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Preface   

Extremely hazardous substances (EHSs)2 can be released accidentally as a 

result of chemical spills, industrial explosions, fires, or accidents involving 

railroad cars and trucks transporting EHSs. Workers and residents in communities 

surrounding industrial facilities where EHSs are manufactured, used, or stored and 

in communities along the nation’s railways and highways are potentially at risk of 

being exposed to airborne EHSs during accidental releases or intentional releases 

by terrorists. Pursuant to the Superfund Amendments and Reauthorization Act of 

1986, the U.S. Environmental Protection Agency (EPA) has identified 

approximately 400 EHSs on the basis of acute lethality data in rodents.  

As part of its efforts to develop acute exposure guideline levels for EHSs, 

EPA and the Agency for Toxic Substances and Disease Registry (ATSDR) in 

1991 requested that the National Research Council (NRC) develop guidelines for 

establishing such levels. In response to that request, the NRC published Guidelines 

for Developing Community Emergency Exposure Levels for Hazardous 

Substances in 1993. Subsequently, Standard Operating Procedures for 

Developing Acute Exposure Guideline Levels for Hazardous Substances was 

published in 2001, providing updated procedures, methodologies, and other 

guidelines used by the National Advisory Committee (NAC) on Acute Exposure 

Guideline Levels for Hazardous Substances and the Committee on Acute 

Exposure Guideline Levels (AEGLs) in developing the AEGL values.  

Using the 1993 and 2001 NRC guidelines reports, the NAC—consisting of 

members from EPA, the Department of Defense (DOD), the Department of 

Energy (DOE), the Department of Transportation (DOT), other federal and state 

governments, the chemical industry, academia, and other organizations from the 

private sector—has developed AEGLs for more than 270 EHSs.  

In 1998, EPA and DOD requested that the NRC independently review the 

AEGLs developed by NAC. In response to that request, the NRC organized within 

its Committee on Toxicology (COT) the Committee on Acute Exposure Guideline 

Levels, which prepared this report. This report is the seventeenth volxiv                  

 Preface  

ume in that series. AEGL documents for acrylonitrile, carbon tetrachloride, 

cyanogen, epichlorohydrin, ethylene chlorohydrin, toluene, trimethylacetyl 

chloride, hydrogen bromide, and boron tribromide are each published as an 

appendix in this report. The committee concludes that the AEGLs developed in 

these appendixes are scientifically valid conclusions based on the data reviewed 

by NAC and are consistent with the NRC guideline reports. AEGL reports for 

additional chemicals will be presented in subsequent volumes.  

                                                           
2 As defined pursuant to the Superfund Amendments and Reauthorization Act of 1986.  
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The committee’s review of the AEGL documents involved both oral and 

written presentations to the committee by the authors of the documents. The 

committee examined the draft documents and provided comments and 

recommendations for how they could be improved in a series of interim reports. 

The authors revised the draft AEGL documents based on the advice in the interim 

reports and presented them for reexamination by the committee as many times as 

necessary until the committee was satisfied that the AEGLs were scientifically 

justified and consistent with the 1993 and 2001 NRC guideline reports. After these 

determinations have been made for an AEGL document, it is published as an 

appendix in a volume such as this one.  

The interim reports of the committee that led to this report were reviewed in 

draft form by individuals selected for their diverse perspectives and technical 

expertise, in accordance with procedures approved by the NRC’s Report Review 

Committee. The purpose of this independent review is to provide candid and 

critical comments that will assist the institution in making its published report as 

sound as possible and to ensure that the report meets institutional standards for 

objectivity, evidence, and responsiveness to the study charge. The review 

comments and draft manuscript remain confidential to protect the integrity of the 

deliberative process. We wish to thank the following individuals for their review 

of the committee interim reports, which summarize the committee’s conclusions 

and recommendations for improving NAC’s AEGL documents for acrylonitrile 

(interim reports 19b, 21a, and 22), carbon tetrachloride (interim reports 13, 14, 18, 

and 22), cyanogen (interim report 19a), epichlorohydrin (interim reports 15, 19a, 

20a, and 21a), ethylene chlorohydrin (interim reports 20a and 21a), toluene 

(interim reports 12, 18, and 22), trimethylacetyl chloride (interim reports 20a and 

21a), hydrogen bromide (interim reports 16, 18, and 22), and boron tribromide 

(interim reports 19a and 22): Deepak Bhalla (Wayne State University), Harvey 

Clewell (The Hamner Institutes for Health Sciences), Jeffrey Fisher (U.S. Food 

and Drug Administration), David Gaylor (Gaylor and Associates, LLC), Sam 

Kacew (University of Ottawa), A. Wallace Hayes (Harvard School of Public 

Health), Rogene Henderson (Lovelace Respiratory Research Institute [retired]), 

James McDougal (Wright State University [retired]), Charles Reinhardt (DuPont 

Haskell Laboratory [retired]), Andrew Salmon (California Environmental 

Protection Agency), Joyce Tsuji (Exponent, Inc.), Bernard Wagner (New York 

University Medical Center [retired]), and Judith Zelikoff (New York University).  

Although the reviewers listed above have provided many constructive 

comments and suggestions, they were not asked to endorse the conclusions or 

recommendations, nor did they see the final draft of this volume before its 

rePreface  xv  

  

lease. The review of interim reports was overseen by David Gaylor (Gaylor and 

Associates, LLC), Sidney Green, Jr., (Howard University), and Robert Goyer 

(University of Western Ontario [retired]). Appointed by the NRC, they were 

responsible for making certain that an independent examination of the interim 

reports was carried out in accordance with institutional procedures and that all 

review comments were carefully considered. Responsibility for the final content 

of this report rests entirely with the authoring committee and the institution.  



 

 

The committee gratefully acknowledges the valuable assistance provided by 

Ernest Falke and Iris A. Camacho from EPA. The committee also acknowledges 

Susan Martel, the project director for her work this project. Other staff members 

who contributed to this effort are James J. Reisa (director of the Board on 

Environmental Studies and Toxicology), Radiah Rose (manager of editorial 

projects), Mirsada Karalic-Loncarevic (manager of the Technical Information 

Center), and Tamara Dawson (program associate). Finally, I would like to thank 

all members of the committee for their expertise and dedicated effort throughout 

the development of this report.   

