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FOREWORD

This document presents EPA’s nutrient criteria for Wetlands in Nutrient Ecoregion
XIII.  These criteria provide EPA’s recommendations to States and authorized Tribes for use in
establishing their water quality standards consistent with section 303(c) of CWA.  Under section
303(c) of the CWA, States and authorized Tribes have the primary responsibility for adopting
water quality standards as State or Tribal law or regulation.  The standards must contain
scientifically defensible water quality criteria that are protective of designated uses.  EPA’s
recommended section 304(a) criteria are not laws or regulations – they are guidance that States
and Tribes may use as a starting point for the criteria for their water quality standards.   

The term “water quality criteria” is used in two sections of the Clean Water Act, Section
304(a)(1) and Section 303(c)(2).  The term has a different impact in each section. In Section 304,
the term represents a scientific assessment of ecological and human health effects that EPA
recommends to States and authorized Tribes for establishing water quality standards that
ultimately provide a basis for controlling discharges or releases of pollutants or related
parameters.   Ambient water quality criteria associated with specific waterbody uses when
adopted as State or Tribal water quality standards under Section 303 define the level of a
pollutant (or, in the case of nutrients, a condition) necessary to protect designated uses in ambient
waters.  Quantified water quality criteria contained within State or Tribal water quality standards
are essential to a water quality-based approach to pollution control.  Whether expressed as
numeric criteria or quantified translations of narrative criteria within State or Tribal water quality
standards, quantified criteria serve as a critical basis for assessing attainment of designated uses
and measuring progress toward meeting the water quality goals of the Clean Water Act.

EPA is developing section 304(a) water quality criteria for nutrients because States and
Tribes consistently identify excessive levels of nutrients are a major reason why as much as half of
the surface waters surveyed in this country do not meet water quality objectives, such as full
support of aquatic life.   EPA expects to develop nutrient criteria that cover four major types of
waterbodies – lakes and reservoirs, rivers and streams, estuarine and coastal areas, and wetlands –
across fourteen major ecoregions of the United States.   EPA’s section 304(a) criteria are
intended to provide for the protection and propagation of aquatic life and recreation.  To support
the development of nutrient criteria, EPA is publishing Technical Guidance Manuals that describe
a process for assessing nutrient conditions in the four waterbody types. 

EPA’s section 304(a) water quality criteria for nutrients provide numeric water quality
criteria, as well as procedures by which to translate narrative criteria within State or Tribal water
quality standards.  In the case of nutrients, EPA section 304(a) criteria establish values for causal
variables (e.g., total nitrogen and total phosphorus) and response variables (e.g., turbidity and
chlorophyll a).  EPA believes that State and Tribal water quality standards need to include
quantified endpoints for causal and response variables to provide sufficient protection of uses and
to maintain downstream uses.  These quantified endpoints will most often be expressed as
numeric water quality criteria or as procedures to translate a State or Tribal narrative criterion
into a quantified endpoint.

EPA will work with States and authorized Tribes as they adopt water quality
criteria for nutrients into their water quality standards.  EPA recognizes that States and authorized
Tribes require flexibility in adopting numeric nutrient criteria into State and Tribal water quality
standards.  States and authorized Tribes have several options available to them.  EPA
recommends the following approaches, in order of preference:
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(1) Wherever possible, develop nutrient criteria that fully reflect localized conditions and
protect specific designated uses using the process described in EPA’s Technical Guidance
Manuals for nutrient criteria development.  Such criteria may be expressed either as
numeric criteria or as procedures to translate a State or Tribal narrative criterion into a
quantified endpoint in State or Tribal water quality standards.

(2) Adopt EPA’s section 304(a) water quality criteria for nutrients, either as numeric
criteria or as procedures to translate a State or Tribal narrative nutrient criterion into a
quantified endpoint.

(3) Develop nutrient criteria protective of designated uses using other scientifically
defensible methods and appropriate water quality data.

                                                            
Geoffrey H. Grubbs, Director
Office of Science and Technology
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DISCLAIMER

This document provides technical guidance and recommendations to States, authorized
Tribes, and other authorized jurisdictions to develop water quality criteria and water quality
standards under the Clean Water Act (CWA) to protect against the adverse effects of nutrient
overenrichment.  Under the CWA, States and authorized Tribes are to establish water quality
criteria to protect designated uses.  State and Tribal decision-makers retain the discretion to adopt
approaches on a case-by-case basis that differ from this guidance when appropriate and
scientifically defensible.   While this document contains EPA’s scientific recommendations
regarding ambient concentrations of nutrients that protect aquatic resource quality, it does not
substitute for the CWA or EPA regulations; nor is it a regulation itself.  Thus it cannot impose
legally binding requirements on EPA, States, authorized Tribes, or the regulated community, and
it might not apply to a particular situation or circumstance.  EPA may change this guidance in the
future.
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EXECUTIVE SUMMARY
 

Nutrient Program Goals

EPA developed the National Strategy for the Development of Regional Nutrient Criteria
(National Strategy) in June 1998. The strategy presents EPA=s intentions to develop technical
guidance manuals for four types of waters (lakes and reservoirs, rivers and streams, estuaries and
coastal waters, and wetlands) and produce section 304(a) criteria for specific nutrient ecoregions
by the end of 2000.  In addition, the Agency formed Regional Technical Assistance Groups
(RTAGs) which include State and Tribal representatives working to develop more refined and
more localized nutrient criteria based on approaches described in the waterbody guidance
manuals.  This document presents EPA=s current recommended criteria for total phosphorus for
wetlands in Nutrient Ecoregion XIII - Southern Florida Coastal Plain which were derived using
peer-reviewed publications of research conducted in the Everglades and the findings and
information associated with the EPA approval of the Miccosukee Tribe of Indians of Florida
standard for phosphorus for the Federal Reservation within the Everglades.

EPA’s ecoregional nutrient criteria are intended to address cultural eutrophication – the
adverse effects of excess inputs of nutrients.  The criteria are empirically derived to represent
conditions of surface waters that are minimally impacted by human activities and are protective of
aquatic life and recreational uses.  The information contained in this document represent starting
points for States and Tribes to develop (with assistance from EPA) more refined nutrient criteria.

In developing these criteria recommendations, EPA followed a process which included, to
the extent they were readily available, the following elements critical to criterion derivation: 

! Historical and recent nutrient data in Nutrient Ecoregion XIII.
Historical and recent data used in the development of the nutrient criteria for this
ecoregion include information from more than 300 scientific publications and reports were
reviewed and summarized; the Everglades Interim Report (1999) published by the South
Florida Water Management District; Phosphorus Biogeochemistry in Subtropical
Ecosystems (1999) a compilation of papers from a symposium, and a comparison of soil
phosphorus concentrations in 1990 and 1998 by DeBusk et al. (1994) and DeBusk et al.
(in press).   
 

!! Reference sites/reference conditions in Nutrient Ecoregion XIII. 
Reference conditions presented in this document were summarized from peer-reviewed
literature and the primary source documents listed above.  The water column phosphorus
number for reference condition and criteria recommendations is based on long-term (at
least three months) average values.  Hydrologic variability can result in variable
concentrations of water column total phosphorus, therefore, a long-term or rolling
average, or geometric mean (as required by the Everglades Forever Act; Section 373.4592
Florida Statutes) is most appropriate to identify reference conditions and evaluate
excursions from numeric criteria in this system.  In developing reference conditions, the
natural, seasonal/annual hydrologic variability should be considered.  Periphyton reference
condition and criterion recommendations are based on relative species abundance, which
has been found to be an integrative measure of nutrient condition.   for the previous three
months.  The oligotrophic Everglades marsh system contains a mosaic of wetland
community types, such as sloughs, wet prairies and sawgrass marshes, all of which are
adapted to low nutrient conditions.  The mosaic character of the South Florida Coastal
Plain Nutrient Ecoregion, which provides a diverse array of habitats for animals, is an
important defining characteristic of the Everglades and was recognized in developing
reference conditions for the ecoregion.  States and Tribes are urged to determine their
own reference sites for wetlands within the ecoregion at different geographic scales and to
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compare them to EPA’s reference conditions.

! Models employed for prediction or validation. 
Several models have been developed for the Everglades.  Summaries and detailed
descriptions of models developed for the Everglades can be found in McCormick et al.
(1999) and Phosphorus Biogeochemistry in Subtropical Ecosystems (1999), respectively. 
States and Tribes are encouraged to identify and apply appropriate models to support
nutrient criteria development. 

!! RTAG expert review and consensus.
EPA recommends that when States and Tribes prepare their nutrient criteria, they obtain 
the expert review and consent of the RTAG.

! Downstream effects of criteria. 
EPA encourages the RTAG to assess the potential effects of the proposed criteria on
downstream water quality and uses.

A summary of reference conditions for the Aggregate nutrient ecoregion for water column
TP and vegetation are presented below.  These were chosen because they constitute early warning
indicators of eutrophication within the Everglades systems.  

BASED ON LITERATURE VALUES

Aggregate Ecoregion XIII-
Southern Florida Coastal Plain

Reference Conditions

Total Water Column Phosphorus
(µg/L)

10

Periphyton No significant change in relative
species abundance

EPA also recommends that States and Tribes develop reference conditions and criteria  for
soil phosphorus levels since it is considered a necessary indicator of eutrophication and
phosphorus condition within the Everglades.  Studies have indicated that 300-600 mg P/kg soil is
the preferred range for organic soils.  However, these same levels may not be appropriate for
mineral soils in some regions of the Everglades.  
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NOTICE OF DOCUMENT AVAILABILITY

This document is available electronically to the public through the INTERNET at:
(http://www.epa.gov/OST/standards/nutrient.html).  Requests for hard copies of the document
should be made to EPA’s National Service Center for Environmental Publications (NSCEP),
11029 Kenwood Road, Cincinnati, OH  45242 or (513) 489-8190, or toll free (800) 490-9198.  
Please refer to EPA document number EPA-822-B-00-023.
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1.0 INTRODUCTION

Background

Nutrients are essential to the health and diversity of our surface waters.  However, in
excessive amounts, nutrients cause hypereutrophication, which results in overgrowth of plant life
and decline of the biological community.  Excessive nutrients can also result in potential human
health risks, such as the growth of harmful algal blooms - most recently manifested in the
Pfiesteria outbreaks of the Gulf and East Coasts.  Chronic nutrient overenrichment of a
waterbody can lead to the following consequences:  low dissolved oxygen, fish kills, algal blooms,
overabundance of macrophytes, likely increased sediment accumulation rates, and species shifts of
both flora and fauna. 

Historically, National Water Quality Inventories have repeatedly shown that nutrients are a
major cause of ambient water quality use impairments.  EPA’s 1996 National Water Quality
Inventory report identifies excessive nutrients as the leading cause of impairment in lakes and the
second leading cause of impairment in rivers (behind siltation).  In addition, nutrients were the
second leading cause of impairments reported by the States in their 1998 lists of impaired waters. 
Where use impairment is documented, nutrients contribute roughly 25-50% of the impairment
nationally.  The Clean Water Act establishes a national goal to achieve, wherever attainable, water
quality which provides for the protection and propagation of fish, shellfish, and wildlife and
recreation in and on the water.  In adopting water quality standards, States and Tribes designate
uses for their waters in consideration of the Clean Water Act goals, and establish water quality
criteria that contain sufficient parameters to protect those uses.  To date, EPA has not published
information and recommendations under section 304(a) for nutrients to assist States and Tribes in
establishing numeric nutrient criteria to protect uses when adopting water quality standards.

In 1995, EPA gathered a set of national experts and asked the experts how to best deal
with the national nutrient problem.  The experts recommended that the Agency not develop single
criteria values for phosphorus or nitrogen applicable to all water bodies and regions of the
country.  Rather, the experts recommended that EPA put a premium on regionalization, develop
guidance (assessment tools and control measures) for specific waterbodies and ecological regions
across the country, and use reference conditions (conditions that reflect pristine or minimally
impacted waters) as a basis for developing nutrient criteria.

With these suggestions as starting points, EPA developed the National Strategy for the
Development of Regional Nutrient Criteria (National Strategy), published in June 1998.  This
strategy presented EPA’s intentions to develop technical guidance manuals for four types of
waters (lakes and reservoirs, rivers and streams, estuaries and coastal waters, and wetlands) and,
thereafter, to publish section 304(a) criteria recommendations for specific nutrient ecoregions. 
Technical guidance manuals for lakes/reservoirs and rivers/streams were published in April 2000
and July 2000, respectively.  The technical guidance manual for estuaries/coastal waters will be
published in spring 2000 and the draft wetlands technical guidance manual will be published by
December 2001.  Each manual presents EPA’s recommended approach for developing nutrient
criteria values for a specific waterbody type.  In addition, EPA is committed to working with
States and Tribes to develop more refined and more localized nutrient criteria based on
approaches described in the waterbody guidance manuals and this document.  

Overview of the Nutrient Criteria Development Process

For each Nutrient Ecoregion, EPA developed a set of recommendations for two causal
variables (total nitrogen and total phosphorus) and two early indicator response variables
(chlorophyll a and some measure of turbidity).  Other indicators such as dissolved oxygen and
macrophyte growth or speciation, and other fauna and flora changes are also deemed useful. 
However, the first four are considered to be the best suited for protecting designated uses.  This
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basic set of indicators clearly must be modified for wetlands to accommodate the complexity of these
aquatic environments.  The parameters of concern for the Southern Florida Coastal Plain are water
column total phosphorus (TP) concentration; soil phosphorus concentration, and change in vegetation
communities.  Parameters of concern for the Everglades will also be used in other wetland systems,
if appropriate.  

The technical guidance manuals describe a process for developing nutrient criteria that
involves consideration of five factors.  The first of these is the Regional Technical Assistance Group
(RTAG), which is a body of qualified regional specialists able to objectively evaluate all of the
available evidence and select the value(s) appropriate to nutrient control in the water bodies of
concern.  These specialists may come from such disciplines as limnology, biology, natural resources
management-- especially water resource management, chemistry, and ecology.  The RTAG evaluates
and recommends appropriate classification techniques for criteria determination, usually physical
within an ecoregional construct.

