345     | 4         | 0.0003916            |                   |
| 11               | AIC                        | 25.3                        | 112                  |                          |             |           |                      |                   |
| 12               |                            |                             |                      |                          |             |           |                      |                   |
| 13               |                            | (                           | Goodness of          | Fit                      |             |           |                      |                   |
| 14               |                            |                             |                      | Scale                    | ed          |           |                      |                   |
| 15               | Dose                       | EstProb.                    | Expected             | Observed                 | l Size      | Residual  |                      |                   |
| 10               | 0.0000                     | 0.0000                      | 0.000                | 0                        | 10          | 0.000     |                      |                   |
| 18               | 137.0000                   | 0.0001                      | 0.001                | 0                        | 10          | -0.025    |                      |                   |
| 19               | 181.0000                   | 0.0468                      | 0.468                | 0                        | 10          | -0.701    |                      |                   |
| 20               | 182.0000                   | 0.0512                      | 0.512                | 1                        | 10          | 0.700     |                      |                   |
| 21               | 232.0000                   | 0.6016                      | 6.016                | 6                        | 10          | -0.011    |                      |                   |
| 22               | Chi(2) = 0                 | 00 4f-                      | - 2 D.v.a            | $1_{110} = 0.905$        | 5           |           |                      |                   |
| 23<br>24         | $\operatorname{CHP} 2 = 0$ | .98 U.I                     | - 5 P-Va             | 100 - 0.805              | 5           |           |                      |                   |
| 25               | Benchma                    | ark Dose Co                 | mputation            |                          |             |           |                      |                   |
| 26               | Specified e                | effect =                    | 0.01                 |                          |             |           |                      |                   |
| 27               | Risk Type                  | = E                         | xtra risk            |                          |             |           |                      |                   |
| 28               | Confidence                 | e level =                   | 0.95                 |                          |             |           |                      |                   |
| 29               | BN                         | $AC_{01} =$                 | 166.508              |                          |             |           |                      |                   |
| 30               | BM                         | $1CL_{01} =$                | 133.852              |                          |             |           |                      |                   |
| 31               |                            |                             |                      |                          |             |           |                      |                   |
|                  |                            |                             | Probit Mo            | del with 0.95 Confidence | Level       |           |                      |                   |
|                  |                            | Pr                          | obit                 |                          |             |           |                      |                   |
|                  | 0.8                        | BMD Lower Bo                | und                  |                          |             | -         | T I                  |                   |



### APPENDIX D: Derivation Summary for Methomyl AEGLs Acute Exposure Guideline Levels for Methomyl (CAS Reg. No. 16752-77-5)

| AEGL-1 VALUES                          |                                   |                 |                 |                 |  |
|----------------------------------------|-----------------------------------|-----------------|-----------------|-----------------|--|
| 10-min                                 | 30-min                            | 1-h             | <b>4-h</b>      | 8-hour          |  |
| Not recommended                        | Not recommended                   | Not recommended | Not recommended | Not recommended |  |
| Key Reference: Insu                    | ifficient data                    |                 |                 |                 |  |
| Test Species/Strain/S                  | Sex/Number:                       |                 |                 |                 |  |
| <b>Exposure Route/Cor</b>              | ncentration/Duration:             |                 |                 |                 |  |
| Effects:                               |                                   |                 |                 |                 |  |
| <b>Endpoint/Concentra</b>              | Endpoint/Concentration/Rationale: |                 |                 |                 |  |
| Uncertainty Factors/Rationale:         |                                   |                 |                 |                 |  |
| Total uncertainty                      | factor:                           |                 |                 |                 |  |
| Interspecies:                          |                                   |                 |                 |                 |  |
| Intraspecies:                          |                                   |                 |                 |                 |  |
| Modifying Factor:                      |                                   |                 |                 |                 |  |
| Animal to Human Dosimetric Adjustment: |                                   |                 |                 |                 |  |
| Time Scaling:                          |                                   |                 |                 |                 |  |
| Data Adequacy:                         |                                   |                 |                 |                 |  |

Not recommended: absence of AEGL-1 values does not imply that exposure below AEGL-2 levels is without effect.