  

Edward C. Bishop, Chair  

Committee on Acute Exposure   

Guideline Levels  

  

  

   



 

 

  
  

Contents   

NATIONAL RESEARCH COUNCIL COMMITTEE  

REVIEW OF ACUTE EXPOSURE GUIDELINE  

LEVELS FOR SELECTED AIRBORNE CHEMICALS .............................. 3  

  

APPENDIXES  

  

1 ACRYLONITRILE ................................................................................ 13  

  Acute Exposure Guideline Levels  

  

2 CARBON TETRACHLORIDE ............................................................ 96  

   Acute Exposure Guideline Levels  

  

3 CYANOGEN ......................................................................................... 160  

  Acute Exposure Guideline Levels  

  

4 EPICHLOROHYDRIN ....................................................................... 190  

  Acute Exposure Guideline Levels  

  

5 ETHYLENE CHLOROHYDRIN ....................................................... 262  

  Acute Exposure Guideline Levels  

  

6 TOLUENE ............................................................................................ 289  

  Acute Exposure Guideline Levels  

  

7 TRIMETHYLACETYL CHLORIDE ................................................ 414  

  Acute Exposure Guideline Levels  

  

8 HYDROGEN BROMIDE .................................................................... 429  

  Acute Exposure Guideline Levels  

  

9 BORON TRIBROMIDE ...................................................................... 458  

  Acute Exposure Guideline Levels  

  

xvii  

     



 

 

  
  

  

  

  

 

 VOLUME 17   
   



 

 

  
  

   



 

 

  

  

National Research Council Committee  

Review of Acute Exposure Guideline  

Levels for Selected Airborne Chemicals   

This report is the seventeenth volume in the series Acute Exposure 

Guideline Levels for Selected Airborne Chemicals.  

In the Bhopal disaster of 1984, approximately 2,000 residents living near a 

chemical plant were killed and 20,000 more suffered irreversible damage to their 

eyes and lungs following accidental release of methyl isocyanate. The toll was 

particularly high because the community had little idea what chemicals were being 

used at the plant, how dangerous they might be, or what steps to take in an 

emergency. This tragedy served to focus international attention on the need for 

governments to identify hazardous substances and to assist local communities in 

planning how to deal with emergency exposures.  

In the United States, the Superfund Amendments and Reauthorization Act 

(SARA) of 1986 required that the U.S. Environmental Protection Agency (EPA) 

identify extremely hazardous substances (EHSs) and, in cooperation with the 

Federal Emergency Management Agency and the U.S. Department of 

Transportation, assist local emergency planning committees (LEPCs) by 

providing guidance for conducting health hazard assessments for the development 

of emergency response plans for sites where EHSs are produced, stored, 

transported, or used. SARA also required that the Agency for Toxic Substances 

and Disease Registry (ATSDR) determine whether chemical substances identified 

at hazardous waste sites or in the environment present a public health concern.  

As a first step in assisting the LEPCs, EPA identified approximately 400 

EHSs largely on the basis of their immediately dangerous to life and health values, 

developed by the National Institute for Occupational Safety and Health. Although 

several public and private groups, such as the Occupational Safety and Health 

Administration and the American Conference of Governmental Industrial 

Hygienists, have established exposure limits for some substances and some 

exposures (e.g., workplace or ambient air quality), these limits are not easily or 

directly translated into emergency exposure limits for exposures at high levels  

3  
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but of short duration, usually less than 1 hour (h), and only once in a lifetime for 

the general population, which includes infants (from birth to 3 years of age), 

children, the elderly, and persons with diseases, such as asthma or heart disease.  

The National Research Council (NRC) Committee on Toxicology (COT) 

has published many reports on emergency exposure guidance levels and 

spacecraft maximum allowable concentrations for chemicals used by the U.S. 

Department of Defense (DOD) and the National Aeronautics and Space 

Administration (NASA) (NRC 1968, 1972, 1984a,b,c,d, 1985a,b, 1986a, 1987, 

1988, 1994, 1996a,b, 2000a, 2002a, 2007a, 2008a). COT has also published 

guidelines for developing emergency exposure guidance levels for military 

personnel and for astronauts (NRC 1986b, 1992, 2000b). Because of COT’s 

experience in recommending emergency exposure levels for short-term 

exposures, in 1991 EPA and ATSDR requested that COT develop criteria and 

methods for developing emergency exposure levels for EHSs for the general 

population. In response to that request, the NRC assigned this project to the COT 

Subcommittee on Guidelines for Developing Community Emergency Exposure 

Levels for Hazardous Substances. The report of that subcommittee, Guidelines for 

Developing Community Emergency Exposure Levels for Hazardous Substances 

(NRC 1993), provides step-by-step guidance for setting emergency exposure 

levels for EHSs. Guidance is given on what data are needed, what data are 

available, how to evaluate the data, and how to present the results.  

In November 1995, the National Advisory Committee (NAC)3 for Acute 

Exposure Guideline Levels for Hazardous Substances was established to identify, 

review, and interpret relevant toxicologic and other scientific data and to develop 

acute exposure guideline levels (AEGLs) for high-priority, acutely toxic 

chemicals. The NRC’s previous name for acute exposure levels—community 

emergency exposure levels (CEELs)—was replaced by the term AEGLs to reflect 

the broad application of these values to planning, response, and prevention in the 

community, the workplace, transportation, the military, and the remediation of 

Superfund sites.  

AEGLs represent threshold exposure limits (exposure levels below which 

adverse health effects are not likely to occur) for the general public and are 

applicable to emergency exposures ranging from 10 minutes (min) to 8 h. Three 

levels—AEGL-1, AEGL-2, and AEGL-3—are developed for each of five 

exposure periods (10 min, 30 min, 1 h, 4 h, and 8 h) and are distinguished by 

                                                           
3 NAC completed its chemical reviews in October 2011. The committee was composed 

of members from EPA, DOD, many other federal and state agencies, industry, academia, 
and other organizations. From 1996 to 2011, the NAC discussed over 300 chemicals and 
developed AEGLs values for at least 272 of the 329 chemicals on the AEGLs priority 
chemicals lists. Although the work of the NAC has ended, the NAC-reviewed technical 
support documents are being submitted to the NRC for independent review and 
finalization.  
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varying degrees of severity of toxic effects. The three AEGLs are defined as 

follows:  

AEGL-1 is the airborne concentration (expressed as ppm [parts per million] 

or mg/m3 [milligrams per cubic meter]) of a substance above which it is predicted 

that the general population, including susceptible individuals, could experience 

notable discomfort, irritation, or certain asymptomatic nonsensory effects. 

