ACUTE EXPOSURE GUIDELINE LEVELS (AEGLs) FOR TITANIUM TETRACHLORIDE

(CAS Reg. No. 7550-45-0)

1

PREFACE

Under the authority of the Federal Advisory Committee Act (FACA) P. L. 92-463 of 1972,
 the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances
 (NAC/AEGL Committee) has been established to identify, review and interpret relevant toxicologic
 and other scientific data and develop AEGLs for high priority, acutely toxic chemicals.

.

6 AEGLs represent threshold exposure limits for the general public and are applicable to 7 emergency exposure periods ranging from 10 minutes to 8 hours. Three levels — AEGL-1, AEGL-8 2 and AEGL-3 — are developed for each of five exposure periods (10 and 30 minutes, 1 hour, 4 9 hours, and 8 hours) and are distinguished by varying degrees of severity of toxic effects. The three 10 AEGLs are defined as follows:

AEGL-1 is the airborne concentration (expressed as parts per million or milligrams per cubic meter [ppm or mg/m³]) of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic, non-sensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure.

AEGL-2 is the airborne concentration (expressed as ppm or mg/m³) of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.

AEGL-3 is the airborne concentration (expressed as ppm or mg/m³) of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death.

22 Airborne concentrations below the AEGL-1 represent exposure levels that could produce 23 mild and progressively increasing but transient and nondisabling odor, taste, and sensory irritation 24 or certain asymptomatic, non-sensory effects. With increasing airborne concentrations above each 25 AEGL, there is a progressive increase in the likelihood of occurrence and the severity of effects 26 described for each corresponding AEGL. Although the AEGL values represent threshold levels for the general public, including susceptible subpopulations, such as infants, children, the elderly, 27 28 persons with asthma, and those with other illnesses, it is recognized that individuals, subject to 29 unique or idiosyncratic responses, could experience the effects described at concentrations below 30 the corresponding AEGL.

1	TABLE OF CONTENTS	
2	PREFACE	ii
3	LIST OF TABLES	v
4	EXECUTIVE SUMMARY	vi
5	1. INTRODUCTION	1
6	2. HUMAN TOXICITY DATA	2
7	2.1. Acute Lethality	
8	2.2. Nonlethal Toxicity	
9	2.2.1. Case Reports	
10	2.2.2. Epidemiologic Studies	
11	2.3. Developmental/Reproductive Toxicity	
12	2.4. Genotoxicity	
12	2.6. Carcinogenicity	
14	2.7. Summary	
15	3. ANIMAL TOXICITY DATA	5
16	3.1. Acute Lethality	
17	3.1.1. Dogs	
18	3.1.2. Rats	
19	3.2. Nonlethal Toxicity	
20		
20	3.2.1. Dogs	
21	3.2.2. Rats	
22	3.3. Developmental/Reproductive Toxicity	
-	3.4. Genotoxicity	
24	3.5. Chronic Toxicity/Carcinogenicity	
25	3.6. Summary	.3
26	4. SPECIAL CONSIDERATIONS	4
27	4.1. Metabolism and Disposition	4
28	4.2. Mechanism of Toxicity	5
29	4.3. Structure Activity Relationships	
30	4.4. Other Relevant Information	
31	4.4.1. Species Variability	6
32	4.4.2. Susceptible Populations	
33	4.4.3. Concentration-Exposure Duration Relationship	
34	4.4.4. Concurrent Exposure Issues	
35	5. DATA ANALYSIS AND PROPOSED AEGL-1	7
36	5.1. Summary of Human Data Relevant to AEGL-1	
37	5.2. Summary of Animal Data Relevant to AEGL-1	
38	5.3. Derivation of AEGL-1	

1	6.	DATA ANALYSIS AND PROPOSED AEGL-2	. 18
2		6.1. Summary of Human Data Relevant to AEGL-2	. 18
3		6.2. Summary of Animal Data Relevant to AEGL-2	
4		6.3. Derivation of AEGL-2	
5	7.	DATA ANALYSIS AND PROPOSED AEGL-3	. 19
6		7.1. Summary of Human Data Relevant to AEGL-3	
7		7.2. Summary of Animal Data Relevant to AEGL-3	
8		7.3. Derivation of AEGL-3	
9	8.	SUMMARY OF PROPOSED AEGLS	. 21
10		8.1. AEGL Values and Toxicity Endpoints	
11		8.2. Comparison with Other Standards and Guidelines	
12		8.3. Data Adequacy and Research Needs	
13	9.	REFERENCES	. 25
14	AI	PPENDIX A: Derivation of AEGL Values	. 28
15	AI	PPENDIX B: Time-Scaling Calculations	. 32
16	AI	PPENDIX C: Derivation Summary for Titanium Tetrachloride AEGLs	. 35

1

LIST OF TABLES

2	1. Chemical and Physical Data	2
3	2. Summary of LC ₅₀ Values for Rats Exposed to Titanium Tetrachloride	7
4	3. Summary of Lethality Data for Rats Exposed to Titanium Tetrachloride	3
5	4. Summary of Mortality of Rats Exposed to Titanium Tetrachloride for 4 Hours)
6	5. Percentage of Respiratory Rate Decrease in Rats Exposed to Titanium Tetrachloride 11	l
7	6. Comparative Toxicity of Titanium Tetrachloride Hydrolysis Products and of HCl 16	5
8	7. AEGL-1 Values for Titanium Tetrachloride	3
9	8. AEGL-2 Values for Titanium Tetrachloride)
10	9. Summary of Lethality Data Used for AEGL-3 Derivation)
11	10. AEGL-3 Values for Titanium Tetrachloride	l
12	11. Summary of AEGL Values	l
13	12. Extant Standards and Guidelines for Titanium Tetrachloride	3
14	13. AEGL Values for Hydrogen Chloride	1

1

EXECUTIVE SUMMARY

2 Titanium tetrachloride is a colorless liquid that fumes when in contact with moist air. The odor

3 of titanium tetrachloride has been described as penetrating, acrid, and irritating. The world-wide

4 production of titanium tetrachloride was estimated at 6 million tons in 1996. Titanium

5 tetrachloride is used in the manufacturing of titanium dioxide pigments, titanium metal, artificial

- 6 pearls, and iridescent glass; in the production of Ziegler-Natto catalysts; and as a military smoke screen
- 7

8 Titanium tetrachloride is highly corrosive. It hydrolyzes upon contact with moisture, releasing 9 heat, hydrochloric acid, and orthotitanic acids, thereby causing direct tissue damage in the lung.

Data indicate that the fine particulate oxychloride intermediates generated from titanium 10

11 tetrachloride hydrolysis are able to penetrate deep into the lung where hydrolysis is completed,

12 resulting in direct contact irritation and producing bronchitis or pneumonia. Skin (particularly

13 moist skin) and eve contact with liquid titanium tetrachloride can result in severe, deep burns.

14 Available data indicate that exposure to titanium tetrachloride fumes will also result in burns.

15 Human acute inhalation exposure data are confined to case studies in which the exposure concentrations were unknown. A fatal case reported in the secondary literature had severe 16 17 pulmonary damage and destruction of the corneal tissue following accidental exposure to 18 titanium tetrachloride fumes (Reisman, 1961). Non-fatal case reports had symptoms including a 19 ticklish cough accompanied by an unpleasant taste in the mouth, cough and chest tightness and 20 slight eye irritation (Ross, 1985); pulmonary findings similar to those found following thermal 21 respiratory injury (Park et al., 1984); acute respiratory distress resulting from pneumonitis, 22 findings of a moist lung with obstructive wheezing, and corneal damage (Reisman, 1961). A 23 cross-sectional survey conducted to assess respiratory disease in titanium metal production workers reported an increase in pleural thickening and a non-related decrease in FEV_{10} 24 25 (Garabrant et al., 1987). It was hypothesized that these findings were the result of exposure to 26 titanium tetrachloride and titanium dioxide particulate. No association was identified between 27 titanium tetrachloride exposure and lung cancer (Fayerweather et al., 1992). No human 28 developmental or reproductive inhalation toxicity data or human genotoxicity were available.

29 Acute toxicity data in dogs and rats demonstrate that death from titanium tetrachloride 30 inhalation is the result of pulmonary edema (Kelly, 1980; Zapp, 1949). Humidity can affect the 31 toxicity of titanium tetrachloride as was indicated by increased lethality in rats when humidity 32 was increased (Burgess, 1977). LC_{50} values in rats ranged from 13,940 ppm for a 2-minute 33 exposure to 59 ppm for a 4-hour exposure (Kelly, 1980). Clinical signs reported during 34 exposure included eye closing and gasping, while signs noted after exposure consisted of corneal 35 opacity, weight loss, and lung congestion. The severity of the signs was not provided for the 36 various exposure concentrations and durations, but rather was given as a general statement. 37 Histopathological examination revealed similar respiratory lesions in rats dying during exposure 38 or post exposure, with death attributed to pulmonary edema. In the same study, Kelly (1980) 39 assessed the reversibility of the respiratory tract lesions that developed in rats following a 30minute exposure to the approximate LC_{10} (172 ppm). The severe respiratory tract irritation that 40 was noted in rats at one day post exposure had resolved by 49 days post exposure. This study 41 42 demonstrated that rats surviving an acute exposure to inhaled titanium tetrachloride should not

have any irreversible pulmonary effects. However, insufficient data were available to correlate
 irritant effects observed at nonlethal concentrations.

3 In a repeat-exposure study, groups of rats were exposed by inhalation for 6 hours/day, 5 4 days/week for 4 weeks to titanium tetrachloride hydrolysis products at measured concentrations 5 of 0, 0.6, 1.3, or 5.2 ppm of titanium tetrachloride (Kelly, 1979). Exposure to 5.2 ppm resulted 6 in the death of two rats during the study (one rat died on test day 15 and the other on test day 23); histopathological examination revealed that death was due to respiratory failure. No clinical 7 signs were observed in rats exposed to 0.6 or 1.3 ppm, but rats exposed to 5.2 ppm exhibited 8 9 labored breathing and slightly decreased body weight gain during the exposure interval that 10 returned to normal following a recovery period. Clinical chemistry changes observed in the 1.3 11 and 5.2 ppm group were reversible (increased urine pH, decreased urine osmolality). Lung:body 12 weight ratios were increased at terminal kill (126, 136, and 178% of controls for the 0.6, 1.3, and 13 5.2 ppm groups, respectively). The histopathological changes observed in the lungs of exposed 14 rats at the 6- to 12-month recovery period (collagenized fibrosis) are likely the result of the 15 repeated exposure scenario, as the Kelly (1979) study found that all pulmonary lesions following an acute inhalation exposure to the LC_{10} were resolved by 49 days post exposure. 16

17 The experimentally derived exposure values are scaled to AEGL time frames using the 18 concentration-time relationship given by the equation $C^n x t = k$, where C = concentration, t =19 time, and k is a constant (ten Berge et al., 1986). To calculate n for titanium tetrachloride, a 20 regression plot of LC₅₀ values was derived using the 2, 5, 15, 30, 60, 120, and 240-minute LC₅₀ 21 values determined by Kelly (1980). From the regression analysis, the derived value of n = 0.8822 was used in the temporal scaling of the AEGL values ($C^{0.88} x t = k$).

No acute toxicity data relevant to the definition of an AEGL-1 endpoint are available.
 Therefore, derivation of an AEGL-1 is not recommended.

25 No acute toxicity data were relevant for derivation of an AEGL-2, so repeat-exposure studies 26 were evaluated. One option for the AEGL-2 derivation would be to base the value on labored 27 breathing reported in rats exposed to 5.2 ppm for 6 hours/day, 5 days/week for 4 weeks (Kelly, 28 1979). There are several problems with this value, however. While it initially appeared that the 29 deaths were due to repeated exposures to titanium tetrachloride, the deaths cannot be discounted. 30 The Burgess (1977) study reported mortality in rats following a 4-hour exposure to 14 ppm. If 31 one extrapolates this value over time to a 6-hour exposure, an exposure concentration of 8.8 ppm 32 would be predicted to result in mortality. The strongest support that this level is too high is seen 33 when one generates an AEGL-2 derivation based upon the 6-hour exposure to 5.2 ppm and extrapolates across time using the n value of 0.88: one obtains nearly identical values to those 34 35 generated for the AEGL-3 derivation using a threshold for mortality as the endpoint.