The second factor is the historical information available to establish a perspective of the
resource base.  This is usually data and anecdotal information available within the past ten to twenty-
five years.  This information gives evidence about the background and enrichment trend of the
resource.

The third factor is the present reference condition.  A selection of reference sites chosen to
represent the least culturally impacted waters of the class existing at the present time.  The data from
these sites are combined and a value from the distribution of these observations is selected to
represent the reference condition, or best attainable, most natural condition of the resource base at
this time.

A fourth factor often employed is theoretical or empirical models of the historical and
reference condition data to better understand the condition of the resource.  It is recognized that,
distinct from ambient monitoring or empirical efforts, field and laboratory experiments can elucidate
 specific processes and establish cause and effect.  These studies (such as field nutrient dosing studies,
mesocosm studies, or laboratory mesocosm or microcosm experiments) can facilitate causal
interpretation of data. (Lean, et al., 1992; Hopkinson, et la., 1998).

The RTAG comprehensively evaluates the other three elements to propose a candidate
criterion (initially one each for TP, TN, chl a, and some measure of turbidity).

The last and final element of the criteria development process is the assessment by the RTAG
of the likely downstream effects of the criterion.  Will there be a negative, positive, or neutral effect
on the downstream waterbody?  If the RTAG judges that a negative effect is likely, then the proposed
State/Tribal water quality criteria should be revised to ameliorate the potential for any adverse
downstream effects.

While States and authorized Tribes would not necessarily need to incorporate all five elements
into their water quality criteria setting process (e.g., modeling may be significant in only some
instances), the best assurance of a representative and effective criterion for nutrient management
decision making is the balanced incorporation of all five elements, or at least all elements except
modeling.

Because some parts of the country have naturally higher soil and parent material enrichment,
and different precipitation regimes, the application of the criterion development process has to be
adjusted by region.  Therefore, an ecoregional approach was chosen to develop nutrient criteria
appropriate to each of the different geographical and climatological areas of the country.  Initially,
the continental U.S. was divided into 14 separate ecoregions of similar geographical characteristics.
Ecoregions are defined as regions of relative homogeneity in ecological systems; they depict areas
within which the mosaic of ecosystem components (biotic and abiotic as well as terrestrial and
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aquatic) is different than adjacent areas in a holistic sense.  Geographic phenomena such as soils,
vegetation, climate, geology, land cover, and physiology that are associated with spatial differences
in the quantity and quality of ecosystem components are relatively similar within each ecoregion.  

The Nutrient ecoregions are aggregates of U.S. EPA=s hierarchal level III ecoregions
(Omernik, 1995, 1998).  As such, they are more generalized and less defined than level III
ecoregions. EPA determined that setting ecoregional criteria for the large scale aggregates is not
without its drawbacks - variability is high due to the lumping of many waterbody classes, seasons, and
years worth of multipurpose data over a large geographic area.  For these reasons, the Agency
recommends that States and Tribes develop nutrient criteria at the level III ecoregional scale and at
the waterbody class scale where those data are readily available.  Data analyses and recommendations
on both the large aggregate ecoregion scale as well as more refined scales (level III ecoregions and
waterbody classes), where data were available to make such assessments, are presented for
comparison purposes and completeness of analysis.   

Relationship of Nutrient Criteria to Biological Criteria

Biological criteria are quantitative expressions of the desired condition of the aquatic
community.  Such criteria can be based on an aggregation of data from sites that represent the least-
impacted and attainable condition for a particular waterbody type in an ecoregion, subecoregion, or
watershed.  EPA’s nutrient criteria recommendations and biological criteria recommendations have
many similarities in the basic approach to their development and data requirements.  Both are
empirically derived from statistical analysis of field collected data and expert evaluation of current
reference conditions and historical information.   Both utilize direct measurements from the
environment to integrate the effects of complex processes that vary according to type and location
of waterbody.  The resulting criteria recommendations, in both cases, are efficient and holistic
indicators of water quality necessary to protect uses.

States and authorized Tribes can develop and apply nutrient criteria and biological criteria in
tandem, with each providing important and useful information to interpret both the nutrient
enrichment levels and the biological condition of sampled waterbodies.  For example, using the same
reference sites for both types of criteria can lead to efficiencies in both sample design and data
analysis.  In one effort, environmental managers can obtain information to support assessment of
biological and nutrient condition, either through evaluating existing data sets or through designing
and conducting a common sampling program.  The traditional biological criteria variables of benthic
invertebrate and fish sampling can be readily incorporated to supplement a nutrient assessment.  To
demonstrate the effectiveness of this tandem approach, EPA has initiated pilot projects in both
freshwater and marine environments to investigate the relationship between nutrient overenrichment
and apparent declines in diversity indices of benthic invertebrates and fish.

2.0 BEST USE OF THIS INFORMATION

EPA recommendations published under section 304(a) of the CWA serve several purposes,
including providing guidance to States and Tribes in adopting water quality standards for nutrients
that ultimately provide a basis for controlling discharges or releases of pollutants.  The
recommendations also provide guidance to EPA when promulgating Federal water quality standards
under section 303(c) when such action is necessary.  Other uses include identification of
overenrichment problems, management planning, project evaluation, and determination of status and
trends of water resources.   

State water quality inventories and listings of impaired waters consistently rank nutrient
overenrichment as a top contributor to use impairments.  EPA’s water quality standards regulations
at 40 CFR §131.11(a) require States and Tribes to adopt criteria that contain sufficient parameters
and constituents to protect the designated uses of their waters.  In addition, States and Tribes need
quantifiable targets for nutrients in their standards to assess attainment of uses, develop water quality-
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based permit limits and source control plans, and establish targets for total maximum daily loads
(TMDLs).

EPA expects States and Tribes to address nutrient overenrichment in their water quality
standards, and to build on existing State and Tribal initiated efforts where possible.  States and Tribes
can address nutrient overenrichment through establishment of numerical criteria or through use of
new or existing narrative criteria statements (e.g., free from excess nutrients that cause or contribute
to undesirable or nuisance aquatic life or produce adverse physiological response in humans, animals,
or plants).  In the case of narrative criteria, EPA expects that States and Tribes establish procedures
to quantitatively translate these statements for both assessment and source control purposes. 

The intent of developing ecoregional nutrient criteria is to represent conditions of surface
waters that are minimally impacted by human activities and thus protect against the adverse effects
of nutrient overenrichment from cultural eutrophication.  EPA’s recommended process for developing
such criteria includes physical classification of waterbodies, determination of current reference
conditions, evaluation of historical data and other information (such as published literature), use of
models to simulate physical and ecological processes or determine empirical relationships among
causal and response variables (if necessary), expert judgement, and evaluation of downstream effects.
To the extent allowed by the information available, EPA has used elements of this process to produce
the information contained in this document.  The values for both causal (total nitrogen, total
phosphorus) and biological and physical response (chlorophyll a, turbidity) variables represent a set
of starting points for States and Tribes to use in establishing their own criteria in standards to protect
uses.

In its water quality standards regulations, EPA recommends that States and Tribes establish
numerical criteria based on section 304(a) guidance, section 304(a) guidance modified to reflect site-
specific conditions, or other scientifically defensible methods.  For many pollutants, such as toxic
chemicals, EPA expects that section 304(a) guidance will provide an appropriate level of protection
without further modification in most cases.  EPA has also published methods for modifying 304(a)
criteria on a site-specific basis, such as the water effect ratio, where site-specific conditions warrant
modification to achieve the intended level of protection.  For nutrients, however, EPA expects that,
in most cases, it will be necessary for States and authorized Tribes to identify with greater precision
the nutrient levels that protect aquatic life and recreational uses.  This can be achieved through
development of criteria modified to reflect conditions at a smaller geographic scale than an ecoregion
such as a subecoregion, the State or Tribe level, or specific class of waterbodies.  Criteria refinement
can occur by grouping data or performing data analyses at these smaller geographic scales.
Refinement can also occur through further consideration of other elements of criteria development,
such as published literature or models.

The values presented in this document generally represent nutrient levels that protect against
the adverse effects of nutrient overenrichment and are based on information available to the Agency
at the time of this publication.  However, States and Tribes should critically evaluate this information
in light of the specific designated uses that need to be protected.  For example, more sensitive uses
may require more stringent values as criteria to ensure adequate protection.  On the other hand,
overly stringent levels of protection against the adverse effects of cultural eutrophication may actually
fall below levels that represent the natural load of nutrients for certain waterbodies.  In cases such as
these, the level of nutrients specified may not be sufficient to support a productive fishery.  In the
criteria derivation process, it is important to distinguish between the natural load associated with a
specific waterbody and current reference conditions, using historical data and expert judgement.
These elements of the nutrient criteria derivation process are best addressed by States and Tribes with
access to information and local expertise.  Therefore, EPA strongly encourages States and Tribes to
use the information contained in this document and to develop more refined criteria according to the
methods described in EPA’s technical guidance manuals for specific waterbody types.

To assist in the process of further refinement of nutrient criteria, EPA has established ten
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Regional Technical Advisory Groups (experts from EPA Regional Offices and States/Tribes).  In the
process of refining criteria, States and authorized Tribes need to provide documentation of data and
analyses, along with a defensible rationale, for any new or revised nutrient criteria they submit to EPA
for review and approval.  As part of EPA’s review of State and Tribal standards, EPA intends to seek
assurance from the RTAG that proposed criteria are sufficient to protect uses.

In the process of using the information and recommendations contained in this document, as
well as additional information, to develop numerical criteria or procedures to translate narrative
criteria, EPA encourages States and Tribes to:

C Address both chemical causal variables and early indicator response variables.  Causal
variables are necessary to provide sufficient protection of uses before impairment occurs and
to maintain downstream uses.  Early response variables are necessary to provide warning
signs of possible impairment and to integrate the effects of variable and potentially
unmeasured nutrient loads.

C Include variables that can be measured to determine if standards are met, and variables that
can be related to the ultimate sources of excess nutrients.

C Identify appropriate periods of duration (i.e., how long) and frequency (i.e., how often) of
occurrence in addition to magnitude (i.e., how much).  EPA does not recommend identifying
nutrient concentrations that must be met at all times, rather a seasonal or annual averaging
period (e.g.,based on weekly measurements) is considered appropriate.  However, these
seasonal or annual central tendency measures (i.e., geometric mean or median) should apply
each season or each year, except under the most extraordinary of conditions (e.g., a 100 year
flood).

3.0 AREA COVERED BY THIS DOCUMENT

The following sections provide a general description of the aggregate ecoregion and its
geographical boundaries.  A descriptions of the level III ecoregion contained within the aggregate
ecoregion is also provided.

3.1 Description of Aggregate Ecoregion XIII – Southern Florida Coastal Plain

The Southern Florida Coastal Plain is nearly level and subtropical to tropical (U.S. EPA,
2000).  It is characterized by wildlife-rich fresh water marshes, wet prairies, sloughs, swamps, and
coastal wetlands; only about 10% is used as cropland.  Canals, ditches, and broad, poorly-defined
stream channels are common.  Lakes are generally rare but one large, shallow, regulated lake is
found in the region, Lake Okeechobee; it links the waters of the Kissimmee Basin to the
Everglades.  Elevations are low and range from sea level to less than 50 feet; only hummocks,
limestone ridges, beach ridges, and dunes relieve the flatness of the region.  Poorly- and very
poorly-drained, organic soils (peat and muck) are common and overlie carbonate-rich bedrock. 
Much of the Southern Florida Coastal Plain (XIII) has been set aside as parks, game refuges,
water conservation areas, and Indian reservations.  However, extensive areas have also been
urbanized or drained for agriculture, resulting in the widespread alteration of hydrological and
biological systems, depletion of peat deposits, and reduction of regional water quality.  Canals
draining developed areas generally have higher nutrient concentrations than those flowing through
undeveloped areas.  Lake Okeechobee is one of the largest lakes in the United States and has been
significantly impacted by agricultural runoff.  Cattle and dairy farms have contributed a large
amount of phosphorus to the lake and the Everglades Agricultural Area has pumped nitrogen-rich
water into the lake to control flooding.  During the 1970s, lake concentrations of phosphorus and
nitrogen more than doubled and bottom sediments accumulated a massive quantity of phosphorus. 
By the mid-1980s, large algal blooms had occurred.
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3.2 Geographic Boundaries of Aggregate Ecoregion XIII

Ecoregion XIII is small compared to the other ecoregions; encompassing only the southern
quarter of Florida (Figure 1).

3.3 Level III Ecoregion Within Aggregate Ecoregion XIII

76.  Southern Florida Coastal Plain

The frost-free climate of the Southern Florida Coastal Plain makes it distinct from other
ecoregions in the conterminous United States (Figure 2).  This region is characterized by flat plains
with wet soils, marshland and swamp land cover with Everglades and palmetto prairie vegetation
types.  Although portions of this region are in parks, game refuges, and Indian reservations, a large
part of the region has undergone extensive hydrological and biological alteration.

Figure 1. Aggregate Ecoregion XIII
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Figure 2. Aggregate Ecoregion XIII with level III ecoregion shown

4.0 DATA REVIEW FOR WETLANDS IN AGGREGATE ECOREGION XIII

The following section describes the nutrient data information that EPA reviewed for this
Ecoregion.  They include data for the causal parameters-- total water column phosphorus and soil
phosphorus and the primary response variable-- periphyton- relative species abundance.  These are
the parameters which EPA considers essential to nutrient assessment in wetlands because the first two
are the measurements of the main causative agents of phosphorus enrichment and the response
variable is the early indicator of system enrichment for the Everglades ecosystem (Ecoregion XIII).

4.1 Data Sources 

Relevant scientific information used in determining the phosphorus criterion range in this
document has been summarized from the EPA finding in support of the criterion proposed for
Miccosukee tribal lands in Nutrient Ecoregion XIII (EPA 1999), from the Everglades Interim Report
(SFWMD 1999), from Phosphorus Biogeochemistry in Subtropical Ecosystems (1999), and from
DeBusk et al., 1994, and DeBusk et al., in press.  
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4.2 Historical Data from Aggregate Ecoregion XIII (water column TP, soil P and
vegetation):

EPA recommends that States/Tribes assess long-term trends observed over the past 50 years.
This information may be obtained from scientific literature or documentation of historical trends.  To
gain additional perspective on more recent trends, it is recommended that States and Tribes assess
nutrient trends over the last 10 years (e.g., what do seasonal trends indicate?)

