Table of Contents

1.0 Stacks and Pipes	3
Table 1: Stack Pipe ID Prefixes	3
2.0 Monitoring Location Attributes	
Table 2: Material Codes and Description	3
Table 3: Shape Codes and Descriptions	3
3.0 Unit Fuel	3
Table 4: Fuel Codes and Descriptions	3
Table 5: Fuel Indicator Codes and Descriptions	4
Table 6: Demonstration Method to Qualify for Monthly Fuel Sampling for Gross Calorific	2
Value (GCV) Codes and Descriptions	
Table 7: Demonstration Method to Qualify for Daily or Annual Fuel Sampling for %S (Al	RP)
Codes and Descriptions	
4.0 Unit Controls	5
Table 8: Parameter Codes and Descriptions	5
Table 9: Control Codes and Descriptions	5
5.0 Monitoring Method	
Table 10: Parameter Codes and Descriptions for Monitoring Methods	7
Table 11: Measured Parameters and Applicable Monitoring Methods	7
Table 12: Substitute Data Codes and Descriptions	9
Table 13: Bypass Approach Codes and Descriptions	
6.0 Monitoring Systems	. 10
Table 14: System Type Codes and Descriptions	
Table 15: System Designation Code and Descriptions	
Table 16: Fuel Codes and Descriptions	. 11
7.0 System Components	
Table 17: Fuel Codes and Descriptions	
8.0 Monitoring System Fuel Flow	
Table 18: Fuel Codes and Descriptions	
Table 19: Units of Measure for Maximum Fuel Flow Rate Codes and Descriptions	
Table 20: Maximum Fuel Flow Rate Source Code	
9.0 Component Data	
Table 21: Component Type Codes and Descriptions	
Table 22: Sample Acquisition Method (SAM) Codes	
Table 23: Basis Codes (BAS) and Descriptions	
10.0 Analyzer Range Data	
Table 24: Analyzer Range Codes and Descriptions	
11.0 Emissions Formulas	
Table 25: Parameter Codes and Descriptions for Monitoring Formula.	
Table 26: F-Factor* Reference Table	
Table 27: SO2 Formula References	
Table 28: SO2 Emission Formulas	
Table 29: NOx Emission Rate Formula Reference Table	
Table 30: NOx Emission Rate Formulas (lb/mmBtu)	
Table 31: Moisture Formulas	. 23

Table 32: CO2 Formula Reference Table	23
Table 32: CO2 Formula Reference Fable Table 33: CO2 Concentration and Mass Emission Rate Formulas	
Table 34: Heat Input Formula Reference Table	
Table 35: Heat Input Formulas	
Table 36: Apportionment and Summation Formulas.	
Table 37: NOx Mass Emissions Formulas (lbs/hr)	
Table 38: Miscellaneous Formula Codes	
Table 39: Representations for Electronic Reporting.	
12.0 Span Values	
Table 40: Component Type Codes and Descriptions for Monitor Span	
Table 41: Provision for Calculating Maximum Potential Concentrations (MPC)/ Maximum	
Expected Concentration (MEC)/ Maximum Potential Flow Rate (MPF) Codes an	
Descriptions	
Table 42: Flow Span Calibration Units of Measure	
13. Rectangular Duct WAF	
Table 43: WAF Method Code and Descriptions	33
14. Unit/Stack/Pipe Load or Operating Level Information	33
Table 44: Maximum Load Value Codes and Descriptions	33
15. Monitoring Defaults	34
Table 45: Parameter Codes and Descriptions for Monitoring Default	34
Table 46: Fuel-Specific Minimum Default Moisture Values for SO2, NOx, CO2, and Heat	t
Input Rate Calculations	35
Table 47: Fuel-Specific Maximum Default Moisture Values for NOx Emission Rate	
Calculations	
Table 48: NOx Emission Factors (lb/mmBtu) for Low Mass Emissions Units	
Table 49: SO2 Emission Factors (lb/mmBtu) for Low Mass Emissions Units	
Table 50: CO2 Emission Factors (ton/mmBtu) for Low Mass Emissions Units	
Table 51: Units of Measure Codes by Parameter	
Table 52: Default Purpose Codes and Descriptions	
Table 53: Fuel Codes and Descriptions	
Table 54: Operating Condition Codes and Descriptions	
Table 55: Default Source Codes and Descriptions	
16.0 Qualifications	
Table 56: Qualification Type Codes and Descriptions	
Table 57: Qualification Data Type Code and Descriptions	42

1.0 STACKS AND PIPES

TABLE 1: STACK PIPE ID PREFIXES

Prefix	Description
CS	Common Stack
СР	Common Pipe
MS	Multiple Stack or Duct
MP	Multiple Pipe

2.0 MONITORING LOCATION ATTRIBUTES

TABLE 2: MATERIAL CODES AND DESCRIPTION

Code	Description	
BRICK	Brick and mortar	
OTHER	Any material other than brick and mortar	

TABLE 3: SHAPE CODES AND DESCRIPTIONS

Code	Description
RECT	Rectangular
ROUND	Round

3.0 UNIT FUEL

TABLE 4: FUEL CODES AND DESCRIPTIONS

Code	Description		
С	Coal		
CRF	Coal Refuse (culm or gob)		
DSL	Diesel Oil*		
LPG	Liquefied Petroleum Gas		
NNG	Natural Gas		
OGS	Other Gas		
OIL	Residual Oil		

Code	Description		
OOL	Other Oil		
OSF	Other Solid Fuel		
PNG	Pipeline Natural Gas (as defined in §72.2)		
PRG	Process Gas		
PRS	Process Sludge		
РТС	Petroleum Coke		
R	Refuse		
TDF	Tire Derived Fuel		
W	Wood		
WL	Waste Liquid		

* Diesel oil is defined in §72.2 as low sulfur fuel oil of grades 1-D or 2-D, as defined by ASTM D-975-91, grades 1-GT or 2-GT, as defined by ASTM D2880-90a, or grades 1 or 2, as defined by ASTM D396-90. By those definitions (specifically ASTM D396-90), kerosene and ultra-low sulfur diesel fuel (ULSD) are considered subsets of diesel oil and therefore should be identified with the code DSL. If a fuel does not qualify as one of these types, the code DSL should not be used.

TABLE 5: FUEL INDICATOR CODES AND DESCRIPTIONS

Code	Description
Е	Emergency
Ι	Ignition (startup)
Р	Primary
S	Backup (secondary)

TABLE 6: DEMONSTRATION METHOD TO QUALIFY FOR MONTHLY FUEL SAMPLING FOR GROSS CALORIFIC VALUE (GCV) CODES AND DESCRIPTIONS

Code	Description
GHS	720 Hours of Data Using Hourly Sampling
GGC	720 Hours of Data Using an Online Gas Chromatograph
GOC	720 Hours of Data Using an Online Calorimeter

TABLE 7: DEMONSTRATION METHOD TO QUALIFY FOR DAILY OR ANNUAL FUEL SAMPLING FOR %S (ARP) CODES AND DESCRIPTIONS

Code	Description	
SHS	720 Hours of Data Using Manual Hourly Sampling	
SGC	720 Hours of Data Using Online Gas Chromatograph	

4.0 UNIT CONTROLS

TABLE 8: PARAMETER CODES AND DESCRIPTIONS

Code	Description	
NOX	Nitrogen Oxides	
SO2	Sulfur Dioxide	
PART	Particulates (opacity)	

TABLE 9: CONTROL CODES AND DESCRIPTIONS

Parameter	Control Code	Description
NOX	СМ	Combustion Modification/Fuel Reburning
	DLNB	Dry Low NO _x Premixed Technology (turbines only)
	H2O	Water Injection (turbines and cyclone boilers only)
	LNB	Low NO_x Burner Technology (dry bottom wall-fired boilers or process heaters only)
	LNBO	Low NO _x Burner Technology with Overfire Air (dry bottom wall-fired boilers, dry bottom turbo-fired boilers, or process heaters only)
	LNC1	Low NO _x Burner Technology with Close-Coupled Overfire Air (OFA) (tangentially fired units only)
	LNC2	Low NO _x Burner Technology with Separated OFA (tangentially fired units only)
	LNC3	Low NO _x Burner Technology with Close-Coupled and Separated OFA (tangentially fired units only)
	LNCB	Low NO _x Burner Technology for Cell Burners
	NH3	Ammonia Injection
	0	Other
	OFA	Overfire Air
	SCR	Selective Catalytic Reduction

Parameter	Control Code	Description
	SNCR	Selective Non-Catalytic Reduction
	STM	Steam Injection
SO2	DA	Dual Alkali
	DL	Dry Lime FGD
	FBL	Fluidized Bed Limestone Injection
	МО	Magnesium Oxide
	0	Other
	SB	Sodium Based
	WL	Wet Lime FGD
	WLS	Wet Limestone
PART	В	Baghouse(s)
	ESP	Electrostatic Precipitator
	HESP	Hybrid Electrostatic Precipitator
	WESP	Wet Electrostatic Precipitator
	WS	Wet Scrubber
	0	Other
	С	Cyclone