Therefore, the AEGL-2 derivation is based upon the next lower exposure concentration of 1.3 ppm titanium tetrachloride for 6 hours/day, 5 days/week for 4 weeks (Kelly, 1979). No clinical signs were observed at this concentration. Based upon a lack of data identifying interspecies and intraspecies variability, a total uncertainty factor of 100 would normally be applied. However, the endpoint selected is below the endpoint defined for the AEGL-2 tier and the study was a multiple exposure study. Both of these factors make the starting value inherently

1 conservative. Therefore, a total uncertainty factor of 10 was applied (3 for interspecies and 3 for

2 intraspecies). The experimentally derived exposure value is scaled to AEGL time frames using

3 $C^{0.88} x t = k.$

4 The mortality data by Kelly (1980) were used for the AEGL-3 derivation. This study was 5 specifically designed to evaluate the mortality response for a wide range of exposure durations. 6 One-third of the LC_{50} values are used for the AEGL-3 derivations. The adjusted empirical LC₅₀ values for the 30, 60, and 240-minute exposure durations were used for the respective 7 AEGL timepoints. Using an n = 0.88, the adjusted 15-minute LC₅₀ value was used to extrapolate 8 9 to 10 minutes, while the adjusted 240-minute LC_{50} value was used to extrapolate to 480 minutes. An interspecies uncertainty factor of 3 was applied to the values because titanium tetrachloride is 10 an irritant and the mechanism of action is therefore not expected to vary greatly among species. 11 12 An intraspecies uncertainty factor of 3 was chosen because the mechanism of irritation is also 13 not expected to vary greatly among subpopulations. Therefore, a total uncertainty factor of 10 14 was applied.

Classification	10-minute	30-minute	1-hour	4-hour	8-hour	Endpoint (Reference)
AEGL-1 (Nondisabling)	NR	NR	NR	NR	NR	NR: Not recommended due to insufficient data
AEGL–2 (Disabling)	7.6 (59)	2.2 (17)	1.0 (7.8)	0.21 (1.6)	0.094 (0.73)	Exposure of rats to 1.3 ppm for 6 h/d, 5 d/wk for 4 wks resulted in no clinical signs, but next exposure conc. approach lethality threshold (Kelly 1979)
AEGL–3 (Lethal)	38 (290)	13 (100)	5.7 (44)	2.0 (16)	0.91 (7.1)	One-third of rat LC_{50} values (Kelly, 1980)

The calculated values are listed in the tables below.

15

16

17

1 **1. INTRODUCTION**

2 Titanium tetrachloride is a colorless liquid that fumes when in contact with moist air. The 3 odor of titanium tetrachloride has been described as "penetrating, acrid" (Budavari et al., 1996) and irritating (AIHA, 1992). It is normally produced by the chlorination of titanium dioxide at 4 5 high temperatures in the presence of a reducing agent (Kirk et al., 1997). The world-wide 6 production of titanium tetrachloride was estimated at 6 million tons in 1996, and the main 7 producers of titanium tetrachloride are the producers of titanium dioxide pigment. (Kirk et al., 8 1997). Titanium tetrachloride is used to manufacture titanium dioxide pigments, titanium metal, 9 artificial pearls, and iridescent glass; in the production of Ziegler-Natto catalysts; and as a military smoke screen (Clayton and Clayton, 1994; Kirk et al., 1997). Titanium tetrachloride has 10 a high affinity for water and is rapidly hydrolyzed. In water, a number of sequential reactions 11 12 take place:

 $TiCl_4 + 5H_2O \leftarrow TiCl_3(OH) + 4H_2O + HCl \leftarrow TiCl_2(OH)_2 + 3H_2O + HCl \leftarrow$ 13 $TiCl(OH)_3 + 2H_2O + HCl \ 6 \ TiCl(OH)_4 + H_2O + HCl \ (Mezentseva et al., 1963).$ 14 15 The production of the finely divided oxychlorides upon exposure to moist air is the basis for its 16 use as white smoke by the military (Kirk et al., 1997): 17

 $TiCl_4 + H_2O \circ TiOCl_2 + 2HCl$

18 Skin (particularly moist skin) and eye contact with liquid titanium tetrachloride can result in 19 severe, deep burns (Paulsen et al., 1998; Chitkara and McNeela, 1992; Lawson, 1961). 20 Available data indicate that exposure to titanium tetrachloride fumes will also result in burns. 21 Only a limited amount of data addressing the toxicity of inhaled titanium tetrachloride was 22 available. Human data are confined to case studies in which the inhalation exposure 23 concentrations were unknown. Animal studies in rats, mice, and dogs are available, but the studies are of limited usefulness because of poor reporting of experimental procedures and 24 25 results, or because they were repeated exposure scenarios.

26 The physicochemical data of titanium tetrachloride are presented in Table 1.

TABLE 1. Chemical and Physical Data				
Parameter	Value	Reference		
Synonyms	tetrachlorotitanium; titanic chloride; titanium chloride			
Chemical formula	TiCl ₄			
Molecular weight	189.71			
CAS Reg. No.	7550-45-0			
Physical state	colorless liquid colorless to light yellow clear liquid	Budavari et al., 1996 AIHA, 1992		
Solubility in water	soluble in cold water, alcohol	Budavari et al., 1996		
Vapor pressure	12 mmHg at 25EC	AIHA, 1992		
Vapor density (air =1)	6.5	AIHA, 1996		
Liquid density (water =1)	1.726 g/mL	Budavari et al., 1996		
Melting point	-24.1EC	Budavari et al., 1996		
Boiling point	136.4EC	Budavari et al., 1996		
Conversion factors	1 ppm = 7.75 mg/m^3 1 mg/m ³ = 0.129 ppm	AIHA, 1992		

2. HUMAN TOXICITY DATA

16 **2.1.** Acute Lethality

17 The only case report of lethality following inhalation exposure to titanium tetrachloride was 18 found in a secondary source (Reisman, 1961). A worker was admitted to the hospital in critical condition following inhalation of titanium tetrachloride fumes. Over the course of the four days 19 20 preceding his death, the patient developed increasing respiratory and pulse rates, a high temperature, and mottled densities in the upper half of each lung as revealed by x-rays. He also 21 22 had severe conjunctivitis with extensive destruction of the corneal tissue. He experienced 23 increasing respiratory distress until death. Autopsy revealed pulmonary changes including congested upper lung lobes and brownish, rough bronchial mucosa with no purulent exudate. 24 25 Microscopic examination of the lungs found marked hyperplasia with swollen cuboidal 26 epithelium and marked cellular hyperplasia of the alveolar walls. A network of fibrin and the presence of a large amount of protein-like fluid containing polymorphonuclear leukocytes was 27 seen in the alveolar spaces. The bronchial mucosa was hyperplastic and appeared somewhat like 28 29 stratified epithelium. There were additional changes consistent with ulceration.

30

1 **2.2.** Nonlethal Toxicity

2 **2.2.1.** Case Reports

Three male workers confined in a 8.5 x 17 foot room with extraction ventilation were using 3 4 titanium tetrachloride to assess a welding torch when a brass tap flew off and filled the room 5 with titanium tetrachloride fumes (Ross, 1985). In addition to inhalation exposure, one worker 6 also splashed titanium tetrachloride on his hand, which he proceeded to rinse off with water. 7 The exposure was of a "short" duration (no further details provided). Following the exposure, one worker complained of a ticklish cough accompanied by an unpleasant taste in his mouth. A 8 9 second worker developed a cough and tightness in his chest, and had slight eve irritation for approximately two hours post exposure. A third worker reported no symptoms. A medical 10 examination (including a chest x-ray) of the workers "several hours later" did not reveal any 11 12 abnormalities.

13 A 50-year-old chemical engineer was exposed when a glass pipe containing titanium 14 tetrachloride broke, spraying his chest, head, neck, and back (Park et al., 1984). Although he was wearing a mask at the time of exposure, he removed it while running to the sink to wash off 15 16 the chemical from his body. He was consequently exposed to the titanium tetrachloride fume for approximately 2 minutes. Twenty minutes following exposure, he developed a cough and 17 18 dyspnea, and was taken to the hospital and admitted. Upon admission, the worker had second 19 and third degree burns involving his chest, back, abdomen, arms, and scalp, and had erythema of 20 the tongue, pharynx, and conjunctivae. Bilateral diffuse, expiratory wheezes were heard over his 21 lungs. Shortly after admission, the patient was intubated and put on ventilation in response to 22 signs of severe upper airway stridor. Progressive hypoxia and signs of respiratory distress 23 syndrome were seen during the first 48 hours of hospitalization. He was taken off the ventilator at the end of the first week, but suffered several episodes of aspiration pneumonia requiring 24 25 ventilation. A bronchoscopy conducted 11 days after admission revealed copious, thick yellow 26 brown secretions in both lower lobes, areas of denuded mucosa, and eschar formation over the 27 carina and several of the lobar spurs. A pulmonary embolus was discovered 3 weeks later, 28 which responded to heparin treatment. Five weeks after admission, the patient developed 29 respiratory insufficiency and CO₂ retention and required reintubation and ventilation. Bronchoscopy revealed erythema of the entire bronchial tree with thickening of the carina and all 30 of the lobar and segmental spurs. Approximately 30-40 fleshy polypoid lesions were present on 31 32 both sides of the bronchial trees. Biopsy revealed granulation tissue with acute inflammation. 33 The polyps responded to treatment with high doses of corticosteroids. Bronchoscopy 4 and 6 34 weeks after corticosteroid administration revealed decreases in the number and size of polyps, 35 but found stenosis and distortion of orifices. Pulmonary function tests revealed significant obstructive pulmonary involvement. The patient was discharged 12 weeks after admission, but 36 37 returned one month later with tracheal stenosis requiring placement of a splint. Bronchoscopy 38 one year after the accident revealed that many of the previously stenotic bronchial orifices 39 returned to normal, with some degree of mild stenosis noted. The authors reported that similar 40 pulmonary findings were observed in other cases following thermal respiratory injury.

In addition to the fatal case reported in secondary source (Reisman, 1961), seven nonfatal
 cases were also reported. One patient presented with acute respiratory distress, and x-rays
 revealed pneumonitis. Following antibiotic treatment, the patient had completely recovered

upon his release 14 days later. Six other cases presented with pulmonary findings of a moist
lung with obstructive wheezing of an asthmatic type. No pulmonary changes were seen on xray, and the patients recovered within one to two days following treatment with oxygen,
sedatives, and antibiotics. Of the seven additional case reports, four patients also had corneal
damage.

6 2.2.2. Epidemiologic Studies

7 A cross-sectional survey was conducted to assess respiratory disease in titanium metal production workers (Garabrant et al., 1987). A group of 209 employees at a titanium metal 8 9 production plant were evaluated by means of a health questionnaire (which evaluated the prevalence of chronic respiratory symptoms, past medical history, and smoking history), a 10 physical examination, pulmonary function tests, and chest radiography. A complete 11 12 occupational history including potential asbestos exposure was also obtained for each worker. Company records were obtained to classify each employee's work history. Three exposure 13 14 groups were defined: reduction workers who worked at least six months in the reduction area 15 (these workers were exposed to titanium tetrachloride vapor, titanium oxychloride, and titanium 16 dioxide particles); chipping and washing workers who worked at least six months in the chipping and washing area but less than 6 months in the reduction area (these workers were exposed to a 17 mixed aerosol of titanium, sodium chloride, and hydrochloric acid); and maintenance and service 18 19 workers who worked less than six months in production jobs. No significant difference in the 20 prevalence of symptoms was noted among groups. Pulmonary function tests revealed that reduction workers experienced a decrease in the FEV_{10} (forced expiratory volume in 1 second) 21 of 24 mL per year of employment in the reduction area after adjustment for age, height, and 22 23 smoking. Unfortunately, no measurements of titanium tetrachloride were taken in the reduction area. An increase in pleural disease was associated with increasing duration of work in titanium 24 manufacturing in general. However, no clear association was identified between pleural 25 thickening and a reduced ventilatory capacity. The cause of the reduction in $FEV_{1,0}$ and of the 26 27 pleural thickening observed in the titanium metal production workers was not clearly identified, 28 but the author hypothesized they could be related to exposure to titanium tetrachloride and 29 titanium dioxide particulates.

