

Presentation by Ted Smith from EPA's Great Lakes National Program Office

24april2008 Chemical Prioritization Community of Practice meeting From Research Triangle Park, NC

This work was reviewed by EPA and approved for presentation but does not necessarily reflect official Agency policy. Mention of trade names or commercial products does not constitute endorsement or recommendation by EPA for use.

Screening Chemicals in Commerce to Identify Possible Persistent and Bioaccumulative Chemicals: New Results and Future Work

Philip H. Howard¹, William Meylan¹, and Derek Muir²

 ¹Syracuse Research Corporation, Syracuse, NY
 ²Environment Canada, Water Science and Technology Directorate, Burlington, ON

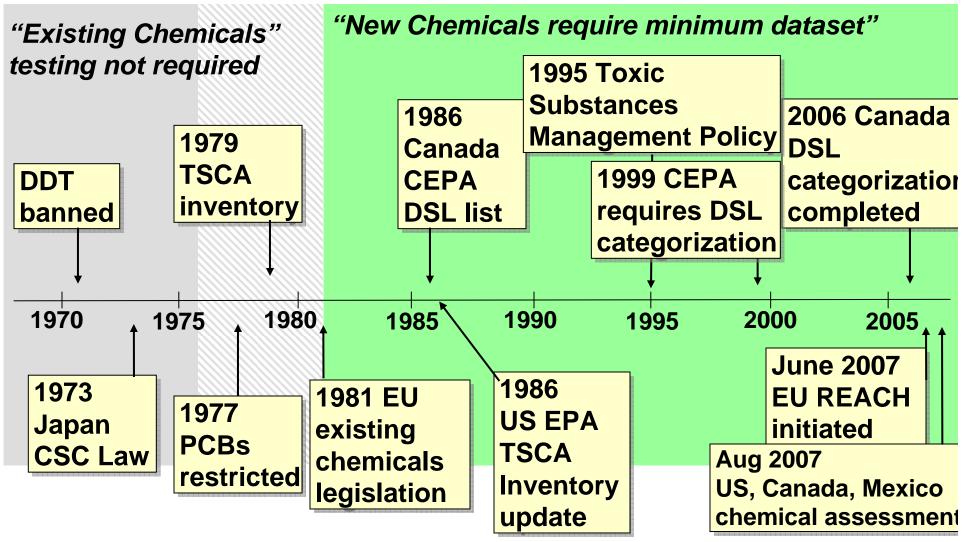
Email: howardp@syrres.com

- The "existing chemical" universe
- Assessments/categorization of chemicals in commerce
- Selected chemicals with P, B and POP characteristics from a combined USEPA/Canadian DSL dataset
- Review of Low/Medium Production Chemicals and chemicals that are potential biomagnifiers in airbreathing organisms
- Toxicity Reviews
- Future Pollution Prevention Studies
- Future challenges

The Universe of Chemicals

Globally

- With CAS numbers: **33,760,000** organic + inorganic substances (Feb/08)
- Commercially available: 19,184,000
- Inventoried/regulated chemicals: 246,000
- In commerce in USA, EU, Japan: ~100,000 with 30,000 > 1 t/yr
- Tracked by US EPA's Toxics Release Inventory: 650
- Routinely measured in environmental media: <1000


In Canada

- Domestic Substances List (DSL): 24,700 (established in 1986)
- DSL & Non DSL: 70,000 substances (as of 2006)

In USA

 Toxic Substances Control Act (TSCA) and TSCA Inventory update: originally 62,000 (1976), now ~82,000 substances US FDA 1970 1906 pesticides

Regulating chemicals in commerce

~61,000 substances "grandfathered in"

~28,000 substances since 1976 or 1000 new substances per year

Screening of existing chemical lists is widening the data available for identifying potential P,B & T substances

- TSCA Inventory Screening (US EPA)
 - Inventory Update Rule (IUR) lists chemicals >454 t (10,000 lbs)/yr
 - Updates 1986, 1990, 1994, 1998, 2002, 2006
 - 13,750 substances (all years)
- US EPA High Production Volume Challenge Program
 - 2800 chemicals
 - > 1,000,000 lbs/yr
- European "REACH" (Registration, Evaluation & Authorization)
 - Evaluation of ~5000 substances with production >100 t/yr
 - Registration of ~30,000 substances produced at >1 t/yr
 - Came into force June 2007

