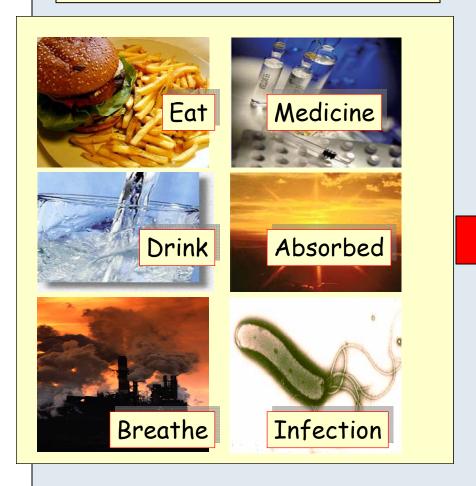
Gene Expression Profiles:

Biomarkers of Inter-Individual Susceptibility to Environmental Agents and Indicators of Exposure

Rebecca Fry, Ph.D.

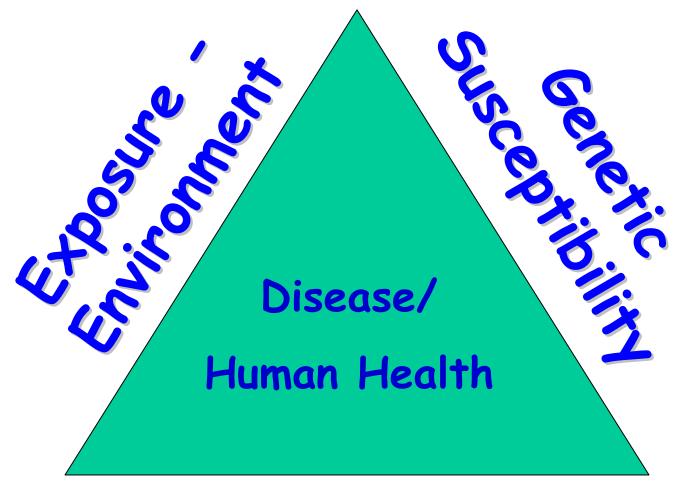
Environmental exposures to potentially harmful environmental agents

Harmful agents



People have different responses

Complex Gene-Environment Interactions Influence Human Health



Time/Age/Behavior

Our Mission

Explore biological effects of exposure to environmental agents:

Understand impact on human health: Molecular basis for disease/carcinogenesis

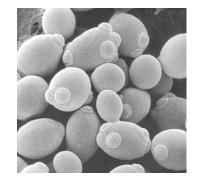
Develop Biomarkers Biomarkers of population exposure, biomarkers of disease state

> Predict inter-individual differences in susceptibility to disease

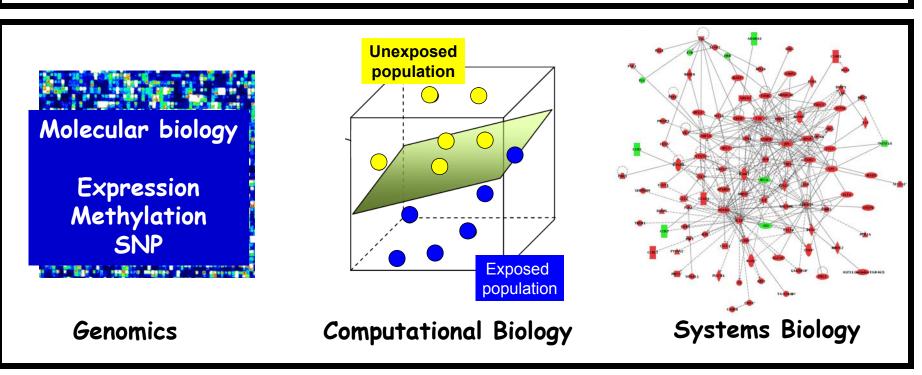
Prevent detrimental health effects from exposure

Systems and Tools

Human Populations Human Cell lines



C. elegans



Using genomics to predict and classify population responses to exposures

Classify: Who has been exposed to a damaging agent?

Using genomics to predict and classify population responses to exposures

Classify: Who has been exposed to a damaging agent?

Can we identify genetic biomarkers of exposure

Arsenic:

Inorganic arsenic is a ubiquitous environmental pollutant and known human carcinogen

SCIENCE VOL 315 23 MARCH 2007 A Sluggish Response to Humanity's Biggest Mass Poisoning

Chronic exposure results in many cancers: skin, bladder, lung, liver, prostate and kidney

1987: Classified as Group 1 Carcinogen by International Agency for Research on Cancer (IARC)

