

Improved quantitative models of chemical toxicity based on combined application of chemical and biological molecular descriptors Hao Zhu and Alexander Tropsha Carolina Center for Computational Toxicology and

Carolina Center for Environmental Bioinformatics Laboratory for Molecular Modeling School of Pharmacy, UNC-Chapel Hill

Outline

- Overall project vision: exploiting the entire structure *in vitro in vivo* continuum
- (briefly) Predictive QSAR Modeling Workflow
- Applications
 - novel data partitioning approach based on in vitro in vivo correlations: Hierarchical QSAR modeling of rodent toxicity
 - analysis of ToxCAST data
 - Modeling of ToxRefDB endpoints using chemical descriptors only
 - Modeling selected *in vivo* end points using hierarchical QSAR modeling

Chemocentric view of biological data

Slide courtesy of Dr. Ann Richard (EPA)

Chemical Structure – *in vitro – in vivo* Toxicity Data Continuum.

Slide is courtesy of Dr. Ivan Rusyn (UNC)

Principles of QSAR/QSPR modeling

Introduction

Principle of QSAR/QSPR modeling

Introduction

Principles of QSAR/QSPR modeling

Introduction

Predictive QSAR Workflow*

Tropsha, A., Golbraikh, A. Predictive QSAR Modeling Workflow, Model Applicability Domains, and Virtual Screening. Curr. Pharm. Des., 2007, 13, 3494-3504.

Compound prioritization using QSAR models

Experimental Study I: A Two-step Hierarchical QSAR Modeling Workflow for Predicting *in vivo* Chemical Toxicity*

*Zhu, Rusyn, Wright, et al, EHP, 2009(8), 1257-64; in collaboration with Ann Richard, NCCT, US EPA

ZEBET Database* and Data Preparation

(Rather) poor in vitro-in vivo Correlation Between IC50 and Rat LD50 Values

 $R^2 = 0.46$

Data partitioning based on the moving regression approach

• IC50 vs. rat LD50 values

 $R^2=0.74$ for Class 1 compounds

Modeling Workflow

Prediction Workflow

Classification of the Rat LD50 Values for the External Set of 23 Compounds

No AD: Classifica	tion rate =	62%	With AD: Classification rate = 78%				
	Pred. C1	Pred. C2		Pred. C1	Pred. C2		
Exp. C1	7	2	Exp. C1	6	0		
Exp. C2	6	5	Exp. C2	4	5		

Prediction of the Rat LD50 Values of the External 23 Compounds

• $R^2=0.79$, MAE=0.37, Coverage=74% (17 out of 23)

Experimental Study II: Analysis of ToxCAST data:

(i) ToxRefDB Overview

(ii) Application of Hierarchical QSAR Approach

ToxRefDB* Summary

I. Effective Dose, in mg/kg/day								
Chronic toxicity:	CHR_Mouse (7); CHR_Rat (14)							
Developmental toxicity:	DEV_Rabbit (18); DEV_Rat (18)							
Reproductive toxicity:	Multigeneration, MGR_Rat (19)							
-LTD, HTD - Lowest and Hig	ghest Tested Doses (10)							

II. Category data:

 Supplementary carcinogenicity data, lesions/tumors of various organs: Mouse (174); Rat(174)

- OPP Carcinogenic potential (2)