 - long term trends over past 50 years.

Historical descriptions of the Everglades ecosystem are relatively scarce, and those that are
available are largely descriptive and qualitative, rather than quantitative in nature.  Information on
historical large-scale vegetation patterns is available, but water quality information is sparse prior to
the 1970s (McCormick et al., 1999).   Phosphorus inputs to the Everglades historically came largely
from atmospheric deposition.  Current estimates indicate that the total phosphorus concentration in
rainfall is typically less than 10 µg/L and that total atmospheric inputs average between 22 and 36 mg
TP/m2/yr; it is assumed that historical inputs were not greater than current estimates (McCormick et
al, 1999).  Historically, the Everglades also received periodic inflows from Lake Okeechobee, but
these inputs were likely small relative to atmospheric inputs.  The more remote interior areas of the
Everglades still exhibit the low P concentrations that once prevailed throughout the Everglades
system.  Measurements of soluble reactive phosphorus (SRP) and orthophosphate in some interior
marsh sites in the 1970s and 1980s indicate that background concentrations of 2 to 5 ppb were not
uncommon (Scheidt 1999).   More recent studies in the Everglades National Park (ENP) note the low
concentrations of phosphorus in the interior sites.  Scheidt, et al. (1989) summarized water quality
characteristics of the ENP from 1984-1986, and found typical orthophosphate concentrations of 4
ppb in the interior marsh sites, with P concentration values from 10 to 35 times higher from sites in
and around the Everglades Agricultural Area (EAA) and Lake Okeechobee.  

The majority of soils data collected from the Everglades in the early 1900s were descriptive.
The few soil data from the 1900s that are quantitative are summarized in McCormick et al. (1999),
and indicate that soil P concentrations near Okeechobee were much higher than those in more interior
Everglades sites.  Early studies found that soil P concentrations in the top 30 cm of organic soil at
sites adjacent to Lake Okeechobee (in what is now the EAA) averaged (1,800 to 2,000 mg P/kg), and
soil P concentrations at interior Everglades sites near Tamiami trail averaged (~400 mg P/kg)
(McCormick et al. 1999).  More recent studies of soil P have indicated an increase in surficial soil
phosphorus concentrations of up to three-fold since the 1970s (Davis 1989; Reddy et al. 1991;
DeBusk et al. 1994; Reddy et al. 1998; DeBusk et al., in press) in those areas receiving inflows from
canals draining the EAA.    

Periphyton is the most widely distributed plant community in the Everglades.  Periphyton
exhibits three growth forms in the Everglades: benthic (growing on the soil surface), epiphytic
(growing attached to rooted vegetation) and floating (growing on the water surface sometimes in
association with other floating vegetation such as Utricularia purpurea)  (McCormick et al., 1999).
Periphyton mat communities are found throughout the unimpacted Everglades marsh, especially in
open water areas, sloughs and wet prairies, and are particularly well adapted to the low P conditions
historically found in the Everglades ecosystem.  The first visible changes caused by P enrichment are
seen in the periphyton mat communities. As the P-limited areas of the Everglades are enriched, the
calcareous blue-green algae and diatoms are replaced by soft-bodied green and blue-green algae, and
the soft-water periphyton communities show increased relative abundance of pollution-tolerant
species.  Swift (1984) found that marsh water TP was the controlling factor regulating periphyton
growth.  Elevated water TP increased periphyton biomass, increased periphyton phosphorus content,
and altered community species composition toward pollution-tolerant species.   The continued flow
of nutrient enriched waters into the Everglades from the EAA has also resulted in more profound
changes in the vegetation community.  Increased macrophyte growth has decreased periphyton
productivity due to reduced light availability, and has caused a change in macrophyte community
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composition.  The historically dominant marsh macrophyte, Cladium jamaicense, is being displaced
with the high P-adapted species, Typha domingensis, in those areas enriched by EAA outflows
(McCormick et al. 1999; Bechtel et al. 1999; DeBusk, et al., in press).  This also includes the loss
of open water wet prairies plant communities.  

-trends over the last 10 years 

Recent trends in the Everglades reflect the continued enrichment of the Everglades. 
Phosphorus concentrations in those areas closest to the Everglades Agricultural Area (EAA)
outflows show the greatest levels of enrichment in both the water column and soil phosphorus
concentrations.  The increasing loss of native periphyton, and continued spread of Typha latifolia
into the more interior areas of the Everglades further support the conclusion that nutrient
enrichment is affecting the Everglades ecosystem.   

Water column total phosphorus concentrations in remote interior sites currently average
between 4 and 10 µg/L (McCormick et al. 1999); contemporary measurements of soil porewater
concentrations are consistently below 50 µg/L soluble reactive phosphorus (SRP), and are often at
or below 4 µg/L, and total phosphorus concentrations in surface soils range between 200 and
500mg/kg (McCormick et al. 1999).  Chronic inputs of P from the EAA has lead to increased P in
the water and soil in areas receiving inflows from canals draining the EAA, and a forward moving
front of P-enriched surficial soil (McCormick et al. 1999; DeBusk et al, in press).  

Water column phosphorus concentrations within the Everglades fluctuate naturally with
water conditions.  Marsh phosphorus concentrations have been shown to vary with water depth,
with higher concentration excursions occurring during periods of low water or marsh drying
(McCormick, et al. 1999).   McCormick et al. (1999) summarized the impact of increased P
loading to the Everglades on microbial and biogeochemical processes.  P loading has been shown
to affect the quality and quantity of organic matter, rates of nutrient accumulation, microbial
biomass and community composition, and biogeochemical cycling.  Moreover, P enrichment has
been shown to initiate a series of effects on the cycling of carbon and nitrogen, as well as a shift in
the system from an aerobic environment where oxygen is readily available to an anaerobic
environment where oxygen is lacking.

4.3   Data for all Wetlands Within Aggregate Ecoregion XIII  

The Everglades predominate in Ecoregion XIII.  The information presented in this document
is from studies performed in the Everglades.

4.4.  Classification of Wetland Type:

The Everglades ecosystem is a large, unique wetland mosaic in the tropical and sub-tropical
southern peninsula of Florida.  Classification of the Everglades system into sub-types based on
chemical, physical and biological differences can help decrease variability in monitoring data.  In
addition, nutrient gradients are evident in the Everglades system, and comparisons of data along the
spatial gradient may be of use in further refining nutrient criteria for this system.     

5.0  REFERENCE SITES AND CONDITIONS IN AGGREGATE ECOREGION XIII

The Everglades is a nutrient poor (oligotrophic) wetland, with natural populations of
plants and animals adapted to extremely low nutrient conditions.  Scheidt (1999) summarized and
reviewed approximately 300 scientific journal articles, state, and federal reports relevant to
nutrients in the Everglades.  The literature summarized indicate long-term average water column
phosphorus concentrations of less than 10 µg/L.  Data supporting this number span three decades
and were analyzed by independent laboratories (see Appendix A).  For the purposes of reducing
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these data to a single value which represents an appropriate characterization of reference
condition, EPA recommends a central tendency value such as the long-term geometric mean or
median because of the large amount of data available, the relatively long length of time
represented by the data, and the effects of hydrologic variability on water column concentration of
phosphorus in this system.

Unenriched portions of the Everglades are reported to have some of the lowest rates of
phosphorus accumulation in peatlands in North America.  Increased surface water phosphorus
from EAA canal inflows has caused elevated soil phosphorus concentrations.  Studies conducted
in the last decade by DeBusk et al. (1994; in press) indicate that chronic dosing has lead to
increased soil P in Water Conservation Area 2A (WCA2A), the primary recipient of EAA inflows,
and the front of P-enriched soils is moving south and encompassing increasingly larger areas.

Periphyton mat communities are found throughout the unimpacted Everglades marsh,
especially in open water areas, sloughs and wet prairies. These mats, often referred to as
calcareous mats, are known to be extremely sensitive to P enrichment.  The calcareous algal mats
in the hardwater calcium rich portions of the Everglades exhibit the first visible changes as a result
of increased phosphorus when the dominant periphyton, calcareous blue-green algae, is replaced
by soft-bodied green and blue-green algae (McCormick et al. 1999).  The soft-water habitats of
the Everglades also have periphyton adapted to low-nutrient conditions.  These periphyton
communities are comprised primarily of a type of green algae (desmids) and diatoms. Shifts in
relative species abundance and an increase in pollution-tolerant species also occur as a response to
nutrient enrichment in the soft-water periphyton community (McCormick et al 1999).  

 Reference conditions in the Everglades are defined by the native periphyton and
macrophyte communities.  Everglades periphyton provides multiple functions in the ecosystem. 
These functions include: accounts for much of the primary productivity in wet prairies and
sloughs; provides habitat for aquatic animals such as invertebrates; along with macrophyte
detritus, forms forming the base of the Everglades aquatic food web; is the major source of
oxygenating the water for fish and other animal life in sloughs and wet prairies; maintaining low
water TP concentrations; plays a role in cycling of nitrogen, phosphorus, carbon and oxygen; and
contributes to the formation of marl soils.

The oligotrophic Everglades marsh system contains a mosaic of macrophyte communities,
such as sloughs, wet prairies and sawgrass marshes, all of which are adapted to low nutrient
conditions.   This mosaic, which provides a diverse array of habitats for animals, is an important
defining characteristic of the Everglades.  Wet prairies encompass a group of plant communities
generally described by soil type and dominant plant species.  Wet prairies on peat soil are
generally characterized by spikerush (Eleocharis cellulosa), beak rush (Rhynchospora tracyi), or
maidencane (Panicum hemitomon), although dozens of plant species exist.   Sloughs generally
refer to deeper water areas, often dominated by white water lily (Nymphaea odorata), floating
hearts (Nymphoides aquatica), and spatterdock.  Bladderworts (Utricularia purpurea or
Utricularia foliosa) are common submerged aquatic plants that provide a substrate for dense
periphyton mats.  Wet prairies and sloughs in particular provide critical habitat for animals and
provide cover, nesting, and feeding sites for all animal groups.  The wet prairie/slough habitat is
also the major feeding area in the Everglades for both wintering and nesting wading birds,
especially during the dry season when fish concentrations provide food for their nestlings (Scheidt
1999).   

An important characteristic of unimpacted wet prairies and sloughs is their diversity and
the large number of native plant species (Scheidt 1999).   Multiple factors are responsible for the
alteration and maintenance of plant community structure in the Everglades, including nutrients,
fire, disturbance, and hydroperiod.   Elevated water phosphorus concentrations or elevated soil
phosphorus concentrations in the Everglades are associated with elimination of submerged
vegetation species including the Utricularia-periphyton complex and expansion of nutrient-
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tolerant macrophytes such as cattail or Sagittaria lancifolia (Arrowhead) into areas previously
dominated by sawgrass, sloughs or wet prairies.   Historically, cattail was a minor component of
the Everglades landscape.

The table below (Table 1) shows the reference condition recommendations for the
Aggregate nutrient ecoregion for water column TP and vegetation.  The recommendations are
based on literature values. 

Table 1: Reference Conditions for Aggregate Ecoregion XIII.

Aggregate Ecoregion XIII-
Southern Florida Coastal Plain

Reference Conditions

Total Water Column Phosphorus
(µg/L)

10

Periphyton No significant change in relative
species abundance

These recommendations were derived based on data from the over 300 peer-reviewed
publications from Everglades research.  They may not be appropriate for all the wetlands within
the Everglades because the mosaic character of the system may result in site-specific conditions
that do not reflect the characteristics were used to derive these reference values.  EPA encourages
the State and Tribes of Florida to apply this approach in other wetlands within the ecoregion.  

EPA also recommends that States and Tribes develop reference conditions and criteria  for
soil phosphorus levels since it is considered a necessary indicator of eutrophication and
phosphorus condition within the Everglades.  Studies have indicated that 300-600 mg P/kg soil is
the preferred range for organic soils.  However, these same levels may not be appropriate for
mineral soils in other parts of the Everglades.  

6.0 MODELS USED

No models were directly used in the preparation of this document.  However, many
models have been produced to model nutrient effects in the Everglades.  An overview of the
models used in the Everglades is provided in the Everglades Interim Report (1999).  Summaries
and detailed descriptions of models developed for the Everglades can be found in McCormick et
al. (1999) and Phosphorus Biogeochemistry in Subtropical Ecosystems (1999), respectively.

It is recognized that, distinct from ambient monitoring or empirical efforts, field and
laboratory experiments can elucidate   specific processes and establish cause and effect.  These
studies (such as field nutrient dosing studies, mesocosm studies, or laboratory mesocosm or
microcosm experiments) can facilitate causal interpretation of data. (Lean, et al., 1992;
Hopkinson, et la., 1998).    

7.0 FRAMEWORK FOR REFINING RECOMMENDED NUTRIENT CRITERIA
FOR AGGREGATE ECOREGION XIII

Information on each of the following six weight of evidence factors is important to refine
the criteria presented in this document. All elements should be addressed in developing criteria.  It
is our expectation that EPA Regions and States (as RTAGs) will consider these information
elements as States/Tribes develop their criteria.  This section should be viewed as a work sheet to
assist in the completion of the nutrient criteria assessment.  For example, States and Tribes should
address factors that have the potential to impact  downstream receiving waters, particularly
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Florida Bay and the Keys.  If these elements are ultimately unaddressed, EPA may rely on the
proposed reference conditions and criteria recommendations presented in this document, and
other literature and information readily available to the HQ nutrient team to develop nutrient
water quality recommendations for this ecoregion.

7.1  Example Worksheet for Developing Aggregate Ecoregion and Subecoregion
Nutrient Criteria   

C Literature sources

C Historical data and trends

C Reference condition

C Models

C RTAG expert review and consensus

C Downstream effects
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7.2  Setting Seasonal Criteria

 States/Tribes may choose to develop criteria which reflect each particular season or a
given year when there is significant variability between seasons/years or designated uses that are
specifically tied to one or more seasons of the year (e.g., recreation, fishing).  Obviously, this
option is season-specific and would also require increased monitoring within each season to assess
compliance.  

