

US Environmental Protection Agency Office of Pesticide Programs

Office of Pesticide Programs
Microbiology Laboratory
Environmental Science Center, Ft. Meade, MD
Standard Operating Procedure for
AOAC Sporicidal Activity of Disinfectants Test (Bacillus \times porcelain component only)

SOP Number: MB-15-03
Date Revised: 10-28-14

SOP Number	MB-15-03
Title	Standard Operating Procedure for the AOAC Sporicidal Activity of Disinfectants Test (Bacillus \times porcelain component only)
Scope	This SOP describes the Sporicidal Activity of Disinfectants Test - Method II methodology used to determine the sporicidal efficacy of liquid sporicidal agents against Bacillus on hard surfaces (porcelain carriers).
Application	The method is based on AOAC method 966.04 (see 15.1). In most cases, Bacillus subtilis (ATCC \#19659) is the test microbe selected for sporicidal testing; however, if requested, other Bacillus species may also be used. Testing of suture loops and Clostridium is not addressed in this SOP.

	Approval	Date
SOP Developer:		
	Print Name:	
SOP Reviewer		
	Print Name:	
Quality Assurance Unit		
	Print Name:	
Branch Chief		
	Print Name:	

Date SOP issued:	
Controlled copy number:	
Date SOP withdrawn:	

SOP No. MB-15-03
Date Revised 10-28-14
Page 2 of 20

TABLE OF CONTENTS

Contents
Page Number

1.	DEFINITIONS	3
2.	HEALTH AND SAFETY	3
3.	PERSONNEL QUALIFICATIONS AND TRAINING	3
4.	INSTRUMENT CALIBRATION	3
5.	SAMPLE HANDLING AND STORAGE	3
6.	QUALITY CONTROL	3
7.	INTERFERENCES	3
8.	NON-CONFORMING DATA	3
9.	DATA MANAGEMENT	3
10.	CAUTIONS	3
11.	SPECIAL APPARATUS AND MATERIALS	6
12.	PROCEDURE AND ANALYSIS	17
13.	DATA ANALYSIS/CALCULATIONS	17
14.	FORMS AND DATA SHEETS	3
15.	REFERENCES	3

$\left.\begin{array}{|l|l|}\hline \text { 1. } \begin{array}{l}\text { Definitions }\end{array} & \begin{array}{l}\text { Additional abbreviations/definitions are provided in the text. } \\ \text { 1. AOAC = AOAC INTERNATIONAL } \\ \text { 2. CFU = Colony Forming Unit }\end{array} \\ \text { 3. References to water mean reagent-grade water, except where otherwise } \\ \text { specified. }\end{array}\right]$