However, the effects are not disabling and are transient and reversible upon 

cessation of exposure.  

AEGL-2 is the airborne concentration (expressed as ppm or mg/m3) of a 

substance above which it is predicted that the general population, including 

susceptible individuals, could experience irreversible or other serious, long-lasting 

adverse health effects or an impaired ability to escape.  

AEGL-3 is the airborne concentration (expressed as ppm or mg/m3) of a 

substance above which it is predicted that the general population, including 

susceptible individuals, could experience life-threatening adverse health effects or 

death.  

  

Airborne concentrations below AEGL-1 represent exposure levels that can 

produce mild and progressively increasing but transient and nondisabling odor, 

taste, and sensory irritation or certain asymptomatic nonsensory adverse effects. 

With increasing airborne concentrations above each AEGL, there is a progressive 

increase in the likelihood of occurrence and the severity of effects described for 

each corresponding AEGL. Although the AEGL values represent threshold levels 

for the general public, including susceptible subpopulations, such as infants, 

children, the elderly, persons with asthma, and those with other illnesses, it is 

recognized that individuals, subject to idiosyncratic responses, could experience 

the effects described at concentrations below the corresponding AEGL.  

  

SUMMARY OF REPORT ON   

GUIDELINES FOR DEVELOPING AEGLS  

  

As described in Guidelines for Developing Community Emergency 

Exposure Levels for Hazardous Substances (NRC 1993) and the NRC guidelines 

report Standing Operating Procedures for Developing Acute Exposure Guideline 

Levels for Hazardous Chemicals (NRC 2001a), the first step in establishing 

AEGLs for a chemical is to collect and review all relevant published and 

unpublished information. Various types of evidence are assessed in establishing 

AEGL values for a chemical. These include information from (1) 

chemicalphysical characterizations, (2) structure-activity relationships, (3) in vitro 

toxicity studies, (4) animal toxicity studies, (5) controlled human studies, (6) 

observations of humans involved in chemical accidents, and (7) epidemiologic 

studies. Toxicity data from human studies are most applicable and are used when 
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available in preference to data from animal studies and in vitro studies. Toxicity 

data from inhalation exposures are most useful for setting AEGLs for airborne 

chemicals because inhalation is the most likely route of exposure and because 

extrapolation of data from other routes would lead to additional uncertainty in the 

AEGL estimate.  

For most chemicals, actual human toxicity data are not available or critical 

information on exposure is lacking, so toxicity data from studies conducted in 

laboratory animals are extrapolated to estimate the potential toxicity in humans. 

Such extrapolation requires experienced scientific judgment. The toxicity data for 

animal species most representative of humans in terms of pharmacodynamic and 

pharmacokinetic properties are used for determining AEGLs. If data are not 

available on the species that best represents humans, data from the most sensitive 

animal species are used. Uncertainty factors are commonly used when animal data 

are used to estimate risk levels for humans. The magnitude of uncertainty factors 

depends on the quality of the animal data used to determine the noobserved-

adverse-effect level (NOAEL) and the mode of action of the substance in question. 

When available, pharmacokinetic data on tissue doses are considered for 

interspecies extrapolation.  

For substances that affect several organ systems or have multiple effects, all 

end points (including reproductive [in both genders], developmental, neurotoxic, 

respiratory, and other organ-related effects) are evaluated, the most important or 

most sensitive effect receiving the greatest attention. For carcinogenic chemicals, 

excess carcinogenic risk is estimated, and the AEGLs corresponding to 

carcinogenic risks of 1 in 10,000 (1  10-4), 1 in 100,000 (1  10-5), and 1 in 

1,000,000 (1  10-6) exposed persons are estimated.  

  

REVIEW OF AEGL REPORTS  

  

As NAC began developing chemical-specific AEGL reports, EPA and DOD 

asked the NRC to review independently the NAC reports for their scientific 

validity, completeness, and consistency with the NRC guideline reports (NRC 

1993, 2001a). The NRC assigned this project to the COT Committee on Acute 

Exposure Guideline Levels. The committee has expertise in toxicology, 

epidemiology, occupational health, pharmacology, medicine, pharmacokinetics, 

industrial hygiene, and risk assessment.  

The AEGL draft reports were initially prepared by ad hoc AEGL 

development teams consisting of a chemical manager, chemical reviewers, and a 

staff scientist of the NAC contractors—Oak Ridge National Laboratory and 

subsequently SRC, Inc. The draft documents were then reviewed by NAC and 

elevated from “draft” to “proposed” status. After the AEGL documents were 

approved by NAC, they were published in the Federal Register for public 

comment. The reports were then revised by NAC in response to the public 
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comments, elevated from “proposed” to “interim” status, and sent to the NRC 

Committee on Acute Exposure Guideline Levels for final evaluation.  

The NRC committee’s review of the AEGL reports prepared by NAC and 

its contractors involves oral and written presentations to the committee by the 

authors of the reports. The NRC committee provides advice and recommendations 

for revisions to ensure scientific validity and consistency with the NRC guideline 

reports (NRC 1993, 2001a). The revised reports are presented at subsequent 

meetings until the committee is satisfied with the reviews.  

Because of the enormous amount of data presented in AEGL reports, the 

NRC committee cannot verify all of the data used by NAC. The NRC committee 

relies on NAC and the contractors for the accuracy and completeness of the 

toxicity data cited in the AEGL reports. Thus far, the committee has prepared 

sixteen reports in the series Acute Exposure Guideline Levels for Selected 

Airborne Chemicals (NRC 2001b, 2002b, 2003, 2004, 2007b, 2008b, 2009, 

2010a,b, 2011, 2012a,b,c, 2013a,b, 2014). This report is the seventeenth volume 

in that series. AEGL documents for acrylonitrile, carbon tetrachloride, cyanogen, 

epichlorohydrin, ethylene chlorohydrin, toluene, trimethylacetyl chloride, 

hydrogen bromide, and boron tribromide are each published as an appendix in this 

report. The committee concludes that the AEGLs developed in these appendixes 

are scientifically valid conclusions based on the data reviewed by NAC and are 

consistent with the NRC guideline reports. AEGL reports for additional chemicals 

will be presented in subsequent volumes.  
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Boron Tribromide4  
  

Acute Exposure Guideline Levels   

PREFACE  

  

Under the authority of the Federal Advisory Committee Act (FACA) P.L. 