5.0 MONITORING METHOD

TABLE 10: PARAMETER CODES AND DESCRIPTIONS FOR MONITORING METHODS

Code	Description (Units)
CO2	CO ₂ Mass Emissions Rate (tons/hr)
CO2M	CO ₂ Mass Emissions (tons)
H2O	Moisture (%H ₂ O)
HI	Heat Input Rate (mmBtu/hr)
HIT	Heat Input Total (mmBtu) (LME only)
NOX	NO _x Mass Emissions Rate (lb/hr)
NOXM	NO _x Mass Emissions (lb) (LME only)
NOXR	NO _x Emissions Rate (lb/mmBtu)
OP	Opacity (percent)
SO2	SO ₂ Mass Emissions Rate (lb/hr)
SO2M	SO ₂ Mass Emissions (lb) (LME only)

TABLE 11: MEASURED PARAMETERS AND APPLICABLE MONITORING METHODS

Parameter	Method Code	Description
CO2	AD	Appendix D Gas and/or Oil Flow System(s) (Formula G-4)
	AMS	Alternative Monitoring System*
	CEM	CO ₂ Continuous Emission Monitor
CO2M	FSA	Fuel Sampling and Analysis (Formula G-1)
	LME	Low Mass Emissions (§75.19)
H2O	MMS	Continuous Moisture Sensor
	MDF	Moisture Default
	MTB	Moisture Lookup Table
	MWD	H ₂ O System with Wet and Dry O ₂ Analyzers

Parameter	Method Code	Description
HI	AD	Appendix D Gas and/or Oil Flow System(s)
	ADCALC	Appendix D Gas and/or Oil Flow System at location (unit) and different Oil or Gas Measured at Common Pipe. (Heat Input at the unit is determined by adding the appropriate value apportioned from the Common Pipe to the unit value)
	AMS	Alternative Monitoring System*
	CALC	Calculated from Values Measured at Other Locations. (Used for three situations: (1) this is the method at a unit when heat input is determined at a common stack or common pipe and then apportioned to the constituent units; or (2) this is the method at a unit when heat input is determined at multiple stacks and then summed to the unit; or (3) this is the method at a common stack if heat input is determined at the units and then summed to the common stack in order to calculate NO _x mass)
	CEM	Flow and O ₂ or CO ₂ Continuous Emission Monitors
	EXP	Exempt from Heat Input monitoring
HIT	LTFF	Long-Term Fuel Flow (Low Mass Emissions §75.19)
	LTFCALC	Long-Term Fuel Flow (Low Mass Emissions §75.19) at the unit and different Long Term Fuel Flow at the common pipe. (Heat Input at the unit is determined by adding the appropriate value apportioned from the Common Pipe to the unit value)
	MHHI	Maximum Rated Hourly Heat Input (Low Mass Emissions)
	CALC	Calculated from values measured at the common pipe. (This is the method at a unit when heat input is determined at a common pipe and apportioned to the constituent units)
NOX	AMS	Alternative Monitoring System*
	CEM	NO _x Concentration times Stack Flow rate
	CEMNOXR	NO_x Concentration times Stack Flow rate <u>and</u> NO_x Emission Rate times Heat Input Rate (one as a primary method and the other as secondary). <i>This method is not permitted after December 31, 2007</i>
	NOXR	NO _x Emission Rate times Heat Input Rate
NOXM	LME	Low Mass Emissions (§75.19)
NOXR	AMS	Alternative Monitoring System*
	AE	Appendix E
	CEM	NO _x Emission Rate CEMS
	PEM	Predictive Emissions Monitoring System (as approved by petition)
ОР	СОМ	Continuous Opacity or Particulate Matter Monitor
	EXP	Exempted

Parameter	Method Code	Description
SO2	AD	Appendix D Gas and/or Oil Flow System(s)
	AMS	Alternative Monitoring System*
	CEM	SO ₂ Continuous Emission Monitor
	CEMF23	SO ₂ Continuous Emission Monitor, and Use of F-23 Equation during hours when only very low sulfur fuel is burned per §§75.11(e) and 75.11(e)(4)
	F23	Use of F-23 Equation if only very low sulfur fuel is burned per §§75.11(e) and 75.11(e)(4)
SO2M	LME	Low Mass Emissions (§75.19)

* Use of this method requires EPA approval

TABLE 12: SUBSTITUTE DATA CODES AND DESCRIPTIONS

Code	Description	Appropriate For Parameter Codes
SPTS	Standard Part 75	NOXR, NOX, SO2, CO2, H2O, and HI
FSP75	Fuel-Specific Part 75	NOXR, NOX, SO2, CO2, H2O, and HI
FSP75C	Fuel-Specific Part 75 with separate co-fired database	NOXR, NOX, SO2, CO2, H2O, and HI
OZN75	Ozone vs. Non-Ozone Season	NOX, NOXR
NLB	Non-Load Based	NOXR, NOX, and HI
NLBOP	Non-Load Based with Operational Bins	NOXR, NOX, and HI
REV75	Reverse of Standard Part 75	H2O
МННІ	Maximum Rated Hourly Heat Input Rate for LME Units using Long Term Fuel Flow methodology	НІТ

TABLE 13: BYPASS APPROACH CODES AND DESCRIPTIONS

Code	Description
BYMAX	MPC or MER for Highest Emitting Fuel
BYMAXFS	Fuel-Specific MPC or MER

6.0 MONITORING SYSTEMS

Code	Description
CO2	CO ₂ Concentration System
FLOW	Stack Flow System
GAS	Gas Fuel Flow System
H2O	Moisture System that uses wet and dry O ₂ analyzers
H2OM	Moisture System that uses a continuous moisture sensor
Н2ОТ	Moisture System that uses a temperature sensor and a table of lookup values
LTGS	Long Term Gas Fuel Flow System (LME)
LTOL	Long Term Oil Fuel Flow System (LME)
NOX	NO _x Emission Rate System
NOXE	Appendix E NO _x System
NOXC	NO _x Concentration System
NOXP	NO _x Emission Rate PEMS System
02	O ₂ Concentration System
OILV	Volumetric Oil Fuel Flow System
OILM	Mass of Oil Fuel Flow System
ОР	Opacity (ARP only)
РМ	Particulate Matter Monitoring System
SO2	SO ₂ Concentration System

TABLE 14: SYSTEM TYPE CODES AND DESCRIPTIONS

TABLE 15: SYSTEM DESIGNATION CODE AND DESCRIPTIONS

Code	Description	
Р	Primary.	
PB	Primary Bypass. A primary bypass (PB) describes a monitoring system located on a bypass stack before a heat recovery steam generator (HRSG). ¹	
RB	Redundant Backup. A redundant backup (RB) monitoring system is operated and maintained by meeting all of the same program QA/QC requirements as a primary system.	
В	Non-Redundant Backup. A non-redundant backup system (B) is a "cold" backup or portable monitoring system, having its own probe, sample interface, and analytical components.	
DB	Data Backup. A data backup system is comprised of the analytical components	

Code	Description	
	contained in the primary monitoring system (or in a redundant backup system), but includes a backup DAHS component.	
RM	Reference Method Backup. A reference method (RM) monitoring system is a monitoring system that is operated as a reference method pursuant to the requirements of Appendix A to Part 60.	
CI ²	Certified Monitoring System at the Inlet to an Emission Control Device.	

¹ "P" used for the monitoring system located on the main HRSG stack.

² "CI" <u>only</u> used for units with add-on SO₂ or NO_x emission controls. Specifically, the use of a "CI" monitoring system is limited to the following circumstances:

- If the unit has an exhaust configuration consisting of a monitored main stack and an unmonitored bypass stack, and the source elects to report SO₂ data from a certified monitoring system located at the control device inlet (in lieu of reporting maximum potential concentration) during hours in which the flue gases are routed through the bypass stack; or
- If the outlet SO₂ or NO_x monitor is unavailable and proper operation of the add-on emission controls is not verified, and the source elects to report data from a certified SO₂ or NO_x monitor at the control device inlet in lieu of reporting MPC or MER values. However, note that for the purposes of reporting NO_x emission rate, this option may only be used if the inlet NO_x monitor is paired with a diluent monitor and represented as a NO_x-diluent monitoring system in the Component record.