7.3 Site-specific Criteria Development     

Criteria may be refined in a number of ways.  The best way to refine criteria is to follow
the critical elements of criteria development as well as to refer to the Wetlands technical guidance
manual (due out for publication in 2001).

The Technical Guidance Manual presents sections on each of the following factors to
consider in setting criteria

‚ refinements to ecoregions
‚ classification of waterbodies
‚ setting seasonal criteria to reflect major seasonal climate differences
‚ accounting for significant or cyclical rainfall events - high flow/low flow conditions
‚ Wetland types

8.0 LITERATURE CITED

Bechtel, Timothy, Steven Hill, Nenad Iricanin, Kimberly Jacobs, Cheol Mo, Victor Mullen,
Richard Pfeuffer, David Rudnick and Stuart Van Horn.  1999.   Status of Compliance with
Water Quality Criteria in the Everglades Protection Area and tributary waters.  Chapter 4
in Everglades Interim Report.   South Florida Water Management District.  West Palm
Beach, Florida.    

Davis, Steven M.  1989.  Sawgrass and Cattail Production in Relation to Nutrient Supply in the
Everglades.  pp. 325-341 in  "Freshwater Wetlands and Wildlife", CONF-860301, DOE
Symposium Series No. 61, R. R. Scharitz and J. W. Gibbons (eds.), USDOE Office of
Scientific and Technical Information, Oak Ridge, Tennessee.

DeBusk, W. F., K. R. Reddy, M. S. Koch, and Y. Wang. 1994. Spatial distribution of soil
nutrients in a northern Everglades marsh: Water Conservation Area 2A. Soil Sci. Soc.
Am. J. 58:543-552.

DeBusk, W. F., S. Newman, and K. R. Reddy.  (in press).  Spatio-temporal patterns of soil
phosphorus enrichment in Everglades WCA-2A.  Journal of Environmental Quality.   

Everglades Interim Report.  1999.  South Florida Water Management District.

Hopkinson, Charles Jr., Patrick Mulholland, Lawrence Pomeroy, Robert Twilley and Dennis
Whigham.  1998.  External panel report to the Florida Department of Environmental
Protection.  Overview and evaluation of Everglades nutrient threshold research for the
period October 1996 to October 1997.  47 p.

Lean, David, Kenneth Reckhow, William Walker and Robert Wetzel.  1992.  Everglades nutrient
threshold research plan.  July 3, 1992.  12 p.



14

McCormick, Paul, Susan Newman, Shili Miao, Ramesh Reddy, Dale Gawlick, Carl Fitz, Tom
Fontaine and Darlene Marley.   1999.  Ecological needs of the Everglades.  Chapter 3 in
Everglades Interim Report.  South Florida Water Management District.  West Palm
Beach, Florida.  

Omernik, J. A.  1995.  Ecoregions: A Spatial Framework for Environmental Management.  In: Biological
Assessment and Criteria: Tools for Water Resource Planning and Decision Making, Wayne S.
Davis and Thomas P. Simon (editors), pp. 49-66.  Lewis Publishers an imprint of CRC Press,
Boca Raton, FL.

Omernik, J. A.  1998.  Draft Aggregations of Level III Ecoregions for the National Nutrient Strategy.
[http://www.epa.gov/ost/standards/ecomap.html].

Reddy, K. R., G. A. O’Connor, and C. L. Schelske, 1999.  Phosphorus Biogeochemistry in
Subtropical Ecosystems.  eds.  Lewis Publishers, Boca Raton, FL.  

Reddy, K. R., Y. Wang, W. F. DeBusk, M. M. Fisher and S. Newman.  1998.  Forms of Soil
Phosphorus in selected hydrologic units of the Florida Everglades.  Soil Sci. Soc. Am J. 
62:1134-1147.

Scheidt, D. J., M.D. Flora, and D. R. Walker.  1989.  Water Quality Management for Everglades
National Park.  P. 377-390.  In: “Wetlands:  Concerns and Success”.  American Water
Resources Association, Bethesda, MD. USA.

Scheidt, D. J. 1999.  EPA Memorandum.  Numeric phosphorus water quality criterion for the
Everglades as adopted by the Miccosukee Tribe of Indians of Florida for Class III-A
Waters.  May 20, 1999.

Swift, D. R.1984.  Periphyton and water quality relationships in the Everglades Water
Conservation Areas.  Pp. 97-117 in "Environments of South Florida: Present and Past II"  
Miami Geological Society, Coral Gables, Florida.  551 pp.

U.S. EPA.  April 2000, Nutrient Criteria Technical Guidance Manual: Lakes and Reservoirs,
EPA-822-B00-001.

9.0 APPENDICES

Appendix A: Scheidt, D. J. 1999.  EPA Memorandum.  Numeric phosphorus water quality
criterion for the Everglades as adopted by the Miccosukee Tribe of Indians of
Florida for Class III-A Waters.  May 20, 1999.

Appendix B: EVERGLADES NUTRIENT-RELEVANT REFERENCES.  Compiled by D.
Scheidt, USEPA, May 1999. 



APPENDIX A 



Memorandum

To: Robert F. McGhee
Director, Water Management Division

Through: Richard Harvey
Director, South Florida Office

From: Dan Scheidt
Senior Scientist
South Florida Initiative

Subject: Numeric phosphorus water quality criterion for the Everglades as adopted by the
Miccosukee Tribe of Indians of Florida for Class III-A Waters

Date: May 20, 1999

The Miccosukee Tribe of Indians of Florida (the Tribe) has submitted to the United States
Environmental Protection Agency (USEPA) a numeric criterion for total phosphorus of 10 parts
per billion (ppb, or micrograms per liter).  The Tribe adopted this numeric criterion for Class III-
A waters of the Miccosukee Tribe’s Federal Reservation in the Everglades on December 19,
1997.   The Tribe has defined Class III-A waters within the Federal Reservation as: "Those Tribal
water bodies which are used for fishing, frogging, recreation (including airboating), and the
propagation and maintenance of a healthy, well-balanced population of fish and other aquatic life
and wildlife.  These waters have been primarily designated for preservation of native plants and
animals of the natural Everglades ecosystem."  (page 23 of the Final Miccosukee Environmental
Protection Code, Subtitle B, dated December 19,1997).   The Tribal water quality standard for
nutrients includes the narrative statement: “In no case shall nutrient concentrations of Tribal Class
I or Class III-A surface waters be altered so as to cause an imbalance in natural populations of
aquatic flora or fauna.”  (page 11).  The areas which the Tribe has designated as Class III-A
waters include the north grass, south grass and gap areas (Everglades habitat within western
Water Conservation Area 3A) (Figures 1 and 2).

PROBLEM STATEMENT

The determination that USEPA must make in approving or disapproving the Miccosukee
10 ppb phosphorus criterion is whether it is protective of the Class III-A designated use.  

The Everglades marsh is extremely oligotrophic (nutrient poor).  The mosaic of native
plant communities and  associated animals developed under, and are adapted to, very low
phosphorus conditions.  Phosphorus enrichment in the Everglades has caused a series of well-
documented impacts (see below) such as loss of water column dissolved oxygen, loss of native
plant life (periphyton (micro-algae) and macrophytes), and loss of preferred foraging habitat for
wading birds.  



2

As summarized by the external peer-review panel to the Florida Department of
Environmental Protection (Hopkinson et al. 1998), in phosphorus-limited aquatic systems such as
the Everglades, concentrations of total phosphorus in the water column are very low, and a small
pool of dissolved phosphorus cycles or turns over very rapidly. 

Added phosphorus is assimilated rapidly into biomass or adsorbed by particulate
matter.  Phosphorus concentrations in the water will begin to increase only when a
number of other living and non-living pools begin to saturate with excess P.  For
this reason, measurements of the standing stocks of total P in Everglades water are
a relatively insensitive measure of significant changes of the system.  By the time
the concentration of total P in water has increased significantly, the system has
already begun to approach P saturation in other components of the system
(periphyton, macrophytes, sediments) and species succession may well be
underway.  In terms of time, the microbial components will be the first to change,
followed much later by changes in macro-organisms, such as sawgrass to cattails. 
The stages in this succession can be seen in the present-day Everglades.

 (Hopkinson et  al.1998,  page 11).

Phosphorus condition in the “Natural Everglades Ecosystem” is depicted in Figure 3.  In
contrast, Figure 4 depicts the phosphorus-impacted Everglades system.  Figure 5, “Cultural
Eutrophication”, depicts the succession of changes caused by phosphorus enrichment in the
Everglades, proceeding from those that are not visible to the naked eye (such as decreased
alkaline phosphatase activity or increased soil phosphorus content) to those that are visible (such
as changes in periphyton communities and macrophyte species composition).  

Ultimately, determining whether a numeric TP criterion will protect Class III-A
Everglades plant and animal communities appears to revolve around three issues: 1) selecting
appropriate indicators of some change in the marsh ecosystem (sensitive indicators such as
alkaline phosphatase activity or periphyton species versus less sensitive indicators such as
macrophyte species); 2) determining what constitutes an imbalance in natural populations of
aquatic flora or fauna: 3) determining what spatial extent of phosphorus impact, if any, is
acceptable.   These issues are not solely scientific ones.

The numeric phosphorus water quality criterion adopted by the Tribe must be sufficiently
stringent to protect the Class III-A designated use, including preservation of native plants
(periphyton and macrophytes) and animals of the natural oligotrophic Everglades ecosystem for
decades or centuries.  “This issue, obviously, is what amount of input of phosphorus to the
Everglades will result in system change after several decades or a century...” (Hopkinson et 
al.1998, page 14).  Phosphorus impacts in the Everglades are well-documented.  This
documentation includes observational studies as well as controlled experimental manipulations. 
Some of the observed phosphorus impacts have been based on short-term phosphorus addition or
dosing experiments,  with the nutrient addition taking place for a duration of a few weeks up to a
few (less than five) years.  With this type of study although it is possible to observe the
phosphorus impacts that occur within the short-term duration of dosing, it is not possible to
observe or infer what other indirect effects may occur later as the added phosphorus continues to
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cycle.  Nor is it possible to infer what effects may have occurred later had dosing at the same
concentration continued for a much longer period of time, such as decades or even centuries.  It is
not possible to identify all final long-term direct and indirect ecological impacts from short-term
nutrient addition studies.  Thus, there is a risk that a numeric criterion based solely on short-term
(less than 5 years) dosing without also considering long-term observational studies would not be
protective of the Class III-A designated use.

SUMMARY 

Extent of the Review

A very extensive body of peer-reviewed scientific literature and data has been assembled
during the last three decades concerning Everglades water quality, periphyton communities,
macrophyte communities, and the impacts of phosphorus enrichment on Everglades plants and
animals.  USEPA received 110 documents from the Tribe in support of their adoption of the
numeric phosphorus criterion.  These documents have been reviewed by USEPA.  In addition, an
effort was made to identify and review other equally relevant scientific literature specific to the
Everglades.   A listing (attached) of the published reports identified numbers about 300 scientific
documents.  All of this literature is specific to the Everglades and is relevant to eutrophication.  No
other wetland system and few, if any, other bodies of water in the world have been the subject of so
much scientific information concerning phosphorus conditions and the ecological impacts of
phosphorus enrichment.

A brief review is presented of the scientific documentation about Everglades natural
background phosphorus conditions and the impacts of phosphorus enrichment.  This review relied 
on published scientific literature (peer-reviewed publications in scientific journals as well as 
technical publications by agencies such as the South Florida Water Management District, United
States Geological Survey or USEPA).  The reviewed literature included publications about
Everglades:

C  phosphorus conditions including the Everglades Agricultural Area,
C  periphyton communities,
C  macrophyte communities,
C  cycling of oxygen, carbon, sulfur, and nitrogen, and
C  wading bird foraging habitat.

The literature review excluded hundreds of additional scientific publications that primarily concern
Everglades:

C  hydrology, 
C  Phase II phosphorus treatment technology, 
C water management, 
C mercury contamination, 
• pesticides, 
• botany, and
C soils.  
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An extensive additional body of scientific information and opinion exists that was not included:
published abstracts, memoranda, depositions, various legal documents, court exhibits, and public
meetings and conferences.

Summary of conclusions

Based on the best available scientific information and the review that follows, the Tribe’s 10
ppb criterion for phosphorus meets the requirements of 40 CFR §131.11 as it is protective of the
Class III-A designated use, and review of published available information and data shows that the
value is scientifically defensible.

This review has identified the following major points, which are expanded upon in the text that
follows:  

C The Everglades marsh system is naturally extremely oligotrophic.  Un-impacted
interior portions of the Everglades marsh have long-term average water column
phosphorus concentrations of approximately 10 ppb or even less.  

C The native plant and animal communities in the Everglades marsh developed under
and are adapted to these very low phosphorus conditions.

C Phosphorus is the primary limiting nutrient in the oligotrophic Everglades marsh
system.

C Microbial processes are important in controlling nutrient cycling in wetlands and
they play an important role in determining water quality and maintaining an
ecosystem’s normal productivity.  Elevated water column or soil phosphorus
concentrations in the Everglades have been implicated as cause for disruption of
various microbial processes.

C Periphyton communities are an important defining characteristic of the Everglades
marsh ecosystem.  According to the scientific literature,  Everglades periphyton 
accounts for much of marsh primary productivity in wet prairies and sloughs;
provides habitat for aquatic animals such as invertebrates; along with macrophyte
detritus, forms the base of the Everglades aquatic food web; is the major source of
oxygen for fish and other animal life in sloughs and wet prairies; maintains low water
TP concentrations; plays a role in cycling of nitrogen, phosphorus, carbon and
oxygen; and affects formation of marl soils.   Periphyton communities are extremely
sensitive to phosphorus enrichment.  Phosphorus enrichment at levels above 10 ppb
TP has been shown to cause a loss of Everglades native periphyton communities.  
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C Surface water dissolved oxygen in pristine Everglades wet prairie and slough
communities often exhibits a strong diel cycle, with concentration at a particular
location ranging from 0 mg/l in early morning to over 12 mg/l in late afternoon. 
Everglades fish are adapted to these conditions.   In contrast, oxygen levels in
nutrient-rich locations within WCA2A have been shown to often be undetectable and
rarely exceed 2 mg/l, with protracted periods of oxygen depletion.

