

Risk Assessment of Chemicals and Prediction of Metabolism

Johann Gasteiger Molecular Networks GmbH Henkestraße 91 91052 Erlangen, Germany www.molecular-networks.com

Outline

- MOSES system
- Structure representation
- Toxicity prediction
- MOSES.ChemistryToolbox
- Metabolism of xenobiotics
- MOSES.Metabolism
- MOSES.RiskAssessment

MOlecular Structure Encoding System

C++ based Chemoinformatics toolkit

- high performance
- available for many platforms (Windows, Linux, Unix)

Python interface available

- provides easy access to the full functionality of MOSES
- ideally suited for the development of client / server solutions
- under active development since 2001
 - > Computer-Chemie-Centrum, Universität Erlangen-Nürnberg
 - Molecular Networks GmbH
- 300,000 lines of code
 - well documented and tested

Modeling Chemical Structures and Reactions

- Theoretical chemist:
 - Quantum-mechanical calculations: time-consuming

Organic chemist:

- Concepts for rationalizing chemical reactivity and reaction mechanisms
- > Partial charges, inductive, resonance, polarizability, steric effect

Quantify these physicochemical effects

Calculation of Physicochemical Effects

- Charge calculation: q_{σ} and q_{π}
- Inductive effect: χ_r
- Resonance effect: M⁺, M⁻
- Polarizability effect: α_d
- Steric accessibility: A_{access}
- Heats of formation/heats of reaction

PETRA package

(Parameter Estimation for the Treatment of Reactivity Applications)

Representation of chemical structures

Hierarchy of interpretable structure descriptors

Structure Representation

Molecular surface

J. Gasteiger, *Of Humans and Molecules*, J. Med. Chem., **2006**, *55*, 6429 - 6434

ADRIANA. *Code* – Covered Descriptor Space

Structure coding spanned by 3 axes in descriptor space

Physics

- Geometrical resolution
 - Molecular surface
 - 3D structure
 - 2D structure
 - 1D (global)

Mathematics

- Mathematical transformation
 - 2D autocorrelation
 - 3D autocorrelation
 - Radial distribution functions
 - Autocorrelation of surface points

Chemistry

- Physicochemical properties
 - Global properties
 - Atomic properties: charges, polarizabilities, electronegativities
 - MEP, HBP, HPP

ADRIANA. *Code* – Areas of Application

- Drug design
 - > Clustering of compounds according to their biological activity
 - Locating biologically active compounds in sets of diverse chemical compounds
 - > Quantitative prediction of biological activities
 - Analysis of results of high-throughput screening
- Prediction of ADME/Tox properties
 - > Aqueous solubility of organic compounds
 - pKa values
 - > Prediction of major metabolizing CYP450 isoform
 - Classification of toxic mode of action
- Prediction of infrared and ¹H NMR spectra
- Dye design

For list of publications:

http://www2.chemie.uni-erlangen.de/publications/

Modeling toxicity of compounds

Combination of descriptors

Modeling of Toxicity

Different data analysis methods

S.Spycher, M.Nendza, J.Gasteiger, QSAR Comb. Sci., 2004, 23, 779-791

Representation of chemical structures

S.Spycher, E.Pellegrini, J.Gasteiger, J.Chem.Inf.Model., 2005, 45, 200-208

Considering toxicological mechanism

S.Spycher, B.Escher, J.Gasteiger, Chem.Res.Toxicol., 2005, 18, 1857-1867

Why Prediction of Toxic Mode of Action (MOA)?

Most QSARs in toxicology focus on a certain class of compounds

Require different QSAR-equations

First classify structures according to their MOA

Dataset: MOA of Phenols

- Polar narcotics
 Uncouplers of oxidative phosphorylation
 Precursors to soft electrophiles
- 4. Soft electrophiles

(156 cpds) (19 cpds) (24 cpds) (22 cpds)

221 cpds

Dataset:

A.O.Aytula, T.I.Netzeva, I.V.Valkova, M.T.D.Cronin, T.W.D.Schultz, R.Kühne, G.Schüürmann, *Quant. Struct.-Act. Relat.* **2002**, *21*, 12-22.