30 2.3. Developmental/Reproductive Toxicity

- No human data addressing the potential for inhaled titanium tetrachloride to cause
 developmental or reproductive toxicity were found in the literature.
- 33 2.4. Genotoxicity

34

No human genotoxicity data were found in the available literature.

35 **2.6.** Carcinogenicity

Du Pont conducted a nested case-control study to assess the potential of occupational
 exposure to titanium tetrachloride to cause lung cancer (Fayerweather et al., 1992). The study
 cohort comprised male wage roll employees who worked for at least one year prior to 1984 at the

1 identified plant (workers started wearing respirators during routine operations with titanium 2 tetrachloride starting in 1984). Cases were identified using the Du Pont mortality registry. The 3 cases were defined "as all lung cancer deaths at the study plant who worked for at least one year 4 at the plant prior to 1/1/84 and who died during the period 1935-1983." For each case that was 5 selected, four controls were selected from the employee roster. These controls had to meet the following criteria: male gender, worked at the plant during the last year the case was employed 6 7 at the plant, and match within 3 years the case's birth year and year of hire. Factors considered 8 in the case control analyses included the duration of exposure, the cumulative exposure index 9 (sum of products of duration and the range midpoint of each exposure level over all jobs held by the individual), and the time-weighted-average exposure (cumulative exposure index divided by 10 11 the duration of exposure). In addition to birth year and year of hire, data were adjusted for smoking. No association was identified between titanium tetrachloride exposure and lung cancer 12 13 (odds ratio 1.1; 90% C.I.: 0.4-3.2).

14 **2.7. Summary**

15 Human acute inhalation exposure data are confined to case studies in which the exposure 16 concentrations were unknown. A fatal case reported in the secondary literature had severe pulmonary damage and destruction of the corneal tissue following accidental exposure to 17 18 titanium tetrachloride fumes (Reisman, 1961). Non-fatal case reports had symptoms including: a 19 ticklish cough accompanied by an unpleasant taste in his mouth, cough and chest tightness and 20 slight eye irritation (Ross, 1985); pulmonary findings similar to those found following thermal 21 respiratory injury (Park et al., 1984); and acute respiratory distress resulting from pneumonitis, 22 findings of a moist lung with obstructive wheezing, and corneal damage (Reisman, 1961). A 23 cross-sectional survey conducted to assess respiratory disease in workers exposed to titanium 24 tetrachloride during titanium metal production reported an increase in pleural thickening and a non-related decrease in $FEV_{1,0}$ (Garabrant et al., 1987). It was hypothesized these findings were 25 the result of exposure to titanium tetrachloride and titanium dioxide particulate. No association 26 27 was identified between titanium tetrachloride exposure and lung cancer (Fayerweather et al., 28 1992). No human developmental or reproductive inhalation toxicity data or human genotoxicity 29 were available.

30 **3. ANIMAL TOXICITY DATA**

31 **3.1.** Acute Lethality

32 **3.1.1. Dogs**

33 To assess the effects of acute exposure, three dogs were exposed to titanium tetrachloride in a 10 m³ chamber (Zapp, 1949). Titanium tetrachloride vapor was generated by placing liquid 34 35 titanium tetrachloride in a dish under a fan. The chamber was filled with "roughly uniform concentrations of fumes" by turning on the fan intermittently. The actual exposure 36 concentrations were not provided in the study details. Two dogs were exposed 4 times: on day 37 38 one for 2 hours, day two for 1.5 hours, day eight for 1 hour, and day eleven for 2 hours. A third 39 dog was exposed only once for 1 hour, and this dog's blood pressure, pulse and respiratory rate, and platelet count were followed for 3 days. All dogs exhibited respiratory distress during and 40 after the exposures, and two dogs vomited during the exposure. One dog collapsed after the 41

1 second exposure, and was found dead in the exposure chamber following the fourth exposure. 2 Necropsy of this dog revealed bronchitis and edema, and microscopic evaluation revealed small 3 titanium particles in the bronchi and in a few alveoli. The other dog that was exposed four times 4 was killed and necropsied four days after the last exposure. Gross necropsy of the lungs 5 revealed focal congestion and hemorrhage with particulate matter deposits. Microscopic examination did not reveal any definitive pulmonary lesions, but the mucosa was thin and 6 irregular, suggesting regeneration. The third dog that was exposed once for 1 hour exhibited a 7 8 number of changes following exposure: blood pressure changed from 204/104 before exposure 9 to 136/60 following exposure, pulse rate increased from 68 to 84, and respiration rate increased from 24 to 40. These parameters returned to normal the following day. Although the platelet 10 11 count increased from 133,000 before exposure to 292,000 the second day post exposure, the values were still within the normal range for dogs. The dog was sacrificed and necropsied three 12 13 days post exposure. A few minute hemorrhages were found toward the margins of the lung 14 lobes, and small particles were found in the terminal bronchioles. No abnormalities were found 15 in the trachea or bronchi.

16 **3.1.2. Rats**

17 Groups of six male ChR-CD rats (weighing between 240-300 g) were exposed by inhalation to various concentrations of titanium tetrachloride aerosol for 2, 5, 15, 30, 60, 120, or 240 18 19 minutes to determine the respective LC₅₀ concentrations (Kelly, 1980). Animals were exposed head-only in a dynamic 33 L glass chamber. Titanium tetrachloride vapor was generated by 20 bubbling dry cylinder air through liquid titanium tetrachloride (purity >99.5%), and the resultant 21 vapor was diluted with 10 L/minute of air (60% relative humidity) in a mixing flask and passed 22 into the exposure chamber. A yellow-white particulate cloud immediately formed as the 23 24 titanium tetrachloride hydrolyzed. The exposure concentration was controlled by varying the 25 water bath temperature and air flow rate through the bubbler. The exposure concentration was 26 verified by trapping the particulate and vapor on a filter in tandem with an impinger containing a 27 sodium acetate solution. The chamber titanium tetrachloride concentration was then calculated 28 from the total chloride recovered from the filter and impinger solution using a chloride ion 29 selective electrode. The chloride-measurement method was in agreement with atomic absorption 30 measurements for titanium performed on several samples. Aerodynamic particle size ranged 31 from 0.3 - 1.6 µm. Rats were exposed one at a time for the 2-minute exposures, while six rats at 32 a time were exposed for the other exposure durations. Following exposure, the rats were 33 observed for a 2-week period for mortality and were weighed daily. Major organs were 34 examined and weighed at necropsy, and the respiratory tract was examined histopathologically.

35 Results of the acute lethality studies by Kelly (1980) are presented in Tables 2 and 3. Findings other than mortality were not reported for the individual exposure concentrations or 36 37 durations, but were provided only as general findings. Clinical signs noted during exposure 38 included eye closing and gasping, while signs noted after exposure consisted of corneal opacity, 39 weight loss, and lung congestion. Histopathological examination revealed similar respiratory 40 lesions in rats dying during exposure or post exposure, including inflamed airways, hypermucous secretion, epithelial denudation, severe necrotic laryngitis, pulmonary congestion, and 41 hemorrhage. A white-gray powder was found in the airways, and necrotic keratitis and 42 43 conjunctivitis were observed in the eyes. Death was the result of pulmonary edema.

1 To assess the reversibility of respiratory tract lesions, a group of rats surviving exposure to 172 ppm for 30 minutes (the approximate LC_{10}) was killed and examined two at a time after a 2 recovery period of 1, 3, 7, 14, 21, or 49 days (Kelly, 1980). It was not stated how many rats 3 were originally exposed. Severe respiratory inflammation was observed at one-day post 4 5 exposure. The respiratory exudate was already organizing by three days post exposure, and by seven days post exposure, the acute inflammation had subsided, and the denuded epithelium was 6 partially repaired. The respiratory lesions had almost completely disappeared and the epithelium 7 8 was repaired by 14 and 21 days post exposure. Normal architecture had been restored by 49 9 days post exposure.

10 11	Table 2. Sun	Table 2. Summary of LC ₅₀ Values for Rats Exposed to Titanium Tetrachloride					
12	Time (min)	LC ₅₀ (ppm)	95%	% CL (ppm)			
			Lower	Upper			
13	2	13,940	12690	17903			
14	5	4600	3672	6945			
15	15	713	479	1095			
16	30	390	230	508			
17	60	171	127	209			
18	120	143	96	182			
19	240	59	49	68			
20	Data taken from Ke	lly, 1980.					

Exposure duration (min)	Conc. (ppm)	Deaths [n=6]	Exposure duration (min)	Conc. (ppm)	Deatl [n=6
2	9115	0	60	86	0
	11255	1	-	134	1
	11998	1	-	201	4
	12648	1		204	5
	11976	2	-	421	6
	16497	5	120	31	0
5	2163	0	-	105	1
	2736	0	-	178	4
	3117	3		222	6
	3055	1	240	35	0
	5277	3	-	52	1
68	6890	5		66	5
15	296	1	-	83	6
	345	0			
	636	4			
	825	3	-		
	1039	4			
	1451	5			
30	108	0			
	293	2			
	379	5			
	458	3			
	510	3			
	538	3			
	569	4			
	692	6			

8 Data taken from Kelly, 1980.

9 Groups of six male ChR-CD rats (240-300 g) were exposed for four hours to concentrations 10 of titanium tetrachloride ranging from 6 to 110 ppm with the relative humidity varying from 30%

1 to greater than 95% (at 25EC) (Burgess, 1977). Animals were exposed in a 125 L stainless steel and glass chamber with a total airflow of 35 L/min. The test atmosphere was generated by 2 3 bubbling nitrogen through a gas bubbler containing titanium tetrachloride, followed by mixing 4 with air. The titanium tetrachloride concentration was controlled by varying the nitrogen flow. 5 Exposure concentrations were calculated using the total amount of chloride recovered. Chloride concentrations were determined by drawing chamber air through a midget impinger containing 6 7 sodium hydroxide, passing it through a glass fiber filter, releasing the chloride ions using acetic acid, and measuring the number of ions using a chloride-ion specific electrode. Results of the 8 lethality study are presented in Table 4. The only clinical sign noted was labored breathing that 9

varied with exposure concentration. Mortality occurred either during or immediately after
 exposure. The investigator concluded that higher humidity resulted in increased toxicity as
 indicated by lethality, possibly the result of exposure to the increased production of the

13 hydrolysis products from the reaction of titanium tetrachloride with the moisture in the air.

Table 4. Summary of Mortality of Rats Exposed to Titanium Tetrachloride for 4 Hours						
Relative Humidity	Char	Chamber Conc.				
(%)	mg/L	ppm	[n=6]			
30-35	0.044	6	0			
	0.160	21	0			
	0.160	21	0			
	0.166	21	0			
	0.296	38	6 (100)			
	0.395	51	2 (33)			
	0.473	61	5 (83)			
	0.824	106	6 (100)			
	0.855	110	5 (83)			
60-65	0.045	6	0			
	0.108	14	1 (17)			
	0.111	14	1 (17)			
	0.113	15	2 (33)			
>95	0.170	22	2 (33)			

20

Data taken from Burgess, 1977.