Code	Description	
BFG	Blast Furnace Gas	
BUT	Butane Gas	
CDG	Coal Derived Gas	
COG	Coke Oven Gas	
DGG	Digester Gas	
DSL	Diesel Oil	
LFG	Landfill Gas	
LPG	Liquefied Petroleum Gas (if measured as a gas)	
MIX	Mixture of oil/gas fuel types (for NOXE system for co-fired curve only)	
NFS	Non-Fuel-Specific for CEM (including H ₂ O) and Opacity Systems	
NNG	Natural Gas	
OGS	Other Gas	
OIL	Residual Oil	
OOL	Other Oil	

TABLE 16: FUEL CODES AND DESCRIPTIONS

Code	Description
PDG	Producer Gas
PNG	Pipeline Natural Gas (as defined in §72.2)
PRG	Process Gas
PRP	Propane Gas
RFG	Refinery Gas
SRG	Unrefined Sour Gas

7.0 System Components

TABLE 17: FUEL CODES AND DESCRIPTIONS

Code	Description
BFG	Blast Furnace Gas
BUT	Butane Gas
CDG	Coal Derived Gas
COG	Coke Oven Gas
DGG	Digester Gas
DSL	Diesel Oil
LFG	Landfill Gas
LPG	Liquefied Petroleum Gas (if measured as a gas)
MIX	Mixture of oil/gas fuel types (for NOXE system for co-fired curve only)
NFS	Non-Fuel-Specific for CEM (including H ₂ O) and Opacity Systems
NNG	Natural Gas
OGS	Other Gas
OIL	Residual Oil
OOL	Other Oil
PDG	Producer Gas
PNG	Pipeline Natural Gas (as defined in §72.2)
PRG	Process Gas
PRP	Propane Gas
RFG	Refinery Gas
SRG	Unrefined Sour Gas

8.0 MONITORING SYSTEM FUEL FLOW

TABLE 18: FUEL CODES AND DES	CRIPTIONS
------------------------------	-----------

Code	Description
BFG	Blast Furnace Gas
BUT	Butane Gas
CDG	Coal Derived Gas
COG	Coke Oven Gas
DGG	Digester Gas
DSL	Diesel Oil
LFG	Landfill Gas
LPG	Liquefied Petroleum Gas (if measured as a gas)
MIX	Mixture of oil/gas fuel types (for NOXE system for co-fired curve only)
NFS	Non-Fuel-Specific for CEM (including H ₂ O) and Opacity Systems
NNG	Natural Gas
OGS	Other Gas
OIL	Residual Oil
OOL	Other Oil
PDG	Producer Gas
PNG	Pipeline Natural Gas (as defined in §72.2)
PRG	Process Gas
PRP	Propane Gas
RFG	Refinery Gas
SRG	Unrefined Sour Gas

TABLE 19: UNITS OF MEASURE FOR MAXIMUM FUEL FLOW RATE CODES AND DESCRIPTIONS

Parameter	Code	Description
Volumetric Flow of Oil	SCFH	Standard cubic feet per hour
	GALHR	Gallons per hour
	BBLHR	Barrels per hour
	M3HR	Cubic meters per hour
Mass of Oil	LBHR	Pounds per hour
Gas Flow	HSCF	100 standard cubic feet per hour

TABLE 20: MAXIMUM FUEL FLOW RATE SOURCE CODE

Code	Description
URV	Maximum rate based on the upper range value of the unit
UMX	Maximum rate based on the rate at which the unit can combust fuel

9.0 COMPONENT DATA

TABLE 21: COMPONENT TYPE CODES AND DESCRIPTIONS

Code	Description
BGFF	Billing Gas Fuel Flowmeter
BOFF	Billing Oil Fuel Flowmeter
CALR	Calorimeter
CO2	Carbon Dioxide Concentration Analyzer
DAHS	Data Acquisition and Handling System
DL	Data Logger or Recorder
DP	Differential Pressure Transmitter/Transducer
FLC	Flow Computer
FLOW	Stack Flow Monitor
GCH	Gas Chromatograph
GFFM	Gas Fuel Flowmeter
H2O	Percent Moisture (Continuous Moisture System only)

Code	Description
NOX	Nitrogen Oxide Concentration Analyzer
02	Oxygen Concentration Analyzer
OFFM	Oil Fuel Flowmeter
ОР	Opacity Measurement
PLC	Programmable Logic Controller
PM	Particulate Matter Measurement
PRB	Probe
PRES	Pressure Transmitter/Transducer
SO2	Sulfur Dioxide Concentration Analyzer
TANK	Oil Supply Tank
TEMP	Temperature Transmitter/Transducer

TABLE 22: SAMPLE ACQUISITION METHOD (SAM) CODES

Component	Code	Description
For CEMS	DIL	Dilution
	DIN	Dilution In-Stack
	DOD	Dry Out-of-Stack Dilution
	DOU	Dilution Out-of-Stack
	EXT	Dry Extractive
	IS	In Situ
	ISP	Point/Path in Situ
	ISC	Cross Stack in Situ
	0	Other
	WXT	Wet Extractive
For Volumetric Stack Flow Monitor	DP	Differential Pressure
	0	Other
	Т	Thermal
	U	Ultrasonic

For Fuel Flowmeter Types	COR	Coriolis
	DP	Differential Pressure (e.g., Annubar)
	NOZ	Nozzle
	0	Other
	ORF	Orifice
	PDP	Positive Displacement
	Т	Thermal Mass Flowmeter
	TUR	Turbine
	U	Ultrasonic
	VCON	V-Cone
	VEN	Venturi
	VTX	Vortex

TABLE 23: BASIS CODES (BAS) AND DESCRIPTIONS

Code	Description
W	Wet
D	Dry
В	Both wet and dry (O ₂ only)

10.0 ANALYZER RANGE DATA

TABLE 24: ANALYZER RANGE CODES AND DESCRIPTIONS

Code	Description
Н	High Range
L	Low Range
А	Auto Ranging

11.0 Emissions Formulas

TABLE 25: PARAMETER CODES AND DESCRIPTIONS FOR MONITORING FORMULA

Code	Description
CO2	CO ₂ Hourly Mass Emission Rate (tons/hr)
CO2C	CO ₂ Concentration (%CO ₂)
CO2M	CO ₂ Daily Mass (tons)
FC	F-Factor Carbon-Based
FD	F-Factor Dry-Basis
FGAS	Gas Hourly Flow Rate (hscf)
FLOW	Net Stack Gas Volumetric Flow Rate
FOIL	Net Oil Flow Rate to Unit/Pipe
FW	F-Factor Wet-Basis
H2O	Moisture (%H ₂ O)
HI	Heat Input Rate (mmBtu/hr)
HIT	Heat Input Total (mmBtu)
NOX	NO _x Hourly Mass Emission Rate (lb/hr)
NOXR	NO _x Emission Rate (lb/mmBtu)
OILM	Oil Mass Flow Rate (lb/hr)
SO2	SO ₂ Hourly Mass Emission Rate (lb/hr)
SO2R	SO ₂ Emission Rate (lb/mmBtu) When Equation D-1h Is Used

TABLE 26: F-FACTOR* REFERENCE TABLE

		Option 1: Fuel-Ba	ased Constants		
		Fuel	F-Factor (dscf/ mmBtu)	F _c -Factor (scf CO ₂ / mmBtu)	F _w -Factor (wscf/mmBtu)
Coal	Ant	thracite	10,100	1,970	10,540
	Bitu	uminous	9,780	1,800	10,640
	Sub	p-bituminous	9,820	1,840	
	Lig	nite	9,860	1,910	11,950
	Petr	roleum Coke	9,830	1,850	
	Tire	e-Derived Fuel	10,260	1,800	
Gas	Nat	ural Gas	8,710	1,040	10,610
	Pro	pane	8,710	1,190	10,200
	But	ane	8,710	1,250	10,390
Oil	Oil		9,190	1,420	10,320
Waste	Mu	nicipal Solid Waste	9,570	1,820	
Wood	Bar	k	9,600	1,920	
	Wo	od Residue	9,240	1,830	
		Option 2: Calcula	ated F-Factors		
Code	Para- meter	Formula		Where:	
F-7A	FD	$F = \frac{3.64(\%H) + 1.53(\%C) + 0.57(\%S) + 0.14(\%N)}{GCV}$) - 0.46(%O) x 10 ⁶	$F = Dry-basis F-factor$ $(dscf/mmBtu)$ $F_{c} = Carbon-based F-factor (scf)$	
F-7B 19-14	FC FW	$F_c = \frac{321 \times 10^3 \times (\%C)}{GCV}$	$F_{c} = \frac{321 x 10^{3} x(\%C)}{GCV}$		2/mmBtu) t-basis F-factor cf/mmBtu) ntent of element, percent weight, as determined
	$F_{w} = \frac{5.57(\%H) + 1.53(\%C) + 0.57(\%S) + 0.14(\%N) - 0.46(\%O) + 0.21(5)}{GCV_{w}}$		%O)+0.21(%H ₂ O) x 10 ⁶	$\begin{array}{c} gro\\ ulti\\ con\\ D3\\ AS\\ D19\\ fue\\ GCV &= Gro\\ (Bt\\ dete\\ D20\end{array}$	the same basis as the ss calorific value by mate analysis of the fuel abusted using ASTM 176-89 for solid fuels, TM D1945-91 or ASTM 946-90 for gaseous ls, as applicable oss calorific value u/lb) of fuel combusted ermined by ASTM 015-91 for solid and tid fuels or ASTM

Monitoring Plan	XML	File	Codes
------------------------	-----	------	-------

			GCV _w D1826-88 for gaseous fuels, as applicable = Calorific value (Btu/lb) of fuel combusted, wet basis
F-8**	FD, FC, or FW	$F = \sum_{i=1}^{n} X_{i} F_{i}$ $F_{c} = \sum_{i=1}^{n} X_{i} (F_{c})_{i}$ $F_{w} = \sum_{i=1}^{n} X_{i} (F_{w})_{i}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$

- * F-factor is the ratio of the gas volume of all the products of combustion (less water) to the heat content of the fuel. F_c-factor is the ratio of the gas volume of the CO₂ generated to the heat content of the fuel (see Part 75, Appendix F, Section 3.3). F-factor is the ratio of the quantity of wet effluent gas generated by the combustion to the heat content of the fuel including free water in the fuel.
- ** This formula is used for affected units that combust combinations of fossil fuels or fossil fuels and wood residue. For affected units that combust a combination of fossil and non-fossil fuels, the selected F-factor must receive state or EPA approval.