SOP No. MB-15-03
Date Revised 10-28-14
Page 4 of 20

	around $50^{\circ} \mathrm{C}$. Adjust pH to 6.8 ± 0.2 with 1 N HCl or 1 N NaOH , if necessary. Filter through paper (e.g., Whatman filter paper No. 4). Dispense 10 mL portions into $20 \times 150 \mathrm{~mm}$ culture tubes or 20 mL portions into $25 \times 150 \mathrm{~mm}$ culture tubes. Dehydrated nutrient broth may be substituted - prepare according to the manufacturer's instructions. b. Nutrient agar. For stock cultures slants. Add 1.5% (w/v) Bactoagar to unsterilized nutrient broth. Boil mixture until agar is dissolved. Adjust pH to 7.2 ± 0.2 if necessary. Dispense 5 mL portions into $16 \times 100 \mathrm{~mm}$ screw cap tubes. Larger tubes may be used as well. Autoclave for 20 min at $121^{\circ} \mathrm{C}$. Remove from autoclave and slant tubes to form agar slants. c. Nutrient agar with $5 \mu \mathrm{~g} / \mathrm{mL} \mathrm{MnSO} 4_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ (amended nutrient agar). For spore production. Suspend 11.5 g nutrient agar in 495 mL water, add $5 \mathrm{~mL} 500 \mathrm{ppm} \mathrm{MnSO} 4: \mathrm{H}_{2} \mathrm{O}$. Dissolve by boiling. Adjust pH to 6.8 ± 0.2 if necessary. Autoclave for 15 min at $121^{\circ} \mathrm{C}$. Pour agar into plates. d. Trypticase soy agar (TSA). Suspend 40 g dehydrated trypticase soy agar in 1 L water and heat gently while stirring. Boil one min or until completely dissolved. Adjust pH to 7.3 ± 0.2. Autoclave 15 min at $121^{\circ} \mathrm{C}$. Pour agar into plates. e. Fluid thioglycollate medium (FTM). Suspend 29.5 g of dehydrated fluid thioglycollate medium in 1 L water. Heat to boiling to dissolve completely. Adjust pH to 7.1 ± 0.2 if necessary. Dispense 10 mL portions into $20 \times 150 \mathrm{~mm}$ culture tubes and autoclave for 15 min at $121^{\circ} \mathrm{C}$. Store at room temperature. Protect from light. Note: If after autoclaving the aerated portion of media consumes more than one third of tube, media must be re-boiled by placing tubes in beaker of boiling water. Media can only be re-boiled once. f. Fluid thioglycollate medium with 1 M NaOH (modified FTM). For subculturing spores exposed to 2.5 M HCl . Suspend 29.5 g of fluid thioglycollate medium in 1 L water. Heat boiling to dissolve completely. Cool and adjust pH to 7.1 ± 0.2 if necessary. Add 20 mL 1 M NaOH , mix well. Check final pH and record (pH between 8 and 9 is typical). Dispense 10 mL into $20 \times 150 \mathrm{~mm}$ culture tubes and autoclave for 15 min at $121^{\circ} \mathrm{C}$. Store at room temperature. Protect from light.

$\left.\begin{array}{|l|l|}\hline & \begin{array}{l}\text { 14. Filter paper. Whatman filter paper \#2; placed in Petri dishes for } \\ \text { storing carriers. } \\ \text { 15. Test tube racks. Any convenient style. } \\ \text { 16. Inoculating loop. Any convenient inoculation/transfer loop for culture } \\ \text { transfer. }\end{array} \\ \text { 17. Wire hook. For carrier transfer. Make } 3 \text { mm right angle bend at end of } \\ \text { 50-75 mm nichrome wire No. 18 B\&S gage. Have other end in } \\ \text { suitable holder. }\end{array}\right\}$