1994: W.H.O. Recommended Guideline Value of 10 µg/L arsenic in drinking water

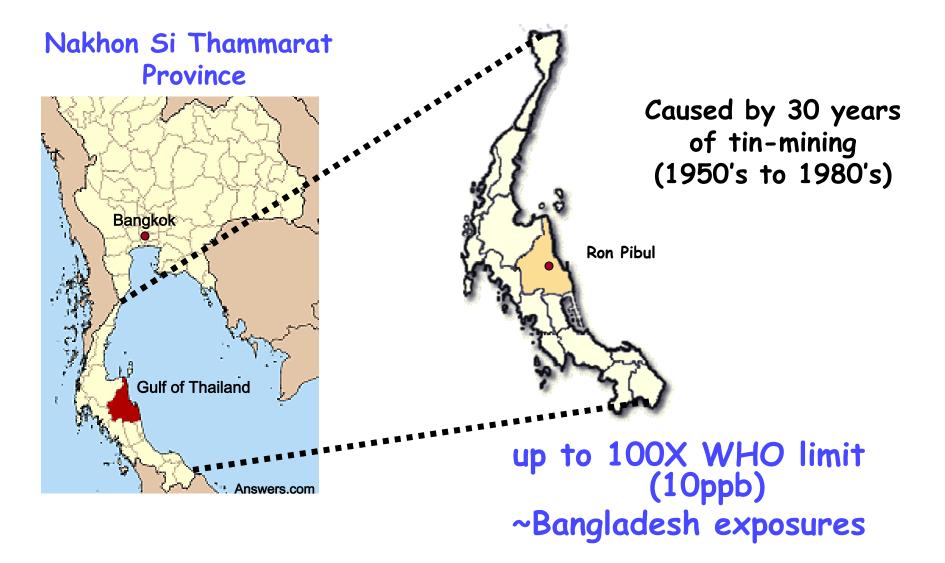
In Bangladesh ~30 million exposed to levels that FAR exceed WHO limit



SCIENCE VOL 315 23 MARCH 2007 A Sluggish Response to Humanity's Biggest Mass Poisoning



Study site: Ron Pibul District, Thailand



In utero arsenic exposure in rodents - recent alarming findings

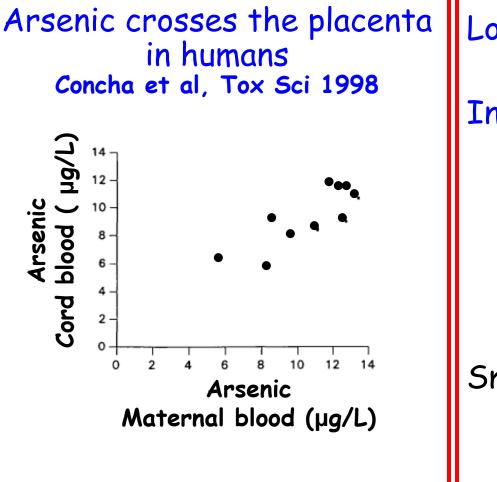
exposure to arsenic during gestation results in 5-fold increase in hepatocellular carcinomas

Gene expression changes in livers of offspring exposed to arsenic *in utero* when reach adulthood

Waalkes et al., Tox Sci 2003

Gene expression changes evident in offspring when reach adulthood.. Could this be epigenetic reprogramming of gene expression?

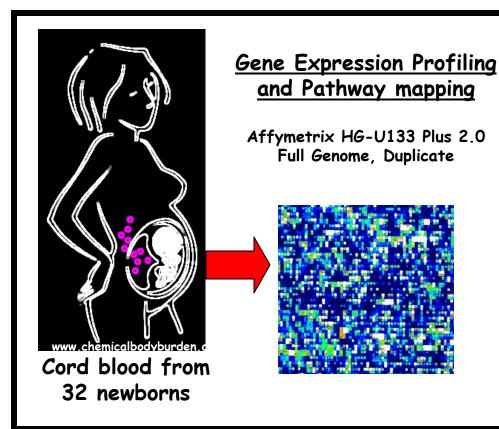
Prenatal arsenic exposure in humans



Long term health effects

Increased mortality from lung cancer and liver cancer from prenatal and early childhood arsenic exposures

Smith et al, EHP 2006 Cancer Epidemiology Biomarkers & Prevention 2008. Expression profiling of blood from 32 newborns from Thailand whose mothers were exposed to varying levels of arsenic



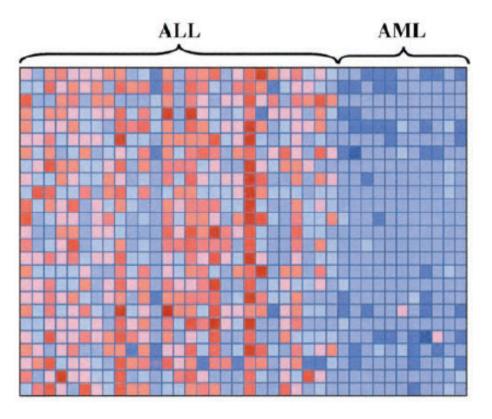
What is the genomewide impact of prenatal exposure??

Can we identify genes as biomarkers of prenatal exposure to arsenic?? Can we use gene expression signatures from a training population of newborns

to classify arsenic exposure in a **test** population??