Study:

S.Spycher, E.Pellegrini, J.Gasteiger, J. Chem. Inf. Model., 2005, 45, 200-208

Predictive Power of Model (Counterpropagation-Neural Network)

estimate of predictive power with 5-fold cross-validation:

RDF(χ_{LP}, χ_{σ}), HBP surface AC

(2×8 + 12) descriptors

RDF: radial distribution function HBP: hydrogen bonding potential

S.Spycher, E.Pellegrini, J.Gasteiger, J. Chem. Inf. Model., 2005, 45, 200-208

95.9%

Classification in 5-fold Crossvalidation

polar narcotic

uncoupler of oxidative phosphorylation

Correct classification !

NOSES.ChemistryToolbox

Molecular Networks GmbH Henkestraße 91 91052 Erlangen, Germany www.molecular-networks.com

MOSES.ChemistryToolbox

- Program package for the prediction of physical, chemical or biological properties of compounds
- Representation of chemical structures for QSAR studies
- Combining the descriptor calculation of ADRIANA.Code with structural features

MOSES.ChemistryToolbox – Structural Features

- Functional groups, e.g.:
 - aldehyde, aromatic
 - > aldehyde, alkenyl
 - > aldehyde, alkyl
 - amine, tert-N, alkyl
 - amine, sec-NH, aromatic
 - amine, aromatic, N-hydroxy
 - halide, prim-alkyl
 - silane, trimethyl
 - Michael acceptor
 - urethane derivative

Structural elements, e.g.:

- benzofuran
- imidazole
- quinoxaline
- pyrrolidine
- purine
- guanidine
- steroid
- pyrazine
- aflatoxin
- pyrimidine

MOSES.ChemistryToolbox -Functionalities

- Reading of chemical structure files (SDFiles, SMILES, etc.)
- Merging of multiple files into one spreadsheet
- Calculation of physicochemical properties
- Calculation of structural class fingerprints
- Browsing of structures and properties as spreadsheet with database backend
- Output of spreadsheet as structure files
- Output of spreadsheet as table file (compatible with Excel)
- Project management

MOSES.ChemistryToolbox

😵 MOSES.ChemistryToolbox 2.0									
File Options Calculate Help									
Project	Start Compounds and Properties 2DACorrSigChrg								
Compounds D:/Projects/MOSES.ChemXpl Descriptors 2DACorrSigChrg		Compound	Name	ActivityCategory	ActivityClass	Dipole	LogS	Weight	^
	1		bda-0001	BDA	1	6.94386	-5.33892	391.853	3.
	2		bda-0002	BDA	1	5.01942	-3.85922	358.397	1.
	3		bda-0003	BDA	1	4.06742	-2.75873	253.216	1.
	<			III					>

Molecular Networks

- CONFIDENTIA21

Classification model for salmonella reverse mutation

Study performed by Dr. Chihae Yang, FDA CFSAN

Modeling process: OECD-compliant

- Training set (salmonella reverse mutation)
 - Transparency
 - biological and chemicals modes of activities
- Interpretable descriptors
 - Structural features
 - Calculated molecular properties
- Statistical algorithms and inference
 - fitting/parameter optimization/cross-validation
- External validation

Descriptors: Structural Features

- FDA Redbook inspired features
 - Generic compound class features
 - Classes defined in Cramer classes
 - Categories for Threshold of toxicological concern
- Known alerts
 - Ashby Tennant genotoxic carcinogen alerts
- Alerts learned from the dataset

ADRIANA.CODE Descriptors

- Whole molecule descriptors
 - xLogP, topological polar surface area, water solubility, molecular weight, (heavy) atom count, hydrogen bond acceptors and donors (N and O specific), Lipinski score violation, rotational bonds, ring complexity
- Electrostatic properties
 - charges (sigma, pi, and lone pair)
 - electronegativity (sigma, pi, and lone pair)
- Surface properties.
- Molecular shape

Performance Comparisons

Model Name	Pos/Neg	Descriptor	PLS factor	Sensitivity	Specificity
Aromatic Amines	321/417	Structure	3	78	62
		ADRIANA	3	82	50
		Both	4	78	89
Halides	379/530	Structure	2	77	82
		ADRIANA	8	64	81
		Both	4	77	88
Global	1807/2490	Structure	10	64	87
		ADRIANA	30	54	85
		Both	19	78	88
Phenols	283/370	Structure	3	66	88
		ADRIANA	10	68	81
		Both	8	84	93