SOP No. MB-15-03
Date Revised 10-28-14
Page 8 of 20

	b. Incubate the plates at $36 \pm 1^{\circ} \mathrm{C}$ for $24 \pm 2 \mathrm{~h}(18-24 \mathrm{~h}$ for use in the VITEK 2 Compact). Follow steps outlined in section 12.2 b to confirm the identity of the organism.
12.5 Culture Maintenance	a. Every 30 ± 2 days inoculate a new set of stock culture tubes from a current stock culture tube. Use the same refrigerated stock culture tube used for Monthly QC described in section 12.4a to inoculate 6 new stock cultures tubes as outlined in section 12.3a. b. Incubate the new stock cultures as indicated in section 12.3a. c. Following the incubation period, store the stock cultures at $2-5^{\circ} \mathrm{C}$ for 30 ± 2 days.
12.6 Production of B. subtilis Spore Suspension	a. Using growth from a stock culture tube, inoculate 10 mL tubes (e.g., 2 tubes, depending on the amount of spore preparation desired) of nutrient broth and incubate tubes on an orbital shaker for $24 \pm 2 \mathrm{~h}$ at approximately 150 rpm at $36 \pm 1^{\circ} \mathrm{C}$. Use this culture to inoculate amended nutrient agar plates. Inoculate each plate with $500 \mu \mathrm{~L}$ of broth culture and spread the inoculum with a sterile bent glass rod or suitable spreading device. In addition, verify the purity of this culture by streak isolating on amended nutrient agar (incubate at $36 \pm 1^{\circ} \mathrm{C}$ for $24 \pm 2 \mathrm{~h}$). Wrap each plate with parafilm or place in plastic bags. Incubate plates inverted for $12-14$ days at $36 \pm 1^{\circ} \mathrm{C}$. b. Following incubation, harvest the spores by adding 10 mL cold sterile water to each plate. Using a spreader (e.g. bent glass rod), remove growth from plates and pipet suspensions into 15 mL sterile conical tubes (10 plates $=14$ tubes, $\sim 10 \mathrm{~mL}$ each). Centrifuge tubes at $5,000 \mathrm{rpm}(4,500 \times \mathrm{g})$ for approximately 10 minutes at room temperature. Remove and discard supernatant. Re-suspend pellet in each tube with 10 mL cold sterile water and centrifuge at $5,000 \mathrm{rpm}(4,500 \times \mathrm{g})$ for approximately 10 minutes. Remove and discard supernatant. Repeat twice. Re-suspend the pellet in each tube with 10 mL sterile water. Store the spore suspension at $2-5^{\circ} \mathrm{C}$. c. Examine spore suspension with a phase contrast microscope or by staining to assess quality of the spores. Examine a minimum of five fields and determine ratio of spores to vegetative cells (or sporangia). Percentage of spores versus vegetative cells should be at least 95%. Spore suspension from multiple plates can be combined and re-aliquoted into tubes for uniformity.

	d. Prior to inoculation of carriers, determine spore titer of the concentrated spore suspension by plating $100 \mu \mathrm{~L}$ aliquots of serial dilutions (e.g., 1.0×10^{-5} through 1.0×10^{-7}) using spread plating on TSA plates or another comparable validated enumeration procedure. Incubate plates for $24 \pm 2 \mathrm{~h}$ at $36 \pm 1^{\circ} \mathrm{C}$ and determine titer. Note: When harvested and processed, ten plates of amended nutrient agar should provide $80-100 \mathrm{~mL}$ of concentrated spore suspension (approx. $10^{9} \mathrm{CFU} / \mathrm{mL}$). Diluting the suspension prior to carrier inoculation will be necessary; a titer of 1.0×10^{8} to 5.0 $\times 10^{8} \mathrm{CFU} / \mathrm{mL}$ should be adequate to achieve the target carrier count.
12.7 Preparation of Porcelain Carriers	a. Prior to use, examine porcelain carriers individually and discard those with scratches, nicks, spurs, or discolorations. b. Rinse unused carriers gently in water three times to remove loose material and drain. c. Place rinsed carriers into Petri dishes matted with 2 layers of filter paper in groups of 15 carriers per Petri dish or place carriers into $25 \times 150 \mathrm{~mm}$ tubes (10 carriers per tube). d. Sterilize 20 min at $121^{\circ} \mathrm{C}$. Cool and store at room temperature. Note: Handle porcelain carriers with care when placing in Petri dishes. Minimize carrier movement and avoid excessive contact between carriers that might result in chips and cracks. Wash carriers with Triton X-100 and rinse with water 4 times for reuse.
12.8 Inoculation of Porcelain Carriers	a. Dilute the concentrated spore suspension as necessary with sterile water to achieve carrier counts between 1.0×10^{5} and approximately 1.0×10^{6} spores/carrier. Dispense 10 mL diluted spore suspension into an appropriate number of $25 \times 150 \mathrm{~mm}$ tubes. b. Add 10 sterile carriers to each tube containing 10 mL spore suspension, slightly agitate, and let stand $10-15 \mathrm{~min}$. c. Remove each carrier with sterile hook and place upright in sterile Petri dish lined with two sheets of filter paper, no more than 30 carriers per Petri dish. d. Air dry in biological safety cabinet for approximately $30 \pm 2 \mathrm{~min}$. Place Petri dishes containing inoculated carriers in vacuum desiccator containing CaCl_{2} and draw vacuum of $69 \mathrm{~cm}\left(27^{\prime \prime}\right) \mathrm{Hg}$. e. Dry carriers under vacuum for $24 \pm 2 \mathrm{~h}$ before use in HCl resistance, efficacy testing or carrier counts. Maintain under