*http://www.epa.gov/NCCT/toxrefdb/

Toxcast Assays (08-07-2009). 320 chemical entries

Source	#	Туре	Species	Description	Endpoint	Max. test conc.(μM)	≠0	0	N/A
ACEA	7	In vitro	Human	Cell-growth and morphology	IC50	100	17%	83%	0%
Attagene	73	In vitro	Human	Transcription factors	LEL	100	8%	92%	0%
BioSeek	174	In vitro	Human	BioMap system (pharmac.targets, adverse effects), protein markers	LEL	40	11%	89%	0%
Cellumen	57	In vitro	Human	Cellular toxicity indicators	IC50	200	11%	89%	0%
CellzDirect	42	In vitro	Human	Gene expression change (transport proteins, metabolic enzymes, etc)	LEL	40	17%	83%	0%
Gentronix	1	In vitro	Human	HTS (Genotoxicity)	LEL	200	10%	90%	0%
NCGC	18	In vitro	Human(23); Rat(1)	HTS (Nuclear receptor, cell viability and p53 assays)	IC50	200	<mark>3</mark> %	97%	0%
NovaScreen	239	In vitro (biochem)	Human(146); Rat(67); Mouse(2); Rabbit(2); Pig(1); Guinea Pig(10); Sheep(2); Cow(9)	HTS (ADME-Tox, enzyme, nuclear receptor, GPCR)	IC50	20 & 50	3%	97%	0%
Solidus	4	In vitro	Human	Cytotoxicity	LC50	960	22%	78%	0%
Genes	315	Mapped	Human(231); Rat(65); Mouse(2); Pig(1); Guinea Pig(6); Sheep(2); Cow(8)	values = min. LEL (over all the assays relevant to the particular gene)	LEL	-	9%	91%	0%
Pathways	438	Mapped	Human(425);	min.LEL if > 5 mapped assays	LEL	-	8%	92%	0%
ToxRefDB	76	In vivo	Rat(51); Mouse(7); Rabbit(18)	In-vivo animal toxicity (mg/kg/day)	LEL	≈10g/kg/day	11%	68%	21%
ToxRefDB	10	In vivo	Rat(6); Mouse(2); Rabbit(2)	In-vivo animal toxicity (mg/kg/day)	LTD, HTD	HTD	79%	0%	21%
	348	In vivo	Rat(174); Mouse(174)	Carcinogenicity data	Binary	-	<mark>2</mark> %	77%	21%
OPP Carc	2	In vivo	Rodents	Human carcinogen risk judgement	Score	-	22%	46%	32%

LEL – lowest effective level; LID, HID – lowest, highest tested dose

Comparison of the ToxCAST *in vitro* Assay Results for Duplicates/Triplicates (QC)

	Assay->	Total	ACEA	ATG	BSK	Cellu	CLZD	NVS	NCGC	Total	ACEA	ATG	BSK	Cellu	CLZD	NVS	NCGC
	n=	610	7	73	174	57	42	239	18	610	7	73	174	57	42	239	18
CAS	Chemical	R corr	relatio	on coe	fficie	nts (-l	og [Co	onc.])		# of n	on-ze	ro sig	nals				
55406-53-6	3-Iodo-2-propynyl- butylcarbamate	0.70	0.91	NA	0.57	0.40	0.44	0.93	NA	90	4	0	48	15	1	17	0
741-58-2	Bensulide	0.87	0.38	0.97	0.16	0.35	0.47	0.91	1.00	83	2	4	14	12	17	30	2
64902-72-3	Chlorsulfuron	0.67	NA	NA	-0.03	NA	0.00	1.00	NA	1	0	0	1	0	0	0	0
84-74-2	Dibutyl phthalate	0.74	NA	0.60	0.02	-0.02	0.02	0.95	NA	22	0	4	12	1	1	4	0
51338-27-3	Diclofop-methyl	0.88	1.00	0.97	0.22	0.45	0.31	0.26	1.00	23	2	4	11	1	3	1	2
759-94-4	EPTC	0.89	NA	NA	-0.01	NA	0.98	0.00	NA	3	0	0	0	0	3	0	0
66441-23-4	Fenoxaprop-ethyl	0.85	NA	0.33	-0.02	0.10	0.00	0.03	NA	21	0	1	17	2	0	1	0
94125-34-5	Prosulfuron	0.86	NA	0.66	-0.02	NA	0.71	0.50	NA	9	0	1	3	0	5	1	0
		R corr	relatio	on coe	fficie	nts (bi	inary (data)		Accur	acy (b	inary	data)	= (TP -	+ TN)/	(TP+T	N+FP+
55406-53-6	3-Iodo-2-propynyl- butylcarbamate	0.74	0.73	NA	0.70	0.47	0.48	0.89	NA	0.93	0.86	0.99	0.86	0.74	0.93	0.98	1.00
741-58-2	Bensulide	0.76	0.55	0.94	0.56	0.43	0.76	0.94	1.00	0.94	0.79	0.99	0.90	0.75	0.87	0.99	1.00
64902-72-3	Chlorsulfuron	0.07	NA	NA	0.07	NA	NA	NA	NA	0.97	0.71	0.99	0.91	0.98	0.95	1.00	1.00
84-74-2	Dibutyl phthalate	0.49	NA	0.52	0.48	0.49	0.38	0.81	NA	0.94	0.57	0.90	0.89	0.95	0.88	0.99	1.00
51338-27-3	Diclofop-methyl	0.53	1.00	1.00	0.40	0.48	0.45	0.35	1.00	0.95	1.00	1.00	0.86	0.92	0.85	0.99	1.00
759-94-4	EPTC	0.27	NA	NA	-0.04	NA	1.00	NA	NA	0.98	0.86	1.00	0.92	1.00	1.00	1.00	1.00
66441-23-4	Fenoxaprop-ethyl	0.53	NA	0.43	0.65	0.35	NA	0.35	NA	0.95	0.71	0.95	0.90	0.89	0.98	0.98	1.00
94125-34-5	Prosulfuron	0.47	NA	0.70	0.23	NA	0.77	1.00	NA	0.98	1.00	0.99	0.93	0.98	0.94	1.00	1.00