Usage	Moisture Basis	Appropriate Hourly Formulas (Part 75, Appendices D&F)
SO2 CEMS	WET	F-1
	DRY	F-2
Default SO ₂ emission rate when low sulfur fuels are burned (e.g., natural gas)		F-23 (and D-1H)
Oil Fuel Flowmeter		D-2
Gas Fuel Flowmeter		D-4 or D-5 (and D-1H)
Overall values for multiple fuel flowmeter systems		D-12

TABLE 27: SO2 FORMULA REFERENCES

TABLE 28: SO2 EMISSION FORMULAS

Code	Parameters	Formula	Where:
F-1 F-2	SO2 SO2	$E_h = K x C_h x Q_h$	$\begin{array}{llllllllllllllllllllllllllllllllllll$
		$E_{h} = K \ x \ C_{hp} \ x \ Q_{hs} \ x \frac{100 - \% \ H_{2} O}{100}$	$C_{h} = Hourly average SO_{2} \text{ concentration (ppm (stack moisture basis))}$ $Q_{h} \text{ and } = Hourly average volumetric flow rate (scfh (stack moisture basis))$ $%H_{2}O = Hourly average stack moisture content (percent by volume)$
D-1H	SO2R	$ER = \frac{2.0}{7000} \times 10^6 \times \frac{S_{total}}{GCV}$	ER=Default SO2 emission rate for natural gas (or "other" gaseous fuel) combustion (lb/mmBtu) S_{total} =Total sulfur content of gaseous fuel (grains/100 scf)GCV=Gross calorific value of the gas (Btu/100 scf)2.0=Ratio of lb SO2/lb S7000=Conversion of grains/100 scf to lb/ 100 scf 10^6 =Conversion of Btu to mmBtu
D-2	SO2	$SO \ 2_{rate-oil} = 2.0 \ x \ OIL_{rate} \ x \frac{\% \ S_{oil}}{100.0}$	$SO_{2_{rate-oil}} = Hourly mass emission rate of SO_{2}$ emitted from combustion of oil (lb/hr) OIL_{rate} = Mass rate of oil consumed per hour during combustion (lb/hr) %S_{oil} = Percent sulfur by weight measured in oil sample 2.0 = Ratio of lb SO_{2} to lb S
D-4	SO2	$SO 2_{rate} = (2.0 / 7000) x GAS_{rate} x S_{gas}$	$SO_{2rate} = Hourly mass rate of SO_2 fromcombustion of gaseous fuel (lb/hr)GAS_{rate} = Hourly metered flow rate of gaseousfuel combusted (100 scf/hr)Sgas = Sulfur content of gaseous fuel(grains/100 scf)2.0 = Ratio of lb SO2/lb S7000 = Conversion of grains/100 scf to lb/100 scf$
D-5	SO2	SO $2_{rate} = ER \ x \ HI \ rate$	$\begin{array}{llllllllllllllllllllllllllllllllllll$

Code	Parameters	Formula		Where:
F-23	SO2	$E_h = ER x HI$	ER = Ap from from Ap	purly SO ₂ mass emission rate (lb/hr) oplicable SO ₂ default emission rate om Appendix D, Section 2.3.1.1, or opendix D, Section 2.3.2.1.1 to Part (lb/mmBtu) ourly heat input rate, determined ing a certified flow monitor and uent monitor, according to Appendix Section 5.2 (mmBtu/hr)
D-12*	SO2	$SO 2_{rate} = \frac{\sum_{all-fuels} SO_{2rate-i} t_i}{t_u}$	$SO_{2rate-i} = SC$ $ga:$ ho $t_i = Tin$ con ho	purly mass emission rate of SO_2 from mbustion of all fuels (lb/hr) D_2 mass emission rate for each type of s or oil fuel combusted during the ur (lb/hr) me each gas or oil fuel was mbusted for the hour (fraction of an ur) perating time of the unit

* This equation is a modified form of Equation D-12 as described in Appendix D, Section 3.5.1, and must be used when reporting in XML format.

	Moisture Basis			Appropriate Hourly
Usage	NO _x	CO ₂	O ₂	Formulas
NO _x CEMS (CO ₂ Diluent)	DRY	DRY		19-6
	DRY	WET		19-9
	WET	DRY		19-8
	WET	WET		19-7 or F-6
NO _x CEMS (O ₂ Diluent)	DRY		DRY	19-1 or F-5
	DRY		WET	19-5 or 19-5D
	WET		DRY	19-4
	WET		WET	19-2, 19-3, or 19-3D
Overall Value from Multiple Appendix E Systems				E-2

TABLE 29: NOx Emission Rate Formula Reference Table

Code	Parameter	Formula	Where:
19-1 (F-5)	NOXR	$E = K x C_d x F_d x \frac{20.9}{20.9 - \% O_{2_d}}$	Formulas should be multiplied by the conversion factor "K" (if C_d or C_w is in ppm)
19-2	NOXR	$E = K x C_w x F_w x \frac{20.9}{20.9(1 - B_{wa}) - \% O_{2w}}$	$\frac{FROM}{ppm NO_x} \frac{TO}{lb/scf} \frac{MULTIPLY BY "K"}{K = 1.194 X 10^{-7}}$ $E = Emission rate (lb/mmBtu)$
19-3*	NOXR	$E = K x C_w x F_d x \frac{20.9}{20.9 x \left[\frac{100 - \% H_2 O}{100}\right] - \% O_{2_w}}$	C_d = Pollutant concentration (ppm, dry basis) C_w = (Pollutant concentration ppm, wet basis) F_d = Dry-basis F-factor (dscf/mmBtu)
19-3D*	NOXR	$E = K x C_w x F_d x \frac{20.9}{20.9 x \left[\frac{100 \cdot \% H_2 O}{100}\right] - \% O_{2_{def}} x \left[\frac{100 \cdot \% H_2 O}{100}\right]}$	F_c = Carbon-based F-factor (scf $CO_2/mmBtu$) F_w = Wet-basis F-factor (wscf/mmBtu) B_{wa} = Moisture fraction of ambient air
19-4*	NOXR	$E = K x \frac{(C_w x F_d)}{(100 - \% H_2 O) \div 100} x \frac{20.9}{(20.9 - \% O_{2_d})}$	(default value 0.027) %H ₂ O = Moisture content of effluent gas O_{2_d} = Oxygen diluent concentration
19-5*	NOXR	$E = \frac{20.9 \ x \ K \ x \ C_d \ x \ F_d}{20.9 \ \cdot} \left[\frac{9000 \ -900 \ }{100} \right]$	$O_{2_{w}} = O_{xygen}$ diluent concentration $O_{2_{def}} = D_{efault}$ diluent concentration $O_{2_{def}} = D_{efault}$ diluent cap O_{2} value (14.0 percent for boilers, 19.0 percent
19-5D	NOXR	$E = K x C_d x F_d x \frac{20.9}{20.9 - \% O_{2_{def}}}$	$CO_{2_d} = Carbon dioxide diluentconcentration (percent of effluentgas, dry basis)$
19-6	NOXR	$E = K x C_d x F_c x \frac{100}{\% CO_{2d}}$	CO _{2w} = Carbon dioxide diluent concentration (percent of effluent gas, wet basis)
19-7 (F-6)	NOXR	$E = K x C_w x F_c x \frac{100}{\% CO_{2_w}}$	$E_{f} = NO_{x}$ emission rate for the unit for a given fuel at heat input rate HI_{f} , Ib/mmBtu $HI_{f} = Heat input rate for the hour for a$
19-8*	NOXR	$E = K x \frac{(C_w x F_c)}{(100 - \% H_2 O) \div 100} x \frac{100}{\% CO_{2_d}}$	given fuel, during the fuel usage time, as determined using Equation F-19 or F-20 in Section 5.5 of Appendix F to this part,
19-9*	NOXR	$E = K x C_d x \left[\frac{100 - \% H_2 O}{100} \right] x F_c x \frac{100}{\% CO_{2_w}}$	$\begin{array}{rcl} & mmBtu/hr \\ H_T & = & Total heat input for all fuels for \\ & the hour from Equation E-1 \\ t_f & = & Fuel usage time for each fuel \end{array}$
E-2	NOXR	$E_{h} = \frac{\sum_{f=1}^{all \ fuels} (E_{f} \ X \ HI_{f} \ t_{f})}{H_{T}}$	(rounded to the nearest fraction of an hour (in equal increments that can range from one hundredth to one quarter of an hour, at the option of the owner or operator))

TABLE 30: NOX EMISSION RATE FORMULAS (LB/MMBTU)

* Note that [(100 - $%H_2O/100$] may also represented as (1 - B_{ws}), where B_{ws} is the proportion by volume of water vapor in the stack gas stream.

