Experiencing REACH Exposure Assessments

By Debbie Lander, Ph.D.

E. I. Du Pont de Nemours and Company

EPA Computational Toxicology Communities of Practice

January 27, 2011

Exposure Assessments under REACH

Outline

- Okay so you know you need a quantitative exposure assessment for a substance, what do you do now?
- 2) Must gather Use information for substance
- 3) Develop an Exposure Scenario for each relevant use
- 4) Tier 1 Exposure Assessment & Risk Characterization (assumes limited knowledge with conservative inputs)
- 5) Tier 2 Exposure Assessment & Risk Characterization (gather more detailed information for input into Tier 2 models)
- 6) So what did we learn?
- 7) Useful References

How do we assess exposure quantitatively under REACH?

1) Identify uses of chemical

Manufacturing, industrial use, service life, waste

2) Identify routes of potential exposure for each use

- Human Exposure: -worker, professional, consumer
- Environmental Exposure:
 - industrial (local, not dispersive),
 - Consumer/professional (regional, wide dispersive)
 - Releases to air, water, soil

3) Develop Exposure Scenario for each use

3

Develop Exposure Scenario – Worker

Tier 1 (most conservative)

Inputs for Model

- Select use descriptors (PROCs) based on type of activity
- Time of activity
- % of substance used
- Form of substance (gas, liquid, solid)
- Vapor pressure, dustiness
- Operational temperatures
- Location of activity: indoors, outdoors, local exhaust ventilation –Y/N
- Risk Management Measures (none)

PROCs	Description
	Use in closed process, no
1	likelihood of exposure
	Use in closed, continuous process
	with occasional controlled
2	exposure
	Use in batch and other process
	(synthesis) where opportunity for
4	exposure arises
	Mixing or blending in batch
5	processes (significant contact)
7	Industrial spraying
	Transfer of chemicals from/to
8	vessels/ large containers
	Transfer of chemicals into small
9	containers (dedicated filling line)
10	Roller application or brushing
	Production of preparations or
	articles by tabletting,
14	compression, extrusion,
	Use of laboratory reagents in
15	small scale laboratories

Run the Tier 1 Model (ECETOC-TRAM)

Worker Exposure Estimates for a methanol example

Scenario name	PROC	Type of setting	Is substance a solid?	Duration of activity [hours/day]	Use of ventilation	Inhalative Exposure Estimate (mg/m3)	Dermal Exposure Estimate (mg/kg/day)
Generic processing closed systems (liquid)	PROC 2	industrial	No	>4 hours (default)	Indoors without LEV	66.8	1.4
loading/unloading dedicated facility	PROC 8a	industrial	No	>4 hours (default)	Indoors without LEV	333.8	13.7
mixing and blending	PROC 5	industrial	No	>4 hours (default)	Indoors without LEV	333.8	13.7
transfer to smaller containers dedicated fill line	PROC 9	industrial	No	>4 hours (default)	Indoors without LEV	267.0	6.9

Now would compare results to health benchmarks (DNELs)

Fails old benchmarks such as ACGIH 8 hr TWA of 260 mg/m3 IRIS RfD = 0.5 mg/kg/day indicates dermal could be a problem too

As in many of the Tier 1 estimates the risk characterization indicates there is not control of risk so refinement is needed

Develop Exposure Scenario – Consumer

Tier 1 (most conservative) Inputs for Model

- •Select Sentenial Product (PC/AC)
- Select sub product category
- •Time of activity/day
- Amount of product used per use
- •% substance in product

Model has preselected the route of exposure (inhalation, dermal, oral) and has conservative estimates

PC9a_Coatings_p aints_thinners_re movers	Waterborne latex wall paint
	Solvent rich, high solid, water borne paint
	Aerosol spray can
	Removers (paint-, glue-, wall paper-, sealant-remover)

Sentenial Product List

PC1_Adhesives_sealants PC3_Air_care_products PC9a_Coatings_paints_thinners_removers PC9b_Fillers_putties_plasters_modelling_clay PC9c_Finger_paints **PC12 Fertilizers** PC13_Fuels PC24_Lubricants_greases_and_release_products PC31_Polishes_and_wax_blends PC35_Washing_and_cleaning_products_including_s olvent_based_products AC5_Fabrics_textiles_and_apparel AC6_Leather_articles AC8_Paper_articles AC10_Rubber_articles

AC11_Wood_articles

AC13_Plastic_articles

Run Tier 1 Model for Consumer Use

Inhalation

Note: no averaging for days exposure

The TRA calculates the inhalation exposure as

 concentration in room air (mg/m3) over a day, resulting from one or more events of product/article application.

Or as

 dose (amount per kg bodyweight) inhaled over the duration of the event (depending on the product category 20 min to 8h).