C Unenriched portions of the Everglades are reported to have some of the lowest rates
of phosphorus accumulation in peatlands in North America.  Increased surface water
phosphorus has caused elevated soil phosphorus concentrations.  Over 51% of
WCA2A has been reported as having increased soil phosphorus. 

C The oligotrophic Everglades marsh system contains a mosaic of macrophyte
communities, such as sloughs, wet prairies and sawgrass marshes, all of which are
adapted to low nutrient conditions.  This mosaic is an important defining
characteristic of the Everglades.  Wet prairies and sloughs in particular provide
critical habitat for animals and provide cover, nesting, and feeding sites for all animal
groups. Elevated water phosphorus concentrations or elevated soil phosphorus
concentrations in the Everglades are associated with elimination of submerged
vegetation species including the important Utricularia-periphyton complex and
expansion of nutrient-tolerant macrophytes such as cattail or Sagittaria into areas
previously dominated by sawgrass, sloughs or wet prairies. 

C Shallow, open water areas with scattered to moderately dense emergent
macrophytes are the preferred foraging habitat for Everglades wading birds.
Conversion of these areas to dense emergent macrophytes due to phosphorus
enrichment constitutes a loss of wading bird foraging habitat.

C Phosphorus enrichment initiates a succession of changes within the marsh system. 
Initial changes, such as those that occur at the microbial level, are not visible. 
Visible impacts eventually occur, such as loss of native flora or fauna.  

C The oligotrophic Everglades marsh system has very low assimilative capacity, or
tolerance,  for phosphorus before changes in ecosystem structure and function occur.

C The well-documented phosphorus impacts in WCA2A have taken place since the
discharge of phosphorus-rich water through the S-10 structures beginning about

1960 (a period of about four decades).  There is no information available concerning
low-level additions of excess phosphorus for a century or more.

• The nutrient dosing studies and observational studies described below indicate that
total phosphorus concentrations above 10 ppb have been shown to cause impacts to
native Everglades periphyton and macrophytes such as Utricularia purpurea that are
adapted to low phosphorus conditions.  The best available scientific information 
indicates that average TP concentrations greater than 10 ppb, in general, can be



6

expected to be inadequate for long-term protection of the Class III-A designated
use.  Therefore the Tribe’s adopted numeric phosphorus criterion of 10 ppb is not
overly protective.

• Currently available scientific information reviewed also indicates that the Tribe’s
proposed numeric criterion of 10 ppb is protective of the Class III-A use and the
native Everglades periphyton and macrophytes.  Although some data have identified
long-term phosphorus concentrations within the Everglades as low as 5.0 ppb,
EPA’s review identified no currently available published scientific information
documenting changes in the natural flora or fauna resulting from total phosphorus
concentrations in the 5 ppb to 10 ppb range.    If new data or information are 
presented in the future that demonstrate that 10 ppb is not protective of the Class
III-A use, the Tribe should revise the criterion accordingly.

Therefore, USEPA has determined that the 10 ppb total phosphorus criterion is protective
of the Class III-A designated use, is reasonable, and is scientifically defensible.

REVIEW OF RELEVANT SCIENTIFIC INFORMATION

Phosphorus is a nutrient that is essential to the growth of organisms and is often the nutrient
that limits primary productivity in a water body.  Phosphorus can exist in a water body as organic
and inorganic forms.  Phosphorus cycles in aquatic environments from the organic and inorganic
state, and vice versa, with microorganisms playing a key role (Jones, 1996).   Phosphorus data from
water bodies is typically reported as total phosphorus and inorganic soluble phosphate
(orthophosphate).  The citations that follow include mention of these two forms.  Phosphate is the
form that is considered to be readily available for biological uptake.  

In the summary that follows, the term “Everglades” is used to refer to the freshwater marsh
habitats, such as sawgrass marsh, wet prairies and sloughs, in the greater Everglades system.   The
geographic area includes Loxahatchee  National Wildlife Refuge (the Refuge), Everglades National
Park (the Park), the Holeyland, the Rotenberger Tract, and all of the Water Conservation Areas
(2A, 2B, 3A and 3B).   The water quality and ecology of the Tribe’s Class III-A waters are
generally consistent with the water quality and ecology found in the greater Everglades system.

1- Reference conditions in the Everglades marsh ecosystem.

The Everglades is a nutrient poor (oligotrophic) wetland, with natural populations of plants
and animals adapted to extremely low nutrient conditions.  A reasonable approximation of long-
term average surface water total phosphorus concentration is 10 ppb.  The smallest but most widely
distributed plant community in the Everglades is an assemblage of micro-algae referred to
collectively as periphyton.  Everglades periphyton generally is comprised of three major divisions or
groups: diatoms, blue-green algae and green algae (Browder et al., 1994).   Periphyton exhibits
three growth forms in the Everglades: benthic (growing on the soil surface), epiphytic (growing
attached to rooted vegetation) and floating (growing on the water surface sometimes in association
with other floating vegetation such as Utricularia purpurea)  (McCormick et al. 1999).  These
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periphyton mat communities are found throughout the unimpacted Everglades marsh, especially in
open water areas, sloughs and wet prairies. These mats, often referred to as calcareous mats, are
known to be extremely sensitive to phosphorus enrichment.   The widespread distribution of
floating periphyton mats throughout the Everglades as observed during 1995-1996 is presented by
Stober et al. (1998). 

Periphyton provides multiple functions in the marsh ecosystem.  These have been
summarized by Browder et al. (1994), McCormick et al. (1998) and McCormick et al. (1999).  
Everglades periphyton: accounts for much of marsh primary productivity in wet prairies and
sloughs; provides habitat for aquatic animals such as invertebrates; along with macrophyte detritus,
forms the base of the Everglades aquatic food web; is the major source of oxygen for fish and other
animal life in sloughs and wet prairies; maintains low water TP concentrations; plays a role in
cycling of nitrogen, phosphorus, carbon and oxygen; and affects formation of marl soils.

Everglades plant communities, along with the factors contributing to plant community
distribution and change, have been studied extensively.  Recent vegetation classification maps have
been published for Loxahatchee National Wildlife Refuge, WCA2A, and the Shark River Slough
portion of  Everglades National Park.  The oligotrophic Everglades marsh system contains a mosaic
of macrophyte communities, such as sloughs, wet prairies and sawgrass marshes, all of which are
adapted to low nutrient conditions.     This mosaic, which provides a diverse array of habitats for
animals,  is an important defining characteristic of the Everglades.  Wet prairies encompass a group
of plant communities generally described by soil type and dominant plant species.  Wet prairies on
peat soil are generally characterized by spikerush (Eleocharis cellulosa), beak rush (Rhynchospora
tracyi), or maidencane (Panicum hemitomon), although dozens of plant  species exist.   Sloughs
generally refer to deeper water areas, often dominated by white water lilly (Nymphaea odorata),
floating hearts (Nymphoides aquatica), and spatterdock.  Bladderwort (Utricularia purpurea or
Utricularia foliosa) are common submerged aquatic plants that provide a substrate for dense
periphyton mats.  Wet prairies and sloughs in particular provide critical habitat for animals and
provide cover, nesting, and feeding sites for all animal groups.  The wet prairie/slough habitat is
also the major feeding area in the Everglades for both wintering and nesting wading birds, especially
during the dry season when fish concentrations provide food for their nestlings (Gunderson and
Loftus, 1993).   An important characteristic of unimpacted wet prairies and sloughs is their diversity
and the large number of native plant species (Olmstead et al, 1980; Olmstead and Loope, 1984;
Goodrick, 1974; Gunderson and Loftus, 1993).   Multiple factors are responsible for the alteration
and maintenance of plant community structure in the Everglades, including nutrients, fire,
disturbance, and hydroperiod.   Elevated water phosphorus concentrations or elevated soil
phosphorus concentrations in the Everglades are associated with elimination of submerged
vegetation species including the Utricularia-periphyton complex and expansion of nutrient-tolerant
macrophytes such as cattail or Sagittaria lancifolia (Arrowhead) into areas previously dominated
by sawgrass, sloughs or wet prairies.   Historically, cattail was a minor component of the
Everglades landscape.

The following discussion of Everglades animals is taken largely from McCormick et al.
(1999).  Aquatic invertebrates such as insects, snails and crayfish play an important role in the
Everglades food web.  Most invertebrates feed directly on periphyton and/or plant detritus and are
then consumed by other animals.  Invertebrates tend to be concentrated in periphyton-rich habitats
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such as sloughs or wet prairies where dissolved oxygen is plentiful and food is more readily
available.     Fish are a key link between  invertebrates and predators, such the wading birds for
which the Everglades is widely renown.  Fish biomass in the natural (oligotrophic) Everglades is
low relative to other wetlands.  Turner et al. (in press) report that the natural condition in the
oligotrophic Everglades is one of a high periphyton standing stock, but low invertebrate and fish
standing stock.

The conditions described above are representative of unimpaired Miccosukee Tribal Waters. 
SFWMD has produced a classified vegetation map of northern WCA3A dated 1 July 1997.  This
map was based on September 1994 and June 1995 color infrared aerial photographs, and involved
extensive ground-truthing (see Doren et al., 1999 for methods).   The vegetation communities
within the Tribal Waters indicative of unimpaired conditions include a mosaic of sawgrass marsh
and wet prairies  dominated by maidencane or spikerush.  In addition, USEPA made visual
observations of the Tribal Waters by airboat on July 30, 1998 and by helicopter on November 13,
1998.    

2- The Everglades marsh system is extremely oligotrophic.  Un-impacted interior portions
of the Everglades marsh have long-term average water column phosphorus concentrations of
approximately 10 ppb or less.  

Relevant scientific literature: Gleason et al., 1974b; Gleason et al., 1975a;  Millar, 1981; Swift and
Nicholas, 1987; Flora et al., 1988; Scheidt et al., 1989; Davis, 1991; Walker, 1991; SFWMD, 1992;
Reddy et al., 1993; Richardson et al., 1994; Walker, 1995; McCormick et al., 1996; Walker, 1997a;
Richardson et al., 1997; Vaithiyanathan et al., 1997; Stober et al., 1998; McCormick et al., 1999. 

Long-term average concentrations of 10 ppb or less have been documented repeatedly
throughout the Everglades system,  including Loxahatchee  National Wildlife Refuge,  Water
Conservation Area 2 (WCA2),  Water Conservation Area 3 (WCA3),  and Everglades National
Park.  These complementary and corroborative data come from several independent studies
conducted by different investigators spanning a time-frame of three decades.  These data come from
several independent analytical laboratories, including South Florida Water Management District
(SFWMD), Florida Department of Environmental Protection (FDEP), Duke University, the 
National Park Service, and the Florida International University Southeast Environmental Research
Program (FIU SERP).

Surface water phosphorus concentrations within the Everglades fluctuate naturally with
water conditions.  Marsh phosphorus concentrations have been shown to vary with water depth,
with higher concentration excursions occurring during periods of low water or marsh drying
(Walker, 1997a; McCormick et al., 1999).  McCormick et al. (1999) reported that occasional high
P concentrations at Everglades reference stations can be attributed to difficulty in collecting water
samples that are not contaminated by flocculent sediment when water depths are low (a few inches),
P released as a result of oxidation of exposed soils, or mobilization of P with fires.   This represents
recycling within the marsh internal phosphorus pool, as opposed to marsh exposure to additional
phosphorus from external sources.   In spite of this internal cycling, 10 ppb is a reasonable
approximation of long-term average or median phosphorus concentrations at Everglades reference
stations.  
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Some water samples from the Everglades marsh that are analyzed for phosphorus are below
the limits of analytical detection.  For example, the phosphorus analytical limit is 4 ppb for the
SFWMD laboratory and varies across laboratories.  In these cases,  the low end of the distribution
of phosphorus concentration at a sampling location is artificially truncated, and the actual median or
average phosphorus concentration at a location would in reality be even lower than the reported
median or  average.

In a study of nutrient uptake and rates of nutrient deposition in WCA2A from 1973-1974,
Gleason et al. (1974b) documented phosphorus gradients downstream of the S-10 structures, with
background orthophosphate concentrations of 2 ppb.

During 1974 Gleason et al. (1975a) studied the effect of agricultural runoff on algal
communities at 5 wet prairie marsh stations within the Loxahatchee National Wildlife Refuge.  The
orthophosphate phosphorus concentration reported for all of the 57 water samples collected was
less than 2 ppb. 

Swift and Nicholas (1987) summarized 1977-1983 water quality throughout LNWR,
WCA2A and WCA3A interior marsh sites.  They reported mean total phosphate concentrations of
14 ppb for LNWR, 11 ppb for WCA2A and 9 ppb for WCA3A, with a grand mean of 11 ppb.  

Swift (1981) summarized average total dissolved phosphate concentration at these same
interior marsh sites from 1978-1979.  The average total dissolved phosphate concentration at
interior marsh sites within LNWR, WCA2A and WCA3A was 2 to 5 ppb.

Walker (1995, figure 1) presented surface water mean TP concentration at water control
structures and marsh locations throughout the Everglades system.  Mean TP concentration at
remote marsh stations away from alligator ponds within Everglades National Park ranged from
5.2 ppb at P-37 to 10.8 ppb at P-35 (statistical summary used for preparation of Figure 1 received
from the author).  The grand mean of the eight station means was 8.3 ppb.

Grimshaw et al. (1997) reported 8 ppb as the 1994-1995 mean surface water TP
concentration at an unenriched slough site within WCA2A.

In a 1991-1996 study of WCA2A sloughs, Vaithiyanathan et al. (1997) found an average
water column dissolved phosphate concentration of 5 ppb (n=2557) and total phosphorus (TP)
concentration of 9 ppb (n=1659), with individual TP concentration measurements ranging from 2 to
20 ppb.

In a summary of a 1992-1996 nutrient dosing study in WCA2A, Richardson et al. (1997,
pages 15-32 and 15-44) reported mean 1993-1996 surface water TP concentrations at 16 locations
in the control area ranging from 8.8 ppb to 12.1 ppb, with a grand median of 9.1 ppb and a grand
mean of 10.9 ppb.