TABLE 31: MOISTURE FORMULAS

Code	Parameter	Formula	Where:
F-31	H2O	$\%_{H_2}O = \frac{(O_{2_d} - O_{2_w})}{O_{2_d}} \times 100$	%H ₂ O = Percent moisture O _{2d} = Oxygen diluent concentration (percent of effluent gas, dry
M-1K	H2O	$\% H_2 O = \frac{(O_{2d} - O_{2w})}{O_{2d}} \times 100$, as adjusted ¹	O_{2_w} = Oxygen diluent concentration (percent of effluent gas, wet basis)

¹ Using a K-factor or other mathematical algorithm, per Appendix A, Section 6.5.7(a).

Appropriate Formulas Usage **Moisture Basis** (Part 75, Appendices F, G) CO₂ CEMS WET F-14B and F-11 (O₂ Analyzer) DRY F-14A and F-2 CO₂ CEM WET F-11 (CO₂ Analyzer) DRY F-2 **Fuel Sampling** G-1 (and possibly G-2, G-3, G-5, G-6 and G-8) Gas or Oil Flowmeter G-4 G-4A Overall Value from Multiple Flowmeter Systems

TABLE 32: CO2 FORMULA REFERENCE TABLE

TABLE 33: CO2 CONCENTRATION AND MASS EMISSION RATE FORMULAS

Code	Parameter	Formula	Where:
F-2	CO2	$E_h = K \times C_{hp} \times Q_{hs} \times \frac{100 - \% H_2 O}{100}$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$

Code	Parameter	Formula	Where:
F-11	CO2	$E_h = K \times C_h \times Q_h$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
F-14A	CO2C	$CO_{2d} = 100 \times \frac{F_c}{F} \times \frac{20.9 - O_{2d}}{20.9}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$
F-14B	CO2C	$CO_{2w} = \frac{100}{20.9} \times \frac{F_c}{F} \times \left[20.9 \left(\frac{100 - \% H_2 O}{100} \right) - O_{2w} \right]$	$\begin{array}{llllllllllllllllllllllllllllllllllll$
G-1	CO2M	$W_{CO_2} = \frac{\left(MW_c + MW_{O_2}\right) \times W_c}{2000 MW_c}$	$ W_{CO_2} = CO_2 \text{ emitted from combustion} \\ $
G-2	CO2M	$W_{NCO2} = W_{CO2} - \frac{MW_{CO2}}{MW_c} \times \left(\frac{A\%}{100}\right) \times \left(\frac{C\%}{100}\right) \times W_{COAL}$	$\begin{split} W_{\text{NCO2}} &= \text{Net CO}_2 \text{ mass emissions discharged} \\ & \text{to the atmosphere (tons/day)} \\ W_{\text{CO2}} &= \text{Daily CO}_2 \text{ mass emissions calculated} \\ & \text{by Equation G-1 (tons/day)} \\ MW_{\text{CO2}} &= \text{Molecular weight of carbon dioxide} \\ & (44.0) \\ MW_c &= \text{Molecular weight of carbon (12.0)} \\ A\% &= \text{Ash content of the coal sample} \\ & (\text{percent by weight}) \\ C\% &= \text{Carbon content of ash (percent by} \\ & \text{weight}) \\ W_{\text{COAL}} &= \text{Feed rate of coal from company} \\ & \text{records (tons/day)} \end{split}$

Code	Parameter	Formula	Where:
G-3	CO2M	$W_{NCO2} = .99 \times W_{CO2}$	 W_{NCO2} = Net CO₂ mass emissions from the combustion of coal discharged to the atmosphere (tons/day) .99 = Average fraction of coal converted into CO₂ upon combustion W_{CO2} = Daily CO₂ mass emissions from the combustion of coal calculated by Equation G-1 (tons/day)
G-4	CO2	$W_{CO_2} = \frac{F_c \times H \times U_f \times MW_{CO_2}}{2000}$	$\begin{split} W_{CO_2} &= CO_2 \text{ emitted from combustion} \\ & (tons/hr) \\ F_c &= Carbon-based F-factor, 1,040 \\ & scf/mmBtu for natural gas; 1,420 \\ & scf/mmBtu for crude, residual, or \\ & distillate oil and calculated according \\ & to the procedures in Section 3.3.5 of \\ & Appendix F to Part 75 for other \\ & gaseous fuels \\ H &= Hourly heat input rate (mmBtu/hr) \\ U_f &= 1/385 scf CO_2/lb-mole at 14.7 psi and \\ & 68°F \\ MW_{CO_2} &= Molecular weight of carbon dioxide \\ & (44.0) \end{split}$
G-4A	CO2	$CO2_{unit} = \frac{\sum_{all-fuels} CO2_{fuel} t_{fuel}}{t_{unit}}$	$\begin{array}{l} CO2_{unit} = Unit CO_2 \mbox{ mass emission rate} \\ (tons/hr) \\ CO2_{fuel} = CO_2 \mbox{ mass emission rate calculated} \\ using Equation G-4 \mbox{ for a single fuel} \\ (tons/hr) \\ t_{fuel} = Fuel \mbox{ usage time} \\ t_{unit} = Unit \mbox{ operating time} \end{array}$
G-5	CO2M	$SE_{CO_2} = W_{CaCO_3} \times F_u \times \frac{MW_{CO_2}}{MW_{CaCO_3}}$	$\begin{array}{l} \mathrm{SE}_{\mathrm{CO}_2} &= \mathrm{CO}_2 \mbox{ emitted from sorbent (tons/day)} \\ \mathrm{W}_{\mathrm{CaCO}_3} &= \mathrm{Calcium \ carbonate \ used (tons/day)} \\ \mathrm{F}_u &= 1.00, \mbox{ the calcium to sulfur stoichiometric ratio} \\ \mathrm{MW}_{\mathrm{CO}_2} &= \mathrm{Molecular \ weight \ of \ carbon \ dioxide \ (44.0)} \\ \mathrm{MW}_{\mathrm{CaCO}_3} = \mathrm{Molecular \ weight \ of \ calcium \ carbonate \ (100.0)} \end{array}$
G-6	CO2M	$SE_{CO_2} = F_u \frac{W_{SO_2}}{2000} \frac{MW_{CO2}}{MW_{SO_2}}$	$\begin{array}{ll} SE_{CO_2} &= CO_2 \text{ emitted from sorbent (tons/day)} \\ MW_{CO_2} &= Molecular weight of carbon dioxide \\ & (44.0) \\ MW_{SO_2} &= Molecular weight of sulfur dioxide \\ & (64.0) \\ W_{SO_2} &= Sulfur dioxide removed (lb/day) \\ & based on applicable procedures, \\ & methods, and equations in § 75.15 \\ F_u &= 1.00, the calcium to sulfur \\ & stoichiometric ratio \end{array}$

Code	Parameter	Formula	Where:
G-8	CO2M	$W_t = W_{CO_2} + SE_{CO_2}$	

* See Appendix G, sections 2.1.1 through 2.1.3

** For a unit linked to a common pipe with one additional fuel flowmeter system defined at the unit, a G-4A formula is reported to calculate the unit hourly CO2 rate, even though there is only a single fuel flowmeter defined at the unit. Because the fuel usage time may not be equal to the unit operating time, the hourly CO2 rate for the fuel may be different from the hourly CO2 rate for the unit. Formula G-4A is used to calculate the unit hourly CO2 rate.