triplicate results are averaged; shaded cells reflect significant # of signals

Data Curation

- *In-vitro* assays: $615 \rightarrow 284$
 - Remove one of two highly correlated (*R*²>0.95) assays and low-signal (<10 non-zero entries) assays
- Chemicals: $320 \rightarrow 230 \sim 250$
 - duplicate structures, mixtures, inorganic compounds, macromolecules were removed
 - Kept only those for which *in-vivo* data is available (may vary for different endpoints)

Focusing on a small subset of data: Multi-Generation Rat Toxicity

- Important: Reproductive Toxicity
- 3 out of 19 assays with the highest fraction of actives chosen for initial studies: MGR_Rat_Kidney (78 actives) MGR_Rat_Liver (110 actives) MGR_Rat_ViabilityPND4 (70 actives)

Conventional QSAR Modeling

- Using chemical descriptors only:
 - -1224 Dragon chemical descriptors
- QSAR approaches:
 - Random Forest (RF)
 - SVM linear kernal
 - SVM rbf kernel

Breiman L. Machine Learning 45 (2001): 5-32

5-Fold Cross Validation Result

	MGR_Rat Kidney	MGR_Rat Liver	MGR_Rat ViabilityPND4
RF sensitivity	0.22	0.53	0.12
RF specificity	0.90	0.75	0.93
RF CCR	0.56	0.64	0.53
SVM_linear sensitivity	0.35	0.56	0.32
SVM_linear specificity	0.65	0.64	0.73
SVM_linear CCR	0.50	0.60	0.53
SVM_rfb sensitivity	0.37	0.61	0.23
SVM_rfb specificity	0.81	0.69	0.83
SVM_rfb CCR	0.59	0.65	0.53

In vivo toxicity prediction using either biological or hybrid (chemical plus biological descriptors)

- Using ToxCAST bioassay results as biological descriptors <u>did not</u> result in any statistically significant models.
- The use of hybrid (biological + chemical descriptors) <u>did not</u> improve the results either.
- These results are similar to the analysis of ToxCAST data by the <u>SAS team</u>.

Prediction Comparison Based on Ave (Sensitivity + Specificity)

Data partitioning based on *in vitro-in vivo* correlations as part of the QSAR Modeling workflow *For <u>each</u> In-vitro* vs. *In-vivo* profile (~1000 combinations):

• Binary classification QSAR for "baseline" (II & III) vs. off-line (I & IV) using chemical descriptors only

Modeling Workflow for ~1000 in vitro – in vivo Series Using Various QSAR Approaches and Dragon descriptors

External prediction workflow

General Consensus Prediction Gave the Similar Prediction Accuracy Compared to Conventional QSAR Model