Environment Canada's Domestic Substances List Categorization

- Mandated under CEPA 1999; completed September 2006
- 23,000 substances in production/use >100 kg/yr in 1986
- Screening of 11,300 organics with QSAR predicted properties
 + 1436 organics of unknown composition (UVCBs)
- Screening criteria: Persistent (P) or bioaccumulative (B), in accordance with Canadian P and B guidelines, and inherently toxic (iT) to humans or to non-human organisms, as determined by lab or other studies
- 4300 chemicals categorized for further assessment under the Chemicals Management Plan (CMP)

Goals of Our Study

- Develop a North American rather than Canadian list of potentially PB&T chemicals
 - Greater relevance to the Great Lakes and trans-boundary long range transport than CMP priorities
- Using Quantitative Structure-Property relationships, and scientific judgment, identify <u>chemicals in commerce</u> that may be P and B and have not been previously measured in environmental media
- Assess whether selected chemicals can be analyzed by existing methods in use for POPs and new PB&T chemicals in the Great Lakes and the Arctic
- Analyze use and potential environmental release of new emerging contaminants
- Look for pollution prevention opportunities

Development of a Combined Canadian and US database of chemicals in commerce (Howard and Meyland 2007)

Source		Reporting threshold	Reporting date
US EPA High production volume (HPV) program*	3549	1,000,000 lbs/yr (454 t/yr)	Post-1990
US EPA TSCA Inventory update rule (IUR) web site**	14,458 organics (combined HPV and EHPVs)	>10,000 lbs/yr (4540 kg/yr)	IUR reporting years; 1986 to 2002
Canadian DSL categorization***	11,317 organics	>100 kg	Mid-1980s
UVCBs***	3059 organics	>100 kg	Mid-1980s
(1400 on the DSL)			
Total (after duplicates removed)	22,043		

^{*}available from http://www.epa.gov/HPV/hpvchmlt.htm

^{**} available from http://www.epa.gov/oppt/iur

^{***} available from Environment Canada - http://www.ec.gc.ca/substances/

^{****} UVCB = Unknown, of Variable Composition, or of Biological Origin – organic chemicals

Persistence and Bioaccumulation Characteristics of the 22,043 Chemicals Estimated Using EPI Suite Version 3.12

Characteristics*	No.	%	Notes
log K _{ow} >5	4239	19%	Indicates tendency to adsorb to sediments and to bioaccumulate
BCF >2000	924	4.6%	Bioaccumulation from water exposure
BCF >5000	566	2.8%	 does not include biomagnification
BCF >50,000	19	0.1%	
AO* half-life >2 days	1973	10%	AO half-life indicates stability to
AO half-life >10 days	840	4%	atmospheric oxidation and potential long range transport
log K _{aw} >-5 <u>and</u> log K _{aw} <-1	6515	32%	K_{aw} describes air-water partitioning. Compounds with log $K_{aw} > -5 \& < -1$ are "hoppers"
log K _{ow} ~2-5 <u>and</u> high log K _{oa} ~6-12	2000	10%	Biomagnification in air-breathing organisms (Kelley et al. 2007)

^{*}K_{ow} = octanol water partition coefficient

BCF = bioconcentration factor predicted with EPIsuite software

AO= atmospheric oxidation half-life

K_{aw} = air-water partition coefficient

Further Prioritization Based on Lessons Learned from POPs in the Great Lakes and in the Arctic

- 1. High bioaccumulation/biomagnification potential, i.e., in top predators
- 2. Persistence sequestered in bottom sediments in the open lakes implying a low rate of biodegradation
- 3. Long range transport potential i.e., found in mid-lake, in Lake Superior and remote lakes such as Siskiwit Lake
- 4. Quantity in use and potential for emissions i.e., open use or as an additive vs. as a chemical intermediate

Selection Characteristics	#	Notes	
Predicted BCF > 1000,	105	Using EPIsuite. Mainly chemicals with	
Atmospheric Oxidation >1 day, and Log Kaw >-5 and <-1		LRT potential	
By chemical class (Br, Cl, F, I, Si, cyclic HCs) and considering biodegradability	324	By expert judgment – includes chemicals and their degradation products with low LRT but potential for persisting in sediments and in the water column	
Total	429	70% halogenated; 10% siloxanes	