21 **3.2.** Nonlethal Toxicity

22 **3.2.1. Dogs**

Four dogs were exposed to titanium tetrachloride vapor for 6 hours/day, 5 days/week for 45 exposures over a 70-day period (Zapp, 1949). The exposure concentrations of titanium

1 tetrachloride are not known, since chamber concentrations were reported only as the average 2 concentration of titanium (8.4 ppm; range of 1.6 to 17.1 ppm) and chloride (6.8 ppm; range of 3 1.2 to 16.0 ppm). Dogs were observed for 6 weeks prior to exposure to establish a baseline. 4 Blood pressure, body temperature, pulse rate, and respiratory rate were measured 2/day for 5 5 days/week, and blood and urine samples were collected and analyzed biweekly. These 6 measurements were continued throughout the exposure. During exposure, no consistent effects 7 on blood pressure were observed. No significant changes in red blood cell or hemoglobin 8 concentrations were noted, but the leukocyte count increased in three of the dogs during the 9 experiment (not statistically significant). No changes in body weight, blood, or urine chemistry were observed. Dogs were killed and necropsied three days after the last exposure. Pathological 10 11 changes were observed only in the lungs. Gross necropsy revealed numerous dull red spots in 12 the lungs, and microscopic examination revealed numerous monocytes (dust cells, macrophages, 13 and phagocytes) distended with brown granules scattered diffusely throughout the lung, with a 14 grouping noted around the bronchi. The brown granules were identified as titanium. Evidence 15 of a reparative process was indicated by connective tissue proliferation in the vicinity of the 16 monocytes. The centers of the largest lesions contained necrotic material most likely derived 17 from monocytes, alveolar cells, and perhaps other unidentified cells. The author compared the 18 microscopic pulmonary damage to that produced by silica exposure.

19 **3.2.2. Rats**

20 In a study designed to assess sensory irritation, groups of four male, ChR-CD rats were 21 exposed head-only for 20 minutes to titanium tetrachloride concentrations ranging from 5 to 555 22 ppm (Gardner, 1980). Titanium tetrachloride vapor was generated by passing a stream of 23 nitrogen over liquid titanium tetrachloride, and diluting with humidified air before passing into 24 the chamber. The hydrolysis products formed a dense, white aerosol. Exposure concentrations 25 were verified by analyzing two air samples taken during each exposure. The chamber air 26 samples were drawn through midget impingers connected in series containing sodium acetate as 27 the trapping solvent, and then analyzed using a chloride specific ion electrode. Following 28 exposure, animals exhibited lacrimation and clear nasal discharge. Exposed animals also 29 exhibited a "mild" weight loss (actual values not provided) within 24 hours post exposure, with 30 normal weight gain thereafter. The percentage of the respiratory rate change is presented in 31 Table 5. Exposure to 5 or 14 ppm titanium tetrachloride resulted in increased respiration, with 32 higher exposure concentrations resulting in decreased respiration. The calculated RD₅₀ was 313 33 ppm.

1 2		Table 5. Percentage of Respiratory Rate Change in Rats Exposed to Titanium Tetrachloride				
3	Conc. (ppm)	% Respiratory Rate Change				
4	5	+18.2				
5	14	+6.0				
6	26	-12.0				
7	41	-17.8				
8	159	-42.5				
9	361	-63.3				
10	379	-62.0				
11	555	-75.5				

12

Taken from Gardner, 1980

13 Groups of 25 ChR-CD male rats were exposed by inhalation for 6 hours/day, 5 days/week, for 4 weeks to titanium tetrachloride hydrolysis products at measured concentrations of 0, 0.6, 14 15 1.3, or 5.2 ppm (reported as 0, 1, 10, or 40 mg/m³) titanium tetrachloride (Kelly, 1979). Exposures were conducted in a 1.3 m³ dynamic stainless steel inhalation chamber, and test 16 17 material atmosphere was generated by passing a stream of nitrogen over liquid titanium tetrachloride followed by mixing with the chamber air supply. Chamber concentrations were 18 19 analytically verified by measuring the total amount of chloride recovered. Chamber air was 20 drawn through a midget impinger containing sodium hydroxide, and then passed through a glass 21 filter to collect particulates. The glass filter was dropped into the impinger solution followed by 22 a pH adjustment, and the total chloride content was measured using a chloride ion-specific 23 electrode and comparing to a standard. Animals were observed daily and weighed weekly. 24 Clinical testing (hematology, clinical chemistry, and urinalysis) was performed on 10 rats/group 25 on the last exposure day and after a 2-week recovery period. Blood and urine δ -aminolevulinic 26 (ALA) assays were conducted at one week intervals during exposure and after a 2-week recovery 27 period. Five rats/group were killed and examined grossly and microscopically on the last 28 exposure day, and after 2 weeks, 3 months, 6 months, or 12 months post exposure.

29 Two rats from the 5.2 ppm group died on test day 15 and 23 from respiratory failure (Kelly, 30 1979). Pathological examination of these animals revealed partial dust obstruction of the trachea, denuded tracheal epithelium, acute obliterative bronchiolitis, interstitial pneumonitis and 31 32 pulmonary edema and hemorrhage. Clinical signs noted in the 5.2 ppm group included labored 33 breathing and slightly decreased body weight gain over the exposure interval (approximately 93% of controls), but these rats returned to normal during the recovery period. No clinical signs 34 were observed in rats exposed to 0.6 or 1.3 ppm. Clinical chemistry analysis revealed changes in 35 36 the 1.3 and 5.2 ppm groups including statistically decreased urine osmolality (87 and 80% of controls, respectively) and increased urine pH (7.68 and 7.8, respectively, vs. 7.2 for the 37 38 controls). Additional changes in the 5.2 ppm group included decreased BUN (74% of controls) 39 levels and decreased blood ALA levels throughout exposure. All of these clinical chemistry

1 changes returned to normal values following a 2-week recovery period and were not

- 2 accompanied by any corresponding pathological changes. Gross necropsy revealed increased
- 3 lung:body weight ratios in all groups of rats killed on the last day of exposure (+26%, +36, and
- 4 +78% of controls for the 0.6, 1.3, and 5.2 ppm groups, respectively), with 2-weeks post exposure
- 5 values still increased in the 1.3 and 5.2 ppm groups (+14% and +28%, respectively). Lung:body
- 6 weight ratios returned to values comparable to controls by 3 months post exposure. Pathological 7 examination of exposed rats revealed a mild dust-cell reaction in 0.6 ppm rats observed up to one
- 8 year post exposure. At the end of the exposure period, the 1.3 and 5.2 ppm group rats exhibited
- 9 a concentration-dependent acute inflammation of the respiratory tract. Following a 2-week
- 10 recovery period, inflammation had subsided in these groups and repair was indicated by
- 11 proliferated alveolar fibroblasts and thickened alveolar walls. By 3-months post-exposure, dust-
- 12 cell foci were seen in the respiratory bronchioles and adjacent alveoli, with some areas of patchy
- 13 fibrosis with collagen deposition. At 6 to 12 months post exposure, a decrease was observed in
- 14 the dust cell foci and thickened alveolar walls. Collagenized fibrosis was evident, particularly in 15 the respiratory branchicles and adjoining alveolar walls.
- 15 the respiratory bronchioles and adjoining alveolar walls.

16 **3.3. Developmental/Reproductive Toxicity**

No data were found that addressed the potential for inhaled titanium tetrachloride to causedevelopmental or reproductive toxicity in animals.

19 **3.4.** Genotoxicity

Titanium tetrachloride at concentrations of 1-10,000 µmoles/plate was not mutagenic to
Salmonella typhimurium strains TA1537, TA2637, TA98, TA100, or TA102 (Ogawa et al.,
1987). Titanium tetrachloride also tested negative in a modified Salmonella typhimurium test
system, in which 100 µmoles of 9-aminoacridine was added to the test plates (Ogawa et al.,
1987). Titanium tetrachloride was toxic in this test system at a concentration of 5000
µmoles/plate. Titanium tetrachloride was not mutagenic in the CHO/HGPRT assay (test
concentrations not provided) (Hsie et al., 1979).

27 **3.5.** Chronic Toxicity/Carcinogenicity

28 Groups of 100 male and 100 female Crl:CD rats were exposed to 0, 0.013, 0.13, or 1.3 ppm 29 (reported as 0, 0.1, 1.0, or 10 mg/m³) of titanium tetrachloride aerosol for 6 hours/day, 5 days/week for 24 months (Lee et al., 1986). Five male and five female rats from each group 30 31 were killed at 3 and 6 months of exposure and ten male and ten female rats were killed at one 32 year of exposure for gross and microscopic evaluation. Animals were exposed to titanium 33 tetrachloride vapor in a chamber made of high-nickel, stainless-steel designed to withstand the 34 corrosive nature of the vapor. The vapor was generated by passing nitrogen over liquid titanium 35 tetrachloride in a glass vessel maintained at 20EC, followed by mixing with a 1000 L/min chamber air supply. The chamber concentrations were measured by trapping the solid titanium 36 tetrachloride hydrolysis products on cellulose acetate filters, followed by analysis with a 37 colorimetric method. The exposure concentrations were reported as mg/m^3 of titanium 38 39 tetrachloride as calculated from the titanium concentration. Aerodynamic analysis of chamber

particulates revealed that almost all particles were less than 1.6 F M. Analysis of chamber air
 revealed almost no unhydrolyzed titanium tetrachloride in the chamber.

No exposure-related differences were observed in clinical signs, body weight changes, 3 4 morbidity, or mortality in rats exposed for 2 years (Lee et al., 1986). Increased lung weights 5 were observed in high-concentration males and females (+32 and +54% of controls 6 respectively). Histopathological examination revealed only mild rhinitis in rats exposed to 0.013 7 ppm. Rats exposed to 0.13 ppm had increased incidences of rhinitis and tracheitis, and slight hyperplasia of Type II pneumocytes enclosing dust cells in the alveoli. The pulmonary changes 8 9 observed at 0.13 ppm were consistent with those caused by a nuisance dust. Pulmonary findings 10 in rats exposed to 1.3 ppm were more substantial, and included hyperplasia of Type II 11 pneumocytes enclosing dust cells in the alveoli, alveolar bronchiolarization, cholesterol 12 granulomas (with associated foamy macrophages), alveolar proteinosis, and focal pleurisy. 13 Particle deposition observed in the tracheobronchial lymph nodes in rats exposed to 0.13 or 1.3 14 ppm and in the liver and spleen of rats exposed to 1.3 ppm was not considered biologically 15 significant because there was no evidence of tissue damage or of a cellular response. The finding of squamous cell carcinomas in the area of the alveoli in 2/69 males and 3/74 females in 16 17 the 1.3 ppm exposure group compared with no findings in any of the other exposed or control rats is of uncertain relevance to humans. Two cases were keratinized cystic squamous cell 18 19 carcinomas (with no invasion into adjacent tissue), and the other three were microscopic-sized, 20 well-differentiated squamous cell carcinomas. The authors classified the lesions as cystic keratinizing squamous cell carcinoma, indicating that there are no accepted classifications of 21 22 these benign lung lesions.

23 **3.6.** Summary

24 The only acute inhalation exposure studies in animals with quantified exposure 25 concentrations of titanium tetrachloride were in rats. One study investigating the effect of 26 varying humidity on titanium tetrachloride toxicity reported higher humidity resulted in increased toxicity as indicated by lethality (Burgess, 1977). Another study reported LC₅₀ values 27 28 ranging from 13,940 ppm for a 2-minute exposure to 59 ppm for a 4-hour exposure (Kelly, 29 1980). Clinical signs noted in rats during exposure included eye closing and gasping, while 30 signs noted after exposure consisted of corneal opacity, weight loss, and lung congestion. The 31 severity of the signs was not provided for the various exposure concentrations and durations, but 32 rather was given only as a general statement. Histopathological examination revealed similar 33 respiratory lesions in rats dying during exposure or post exposure, with death attributed to 34 pulmonary edema. Necrotic keratitis and conjunctivitis was observed in the eves. A further 35 study investigating the reversibility of the respiratory tract lesions demonstrated that rats surviving an acute exposure to inhaled titanium tetrachloride should not have any irreversible 36 37 pulmonary effects. However, insufficient data were available to correlate irritant effects 38 observed at the nonlethal concentrations reported in Kelly (1980).

An RD₅₀ value of 313 ppm in CHR-CD rats was reported (Gardner, 1980). Substantial
 differences have been observed between species in their response to irritants, and for this reason
 the standard RD₅₀ testing protocol calls for the use of male Swiss-Webster mice only (Alarie et

1 al., 1980; ASTM, 1991). Therefore, the RD_{50} value generated in this study is questionable for 2 use in AEGL derivations.

