

MSTRS – 4/19/2012 Lee Kindberg Director, Environment & Sustainability

Today, a single ship can deliver thousands of tons of cargo for many customers to dozens of ports. But it was not always this way ...

Diesel engines have replaced wind power

Containers have replaced "break bulk" cargo handling

Containers are standard sizes: 20', 40' or 45'

- A 40-foot container is the size of a city bus
 - Can hold:
 - 1,500 DVD players
 - 18,000 T-shirts
 - 90,000 lamb chops (what a four-person family would eat in 450 years)
- 45-foot container can hold
 28,000 Barbie Dolls

Vessels routes require several weeks. Multiple vessels are scheduled on each route to provide regular (weekly) service.

Transpacific 6 (TP6) - Eastbound

PORT	ARRIVES	DEPARTS	TRANSIT
Tanjung Pelepas, Malaysia	MON 1900	WED 0300	
Yantian, Mainland China	FRI 2100	SAT 2200	2
Hong Kong, Mainland China	SUN 0400	MON 0400	4
Los Angeles, CA, USA	FRI 1800	TUE 0200	16

Note: Weekly Service

Transpacific 6 (TP6) - Westbound

PORT	ARRIVES	DEPARTS	TRANSIT
Los Angeles, CA, USA	FRI 1800	MON 1700	
Yokohama, Japan	THU 0100	THU 1600	17
Nagoya, Japan	FRI 0800	FRI 1800	18
Shanghai (YS), Mainland China	SUN 1700	MON 0700	20
Ningbo, Mainland China	MON 1900	TUE 0600	21
Xiamen, Mainland China	WED 1300	THU 0001	23
Hong Kong, Mainland China	THU 2000	FRI 0700	24
Yantian, Mainland China	FRI 1200	SAT 0200	25
Tanjung Pelepas, Malaysia	MON 2100	WED 0400	28

A 14 week round trip requires 14 vessels on that route.

Sample Vessel Schedule: Georg Maersk on TP-6

Port Name	Arrival Date		Departure Date		
Port Name Hong Kong Los Angeles Yokohama Nagoya Shanghai Ningbo Xiamen Hong Kong Yantian Tanjung Pelepas Jeddah Suez Canal Barcelona Valencia Algeciras Port Tangier Mediterranee Suez Canal Tanjung Pelepas Vung Tau	Arriv: 18 Apr 2010 30 Apr 2010 20 May 2010 21 May 2010 23 May 2010 24 May 2010 26 May 2010 26 May 2010 27 May 2010 28 May 2010 28 May 2010 01 Jun 2010 15 Jun 2010 15 Jun 2010 21 Jun 2010 23 Jun 2010 25 Jun 2010 01 Jul 2010 17 Jul 2010 20 Jul 2010 20 Jul 2010	04:00 18:00 91:99 08:00 17:00 19:00 13:00 18:00 17:00 09:00 23:00 01:00 08:00 02:00 08:00 00:01 19:00 02:30 08:00 02:30 08:00	Depart 19 Apr 2010 03May 2010 20 May 2010 21 May 2010 24 May 2010 25 May 2010 25 May 2010 27 May 2010 28 May 2010 29 May 2010 02 Jun 2010 12 Jun 2010 15 Jun 2010 20 Jun 2010 24 Jun 2010 25 Jun 2010 26 Jun 2010 27 Jun 2010 26 Jun 2010 27 Jun 2010 27 Jun 2010 27 Jun 2010 28 Jun 2010 29 Jun 2010 20 Jun 2010	Ure Da	te 14 week round trip
Hong Kong Los Angeles	25 Jul 2010 25 Jul 2010 08 Aug 2010	04:00 18:00	26 Jul 2010 26 Jul 2010 12 Aug 2010	04·00 03:00	>

Ocean shipping has the lowest environmental impact for long distance transportation.

CO₂ Emissions by Mode of Transportation

90% of all goods transported globally are carried by ship.

Vessel fuel costs have soared since 2009.

I INF

Vessels are becoming more fuel efficient. This reduces fuel use and air emissions.

Maersk Line CO2 Reductions

- →15.6% per TEU km since 2007
- Due to vessel size, technologies, operations
- → Reduction target for 2020 is 25%

Innovation is essential for sustainability

- Propeller, hull & trim optimization
- Waste heat recovery system
- Slow steaming and super-slow steaming

Other Initiatives

- Alternative fuel tests
- New propulsion technologies
- ISO 14001 certified
- Crew awareness and engagement
- Maintenance of hull and propeller
- Voyage Efficiency System (VES)
- Trim optimization

- SOx scrubber studies
- Antifouling hull paint
- QUEST: Low energy chilled containers
- Modified bulbous bow
- Micro bubbles
- Ballast water optimization and treatment systems

All Maersk Line new builds are more energy efficient, and some being delivered today are 28 to 50% better.

Triple E – 18,000 TEU •Coming in 2013 •50% more efficient

WAFMAX class – 4500 TEU •28% less CO2 per TEU •10 in service (2011) •12 more delivered by 2012

SAMMAX class – 7500 TEU

•50% less CO2 per TEU•6 vessels in service in 2011•10 more by 2012.

Vessel environmental improvements take time and partnerships.

