
Assessing the Exposure-Dose-Toxicity Relationship within the EPA's ToxCast Program

November 4, 2008 EPA Community of Practice

Russell Thomas

The Hamner Institutes for Health Sciences

There is a Broad-Based Movement in Toxicology Towards In Vitro Testing and Prediction of Hazard

Collins et al., Science 319:906, 2008

Current Focus of EPA and NTP Efforts is on Collecting HTS Screening Data

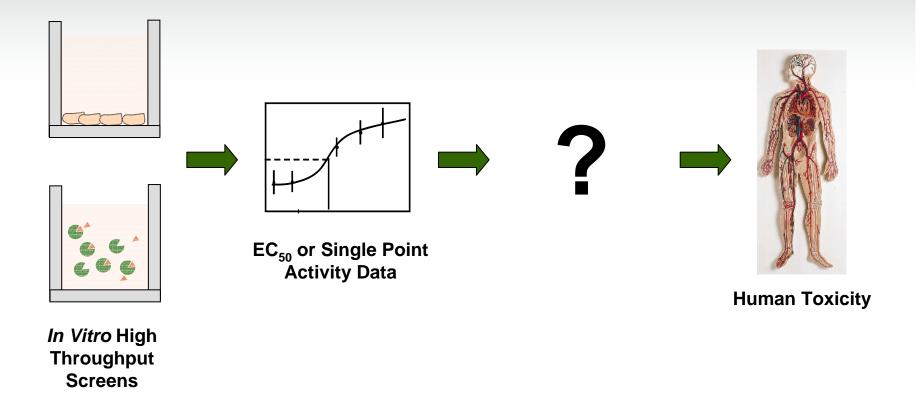
Table 1. Assays a			d within Phase	I signature develo	pment
Assay Type	Number of Assays	Number of Unique Endpoints	Assay Source	Comment	Source
Biochemical	+200	+200	Mostly human and rat	Enzyme inhibition, Ion channels, GPCRs, Cytochromes	NovaScreen Biosciences
Transcription Factor Profiling	2	+60	HepG2 cells (human liver)	Nuclear receptors and other transcription factors	Attagene
Nuclear receptor activation	+20	+20	Human and rodent	Reporter gene assay over 15 concentrations	NIH Chemical Genomics Center
Transcriptomics	1	+20,000	Primary hepatocytes- Kupffer cell co-cultures	Illumina microrrays	In Vitro ADMET Laboratories and Expression Analysis
Kinetic Cell Growth	1	Kinetic	A549 cells (human lung)	Real time recording of electrical impedance	ACEA Biosciences
Cytotoxicity and Bioactivation	1	6	Primary human liver, lung and kidney cells	Shared metabolism across cell types	In Vitro ADMET Laboratories
Complex cell culture	8	87	Primary human cells	Many cell signaling pathways	Bioseek
High content screening	1	11	HepG2 cells (human liver)	Fluorescence imaging of cells	Cellumen
Fish development	1	11	Zebrafish (Dana rerio)	Teratogenesis	Phylonix
TOTAL	>235	>20,395			

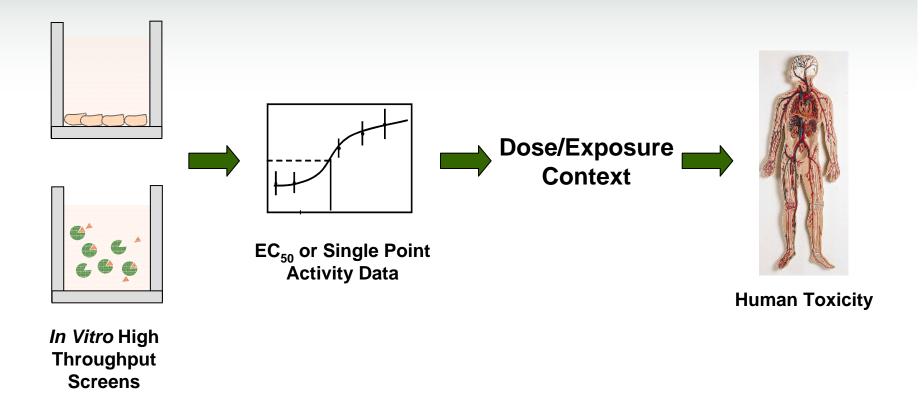
Roadmap Target #1: High-Throughput Screening (HTS)