Performance Comparisons

Model Name	Pos/Neg	Descriptor	PLS factor	Sensitivity	Specificity
Aldehydes	58/34	Structure	4	74	81
		ADRIANA	5	67	78
		Both	2	97	94
Halides, aliphatic	181/247	Structure	3	81	68
		ADRIANA	7	85	62
		Both	4	80	91
Azo-Azoxy	64/34	Structure	5	76	62
		ADRIANA	2	82	46
		Both	2	95	94
Hydrazine	62/34	Structure	2	80	81
		ADRIANA	9	86	77
		Both	2	97	94

Summary

- Both structural features and physicochemical descriptors (ADRIANA.Code) perform equally good
- However, they catch different information
- Therefore, the combined use of structural features and physicochemical descriptors leads to markedly improved models and predictions

Metabolism of xenobiotics

Drugs, agrochemicals, food additives

Oxidations by Cytochrome P450

Aromatic hydroxylation

- Aliphatic hydroxylation
- Epoxidation
- N, O, S-dealkylation, oxidative deamination
- N,S-oxidation

 $RCH_2-X-R' \longrightarrow RCH=O + R'XH$ (X=NR,O,S)

$$\begin{array}{ccc} R-X-R' & \longrightarrow & R-X^+-R' \\ (X=NR,S) & & I \\ O^- \end{array}$$

Different Selectivities

- Selectivity between different cytochrome P450 isoenzymes
 > 3A4, 2C9, 2C19, 2D6, 1A2
- Selectivity between different reaction types
 chemoselectivity
- Selectivity between different reaction sites
 regioselectivity

Data Set of 3A4, 2D6, and 2C9 Substrates

- Training and test data set: 146 compounds
 - Manga et al, SAR and QSAR in Environm. Res. 2005, 16, 43-61
 - 80 3A4 substrates (55%)
 - > 45 2D6 substrates (31%)
 - > 21 2C9 substrates (14%)
- Validation data set: 233 compounds
 - Metabolite database
 - 144 3A4 substrates (62%)
 - 69 2D6 substrate (30%)
 - > 20 2C9 substrates (8%)

Support Vector Machine (SVM) Model

Descriptors (242 components)

Automatic variable selection: 12 components

 $> 2D-AC_{identity}(5), 2D-AC_{q\pi}(3), 2D-AC_{q\pi}(6), 2D-AC_{\chi\pi}(5), 2D-AC_{q\sigma}(1), 2D-AC_{q\sigma}(2), 2D-AC_{\chi\sigma}(6), 3D-AC_{identity}([5.8-5.9[\text{Å}), n_{acid_groups}, n_{aliphatic_amino}, n_{basic_n}, r_3$

Predictability Training: 90.4% 5-fold CV: 87.8%

Validation of the Support Vector Machine Model

- Validation set: 233 substrates from the Metabolite database
- Predictability: 82.8%
- remember: some drugs are metabolized by several isoforms

L. Terfloth, B. Bienfait, J. Gasteiger, J. Chem. Inf. Model. 2007, 47, 1688-1710

isoCYP Webservice

Prediction of major metabolizing CYP450 isoform (2D6, 3A4, 2C9)

http://www.molecular-networks.com/online_services

L. Terfloth, B. Bienfait, J. Gasteiger, J. Chem. Inf. Model. 2007, 47, 1688-1710

Different Selectivities

- Selectivity between different cytochrome P450 isoenzymes
 in particular 3A4, 2C9, 2C19, 2D6, 1A2
- Selectivity between different reaction types
 > chemoselectivity
- Selectivity between different reaction sites
 > regioselectivity

MOSES.Metabolism Reaction Rules

- 117 reaction rules
- Reaction types covered:
 - Aromatic hydroxylation
 - > Aliphatic hydroxylation
 - N- and O-dealkylation
 - Hydrolysis (ester, amides)
 - Conjugation reactions (glucuronidation, sulphation, glycination, acetylation)
 - Oxidation reactions (alcohols, aldehydes, etc.)
- Empirical score for probability of a reaction based on literature data

Derivation of a Rule Base for Metabolite Prediction

Define reaction rules, e.g. for an acetylation

 Calculate reaction probabilities based on a reaction database (Metabolite, MDL-Symyx)