92-463 of 1972, the National Advisory Committee for Acute Exposure Guideline 

Levels for Hazardous Substances (NAC/AEGL Committee) has been established 

to identify, review, and interpret relevant toxicologic and other scientific data and 

develop AEGLs for high-priority, acutely toxic chemicals.  

AEGLs represent threshold exposure limits for the general public and are 

applicable to emergency exposure periods ranging from 10 minutes (min) to 8 

hours (h). Three levels—AEGL-1, AEGL-2, and AEGL-3—are developed for 

each of five exposure periods (10 and 30 min and 1, 4, and 8 h) and are 

distinguished by varying degrees of severity of toxic effects. The three AEGLs 

are defined as follows:  

  

AEGL-1 is the airborne concentration (expressed as parts per million or 

milligrams per cubic meter [ppm or mg/m3]) of a substance above which it is 

predicted that the general population, including susceptible individuals, could 

experience notable discomfort, irritation, or certain asymptomatic, nonsensory  

                                                           
4 This document was prepared by the AEGL Development Team composed of Sylvia 

Talmage (Oak Ridge National Laboratory), Lisa Ingerman (SRC, Inc.), Chemical Manager 

Robert Benson (National Advisory Committee [NAC] on Acute Exposure Guideline 

Levels for Hazardous Substances), and Ernest V. Falke (U.S. Environmental Protection 

Agency). The NAC reviewed and revised the document and AEGLs as deemed necessary. 

Both the document and the AEGL values were then reviewed by the National Research 

Council (NRC) Committee on Acute Exposure Guideline Levels. The NRC committee has 

concluded that the AEGLs developed in this document are scientifically valid conclusions 

based on the data reviewed by the NRC and are consistent with the NRC guidelines reports 

(NRC 1993, 2001).  
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effects. However, the effects are not disabling and are transient and reversible 

upon cessation of exposure.  

AEGL-2 is the airborne concentration (expressed as ppm or mg/m3) of a 

substance above which it is predicted that the general population, including 

susceptible individuals, could experience irreversible or other serious, long-lasting 

adverse health effects or an impaired ability to escape.  

AEGL-3 is the airborne concentration (expressed as ppm or mg/m3) of a 

substance above which it is predicted that the general population, including 

susceptible individuals, could experience life-threatening health effects or death.  

  

Airborne concentrations below the AEGL-1 represent exposure 

concentrations that could produce mild and progressively increasing but transient 

and nondisabling odor, taste, and sensory irritation or certain asymptomatic, 

nonsensory effects. With increasing airborne concentrations above each AEGL, 

there is a progressive increase in the likelihood of occurrence and the severity of 

effects described for each corresponding AEGL. Although the AEGL values 

represent threshold concentrations for the general public, including susceptible 

subpopulations, such as infants, children, the elderly, persons with asthma, and 

those with other illnesses, it is recognized that individuals, subject to idiosyncratic 

responses, could experience the effects described at concentrations below the 

corresponding AEGL.  

  

SUMMARY  

  

Boron tribromide is a colorless, fuming liquid with a sharp or acrid, irritating 

odor. It hydrolyzes or decomposes violently in the presence of water or moist air, 

producing heat, hydrogen bromide, and boric acid. In the presence of water, 

conversion to hydrogen bromide is complete. Boron tribromide is used as a 

catalyst in the manufacture of diborane, ultrahigh purity boron, and 

semiconductors. It is an excellent demethylating or dealkylating agent for ethers, 

particularly in the production of pharmaceuticals. As a Lewis acid catalyst it finds 

applications in olefin polymerization and in Friedel-Crafts chemistry. 

Theoretically, one mole of boron tribromide hydrolyzes into three moles of 

hydrogen bromide.  

No human or animal data were available to derive AEGL values for boron 

tribromide, as the reactive nature of boron tribromide precludes toxicity testing. 

Hydrogen bromide is considered the irritant hydrolysis product as boric acid has 

been used in topical antiseptic powders and ointments, and dilute solutions are 

used in eye and mouthwash solutions. On the basis that boron tribromide 

hydrolyzes into hydrogen bromide, the AEGL values for boron tribromide were 

based on the AEGL values for hydrogen bromide. The boron tribromide values 

were derived by dividing the hydrogen bromide AEGL values by 3. See Chapter 
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8 for the technical support document on hydrogen bromide. The AEGL values for 

boron tribromide are presented in Table 9-1.  

    

TABLE 9-1 AEGL Values for Boron Tribromide  

Classification  10 min  30 min  1 h  4 h  8 h  End Pointa  

AEGL-1  
(nondisabling)  

0.33 ppm  
(3.4   
mg/m3)  

0.33 ppm  
(3.4   
mg/m3)  

0.33 ppm  
(3.4   
mg/m3)  

0.33 ppm  
(3.4  

mg/m3 )  

0.33 ppm  
(3.4   
mg/m3)  

Analogy with 

hydrogen bromide  

AEGL-2  
(disabling)  

83 ppm  
(850  

mg/m3)  

28 ppm  
(290  

mg/m3)  

13 ppm  
(130  

mg/m3)  

3.3 ppm  
(34  

mg/m3)  

1.7 ppm  
(17  

mg/m3)  

Analogy with 

hydrogen bromide  

AEGL-3  
(lethal)  

250 ppm  
(2,600  

mg/m3)  

83 ppm  
(850  

mg/m3)  

40 ppm  
(410  

mg/m3)  

10 ppm  
(100  

mg/m3)  

5 ppm  
(51  

mg/m3)  

Analogy with 

hydrogen bromide  

a On the basis that one mole of boron tribromide hydrolyzes into three moles of hydrogen 

bromide, the AEGL values for hydrogen bromide were divided by three.  

  

  

1. INTRODUCTION  

  

Boron tribromide is a colorless, fuming liquid with a sharp or acrid, irritating 

odor. It hydrolyzes or decomposes in the presence of water or moist air, producing 

heat, hydrogen bromide, and boric acid (ACGIH 2001; O’Neil et al. 2006; 

Krzystowczyk 2007; Ball et al. 2012). Boron tribromide is nonflammable (BOC 

1996). However, as a result of the strong Lewis acid properties of bromide, the 

reaction with water is violent and results in risk of explosion. This reactivity, 

resulting in caustic action at the site of exposure, makes it impossible to determine 

systemic toxicity. Breakdown to hydrogen bromide in water is complete 

(Krzystowczyk 2007). Theoretically, three moles of hydrogen bromide are 

produced from one mole of boron tribromide. Additional chemical and physical 

properties are listed in Table 9-2.   