		vacuum for up to three months. f. Carriers may be used after three months if they meet the acceptable HCl resistance and carrier count criteria. Inoculated carriers should not be used after one year of storage. Sterilize and reuse if necessary.		
12.9	Spore Enumeration (carrier counts)	a. Prior to use, determine the carrier counts for each preparation of carriers. Assay 3 to 5 randomly selected carriers per preparation. b. Place each inoculated carrier into a 50 mL plastic, polypropylene conical centrifuge tube containing 10 mL of sterile water. c. Sonicate carriers for $5 \mathrm{~min} \pm 30 \mathrm{~s}$. Note: For sonication, place tubes into an appropriately sized glass beaker with tap water to the level of sterile water in the tubes. Place beaker in sonicator so that water level in the beaker is even with water level fill line on sonicator tank. Fill tank with tap water to water level fill line. Suspend beaker in sonicator tank so it does not touch bottom of tank and so all three water levels (inside test tubes, inside beaker, and sonicator tank) are the same. d. Following sonication, vortex tubes for $2 \mathrm{~min} \pm 5 \mathrm{~s}$. e. Dilute spore suspensions to 10^{-3} by transferring 1 mL aliquots to tubes containing 9 mL sterile water. i. Alternatively, the water containing the carriers may be pooled after sonication of each carrier. An aliquot of the pooled water ($30-50 \mathrm{~mL}$) will be serially diluted and plated, and the average carrier count per set will be calculated. f. Plate $100 \mu \mathrm{~L}$ of the 10^{0} (tube with the carrier) through the 10^{-3} dilution in duplicate using spread plating with TSA. Invert plates and incubate for $24-48 \mathrm{~h}$ at $36 \pm 1^{\circ} \mathrm{C}$. i. Alternatively, 3M Petrifilm AC Plates may be used for enumeration of the test organism. Dilute the spore suspensions through 10^{-4} and plate 1 mL aliquots on the Petrifilm. Note: A culture purity check should be conducted on one dilution of one carrier. g. Count colonies (by hand or with colony counter). Record all counts less than 300 and use those counts for enumeration. Report plates with colony counts over 300 as TNTC (Too		

	Numerous to Count). Average spore counts per carrier should be between 1.0×10^{5} and approximately 1.0×10^{6} spores/carrier. Do not use carriers with counts outside this range.
12.10 HCl Resistance	a. Equilibrate water bath to $20 \pm 1^{\circ} \mathrm{C}$. Pipet 10 mL of 2.5 M HCl into two $25 \times 100 \mathrm{~mm}$ tubes, place into water bath, and allow to equilibrate. Start timer and rapidly transfer 4 inoculated penicylinders into a tube with 2.5 M HCl using flamed hooks or forceps. Do not allow carriers or transfer device to contact inside of wall of acid tube. b. Transfer individual carriers after $2,5,10$, and 20 minutes of HCl exposure to a separate tube of modified FTM. Rotate each tube vigorously by hand for approximately 20 s and then transfer carrier to a second tube of modified FTM. c. For viability control, place one unexposed inoculated carrier in a separate tube of modified FTM. For media sterility, use one tube of modified FTM. d. Incubate all test and control tubes for 21 days at $36 \pm 1^{\circ} \mathrm{C}$. Record results as growth $(+)$ or no growth (0) at each time period. Spores should resist HCl for ≥ 2 minutes to be qualified as resistant test spores. Discard carriers if not resistant and repeat preparation of carriers as previously described.
12.11 Efficacy Test	a. Prepare disinfectant samples according to MB-22. For a 30carrier test, place 10 mL product at dilution recommended for use or under investigation into each of six $25 \times 150 \mathrm{~mm}$ or 25×100 mm test tubes, or use appropriate number of tubes assuming 5 test carriers per tube of test chemical. b. Place tubes in $20 \pm 1^{\circ} \mathrm{C}$ water bath and let equilibrate to temperature. Using a sterile hook (or forceps), transfer inoculated carriers sequentially at 2 minute intervals in groups of 5 from Petri dish to test tubes containing sporicidal agent. Use a certified timer to monitor time. i. Flame hook and allow cooling after each transfer. When lowering carriers into test tube, neither carriers nor wire hook may touch sides of tubes. ii. If interior sides are touched, note tube number - do not count carrier set if any carrier from that group of 5 yields a positive result. Testing another set of five carriers is recommended.