A four-week exposure study in rats reported two deaths in the high-concentration group 3 4 exposed to 5.2 ppm (Kelly, 1979). The deaths were the result of severe pulmonary effects. No clinical signs were observed in rats exposed to 0.6 or 1.3 ppm, but rats exposed to 5.2 ppm 5 exhibited labored breathing and a slightly decreased body weight gain over the exposure interval 6 7 that returned to normal following a recovery period. Clinical chemistry changes observed in the 1.3 and 5.2 ppm groups were reversible. The histopathological changes observed in the lungs of 8 9 exposed rats at the 6- to 12-month recovery period (collagenized fibrosis) are likely the result of the repeated exposure scenario, as the Kelly (1979) study found that all pulmonary lesions 10 following an acute inhalation exposure to the LC_{10} were resolved by 49 days post exposure. 11

12 Dogs exposed to high (but unknown) concentrations of titanium tetrachloride for 4 exposures of 1.5-2 hours over eleven days exhibited respiratory distress during and after the 13 14 exposures, with one dog dying after the fourth exposure from pulmonary toxicity (bronchitis and edema), and the second dog developing focal congestion and hemorrhage by sacrifice four days 15 16 post exposure (Zapp, 1949). A third dog exposed once for 1 hour developed histopathological changes of a few minute pulmonary hemorrhages by sacrifice at three days post exposure. 17 18 Repeated titanium tetrachloride inhalation exposure over 10 weeks revealed pulmonary effects in 19 dogs consistent with damage produced by silica exposure (Zapp, 1949).

A 2-year chronic toxicity and carcinogenicity bioassay in rats reported effects of mild irritation (rhinitis) at 0.013 ppm, a pulmonary response consistent with a nuisance dust at 0.13 ppm, and pulmonary lesions in the alveolar duct region where dust cells accumulated, evoking a chronic tissue response at 1.3 ppm of titanium tetrachloride (Lee et al., 1986). Squamous cell carcinomas in the area of the alveoli in 2/69 males and 3/74 females in the 1.3 ppm exposure group compared with no findings in any of the other exposed or control rats were of uncertain relevance to humans.

No developmental or reproductive inhalation toxicity data were available. Titanium
tetrachloride was not mutagenic in the *Salmonella typhimurium* test system (Ogawa et al., 1987)
or in the CHO/HGPRT assay (Hsie et al., 1979).

30

31 4. SPECIAL CONSIDERATIONS

32 **4.1. Metabolism and Disposition**

33 A group of 12 white rats were exposed for one hour to an approximate concentration of 260 34 ppm of titanium tetrachloride (Sanotskij and Babina, 1962). Animals were killed by decapitation 35 immediately after, 24 hours after, or 6 days after exposure, and the concentration of titanium was determined in the blood, lungs, intestines (with contents), liver, and brain. The concentration in 36 the urine was also determined following collection in metabolism cages. One animal died during 37 the exposure. Following the exposure, approximately $28 \mu g/g$ titanium was found in the lungs 38 and 10 μ g/g was recovered in the blood. The concentration in the blood dropped to less than 1 39 $\mu g/g$ by one day post exposure, while the concentration in the lungs dropped to 22 $\mu g/g$ by one 40

1 day and 15 μ g/g by six days post exposure. The intestines were the main route of elimination

2 with 25 μ g/g recovered at one day post exposure and 4 μ g/g six days post exposure. The

3 concentration of titanium in the urine was 11 μ g/g one day post exposure, 7 μ g/g three days post

- 4 exposure, and less than $1 \mu g/g$ six days post exposure. Liver and brain had low concentrations of 5 titerium: approximately $1 \mu g/g$ by day 6 post exposure
- 5 titanium: approximately 1 μ g/g by day 6 post exposure.

6 **4.2. Mechanism of Toxicity**

7 Titanium tetrachloride is highly corrosive, hydrolyzing upon contact with moisture releasing
8 heat, hydrochloric acid, and orthotitanic acids. The pulmonary damage induced by inhaled
9 titanium tetrachloride does not appear to be due to the generation of only hydrogen chloride.

10 Kelly (1980) reported that titanium tetrachloride exposure in rats resulted in greater lethality than

11 what would be expected based on its hydrogen chloride (HCl) formation. On a molar basis,

12 titanium tetrachloride was 16 times more toxic than what would be predicted. Kelly proposed

- 13 that the fine particulate oxychloride intermediates generated from titanium tetrachloride
- 14 hydrolysis penetrate deeper into the lung where hydrolysis is completed, whereas hydrogen
- 15 chloride is primarily absorbed along the upper respiratory tract.

In a study designed to assess the toxicity of the hydrolysis products of titanium tetrachloride 16 17 compared to HCl, groups of five white mice were exposed to various concentrations of titanium tetrachloride or HCl in a 100 L chamber for two hours (Mezentseva et al., 1963). HCl was 18 generated from the reaction between concentrated sulfuric acid and table salt, while titanium 19 20 tetrachloride was placed in a petri dish in the chamber where it evaporated and was 21 simultaneously hydrolyzed. The exposure concentrations of titanium tetrachloride were based 22 upon the concentration of HCl generated. Animals were observed during the 2-hour exposure, 23 and then observed for mortality up to ten days post exposure. Further protocol details (such as 24 measurement of exposure concentrations, sex of the animals, and use of control animals) were 25 not provided. Study results are presented in Table 6. The hydrolysis products of titanium 26 tetrachloride resulted in more mortality than HCl alone, but pure HCl resulted in a stronger local 27 effect as demonstrated by the behavior of the animals and damage to the mucous membranes of 28 the upper respiratory tract and necrosis of the conjunctiva. The authors then investigated the 29 degree of development of edema following exposure to pure HCl or titanium tetrachloride 30 hydrolysis products as measured by the pulmonary coefficient K = [weight of lungs (g)/body]31 weight (g)]. They found that pulmonary edema developed following exposure to HCl derived 32 from the hydrolysis of titanium tetrachloride, but not with similar concentrations of pure gaseous 33 HCl. The authors hypothesized this was due to the action of titanium oxide hydrates, which 34 would absorb the HCl produced and carry it deeper into the lungs. Therefore, the titanium tetrachloride-generated HCl could reach the alveoli where it could undergo further hydrolysis. 35 36 Pure HCl, on the other hand, is so soluble that it reacts primarily in the nasopharynx and trachea.

In conclusion, titanium tetrachloride is highly corrosive, hydrolyzing upon contact with moisture releasing heat, hydrochloric acid, and orthotitanic acids, thereby causing direct tissue damage in the lung. Data indicate that the fine particulate oxychloride intermediates generated from titanium tetrachloride hydrolysis are able to penetrate deep into the lung where hydrolysis is completed, resulting in direct contact irritation and producing bronchitis or pneumonia.

Table 6. Comparative Toxicity of Titanium Tetrachloride Hydrolysis Products and of HCl						
Concent	ration (mg/L)	Number	Time of first		Mortality	
Ti	НСІ	exposed	death (min)	During exposure	After exposure	Total
Products of ti	tanium tetrachloride	hydrolysis				
0.3-0.03	0.24	5	3	4	-	4 (80%)
0.24-0.02	0.018-0.01	5	3	2	1	3 (60%)
0.15-0.01	0.07-0.005	5	35	1	1	2 (40%)
HCl						
-	0.24-0.03	5	-	-	1	1 (20%)
-	0.11-0.036	5	-	-	-	0
-	0.06-0.012	5	_	-	-	0

1 12

Taken from Mezentseva et al., 1963, p. 41.

13 4.3. Structure Activity Relationships

14 Structure-activity relationships were not used in the derivation of AEGLs. As discussed in the Mechanism section (4.2.), exposure of titanium tetrachloride results in greater toxicity than what 15 would be expected based on molar equivalents of HCl produced. 16

4.4. Other Relevant Information 17

4.4.1. Species Variability 18

19 Titanium tetrachloride is an irritant and the mechanism of toxicity is a direct contact effect; 20 therefore, the mechanism of action is not expected to vary greatly among species. It is recognized that rodents are obligate nose breathers, and it is likely that titanium tetrachloride will 21

22 react higher in the respiratory tract (especially the nasal cavity) compared to humans.

23 4.4.2. Susceptible Populations

24 Individuals with asthma may respond to exposure to respiratory irritants such as titanium tetrachloride with increased bronchial responsiveness. However, no information on the relative 25 susceptibility of asthmatic and normal individuals to titanium tetrachloride was located. 26

27 4.4.3. Concentration-Exposure Duration Relationship

28 The experimentally derived exposure values are scaled to AEGL time frames using the 29 concentration-time relationship given by the equation $C^n x t = k$, where C = concentration, t =time, and k is a constant. The values of the exponent n generally are in the range of 1-3.5, and 30

- 1 "should always be derived empirically from acute inhalation toxicity experiments, in which both
- 2 the concentration and exposure period are variables" (ten Berge et al., 1986). To calculate n for
- 3 titanium tetrachloride, a regression plot of LC_{50} values was derived using the 2, 5, 15, 30, 60,
- 4 120, and 240-minute LC_{50} values determined by Kelly (1980) (see Table 2 for LC_{50} values;
- 5 Appendix B for calculation of *n*). From the regression analysis, the derived value of n = 0.88
- 6 was used in the temporal scaling of the AEGL values ($C^{0.88} x t = k$).

7 **4.4.4. Concurrent Exposure Issues**

8 In an occupational setting, workers exposed to titanium tetrachloride would likely also be 9 exposed to hydrogen chloride and titanium dioxide. Inhaled titanium dioxide is relatively 10 innocuous, with the primary concern being that of a nuisance dust. As already discussed, 11 bydrogen chloride is one of the hydrolysis products of titanium tetrachloride

11 hydrogen chloride is one of the hydrolysis products of titanium tetrachloride.

12 5. DATA ANALYSIS AND PROPOSED AEGL-1

13 **5.1. Summary of Human Data Relevant to AEGL-1**

Human data were not relevant to the derivation of AEGL-1. Although the odor of titanium
 tetrachloride has been described as penetrating and acrid, no odor threshold data are available.

16 **5.2.** Summary of Animal Data Relevant to AEGL-1

17 No acute animal toxicity data were relevant to the derivation of an AEGL-1. Insufficient 18 data were available to correlate irritant effects observed at nonlethal concentrations reported in 19 Kelly (1980). A repeat-exposure study reported that rats exposed to 0.6 or 1.3 ppm for 6 20 hours/day, 5 days/week for 4 weeks exhibited no clinical signs, and the clinical chemistry 21 changes observed in the 1.3 group were reversible (Kelly, 1979). The histopathological changes 22 observed in the lungs of exposed rats at the 6- to 12-month recovery period are the result of the repeat-exposure scenario, as the Kelly (1979) study found that all pulmonary lesions following 23 an acute inhalation exposure to the LC_{10} were resolved by 49 days post exposure. 24

25 **5.3. Derivation of AEGL-1**

No data relevant to the definition of an AEGL-1 endpoint are available. Therefore,
 derivation of AEGL-1 values is not recommended.

28	TABLE 7. AEGL-1 Values for Titanium Tetrachloride [ppm (mg/m³)]							
29	10-minute	30-minute	1-hour	4-hour	8-hour			
30	NR	NR	NR	NR	NR			

1 6. DATA ANALYSIS AND PROPOSED AEGL-2

2 6.1. Summary of Human Data Relevant to AEGL-2

No human data were relevant to the derivation of AEGL-2 values. Case reports of accidental
 workplace exposures did not contain information about exposure concentration and duration.

5 6.2. Summary of Animal Data Relevant to AEGL-2

Acute animal toxicity data are not appropriate for deriving an AEGL-2. Insufficient data
 were available to correlate irritant effects observed at nonlethal concentrations reported in Kelly
 (1980).