Concentration:

Parameter:	Product Ingredient (g/g)	Amount Product Used per Application (g/event)	Frequenc y of Use (events / day)	Fraction Release d to Air (g/g)	Conversion Factor	Room Volume (m³)	Exposure Air concentration mg/m3
Algorithm:	(PI x	A x	FQ X	Fx	1000)	/ V	C _{inh}

Dose:

Para- meter:	Product Ingred. (g/g)	Amount Product Used per Applicatio n (g/event)	Frequency of Use (events / day)	Fraction Released to Air (g/g)	Exposur e Time (hr)	Inhalati on Rate (m ³ /hr)	Conver sion Factor	Room Volume (m ³)	Body Weight (kg)	Exposure Inhalator y dose mg/kg/ day
Algo- rithm:	(PI x	Ах	FQ X	Fx	ET X	IR x	1000)	/ (V x	BW)	D _{inh}

FQ: Assumes 100 % available for Vp > 10 Pa, reductions for less volatile

Run Tier 1 Model for Consumer Use

For dermal route:

Parameter:	Product Ingredie nt (g/g)	Contact Area (cm ²)	Frequency of use (events / day)	Thicknes s of Layer (cm)	Density (g/cm ³)	Conversi on Factor (mg/g)	Body Weight (kg)	Exposure Dermal dose (mg/kg/day)
Algorithm:	(PI x	СА Х	FQ X	TL X	Dx	1000)	/ BW	D _{der}

The algorithm for the calculation of the dermal dose does not take into account any duration factor and assumes 100% transfer of substance from the product or article contact layer (0.01 and 0.001 cm respectively) to the skin instantaneously. The dermal absorption is set at 100 %.

For oral route:

Parameter:	Product Ingredient (g/g)	Volume of product swallowed (cm ³)	Frequency of use (events / day)	Density (g/cm3)	Conversion Factor (mg/g)	Body Weight (kg)	Exposure Oral dose (mg/kg/ day)
Algorithm:	(PI x	V x	FQ X	D X	1000)	/ BW	D _{oral}

Calculations are very conservative

Refinements (Tier 2)

Human Exposure Refinement

Add in Risk Management Measures such as PPE

- Respiratory Protective Equipment (RPE) this area is reasonably defined. In both EU and US similar assigned protection factors (APF) are used. E.g. Full face mask with cartridge filters offers a APF = 20 or a 99.5% efficiency.
- Chemical Protective gloves use a glove that offers chemical resistance to substance. Protection
 factors have been based on level of training and supervision. Typical APF = 10 and includes proper
 training in using the glove.
- If substance is volatile, an equation can be used to estimate the evaporation from the skin since substance would evaporate and reduce dermal exposure. (see R14 guidance)

•Use a Tier 2 model

- For REACH there is ART, Consexpo, Stoffenmanager, RISKOFDERM.
- Unfortunately now much more information is needed:
 - Location/Facility: indoors, outdoors, size of room, air exchanges per hour
 - Amount of substance used (large quantities to small)
 - Have to choose activities with more detail (amount of substance handled per unit time, near far field exposures)
 - More detail on the local exhaust ventilation systems (hoods, vapor recovery systems)
 - Dermal absorption information

Example of Consumer use of propellant sprays

Substance very volatile, inhalation main route of exposure.

Worst case spray can is 50% propellant, 10 grams product/use

Tier 1 Model Inputs	Descr	iptor	Product Subcategory	Pro Ing (g/g	duct redient 1)	Amount of prod for formula (g/event)	Exposure Time (hr)	FreQ of Use (events/day)
	PC3_/	Air_care_products	Aircare, instant action (aerosol sprays)	0.5		10	0.25	4
	PC24_ and_re	_Lubricants_greases_ elease_products	Sprays (based on aerosol spray can)	0.5		300	4	1
Comparison of 3 mode	els	Consumer Use			Inhalati (n	on exposure ng/m³)	Inhalat (m	ion exposure g/kg _{bw} /d)
		TRAM PC3 (aerosol)			1.0	0E+03*	5.	71E+00
		TRAM PC9a (spray car	n)		7.5	0E+03*	5.	71E+01
		AISE FURNITURE, FI AISE C20, PC31	LOOR & LEATHER CARE				8	01E-01
		AISE SURFACE CLEA	ANERS (AISE C7, PC35)				6	.01E-01
		AISE AIR FRESHENE PC3)	RS AEROSOL (AISE C17,				2.	98E+00
		ConsExpo spray paint of	an model		1.5	0E+02	5.	00E+01 ^b
		ConsExpo disinfectant	spray		1.6	58E-01	5.	60E-02 ^b
		ConsExpo hairspray us	e		4.8	32E-01	1.	61E-01 ^b
		*ECETOC TRA consume dilution so is a very conse ^b Converted from mg/m ³ v concentration on day of ex- more conservative exposu	r inhalation exposure is a single e rvative exposure estimate. Ising adult BW of 60 kg of inhala xposure, which would be lower th re estimates.	tion r	concentrat ate of 20 n e mean eve	ion and does no n ³ /day. ConsE: ent dose. Using	ot account for xpo also prov g the mean ev	room volume ides a mean ent dose provides