iii. Carriers must be deposited into test tubes within $\pm 5 \mathrm{~s}$ of the prescribed drop time. Return tubes to water bath immediately after adding carriers.
c. After contact period has been achieved, transfer carriers in same sequential timed fashion into primary subculture tubes containing appropriate neutralizer (10 mL in $20 \times 150 \mathrm{~mm}$ test tubes).
i. Remove the carriers one at a time from the test tube with sterile hook, tap against interior side of tube to remove excess sporicidal agent, and transfer into neutralizer tube (primary tube).
ii. All five carriers must be transferred during each 2 minute interval. Flame hook between each carrier transfer. Move remaining carriers into their corresponding neutralizer tubes at appropriate time.
iii. Carriers may touch interior sides of neutralizer tube during transfer, but contact should be minimized.
d. After each carrier is deposited, recap neutralizer tube and gently shake to facilitate adequate mixing and efficient neutralization.
e. Within one hour from when last carrier was deposited into primaries, transfer carriers using sterile wire hook to second subculture tube (secondary tube) containing 10 mL of appropriate recovery medium, one carrier per tube.
i. Move carriers in order, but movements do not have to be timed. Gently shake entire rack of secondary tubes after all carriers have been transferred.
f. Incubate primary (neutralizer) and secondary subculture tubes for 21 days at $36 \pm 1^{\circ} \mathrm{C}$. Report results as growth (+) or no growth (0).
i. A positive result is one in which medium appears turbid. A negative result is one in which medium appears clear. Shake each tube prior to recording results to determine presence or absence of growth/turbidity.
ii. Primary and secondary subculture tubes for each carrier represent a "carrier set". A positive result in either primary or secondary subculture tube is considered a positive result for the carrier set.
g. Media sterility controls and system controls (check for aseptic technique during carrier transfer process) are recommended.

	i. ii ii iv v h. P p p us i.	i. ii iii	For media controls, incubate 1-3 unopened subculture medium tubes with the test sample tubes for 21 days at $36 \pm 1^{\circ} \mathrm{C}$. For system controls, use sterile forceps or needle hooks to transfer 3 sterile carriers into a tube of test chemical. Transfer system control carriers to neutralizer medium as follows: at start of sample test (prior to first tube), transfer 1 sterile carrier to tube of neutralizer medium. After one half of test carriers have been transferred to neutralizer tubes, transfer a second sterile carrier to tube of neutralizer medium. After all test carriers (last tube) have been transferred to neutralizer tubes, transfer third sterile carrier to tube of neutralizer medium. Transfer system control carriers to secondary subculture medium as follows: immediately prior to initiating transfer of test carriers into secondary subculture medium tubes, transfer first system control sterile carrier from neutralizer medium to tube of subculture medium. After one half of test carriers have been transferred to secondary subculture medium tubes, transfer second system control sterile carrier to tube of subculture medium. After all test carriers have been transferred to secondary subculture medium tubes, transfer third system control sterile carrier to tube of subculture medium. For each test, include a positive carrier control by placing one inoculated carrier into tube of secondary subculture medium. Incubate controls and test sample tubes together for 21 days at $36 \pm 1^{\circ} \mathrm{C}$. identification confirmation on a minimum of three carrier sets per test, if available, using Gram stain and/or on TSA. Additional confirmation may be performed ITEK, API analysis or comparable method. If fewer than three positive carrier sets, confirm growth from each positive carrier set. If both tubes are positive in carrier set, select only one tube for confirmatory testing. For tests with 20 or more positive carrier sets, confirm at least 20% by Gram stain. If Gram stains are performed from growth taken directly from positive tubes, the staining should be performed within 5-7 days of