Conceivable metabolites	1223
Observed metabolites	122
Non-observed metabolites	1101
Probability	122/1223 = 0.10

Phase I Metabolism of Atorvastatin Lactone

Chemoselectivity

- Aromatic hydroxylation (•)
- Amide hydrolysis (~)
- N-Dealkylation (\)

Phase I Metabolism of Atorvastatin Lactone

Regioselectivity of aromatic hydroxylation

- Mono substituted ring
 - Ortho hydroxylation (•)
 - Meta hydroxylation (•)
 - Para hydroxylation (•)

1,4-substituted ring (•, ortho to first and meta to second substituent)

Predicted Ranks and Probabilities of Atorvastatin Lactone Metabolites

 Metabolite predicted for atorvastatin with highest rank corresponds to the experimental observations.

NOSES.RiskAssessment

Molecular Networks GmbH Henkestraße 91 91052 Erlangen, Germany www.molecular-networks.com

Areas of Applications

- Hazard and risk assessment of chemicals
- Product safety of pharmaceuticals, cosmetics, food ingredients and other chemicals
- Computational toxicology
- Registration of chemical substances, e.g., REACH initiative
- Compound profiling

Application Example

- Priority-based Assessment of Food Additives (PAFA) by FDA
- PAFA contains administrative, chemical and toxicological information on over 2,000 substances directly added to food
- Dataset as of July 14, 2010

Application Example: trans-Anethole

M	licroso	ft Exc	cel - CAS_1-C	Docnum_1_to_8486-14	July2010.xls	[Schreibges	:hützt]						1.3				6	-	-	1			
	<u>D</u> atei	<u>B</u> ea	arbeiten <u>A</u> nsi	icht <u>E</u> infügen Forma <u>t</u>	E <u>x</u> tras Dal	:e <u>n E</u> enster	2			Frage h	ier eingeben	×					13	1	10	~			
	🖻 🖡	1	1 🖨 🚏 🛙	🛍 🗠 🖌 🍓 Σ 🔸	🗟 🛃 🛍	100% 🝷 📿	🎇 🕹	al	• 6 • F	₭ ⊻ ≡ ≡ ≣ छ	€	• <u>A</u> • •							4				
	A1		▼ f:	×																			
	AВ		С	D	E	F	G	Н	1	J	K	L											
	ŀ																						
2		(CAS #1- D	ocnum 1 to 8486																			
3		_				_												Fr	age hier	eingebe	n		₽×
4	Doc	# C	CAS #	Main Term	Doc Type	CFR REG #	ADI	Comments	Cedi	Chemical Functio	Sortterm		6	•	F /	K U		≣ ∃		€	🗉 🗕 🕹	<mark>≫ - </mark>	• • •
271	0	077	004180238	TRANS-ANETHOLE	ASP	182.60				(D) Direct	ANETHOLE					0			L		1		
272	0	077	004180238	TRANS-ANETHOLE	ASP	182.60				(F) Flavor	ANETHOLE					6					J	r	
273	0	077	004180238	TRANS-ANETHOLE	ASP	182.60				(G) Gras	ANETHOLE	T											
4 4	> >	Rep	oort 1 /						•														
Bere	t											1.											

ſ	5	
`` _		

4	Doc #	Study	Completeness	Effect #1	Source	Lel	Hnel	Unit	Year
99	77	25	с	GENOTOXIC IN PRESENCE OF EXOGENOUS METABOLIC ACTIVATION	MUTAT RES 101:127-140	,03		mg/plate	1982
100	77	25.1	с	NO EFFECTS	MUTAT RES 101:127-140		,6	mg/plate	1982
101	77	25.2	с	GENOTOXIC IN ABSENCE OF EXOGENOUS METABOLIC ACTIVATION	MUTAT RES 101:127-140	10,		mg/plate	1982
102	77	26	с	NO EFFECTS	BULL ENVIRON CONTAM T	oxic	,05	mg/plate	1982
103	77	27	с	NO EFFECTS	ENVIRON MUTAGEN 8 (SUF	PPL 7	,28	mg/plate	1986
104	77	34	с	CYTOTOXIC (LD50 IS LESS THAN 5 MILLIMOLAR)	FOOD CHEM TOXICOL 30:4	1,	,5	mМ	1992
105	77	40	с	NO EFFECTS	FOOD CHEM TOXICOL 34:3	37-3-	,1	mМ	1996
106	77	40.1	с	NO EFFECTS	FOOD CHEM TOXICOL 34:3	37-3-	500,	mg/kg bw	1996
107	77	41	с	NO EFFECTS	MUTAT RES 325:129-136		1,	mМ	1994
108	77	42	с	NO EFFECTS	MUTAT RES 326:199-209		,75	mg/plate	1995
109	77	42.1	с	NO EFFECTS	MUTAT RES 326:199-209		,084	mg/plate	1995
110	77	42.2	c	NO EFFECTS	MUTAT RES 326:199-209				1995
4	► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ►	Report	1/						F