	MGR_Ra	it Kidney	MGR_R	at Liver	MGR_Rat ViabilityPND4		
	Hybrid	Chemical	Hybrid	Chemical	Hybrid	Chemical	
RF sensitivity	0.25	0.22	0.6	0.53	0.12	0.12	
RF specificity	0.88	0.90	0.77	0.75	0.93	0.93	
RF CCR	0.57	0.56	0.69	0.64	0.53	0.53	
SVM_linear sensitivity	0.37	0.35	0.56	0.56	0.34	0.32	
SVM_linear specificity	0.68	0.65	0.67	0.64	0.73	0.73	
SVM_linear CCR	0.53	0.50	0.61	0.60	0.53	0.53	
SVM_rfb sensitivity	0.35	0.37	0.6	0.61	0.25	0.23	
SVM_rfb specificity	0.81	0.81	0.7	0.69	0.83	0.83	
SVM_rfb CCR	0.58	0.59	0.65	0.65	0.54	0.53	

Possible Reasons for the Lack of Significant Improvement

- 1. The quality of the data
- 2. Too many irrelevant bioassays were included in the consensus prediction
- Solution: the use of more restrictive threshold for active/inactive definitions as a special <u>Applicability Domain</u>
- >0.7 instead of 0.5 was used to define actives;
 <0.1 instead of 0.5 was used to define inactives.

General Consensus Prediction Gave Clear Better Prediction Accuracy with Applicability Domain

	MGR_Ra	t Kidney	MGR_R	at Liver	MGR_Rat ViabilityPND4		
	Hybrid	Chemical	Hybrid	Chemical	Hybrid	Chemical	
RF sensitivity	0.56	0.22	0.77	0.53	0.33	0.12	
RF specificity	0.84	0.90	0.70	0.75	0.92	0.93	
RF CCR	0.70	0.56	0.73	0.64	0.63	0.53	
SVM_linear sensitivity	0.70	0.35	0.86	0.56	0.71	0.32	
SVM_linear specificity	0.52	0.65	0.46	0.64	0.57	0.73	
SVM_linear CCR	0.61	0.50	0.66	0.60	0.64	0.53	
SVM_rfb sensitivity	0.68	0.37	0.86	0.61	0.48	0.23	
SVM_rfb specificity	0.71	0.81	0.56	0.69	0.75	0.83	
SVM_rfb CCR	0.69	0.59	0.71	0.65	0.61	0.53	

Comparison of Prediction Accuracy (CCR) of Conventional and Hybrid QSAR Models

The Coverage is Reasonable for the Resulting Models

	MGR_Rat Kidney	MGR_Rat Liver	MGR_Rat ViabilityPND4
RF	0.41	0.56	0.40
SVM_linear	0.61	0.66	0.64
SVM_rbf	0.43	0.53	0.38

Using Different Thresholds Could Result in Different Prediction Accuracy

SVM_rbf MGR_Rat ViabilityPND4 results:

The Use of Toxicological Pathway Information to Improve the Model*

- There are three groups of data could be relevant to toxicological pathways:
 - Attagene: 73 assays;
 - BioSeek: 174 assays;
 - NovaScreen: 239 assays.

*All pathway information was provided by Dr. Shawn Gomez

Example of Some ToxCast Assays That Could be Mapped onto Pathways

Obtained from Dr. Shawn Gomez

Overview of the ToxCast Assays that have been mapped to pathways (so far)

	Nm. of assays	Nm. of assays (no low active %)
JAK-STAT Signaling Pathway	8	0
PPAR Signaling Pathway	13	7
Focal adhesion	14	5
T cell receptor signaling pathway	13	4
TGF-beta signaling pathway	10	6
Toll-like receptor signaling pathway	25	20
Apoptosis	15	9
Wnt signaling pathway	10	2
Adipocytokine signaling pathway	12	4
Leukocyte transendothelial migration	11	9
MAPK signaling pathway	24	14
ErbB signaling pathway	11	3
Natural killer cell mediated cytotoxicity	13	4
Cell cycle	9	3
p53 signaling pathway	7	4
BMPR2 interaction with PPARG	8	6
All	95	54