Usage	Moisture Basis	Appropriate Hourly Formulas (Part 75, Appendices D and F)
CEMS (O ₂ Analyzer)	WET	F-17
	DRY	F-18
CEMS (CO ₂ Analyzer)	WET	F-15
	DRY	F-16
Gas Fuel Flowmeter System		D-6 (F-20)
Oil Fuel Flowmeter System (Mass)		D-8 (F-19)
Oil Fuel Flowmeter System (Volumetric)		D-3 and D-8 (F-19) or F-19V
Overall Value from Multiple Fuel Flowmeter Systems		D-15A
Apportioned Value from Common Stack or Common Pipe		F-21A, F-21B, or F-21
Summed Value from Multiple Stacks		F-21C
Summed Value from Unit		F-25

TABLE 34: HEAT INPUT FORMULA REFERENCE TABLE

TABLE 35: HEAT INPUT FORMULAS

Code	Parameter	Formula	Where:
D-15A	HI	$HI_{rate-hr} = \frac{\sum_{all-fuels} HI_{rate-i} t_i}{t_u}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$
F-15	HI	$HI = Q_{w} x \frac{1}{F_{c}} x \frac{\% CO_{2w}}{100}$	HI = Hourly heat input rate (mmBtu/hr) Q _w , Q _h = Hourly average volumetric
F-16	HI	$HI = Q_h x \left[\frac{100 - \% H_2 O}{100 F_c} \right] \left[\frac{\% CO_{2d}}{100} \right]$	$F_{c} = Carbon-based F-factor$ $F = Dry basis F-factor$
F-17	HI	$HI = Q_W x \frac{1}{F} x \frac{[(20.9/100)(100 - \% H_2 O) - \% O_{2w}]}{20.9}$	(dscf/mmBtu) %CO _{2w} = Hourly concentration of CO ₂ (percent CO ₂ , wet basis)
F-18	Ш	$HI = Q_w x \left[\frac{(100 - \% H_2 O)}{100F} \right] \left[\frac{(20.9 - \% O_{2d})}{20.9} \right]$	$%CO_{2d}$ Hourly concentration of CO_2 (percent CO_2 , dry basis) $%O_{2w}$ Hourly concentration of O_2 (percent O_2 , wet basis) $%O_{2d}$ Hourly concentration of O_2 (percent O_2 , dry basis) $%H_2O$ Hourly average moisture of gas in the stack (percent)
D-3	OILM	$OIL_{rate} = V_{oil-rate} \ x \ D_{oil}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$
D-8** (F-19V)	Ш	$HI_{rate-oil} = OIL_{rate} x \frac{GCV_{oil}}{10^6}$	$\begin{array}{rcl} \mathrm{HI}_{\mathrm{rate-oil}} &=& \mathrm{Hourly\ heat\ input\ rate\ from}\\ && \mathrm{combustion\ of\ oil\ (mmBtu/hr)}\\ \mathrm{OIL}_{\mathrm{rate}} &=& \mathrm{Rate\ of\ oil\ consumed\ (lb/hr\ for}\\ && \mathrm{Equation\ D-8\ or\ gal/hr\ for}\\ && \mathrm{Equation\ F-19V)}\\ \mathrm{GCV}_{\mathrm{oil}} &=& \mathrm{Gross\ calorific\ value\ of\ oil}\\ && (\mathrm{Btu/lb\ for\ Equation\ D-8\ or}\\ && \mathrm{Btu/gal\ for\ Equation\ F-19V)}\\ \mathrm{10^6} &=& \mathrm{Conversion\ of\ Btu\ to\ mmBtu} \end{array}$

Code	Parameter	Formula	Where:
F-19	HI	$HI_o = M_o x \frac{GCV_o}{10^6}$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
D-6	HI	$HI_{rate-gas} = \frac{GAS_{rate} \times GCV_{gas}}{10^6}$	HI _{rate-gas} ,= Hourly heat input rate from HI _g combustion of gaseous fuel (mmBtu/hr)
F-20	HI	$HI_g = \frac{(Q_g \times GCV_g)}{10^6}$	$\begin{array}{lll} GAS_{rate,=} & Average \ volumetric \ flow \\ Q_g & rate \ of \ fuel \ (100 \ scfh) \\ GCV_{gas,=} & Gross \ calorific \ value \ of \\ GCV_g & gaseous \ fuel \ (Btu/100 \ scf) \\ 10^6 & = & Conversion \ of \ Btu \ to \ mmBtu \end{array}$

** For units required to monitor NO_x mass emissions but <u>not</u> SO₂ mass emissions, if there is a volumetric oil flowmeter, it is possible to use Equation D-8 on a volumetric basis, rather than a mass basis. If this option is used, it is represented as Equation F-19V in the monitoring plan.

Code	Parameter	Formula	Where:
F-21A	НІ	$HI_{i} = HI_{CS}\left(\frac{t_{CS}}{t_{i}}\right)\left[\frac{MW_{i}t_{i}}{\sum_{i=1}^{n}MW_{i}t_{i}}\right]$	$\begin{array}{llllllllllllllllllllllllllllllllllll$
F-21B	HI	$HI_{i} = HI_{CS}\left(\frac{t_{CS}}{t_{i}}\right)\left[\frac{SF_{i}t_{i}}{\sum_{i=I}^{n}SF_{i}t_{i}}\right]$	$\begin{array}{llllllllllllllllllllllllllllllllllll$

TABLE 36: APPORTIONMENT AND SUMMATION FORMULAS

Code	Parameter	Formula	Where:
F-21C	HI	$HI_{Unit} = \frac{\sum_{s=1}^{n} HI_s t_s}{t_{Unit}}$	$\begin{array}{rcl} HI_{Unit} &=& Heat \mbox{ input rate for a unit} \\ (mmBtu/hr) \\ HI_s &=& Heat \mbox{ input rate for each stack} \\ & \mbox{ or duct (mmBtu/hr)} \\ t_{Unit} &=& Operating \mbox{ time for the unit} \\ t_s &=& Operating \mbox{ time for a particular} \\ & \mbox{ stack or duct} \\ s &=& Designation \mbox{ of a particular} \\ & \mbox{ stack or duct} \\ n &=& Total \mbox{ number stacks, ducts} \end{array}$
F-21D	HI	$HI_{i} = HI_{CP}\left(\frac{t_{CP}}{t_{i}}\right)\left[\frac{FF_{i}t_{i}}{\sum_{i=1}^{n}FF_{i}t_{i}}\right]$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
F-25	HI	$HI_{CS} = \frac{\sum_{u=1}^{p} HI_u t_u}{t_{CS}}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$

Code	Parameter	Formula	Where:
F-24A	NOX	$E_{(NOx)h} = ER_{(NOx)h} x HI_h$	$E_{(NOx)h} = Hourly NO_x mass emissions$ rate in lb/hr $K = 1.194 x 10^{-7} \text{ for NO}_x$ ((lb/scf)/ppm) $C_{h_d} = Hourly average, NO_x$ concentration (ppm (dry))
F-26A	NOX	$E_{(NOx)h} = K \times C_{hw} \times Q_h$	C _{hw} = Hourly average, NO _x concentration, stack moisture basis (ppm (wet)) Q _h = Hourly average volumetric flow rate (scfh) %H ₂ O = Hourly average stack moisture
F-26B	NOX	$E_{(NOx)h} = K x C_{h_d} x Q_h x \frac{(100 - \% H_2 O)}{100}$	$HI_{h} = Hourly average heat input rate (mmBtu/hr) ER_{(NOx)_{h}} = Hourly average NO_{x} emission rate (lb/mmBtu)$

TABLE 37: NOX MASS EMISSIONS FORMULAS (LBS/HR)

TABLE 38: MISCELLANEOUS FORMULA CODES

Code	Parameter	Description	
N-GAS	FGAS	Net or total gas fuel flow rate (100 scfh)	
N-OIL	FOIL	Net or total oil fuel flow rate (scf/hr, gal/hr, barrels/hr, m ³ /hr, or lb/hr)	
X-FL	FLOW	Average hourly stack flow rate (scfh). (To calculate the average of two or more primary flow monitors, for example, two ultrasonic monitors in an X-pattern)	
T-FL	FLOW	Total stack flow rate (scfh)	
SS-1A	SO2	Total hourly SO_2 mass emissions from the affected unit(s) in a subtractive stack configuration (lb/hr)	
SS-1B	SO2	Hourly SO_2 mass emissions from a particular affected unit in a subtractive stack configuration (lb/hr)	
SS-2A	NOX	Total hourly NO_x mass emissions from the affected unit(s) in a subtractive stack configuration (lb/hr)	
SS-2B	NOX	Hourly NO_x mass emissions from a particular affected unit in a subtractive stack configuration (lb/hr). (Apportioned by gross load)	
SS-2C	NOX	Hourly NO_x mass emissions from a particular affected unit in a subtractive stack configuration (lb/hr). (Apportioned by steam load)	
SS-3A	HIT	Total hourly heat input for the affected unit(s) in a subtractive stack configuration (mmBtu)	
SS-3B	HI	Hourly heat input rate for a particular affected unit in a subtractive stack configuration (mmBtu/hr)	