The boron trihalides are important industrial chemicals that are used as 

Lewis acid catalysts and in chemical vapor deposition processes. As a Lewis acid 

catalyst, boron tribromide finds applications in olefin polymerization and in 

Friedel-Crafts chemistry. Boron tribromide is used as a catalyst in the manufacture 

of diborane and ultrahigh purity boron. Boron tribromide is an excellent 

demethylating or dealkylating agent for ethers in the production of 

pharmaceuticals. The electronics industry uses boron tribromide as a source of 

boron in predeposition processes for doping in the manufacture of semi-

conductors (Albemarle Corporation 2004; HSDB 2013). Boron tribromide is 

produced on a large scale by the reaction of bromine and granulated boron carbide 

(Alam et al. 2003). It is commercially available neat or in solution with 
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dichloromethane or hexanes (Doyaguez 2005). Boron tribromide is shipped in 70-

kg stainless-steel drums (Albemarle Corporation 2004).   

  

2. HUMAN TOXICITY DATA  

  

By analogy with hydrogen bromide, the acrid odor of boron tribromide 

should be detectable at 2 ppm (Ball et al. 2012). Data were insufficient to set a 

level of odor awareness. Boron tribromide is considered irritating to the skin and 

mucus membranes and corrosive to the eyes (HSDB 2013). No inhalation data on 

lethal concentrations, developmental or reproductive toxicity, genotoxicity, or 

carcinogenicity of boron tribromide in humans were found. Data on the 

breakdown products, hydrogen bromide and boric acid, were available.  

The Connecticut State Department of Health (unpublished data, 1955) 

evaluated responses of human subjects to hydrogen bromide vapors. Six 

volunteers inhaled hydrogen bromide at 2-6 ppm for durations of several minutes 

(see Table 9-3). The odor was detectable by all subjects at all concentrations. None 

of the subjects experienced ocular irritation. Only one subject experienced nasal 

and throat irritation at 3 ppm. One subject experienced throat irritation at the 

higher concentrations, and all subjects experienced nasal irritation at 5 and 6 ppm. 

Although exposure at 5 ppm caused nasal and throat irritation in a majority of the 

volunteers, the report stated that “it was considered unlikely that noticeable 

disturbances will occur if peak concentrations do not exceed this value for brief 

periods.”  

  

  

TABLE 9-2 Chemical and Physical Properties of Boron Tribromide  

Parameter  Value  References  

Synonyms  Boron bromide; tribromoborane  HSDB 2013  

CAS registry no.  10294-33-4  HSDB 2013  

Chemical formula  BBr3  HSDB 2013  

Molecular weight  250.57  HSDB 2013  

Physical state  Liquid  HSDB 2013  

Boiling point  91.3ºC  HSDB 2013  

Melting point  –46ºC  HSDB 2013  

Density (water =1)  2.60 g/mL  HSDB 2013  

Solubility in water  Hydrolyzes violently  HSDB 2013  

Vapor pressure  69 mm Hg at 25ºC  Barber et al. 1964; ACGIH 2001  

Flammability limits  Non-flammable  BOC Gases 1996  
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Conversion factors  1 ppm = 10.25 mg/m3 
1 mg/m3 = 0.097 ppm  

ACGIH 2001  

  

  

TABLE 9-3 Human Responses to Hydrogen Bromide Vapor  

 

Response  

Number of Subjects with Response (n = 6)    

2 ppm  3 ppm  4 ppm  5 ppm  6 ppm  

Detectable odor  6  6  6  6  6  

Nasal irritation  0  1  3  6  6  

Throat irritation  0  1  1  1  1  

Ocular irritation  0  0  0  0  0  

Source: Connecticut State Department of Health, unpublished data, 1955.  

    

Although the inhalation toxicity of boron oxide and borates is well 

established (ATSDR 2010), no information on the inhalation toxicity of boric acid 

in humans was found. Boric acid is used as an astringent and antiseptic. Borates 

in general are considered either nonirritating or mild dermal and ocular irritants 

(Hubbard 1998). Oral exposure to boric acid has low acute toxicity in adults 

(Hubbard 1998), but there are some reports of fatalities (Jordan and Crissey 1957). 

Death has occurred from intake of less than 5 g in infants and from 5-20 g in adults 

(O’Neil et al. 2006). Wong et al. (1964) reported that five of 14 infants were killed 

within 2-3 day after ingesting boric acid; the infants that died consumed 4.6-14 g 

of the chemical, whereas those that survived consumed 2-4.5 g. Mortality was 

70% among infants who were accidentally poisoned with boric acid (Goldbloom 

and Goldbloom 1953).   

Boric acid has been held responsible for systemic intoxication after 

ingestion, injection, application to damaged skin, or enema (McIntyre and Burke 

1937; Brooke and Boggs 1951; Ducey and Williams 1953; Johnstone et al. 1955; 

Rosen and Haggerty 1956; Jordan and Crissey 1957). There is no evidence that 

boric acid or borates are absorbed through intact skin (Sciarra 1958). Whether the 

apparent increased susceptibility of infants and children is due to immaturity of 

the kidneys (which accounts for the primary route of elimination) (Locksley and 

Sweet 1954) or is related to the relatively high dose on a body weight basis (Young 

et al. 1949) is not clear. Autopsy is generally unremarkable with deaths occurring 

several days after exposure, but pancreatic lesions and those in kidneys and brain 

have been described (McNally and Rust 1928; Valdes-Dapena and Arey 1962). 

Although seizures can precede death, the hyperchloremic metabolic acidosis is a 

characteristic feature (Wong et al. 1964).  

  

3. ANIMAL TOXICITY DATA  
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No data on the lethality, developmental or reproductive effects, 

genotoxicity, or chronic toxicity or carcinogenicity of boron tribromide were 

available. Data on the breakdown products, boric acid and hydrogen bromide were 

available. Toxicity data on other hydrogen halides, such as hydrogen chloride and 

hydrogen fluoride, are also relevant.   