Target Date: Begin exploratory testing mid 2005

Activities:

ASSAYS:	Catalogue assays in public domain Choice of Assays - pathways related to carcinogenicity, reproductive and developmental toxicity
	Metabolism - agents that have been tested Analyze metabolites
	Test each metabolite, if possible
AGENTS:	500+ that have been tested in bioassay HPV chemicals




NTP Assays

ToxCast Assays

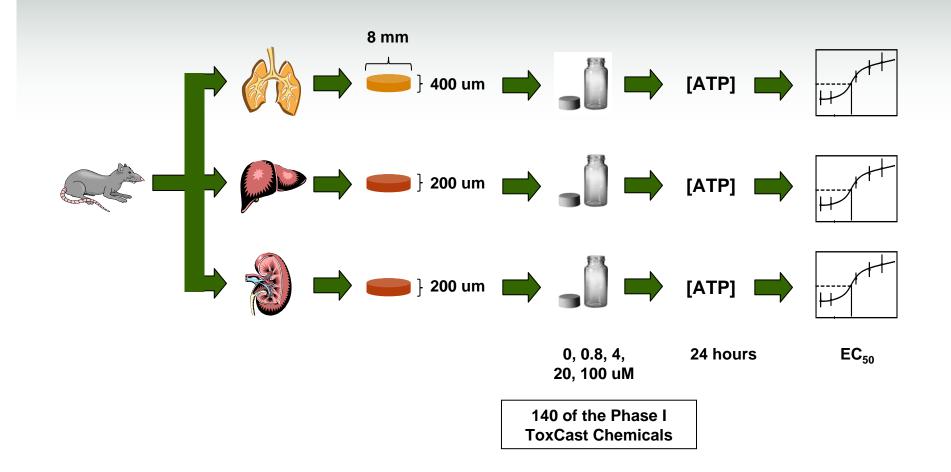
What is Missing from the Current High-Throughput Screening Approaches

What is Missing from the Current High-Throughput Screening Approaches

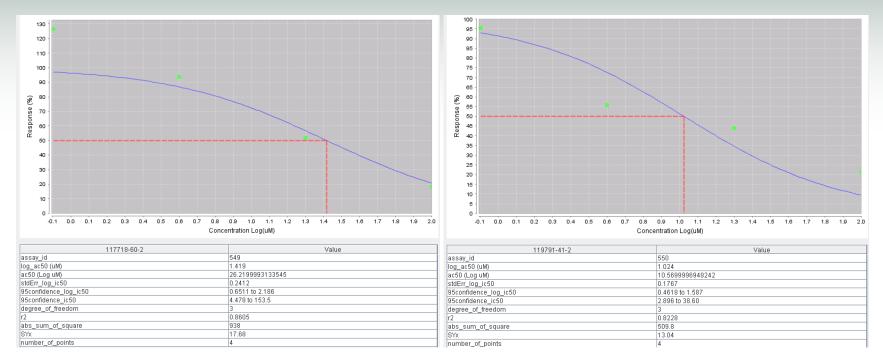
Outline

- **1. Tissue Slice Studies**
- 2. In Vitro Pharmacokinetic Assays
- 3. In Vitro to In Vivo Extrapolation and Reverse Dosimetry
- 4. ToxCast Visualization and Analysis Software

Outline

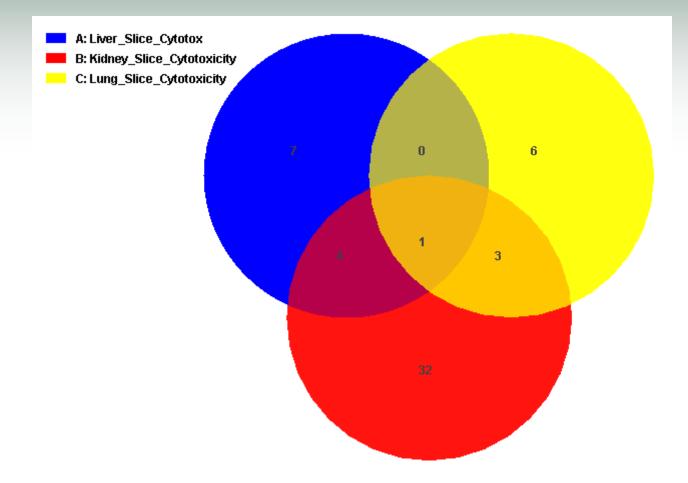

1. Tissue Slice Studies

- 2. In Vitro Pharmacokinetic Assays
- 3. In Vitro to In Vivo Extrapolation and Reverse Dosimetry
- 4. ToxCast Visualization and Analysis Software


Question

Can organ slice cultures be used to predict target organ toxicity in a whole animal?