> Application of Two-Class Prediction Algorithm

Classic Example of Two-Class Prediction to Distinguish tumor types



www.sciencemag.org SCIENCE VOL 286 15 OCTOBER 1999

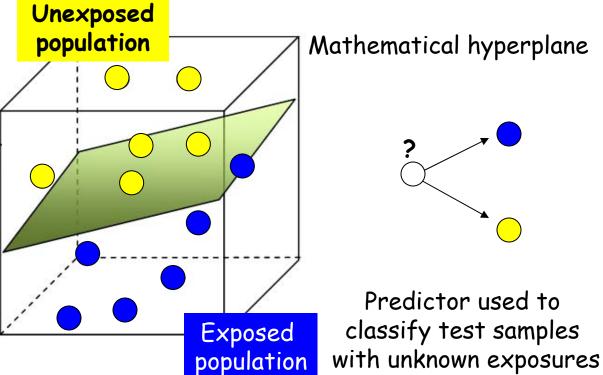
Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring

T. R. Golub, ^{1,2*†} D. K. Slonim, ^{1†} P. Tamayo, ¹ C. Huard, ¹
M. Gaasenbeek, ¹ J. P. Mesirov, ¹ H. Coller, ¹ M. L. Loh, ²
J. R. Downing, ³ M. A. Caligiuri, ⁴ C. D. Bloomfield, ⁴
E. S. Lander^{1,5*}

- Use a training population to identify expression patterns that distinguish between two classes to create class predictor gene set
- 2) predictor then used to classify leukemia subtypes (85% accuracy)

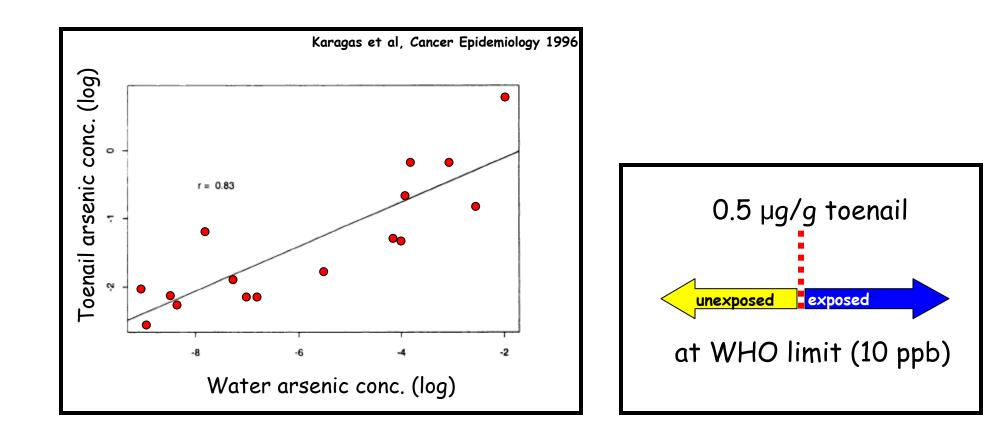
Two-class prediction algorithm: Support Vector Machine

Training population of two groups with known environmental exposures used to build gene set predictor



1st **Training** Population 13 Newborns randomly selected From population of 32

Maternal exposure determined using toenail arsenic concentration: an indicator of chronic exposure



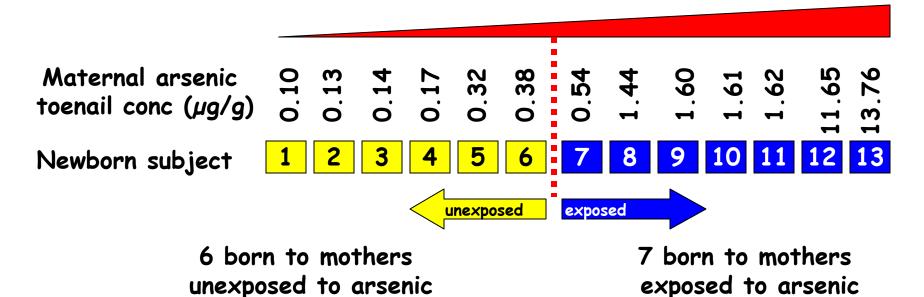
1st **Training** Population 13 Newborns randomly selected From population of 32

Maternal arsenic toenail conc (µg/g)