9 In a repeat-exposure study, groups of rats were exposed by inhalation for 6 hours/day, 5 10 days/week for 4 weeks to titanium tetrachloride hydrolysis products at measured concentrations of 0, 0.6, 1.3, or 5.2 ppm of titanium tetrachloride (Kelly, 1979). Exposure to 5.2 ppm resulted 11 12 in the death of two rats during the study (one rat died on test day 15 and the other on test day 23), histopathological examination revealed that death was due to respiratory failure. No clinical 13 14 signs were observed in rats exposed to 0.6 or 1.3 ppm, but rats exposed to 5.2 ppm exhibited 15 labored breathing and a slightly decreased body weight gain during the exposure interval that returned to normal following a recovery period. Clinical chemistry changes observed in the 1.3 16 and 5.2 ppm group were reversible (increased urine pH, decreased urine osmolality). Lung:body 17 weight ratios were increased at terminal kill (126, 136, and 178% of controls for the 0.6, 1.3, and 18 19 5.2 ppm groups, respectively). The histopathological changes observed in the lungs of exposed 20 rats at the 6- to 12-month recovery period (collagenized fibrosis) are likely the result of the 21 repeated exposure scenario, as the Kelly (1979) study found that all pulmonary lesions following an acute inhalation exposure to the LC_{10} were resolved by 49 days post exposure. 22

24 6.3. Derivation of AEGL-2

23

25 Because of the irritating properties of this chemical, the AEGL-2 should be based on 26 irritation. One option for the AEGL-2 derivation would be to base the value upon the labored 27 breathing reported in rats exposed to 5.2 ppm for 6 hours/day, 5 days/week for 4 weeks, but there 28 are several problems with this value (Kelly, 1979). Although it initially appears that the deaths were due to repeated exposures to titanium tetrachloride, the deaths cannot be discounted. The 29 30 Burgess (1977) study reported mortality in rats following a 4-hour exposure to 14 ppm. If one extrapolates this value over time to a 6-hour exposure, an exposure concentration of 8.8 ppm 31 32 would be predicted to result in mortality. However, the strongest support that this level is too 33 high is seen when one actually generates an AEGL-2 derivation based upon the 6-hour exposure 34 to 5.2 ppm and extrapolates across time using the n value of 0.88: one obtains nearly identical 35 values as those generated for the AEGL-3 derivation using a threshold for mortality as the 36 endpoint.

Therefore, the AEGL-2 derivation is based upon the repeat-exposure study in which rats were exposed to 1.3 ppm titanium tetrachloride 6 hours/day, 5 days/week for 4 weeks (Kelly, 1979). No clinical signs were observed at this concentration. Based upon a lack of data identifying interspecies and intraspecies variability, a total uncertainty factor of 100 would

1 normally be applied. However, the endpoint selected is below the endpoint defined for the

2 AEGL-2 tier in addition to the fact that the study was a multiple exposure study. Both of these

3 factors make the starting value inherently conservative. Therefore, a total uncertainty factor of

4 10 was applied (3 for interspecies and 3 for intraspecies). The value was then scaled across time

using the derived value of *n*=0.88 (see Section 4.4.3.; Appendix B). The proposed AEGL-2
values are presented in Table 8.

7	TABLE 8. AEGL-2 Values for Titanium Tetrachloride [ppm (mg/m³)]							
8	10-minute	30-minute	1-hour	4-hour	8-hour			
9	7.6 (59)	2.2 (17)	1.0 (7.8)	0.21 (1.6)	0.094 (0.73)			

10 7. DATA ANALYSIS AND PROPOSED AEGL-3

11 7.1. Summary of Human Data Relevant to AEGL-3

12 No human data were relevant to the derivation of AEGL-3.

13 7.2. Summary of Animal Data Relevant to AEGL-3

An extensive mortality study determined the LC_{50} values for exposure durations ranging from 2 minutes up to 4 hours (Kelly, 1980). A range-finding study investigated the effects of differing relative humidity on the approximate lethal concentration of a 4-hour exposure (Burgess, 1977).

18 **7.3. Derivation of AEGL-3**

19 The mortality data by Kelly (1980) were used for the AEGL-3 derivation. This study was specifically designed to evaluate the mortality response for a wide range of exposure durations. 20 Using the raw mortality data, the LC₀₁ was calculated for the various exposure concentrations, 21 22 and the results are presented in Table 9. When sufficient information is available, the preferred 23 method for AEGL-3 derivation utilizes probit analysis to determine the LC_{01} . When viewing the LC_{01} data, however, one sees the animal response at 1-hour was such that the 1-hour LC_{01} is 24 greater than the 30-minute LC_{01} . This is because the response of the animals started to vary at 25 this time point (as evidenced by the slope; see Table 11). When the LC_{01} values are not 26 available, another method of estimating the lethality threshold is dividing the LC_{50} value by 3 27 28 (values presented in Table 9). One can see that although these values (one-third the LC_{50} values) for the shorter exposure durations are greater than the LC_{01} values, they are generally less than or 29 30 comparable to the highest concentration causing no mortality. Therefore, one-third of the LC_{50} 31 values are used for the AEGL-3 derivations.

1

23

4

5

6

7

8 9

10

13

Table 9. Summary of Lethality Data Used for AEGL-3 Derivation						
Time	LC ₅₀ ^a	1⁄3 of LC ₅₀	LC ₀₁ ^a		Highest Conc. with	
(min)			Value (ppm)	slope	No Mortality	
2	13,940	4600	9043	12	9115	
5	4600	1500	1591	5	2736	
15	713	240	138	3	345 ^b	
30	390	130	89	4	108	
60	171	57	96	9	86	
120	143	48	74	8	31	
240	59	20	44	19	35	

11aValues calculated by Kelly, 198012bAlthough this concentration result

^b Although this concentration resulted in no mortalities, the lower concentration of 296 ppm resulted in one mortality. Therefore, this value may not be representative of the threshold for lethality.

The adjusted empirical LC₅₀ values for the 30, 60, and 240-minute exposure durations were 14 used for the respective AEGL timepoints. Using an n = 0.88, the adjusted 15-minute LC₅₀ value 15 was used to extrapolate to 10 minutes, while the adjusted 240-minute LC_{50} value was used to 16 17 extrapolate to 480 minutes. An interspecies uncertainty factor of 3 was applied to the values because titanium tetrachloride is an irritant and the mechanism of action is therefore not 18 19 expected to vary greatly among species. An intraspecies uncertainty factor of 3 was chosen 20 because the mechanism of irritation is also not expected to vary greatly among subpopulations. Therefore, a total uncertainty factor of 10 was applied. The proposed AEGL-3 values are 21 22 presented in Table 10.

TABLE 10. AEGL-3 Values for Titanium Tetrachloride [ppm (mg/m³)]						
10-minute	30-minute	1-hour	4-hour	8-hour		
38 (290)	13 (100)	5.7 (44)	2.0 (16)	0.91 (7.1)		

278. SUMMARY OF PROPOSED AEGLS

28 **8.1. AEGL Values and Toxicity Endpoints**

A summary of the AEGL values is presented in Table 11. An AEGL-1is not recommended due to insufficient data. The AEGL-2 is based upon a 1.3 ppm exposure in rats for 6 hours/day, 5 days/week for 4 weeks. Although no clinical signs were reported at this concentration, exposure to the next higher concentration (resulting in labored breathing) approached the lethality threshold concentration. The AEGL-3 values are based upon one-third of LC_{50} values in rats (Kelly, 1980).

1

2

34 56 78

	TABLE 11. Summary of AEGL Values [ppm(mg/m³)]						
	Exposure Duration						
Classification	10-minute	30-minute	1-hour	4-hour	8-hour		
AEGL-1 (Nondisabling)	Not recommended	Not recommended	Not recommended	Not recommended	Not recommended		
AEGL-2 (Disabling)	7.6 (59)	2.2 (17)	1.0 (7.8)	0.21 (1.6)	0.094 (0.73)		
AEGL-3 (Lethal)	38 (290)	13 (100)	5.7 (44)	2.0 (16)	0.91 (7.1)		

9 A useful way to evaluate the AEGL values in context of existing empirical data is presented 10 in Figure 1. For this plot, the toxic response was placed into severity categories. The severity categories fit into definitions of the AEGL health effects: 0 = no effects; 1 = discomfort; 2 =11 12 disabling; 3 = lethal, and SL = partially lethal (an experimental concentration at which some of 13 the animals died and some did not). The effects that place an experimental result into a particular category vary according to the spectrum of data available on a specific chemical and 14 15 the effects from exposure to that chemical. The concentrations often span a number of orders of magnitude, especially when human data exist. Therefore, the concentration is placed on a log 16 17 scale. The graph in Figure 1 plots the titanium tetrachloride AEGL values along with the existing acute animal toxicity data for titanium tetrachloride in terms of the categories assigned 18 19 to them. From this plot, one sees that the AEGL values are below any exposure concentration in 20 animals resulting in any effects, and should therefore be protective of human health.

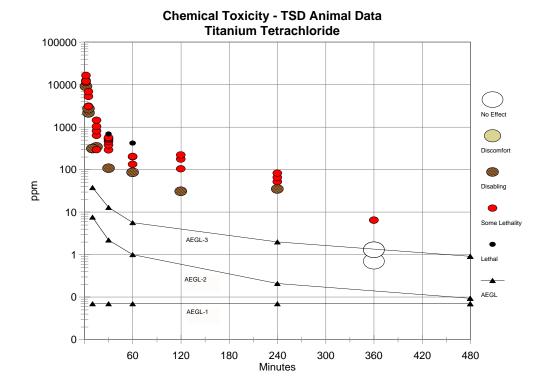


Figure 1. Category Plot of Animal Toxicity Data Compared to AEGL Values

2 **8.2.** Comparison with Other Standards and Guidelines

- 3 Occupational standards developed for titanium tetrachloride are limited to the AIHA WEEL
- 4 and ERPG (see Table 12). The only titanium compound for which an OHSA occupational
- 5 standard has been derived is for titanium dioxide, which has a PEL of 15 mg/m³, the standard
- 6 given for total dust.

1

1

2

3

4

5

6

7

8 9

11

12

13

14

15

16

17

18

19 20

21

22

TABLE 12. Extant Standards and Guidelines for Titanium Tetrachloride [ppm (mg/m³)]								
		Exposure Duration						
Guideline	10 minute	30 minute	1 hour	4 hour	8 hour			
AEGL-1	Not recommended	Not recommended	Not recommended	Not recommended	Not recommended			
AEGL-2	7.6 (59)	2.2 (17)	1.0 (7.8)	0.21 (1.6)	0.094 (0.73)			
AEGL-3	38 (290)	13 (100)	5.7 (44)	2.0 (16)	0.91 (7.1)			
ERPG-1 (AIHA) ^a			0.65 (5)					
ERPG-2 (AIHA)			2.6 (20)					
ERPG-3 (AIHA)			13 (100)					
WEEL (AIHA) ^b					0.06 (0.5)			

10 ^aERPG (Emergency Response Planning Guidelines, American Industrial Hygiene Association (AIHA 1992; 2004)

The ERPG-1 is the maximum airborne concentration below which it is believed nearly all individuals could be exposed for up to one hour without experiencing other than mild, transient adverse health effects or without perceiving a clearly defined objectionable odor. The ERPG-1 for titanium tetrachloride is 5 mg/m3; this concentration could theoretically release up to approximately 3 ppm of hydrogen chloride (which has an ERPG-1 of 3 ppm). This concentration should produce health effects no more serious than mild irritation to the skin and eyes.

The ERPG-2 is the maximum airborne concentration below which it is believed nearly all individuals could be exposed for up to one hour without experiencing or developing irreversible or other serious health effects or symptoms that could impair an individual's ability to take protective action. The ERPG-2 for titanium tetrachloride is 20 mg/m³: this concentration could theoretically release up to approximately 10 ppm of hydrogen chloride (which has an ERPG-2 of 10 ppm). Higher concentrations may cause serious irritation to eyes, respiratory tract, and might impair escape. Concentrations of 15-20 mg/m³ were tolerated well by workers exposed for a short time.

- 23 24 25 The ERPG-3 is the maximum airborne concentration below which it is believed nearly all individuals could be 26 exposed for up to one hour without experiencing or developing life-threatening health effects. The ERPG-3 for 27 titanium tetrachloride is 100 mg/m³: this concentration could theoretically release up to approximately 50 ppm 28 hydrogen chloride (which has an ERPG-3 of 100 ppm).
- 29 ^bWEEL (Workplace Environmental Exposure Levels, American Industrial Hygiene Association (AIHA 1996; 30 2004). AIHA WEELs represent the workplace exposure levels to which it is believed nearly all employees 31 could be exposed repeatedly without adverse health effects. The WEEL for titanium tetrachloride is based on a 32 NOAEL of 1.0 mg/m³ and minimal effects at 10 mg/m³ in rats exposed 6 hr/day, 5 days/week for 2 years.
- 33 As discussed, one of the hydrolysis products of titanium tetrachloride is hydrogen chloride. 34 Therefore, the AEGL values for hydrogen chloride are presented in Table 13 for comparison. 35 The Kelly (1980) study reported a 16-fold difference in potency of titanium tetrachloride compared to that expected from HCl exposure alone. The redlined values in Table 13 are the 36 37 HCL AEGL values divided by 16 for ease of comparison to the proposed titanium tetrachloride 38 AEGL values.