Experimental Design


Example Cytotoxicity Data

Kidney Toxicity of Thiazopyr

Liver Toxicity of Emamectin

Preliminary Results Summary

The Hamner Institutes for Health Sciences | EPA Community of Practice | November 4, 2008

Preliminary Results Summary

 Only 53 chemicals show measureable EC₅₀s in at least 1 tissue

 Kidney most sensitive organ (40 chemicals); lung next most sensitive (12 chemicals); and liver least sensitive (8 chemicals)

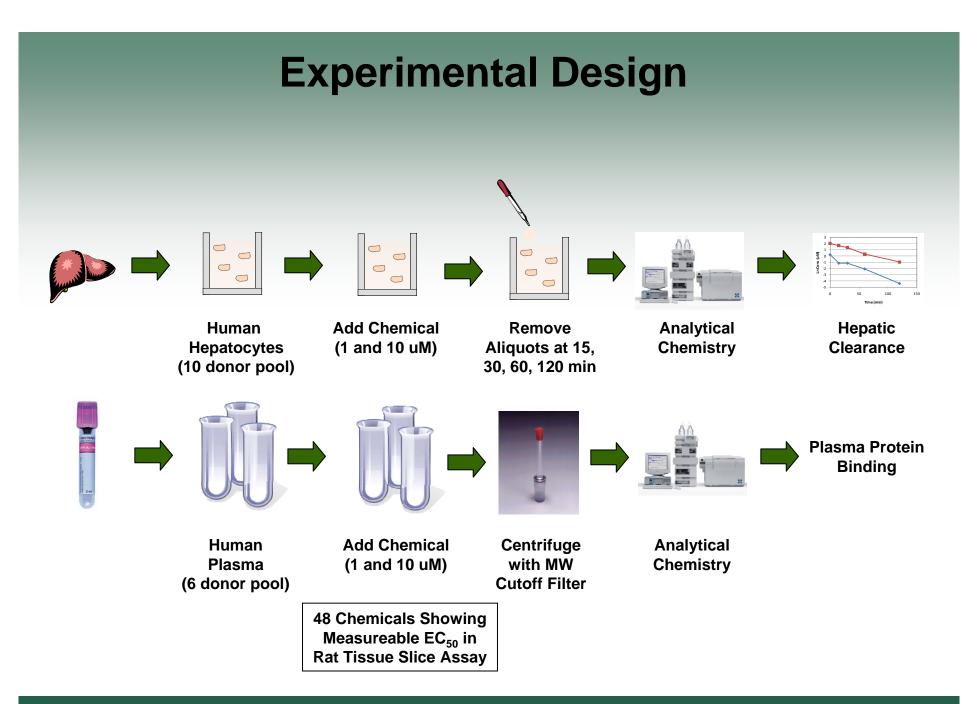
- 8 chemicals showed toxicity in 2 organs and 1 chemical showed toxicity in all 3 organs
- Median EC₅₀ was 31 uM (Range: 1.3 99 uM)