Inhalation exposure of male Swiss-Webster mice to boric acid aerosol at 

300 mg/m3 (approximately 120 ppm), the highest achievable concentration, 

resulted in a decrease in respiratory rate by less than 20%. The effect was 

attributed to sensory irritation, as there was no indication of pulmonary effects 

(Krystofiak and Schaper 1996). The oral LD50 (lethal dose, 50% lethality) for boric 

acid in rats is 5 g/kg (O’Neil et al. 2006).  

Groups of five to eight Fisher 344 rats were exposed by inhalation to 

hydrogen chloride or hydrogen bromide at approximately 1,300 ppm for 30 min 

(Stavert et al. 1991). Animals were placed in body plethysmographs for noseonly 

exposure. Mortality rates were 6% in the hydrogen-chloride group and 8% in the 

hydrogen-bromide group. Lesions were confined to the nasal passages.  

Moderate to severe fibrinonecrotic rhinitis was observed only in the anterior most 

region of the nasal passages. The same authors (Kusewitt et al. 1989) exposed rats 

to hydrogen chloride or hydrogen bromide at concentrations of 1001,000 ppm for 

30 min. No deaths occurred at 1,000 ppm before the animals were killed after 24 

h. Lesions were confined to the nasal passages with no damage to the lungs. No 

further details were reported in the abstract.  

MacEwen and Vernot (1972) exposed groups of 10 male Sprague-Dawley 

rats to hydrogen bromide at 2,205-3,822 ppm for 1 h. Groups of 10 ICR-derived 

mice were exposed at 507-1,163 ppm for 1 h. Mortalities from these exposures are 

summarized in Table 9-4. The 1-h LC50 for hydrogen bromide in rats was 2,858 

ppm (95% confidence limits: 2,481-3,164 ppm), and the 1-h LC50 in mice was 814 

ppm (95% confidence limits: 701-947 ppm). Responses in the animals were dose-

related, and followed a sequence of nasal and ocular irritation, labored breathing, 

gasping, and convulsions. The fur turned orange-brown during the exposures, and 

burns were observed on the exposed skin of both species.  

Barrow et al. (1977) exposed groups of four male Swiss-Webster mice to 

hydrogen chloride at concentrations of 40, 99, 245, 440, or 943 ppm for 10 min. 

An RD50 (concentration that reduces the respiratory rate by 50%) of 309 ppm was 

calculated. At 99 ppm, approximately one-third of the RD50, the decrease in 

respiratory rate was 25-30%.  

  

4. SPECIAL CONSIDERATIONS  

  

4.1. Metabolism and Disposition  
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Boron tribromide undergoes rapid hydrolysis in the presence of water or 

moist air, producing heat, hydrogen bromide, and boric acid (ACGIH 2001). No 

information on the hydrolysis half-life was found, but reaction with water or 

moisture in the air is rapid and complete (Krzystowczyk 2007).   

  

4.2. Mechanism of Toxicity  

  

The mechanism of toxicity of boron tribromide appears to be related to the 

formation of hydrobromic acid. Hydrogen bromide is a severe irritant to the eyes, 

skin, and nasal passages; high concentration may penetrate to the lungs resulting 

in edema and hemorrhage (Kusewitt et al. 1989; Stavert et al. 1991; see Chapter 

8).  

Boric acid is used as an astringent and antiseptic. Orally, it is of low acute 

toxicity to adult humans. Effects include nausea, vomiting, abdominal pain, 

diarrhea, depression of the central nervous system, and convulsions. Death has 

occurred from intakes of less than 5 g in infants and from 5-20 g in adults (ACGIH 

2005). In the occupational setting, exposure to airborne boric acid and borax dusts 

is associated with respiratory and ocular irritation without measurable changes in 

pulmonary function (ATSDR 2010). No studies were available that describe the 

mechanism of toxicity of systemic effects.    

TABLE 9-4 One-Hour Inhalation Studies of Hydrogen Bromide  

Species  Concentration (ppm)  Mortality Ratio  

Rat  2,205  1/10  

  2,328  4/10  

  2,759  4/10  

  3,253  6/10  

  3,711  7/10  

  3,822  10/10  

Mouse  507  0/10  

  875  7/10  

  1,036  9/10  

  1,163  10/10  

Source: Adapted from McEwen and Vernot 1972.   

  

  

4.3. Structure-Activity Relationships  

  

Because one mole of boron tribromide breaks down into three moles of 

hydrogen bromide, the toxicity of hydrogen bromide and related hydrogen halides 
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are relevant. On the basis of lethality, hydrogen fluoride is the most toxic, 

followed by hydrogen bromide and then hydrogen chloride, although the values 

for hydrogen bromide and hydrogen chloride were similar (MacEwen and Vernot 

1972). At sublethal concentrations, the severity and extent of lesions in the upper 

respiratory tract of rats exposed to hydrogen halides by inhalation were greatest 

for hydrogen fluoride, followed by hydrogen chloride and then hydrogen bromide. 

However, the severity and extent of lesions were similar among the three 

chemicals (Kusewitt et al. 1989; Stavert et al. 1991).  

The halides chlorine, bromine, and iodine, are exceptionally good leaving 

groups, readily hydrolyzing to their acid forms in the aqueous environment. The 

exception is boron trifluoride. The lack of outer orbitals on the fluoride atom 

results in a shorter and, thus, stronger bond than what is present with the other 

halides (Krzystowczyk 2007). Toxicity comparisons of the boron trihalides with 

their breakdown products are summarized in Table 9-5. The 4-h LC50 for boron 

trifluoride in rats is 1.21 mg/L (approximately 436 ppm) (Rusch et al. 1986). The 

1-h LC50 for hydrogen fluoride ranges from 966 ppm to 1,395 ppm (Vernot et al. 

1977; NRC 2004). The 1-h LC50 for boron trichloride in rats is 2,541 ppm (Vernot 

et al. 1977). The 1-h LC50 for hydrogen chloride in rats is 3,124 ppm (Vernot et 

al. 1977). The similarity in toxicity values for boron trifluoride and boron 

trichloride with the hydrolysis products tends to support limited hydrolysis.  

  

4.4. Other Relevant Information  

  

No information on species variability, susceptible populations, or 

concentration-exposure duration relationships for boron tribromide was available. 

For hydrogen halides, such as hydrogen fluoride and hydrogen chloride, the mouse 

is more susceptible than the rat to the lethal effects (NRC 1991).  

  

5. DATA ANALYSIS FOR AEGL-1  

  

5.1. Human Data Relevant to AEGL-1  

  

No human data on boron tribromide relevant to AEGL-1 end points were 

available.  