	Table 13. AEGL Values for Hydrogen Chloride [ppm (mg/m³)]							
Classification	10-minute	30-minute	1-hour	4-hour	8-hour	Endpoint (Reference)		
AEGL-1	1.8 (2.7)	1.8 (2.7)	1.8 (2.7)	1.8 (2.7)	1.8 (2.7)	No-adverse-effect-level in exercising human asthmatics		
(Nondisabling)	0.11*	0.11*	0.11*	0.11*	0.11*			
AEGL-2	100 (156)	43 (65)	22 (33)	11 (17)	11 (17)	Mouse RD_{50} ; Histopathology in rats		
(Disabling)	6.3*	2.7*	1.4*	0.69*	0.69*			
AEGL-3	620 (937)	210 (313)	100 (155)	26 (39)	26 (39)	Estimated NOEL for death from 1-hour rat LC_{50}		
(Lethal)	39*	13*	6.3*	1.6*	1.6*			

* These values are the HCL AEGL values in ppm divided by 16, the estimated difference in potency between titanium tetrachloride and HCl.

11 Taken from: NRC (2004).

1

2

3 4

10

12 8.3. Data Adequacy and Research Needs

13 Data available for titanium tetrachloride AEGL derivations are limited. The only acute 14 human data are case reports of exposure with unknown concentrations or durations. A cross-15 sectional survey was available, but this study had unquantified exposure concentrations 16 confounded by exposure to other chemicals. The only acute exposure animal studies with 17 quantified exposure concentrations of titanium tetrachloride were in rats, and even these were limited. A study investigating the sensory irritation of titanium tetrachloride used a questionable 18 model (Gardner, 1980). The lethality study by Kelly (1980) was specifically designed to 19 20 evaluate mortality over a wide range of exposure durations. This study was well conducted, and 21 even supplied the individual mortality data and confidence limits associated with the LC_{50} values. However, when using the individual mortality data to calculate the LC_{01} values 22 23 associated with these exposures, one can see that the animal response varied tremendously 24 depending on the exposure duration. Therefore, although it would be preferable to use the LC_{01} 25 values as an estimate for the lethality threshold, these values were not appropriate. Another 26 limitation of the study was that although the clinical signs and pulmonary histopathological 27 findings were obviously recorded for each group of animals, the severity of the clinical signs and 28 incidence of the pulmonary lesions were not provided for the various exposure concentrations 29 and durations. Therefore, they could not be used as a basis for AEGL derivations. Because of inadequate acute data, an AEGL-1 is not recommended, and the AEGL-2 values are based on 30 31 repeat-exposure data. The endpoint chosen for the AEGL-2 was essentially a no-adverse-effect 32 level for acute exposure, well below the definition of a defined endpoint for these levels. 33 However, the AEGL-2 values will at least provide a baseline.

34 Limited genotoxicity studies were available and indicated that titanium tetrachloride is not 35 mutagenic. Carcinogenicity data in humans were limited to a nested case control study that did not find an association between titanium tetrachloride exposure and lung cancer. A two-year 36 37 carcinogenicity bioassay in rats essentially revealed that the response to chronic inhalation 38 exposure to titanium tetrachloride is consistent with exposure to a dust. However, of uncertain relevance to humans was the finding of squamous cell carcinomas in the area of the alveoli in a 39 few of the high-concentration group rats. Further studies would be needed to address this 40 41 finding.

1 9. **REFERENCES**

- AIHA (American Industrial Hygiene Association). 1992. Emergency Response Planning
 Guidelines. AIHA, Fairfax VA. 5 pp.
- AIHA (American Industrial Hygiene Association). 1996. Workplace Environmental Exposure
 Level. AIHA, Fairfax VA. 5 pp.
- AIHA (American Industrial Hygiene Association). 2004. The AIHA 2004 Emergency
 Response Planning Guidelines and Workplace Environmental Exposure Level Guides
 Handbook. AIHA, Fairfax VA. pp. 24, 38.
- Alarie, Y., Kane, L.E., and Barrow, C.S. 1980. Sensory irritation: the use of an animal model to
 establish acceptable exposure to airborne chemical irritants. In: Toxicology: Principles and
 Practice, Vol. 1, John Wiley and Sons, Inc., New York, N.Y.
- ASTM. 1991. Annual Book of ASTM Standards. Standard test method for estimating sensory
 irritancy of airborne chemicals. ASTM, Philadelphia, PA, Vol 11.01: 610-619.
- Budavari, S., O'Neil, M.J., Smith, A., Heckelman, P.E., and Kinneary, J.F. (Eds.). 1996. The
 Merck Index, 12th ed. Merck & Co., Inc., Rahway, NJ.

Burgess, B.A. 1977. Initial submission Inhalation approximate lethal concentration titanium
tetrachloride (99.5%) with cover letter dated 091192. Haskell Laboratory Report No. 63077; Medical Research Project No. 2795. Dupont Chemical Company. Doc. # 88920010969.

- Chitkara D.K., and McNeela, B.J. 1992. Titanium tetrachloride burns to the eye. Br. J.
 Ophthalmol. 76380-382.
- Clayton G.D., and Clayton, F.E. 1994. Titanium, Ti. InPatty's Industrial Hygiene and
 Toxicology, 4th ed., Vol. 2. John Wiley & Sons, New York.
- Fayerweather W.E., Karns, M.E., Gilby, P.G., Chen, J.L. 1992. Epidemiologic study of lung
 cancer mortality in workers exposed to titanium tetrachloride. J Occup Med 34164-169.
- Garabrant D.H., Fine, L.J., Oliver, C., Bernstein, L., and Peters, J.M. 1987. Abnormalities of
 pulmonary function and pleural disease among titanium metal production workers. Scand. J.
 Work Environ. Health 1347-51.
- Gardner, R.J. 1980. Rat sensory irritation study: TiCl₄. E.I. du Pont de Nemours and Company,
 Haskell Laboratory for Toxicology and Industrial Medicine; Haskell Report No. 593-80,
 August 11, 1980.
- Hsie, A.W., Johnson, N.P., Couch, D.B., Sebastian, J.R.S., ONeill, J.P., Hoeschele, J.D., Rahn,
 R.O., and Forbes, N.L. 1979. Quantitative mammalian cell mutagenesis and a preliminary

- study of the mutagenic potential of metallic compounds. InEd. Kharasch, N.Trace Metal in
 Health and Disease, Raven Press, N.Y., 1979.
- Kelly, D.P. 1980. Acute inhalation studies with titanium tetrachloride. E.I. du Pont de
 Nemours and Company, Haskell Laboratory for Toxicology and Industrial Medicine; Haskell
 Laboratory Report No. 658-80, October 31, 1980.
- Kelly, D.P. 1979. Four-week inhalation study with titanium tetrachloride (TiCl₄). Haskell
 Laboratory Report No. 459-79, October 1, 1979.
- Kirk, R.E., Othmer, D.F., Kroschwitz, J.I., and Howe-Grant, M. 1997. Titanium compounds
 (inorganic). In Kirk-Othmer Encyclopedia of Chemical Technology, 4th ed. John Wiley and
 Sons, Inc. New York.
- 11 Lawson, J.J. 1961. The toxicity of titanium tetrachloride. J. Occup. Med. 37-12.
- Lee K.P., Kelly, D.P., Schneider, P.W., and Trochimowicz, H.J. 1986. Inhalation toxicity study
 on rats exposed to titanium tetrachloride atmospheric hydyrolysis products for two years.
 Toxicol. Appl. Pharmacol. 8330-45.
- Mezentseva, N.V., Melnikova, E.A., and Mogilevskaya, O.Y.A. 1963. InIzraelson ZI, ed.
 Toxicology of the Rare Metals, 35-43. (translated from Russian by the Israel program for
 scientific translations, Jerusalem, 1967). Gosudarstvennoe Izdatelstvo, Medicinskoi
 Literatury, Moscova.
- NRC (National Research Council). 2004. Acute Exposure Guideline Levels for Selected
 Airborne Chemicals. Volume 4. Hydrogen Chloride. pp. 77-122. The National Academies
 Press. Washington, D.C.
- Ogawa, H.I., Tsuruta, S., Niyitani, Y., Mino, H.,Sakata, K., and Kato, Y. 1987. Mutagenicity of
 metal salts in combination with 9-aminoacridine in *Salmonella typhimurium*. Jpn. J. Genet.
 62159-162.
- Park, T., DiBenedetto, R. Morgan, K., Colmers, R., and Sherman, E. 1984. Diffuse
 endobronchial polyposis following a titanium tetrachloride inhalation injury. Am. Rev.
 Respir. Dis. 130315-317.
- Paulsen, S.M., Nanney, N.B., and Lynch, J.B. 1998. Titanium tetrachloride: An unusual agent with the potential to create severe burns. J. Burn Care Rehabil. 19377-81.
- Reisman, E.E., Jr. 1961. Unpublished case histories of titanium tetrachloride exposure, Erlanger
 Hospital, Chattanooga, Tenn., 1956-1957 [as cited in Lawson, 1961].
- 32 Ross, D.S. 1985. Exposure to titanium tetrachloride. Occup. Health 37525.

- Sanotskij, I.V., and Babina, M.D. 1962. Distribution and elimination of titanium from the
 organism in inhalation exposure with titanium tetrachloride. Toksikol. Novykh. Prom.
 Khim. Veschesty. No. 4128-133. [in Russian]
- ten Berge, W.F., Zwart, A., and Appelman, L.M. 1986. Concentration-time mortality response
 relationship of irritant and systemically acting vapours and gases. J. Hazard. Mat. 13301 309.
- Zapp, J.A. 1949. Medical Research Project No. MR-176. Toxicity of titanium tetrachloride.
 Haskell Laboratory of Industrial Toxicology, Wilmington, DL. March 14, 1949.

APPENDIX A: Derivation of AEGL Values

1

1 Derivation of AEGL-1

No acute toxicity data relevant to the definition of an AEGL-1 endpoint are available.
Therefore, derivation of an AEGL-1 is not recommended.