Newborn subject

•	•		•	•	•	0.54		•			•	•
1	2	3	4	5	6	7	8	9	10	11	12	13

1st **Training** Population 13 Newborns randomly selected From population of 32

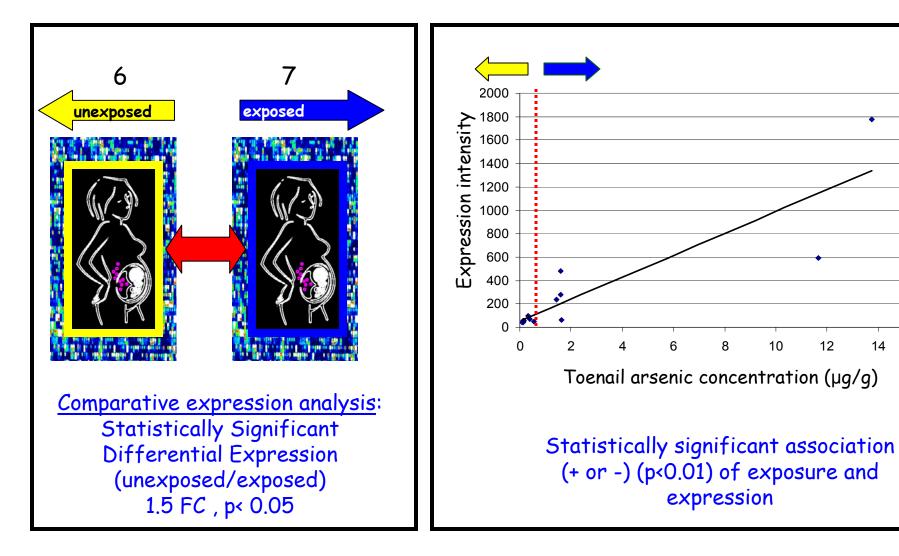


Integrate with gene expression data

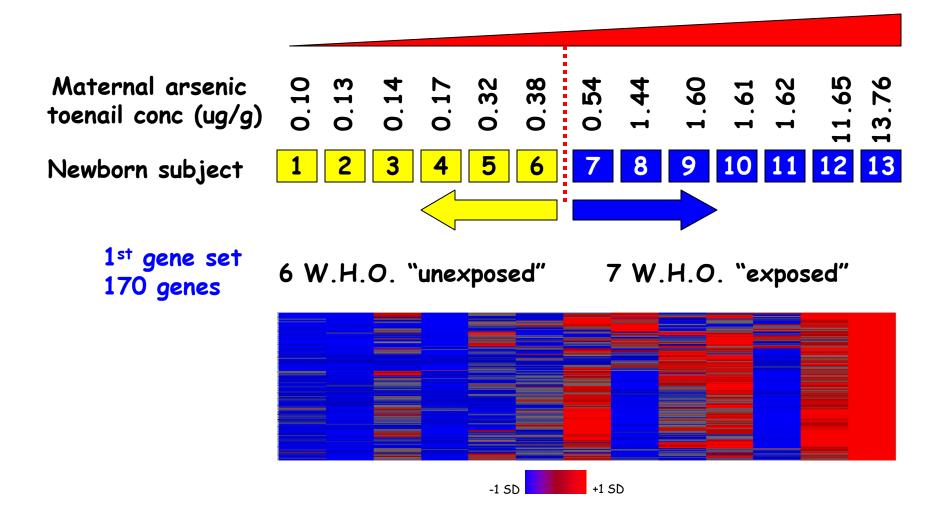
Arsenic-Associated Gene Sets Identified by Integrating Arsenic Exposure and Gene Expression

14

16



Arsenic-Associated Gene Set Identified from Newborn Training Population

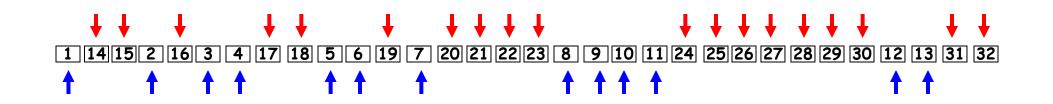


Expression signature identified from training population:

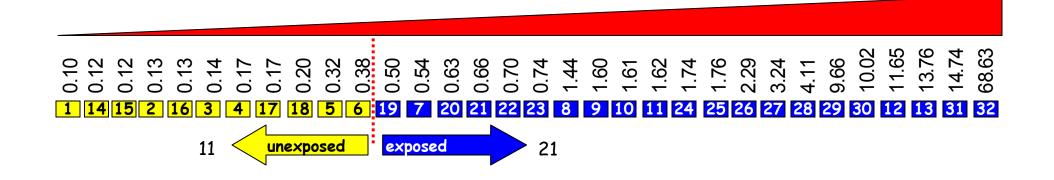
can we classify maternal exposure (unexposed or exposed) of remaining newborn population?

Newborn Training Population (13 newborns)

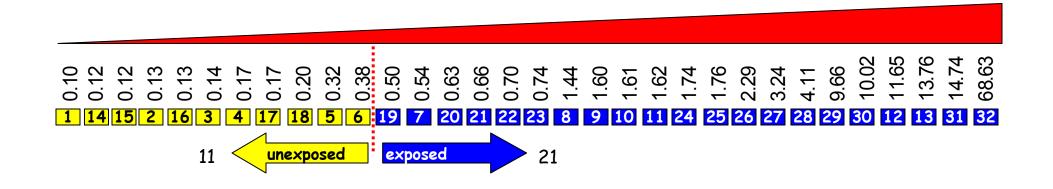
Newborn Test Population (19 newborns)