MOSES.RiskAssessment | We... +

New Search | Databases | About

~

>

Welcome to MOSES.RiskAssessment

Welcome to the MOSES.RiskAssessment Demonstration

Structure searching

Data searching

Chemical exposure information

Toxicity studies information

Analysis

- TTC and QSAR analysis
- Toxicity prediction
 Metabolism prediction

Start the demo.

Please start the demo by entering the Query page.

An Expert System for Chemical Evaluation and Risk Estimation System

<

Done

👹 MOSES.RiskAssessment | Query Results - Mozilla Firefox

<u>File Edit View History Bookmarks Tools Help</u>

MOSES.RiskAssessment | Qu... *

Structure found in the database.

trans-Anethole; Benzene, 1-methoxy-4-(1E)-1-propenyl-; (E)-Anethole; Anisole, p-propenyl-, (E)- (8CI); Anisole, p-propenyl-, trans-; Benzene, 1-methoxy-4-(1-propenyl)-, (E)-

-

>

		Compoun	a informat	lion						
		ID		2208						
		CAS-RN		4180-23-8	3					
ο.	~	Trade Nar	ne							
-		Chemical I	Name	trans-Ane	thole					
		Substance	e Use Types	s Flavoring	agent					
		Hide Deta	ils	_	-					
		ande beed								
								_		
					Stu	ıdv l	nfor	matio		
						iuyi		Παιιυ		
du 1	Information 1 Sc	ource: cfsan-naf	ia							
uy I		Juree, ciban par	-							
uy I		Jurce: cisuii pur			_					
	Status. Bocan	nent type: Do	ocument Nu	ımber:	D	ocument S	tatus:	Revie	w Date: R	esults found
	Status. Docum	nent type: Do	ocument Nu	ımber:	D Does not me	ocument S eet at least	tatus: : core standar	Revie	w Date: R	esults found 8
ARM #	Study Type	nemt type: Do Species	ocument Nu Strain	ımber: Metabolic	D Does not me All Doses	ocument S eet at least Dose Unit	tatus: : core standar Test	Revie ds Test	w Date: R Test Call	esults found 8 Study Call
ARM #	Study Type	nem type: Do Species	ocument Nu Strain	mber: Metabolic Activation	D Does not me All Doses	ocument S eet at least Dose Unit	tatus: : core standar Test Cytotoxicity	Revier ds Test Precipitation	w Date: R Test Call	esults found 8 Study Call
4 RM	Study Type	sance: cryan par ment type: Do Species Salmonella	ocument Nu Strain TA98	Metabolic Activation Absent	D Does not me All Doses 280.0	ocument S eet at least Dose Unit micro-	tatus: : core standar Test Cytotoxicity	Review ds Test Precipitation	w Date: R Test Call Negative	Results found 8 Study Call Negative
# 1	Study Type Bacterial mutagenesis	Species Salmonella typhimurium	Strain TA98	Metabolic Activation Absent	D Does not me All Doses 280.0 micro-	ocument S eet at least Dose Unit micro- g/plate	tatus: : core standar Test Cytotoxicity	Revier ds Test Precipitation	w Date: R Test Call Negative	Results found 8 Study Call Negative
# 1	Study Type Bacterial mutagenesis	Species Salmonella typhimurium	Strain TA98	Metabolic Activation Absent	Does not me All Doses 280.0 micro- g/plate	ocument S eet at least Dose Unit micro- g/plate	tatus: : core standar Test Cytotoxicity	Review ds Test Precipitation	w Date: R Test Call Negative	Results found 8 Study Call Negative
RM # 1	Study Type Bacterial mutagenesis Bacterial	Species Salmonella typhimurium	Strain TA98 TA100	Metabolic Activation Absent Absent	Does not me All Doses 280.0 micro- g/plate 280.0	ocument S eet at least Dose Unit micro- g/plate micro-	tatus: : core standar Test Cytotoxicity	Review ds Test Precipitation	w Date: R Test Call Negative Negative	Results found 8 Study Call Negative Negative