Using 54 ToxCast Pathway-mapped Assays for Consensus Prediction

	MGR_Rat Kidney		MGR_R	at Liver	MGR_Rat ViabilityPND4		
	CCR	Coverage	CCR	Coverage	CCR	Coverage	
RF all assays	0.70	0.41	0.73	0.56	0.63	0.4	
54 pathway assays	0.67	0.48	0.72	0.6	0.60	0.46	
23 pathway assays	0.65	0.44	0.73	0.55	0.58	0.4	
10 pathway assays	0.62	0.43	0.71	0.5	0.54	0.36	
SVM_linear all assays	0.61	0.38	0.66	0.42	0.64	0.32	
54 pathway assays	0.64	0.4	0.63	0.42	0.64	0.29	
23 pathway assays	0.63	0.28	0.57	0.31	0.64	0.22	
10 pathway assays	0.6	0.28	0.54	0.24	0.61	0.2	
SVM_rfb all assays	0.69	0.43	0.71	0.53	0.61	0.38	
54 pathway assays	0.69	0.45	0.71	0.53	0.68	0.36	
23 pathway assays	0.67	0.38	0.69	0.4	0.64	0.29	
10 pathway assays	0.64	0.28	0.67	0.32	0.53	0.2	

The Comparison between General Consensus and Pathway Consensus Results

RF MGR_Rat Liver all 284 models

RF MGR_Rat Liver 54 pathway models

The Comparison between General Consensus and Pathway Consensus Results II

SVM_linear MGR_Rat Liver all 284 models

SVM_linear MGR_Rat Liver 54 pathway models

The Comparison between General Consensus and Pathway Consensus Results III

SVM_rbf MGR_Rat Liver all 284 models

SVM_rbf MGR_Rat Liver 54 pathway models

Using Individual Pathways for MGR_Rat Liver Modeling

	R	F	SVM_	linear	SVM_rbf		
	CCR	Coverage	CCR	Coverage	CCR	Coverage	
All 54	0.73	0.56	0.66	0.42	0.71	0.53	
PPAR (7)	0.77	0.47	0.54	0.3	0.61	0.35	
Focal adhesion (5)	0.7	0.57	0.7	0.46	0.72	0.52	
T cell (4)	0.69	0.7	0.61	0.4	0.64	0.49	
TGF-beta (6)	0.73	0.52	0.57	0.54	0.72	0.58	
Toll-like (20)	0.71	0.61	0.59	0.39	0.69	0.43	
Apoptosis (9)	0.69	0.30	0.60	0.32	0.67	0.35	
Wnt (2)	0.66	0.74	0.59	0.53	0.66	0.58	
Adipocytokine (4)	0.70	0.62	0.60	0.4	0.58	0.47	
Leukocyte (9)	0.71	0.59	0.59	0.45	0.72	0.54	
MAPK (14)	0.72	0.63	0.61	0.41	0.71	0.49	
ErbB (3)	0.70	0.56	0.68	0.35	0.66	0.41	
Natural killer cell (4)	0.66	0.76	0.65	0.62	0.69	0.64	
Cell cycle (3)	0.69	0.65	0.62	0.68	0.69	0.75	
p53 (4)	0.64	0.66	0.62	0.52	0.66	0.59	
BMPR2 (6)	0.72	0.4	0.63	0.24	0.70	0.29	

Using Individual Pathways for MGR_Rat Kidney Modeling

	R	F	SVM_	linear	SVM_rbf		
	CCR	Coverage	CCR	Coverage	CCR	Coverage	
All 54	0.67	0.48	0.64	0.4	0.69	0.45	
PPAR (7)	0.71	0.3	0.51	0.5	0.6	0.29	
Focal adhesion (5)	0.62	0.49	0.56	0.53	0.65	0.5	
T cell (4)	0.61	0.63	0.61	0.45	0.58	0.47	
TGF-beta (6)	0.61	0.49	0.58	0.53	0.64	0.59	
Toll-like (20)	0.64	0.51	0.64	0.33	0.66	0.38	
Apoptosis (9)	0.61	0.49	0.62	0.29	0.66	0.30	
Wnt (2)	0.57	0.75	0.56	0.62	0.58	0.65	
Adipocytokine (4)	0.63	0.51	0.57	0.44	0.60	0.45	
Leukocyte (9)	0.65	0.53	0.61	0.41	0.67	0.48	
MAPK (14)	0.61	0.62	0.65	0.44	0.64	0.49	
ErbB (3)	0.61	0.59	0.59	0.49	0.59	0.52	
Natural killer cell (4)	0.61	0.71	0.61	0.56	0.63	0.6	
Cell cycle (3)	0.56	0.72	0.56	0.69	0.62	0.77	
p53 (4)	0.60	0.63	0.53	0.5	0.61	0.53	
BMPR2 (6)	0.70	0.31	0.57	0.2	0.63	0.28	