New vessels

- Optimize vessels for intended services
- Potential energy efficiency improvements 20-50%
- Work with shipyards, equipment and fuel suppliers
- Long-term view plus short-term impact

Personnel

- Vessel crews
- •Shore side teams
- •Structures, metrics, idea sharing

Existing fleet

- Identify or develop technologies
- Work with Charter vessel owners
- Partner with technology, software and engine suppliers
- Identify the right mix for each vessel

Fuel use and costs increase exponentially at higher speeds

- The speed/ fuel use curve is exponential
- Speeding up will cost more fuel than what we save by slowing down
- Lowest constant speed is best

Improvements go beyond the vessels

- Reefers a new, innovative control system reduces energy consumption by 50% (some by 63%).
- Dry Containers flooring is now recycled plastic, bamboo or FSC certified timber.
- Slow or "steady" steaming voyage efficiency systems improve on-time delivery at the same time they are minimizing fuel usage.
- Testing alternative fuels and propulsion.
- Using our vessels to assist ocean scientists.

Study Period	On-time %	Ranking Among Top 20
3Q11	83	1
2Q11	76	1
1Q11	66	3
4Q10	70	1
3Q10	79	1
2Q10	77	1
1Q10	69	1
4Q09	63	1
3Q09	71	2
2Q09	79	1
1Q09	78	1
4Q08	77	1
3Q08	68	1
2Q08	76	1

Industry Efforts to Measure and Reduce Environmental Impacts

www.bsr.org

Clean Cargo Working Group is a business-to-business forum with the goal "to promote more sustainable product transportation."

- Standardized footprint calculation tools
- Annual environmental performance survey and benchmarking
- Working to harmonize environmental calculations globally
- Emissions factors published by trade lane.

CCWG publishes CO2 methods and industry averages by trade lane.

- Methods based on fuel efficiency
- Enable CO2 benchmarking and supply chain CO2 calculations
- Verification guideline

http://www.bsr.org/en/our-work/working-groups/clean-cargo

CCWG average emissions per trade lane are based on:	CUMULATIVE - weighted average gCO ₂ /TEU-km		
	Dry	Reefer	
intra-Americas (Caribbean)	102.28	133.41	
Europe (North & Med)Oceania (via Suez / via Panama)	101.52	128.62	
North AmericaOceania	100.48	125.87	
North AmericaAfrica	97.37	139.65	
AslaOceania	92.80	120.34	
Europe (North & Med)Africa	88.67	122.65	
Europe (North & Med)Latin America/South America	87.33	114.91	
North EuropeNorth America EC (incl. Gulf)	85.41	112.45	
North America-South America (EC/WC)	84.96	112.84	
AsiaAfrica	84.87	110.51	
North America ECMiddle East/India	84.20	108.59	
AsiaSouth America (EC/WC)	80.57	104.40	
MediterraneanNorth America EC (Incl. Gulf)	80.03	108.83	
North EuropeNorth America WC	79.81	104.64	
Other	78.55	108.51	
AsiaNorth America EC	78.15	97.44	
South America (EC/WC)Africa	77.81	97.79	
Europe (North & Med)Middle East/India	76.19	105.10	
Intra-Asia	76.14	100.67	
AsiaNorth America WC	74.20	97.13	
AsiaMiddle East/India	73.72	103.50	
Intra-Europe	72.75	102.59	
AsiaMediterranean	67.52	96.71	
AsiaNorth Europe	67.26	93.91	
MediterraneanNorth America WC	59.69	89.93	

These factors allow us to compare routes for CO₂ emissions.

				Distance	Emission	Emissions	Kilograms of
Route	Data source	From	То	(km)	Factor	Factor Units	CO2 per FFE
Ocean to Miami, truck to Atlanta GA							
	CCWG 2009 Intra-						
Ocean - Industry	Americas Industry						
average	Average	GTSDCTM	USMIATM	1533	102.28	g CO2/TEU/Km	314
	SmartWay						
Truck	default factor	USMIATM	Atlanta	1041	1148	g CO2/km	1195
Total				2575			1509
Ocean to Savannah,	truck to Atlanta						
Ocean - Maersk	2010 Maersk Line						
Line Intra-America	CCWG factor						
average	(verified)	GTSDCTM	USSAVGC	2228	100.3	g CO2/TEU/Km	447
Truck	SmartWay	USSAVGC	Atlanta	373	1148	g CO2/km	429
Total				2601			876
		per FFE CO2 Savings 633					633
		% Reduction				42%	

Note 1. Clean Cargo Working Group report "Beyond the Factory Gates: How Brands Improve Supply Chain Sustainability Through Shipping and Logistics" page 6, 2009 data, http://www.bsr.org/reports/CCWG_Report_Mar_2011_FINAL.pdf

Changing the way we think about shipping:

- It isn't only the biggest ships -- it's the right ships. This means optimizing the ships for the service, and upgrading the whole portfolio -- new, existing and charter.
- "Steady Steaming" delivers more environmental benefits than just slow steaming.
- Reliability / On-time delivery benefits the customer and can also benefit the environment.
- Leading in transparency -- publishing every vessel's performance using global standard methods, and third-party verification.
- Sustainability is the right thing to do and also makes good business sense.

Thank you