# 1	Status. Docum Study Type Bacterial mutagenesis Bacterial mutagenesis	Salmonella typhimurium	Strain TA98 TA100	Metabolic Activation Absent Absent	Does not me All Doses 280.0 micro- g/plate 280.0 micro-	ocument S eet at least Dose Unit micro- g/plate micro- g/plate	tatus: : core standar Test Cytotoxicity	Review ds Test Precipitation	w Date: R Test Call Negative Negative	Results found 8 Study Call Negative Negative
# 1	Study Type Bacterial mutagenesis Bacterial mutagenesis	Salmonella typhimurium	Cument Nu Strain TA98 TA100	Metabolic Activation Absent Absent	Does not me All Doses 280.0 micro- g/plate 280.0 micro- g/plate	ocument S eet at least Dose Unit micro- g/plate micro- g/plate	tatus: : core standar Test Cytotoxicity	Review ds Test Precipitation	w Date: R Test Call Negative Negative	Results found 8 Study Call Negative Negative
# 1 2 3	Study Type Bacterial mutagenesis Bacterial mutagenesis Bacterial mutagenesis	Salmonella typhimurium Salmonella	Cument Nu Strain TA98 TA100	Metabolic Activation Absent Absent	Does not me All Doses 280.0 micro- g/plate 280.0 micro- g/plate	ocument S eet at least Dose Unit micro- g/plate micro- g/plate	tatus: : core standar Test Cytotoxicity	Review ds Test Precipitation	w Date: R Test Call Negative Negative Negative	Results found 8 Study Call Negative Negative Negative
# 1 2 3	Study Type Bacterial mutagenesis Bacterial mutagenesis Bacterial mutagenesis	Salmonella typhimurium Salmonella typhimurium Salmonella typhimurium	TA100	Metabolic Activation Absent Absent	Does not me All Doses 280.0 micro- g/plate 280.0 micro- g/plate	ocument S eet at least Dose Unit micro- g/plate micro- g/plate	tatus: core standar Test Cytotoxicity	Review ds Test Precipitation	w Date: R Test Call Negative Negative Negative	Study Call Negative Negative Negative
# 1 2 3	Study Type Bacterial mutagenesis Bacterial mutagenesis Bacterial mutagenesis	Salmonella typhimurium Salmonella typhimurium Salmonella typhimurium	TA100	Metabolic Activation Absent Absent data	Does not me All Doses 280.0 micro- g/plate 280.0 micro- g/plate	ocument S eet at least Dose Unit micro- g/plate micro- g/plate	tatus: core standar Test Cytotoxicity	Review ds Test Precipitation	w Date: R Test Call Negative Negative Negative	Results found 8 Study Call Negative Negative Negative
# 1 2 3 4	Study Type Bacterial mutagenesis Bacterial mutagenesis Bacterial mutagenesis Bacterial mutagenesis Bacterial	Salmonella typhimurium Salmonella typhimurium Salmonella typhimurium Salmonella	Strain TA98 TA100	Metabolic Activation Absent Absent data Absent	Does not me All Doses 280.0 micro- g/plate 280.0 micro- g/plate	ocument S eet at least Dose Unit micro- g/plate micro- g/plate	tatus: core standar Test Cytotoxicity	Review ds Test Precipitation	w Date: R Test Call Negative Negative Negative	Results found 8 Study Call Negative Negative Negative Negative

< Done 🖉 MOSES.RiskAssessment | Query Results - Mozilla Firefox

File Edit View History Bookmarks Tools Help

MOSES.RiskAssessment | Qu... +

Structure found in the database.

trans-Anethole; Benzene, 1-methoxy-4-(1E)-1-propenyl-; (E)-Anethole; Anisole, p-propenyl-, (E)- (8CI); Anisole, p-propenyl-, trans-; Benzene, 1-methoxy-4-(1-propenyl)-, (E)-

<

>

v

🕹 MOSES.RiskAssessment Query Results - Moz	zilla Firefox		
<u>File E</u> dit <u>V</u> iew Hi <u>s</u> tory <u>B</u> ookmarks <u>T</u> ools <u>H</u> elp			
MOSES.RiskAssessment Qu +			
	Compound Informatio ID CAS-RN Trade Name Chemical Name Substance Use Types Show Ames Data	n 2208 4180-23-8 trans-Anethole Flavoring agent	

Generate a report for the database record.