Using Individual Pathways for MGR_Rat ViabilityPND4 Modeling

	RF		SVM_linear		SVM_rbf	
	CCR	Coverage	CCR	Coverage	CCR	Coverage
All 54	0.63	0.4	0.64	0.32	0.61	0.38
PPAR (7)	0.63	0.3	0.52	0.25	0.5	0.26
Focal adhesion (5)	0.56	0.43	0.59	0.39	0.53	0.41
T cell (4)	0.51	0.62	0.54	0.43	0.54	0.46
TGF-beta (6)	0.53	0.4	0.61	0.39	0.60	0.5
Toll-like (20)	0.58	0.47	0.61	0.27	0.65	0.30
Apoptosis (9)	0.60	0.46	0.63	0.23	0.60	0.27
Wnt (2)	0.53	0.76	0.48	0.60	0.52	0.63
Adipocytokine (4)	0.51	0.52	0.56	0.39	0.5	0.37
Leukocyte (9)	0.63	0.46	0.58	0.37	0.55	0.44
MAPK (14)	0.53	0.57	0.61	0.35	0.56	0.63
ErbB (3)	0.54	0.56	0.56	0.41	0.51	0.46
Natural killer cell (4)	0.54	0.72	0.61	0.54	0.63	0.57
Cell cycle (3)	0.48	0.66	0.52	0.65	0.53	0.77
p53 (4)	0.56	0.63	0.54	0.61	0.57	0.54
BMPR2 (6)	0.57	0.3	0.55	0.22	0.59	0.26

Future Studies

- Go deeply to each pathway assay model
 - Significant tests
 - Any chemical scaffold could be identified?
- Combine different pathway models to achieve predictions with higher accuracy
- Model analysis to identify significant assaychemical combinations that are predictive of *in vivo* outcomes
- Apply model prospectively to prioritise new compounds for ToxCast testing.

Conclusions and plans

- Focus on accurate prediction of <u>external</u> datasets is much more critical than accurate fitting of existing data: validate, <u>then</u> interpret!
 - validation!!!
 - applicability domain
 - consensus prediction using all acceptable models
 - Ideally, experimental validation of a <u>small</u> number of computational hits
 - Outcome: decision support tools in selecting future experimental screening sets
- HTS and –omics data may be insufficient to achieve the desired accuracy of the end point property prediction BUT should be explored as biodescriptors in combination with chemical descriptors
 - New computational approaches (e.g., hierarchical QSAR)
 - Understanding of <u>both</u> chemistry and biology

Acknowledgements

Principal Investigator Alexander Tropsha

Research Professors

Clark Jeffries, Alexander Golbraikh, Hao Zhu, Simon Wang

Postdoctoral Fellows

Georgiy Abramochkin, Lin Ye, Denis Fourches

Visiting Research Scientist <u>Aleks Sedykh</u>

Adjunct Members

Weifan Zheng, Shubin Liu

MAJOR FUNDING NIH

- P20-HG003898
- R21GM076059
- R01-GM66940
- R0-GM068665

EPA (STAR awards) - RD832720 - RD833825

Collaborators:

<u>UNC</u>: I. Rusyn, F. Wright, S. Gomez <u>EPA</u>: T. Martin, D. Young A. Richard, R. Judson, D. Dix, R. Kavlock

Graduate Research Assistants

Christopher Grulke, Nancy Baker, Kun Wang, <u>Hao</u> <u>Tang</u>, Jui-Hua Hsieh, Rima Hajjo, Tanarat Kietsakorn, Tong Ying Wu, <u>Liying Zhang</u>, Melody Luo, Guiyu Zhao, Andrew Fant

> Research Programmer Theo Walker

System Administrator Mihir Shah