Information on Measurement and Analyzability of the 429 Substances

Analysable	Well monitored in the GL region and Arctic (i.e., programs such as IADN, NCP)	Chemicals that may have been analysed in any GL & Arctic measurement studies	Analyzable using existing methods for neutral POPs or other neutrals such as pesticides	Analyzable by LC-MS/MS ESI mode (anionic) or positive CI mode
Yes	16	83	280	46
% Yes	4%	19%	65%	11%
No	413	346	116	
Maybe			33	11

Further Prioritization of Low-Medium Production Volume and Potential Biomagnifiers in Air-Breathing Organisms

- Low-Medium Production Volume
 - Low: 10,000-500,000 lbs/yr
 - Medium: 500,000-1,000,000 lbs/yr
 - Total of low and medium = 9378 chemicals
 - » Scientific judgment screening = 270 chemicals
- Biomagnifiers in Air-Breathing Organisms
 - Low $K_{ow} = \sim 2-5$ and Log K_{oa} 6-12 = 2000 chemicals » Scientific judgment screening = 95 chemicals
- Total Chemicals (429 +184) 613
 - 62% are halogenated,
 - 27% are hydrocarbons or N or S containing HCs
 - 8% are siloxanes
 - 3% are P containing.

Some Semi-Volatile, Medium or High Production, Chlorinated or Fluorinated Organics of Potential Interest Due to (1) Predicted Persistence and/or Bioaccumulation and (2) Ease of Analysis

Substances	Predicted properties	Prod'n/yr (USA, Ibs)	Structure	Notes
1,2-dichloro-4- (trifluoromethyl)- benzene	$Log K_{ow} = 4.2$ $AOt_{1/2} > 100 d$	1-10 M (2002)	CI F	Very P, highly volatile. Intermediate in pesticide production
Trifluoropropyl methyl cyclotetrasiloxane	$Log K_{ow} = 10.7$ $AOt_{1/2} > ?$	0.5-1.0 M (2002)	F F F F F F F F F F F F F F F F F F F	P, low predicted BCF
Perfluoroperhydro- phenanthrene	Log Kow = 9.6 AOt1/2 = ?	0.010-0.5 M (2002)	F F F F F	Looks very P and B
Tetrafluorobromo- benzene	$Log K_{ow} = 3.9$ $AOt_{1/2} = 85 d$	0.010-0.5 M (1998)	F Br	Looks P and B
Cyclohexane- sulfonyl fluoride and sulfonate	$Log K_{ow} = 5.9$ $AOt_{1/2} = 77 d$	0.010-0.5 M (2002)	F F F F F F F F F F F F F F F F F F F	P and possibly B as sulfonate deg'n product

Some Brominated Organics of Potential Interest Due to Production Volume, High Predicted P & B and Ease of Analysis

Substances	Predicted properties	Prod'n/yr (USA, lbs and last year rep'd	Structure
Tetrabromo-dichloro- cyclohexane	Log K _{ow} = 4.6 P & B	>10-500 k (1998)	CI CI Br Br
Pentabromo-6-chloro- cyclohexane	Log K _{ow} = 4.7 P & B	>10-500 K (2002)	CI Br Br Br
1,3,6,8- tetrabromopyrene	Log K _{ow} = 8.5 Persistent May not be B	>0.5-1M (2002)	Br Br Br
Octabromo-1,1,3- trimethyl-3-phenyl indan	Log K _{ow} ~10 P & B	>0.5–1 M (2002)	Br Br Br Br CH ₃ CH ₃ Br
1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane	Log K _{ow} = 5.2 P & B	>10-500 K (2002)	Br Br

Toxicity Estimates of Priority Chemicals

- 429 chemicals in commerce previously identified as having potential for persistence and bioaccumulation in the Great Lakes
- Further evaluated to identify and estimate whether these compounds are toxic to aquatic organisms and to mammals utilizing:
 - Analog Identification Methodology (AIM)
 - ECOSAR
 - OncoLogic

- EPA is currently developing the AIM tool to identify close analogs that have measured data
- Designed to help identify publicly available, experimental toxicity data on closely related chemical structures
- AIM database contains 31,031 potential analogs with publicly available toxicity data
- Experimental data sources Indexed
 - On-Line Databases
 - » TSCATS, HSDB, IRIS
 - U.S. Government Documents
 - » NTP, ATSDR, HPV Challenge Program
 - Other Sources
 - » DSSTox, RTECS, IUCLID, AEGLS

AIM Results

- The AIM tool was run to identify if a chemical is in one of the approximately 45 EPA Chemical Classes used by the New Chemicals Program under TSCA
 - These 45 chemical classes have been identified as being of potential concern for human health effects
- 277 chemicals were included in the 45 chemical classes
- 152 chemicals were not in the 45 chemical classes