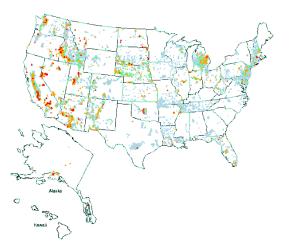
Reveal Maternal Exposure of Population



Reveal Maternal Exposure of Population

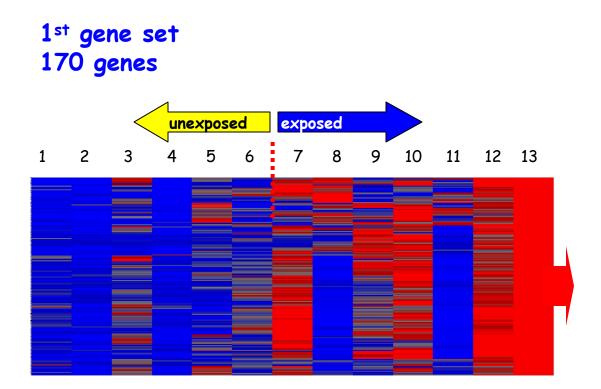


Bangladesh exposures



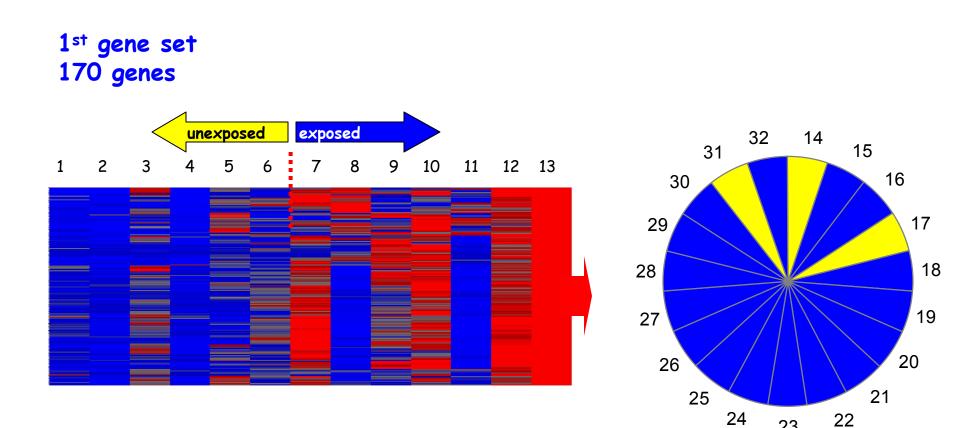
Apply Support Vector Machine Algorithm:

Classify Maternal Exposure in Test Population



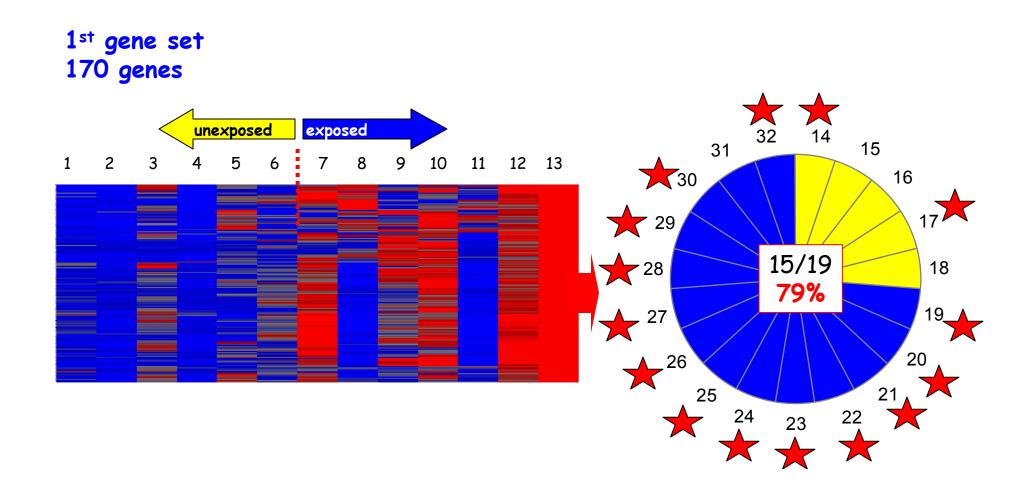
Apply Support Vector Machine Algorithm:

Classify Maternal Exposure in Test Population

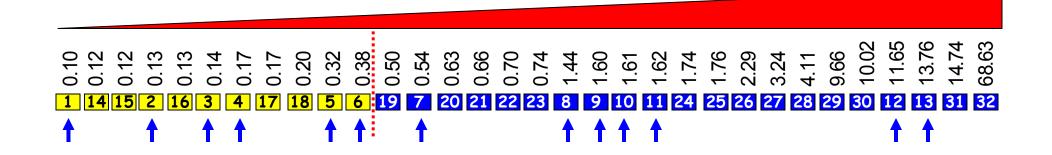


23

Robust predictor of maternal exposure in newborn test population

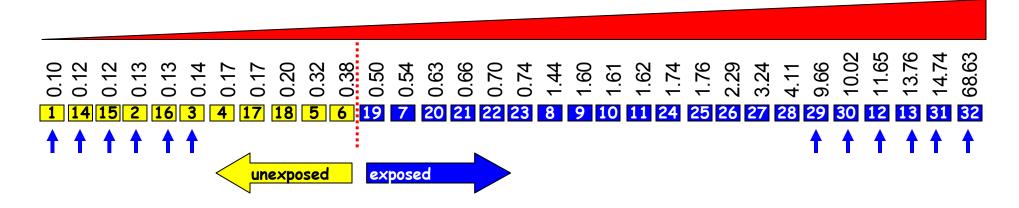


Distributed Exposure of Newborn Training Population



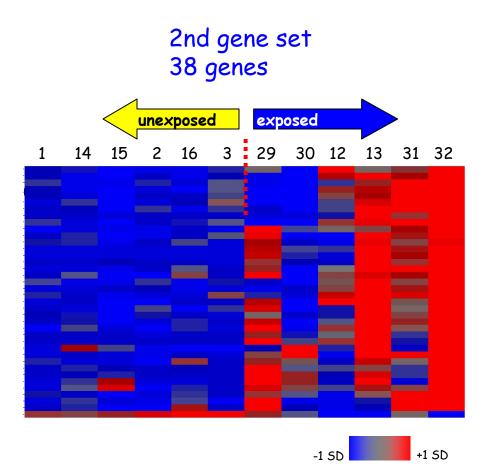
Would class prediction be higher using a training population of newborns whose mothers were at the extremes of arsenic exposure?

Extreme Exposure Based Training Population

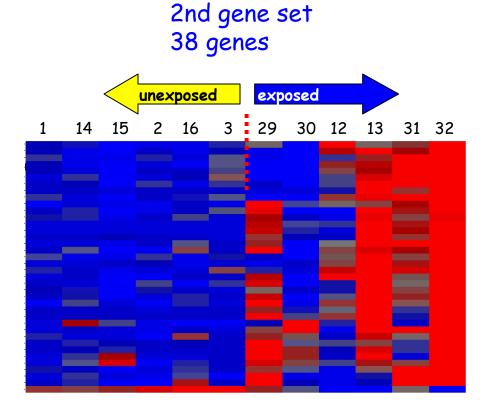


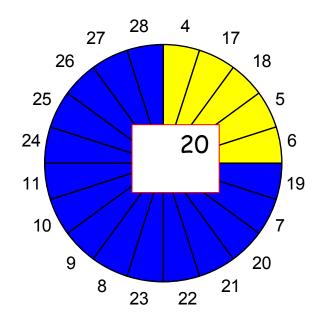
6 newborns at low end of exposure 6 newborns with mothers at high end of exposure

Extreme Exposure Based Class Predictor

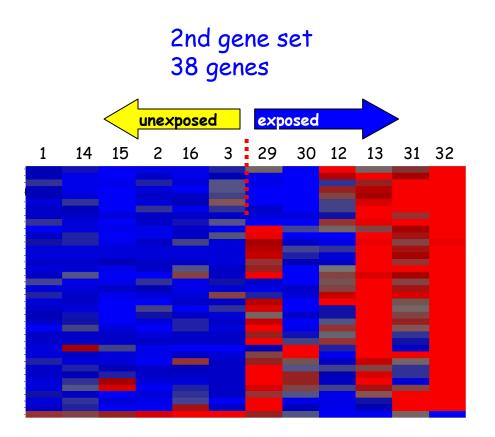


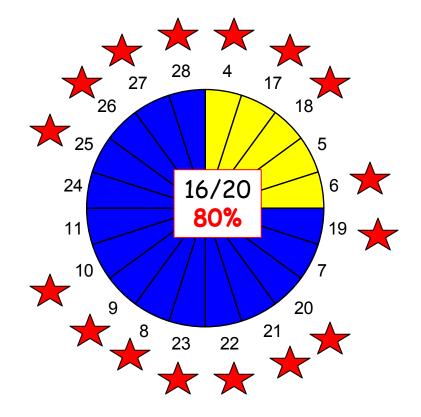
How well can the 2nd gene set (38 genes) classify maternal exposures of 20 newborns in test population?