Predicting Target Organ Toxicity

Relative Risk	Rat Liver Tumors	Rat Proliferative Liver Lesions	Rat Liver Apoptosis Necrosis	Rat Liver Hypertrophy	Rat Kidney Nephropathy	Rat Proliferative Kidney Lesions	Rat Proliferative Thyroid Lesions	Rat Thyroid Tumors	Rat Thyroid Hyperplasia	Rat Testicular Tumors	Rat Testicular Atrophy	Rat Spleen Pathology	Rat Cholinesterase Inhibition	Rat Tumorigen	Mouse Liver Tumors	Mouse Proliferative Liver Lesions	Mouse Liver Apoptosis Necrosis	Mouse Liver Hypertrophy	Vouse Kidney Pathology	Mouse Lung Tumors	Mouse Tumorigen
Rat Liver Slice Cytotoxicity	0.00	0.27	0.68	0.23	1.71	0.54	0.00	0.00	0.00	0.00	0.00	1.00	3.04	0.96	1.26	0.73	0.60	0.35	0.00	0.00	0.76
Rat Kidney Slice Cytotoxicity	0.59	1.35	2.88	0.85	1.43	1.09	1.82	1.52	1.62	1.45	1.48	0.76	0.28	1.34	1.04	1.37	1.98	1.84	1.72	0.32	0.99
Rat Lung Slice Cytotoxicity	0.00	1.07	1.06	1.74	0.97	4.40	0.00	0.00	0.00	4.13	0.00	0.65	0.00	0.22	0.00	0.00	0.86	1.33	0.56	2.51	0.24
Sensitivity																					
Rat Liver Slice Cytotoxicity	0.00	0.10	0.10	0.10	0.40	0.10	0.00	0.00	0.00	0.00	0.00	0.20	0.40	0.40	0.38	0.38	0.13	0.13	0.00	0.00	0.38
Rat Kidney Slice Cytotoxicity	0.06	0.31	0.23	0.29	0.34	0.17	0.26	0.17	0.14	0.06	0.11	0.17	0.09	0.46	0.33	0.50	0.27	0.37	0.33	0.03	0.43
Rat Lung Slice Cytotoxicity	0.00	0.29	0.14	0.43	0.29	0.43	0.00	0.00	0.00	0.14	0.00	0.14	0.00	0.14	0.00	0.00	0.17	0.33	0.17	0.17	0.17
Specificity																					
Rat Liver Slice Cytotoxicity	0.91	0.71	0.86	0.67	0.72	0.83	0.79	0.85	0.88	0.95	0.90	0.80	0.82	0.59	0.68	0.55	0.81	0.71	0.72	0.91	0.56
Rat Kidney Slice Cytotoxicity	0.91	0.75	0.91	0.68	0.73	0.84	0.84	0.88	0.91	0.96	0.92	0.79	0.75	0.61	0.68	0.58	0.85	0.76	0.77	0.90	0.56
Rat Lung Slice Cytotoxicity	0.91	0.73	0.86	0.70	0.71	0.85	0.80	0.85	0.88	0.96	0.90	0.80	0.79	0.57	0.65	0.53	0.81	0.73	0.74	0.93	0.55

Outline

1. Tissue Slice Studies


2. In Vitro Pharmacokinetic Assays

3. In Vitro to In Vivo Extrapolation and Reverse Dosimetry

4. ToxCast Visualization and Analysis Software

Question

What in vitro assays are necessary to predict in vivo pharmacokinetic behavior?

Example Chemicals for Hepatic Clearance

Chlorpyriphos Oxon Atrazine 2 10 —— 1 uM - 🗕 – 10 uM 8 0 Ln Conc (uM) Ln Conc (uM) 6 -2 1 uM 4 -3 –10 uM -4 2 -5 -6 0 50 100 150 50 100 150 0 0 Time (min) Time (min) 10 uM T_{1/2} = 6.3 min 10 uM $T_{1/2}$ = Not determined $1 \text{ uM T}_{1/2} = 6.1 \text{ min}$ $1 \text{ uM T}_{1/2} = 61.1 \text{ min}$ $10 \text{ uM IC} = 219 \text{ ul/min}/10^6 \text{ cells}$ 10 uM IC = Not determined $1 \text{ uM IC} = 229 \text{ ul/min}/10^6 \text{ cells}$ $1 \text{ uM IC} = 22.7 \text{ ul/min}/10^{6} \text{ cells}$

Clearance and Plasma Protein Binding Values

		Clearance (ul	/min/10 ⁶ cells)	% Unt	ound	Renal Clear	ance (L/hr) ^a
Chemical	CAS No.	1 uM	10 uM	1 uM	10 uM	1 uM	10 uM
Nifedipine	21829-25-4	70.9	50.7	2.4	3.9	0.16	0.26
Atrazine	1912-24-9	22.7	 b	15.1	8.7	1.02	0.59
Chlorpyrifos oxon	5598-15-2	228.5	219.4	NDc	ND°	0.68 ^d	0.68 ^d
Bromacil	314-40-9	b	b	2.9	3.5	0.19	0.24
Fenamiphos	22224-92-6	71.6	30.3	3.5	3.5	0.23	0.23
Forchlorfenuron	68157-60-8	27.8	b	0.8	0.7	0.05	0.05
Metribuzin	21087-64-9	4.8	4.4	32.5 (?)	5.9	2.19 (?)	0.40

^aRenal clearance estimated as GFR*F_u

^bClearance not determined due to saturation kinetics.