	conducting the efficacy test. See section 12.2 d . for Gram stain reaction and colony characteristics.
12.12 Neutralization Confirmation Procedure	a. A neutralization confirmation test must be performed in advance or in conjunction with efficacy testing. This assay is designed to simulate the conditions (i.e., neutralizer, subculture medium, contact time, diluent, concentration of test substance) of the efficacy test and to demonstrate the recovery of a low level of spores (e.g., 5-100). Diluted inoculum (e.g., spores of B. subtilis) is added directly to the various sets of subculture media tubes (see Table 1). This assay provides for a quantitative approach to assessing the effectiveness of the neutralizer and any bacteriostatic action resulting from the neutralizer itself or neutralizer-disinfectant interactions. b. Produce a spore preparation according to the procedure for amended nutrient agar. Harvest growth from plates (e.g., five plates) per the method, except re-suspend pellet after final centrifugation step in approximately 100 mL aqueous (40\%) ethanol. i. Determine spore count by serial dilution and plating on TSA. Desirable target of the initial working suspension is 1.0×10^{8} to $1.0 \times 10^{9} \mathrm{CFU} / \mathrm{mL}$. The suspension may require adjustment to reach target titer. ii. Prepare serial ten-fold dilutions of the inoculum in sterile water out to 10^{-7}. Use $100 \mu \mathrm{~L}$ aliquots of the $10^{-5}, 10^{-6}$ and 10^{-7} dilutions to inoculate the neutralizer and subculture media tubes - the target number of spores to be delivered per tube in this assay is 5-100 per tube. iii. Determine spore titer by plating (spread plate or pour plate) each of three dilutions in duplicate on TSA agar. Incubate plates inverted for $24-48 \mathrm{~h}$ at $36 \pm 1^{\circ} \mathrm{C}$. Count colonies (by hand or with colony counter). Report plates with colony counts over 300 as TNTC. Note: A standardized spore preparation adjusted to deliver $5-100$ spores $/ \mathrm{mL}$ may be substituted for the three dilutions of spore inoculum. In addition, spores sheared from inoculated carriers may be used as a working suspension. c. Use 5 sterile porcelain carriers (only 3 to be used in the assay). Within 5 seconds, place a set of 5 carriers into a test tube ($25 \times$ 150 mm or $25 \times 100 \mathrm{~mm}$) containing test chemical; transfer

Table 1. Neutralization confirmation procedure - inoculating treatment and control tubes with diluted spore suspension*

Treatment	Dilution \& Tube \#
Neutralizer-Primary Subculture Treatment	$100 \mu \mathrm{~L}$ of $10^{-5} \rightarrow$ Tube 1 $100 \mu \mathrm{~L}$ of $10^{-6} \rightarrow$ Tube 2 $100 \mu \mathrm{~L}$ of $10^{-7} \rightarrow$ Tube 3
Secondary Subculture Treatment (with Carrier)	$100 \mu \mathrm{~L}$ of $10^{-5} \rightarrow$ Tube 1 $100 \mu \mathrm{~L}$ of $10^{-6} \rightarrow$ Tube 2 $100 \mu \mathrm{~L}$ of $10^{-7} \rightarrow$ Tube 3
Neutralizer-Primary Inoculated Control	$100 \mu \mathrm{~L}$ of $10^{-5} \rightarrow$ Tube 1 $100 \mu \mathrm{~L}$ of $10^{-6} \rightarrow$ Tube 2 $100 \mu \mathrm{~L}$ of $10^{-7} \rightarrow$ Tube 3
Secondary Subculture	$100 \mu \mathrm{~L}$ of $10^{-5} \rightarrow$ Tube 1 $100 \mu \mathrm{~L}$ of $10^{-6} \rightarrow$ Tube 2 Inoculated Control