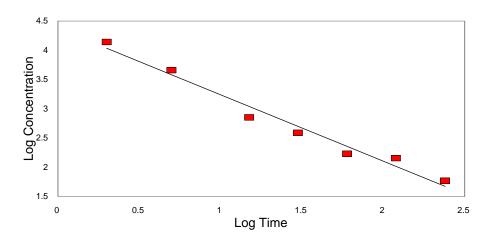
1		Derivation of AEGL-2
2	Key Studies:	Kelly, 1979
3 4 5 6	Toxicity endpoints:	Rats were exposed to 1.3 ppm for 6 hours/day, 5 days/week for 4 weeks - although no clinical signs reported at this concentration, exposure to the next higher concentration (resulting in labored breathing) approached the lethality threshold concentration.
7 8	Time scaling	$C^{0.88}$ x $t = k$ (this document; based on the LC ₅₀ values ranging from 2 minutes to 4 hours from Kelly, 1980)
9 10 11	Uncertainty factors:	3 for interspecies variability3 for intraspecies variabilityCombined uncertainty factor of 10
12	Modifying factor:	none
13 14	Calculations:	(C/Uncertainty Factors) ⁿ x t = k [(1.3 ppm)/10] ^{0.88} x 6 hr = 0.996 ppm@r
15 16 17	<u>10-minute AEGL-2</u>	$C^{0.88} \ge 0.167 \text{ hr} = 0.996 \text{ ppm}$ $C^{0.88} = 5.964 \text{ ppm}$ C = 7.61 ppm = 7.6 ppm
18 19 20	<u>30-minute AEGL-2</u>	$C^{0.88} \ge 0.5 \text{ hr} = 0.996 \text{ ppm}$ $C^{0.88} = 1.992 \text{ ppm}$ C = 2.19 ppm = 2.2 ppm
21 22 23 24	<u>1-hour AEGL-2</u>	$C^{0.88} \ge 1 \text{ hr} = 0.996 \text{ ppm} \oplus r$ $C^{0.88} = 0.996 \text{ ppm}$ C = 0.995 ppm = 1.0 ppm
24 25 26 27	4-hour AEGL-2	$C^{0.88} \ge 4 \text{ hr} = 0.996 \text{ ppm} \text{ fr}$ $C^{0.88} = 0.249 \text{ ppm}$ C = 0.206 ppm = 0.21 ppm
28 29 30 31	<u>8-hour AEGL-2</u>	$C^{0.88} \ge 8 \text{ hr} = 0.996 \text{ ppm} \oplus r$ $C^{0.88} = 0.125 \text{ ppm}$ C = 0.0937 ppm = 0.094

1		Derivation of AEGL-3
2	Key Studies:	Kelly, 1980
3	Toxicity endpoint:	1/3 the LC ₅₀ values
4 5 6 7 8 9	Time scaling	None for the 30, 60, or 240 minute timepoints To extrapolate to 10 and 480 minutes, $C^{0.88} \ge t = k$ (this document; based on the LC ₅₀ values ranging from 2 minutes to 4 hours from Kelly, 1980); the 15-minute LC ₅₀ value was used to extrapolate to 10 min, the adjusted 240-minute LC ₅₀ value used to extrapolate to 480 minutes
10 11 12	Uncertainty factors:	3 for interspecies variability3 for intraspecies variabilityCombined uncertainty factor of 10
13	Modifying factor: no	one
14 15 16	Calculations:	$(C/Uncertainty Factors)^n x t = k$ [(240 ppm)/10] ^{0.88} x 0.25 hr = 4.10 ppm@r [(20 ppm)/10] ^{0.88} x 4 hr = 7.36 ppm@r
17 18 19	<u>10-minute AEGL-3</u>	$C^{0.88} \ge 0.167 \text{ hr} = 4.10 \text{ ppm}$ $C^1 = 24.55 \text{ ppm}$ C = 37.98 ppm = 38 ppm
20	30-minute AEGL-3	130/10 = 13 ppm
21	1-hour AEGL-3	57/10 = 5.7 ppm
22	4-hour AEGL-3	20/10 = 2.0 ppm
23 24 25	8-hour AEGL-3	$C^{0.88} \ge 8 \text{ hr} = 7.36 \text{ ppm}$ $C^1 = 0.92 \text{ ppm}$ C = 0.9095 ppm = 0.91 ppm

APPENDIX B: Time-Scaling Calculations

1

1 The relationship between dose and time for any given chemical is a function of the physical and 2 chemical properties of the substance and the unique toxicological and pharmacological 3 properties of the individual substance. Historically, the relationship according to Haber (1924), 4 commonly called Haber's Law (NRC, 1993) or Haber's Rule (i.e., C x t = k, where C = exposure5 concentration, t =exposure duration, and k =a constant) has been used to relate exposure concentration and duration to effect (Rinehart and Hatch, 1964). This concept states that 6 7 exposure concentration and exposure duration may be reciprocally adjusted to maintain a 8 cumulative exposure constant (k) and that this cumulative exposure constant will always reflect a 9 specific quantitative and qualitative response. This inverse relationship of concentration and time may be valid when the toxic response to a chemical is equally dependent upon the 10 11 concentration and the exposure duration. However, an assessment by ten Berge et al. (1986) of 12 LC50 data for certain chemicals revealed chemical-specific relationships between exposure 13 concentration and exposure duration that were often exponential. This relationship can be 14 expressed by the equation $C^n x t = k$, where *n* represents a chemical specific, and even a toxic 15 endpoint specific, exponent. The relationship described by this equation is basically the form of a 16 linear regression analysis of the log-log transformation of a plot of C vs t. ten Berge et al. (1986) 17 examined the airborne concentration C) and short-term exposure duration (t) relationship relative 18 to death for approximately 20 chemicals and found that the empirically derived value of n ranged 19 from 0.8 to 3.5 among this group of chemicals. Hence, these workers showed that the value of 20 the exponent (n) in the equation $C^n x t = k$ quantitatively defines the relationship between 21 exposure concentration and exposure duration for a given chemical and for a specific health 22 effect endpoint. Haber's Rule is the special case where n = 1. As the value of *n* increases, the 23 plot of concentration vs time yields a progressive decrease in the slope of the curve.


To calculate *n* for titanium tetrachloride, a regression plot of LC_{50} values was derived using the 2, 5, 15, 30, 60, 120, and 240-minute LC_{50} values determined by Kelly (1980) (13,940; 4600; 713; 390; 171; 143; and 59 ppm, respectively). The LC_{50} values were analyzed using a linear regression analysis of the log-log transformation of a plot of *C* vs. *t* to derived a value of *n* for titanium tetrachloride (see Figure 2).

29 Linear regression analysis of plot of log-log transformation of plot of C vs. t:

			Log	Log		
30	Time	Conc.	Time	Conc.	Regression Output:	
31	2	13940	0.3010	4.1443	Intercept	4.3772
32	5	4600	0.6990	3.6628	Slope	-1.1354
33	15	713	1.1761	2.8531	R Squared	0.9750
34	30	390	1.4771	2.5911	Correlation	-0.9874
35	60	171	1.7782	2.2330	Degrees of Freedom	5
36	120	143	2.0792	2.1553	Observations	7
37	240	59	2.3802	1.7709		

38 n = 0.88

Best Fit Concentration x Time Curve

- 1 Figure 2. Regression Plot of LC₅₀ values: Concentration vs. Time
- 2 References:
- Haber, F. 1924. Zur Geschichte des Gaskrieges. pp. 76-92 in Fünf Vorträge aus den Jahren
 1920-1923. Berlin: Springer-Verlag.
- Kelly, D.P. 1980. Acute inhalation studies with titanium tetrachloride. E.I. du Pont de
 Nemours and Company, Haskell Laboratory for Toxicology and Industrial Medicine;
 Haskell Laboratory Report No. 658-80, October 31, 1980.
- 8 NRC (National Research Council). 1993. Guidelines for Developing Community Emergency
 9 Exposure Levels for Hazardous Substances. Washington, DC: National Academy Press.
- Rinehart, W.E., and Hatch, T. 1964. Concentration-time product (CT) as an expression of dose
 in sublethal exposures to phosgene. Ind. Hyg. J. 25: 545-553.
- ten Berge, W.F., Zwart, A., and Appelman, L.M. 1986. Concentration-time mortality response
 relationship of irritant and systemically acting vapours and gases. J. Hazard. Mat. 13:
 301-309.

APPENDIX C: Derivation Summary for Titanium Tetrachloride AEGLs

1

ACUTE EXPOSURE GUIDELINE LEVELS FOR TITANIUM TETRACHLORIDE (CAS Reg. No. 7550-45-0) DERIVATION SUMMARY

AEGL-1 VALUES						
10-minute	30-minute	1-hour	4-hour	8-hour		
NR	NR	NR	NR	NR		
No acute toxicity data relevant to the definition of an AEGL-1 endpoint are available. Therefore, derivation of an AEGL-1 is not recommended.						

		AEGL-2 VALUES				
10-minute	30-minute	1-hour	4-hour	8-hour		
7.6 ppm	2.2 ppm	1.0 ppm	0.21 ppm	0.094 ppm		
Key Reference:	Kelly, D.P. 1979. Four-w Laboratory Report No. 45			de (TiCl4). Haskell		
Test Species/Str	ain/Number: groups of 25 m	nale ChR-CD rats				
Exposure Route wk	/Concentrations/Durations:	exposed by inhalation	to 0.6, 1.3, or 5.2 ppm f	For 6 h/d, 5 d/wk for 4		
Effects: 0.6 ppm 1.3 ppm	No clinical signs or clinica kill (increased 126% over No clinical signs; reversib urine osmolality); increase (136 and 114% of controls	controls); histopatholo le clinical chemistry c ed lung:body weight ra	bgy of lungs revealed mi hanges (increased urine ttio at terminal kill and 2	ild dust-cell reaction pH and decreased 2 weeks post exposur		
5.2 ppm	respiratory tract Clinical signs of labored breathing and slightly decreased body weight gain over exposure interval (93% of controls); 2 rats died (test day 15 and 23) from pulmonary damage; clinical chemistry changes (increased urine pH and decreased urine osmolality); increased lung:body weight ratio at terminal kill and 2 weeks post exposure (178 and 128% of controls, respectively); histopathology changes include acute inflamation of respiratory tract					
Endpoint/Conce lethality thresho	ntration/Rationale: 1.3 ppm ld	for 6 hours - no clinic	al signs, but next exposi	ure level approaches		
would normally defined for the A	nty factor: 10 s: 3	ndpoint selected (a no ne fact that the study w	adverse-effect level) is as a multiple exposure s	below the endpoint study. Both of these		
Modifying Facto	or: none					
Animal to Huma	an Dosimetric Adjustment: r	none				
Time Scaling: 7	The value was then scaled ac	cross time using the de	rived value of n=0.88.			
data are case rep quantified expos lethality study b durations. Altho- each group of ar various exposure derivations. Bec endpoint chosen	Data available for titanium ports of exposures to unknow sure concentrations of titaniu y Kelly (1980) was specification ough the clinical signs and p nimals, the severity of the clinical cause of inadequate acute data for the AEGL-2 was a no-a point for an AEGL-2. How	wn concentrations or d um tetrachloride were ally designed to evalua pulmonary histopatholo inical signs and incide ons. Therefore, they co ata, the AEGL-2 had to udverse-effect level for	urations. The only anim in rats, and even these we ate mortality over a wide ogical findings were obv nce of the lesions were n ould not be used as a bas to be based on a repeat-ex- an acute exposure, well	hal studies with vere limited. The e range of exposure riously recorded for not provided for the sis for AEGL exposure study. The l below the definition		

	Α	EGL-3 VALUES		
10-minute	30-minute	1-hour	4-hour	8-hour
38 ppm	13 ppm	5.7 ppm	2.0 ppm	0.91 ppm
Ner	ly, D.P. 1980. Acute inh nours and Company, Hasl oratory Report No. 658-8	kell Laboratory for To		
Test Species/Strain/N	umber: groups of 6 male	ChR-CD rats		
	entrations/Durations: To various concentrations of			
One-third calculated I duration (min) 2 5 15 30 60 120	<u>1/3 LC₅₀ value (pp</u> 4600 1500 240 130 57 48	-	l, the LC_{50} values we	ere divided by 3
expected to vary	ctor: 10 ecause titanium tetrachlori greatly among species. T ecause the mechanism of i	herefore, a total unce	rtainty factor of 10	was applied.
	simetric Adjustment: non	e		
Time Scaling: The ad the respective AEGL	jsuted empirical values fo timepoints. Using an $n =$ he adjusted 240-minute L	r the 30, 60, and 240- 0.88, the adjusted 15	-minute LC ₅₀ value	was used to extrapola

 $\begin{array}{c}
1 \\
2 \\
3 \\
4 \\
5 \\
6 \\
7 \\
8 \\
9 \\
10 \\
11 \\
12 \\
\end{array}$

Data Adequacy: Data available to derive an AEGL-3 for titanium tetrachloride are very limited. The only acute human data are case reports of exposures to unknown concentrations or durations. The only animal studies with quantified exposure concentrations of titanium tetrachloride are in rat, and even these were limited. The lethality study by Kelly (1980) was specifically designed to evaluate mortality over a wide range of exposure durations. This study was well conducted, and even supplied the individual mortality data and confidence limits associated with the LC_{50} values. However, when using the individual mortality data to calculate the LC_{01} values associated with these exposures, the animals' response varied tremendously depending on the exposure duration. Therefore, although the LC_{01} values would usually be as an estimate for the lethality threshold, these values were not appropriate. Another limitation of the study was that although the clinical signs and pulmonary histopathological findings were obviously recorded for each group of animals, the severity of the clinical signs and incidence of the lesions were not provided for the various exposure concentrations. Therefore, they could not be used as a basis for AEGL derivations.