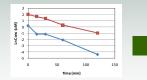
^dPlasma protein binding not determined due to endogenous plasma esterase activity.

^cAssumed 10% unbound in plasma.

Outline

1. Tissue Slice Studies

2. In Vitro Pharmacokinetic Assays


3. In Vitro to In Vivo Extrapolation and Reverse Dosimetry

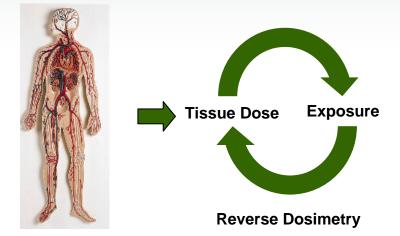
4. ToxCast Visualization and Analysis Software

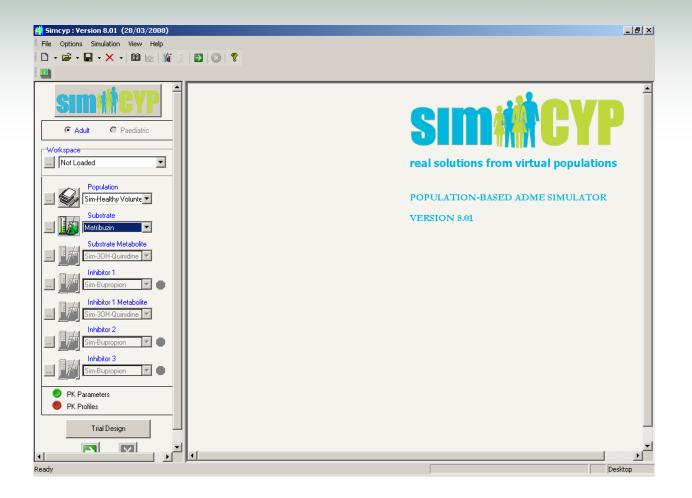
Question

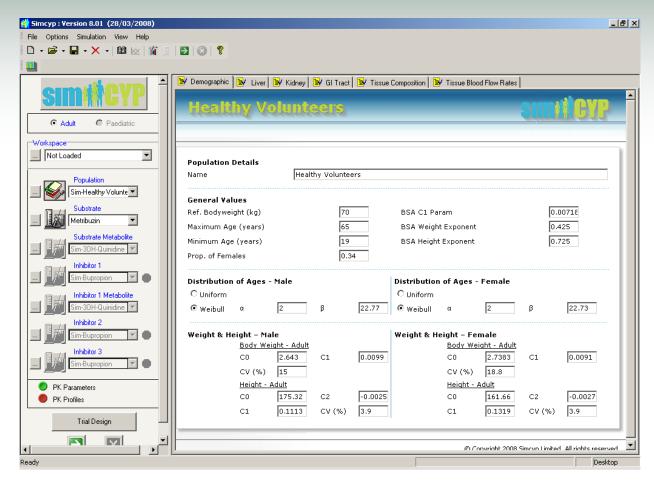
What do the EC/IC₅₀ values measured using highthroughput screening mean in terms of human dosimetry and exposure?

Experimental Design

Hepatic Clearance


Plasma Protein Binding


Estimated Renal Clearance



Population-Based In Vitro to In Vivo Extrapolation Software

Plasma Concentration at Steady State

Defining exposed population

👫 Simcyp : Version 8.01 (28/03/2008)				X
File Options Simulation View Help				
🗋 • 🚔 • 🖬 • 🗙 • 🔯 🖂 🎁	2 8 2			
Adult Paediatric	V Demographic Volu Healthy Volu	Kidney 🕑 GI Tract 🖼 Tissue C	omposition 🗟 Tissue Blood Flow Fi	
Not Loaded	Liver Modela	• Well Stirred Model	C Parallel Tube Model	C Dispersion Dispersion Model Value
Population Sim-Healthy Volunte	Operational Concentrations	C Portal Vein (Inlet)	Civer Compartment (Outlet)	noosi
Substrate Metribuzin Substrate Metabolite	Liver Volume Average Liver Volume*	Hepatocellularity	117.5 Microsomal Pro	39.79
Inhibitor 1		0.722 Baseline 1.176 Age Coefficient	3.103 Baseline -0.655 Age Coefficients	1.407 C1 0.01575
Inhibitor 1	CV (%)	12 CV (%) 1080 P450/10 ⁶ cells	41.9	C2 -0.0003 C3 2.37e-0
Inhibitor 1 Metabolite Sim-3DH-Quinidine ▼ Inhibitor 2	1.101 20101() (g. 2)	Baseline HPGL Coefficient	3.034 CV (%)	26.9
Sim-Bupropion	[*] Value in an average 25 yea	1	-0.506	
Inhibitor 3 Sim-Bupropion	CYP Phenotype CYP Genotype			
PK Parameters	Enzyme Abundances (p EM	mol/mg-protein) and Turno	IM	
PK Profiles	Enzyme Mean CV (%			req. Mean CV(%) Mean
Trial Design	CYP1A2 52 67 CYP2A6 20 173		0 0 0 0 0 0 0 0 0	0 0 0.0183
		1		
Ready				Desktop