Walker (website:“http://www2.shore.net/~wwwalker/clearwtr/maps/sld010.htm, 04/04/98)
depicted TP in marsh surface water sites and water control structures throughout the Everglades
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from 1992-1996.  Geometric mean TP concentration for 1992-1996 was 10 ppb or less at all 14
marsh stations within LNWR, all 9 marsh stations within ENP, and all 12 marsh stations within
WCA2A or WCA3A that are away from sources of phosphorus enrichment.

McCormick et al. (1999) summarized surface water TP at interior marsh locations
throughout LNWR, WCA2A, WCA3A, and ENP.  The median for each of the eight stations ranged
from about 4 to 10 ppb.  The lowest median of about 5 ppb (n=100) was for WCA3A station CA3-
15.

In 1991 the best available surface water TP data (data source: SFWMD) were used to
determine the surface water TP condition that existed from 1979-1988 at water structures
discharging into Everglades National Park and at interior marsh stations within Loxahatchee
National Wildlife Refuge.   These data became the basis for phosphorus limits or levels intended to
maintain the water quality condition that existed from 1979-1988 in order to protect the
oligotrophic marsh system including the associated plants and animals within the Refuge and the
Park.   The development of and scientific basis for these water column phosphorus limits or levels is
described in SFWMD (1992) and Walker (1997), and is summarized in the next two paragraphs.

Phosphorus limits for inflows to Everglades National Park were derived in 1991.   Attaining
these concentrations would continue to provide the Park with the quality of water that existed from
1979-1988.   These apply to the annual flow-weighted mean TP concentration of inflows
composited across the five water delivery structures to Shark River Slough (the S-12 structures and
S-333).  Although the required phosphorus limits vary from a flow-weighted mean of about 13 ppb
during dry years to about 8 ppb during wet years, if attained these limits would  provide Shark
River Slough a long-term average flow-weighted mean inflow TP concentration of approximately 8
ppb.  Phosphorus limits were also established for water delivered to the Taylor Slough and Coastal
Basin portion of the Park.  Attaining these limits is expected to provide these portions of the Park
with a long-term average flow-weighted mean inflow TP concentration of 6 ppb.

In addition, separate marsh water column phosphorus levels were derived in 1991 for
Loxahatchee National Wildlife Refuge based on historic data from SFWMD at 14 interior marsh
stations.   To account for the observed correlation between marsh total phosphorus concentration
and water depth (as determined by stage) the phosphorus concentration levels (determined monthly)
vary with the average interior water level on the date of sample collection.  Although the required
phosphorus levels vary from 17 ppb at low water depth to 7 ppb at high water depth, attaining these
concentrations would be expected to provide the Refuge with a long-term geometric mean
concentration of approximately 7 ppb TP at the 14 interior marsh stations.

3-  Phosphorus is the primary limiting nutrient in the oligotrophic Everglades marsh
system.

Relevant scientific literature: Stewart and Ornes, 1975; Stewart and Ornes, 1983; Swift, 1984;
Swift and Nicholas, 1987; Flora et al., 1988; Hall and Rice, 1990; Davis, 1991; Koch and Reddy,
1992; Grimshaw et al., 1993; Vymazal et al., 1994; Craft et al., 1995; Craft and Richardson, 1997;
Vymazal and Richardson, 1995; McCormick and O’Dell, 1996; Vaithiyanathan et al., 1997a;
Daoust and Childers, 1999.
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Investigators have used two approaches to conclude that phosphorus is the limiting nutrient
in unenriched portions of the marsh system.   The first approach is identifying nutrient ratios within
water, periphyton tissue and macrophyte tissue (Swift, 1984; Swift and Nicholas, 1987; Davis,
1991; Koch and Reddy, 1992; Grimshaw et al., 1993; Daoust and Childers, 1999).  For example, in
a 1991-1996 study of WCA2A sloughs, Vaithiyanathan et al. (1997a) concluded that nutrient ratios
in surface water and in the periphyton and macrophyte tissues suggest strong P-limitation in the
Everglades sloughs.  (Page 5-21).

Daoust and Childers (1999) studied the relationships between tissue nutrient content,
species productivity, and species abundance for seven plant species in sawgrass marsh or wet
prairies.  They found that the dominant plants in both communities (Cladium jamaicense in the
sawgrass community, and Eleocharis spp. and Sagittaria lancifolia in the wet prairie) are strongly
limited by phosphorus availability.  They concluded that although no single environmental factor is
responsible for controlling all species that occur, a majority of the plant species within this system
are limited by phosphorus availability.

The second approach is nutrient dosing experiments (Stewart and Ornes, 1975; Stewart and
Ornes, 1983; Flora et al., 1988; Hall and Rice, 1990; McCormick and O’Dell, 1996).  In a 1983-
1984 nutrient dosing study in an Everglades National Park wet prairie dominated by Eleocharis
spp. and Utricularia spp. (Flora et al., 1988; Hall and Rice, 1990), one flow-through channel was
dosed with phosphate only for one year at an average concentration of 27 ppb while a second
channel was dosed with nitrate only at an average of 85 ppb.  The background concentrations in the
adjacent reference sites averaged 6 ppb phosphate and 11 ppb nitrate.  In the phosphate only
channel, plant tissue phosphorus was increased, Utricularia was eliminated, Panicum and
Sagittaria became the dominant macrophytes, plant biomass was increased, periphyton phosphorus
content changed and the native periphyton community was lost.  These changes were not observed
in the channel dosed with nitrate only or the reference sites.  All treatments and the reference site
were exposed to the same hydroperiod and water depth. 
 
4- Impacts of phosphorus enrichment: microbial processes.

Relevant scientific literature:  Maltby, 1985; Amador et al., 1992; Lean et al., 1992; Amador and
Jones, 1993; Koch-Rose et al., 1994; Stober et al., 1996; Stober et al., 1998; McCormick et al.,
1999; Newman et al., in press.

McCormick et al. (1999 page 3-13) summarized the importance of microbes in wetland
systems as follows: “Wetlands host complex microbial communities including bacteria, fungi,
protozoa and viruses.  The size and diversity of microbial communities are related directly to the
quality and quantity of the resources (i.e., nutrients, energy sources) available in the system. 
Microbial biomass and activity is highest in habitats where these resources are concentrated,
including periphyton mats, plant litter, and surface soils.  Microbial processes regulate major
nutrient cycles in wetlands and, therefore, play an important role in determining water quality and
ecosystem productivity.”  Microbial populations regulate the decomposition of organic matter and
the cycling of nutrients, including carbon, nitrogen, and phosphorus.   Increasing water column
phosphorus or soil phosphorus has been  implicated as cause for the disruption of various microbial
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processes within the Everglades system.  Lean et al. (1992) in an Everglades nutrient threshold
research plan, stated that “Sufficient data from the Everglades and other wetland ecosystems exist
to indicate that microorganisms (algae, bacteria) and their metabolic influences on organic detrital
and soil components are critical to the retention, cycling, and biological impacts of phosphorus. 
Organisms with the fastest turnover rates respond most rapidly to P enrichments.  Their growth
rates and composition provide initial indicators of imbalance.” (page 7).

In a nutrient dosing study performed in a wet prairie within Everglades National Park during
1983 and 1984, Maltby (1985) deployed cellulose strips to observe the effects of nutrient loadings
on decomposition profiles in the water column and peat.  He observed that cellulose decomposition
within the water column was accelerated by nitrate and phosphate dosed together and by phosphate
alone but not by nitrate alone, and that the decomposition profile increased sharply in the peat
within areas where P had been added.  He stated that nutrient addition “may elicit marked
acceleration of decomposition not only of litter but also of organic matter stored in the sedimentary
peat system.  It is impossible to be certain that this will not result in further release of nutrients
previously fixed by the peat and a progressive instability developed in the ecosystem” (page 457).

In studies of phosphate and phosphorus removal by peat soils from Everglades National
Park, Amador et al. (1992), Jones and Amador (1992), and Amador and Jones (1992) found that
microbial processes play a role in determining how much phosphorus Everglades peat can store,
continued exposure to water containing high P concentrations significantly decreased the available P
storage capacity of Everglades soils, these soils have a finite ability to remove and store
phosphorus, and P pollution may have a marked, long-term effect on microbial respiration in
organic soils with low P content.

Phosphatase enzymes, such as alkaline phosphatase, have been used as a sensitive indicator
of phosphorus enrichment in aquatic systems (Jones, 1996; Newman et al., in press).  Stober et al.
(1998) used alkaline phosphatase activity in surface water as a sensitive indicator of phosphorus
condition.  During 1995 and 1996 marked gradients were observed throughout the Everglades
marsh, with the interior of LNWR and ENP having the highest alkaline phosphatase activity
(indicative of a condition void of readily available phosphorus).  The area that consistently had the
lowest alkaline phosphatase activity (indicating that phosphorus within the water column was in a 
readily available form) was the northern portion of WCA3A and WCA2A adjacent to canals
delivering water of high phosphorus content.  

McCormick et al. (1999) summarized the impact of increased P loading to the Everglades
on microbial and biogeochemical processes.  P loading has been shown to affect the quality and
quantity of organic matter, rates of nutrient accumulation, microbial biomass and community
composition, and biogeochemical cycling.  Moreover, P enrichment has been shown to initiate a
series of effects on the cycling of carbon and nitrogen, as well as a shift in the system from an
aerobic environment where oxygen is readily available to an anaerobic environment where oxygen is
lacking. 

5- Impacts of phosphorus enrichment: periphyton community impacts.   

Scientific literature describing Everglades periphyton communities, their function and the impacts of



13

phosphorus include the following: Hunt, 1961; Brock, 1970; Gleason and Spackman, 1974; 
Wilson, 1974; Wood and Maynard, 1974; Gleason et al., 1975b; Swift and Nicholas, 1987; Flora et
al., 1988;  Hall and Rice, 1989;  Belanger et al., 1989; Grimshaw et al., 1993; Raschke, 1993; 
Browder et al., 1994; Craft and Richardson, 1994; Craft et al., 1995;  McCormick et al., 1996; 
McCormick and O'Dell, 1996;  McCormick et al., 1997;  Vaithiyanathan et al., 1997; Vaithiyanithan
and Richardson, 1998; McCormick et al., 1999.

Periphyton is an important defining characteristic of the Everglades ecosystem.  

The smallest but most widely distributed plant community in the Everglades is an
assemblage of micro-algae referred to collectively as periphyton.  Everglades periphyton generally is
comprised of three major divisions or groups: diatoms, blue-green algae and green algae (Browder
et al., 1994).   Periphyton exhibits three growth forms in the Everglades: benthic (growing on the
soil surface), epiphytic (growing attached to rooted vegetation) and floating (growing on the water
surface sometimes in association with other floating vegetation such as Utricularia purpurea) 
(McCormick et al., 1999).  These periphyton mat communities are found throughout the
unimpacted Everglades marsh, especially in open water areas, sloughs and wet prairies.  The
widespread distribution of floating periphyton mats throughout the Everglades as observed during
1995-1996 is presented by Stober et al. (1998). 

The designated use for Class III-A Waters of the Tribe is “preservation of native plants and
animals of the natural Everglades ecosystem”.   This clearly includes preservation of natural
periphyton communities, in so far as periphyton are native plants.

Periphyton provides multiple functions in the marsh ecosystem.  These have been
summarized by Browder et al. (1994), McCormick et al. (1998) and McCormick et al. (1999).  
Everglades periphyton: accounts for much of marsh primary productivity in wet prairies and
sloughs; provides habitat for aquatic animals such as invertebrates; along with macrophyte detritus,
forms the base of the Everglades aquatic food web; is the major source of oxygen for fish and other 
animal life in sloughs and wet prairies; maintains low water TP concentrations; plays a role in
cycling of nitrogen, phosphorus, carbon and oxygen; and affects formation of marl soils.

Periphyton photosynthesis and respiration play an important role in controlling surface water
dissolved oxygen concentrations.  (Hunt, 1961; Gleason and Spackman, 1974, Wilson, 1974,
Belanger et al., 1989; McCormick et al., 1997; Vaithiyanathan et al., 1997).

Vymazal et al. (1994) stated that “Highly calcified periphyton, dominated by blue-green
algae, is the primary source of oxygen in open water habitats and for most of the Everglades
ecosystem” (page 76). 

Vaithiyanathan et al. (1997a) in a 1991-1996 study of WCA2A sloughs found that the
dissolved oxygen concentration on the surface of the periphyton mat was substantially higher than
the water column concentration, reflecting the intense photosynthetic activity of the Utricularia-
periphyton complex.  They concluded that: periphyton photosynthesis is a major source of oxygen
production in Everglades sloughs, periphyton regulate water column TP concentrations, nutrient



14

ratios in surface water and in the periphyton and macrophyte tissues suggest strong P-limitation,
and “preservation of the Everglades sloughs is strongly related to the integrity of the periphyton
mat” (page 5-22).

Belanger et al. (1989) described a 1985 oxygen budget study in enriched and unenriched
marsh habitats with WCA2A.  They found strong surface water diurnal oxygen variations in slough
and sawgrass areas, with extremely low surface water dissolved oxygen and frequent anoxia in the
enriched cattail area.  The periphyton mat was the major source of oxygen at the slough site. They
stated that pristine slough areas are essential for oxygen production, and loss of these areas due to
phosphorus enrichment could have serious ecological consequences, such as lost feeding areas for
fishes and birds.

Numerous scientists have stated that periphyton is an integral component of the oligotrophic
marsh system.  In their external panel peer-review report to FDEP, Hopkinson et al. (1998, page
20) stated that “The periphyton community is a particularly important component of sloughs in the
Everglades, and is often associated closely with floating macrophytes (e. g., Utricularia spp.) which
serve as physical substrata for growth.  Periphyton contributes a substantial portion of the primary
production in the Everglades and appears to be the primary food resource for many
macroinvertebrates.  Periphyton may be of higher importance in Everglades food webs than
macrophytes because of its high rate of production and turnover.  While organic matter derived
from sawgrass and other macrophytes is consumed primarily after it dies and becomes the basis of a
relatively inefficient detritus-based food web, periphyton is consumed while living, providing a
richer, more direct, and probably more efficient, transfer of organic matter and energy to
invertebrate and vertebrate consumers.  Loss of periphyton or shifts in species composition toward
forms that are less palatable to consumers are likely to create a significant change in Everglades
food webs”.