Develop Exposure Scenario – Environmental

Tier 1 (most conservative)

- •Tonnage/yr for each use
- •Days of use/yr (20, 365)
- •Vapor Pressure
- •Water solubility
- Log Kow (Partition coefficient)
- •Biodegradability
- Koc or associated QSAR Class
- •Environmental release criteria (ERCs)
 - Extremely conservative release estimates
- •Sewage Treatment Plant (STP): Y/N

FRC	Description	Release to air	Release to water
ERC1	Production of chemicals	5%	6%
ERC2	Formulation of preparations	2.50%	2%
ERC4	Industrial use of processing aids	100%	100%
ERC5	Industrial use resulting in inclusion into a matrix	50%	50%
ERC6c	Production of plastics	5%	5%
ERC8a	Wide dispersive indoor use of processing aids in open systems	100%	100%
ERC8c	Wide dispersive indoor use resulting in inclusion into a matrix	15%	1%
ERC10a	Wide dispersive outdoor use of long-life articles and materials with low release	0.05%	3.2%
ERC10b	Wide dispersive outdoor use of long-life articles with intended release	100%	100%

Run the Tier 1 Model (ECETOC-TRAM)

Environmental Exposure Estimates

The ECETOC-TRAM model is based on the EUSES environmental model. Designed to be conservative. Based on the physio-chemical properties, substance is distributed in the various environmental compartments. Key input is releases to environment (kg/day).

Example: a non volatile monomer is polymerized at a site, very water soluble, not biodegradable, 2000 tonnes, ERC6c (5% release to air and water)

Risk Chacteristation Ratio for	
Environmental Compartments	Must be <1
RCR STP	25
RCR freshwater	2500
RCR sediment	2500
RCR terrestial	0.4

Again results need a great deal of refinement to achieve control of risk. Fortunately, effluent is monitored so have data to refine releases. Final releases were <20 g/day versus 50 kg/day for Tier 1 default.

Refinements (Tier 2)

Environmental Exposure Refinement

- The key is to refine the releases since they are the main driver for the predicted environmental concentrations.
- OECD documents on emissions are useful
- Use actual emissions from industrial sites if known
- Industry Work groups develop emission refinements
 - Various industry groups in the EU got together and developed generic emissions that better represent their industrial uses than the ERCs. These are now included in the TRAM model for refinement options. This was a great improvement.
- TRAM model uses a standard 1/10 dilution for STP effluent into river water. Having actual STP flows and river flows allows for higher dilutions.
- Usually manage to refine within the TRAM model.
- Tier 2 models are available but require extensive inputs
 - GEMCO for estuary and marine environments. Was used successfully but need specific inputs.

So what have we learned?

•It is a complex effort to estimate exposures and requires a variety of information early on in the process.

•Need to compile use information for your company and any downstream users. Complicated to ask for all the Tier 2 information so typically start with Tier 1. Need a standardized language to communicate with (i.e. PROCs and ERCs for EU).

•Need final physical chemical data points and hazard classification early in the process or there will be rework.

•It was harder than we expected since Tier 1 approaches seldom produced risk characterizations below 1. It can take ~200 hrs to gather info, perform and document a Tier 2 exposure assessment for a substance with 3 uses.

•Need to develop generic scenarios that cover multiple uses if possible to reduce the overall work load.

References

- The Final ECHA Guidance on information requirements and safety assessment documents R14, 15, 16 are worth reading for exposure assessment information
- R14: Occupational Exposure Estimation (May 2010) gives references and discussions on the models
- R15: Consumer Exposure Estimation (April 2010) gives references and discussions on the models
- R16: Environmental Exposure Estimation (May 2010), extensive information on the calculations for TRAM model (based on EUSES)
- <u>http://guidance.echa.europa.eu/docs/guidance_document/information_requirements_en.htm#r14</u> (one website has links to all the REACH guidance documents, scroll down to bottom to find R14-16)
- ECETOC TRAM Model (Tier 1 tool for REACH) download at http://www.ecetoc.org/index.php?page=tra
- AISE model website (Association International of Soaps and Detergents) <u>http://www.aise.eu/reach/exposureass_sub3.htm</u>
- Consexpo 4.1 Model download at http://www.rivm.nl/en/healthanddisease/productsafety/Main.jsp
- Stoffenmanager Model website <u>https://www.stoffenmanager.nl/Default.aspx</u> (hit the English button, have to request a password)
- ART (Advanced REACH Tool) Model: <u>http://xnet.hsl.gov.uk/art/</u> (have to request a password)

Questions?

Thank you

Debbie Lander

Email address: deborah.r.lander@usa.dupont.com