  

5.2. Animal Data Relevant to AEGL-1  

  

No animal data on boron tribromide relevant to AEGL-1 end points were 

available.  

  

5.3. Derivation of AEGL-1 Values  
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No human or animal data on boron tribromide were available to derive 

AEGL-1 values. On the basis that one mole of boron tribromide hydrolyzes into 

three moles of hydrogen bromide in moist air, the AEGL-1 values for boron 

tribromide were derived by dividing the hydrogen bromide AEGL-1 values by 3. 

See Chapter 8 of this report for how AEGL-1 values were derived for hydrogen 

bromide. The AEGL-1 values for boron tribromide are presented in Table 9-6, and 

the calculations are in Appendix A.  

  

  

TABLE 9-5 Comparison of LC50 Values for Boron Trihalides and Acid  Halides 

in Rats  

Chemical  LC50 Value  Reference  

Boron trifluoride  
Hydrogen fluoride  

436 ppm (4 h)  
500 ppm (4 h)a  

Rusch et al. 1986  
Vernot et al. 1977  

Boron trichloride  
Hydrogen chloride  

2,541 ppm (1 h)  
3,124 ppm (1 h)  

Vernot et al. 1977  
Vernot et al. 1977  

Boron tribromide  
Hydrogen bromide  

No data  
2,858 ppm (1 h)  

—  
MacEwen and Vernot 1972  

a 2 
Value was time scaled from 1 h to 4 h using the equation C × t = k (NRC 2004).  

  

  

TABLE 9-6 AEGL-1 Values for Boron Tribromide  

10 min  30 min  1 h  4 h  8 h  

0.33 ppm  
(3.4 mg/m3)  

0.33 ppm  
(3.4 mg/m3)  

0.33 ppm  
(3.4 mg/m3)  

0.33 ppm  
(3.4 mg/m3)  

0.33 ppm  
(3.4 mg/m3)  

    

6. DATA ANALYSIS FOR AEGL-2  

  

6.1. Human Data Relevant to AEGL-2  

  

No human data on boron tribromide relevant to AEGL-2 end points were 

available.  

  

6.2. Animal Data Relevant to AEGL-2  

  

No animal data on boron tribromide relevant to AEGL-2 end points were 

available.  

  

6.3. Derivation of AEGL-2 Values  
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No human or animal data on boron tribromide were available to derive 

AEGL-2 values. On the basis that one mole of boron tribromide hydrolyzes into 

three moles of hydrogen bromide in moist air, the AEGL-2 values for boron 

tribromide were derived by dividing the hydrogen bromide AEGL-2 values by 3. 

See Chapter 8 of this report for how AEGL-2 values were derived for hydrogen 

bromide. The AEGL-2 values for boron tribromide are presented in Table 9-7.  

  

7. DATA ANALYSIS FOR AEGL-3  

  

7.1. Human Data Relevant to AEGL-3  

  

No human data on boron tribromide relevant to AEGL-3 end points were 

available.  

  

7.2. Animal Data Relevant to AEGL-3  

  

No animal data on boron tribromide relevant to AEGL-3 end points were 

available.  

  

7.3. Derivation of AEGL-3 Values  

  

No human or animal data on boron tribromide were available to derive 

AEGL-3 values. On the basis that one mole of boron tribromide hydrolyzes to 

form three moles of hydrogen bromide in moist air, the AEGL-3 values for boron 

tribromide were derived by dividing the hydrogen bromide AEGL-3 values by 

three. See Chapter 8 of this report for how AEGL-3 values were derived for 

hydrogen bromide. AEGL-3 values for boron tribromide are presented in Table 9-

8.  

    

TABLE 9-7 AEGL-2 Values for Boron Tribromide  

10 min  30 min  1 h  4 h  8 h  

83 ppm  
(850 mg/m3)  

28 ppm  
(290 mg/m3)  

13 ppm  
(130 mg/m3)  

3.3 ppm  
(34 mg/m3)  

1.7 ppm  
(17 mg/m3)  

  

  

TABLE 9-8 AEGL-3 Values fo r Boron Tribro mide  

 

10 min  30 min  1 h  4 h  8 h  

250 ppm  
(2600 mg/m3)  

83 ppm  
(850 mg/m3)  

40 ppm  
(410 mg/m3)  

10 ppm  
(100 mg/m3)  

5 ppm  
(51 mg/m3)  
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The toxicity of boric acid liberated during hydrolysis of boron tribromide 

was considered. The intake of boric acid at the AEGL-3 values by infants, the 

most susceptible population, can be calculated. The 8-h AEGL-3 is 51 mg/m3. The 

breathing rate of a child is 12 m3/day. Boron tribromide is 4.32% boron. Assuming 

complete uptake of boron from the respiratory tract, the resulting uptake for a child 

is:  

  

51 mg/m3 × 12 m3/24 h × 8 h × 0.0432 = 8.8 mg of boron potentially absorbed.  

  

This value is low when compared with the 2-5 g of boron needed for lethality in a 

child.  

  

8. SUMMARY OF AEGL VALUES  

  

8.1. AEGL Values and Toxicity End Points  

  

AEGL values for boron tribromide are presented in Table 9-9.  

  

8.2. Comparison with Other Standards and Guidelines  

  

Workplace guidelines exist for boron tribromide (see Table 9-10). The 

American Conference of Governmental Industrial Hygienists has established a 

TLV-ceiling value of 1 ppm for boron tribromide, which is based on analogy with 

hydrogen bromide (ACGIH 2012, 2001). ACGIH recommends ceiling values for 

primary irritants with no known chronic effects. The ceiling value is a 

concentration that should not be exceeded during any part of the working day. The 

National Institute for Occupational Safety and Health (NIOSH 2011) 

recommended exposure limit-ceiling and the Netherlands MAC value are also 1 

ppm (MSZW 2004). These guidelines are higher than the AEGL-1 value of 0.33 

ppm. The ACGIH TLV-ceiling for hydrogen bromide is 2 ppm (ACGIH 2012), 

and the ACGIH TLV-TWA for boric acid is 2 mg/m3 as inhalable particulate mass 

(ACGIH 2012).     