Code	Parameter	Description	
NS-1	NOXR	Hourly NO _x apportionment for NO _x affected units in a subtractive stack configuration (lb/mmBtu)	
NS-2	NOXR	Hourly NO_x apportionment for NO_x affected units using simple NO_x apportionment (lb/mmBtu)	

TABLE 39: REPRESENTATIONS FOR ELECTRONIC REPORTING

Operation	Recommended Representation	Example
Addition	+	MW_1 + MW_2
Subtraction	-	(100 - %H ₂ O)
Multiplication	*	C _d * F _d
Division	/	%CO ₂ /100
Exponential Power	**	$1.66 \ge 10^{-7} = 1.66 \ge 10 \ge -7$
Subscript	Underscore	$MW_1 = MW_1$
Fraction of Heat Input from Fuel	X_ <fuel></fuel>	X_oil
Gross Electrical Output	MW_ <unit></unit>	MW_1
Gross Steam Load (Flow)	SF_ <unit></unit>	SF_1
Hourly Emissions	E_h	E_h
Operating Time	T_ <unit stack=""></unit>	T_CS1

12.0 SPAN VALUES

TABLE 40: COMPONENT TYPE CODES AND DESCRIPTIONS FOR MONITOR SPAN

Code	Description	
CO2	CO ₂ Concentration (percent)	
FLOW	Stack Flow	
NOX	NO _x Concentration (ppm)	
02	O ₂ Concentration (percent)	
SO2	SO ₂ Concentration (ppm)	

TABLE 41: PROVISION FOR CALCULATING MAXIMUM POTENTIAL CONCENTRATIONS (MPC)/ MAXIMUM EXPECTED CONCENTRATION (MEC)/ MAXIMUM POTENTIAL FLOW RATE (MPF) CODES AND DESCRIPTIONS

Code	Description	
F	Formula (low and high-scale SO_2 , flow rate, and low-scale NO_x only)	
HD	Historical Data	
TR	Test Results	
ТВ	Table of Constants from Part 75 or Default Values from Part 75 (e.g., 800 ppm NO_x for coal-firing)	
OL	Other Limit	
GS	Low Scale Default for SO ₂ for Gas Units	
PL	NO _x MEC Based on Permit Limit	
ME	NO _x MPC Based on Manufacturer's Estimate of Uncontrolled Emissions	

TABLE 42: FLOW SPAN CALIBRATION UNITS OF MEASURE

Code	Description
ACFH	Actual Cubic Feet of Stack Flow per Hour
ACFM	Actual Cubic Feet of Stack Flow per Minute
AFPM	Actual Feet of Stack Flow per Minute
AMSEC	Actual Meters of Stack Flow per Second
AFSEC	Actual Feet of Stack Flow per Second
INH2O	Inches of Water
KACFH	Thousand Actual Cubic Feet of Stack Flow per Hour
KACFM	Thousand Actual Cubic Feet of Stack Flow per Minute
KAFPM	Thousand Actual Feet of Stack Flow per Minute
KSCFH	Thousand Standard Cubic Feet of Stack Flow per Hour
KSCFM	Thousand Standard Cubic Feet of Stack Flow per Minute
KSFPM	Thousand Standard Feet of Stack Flow per Minute
MACFH	Million Actual Cubic Feet of Stack Flow per Hour
MSCFH	Million Standard Cubic Feet of Stack Flow per Hour

Code	Description	
SCFH	Standard Cubic Feet of Stack Flow per Hour	
SCFM	Standard Cubic Feet of Stack Flow per Minute	
SFPM	Standard Feet of Stack Flow per Minute	
SMSEC	Standard Meters of Stack Flow per Second	

13. RECTANGULAR DUCT WAF

TABLE 43: WAF METHOD CODE AND DESCRIPTIONS

Code	Description	
FT	Full Test (CTM-041 §§8.1 and 8.2)	
AT	Abbreviated Test (CTM-041 §8.4.1)	
DF	Default Value (CTM-041 §8.4.2)	

14. UNIT/STACK/PIPE LOAD OR OPERATING LEVEL INFORMATION

TABLE 44: MAXIMUM LOAD VALUE CODES AND DESCRIPTIONS

Code	Description	
MW	Electrical Capacity (in megawatts)	
KLBHR	Steam (load) Mass Rate (in units of 1000 lbs/hr)	
MMBTUHR	BTUs of Steam Produced (in mmBtu/hr)	

Note: This field is left blank for units that do not produce electrical or steam load.

15. MONITORING DEFAULTS

TABLE 45: PARAMETER CODES AND DESCRIPTIONS FOR MONITORING DEFAULT

	Parameter	
Category	Code	Description
Diluent Cap	CO2N	CO ₂ Diluent Cap.
	O2X	O ₂ Diluent Cap.
Low Mass Emissions Parameters (§§75.19 and 75.81(b))	CO2R	CO_2 Default Emission Factor, from Table 45 or Fuel and Unit-Specific CO_2 Default Emission Factor, for Combustion of "Other" Gaseous Fuel (tons/mmBtu).
	NOXR	NO_x Default Emission Factor, from Table 42 or Fuel and Unit-Specific NO_x Emission Rate ¹ (lb/mmBtu).
	SO2R	SO ₂ Default Emission Factor, from Table 43 or Fuel and Unit- Specific SO ₂ Default Emission Factor Calculated Using Equation D-1h, either (1) for combustion of "other" gaseous fuel; or (2) for fuel oil combustion, based on the maximum weight percent sulfur in the operating permit (lb/mmBtu).
	MHHI	Maximum Rated Hourly Heat Input Rate (mmBtu/hr).
Missing Data Values	H2ON	Minimum Potential Percent Moisture.
or	H2OX	Maximum Potential Percent Moisture.
Maximum Values for Unmonitored	CO2X	Maximum Percent CO ₂ .
Bypass Stack and Emergency Fuels	O2N	Minimum Potential Percent Oxygen.
	SO2X	Fuel-Specific Maximum Potential SO ₂ Concentration (ppm).
	NOCX	Fuel-Specific Maximum Potential (MPC) or Maximum Expected NO _x Concentration (ppm) for all hours or controlled hours. For Appendix E missing data purposes, report the MPC used to calculate the Maximum NO _x Emission Rate for each fuel curve and, if applicable, for Emergency fuel.
	NORX	Maximum NO_x Emission Rate (MER) and Fuel-Specific Maximum Potential or Maximum Expected NO_x Emission Rate (lb/mmBtu) for all hours or controlled hours. For Appendix E missing data purposes, an MER must be determined for each fuel curve and, if applicable, for Emergency fuel.
	FLOX	Fuel-Specific Maximum Potential Flow Rate (scfh).
Moisture Default Parameter	H2O	Hourly Percent Moisture Content (%H ₂ O).
	BWA	Moisture Fraction in Ambient Air.

Category	Parameter Code	Description
SO ₂ Emission Rate Parameter for Use in Formula F-23	SO2R	SO ₂ Generic Default Emission Factor for Pipeline Natural Gas; or
		Fuel and Unit-Specific Default Emission Factor Calculated Using Equation D-1h for combustion of "other" gaseous fuel; or
		Emission Factor approved by petition for a very low sulfur solid or liquid fuel (or combination of fuels) per §75.11 (e).
Other Parameters (subject to EPA	MNHI	Minimum Heat Input Rate (mmBtu/hr).
approval of petition)	MNNX	Minimum NO _x Emission Rate (lb/mmBtu).
Other Parameters (not subject to	MNOF	Minimum Oil Flow Rate.
EPA approval of petition)	MNGF	Minimum Gas Flow Rate.

¹ "NOXR" is reported in the following cases: (1) for fuel-and-unit specific NO_x emission rates obtained by testing; and (2) for the maximum potential NO_x emission rate, if that value is reported in the interval from the first hour of use of the LME methodology until the hour of completion of fuel-and-unit specific NO_x emission rate testing (see \$75.19 (a)(4)).