>

<

Done

🕹 MOSES.RiskAssessment | Query Results - Mozilla Firefox File Edit View History Bookmarks Tools Help MOSES.RiskAssessment | Qu... + **Compound Information** ID 2208 CAS-RN 4180-23-8 Trade Name Chemical Name trans-Anethole Substance Use Types Flavoring agent Show Ames Data Generate a report for the database record. TTC analysis Next steps.

Select the next step to be performed.

Run

Run analog searc TTC categories Run TTC analysis 0 Run toxicity predicti Run metabolism prediction Select the phenotypic endpoint of your interest: Genetic toxicity - bacterial mutagenesis 🔽

TTC category 🔽

Select analysis parameters for your own analysis:

<

~

^

🕘 MOSES.RiskAssessment Que	ery Results - Mozilla Firefox	
<u>File Edit View History Bookmark</u>	ks <u>T</u> ools <u>H</u> elp	
MOSES.RiskAssessment Qu	. +	
trans-Ar 1-metho	nethole; Benzene, 1-methoxy-4-(1E)-1-propenyl-; (E)-Anethole; Anisole, p-propenyl-, (E)- (8CI); Anisole, p-pr oxy-4-(1-propenyl)-, (E)-	ropenyl-, trans-; Benzene,
	Compound Information	
	ID 2208	
	CAS-RN 4180-23-8	
~°	Trade Name	
	Chemical Name trans-Anethole	
	Show Ames Data	
Generate a	a report for the database record.	
Next s	steps.	
Select the	e next step to be performed.	
	Run analog search	
	Run TTC analysis	
	Run toxicity prediction	
	Run metabolism prediction	

Run

< Done *

MOSES.RiskAssessme	nent Query Results - Mozilla Firefox	
ile <u>E</u> dit <u>V</u> iew Hi <u>s</u> tory	/ <u>B</u> ookmarks <u>T</u> ools <u>H</u> elp	
MOSES.RiskAssessme	nent Qu 🔅	
	trans-Anethole; Benzene, 1-methoxy-4-(1E)-1-propenyl-; (E)-Anethole; Anisole, p-propenyl-, (E)- (8CI); Anisole, p-propenyl-, trans-; Benzene, 1-methoxy-4-(1-propenyl)-, (E)-	4
	Compound Information	
	ID 2208	
	CAS-RN 4180-23-8	
	O Trade Name	
	Chemical Name trans-Anethole	
	Show Ames Data	
G	Generate a report for the database record.	
	Next steps.	
	Select the next step to be performed. Run analog search Run TTC analysis	
<	Run toxicity prediction Run metabolism prediction	
	Run	

~

Done

< Done >

	Probability of being positive 0.204	Prediction negative	no. 2
H o	Show Model Details		

C10H12O2

>

<

Features & Functionality

- Knowledge base for hazard and risk assessment of chemicals
- Database lookup by text-based, analog and similarity searches
- Retrieval of available study information for query compound and analogs
- Generation and evaluation of metabolites of query and analogs (including CYP isoform specificity)
- Analysis tools for query, analogs and their metabolites
- TTC analysis
- QSAR predictions of toxicity endpoints (e.g., Ames mutagenicity)
- Report generation
- Fully web-based, easy-to-use user interface

Metabolism in the ToxCast Dataset

Identification of Parent/Metabolite Pairs in the ToxCast Dataset

Approach

- Generate all conceivable metabolites for the compounds in the ToxCast dataset with MOSES.Metabolism
- Determine the intersection of the set of all generated metabolites with the set of compounds in the ToxCast dataset

Results

- MOSES.Metabolism generated 1826 metabolites for the 309 unique compounds from the ToxCast dataset (approx. six metabolites per parent compound on average)
- Fourteen parent/metabolite pairs could be identified