*Use of 10^{-5} through 10^{-7} based on an approx. starting suspension of 10^{8} spores $/ \mathrm{mL}$
i. Confirm a minimum of one positive per treatment and control (if available) using Gram staining and colony morphology on TSA, see section 12.2 d . For each treatment and control group, conduct confirmation testing on growth from tube with fewest spores delivered.
j. Growth in the inoculated controls verifies the presence of the spores, performance of the media, and provides a basis for comparison of growth in the neutralizer and subculture treatment tubes.
k. The occurrence of growth in the Neutralizer/Primary Subculture and Secondary Subculture treatment tubes is used to assess the effectiveness of the neutralizer. No growth or growth only in tubes which received a high level of inoculum (e.g., the dilution with plate counts which are too numerous to count) indicates poor neutralization and/or presence of bacteriostatic properties of the neutralizer or neutralizer-disinfectant interactions.

1. For a neutralizer to be deemed effective, growth must occur in the Secondary Subculture treatment tubes which received lower levels of inoculum (e.g., 5-100 CFU/mL).
m. Growth in the Secondary Subculture inoculated Control verifies the presence of the spores, performance of the media, and provides a basis for comparison of growth in the neutralizer and subculture treatment tubes. No growth or only growth in tubes

	which received high levels of inoculum (e.g., a dilution with plate counts which are too numerous to count) indicates poor media performance. n. Growth in the Neutralizer-Primary inoculated Control should be comparable to the Secondary Subculture inoculated Control if the neutralizer is the same as the secondary subculture media. There may be cases when the neutralizer is significantly different from the secondary subculture media. In these cases, growth may not be comparable to the Secondary Subculture inoculated Control. o. The Neutralizer-Primary and Secondary Subculture uninoculated Control tubes are used to determine sterility, and must show no growth for the test to be valid.
13. Data Analysis/ Calculations	13.1 Data will be recorded on data sheets (see section 14). Calculations will be computed using a Microsoft Excel spreadsheet (see section 14). Electronic copies of the spreadsheet as well as hard copies will be retained. 13.2 To calculate CFU/mL per carrier: $\frac{\left(\text { avg. CFU for } 10^{-w}\right)+\left(\text { avg. CFU for } 10^{-x}\right)+\left(\text { avg. CFU for } 10^{-y}\right)+\left(\text { avg. CFU for } 10^{-z}\right)}{10^{-w}+10^{-x}+10^{-y}+10^{-z}}$ where $10^{-\mathrm{w}}, 10^{-\mathrm{x}}, 10^{-\mathrm{y}}$, and $10^{-\mathrm{z}}$ are the dilutions plated. In the event that one or more dilutions yield plate counts greater than 300 , those counts and their corresponding dilutions will not be used in the calculations. In the event that only one of two plates has counts yielding 300 CFU or less, that plate count and its corresponding dilution will be included but no average will be determined. NOTE: Plate counts of 0 are to be included in all calculations. 13.3 To calculate CFU/carrier, multiply the CFU/mL per carrier by the volume of media used to suspend carrier for sonication or vortexing. Numbers are rounded and only two significant figures are used in calculating averages. NOTE: Numbers will be rounded upon determination of the CFU/carrier. 13.4 Calculate the average CFU/carrier for all carriers tested.
14. Forms and Data Sheets	1. Attachment 1: Culture Initiation and Stock Culture Generation Flow Chart for B. subtilis 2. Test Sheets. Test sheets are stored separately from the SOP under the following file names:

	Physical Screening of Carriers Record	MB-03_F1.docx
	Sporicidal Activity of Disinfectants Test: Organism Culture Tracking Form	MB-15-03_F1.docx
	Sporicidal Activity of Disinfectants Test: Test Microbe Confirmation Sheet (Quality Control)	MB-15-03_F2.docx
	Sporicidal Activity of Disinfectants Test: Carrier Enumeration Form	MB-15-03_F3.docx
	Sporicidal Activity of Disinfectants Test Carrier Count Spreadsheet	MB-15-03_F4.xlsx
	Sporicidal Activity of Disinfectants Test: Hydrochloric Acid Resistance Test Data Sheet	MB-15-03_F5.docx
	Sporicidal Activity of Disinfectants Test: Information Sheet	MB-15-03_F6.docx
	Sporicidal Activity of Disinfectants Test: Time Recording Sheet for Carrier Transfers	MB-15-03_F7.docx
	Sporicidal Activity of Disinfectants Test: Results Form (1-30)	MB-15-03_F8.docx
	Sporicidal Activity of Disinfectants Test: Results Form (31-60)	MB-15-03_F9.docx
	Sporicidal Activity of Disinfectants Test: Performance Controls Results Sheet	MB-15-03_F10.docx
	Sporicidal Activity of Disinfectants Test: Test Microbe Confirmation Sheet	MB-15-03_F11.docx
	Sporicidal Activity of Disinfectants Test: Neutralization Confirmation Assay Information Sheet	MB-15-03_F12.docx
	Sporicidal Activity of Disinfectants Test: Neutralization Confirmation Assay Results Form	MB-15-03_F13.docx
	Sporicidal Activity of Disinfectants Test: Neutralization Confirmation Assay Time Recording Sheet for Carrier Transfers	MB-15-03_F14.docx
	Sporicidal Activity of Disinfectants Test: Neutralization Confirmation Assay Serial Dilution/Plating Tracking Form	MB-15-03_F15.docx

SOP No. MB-15-03
Date Revised 10-28-14
Page 19 of 20

	Sporicidal Activity of Disinfectants Test: Neutralization Confirmation Assay Inoculum MB-15-03_F16.docx Enumeration Form		
15. References	15.1Official Methods of Analysis (Revised 2013) 21 ${ }^{\text {st }}$ ED., AOAC INTERNATIONAL, Method 966.04, Gaithersburg, MD, Chapter 6		
	15.2Standard Methods for the Examination of Water and Wastewater. 21st Ed. American Public Health Association, 1015 15th Street, NW, Washington, DC		
15.3 Tomasino, S.F. \& Hamilton, M.A. (2006) JAOAC Int. 89, 1373-1397			

Attachment 1: Culture Initiation and Stock Culture Generation Flow Chart for B. subtilis

CULTURE INITIATION

(1) Obtain lyophilized cultures annually from ATCC. Using a tube containing $5-6 \mathrm{~mL}$ of NB , aseptically withdraw 0.5 to 1.0 mL and rehydrate the pellet for B. subtilis.
(2) Aseptically transfer the entire rehydrated pellet back into the original tube of nutrient broth designated as "TUBE A." Mix well. Use suspension in TUBE A for CULTURE ID \& QUALITY CONTROL. Incubate TUBE A for B. subtilis for 24 h at $30 \pm 1^{\circ} \mathrm{C}$.

CULTURE ID \& QUALITY CONTROL

(3) Using a loopful of rehydrated suspension from TUBE A, streak for isolation on duplicate plates (NA or TSA). Incubate plates at $30 \pm 1^{\circ} \mathrm{C}$ for 24 h . Record results on the Test Microbe Confirmation Sheet.

STOCK CULTURE GENERATION

(4) Using the $24 \pm 2 \mathrm{~h}$ TUBE A broth culture: initiate stock cultures by streak-inoculating six NA slants. Incubate the slants at $36 \pm 1^{\circ} \mathrm{C}$ for $24 \pm 2 \mathrm{~h}$. Record all manipulations on the Organism Culture Tracking Form.