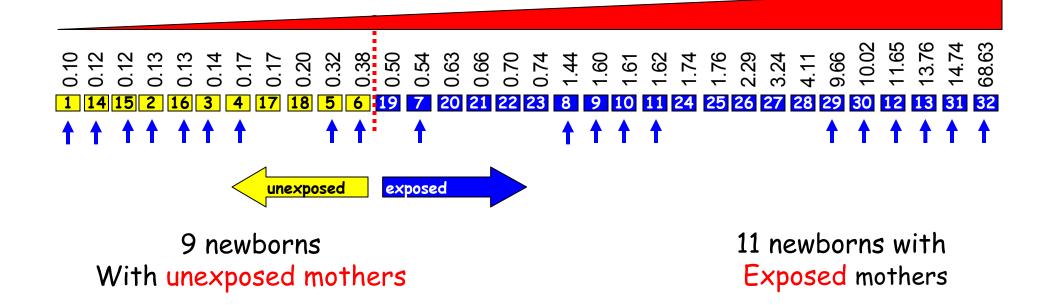
Robust Class Predictor



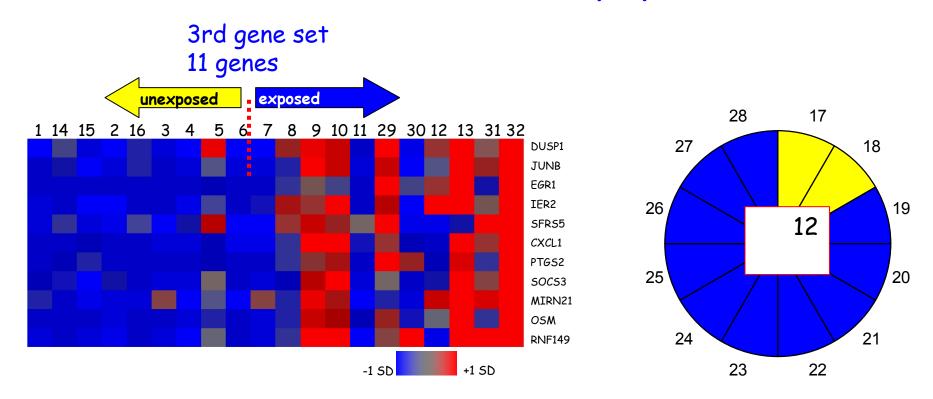


How would prediction change using a combination of the 1st two newborn training populations?

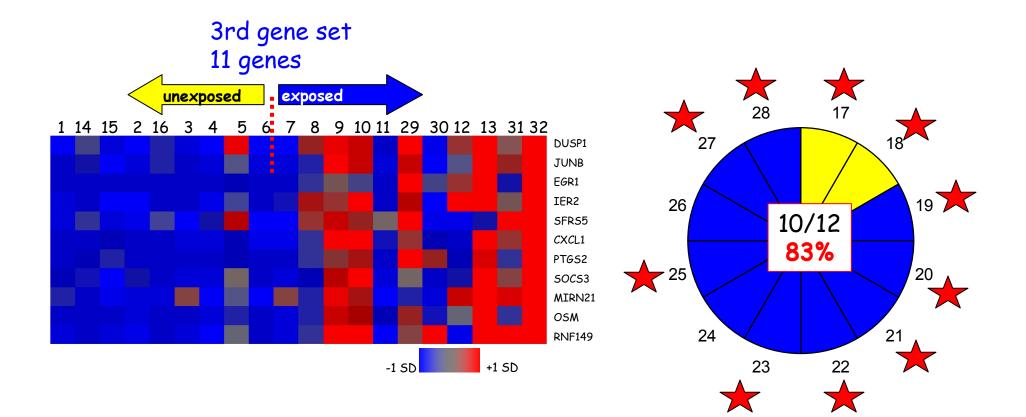
Combined training population Class Predictor



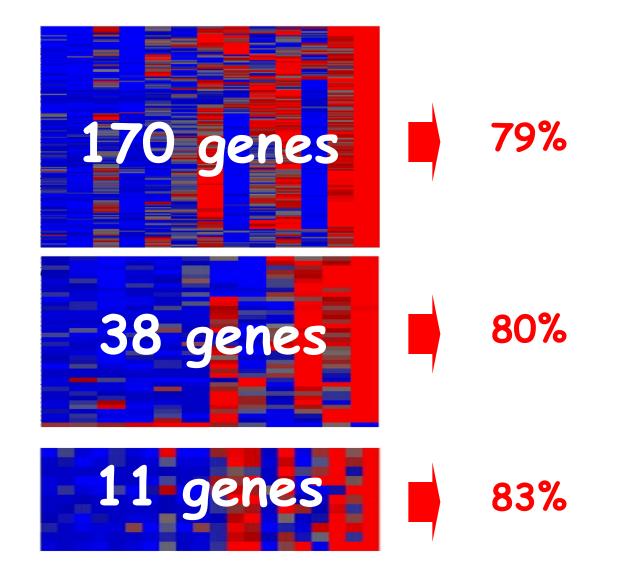
How well can the 3rd gene set (11 genes) classify maternal exposures of 12 newborns in test population?