Variability in population

👫 Simcyp : Version 8.01 (28/03/2008)				<u>_8</u> >
Eile Options Simulation View Help				
🗅 + 🚔 + 🔚 + 🗙 + 🕮 🖂 🎁 🍺	1 🔁 💿 🤋			
	🚽 Substrate : PhysChem and Blood Bir	nding	V Substrate : Absorption	🚽 Substrate : Distribution
SIMATEYP	Substrate : Elimination	Subs	strate : Interaction	🛃 Substrate : Transport
	• Whole Organ Metabolic Clearance			-
Adult C Paediatric	CL _{int}	CV (%) fu _{in}	ic.	
Workspace	Liver OHLM	30 1		
Not Loaded	• Hep 4.4	30 1		
	Intestine HIM 0	30 1		
Sim-Healthy Volunte	Kidney HKM 0	30 1		
Substrate				
Metribuzin	C Enzyme Kinetics CYPs CYP2C9 Allelics UGTs			
Substrate Metabolite				
Sim-30H-Quinidine	C Recombinant	HLM	🗖 Use Allelic vari	ants for CYP2C9
Inhibitor 1				
Sim-Bupropion	Metabolite Pathway Enzyme	CLint Vmax	Km(Ks) fumic rCV	'P system ISEF α β
Inhibitor 1 Metabolite	• 4-OH CYP3A4	0 2.69E+00		
Sim-30H-Quinidine	alpha-OH CYP3A4	0 151	295 0.99 🔘 Use	r 1 🔘 1 1
Inhibitor 2				
Inhibitor 3				
PK Parameters		CL _{int} C	fu _{mic}	
PK Profiles			(ru _{inc})	
Trial Design	Additional Glucuronidation Clearance	HLM 0 30		
		нім о за нкм о за		
	<u> </u>	HKM 0 30	0 1	•
Ready				Desktop

Defining plasma protein binding and metabolic clearance

Simcyp : Version 8.01 (28/03/2008)		_ 8 ×
ile <u>O</u> ptions <u>S</u> imulation <u>V</u> iew <u>H</u> elp		
) + 🖆 + 🖬 + 🗙 + 🕮 🗠 🎬 🧊 🔁 🔇 🦹		
🔺 📕 Trial Design 📕 Population Design		
SIMMEYP	real solutions from virtual popul	
Adult Paediatric O Virtual Population O Population Representative		
Workspace Trials		
Not Loaded No. of trials 10	Minimum age (years) 19	
No. of subjects in each trial	Maximum age (years) 65	
Population		
Size		
Substrate	@ Fasted @ Fed	
Duration of study (days)	Fluid intake with dose (mL) 250	
Substrate Metabolite	CV (%) 30	
Inhibitor 1	Inhibitor 1	
Substrate		
O Intravenous	C Intravenous	
Sim-30H-Quindine Confusion	Infusion	
Inhibitor 2 Single Bolus dose (mg/kg) 1	Single Bolus dose (mg/kg)	
Sim-Bupropion	Infusion dose (mg/kg)	
Inhibitor 3	Infusion duration (h) 1	
Sim-Bupropion	Dose (mg) 🔽 150	
Start at 12:00 on day 1	Start at 12:00 on day 1	
PK Parameters	Single Dose	
PK Profiles Only Concentration of the second seco	Multiple Dose	
Trial Design τ (h) 24	τ (h) 24	
Number of Doses 7	Number of Doses 7	
		_
eady	D	esktop