TABLE 9-9 AEGL Values for Boron Tribromide  

Classification  

Exposure Duration     

10 min  30 min  1 h  4 h  8 h  

AEGL-1  
(nondisabling)  

0.33 ppm  
(3.4 mg/m3)  

0.33 ppm  
(3.4 mg/m3)  

0.33 ppm  
(3.4 mg/m3)  

0.33 ppm  
(3.4 mg/m3)  

0.33 ppm  
(3.4 mg/m3)  
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AEGL-2  
(disabling)  

83 ppm  
(850 mg/m3)  

28 ppm  
(290 mg/m3)  

13 ppm  
(130 mg/m3)  

3.3 ppm  
(34 mg/m3)  

1.7 ppm  
(17 mg/m3)  

AEGL-3  
(lethal)  

250 ppm  
(2600 mg/m3)  

83 ppm  
(850 mg/m3)  

40 ppm  
(410 mg/m3)  

10 ppm  
(100 mg/m3)  

5 ppm  
(51 mg/m3)  

  

  

TABLE 9-10  Standards an d Guidelines f or Boron Trib romide  

 

Guideline  

Exposure Duration     

10 min  30 min  1 h  4 h  8 h  

AEGL-1  0.33 ppm  0.33 ppm  0.33 ppm  0.33 ppm  0.33 ppm  

AEGL-2  83 ppm  28 ppm  13 ppm  3.3 ppm  1.7 ppm  

AEGL-3  250 ppm  83 ppm  40 ppm  10 ppm  5 ppm  

TLV-C (ACGIH)a  1 ppm  1 ppm  1 ppm  1 ppm  1 ppm  

REL-C (NIOSH)b  1 ppm  1 ppm  1 ppm  1 ppm  1 ppm  

MAC (The  
Netherlands)c  

–  –  –  –  10 mg/m3 

1 ppm  

a TLV-C (threshold limit value – ceiling, American Conference of Governmental Indus- 
trial Hygienists) (ACGIH 2012) is a concentration that should not be exceeded during the 

working day.   
b 
REL-C (recommended exposure limit – ceiling, National Institute for Occupational Safety 

and Health) (NIOSH 2011) is defined analogous to the ACGIH TLV-ceiling.  
c 
MAC (maximaal aanvaarde concentratie [maximal accepted concentration], Dutch Expert 

Committee for Occupational Standards, The Netherlands) (MSZW 2004) is defined 

analogous to the ACGIH TLV-TWA.  

  

  

8.3. Data Adequacy and Research Needs  

  

The reactive nature of boron tribromide precludes toxicity testing. In the 

absence of empirical data on boron tribromide, and on the basis that one mole of 

boron tribromide theoretically hydrolyzes into three moles of hydrogen bromide, 

the AEGL values for boron tribromide were based on those for hydrogen bromide. 

The database for hydrogen bromide was combined with the more robust data base 

for the related chemical, hydrogen chloride.   
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APPENDIX A  

  

DERIVATION OF AEGL VALUES FOR BORON TRIBROMIDE  

  

Derivation of AEGL-1 Values   

  

Inadequate data were available on boron tribromide, so AEGL-1 values were 

based on the AEGL-1 values for hydrogen bromide.  

  

Calculation:    On the basis that one mole of boron 

tribromide hydrolyzes into three moles of hydrogen 

bromide,  the hydrogen bromide AEGL-1 value was 

divided  by 3. For all AEGL-1 durations: 1 ppm ÷ 3 = 

0.33 ppm  

  

Derivation of AEGL-2 Values  

  

Inadequate data were available on boron tribromide, so AEGL-2 values were 

based on the AEGL-2 values for hydrogen bromide.  

  

Calculation:    

  

 On the basis that one mole of boron tribromide 

hydrolyzes into three moles of hydrogen bromide, the 

hydrogen bromide AEGL-2 values were divided by 3.   

10-min AEGL-2:   

  

  250 ppm ÷ 3 = 83 ppm  

30-min AEGL-2:   

  

  83 ppm ÷ 3 = 28 ppm  

1-h AEGL-2:     

  

  40 ppm ÷ 3 = 13 ppm  

4-h AEGL-2     

  

  10 ppm ÷ 3 = 3.3 ppm  

8-h AEGL-2:     

  

  5 ppm ÷ 3 = 1.7 ppm  

Derivation of AEGL-3 Values  

  

Inadequate data were available on boron tribromide, so AEGL-3 values were 

based on the AEGL-3 values for hydrogen bromide.  
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Calculation:    On the basis that one mole of boron tribromide 

hydrolyzes into three moles of hydrogen bromide, the 

hydrogen bromide AEGL-3 values were divided by 3.   

  

10-min AEGL-3:     740 ppm ÷ 3 = 250 ppm  

  

30-min AEGL-3:     250 ppm ÷ 3 = 83 ppm     1-h AEGL-3    

 120 ppm ÷  3 = 40 ppm  

  

4-h AEGL-3:     31 ppm ÷ 3 = 10 ppm  

  

8-h AEGL-3:     15 ppm ÷ 3 = 5 ppm  
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APPENDIX B  

  

ACUTE EXPOSURE GUIDELINE LEVELS   

FOR BORON TRIBROMIDE  

  

Derivation Summary  

  

AEGL-1 VALUES  

10min  30 min  1 h  4 h  8 h  

0.33 ppm  0.33 ppm  0.33 ppm  0.33 ppm  0.33 ppm  

Data adequacy: Inadequate data were available on boron tribromide, so values were based 

on the AEGL-1 values for hydrogen bromide. On the basis that one mole of boron 
tribromide hydrolyzes into three moles of hydrogen bromide, the hydrogen bromide 

AEGL-1 values were divided by 3.  

 

  

  

AEGL-2 VALUES  

10 min  30 min  1 h  4 h  8 h  

83 ppm  28 ppm  13 ppm  3.3 ppm  1.7 ppm  

Data adequacy: Inadequate data were available on boron tribromide, so values were based 

on the AEGL-2 values for hydrogen bromide. On the basis that one mole of boron 
tribromide hydrolyzes into three moles of hydrogen bromide, the hydrogen bromide 

AEGL-2 values were divided by 3.  

 

  

  

AEGL-3 VALUES  

10 min  30 min  1 h  4 h  8 h  

250 ppm  83 ppm  40 ppm  10 ppm  5 ppm  

Data adequacy: Inadequate data were available on boron tribromide, so values were based 

on the AEGL-3 values for hydrogen bromide. On the basis that one mole of boron 
tribromide hydrolyzes into three moles of hydrogen bromide, the hydrogen bromide 

AEGL-3 values were divided by 3.  

 

  