Most Frequently Observed Reaction Types in ToxCast

Aromatic hydroxylation of a phenyl ring: 543 **O-Dealkylation: 99 Ester hydrolysis:** 77 **N-Dealkylation:** 71 Aromatic amine oxidation: 64 Amide hydrolysis: 63 Aliphatic hydroxylation of a primary carbon atom next to 59 a secondary carbon atom: Aromatic hydroxylation of 1,2-substituted aromatic ring 52 in 4 position: **O-Sulphation:** 52

Parent Compounds

CI

Metam-sodium hydrate

Malathion

Dimethylphthalate

Diazinon

Chlorpyrifos

Atrazine

Methoxychlor

Mancozeb Molecular Networks Inspiring Chemical Discovery

Diethylhexylphthalate

Maneb

Dibutylphthalate

Metiram-zinc

Extension of Reaction Rules

- Reaction rules for oxidative desulfuration were added to MOSES.Metabolism in order to identify the following parent compound metabolite pairs in the ToxCast data set:
 - Malathion Malaoxon
 - Diazinon Diazoxon
 - Chlorpyrifos Chlorpyrifos oxon
 - > Metam-sodium hydrate Methylisothiocyanate

Molecular Networks

Parent/Metabolite Pairs 5 & 6

Probability: 0.67

Rank: 1

N-Demethylation of RNMe₂

Parent/Metabolite Pairs 9 & 10

N-Acetylation of heterobonded NH₂

Probability: 0.08

Rank: 1

Esterhydrolysis
F
N
O

Probability: 0.67

Cl

Cl

Oxidative desulfuration

> Malathion – Malaoxon

Oxidative desulfuration

Diazinon – Diazoxon

Oxidative desulfuration

Chlorpyrifos – Chlorpyrifos oxon

Oxidative desulfuration

> Metam-sodium hydrate – Methylisothiocyanate

Missing Pairs

Parent – Metabolite Pairs

- Mancozeb/Maneb/Metiram Ethylenethiourea
- Methoxychlor HPTE

Reason

- Missing rule; metal complex
- O-Demethylation in two positions; rules were only applied ones

New Descriptors for Metabolic Reactivity

- Describing chemical structures with a priori chemical knowledge on reaction centers and metabolic reactivity
- Metabolic reactivity classes
 - > To describe metabolic fate of chemicals
 - Reaction types
 - aromatic hydroxylation, aliphatic hydroxylation, N- and O-dealkylation, hydrolysis (ester, amide), and conjugation reactions (acetylation, sulfation, etc.)
- Use of the MOSES.Metabolism rule base for metabolic screening (metabolic profile; metabolic fingerprints)

Extract of the Metabolic Reactivity Matrix of the ToxCAST Data Set

Fingerprint View of Metabolic Reactivity Classes

Molecular Networks

Metabolic Reactivity Profile of the ToxCast Dataset

Inspiring Chemical Discovery

Probability of conceivable metabolic reactions

309 compounds; 115 reaction rules from MOSES.Metabolism (2009-06-11)Molecular Networks

Metabolic Reactivity Profile

The Metabolic Reactivity Profiles provide an easy method for rapidly screening for potential metabolites in large datasets of compounds

Molecular Networks

- Innovation company for Chemoinformatics
 - "Chemoinformatics: the processing of chemical information by informatics tools"
- Mission statement
 - Increasing the quality and productivity of discoveries in chemical, pharmaceutical and biotechnology R&D

Products and services

- Broad range of scientific software products
- Consulting and research services
- Contract development

Molecular Networks Provides Applications for ...

- Drug design and property prediction
- Synthesis design and reaction prediction
- Risk Assessment of Chemicals
- Prediction of metabolism
 - Endogenous metabolism
 - Metabolism of xenobiotics (drugs, agrochemicals, ...)
- Design of biotechnological processes
- Data warehousing & mining
- Handling, processing and manipulation of chemical structure, reaction and related information

Acknowledgements

- Dr. Aleksey Tarkhov
- Dr. Bruno Bienfait
- Dr. Christof Schwab
- Dr. Jörg Marusczyk
- Dr. Lothar Terfloth
- Dr. Oliver Sacher
- Dr. Thomas Kleinöder

Collaboration

Dr. Chihae Yang

and my former coworkers at Computer-Chemie-Centrum University of Erlangen

Molecular Networks GmbH

www.molecular-networks.com