Estimate exposure using reverse dosimetry

Statistics						
	CL (L/h)	CLpo (L/h)	Fg(Sub)	Fh(Sub)	Fa(Sub)	Css (mg/L)
Mean	3.15	3.85	1.00	0.96	0.90	0.93
Median	3.04	3.43	1.00	0.96	0.98	0.85
5th centile	1.62	1.83	1.00	0.93	0.55	0.38
95th centile	5.81	7.63	1.00	0.98	1.00	1.60
Skewness	1.41	1.52	n/a	-1.10	-1.45	0.87
cv	0.40	0.50	0.00	0.02	0.16	0.44
Min Val	1.19	1.21	1.00	0.91	0.46	0.25
Max Val	7.84	11.78	1.00	0.99	1.00	2.41
Fold	6.57	9.73	1.00	1.09	2.17	9.73
Std Dev	1.25	1.93	0.00	0.02	0.15	0.41

Output Conc at Steady State

Estimate exposure using reverse dosimetry

Results From Reverse Dosimetry Analysis

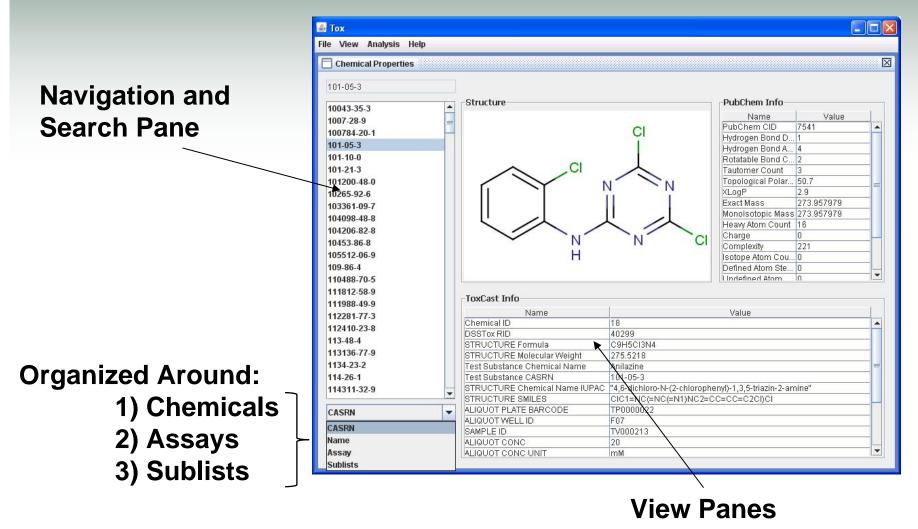

				Est Oral Exposure at	Lower 95th	Upper 95th
			Minimum EC ₅₀	EC ₅₀ Equivalent	Confidence	Confidence
Chemical	CAS No.	Css (mg/L)*	(uM)	(mg/kg/day)	Bound	Bound
Atrazine	1912-24-9	0.074	1.98	5.77	2.79	13.35
Chlorpyrifos oxon	5598-15-2	0.012	24.06	670.71	335.35	1609.71
Bromacil	314-40-9	10.13	97.28	2.51	1.70	4.18
Fenamiphos	22224-92-6	0.24	76.57	96.78	47.40	211.17
Forchlorfenuron	68157-60-8	50.87	1 9.98	, 0.10	0.07	0.16
Metribuzin	21087-64-9	0.85	17.63	4.44	2.45	9.44
	Similar EC	50 Values				

Much Different Oral Equivalents /

Outline

- **1. Tissue Slice Studies**
- 2. In Vitro Pharmacokinetic Assays
- 3. In Vitro to In Vivo Extrapolation and Reverse Dosimetry

4. ToxCast Visualization and Analysis Software

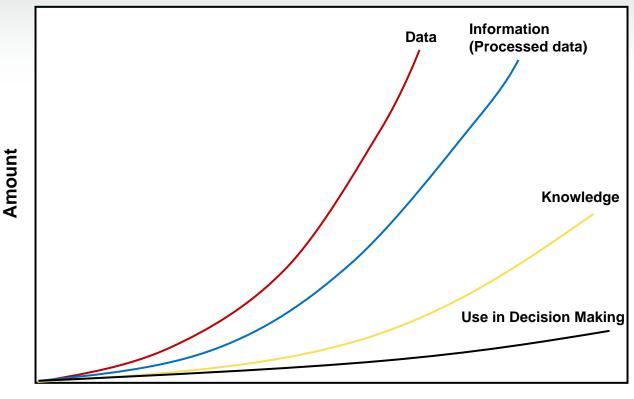


ToxCast Exploration, Analysis, and Search Resource

The Hamner Institutes for Health Sciences Bioinformatics Group Version 1.0 Beta

Constructed database and Java-based interface for analyzing and searching ToxCast-related data