| 1 |
|---|
|   |
| T |
|   |

| AEGL-2 VALUES                                                                                                           |                                                                                                  |                      |                      |                      |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------|----------------------|----------------------|--|--|--|
| 10-min                                                                                                                  | 30-min                                                                                           | 1-h                  | <b>4-h</b>           | 8-h                  |  |  |  |
| $7.0 \text{ mg/m}^3$                                                                                                    | $7.0 \text{ mg/m}^3$                                                                             | $5.7 \text{ mg/m}^3$ | $3.3 \text{ mg/m}^3$ | $1.7 \text{ mg/m}^3$ |  |  |  |
| Key Reference: DuP                                                                                                      | Key Reference: DuPont. 1991. Acute Inhalation Toxicity Study with DPX-X1179-427 in Rats. Haskell |                      |                      |                      |  |  |  |
| Laboratory Report No. 678-91. Haskell Laboratory for Toxicology and Industrial Medicine,                                |                                                                                                  |                      |                      |                      |  |  |  |
| Newark, DE.                                                                                                             |                                                                                                  |                      |                      |                      |  |  |  |
| Test Species/Strain/Number: Rat/CrL-CD/6 males per group                                                                |                                                                                                  |                      |                      |                      |  |  |  |
| Exposure Route/Concentration/Duration: Inhalation/137, 181, 182, 232, and 326 mg/m <sup>3</sup> /4 hours                |                                                                                                  |                      |                      |                      |  |  |  |
| Effects: acetylcholinesterase activity inhibition estimated at 1/3 of the AEGL-3 values.                                |                                                                                                  |                      |                      |                      |  |  |  |
| Endpoint/Concentration/Rationale: One-third of the AEGL-3 values based on the steep concentration-                      |                                                                                                  |                      |                      |                      |  |  |  |
| response curve in the key AEGL-3 study (NRC 2001).                                                                      |                                                                                                  |                      |                      |                      |  |  |  |
| Uncertainty Factors/Rationale:                                                                                          |                                                                                                  |                      |                      |                      |  |  |  |
| Total uncertainty factor: 15 (See AEGL-3 summary)                                                                       |                                                                                                  |                      |                      |                      |  |  |  |
| Interspecies:                                                                                                           |                                                                                                  |                      |                      |                      |  |  |  |
| Intraspecies:                                                                                                           |                                                                                                  |                      |                      |                      |  |  |  |
| Modifying Factor: None applied                                                                                          |                                                                                                  |                      |                      |                      |  |  |  |
| Animal to Human Dosimetric Adjustment: Not applicable                                                                   |                                                                                                  |                      |                      |                      |  |  |  |
| Time Scaling: See AEGL-3 summary                                                                                        |                                                                                                  |                      |                      |                      |  |  |  |
| Data Adequacy: Four studies performed in the same laboratory at different times provided consistent,                    |                                                                                                  |                      |                      |                      |  |  |  |
| concentration-related results, regardless of the physical state of the test material. The values are supported by       |                                                                                                  |                      |                      |                      |  |  |  |
| the 4-hour vapor study of DuPont 1966a in which rats inhaling 44 mg/m <sup>3</sup> for 4 hours exhibited clinical signs |                                                                                                  |                      |                      |                      |  |  |  |
| consistent with the definition of the AEGL-2.                                                                           |                                                                                                  |                      |                      |                      |  |  |  |

| 1 |
|---|
|   |
|   |
|   |

| AEGL-3 VALUES                                                                                                              |                          |                        |                     |                      |  |  |
|----------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------|---------------------|----------------------|--|--|
| 10-min                                                                                                                     | 30-min                   | 1-h                    | <b>4-h</b>          | 8-h                  |  |  |
| $21 \text{ mg/m}^3$                                                                                                        | $21 \text{ mg/m}^3$      | $17 \text{ mg/m}^3$    | $10 \text{ mg/m}^3$ | $5.2 \text{ mg/m}^3$ |  |  |
| Key References: Du                                                                                                         | Pont. 1991. Acute Inhala | tion Toxicity Study wi | th DPX-X1179-427    | in Rats. Haskell     |  |  |
| Laboratory Report No. 678-91. Haskell Laboratory for Toxicology and Industrial Medicine, Newark,                           |                          |                        |                     |                      |  |  |
| DE.                                                                                                                        |                          |                        |                     |                      |  |  |
| Test Species/Strain/Number: Rat/Crl-CD/groups of 5 male and 5 female                                                       |                          |                        |                     |                      |  |  |
| Exposure Route/Concentration/Duration: Inhalation/137, 181, 182, 232, or 326 mg/m <sup>3</sup> liquid aerosol/ 4           |                          |                        |                     |                      |  |  |
| hours                                                                                                                      |                          |                        |                     |                      |  |  |
| Effect: Concentration-related clinical signs and mortality                                                                 |                          |                        |                     |                      |  |  |
| Endpoint/Concentration/Rationale: Threshold for lethality, BMCL <sub>05</sub> calculated using the benchmark dose          |                          |                        |                     |                      |  |  |
| computer program (highest data point omitted for better curve fitting).                                                    |                          |                        |                     |                      |  |  |
| Uncertainty Factors/Rationale:                                                                                             |                          |                        |                     |                      |  |  |
| Total uncertainty factor: 15                                                                                               |                          |                        |                     |                      |  |  |
| Interspecies: 5, Based on differences in modeled values for red blood cell cholinesterase activity                         |                          |                        |                     |                      |  |  |
| inhibition between rats and humans following oral ingestion of methomyl (U.S. EPA 2007).                                   |                          |                        |                     |                      |  |  |
| Intraspecies: 3.05, Based on comparative brain acetylcholinesterase activity inhibition in post-natal day 11               |                          |                        |                     |                      |  |  |
| juvenile rats and adult rats exposed to methomyl (U.S. EPA 2007).                                                          |                          |                        |                     |                      |  |  |
| Modifying Factor: None applied                                                                                             |                          |                        |                     |                      |  |  |
| Animal to Human Dosimetric Adjustment: Not applicable                                                                      |                          |                        |                     |                      |  |  |
| <b>Time Scaling</b> : $C^n x t = k$ where $n = 3$ and 1 for shorter and longer exposure durations, respectively (NRC 2001) |                          |                        |                     |                      |  |  |
| Data Adequacy: Four studies performed in the same laboratory but at different times provided consistent,                   |                          |                        |                     |                      |  |  |
| concentration-related results, regardless of the physical state of the test material.                                      |                          |                        |                     |                      |  |  |