Vaithiyanathan et al. (1997, page 5-1) summarized the multiple functions of periphyton and
concluded that “The integrity of the periphyton mat is crucial to the protection of the Everglades
slough community”.  

Richardson et al. (1997, page 17-28) stated that “Any changes in Eleocharis spp. may be
the most significant ecological change in the slough community since it is the dominant plant and an
important substrate for periphyton.” 

Grimshaw et al. (1997, page 19) stated that “Periphyton communities are critical structural
and functional components of the Florida Everglade wetland ecosystem.”

McCormick and Stevenson (1998, page 730) stated that “...the loss of the oligotrophic
periphyton assemblage represents a significant ecological change because periphyton represents a
habitat and food source for other species as well as an important part of major biogeochemical
cycles.” 

The South Florida Ecosystem Restoration Task Force adopted a series of success indices in
order to define ecosystem restoration goals, track ecosystem health, and measure the effectiveness
of restoration efforts.  The Science Sub-Group of the Task Force (1997) established 14 ecologic or
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precursor success criteria for ecosystem protection and restoration.  These specific success criteria
were selected based on several years of collaborative scientific effort, representing the distillation of
the best professional judgement of dozens of scientists.  One of the adopted ecologic success
criteria is “restored natural taxonomic composition of periphyton communities”. 

McCormick and O’Dell (1996, page 465) concluded: “Periphyton is an important biological
component of the Everglades ecosystem and may represent one of the most sensitive indicators of
eutrophication in the marsh.  The periphyton assemblage that dominates oligotrophic areas of the
Everglades was replaced by a taxonomically distinct assemblage in response to relatively small
increases in water column phosphorus concentration above background levels, which ranged
between 5 and 10 ug/L in WCA2A during this and previous work (McCormick et al., 1996). 
Because of its ubiquity and significance to fundamental ecosystem processes (i.e., energy fixation,
nutrient cycling, and soils formation) in the Everglades, the native periphyton assemblage represents
an important indicator of ecosystem condition, and its loss has several implications for the success
of ecosystem restoration and management efforts in this wetland.   Most importantly, our findings
indicate that restoration measures must reduce and maintain phosphorus concentrations in the
marsh close to background levels to preserve the oligotrophic characteristic of the Everglades.” 

McCormick et al. (1998) studied periphyton biomass and productivity in WCA2A during
1994-1995.  They noted many functions that periphyton communities provide, and that periphyton
appears to play a critical role in sequestering phosphorus from the water column and maintaining
the oligotrophic status of this wetland. They noted that eutrophication has caused a decline in
Everglades periphyton biomass, productivity, and nutrient retention, and a shift in species
composition.  They hypothesized that functional changes resulting from this decline may affect
other biotic and abiotic components of the marsh including changes in the food web, reduced
suitability of eutrophic habitats for some native species, and a reduction in the capacity of the marsh
to assimilate added phosphorus without causing further biological changes.  They stated that (page
206) “...it is increasingly clear that the maintenance of the native periphyton assemblage is essential
to the normal functioning of the Everglades and, thus, is critical to the success of efforts to restore
and manage this wetland in a sustainable manner.” 

Vaithiyanithan and Richardson (1998) studied the biogeochemical characteristics of two
WCA-2A sloughs.  They noted that the decline in periphyton mat cover reported in parts of the
Everglades subjected to eutrophication will result in a decrease in the water column dissolved
oxygen concentration and may also lead to other ecosystem changes by enhancing light availability
to the slough bottom.  They stated that increased light availability may also lead to the establishment
of other macrophyte species uncharacteristic of the oligotrophic sloughs.   They concluded (page
1449): “Preservation of the Everglades sloughs is thus strongly related to the integrity of the
periphyton mat”.  
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Phosphorus enrichment changes or eliminates the native Everglades periphyton communities.

Increasing water column phosphorus  has been repeatedly shown to cause numerous
changes to the periphyton community, including changed phosphorus content, changed biomass,
loss of native species such as diatoms that are indicators of oligotrophic conditions, or
establishment of a different community with changed spatial extent and species composition.

Gleason et al. (1975a) investigated the effect of agricultural runoff on the periphyton
communities observed at five Refuge wet prairie marsh sites during the spring of 1974.  The two
marsh stations in contact with agricultural runoff were distinct from the other stations with respect
to diatoms, green algae, blue-green algae, and periphyton biomass and phosphorus content.   They
stated that the  “correlation between high biomass, high phosphorus and close proximity to the
peripheral canal suggests that the high biomass and high phosphorus concentrations are probably, in
part, a response to higher nutrient concentrations near the rim canal.” (page 63). 

Swift (1984) reported on water quality and periphyton relationships observed during 1978-
1979 throughout Loxahatchee National Wildlife Refuge and WCAs 2A and 3A.   He found that
periphyton growth on glass slides was significantly affected by site differences in marsh water major
ion content, pH, alkalinity and phosphorus concentration.    Marsh water TP was the controlling
factor regulating periphyton growth.  Elevated water TP increased periphyton biomass, increased
periphyton phosphorus content, and altered community species composition toward  pollution-
tolerant species. 

In an analysis of periphyton data collected by Swift from 1978-1983 in WCA2A, WCA3A,
and WCA3B,  Grimshaw et al. (1993) found strong statistically significant correlations between
mean dissolved phosphorus concentrations in the marsh water column and the mean phosphorus
content and mean relative abundance of eutrophic algae in periphyton communities within WCA2A. 
They also found statistically strong significant correlations between total, dissolved and inorganic
phosphorus in the water column with the mean phosphorus content of periphyton communities
when WCA3A and WCA3B were included.

A 1983-1984 nutrient dosing study in an Everglades National Park wet prairie (Flora et al.,
1988; Hall and Rice, 1990) documented changes in the algal community in response to phosphorus
enrichment.  An average addition of 14 ppb phosphate over a 63-day period resulted in the
elimination of the native periphyton mat, which continued to remain at the adjacent reference sites
that were not subjected to nutrient addition.  Continued dosing caused an increase in periphyton
biomass and a succession of changes in periphyton community composition.  The average
background phosphate concentration for the study duration was 6 ppb.

Raschke (1993) reported the results of a 1990-1991 study of diatom community response
along a soil phosphorus gradient within Everglades National Park downstream of water control
structure S-12C.   A strong correlation was found between sediment phosphorus concentration
and diatom community mean diversity.   He concluded that the periphyton diatom community was
responding to sediment phosphorus increases as evidenced by changes in the number of diatom
species, mean diversity, and occurrence of periphyton species that are indicators of phosphorus
enrichment.  The TP concentration of water discharged to the marsh through the S-12C structure
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had an annual median ranging from 7 ppb to 14 ppb during the previous 12 years.   From 1978 to
1989 water TP at S-12C had increased from about 7 ppb to 12 ppb.   

McCormick and O’Dell (1996) quantified periphyton responses to phosphorus in
WCA2A. During 1995 they sampled transect stations along a phosphorus gradient while
simultaneously performing a  phosphorus enrichment experiment in a pristine slough.  Phosphorus
content of periphyton mats was strongly correlated with surface water TP, and periphyton mat
species composition changed along the phosphorus gradient.  They concluded that these changes
were caused by phosphorus concentrations.  McCormick and O’Dell also stated that:

“The cyanobacterial-diatom assemblage characteristic of oligotrophic conditions in the
Everglades was replaced by filamentous green algae at marsh stations where water-column
phosphorus concentrations exceeded 10 ug/L TP.” (page 464).

“Our study provides strong experimental evidence to support previous evidence that
relatively small increases in marsh phosphorus concentration are associated with
substantial changes in the Everglades periphyton assemblage.” (page 464).

“The loss of the calcareous cyanobacterial mat in response to phosphorus enrichment has
ramifications for several ecosystem processes in the Everglades.  This mat can account for
more than 50% of the vegetative biomass in sloughs (Wood and Maynard, 1974,
Browder, et al. 1982) and represents an important substrate for invertebrate populations in
the marsh (Reark, 1961).”  (page 465).

McCormick and O’Dell also mentioned: the role that this periphyton mat plays in
maintaining surface water oxygen in the marsh, with mat absence associated with protracted periods
of low dissolved oxygen or anoxia; its role in affecting availability of phosphorus and nitrogen; and
its role in forming marl soils in portions of the Everglades.  They stated that changes in the
periphyton assemblage may have important implications for the Everglades food web.     

Pan et al. (1997, page 2-13) sampled 32 sloughs in WCA2A along a phosphorus enrichment
gradient during 1995 and found that diatom species composition, periphyton biomass, and physico-
chemical structure of periphyton assemblages all shifted relative to native assemblages as P loading
increased.  “Changes in periphyton assemblages along the P gradients were evident at the
community, functional, and population levels”.  They also stated that changes in algal species
composition are much more sensitive and predictable than algal biomass (chlorophyll a and
biovolume) in response to P loading.  Cluster analysis of data separated the 32 sites along the P
gradient into 3 groups based on diatom species composition.  Periphyton biomass and ash weight
decreased and the TP content of periphyton increased as water column TP increased from group I
(surface water TP mean 11.54 ppb) to group II (surface water TP mean 16.37 ppb).  

McCormick and Stevenson (1998) reported data from an experiment in which several
different concentrations of phosphate were added to nutrient dosing flumes as described in
Richardson et al. (1994).  They stated that calcareous periphyton was reduced in waters averaging 5
ug/l soluble reactive phosphorus (SRP) above the background concentration of about 4 ug/L SRP.  
They noted  that the observed periphyton mat cover varied over time taxonomically and chemically,
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and the common characteristic of the phosphorus environment in which the calcareous mat did not
exist was that SRP was at least 5 ug/L greater than the concentration in the control treatment. 

In their 1999 Everglades Interim Report, SFWMD (McCormick et al., 1999) found that
controlled dosing studies combined with sampling along marsh phosphorus gradients in WCA-2A
indicate that periphyton species changes begin to occur at water column total phosphorus
concentrations of about 10 ppb. 

6- Impacts of phosphorus enrichment: water column dissolved oxygen. 

Relevant scientific literature: Hunt, 1961; Gleason and Spackman, 1974; Gleason et al., 1975a; 
McPherson et al., 1976; Scheidt et al., 1985; Belanger and Platko, 1986; Belanger et al., 1989;
McCormick et al., 1997.

Dissolved oxygen in pristine Everglades wet prairie and slough communities often exhibits a
strong diel cycle, with concentration at a particular location ranging from 0 mg/l in early morning to
over 12 mg/l in late afternoon.  In contrast, oxygen levels in nutrient-rich locations within WCA2A
have been shown to often be undetectable and rarely exceed 2 mg/l, with protracted periods of
oxygen depletion.  Although wetland plant and animal species are well adapted to the natural diel
cycle of anoxia that often characterizes pristine marsh ecosystems, it is improbable that many native
Everglades fish species are tolerant of prolonged oxygen depletion.

McCormick et al. (1997) summarized marsh diel dissolved oxygen data at minimally
nutrient-impacted sites (reference sites) in WCA1, WCA2A, and WCA3A and at a phosphorus-
impacted site in WCA2A.  They found that all reference sites were characterized by a strong diel
variation in water column oxygen (0-12 mg/L) while oxygen concentration at the phosphorus-
impacted site rarely exceeded 2 mg/L and were often undetectable.  Rates of gross primary
productivity and aerobic respiration were higher, with average P/R ratios near unity (1.0) at
reference sites, as compared to the enriched site (P/R<0.5).   Nutrient enrichment was associated
with reduced primary productivity, a shift towards increasing community heterotrophy and
protracted periods of oxygen depletion. They also state that the “intense photosynthetic activity of
the periphyton-Utricularia mats represents the major source of aquatic O2 production in the
Everglades,...”(page 124) and the “loss of the native periphyton-Utricularia mat from enriched
sloughs corresponds with a shift towards a  heterotrophic system (P/R<1) and prolonged periods of
O2 depletion (<2 mg/L) in the water column.” (page 127).

7- Impacts of phosphorus enrichment: soil. 

Relevant scientific literature:   Koch, 1991; Reddy et al., 1991; Koch and Reddy, 1992; Jones and
Amador, 1992; Reddy et al., 1993; Craft and Richardson, 1993; Debusk et al., 1994; Qualls and
Richardson, 1995; Doren et al., 1996; Walker and Kadlec, 1996; Newman et al., 1997; Craft and
Richardson, 1997; Richardson et al., 1997; Vaithiyanithan and Richardson, 1997; Stober et al.,
1998; Reddy et al., 1998.

Increasing water column phosphorus concentration over sufficient duration has increased
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Everglades soil phosphorus concentrations.  Soil TP gradients have been documented throughout
the Everglades system with the highest concentrations observed at soils downstream of structures
discharging high phosphorus water.  This soil enrichment phenomenon has been documented
within:

LNWR-  [Richardson et al., 1990; Doren et al., 1996;  Newman et al., 1997; Stober et al., 1998];
WCA2A-  [Koch, 1991; Reddy et al., 1991; Koch and Reddy, 1992; Craft and Richardson, 1993;
Debusk et al., 1994; Qualls and Richardson, 1995; Doren et al., 1996; Craft and Richardson, 1997;
Richardson et al., 1997; Craft and Richardson, 1998; Vaithiyanithan and Richardson, 1997; Stober 
et al., 1998)];  WCA3A-  [Doren et al., 1996; Stober et al., 1998]; and ENP-  [Raschke,  1993;
Doren et al., 1996; Stober et al., 1998].

Craft and Richardson (1998) studied peat soil accretion and accumulation throughout the
Everglades.  They found that unenriched areas of the Everglades possess some of the lowest rates
of P accumulation of peatlands in North America.   In enriched areas of WCA2A, phosphorus
accumulation was eight times higher and soil accretion was three to five times higher than in
unenriched areas.  They stated that even small anthropogenic P loadings may alter organic soil
accretion and nutrient accumulation.  “Successful restoration of the Everglades will have to include
the elimination of anthropogenic nutrient loadings to limit the P enrichment zone from expanding
into existing unenriched interior areas and areas downstream of WCA2A.” (abstract)

Richardson et al. (1997) noted that the most nutrient-impacted area of the Everglades is
WCA2A, with 51% of the area showing increased soil P (page 14-3).  