Fuel	Minimum Moisture Default Value
Anthracite Coal	3.0%
Bituminous Coal	6.0%
Sub-bituminous Coal	8.0%
Lignite Coal	11.0%
Wood	13.0%
Natural Gas (boilers only)	14.0%

TABLE 46: FUEL-SPECIFIC MINIMUM DEFAULT MOISTURE VALUESFOR SO2, NOX, CO2, AND HEAT INPUT RATE CALCULATIONS

Fuel	Maximum Moisture Default Value
Anthracite Coal	5.0%
Bituminous Coal	8.0%
Sub-bituminous Coal	12.0%
Lignite Coal	13.0%
Wood	15.0%
Natural Gas (boilers only)	18.0%

TABLE 47: FUEL-SPECIFIC MAXIMUM DEFAULT MOISTURE VALUES FOR NOX EMISSION RATE CALCULATIONS

TABLE 48: NOx Emission Factors (LB/MMBTU) FOR LOW MASS Emissions Units

Boiler Type	Fuel Type	NO _x Emission Factors
Turbine	Natural Gas	0.7
	Oil	1.2
Boiler	Natural Gas	1.5
	Oil	2.0

TABLE 49: SO2 EMISSION FACTORS (LB/MMBTU) FOR LOW MASS EMISSIONS UNITS

Fuel Type	SO ₂ Emission Factors
Pipeline Natural Gas (as defined in §72.2)	0.0006
Natural Gas	0.06
Residual Oil or Other Oil	2.10
Diesel Fuel	0.50

TABLE 50: CO2 EMISSION FACTORS (TON/MMBTU) FOR LOW MASS EMISSIONS UNITS

Fuel Type	CO ₂ Emission Factors
Natural Gas	0.059
Oil	0.081

Units of Measure Code	Description	Parameter Code
РСТ	Percent	CO2N, CO2X, H2O, H2ON, H2OX, O2N, O2X
LBMMBTU	Pounds per Million Btu	MNNX, NOXR, SO2R, NORX
MMBTUHR	Million Btu per Hour	MNHI, MHHI
TNMMBTU	Tons per Million Btu	CO2R
SCFH	Standard Cubic Feet per Hour	MNOF, FLOX,
PPM	Parts per million	SO2X, NOCX
GALHR	Gallons of Oil per Hour	MNOF
BBLHR	Barrels of Oil per Hour	MNOF
M3HR	Cubic Meters of Oil per Hour	MNOF
LBHR	Pounds of Oil per Hour	MNOF
HSCF	Hundred SCF of Gas per Hour	MNGF

TABLE 51: UNITS OF MEASURE CODES BY PARAMETER

TABLE 52: DEFAULT PURPOSE CODES AND DESCRIPTIONS

Code	Description	Parameter Code
DC	Diluent Cap	CO2N, O2X
DM	Default Minimum Fuel Flow Rate	MNGF, MNOF
F23	SO ₂ Emission Rate Default for Use in Equation F-23	SO2R
LM	Low Mass Emissions Unit Default (§§75.19 and 75.81(b))	CO2R, SO2R, NOXR, MHHI
MD	Missing Data, Unmonitored Bypass Stack, or Emergency Fuel	CO2X, FLOX, H2ON, H2OX, MNHI, MNNX, NOCX, NORX, O2N, SO2X
PM	Primary Measurement Methodology	BWA, H2O

TABLE 53: FUEL CODES AND DESCRIPTIONS

Туре	Code	Description
LME Defaults	BFG	Blast Furnace Gas
(§75.19)	BUT	Butane (if measured as a gas)
	CDG	Coal Derived Gas
	COG	Coke Oven Gas

Туре	Code	Description
	DGG	Digester Gas
	DSL	Diesel Oil
	LFG	Landfill Gas
	LPG	Liquefied Petroleum Gas (if measured as a gas)
	NNG	Natural Gas
	OGS	Other Gas
	OIL	Residual Oil
	OOL	Other Oil
	PDG	Producer Gas
	PNG	Pipeline Natural Gas (as defined in §72.2)
	PRG	Process Gas
	PRP	Propane (if measured as a gas)
	RFG	Refinery Gas
	SRG	Unrefined Sour Gas
Moisture	ANT	Anthracite Coal
	BT	Bituminous Coal
	CRF	Coal Refuse (culm or gob)
	LIG	Lignite
	NNG	Natural Gas (including Pipeline Natural Gas)
	PNG	Pipeline Natural Gas
	SUB	Sub-bituminous Coal
	W	Wood
SO ₂ Emission Rate Default	NNG	Natural Gas
for Use in Equation F-23	PNG	Pipeline Natural Gas
	OGS	Other Gas
	* or MIX	*With an approved petition, any liquid or solid fuel type that qualifies as very low sulfur fuel, or a mixture of such fuels. See fuel code list in UNIT FUEL DATA
Fuel-Specific CEMS Missing	BFG	Blast Furnace Gas
Data	BUT	Butane (if measured as a gas)
	С	Coal
	CDG	Coal-Derived Gas
	COG	Coke Oven Gas
	CRF	Coal Refuse (culm or gob)

Туре	Code	Description
	DGG	Digester Gas
	DSL	Diesel Oil
	LFG	Landfill Gas
	LPG	Liquefied Petroleum Gas (if measured as a gas)
	MIX	Co-Fired Fuels
	NNG	Natural Gas
	OGS	Other Gas
	OIL	Residual Oil
	OOL	Other Oil
	OSF	Other Solid Fuel
	PDG	Producer Gas
	PNG	Pipeline Natural Gas (as defined in §72.2)
	PRG	Process Gas
	PRP	Propane (if measured as a gas)
	PRS	Process Sludge
	PTC	Petroleum Coke
	R	Refuse
	RFG	Refinery Gas
	SRG	Unrefined Sour Gas
	TDF	Tire-Derived Fuel
	W	Wood
	WL	Waste Liquid
Fuel-Specific MPC/MER or	BFG	Blast Furnace Gas
MEC/MCR Reporting During Bypass Stack Operating	BUT	Butane (if measured as a gas)
Hours	С	Coal
	CDG	Coal-Derived Gas
	COG	Coke Oven Gas
	CRF	Coal Refuse (culm or gob)
	DGG	Digester Gas
	DSL	Diesel Oil
	LFG	Landfill Gas
	LPG	Liquefied Petroleum Gas (if measured as a gas)
	NNG	Natural Gas

Туре	Code	Description
	OGS	Other Gas
	OIL	Residual Oil
	OOL	Other Oil
	OSF	Other Solid Fuel
	PDG	Producer Gas
	PNG	Pipeline Natural Gas (as defined in §72.2)
	PRG	Process Gas
	PRP	Propane (if measured as a gas)
	PRS	Process Sludge
	PTC	Petroleum Coke
	R	Refuse
	RFG	Refinery Gas
	SRG	Unrefined Sour Gas
	TDF	Tire-Derived Fuel
	W	Wood
	WL	Waste Liquid

TABLE 54: OPERATING CONDITION CODES AND DESCRIPTIONS

Operating Condition Code	Description
А	Any Hour
С	Controlled Hour
В	Base Load Hour (LME units)
Р	Peak Load Hour (LME units)
U	Uncontrolled Hour

Default Source Code	Source of Value Description	Parameter
APP*	Approved (Petition)	MNNX, SO2R, MNHI, H2O, MHHI
DATA**	Historical or Other Relevant Data	O2N, O2X, CO2X, H2ON, H2OX, FLOX, SO2X, NOCX, NORX, NOXR, MNOF, MNGF, BWA
PERM	Maximum Weight Percent Sulfur in Fuel Oil, as Specified by Operating Permit (for LME)	SO2R, NORX, NOCX
TEST	Unit/Stack Testing	NOXR, FLOX, SO2X, NOCX, NORX
SAMP	Fuel Sampling	SO2R, CO2R, SO2X
CONT	Contract Maximum	SO2R
DEF	Default Value from Part 75	CO2R, NOXR, CO2N, O2X, SO2R, H2ON, H2OX, SO2X, NOCX, NORX, H2O
MAXD	Maximum Value Based on Design or Nameplate Capacity	MHHI, NORX, NOCX

TABLE 55: DEFAULT SOURCE CODES AND DESCRIPTIONS

* "APP" is reported if a source has an approved petition to use a site-specific SO₂ emission factor for very low sulfur solid or liquid fuels.

** "DATA" is reported when a source is reporting the maximum potential NO_x emission rate in the interval from the first hour of use of the LME methodology until the hour of completion of fuel-and-unit specific NO_x emission rate testing (see §75.19 (a)(4)).

16.0 QUALIFICATIONS

Category	Code	Description
Gas-Fired	GF	Gas-Fired Qualification
Low Mass Emitter	LMEA	Low Mass Emitter Qualification (Annual) Required when reporting on a year-round basis
	LMES	Low Mass Emitter Qualification (Ozone Season) Required when subject to an Ozone-Season NO _x program
Peaking	РК	Peaking Unit Qualification (Annual)
	SK	Peaking Unit Qualification for Ozone Season (applies <u>exclusively</u> to sources that report on an ozone season-only basis)

TABLE 56: QUALIFICATION TYPE CODES AND DESCRIPTIONS

Category	Code	Description
QA Test Exemption	PRATA1	Single Load RATA Qualification by petition approval
	PRATA2	Two Load RATA Qualification by petition approval
	COMPLEX	Exemption from Flow-to-Load Testing Due to Complex Configuration
	LOWSULF	SO ₂ RATA Exemption for a Source Combusting Only Very Low Sulfur Fuel

TABLE 57: QUALIFICATION DATA TYPE CODE AND DESCRIPTIONS

Code	Description
А	Actual Percent Capacity Factor or Fuel Usage
Р	Projected Capacity Factor or Fuel Usage
D	720 Hours of Unit Operating Data (gas-fired only)