Relative Ris	k Ratios												
casrn	Rat Liver Slic.	Rat Kidney S.	Rat Lung Sli.		cas	sm	Chemical N.	Rat Stud	ly E Rat Li	ver Tu	Rat Prolifer	Rat Liver A	pF
0043-35-3	0	0	0	-			Boric acid	Х	0		0	0	d
007-28-9	0	0	0		101200	0-48-0	Tribenuron	. X	0		0	0	0
01200-48-0	0	0	0	=			Methamido		0		0	0	0
0265-92-6	0	0	0				Flumioxazin		0		0	0	0
03361-09-7	0	0	0	-			Clodinafop		0		5	5	5
05512-06-9	0	0	0				Dimethom		0		0	0	3
09-86-4	0	0	0				Cyclanilide	Х	3		3	0	4
10488-70-5	0	0	0		113-48		MGK	Х	0		3	0	3
13-48-4	1	1	0		115-29		Endosulfan	Х	0		0	0	Q
13136-77-9	0	0	0		115-32	-2	Dicofol	Х	0		0	5	5
15-29-7	0	0	0		116-06		Aldicarb	Х	0		0	0	0
15-32-2	0	0	0				Novaluron	Х	0		0	0	4
16-06-3	0	0	0				Thiazopyr	Х	0		0	0	4
16714-46-6	0	0	0		117-81		Diethylhexy.		1		1	0	0
17-81-7	0	1	0		119446	6-68-3	Difenocona.	X	0		0	0	2
17718-60-2	0	1	0		120068		Fipronil	X	0		0	0	Q
19446-68-3	0	0	0		120-32	-1	Clorophene	X	0		0	0	Q
19791-41-2	1	1	1				Cyprodinil	X	0		0	3	Q
20-32-1	0	0	0		121-75		Malathion	X	2		2	0	Q
20068-37-3	1	0	0		122-14		Fenitrothion	X	0		0	0	0
21-75-5	0	0	0		122-34	-9	Simazine	Х	4		4	0	Q
21552-61-2	0	1	0		122-39		Diphenyla		0		3	0	Q
22-14-5	0	1	0	-	400040	16.0	Durithiahaa	NZ.	0		h	10	
Relative Ris	k Dation	nsitivity Sr	ecificity		1.2.1								1.
Nelduve MS	a radius _ 30	nativity 3	centerty										
Dettine of		Rat Prolifer											Tes
Rat Liver SI			0.6825396							0.0	0.0	0.0	
	0.5887445						826 1.086				2413 1.619		
Rat Lung S	U.U	1.0714285	1.0595238	1.741	9354 (1.9733	333 4.4	0	.U	0.0	0.0	4.12	:5


5 Analysis Tools

- 1) Sublist Creation
- 2) Assay Comparison
- 3) Correlation Matrix
- 4) Hierarchical Clustering
- 5) Relative Risk Calcs

Conclusions

- Although limited in scope, rat tissue slice cytotoxicity assays do not appear to reliably predict target organ toxicity.
- In vitro assays for hepatocyte clearance and plasma protein binding have been developed to provide critical pharmacokinetic information on a subset of ToxCast chemicals.
- Integration of *in vitro* pharmacokinetic assays with computational modeling allows estimation of oral exposures required to produce steady state *in vivo* concentrations equivalent to EC₅₀ values in HTS assays.

The Translation of In Vitro Concentrations to Equivalent Human Exposures Will Be Necessary for Regulatory Decision Making

Time

Acknowledgements

My Lab

- Research Associates Linda Pluta Reetu Singh Daju Fan
- Postdocs Melissa Barhoover Frank Boellmann Nadira DeAbrew
- Bioinformatics
 Longlong Yang
 Eric Healy
 Ling-Chieh Tsai
- Research Investigator Julie Hall

Institute Collaborators

Harvey Clewell Mel Andersen Mark Sochaski

External Collaborators

David Dix (EPA) Richard Judson (EPA) Keith Houck (EPA) Bob Kavlock (EPA) Daniel Rotroff (EPA) Ed LeCluyse (CellzDirect) Cornelia Smith (CellzDirect) Stephen Ferguson (CellzDirect)

Funding

American Chemistry Council