Several investigators have documented a correlation between elevated soil TP and the
expansion of cattail into sawgrass or wet prairies (see below).  Walker and Kadlec (1996)
developed a mass balance model to simulate phosphorus concentrations in waters and soils
downstream of Everglades Stormwater Treatment Areas.   They proposed a soil threshold
phosphorus criteria of 540 to 990  milligrams per kilogram (mg/kg) as a surrogate for impacts on
ecosystem components which respond primarily to soil P, such as cattail expansion.

8-  Impacts of phosphorus enrichment: macrophyte impacts.

Relevant scientific literature:  Steward and Ornes, 1975a; Steward and Ornes, 1975b; Gleason et
al., 1975b; Davis, 1989; Flora et al., 1988; Walker et al., 1989; Richardson et al., 1990; Davis,
1991; Koch, 1992; Urban et al., 1993; Rutchey and Vilchek, 1994; Davis, 1994; DeBusk et al.,
1994; Jensen et al., 1995; Doren et al., 1996; Walker and Kadlec, 1996; Craft and Richardson,
1997; Newman et al., 1997; Stewart et al., 1997; Stober et al., 1998; Daoust and Childers, 1999.

The oligotrophic Everglades marsh system contains a mosaic of macrophyte communities,
such as sloughs, wet prairies and sawgrass marshes, all of which are adapted to low nutrient
conditions.  This mosaic is an important defining characteristic of the Everglades.  Wet prairies and
sloughs in particular provide critical habitat for animals and provide cover, nesting, and feeding sites
for all animal groups.  The wet prairie/slough habitat is also the major feeding area in the
Everglades for both wintering and nesting wading birds, especially during the dry season when fish
concentrations provide food for their nestlings (Gunderson and Loftus, 1993).   An important
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characteristic of unimpacted wet prairies and sloughs is their diversity and the large number of
native plant species (Olmstead et al, 1980; Olmstead and Loope, 1984; Goodrick, 1974; Gunderson
and Loftus, 1993).   Multiple factors are responsible for the alteration and maintenance of plant
community structure in the Everglades, including nutrients, fire, disturbance, and hydroperiod.  
Elevated water phosphorus concentrations or elevated soil phosphorus concentrations in the
Everglades are associated with elimination of submerged vegetation species including the
Utricularia-periphyton complex and expansion of nutrient-tolerant macrophytes such as cattail or
Sagittaria into areas previously dominated by sawgrass, sloughs or wet prairies. 

Ornes and Steward (1973) added phosphorus (10 milligrams per liter) and potassium to a
WCA3B sawgrass marsh for 22 weeks in order to simulate sewage effluent discharge.  They
reported algal blooms and macrophyte community changes, including elimination of native 
submerged aquatic vegetation such as Utricularia spp. 

Gleason et al. (1975b) investigated the effect of agricultural runoff on the Everglades marsh. 
They looked at the effect of nutrient inputs on biomass and phosphorus concentrations in cattail and
sawgrass downstream of the S-10 structures within WCA2A.  They noted that the two species
respond differently to added nutrients and concluded that “The differential growth response of the
two plant species to phosphorus enrichment offers an explanation for the invasion of sawgrass by
cattail in Area 2A below the S-10 structures.” (page 115).

A 1983-1984 nutrient dosing study in an Everglades National Park wet prairie (Flora et al.,
1988; Hall and Rice, 1990) documented changes in periphyton and emergent plant communities in
response to phosphorus enrichment.  Within one year of phosphate addition at an average
concentration of 27 ppb the native Utricularia-periphyton assemblage had been eliminated and the
open water marsh which was previously dominated by Eleocharis spp. became dominated by dense
emergent stands of Sagittaria and Panicum.  Plant tissue concentrations, biomass and community
composition were all changed within several months.  The background phosphate concentration for
the study duration was 6 ppb.

From 1985 to 1990, Richardson et al. (1990) conducted a study of vegetation and habitats
within Loxahatchee National Wildlife Refuge and their relationships to water quality, quantity and
hydroperiod.  Multi-variate analysis indicated that soil  phosphorus rather than hydroperiod was the
primary factor controlling cattail distribution in the Refuge.   

Craft and Richardson (1997) studied relationships between soil nutrients and plant species
(sawgrass, cattail and other species) in WCA2A during 1989.  They found that plant species
composition along a P enrichment gradient was highly correlated with soil P content, but not with
sodium or calcium.  They concluded that “P, not Na, is the primary determinant of the observed
changes in macrophyte community composition in enriched areas of WCA2A” (page 231) and
“These findings support previous studies, which indicate that cattail encroachment into sawgrass
communities in northern WCA2A is caused, to a large extent, by P enrichment of the peat (Urban 
et al., 1993; DeBusk et al., 1994)” (page 232).
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Newman et al. (1997) observed the spatial distribution of soil nutrients and plant species in
Loxahatchee National Wildlife Refuge during 1991.  Of the 90 sites sampled, 66 sites consisted of
sloughs and sawgrass, while 24 were either cattail-dominated or had a significant cattail presence. 
“These 24 cattail sites were closest to the nutrient inflow areas and had the highest soil nutrient
concentrations” (page 1275).

From 1991-1993 Newman et al., (1996) studied the effects of nutrients (P and nitrate) and
hydroperiod on cattail, sawgrass and Eleocharis in controlled outdoor tanks.  Their high treatment
consisted of nutrient additions to adjust ambient marsh water concentrations to 100 ppb phosphorus
and 1 milligram per liter (1000 ppb) nitrogen.  Their low treatment increased the ambient P
concentration to 50 ppb with no adjustment made to the nitrate concentration.  They observed that
cattail was enhanced by both elevated nutrient concentration and increased depth of flooding. 
Increased nutrients led to a significant dominance of cattail over sawgrass and Eleocharis, and this
dominance was further enhanced by increased flooding levels.   They noted that the interaction
between nutrients and hydrology is important, and that restoration of Everglades vegetation
requires more natural hydroperiods as well as reduced nutrient inputs.

Grimshaw et al. (1997) compared the relative net primary productivity of periphyton
communities within WCA2A under emergent plant canopies typical of enriched and unenriched
Everglades habitats.  The amount of photosynthetically active radiation reaching periphyton
communities was reduced only by 35% in sawgrass habitats but was reduced by 85% or more in
dense stands of  cattail.    The net primary productivity of periphyton in nutrient-rich cattail habitats
was severely reduced (by about 80%) as compared to open water habitats.  The plant shading effect
suppressed periphyton photosynthesis.  

A 1990-1996 study of WCA2A found a significant positive correlation between cattail and
Sagittaria and several indicators of increased P, including soil TP  (Richardson et al., 1997, page
14-28).  They also found a significant negative correlation between sawgrass and soil TP as well as
surface water TP.  As phosphorus enrichment increased, the number of macrophyte species typical
of the oligotrophic area showed a progressive decline, and nearly half of the macrophyte species
widespread throughout the unenriched Everglades were absent from the two most enriched sites
(page 14-44).

In a nutrient dosing study in WCA2A, Richardson et al (1997, chapter 17) found that:
Utricularia is generally not found at TP concentrations greater than 30 ppb; maximum densities of
Eleocharis elongata were reached in the un-walled control channel where TP averaged close to 10
ppb; a significant relationship was found between Eleocharis cellulosa and surface water TP
concentration with a significant decrease in density above 30 ppb after four years of P dosing;
“elevated TP concentrations above 20 ug/L demonstrates direct or indirect effects of elevated PO4
concentrations, which inhibits the survival of U. purpurea.” (Page 17-27); “Any changes in
Eleocharis spp. may be the most significant ecological change in the slough community since it is
the dominant plant and an important substrate for periphyton” (Page 17-28).

Walker and Kadlec (1996) developed a mass balance model to simulate phosphorus
concentrations in waters and soils downstream of Everglades Stormwater Treatment Areas.   They
proposed a 0 to 10 centimeter soil threshold phosphorus criteria of 540 to 990  milligrams per
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kilogram (mg/kg) as a surrogate for impacts on ecosystem components which respond primarily to
soil P, such as cattail expansion.

Wu et al. (1997) developed a probability model to test the effect of water depth and soil TP
concentration on the cattail invasion of WCA2A.  They proposed a soil TP concentration of 650
milligrams per kilogram as a threshold above which accelerated cattail invasion occurs.

9- Impacts of phosphorus enrichment: food web changes and loss of wading bird foraging
habitat.

Relevant scientific literature:  Bancroft et al., 1992; Hoffman, 1994; Gunderson and Loftus, 1993;
Fleming et al., 1994; Turner et al., in press.

Shallow, open water areas with low to moderate density emergent macrophytes are the
preferred foraging habitat for Everglades wading birds.  Bancroft et al. (1992) documented the
importance of the Water Conservation Areas as foraging habitat for the wood stork, an endangered
species.  They noted that the habitats used by wood storks generally are drying ponds, wet prairies,
and sloughs.  The storks feed in these more open areas, where their foraging habitats are least
affected by submerged or emergent vegetation. 

Hoffman et al. (1994) studied wading bird foraging habitat in the Water Conservation Areas
from 1985-1988.  They reported that great egrets, great blue herons, white ibises and wood storks
all avoided dense grass habitats, defined as  continuous coverage of sawgrass, cattail, sedges, reeds
or grasses.  They noted the importance of perpetuating slough and wet prairie habitats for wading
birds.  Conversion of these open water or wet prairie plant communities to dense stands of
emergent nutrient-tolerant macrophyte species such as cattail constitutes a loss of preferred wading
bird foraging habitat.

Turner et al. (in press) reported that the natural condition in the Everglades is one of high
periphyton standing stock, but low standing stocks of invertebrates and fish.  They also reported
that: enriched areas have a higher fish standing stock; “The data we present also suggest the
possibility of a trophic cascade that may lead to unanticipated changes in community structure
where nutrients are added” (page 20); and “Anthropogenic eutrophication in Everglades marshes
will lead to the loss of distinctive ecosystem features.” (abstract). 

Gunderson and Loftus (1993) presented food web diagrams for known trophic relationships
among the characteristic Everglades animals with a macrophyte base (Utricularia, Eleocharis,
sawgrass, beak rush, and Panicum) and a detritus/periphyton base.  Macrophytes, periphyton and
detritus are at the bottom or base of both food webs.  Invertebrates, insects, fish, birds, amphibians,
reptiles and mammals are found at higher trophic levels.  Everglades phosphorus enrichment has
been shown to change detrital formation processes, and change periphyton and macrophyte
communities.  Such changes at the food web base can be expected to change inter-relationships
among species across higher trophic levels.  
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CONCLUSION

The Tribe has defined Class III-A waters within the Federal Reservation as "Those Tribal
water bodies which are used for fishing, frogging, recreation (including airboating), and the
propagation and maintenance of a healthy, well-balanced population of fish and other aquatic life
and wildlife.  These waters have been primarily designated for preservation of native plants and
animals of the natural Everglades ecosystem."  (page 19 of the Final Miccosukee Environmental
Protection Code, Subtitle B, dated December 19, 1997).   In the section on water quality standards
for nutrients the Tribe states: “Nutrients: In no case shall nutrient concentrations of Tribal Class I or
Class III-A surface waters be altered so as to cause an imbalance in natural populations of aquatic
flora or fauna.”  (page 9).

There is no single scientific study or publication that provides a complete synthesis of the
data and information regarding background Everglades phosphorus conditions and phosphorus
enrichment impacts.  Rather, a great number of scientific publications and efforts provide relevant
pieces of information, which when considered collectively, provide a generally consistent and more
complete understanding.

The scientific information summarized above has been independently developed by different
scientists, in different studies, over different time frames, using different methods, in different areas
of the Everglades system. These scientists include consultants and individuals employed by but not
limited to SFWMD, USDA, NPS, USFWS, USEPA, USGS, Florida International University,
University of Florida, and Duke University.   Generally, the results are complementary and
corroborative.  There is no question that phosphorus enrichment in the Everglades causes direct and
indirect changes within this marsh ecosystem.  Taken as a whole, these collective changes must be
reasonably viewed as systemic.  That is, phosphorus enrichment at a marsh location changes not
only surface water phosphorus concentrations, but eventually also impacts plants and animals at that
location.  The natural structure and function of the Everglades system becomes lost.  Such changes
are directly contrary to the intent of the Class III-A designated use adopted by the Tribe.

The nutrient dosing studies and observational studies reviewed indicate that total
phosphorus concentrations above 10 ppb have been shown to cause impacts to native Everglades
periphyton and macrophytes such as Utricularia purpurea that are adapted to low phosphorus
conditions.  The best available scientific information indicates that average TP concentrations
greater than 10 ppb, in general, can be expected to be inadequate for long-term protection of the
designated use defined by the Tribe.  Therefore the Tribe’s adopted numeric phosphorus criterion of
10 ppb is not overly protective. 

The currently available data and information also indicates that the Tribe’s adopted numeric
phosphorus criterion of 10 ppb is protective of the Class III-A designated use.  While in certain
portions of the Everglades system, long-term phosphorus concentrations are less than 10 ppb, the
scientific information reviewed did not demonstrate that a numeric phosphorus criterion of 10 ppb
would not be protective of the Class III-A designated use.  For example, as summarized by Walker
(1995), the long-term phosphorus concentration at wet prairie marsh station P-37 with Everglades
National Park was 5.2 ppb.  For WCA-3A, the SFWMD identified a total phosphorus median
concentration of 5 ppb of phosphorus (McCormick et al., 1999).  However, EPA’s review



24

identified no currently available published scientific information documenting changes in the natural
flora or fauna of the Everglades System as a result of changes in the phosphorus concentrations in
the 5 ppb to 10 ppb range.  If new data or scientific information are presented that demonstrate that
10 ppb is not protective of the Class III-A designated use, then the Tribe should revise the 10 ppb
standard accordingly.

In conclusion, the Miccosukee Tribe’s 10 ppb criterion for phosphorus meets the
requirements of 40 CFR §131.11 as it is protective of the Class III-A designated use and review of
available data shows that this value is scientifically defensible.
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