- ECOSAR is a computerized program for aquatic toxicity estimates that is currently used by EPA's Office of Pollution Prevention and Toxics (OPPT)
- Part of the EPISuite[™] software provides estimates of potential for aquatic toxicity based up K_{ow} and chemical class
- To date, over 150 SARs have been developed for more than 50 chemical classes
- This analysis involves the application of SARs (Structure Activity Relationships) to predict the aquatic toxicity of chemicals (LC_{50} , EC_{50} , chronic, etc.) for various aquatic organisms (fish, daphnid, algae, etc.)

ECOSAR Results

- The most toxic value (i.e., lowest LC_{50}) for each chemical was selected as is done with the New Chemicals Program under TSCA and by Environment Canada
- Value was given for 349 out of 429 chemicals
 - Chemicals were excluded when it was predicted that the chemical may not be soluble enough to meet the predicted toxic effect (i.e., LC_{50})

OncoLogic

- The OncoLogic program was run on each chemical that a structure was available for in the program
- The program assigns a baseline concern level from high to low for a chemical to have the potential to cause cancer
- The chemical analog structure activity method was used with some standard exposure scenarios selected

OncoLogic Results

- OncoLogic
 - 146 chemicals were successfully run

```
 High = 0
```

- » High-Moderate = 10
- » Moderate = 24
- » Low-Moderate = 34
- » Marginal = 29
- > Low = 49

• 32 chemicals had pre-existing cancer screening (i.e., IARC, NTP, etc.)

Fate, Transport and Exposure Potential

- Divide Priority Chemicals into Chemical or Use Classes
 - e.g., Chemical classes Fluorinated, Brominated, Chlorinated, Siloxanes,
 - e.g., Fragrances, rubber chemicals, solvents, chemical intermediates, flame retardants
- High release plasticizers, hydraulic fluids, or solvents, fire fighting surfactants, fragrances
- Degraded during use antioxidants, vulcanizing agents, UV stabilizers, polymer initiators
- Stable during use auto wax, defoaming agents, soil repellant
- Analyze Physical Properties, Binding, Release
 - Collect from PHYSPROP or Estimate with EPI Suite
 - Determine if chemically bound (reactive flame retardants vs. non-reactive)
 - Integrate physical properties & form during chemical use to assess release (use past examples of chemical release of know contaminants)

Pollution Prevention

- Need Variety of Approaches Dependent Upon the Use and Chemical Properties Required for the Application
 - —Synthetic intermediate: develop different synthetic route
 - Solvent: examine physical properties (vapor pressure, solubility for application)
 - Surfactant: same surfactant properties but more biodegradable
 - —Flame retardant: possibly use phosphate to quench flame rather than halogens
 - General: structurally redesign molecule to make less persistent (less fully halogenated, linear alkyl chains – more biodegradable) but keep essential properties for use

The Emerging Challenge

Confirming SAR predictions with environmental measurements for priority PB&T chemicals

Instrument technology High resolution separations & mass measurement 2D-GC-TOF, LC-MS/MS and LC-QTOF

- new or refinements of existing extraction and isolation procedures
- analytical standards and reference materials

Contaminant free reagents Clean room isolation

Bioanalytical Methods and directed bioassays

"in silico" technology – computational toxicology Improved QSARs to identify P,B&T parent and metabolites

e.g., metabolites via TIMES (tissue metabolism simulator), CATABOL, BIOWIN

Challenges and Opportunities

- Our screening of 000s of substances e.g., DSL and TSCA Inventory has yielded some interesting probable P&B substances
- Uncertainties in this type of screening include:
 - Possibility of false positives and false negatives
 - Lack of information on uses and actual emissions of the chemicals
 - Need for information on degradation products
- Lack of information on biological effects of the selected chemicals
- Numerous opportunities for both environmental chemists and environmental toxicologists
 - Analytical and bioanalytical methodologies
 - Exposure and risk assessment
 - SAR development
 - Chemical fate modeling

Acknowledgements

- Funding sources
 - US EPA Great Lakes National Program Office (GLNPO)
 - Environment Canada Great Lakes 2020 program for funding
- Acknowledgements
 - Ted Smith, US EPA, Great Lakes National Program Office, Chicago
 - Derek Muir, Environment Canada, Water Science and Technology Directorate, Burlington, ON