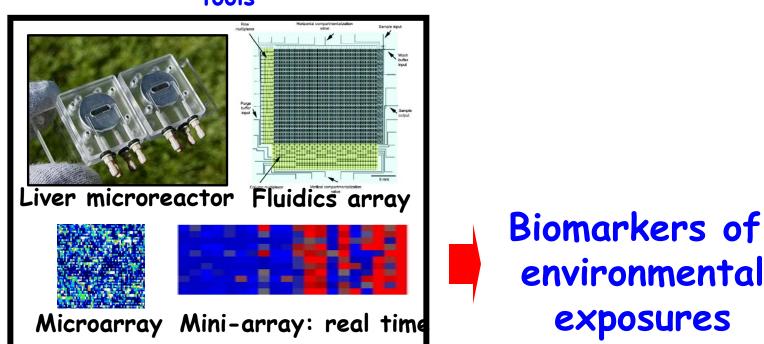
Robust Class Predictor



Equally predictive gene set of much smaller size: potential biomarkers

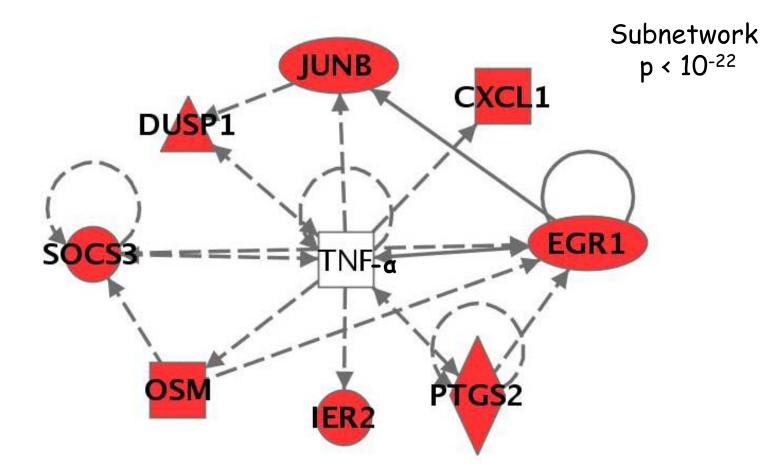


New tool development: measure exposures in the population



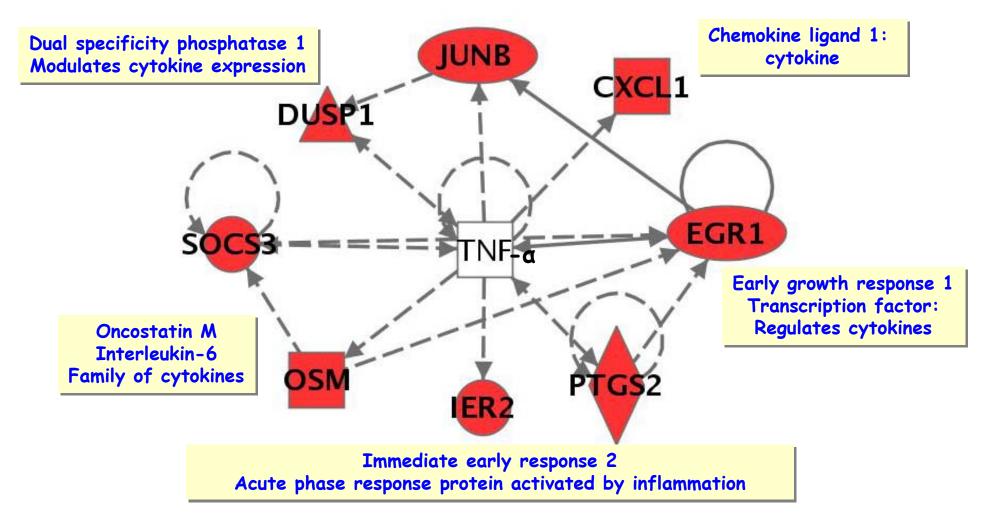
tools

Are there known molecular interactions among the 11 biomarkers? 8 of 11 Potential Biomarker Genes are associated with the cytokine, TNF- α



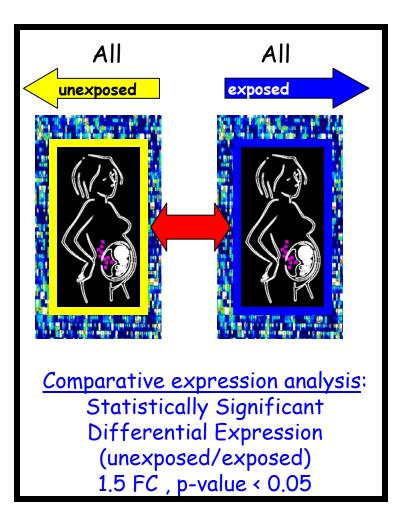
TNF-a known to be induced by arsenic in animal models (Germolec et al 1996, 1997, 1998)

8 of 11 Potential Biomarker Genes are associated with the cytokine, TNF- α



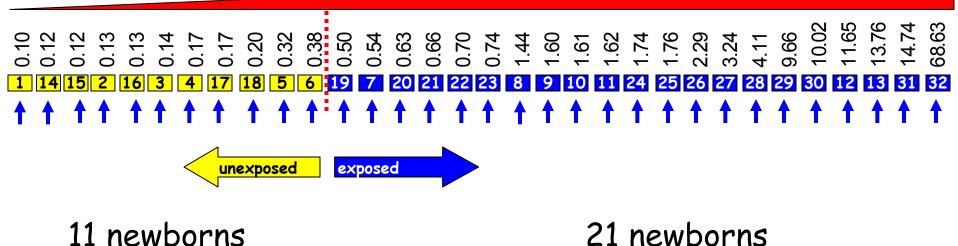
Stress Response: cytokines: inflammatory response

What is genome-wide impact of prenatal arsenic exposure?



Identify genes differentially expressed between the unexposed and exposed populations

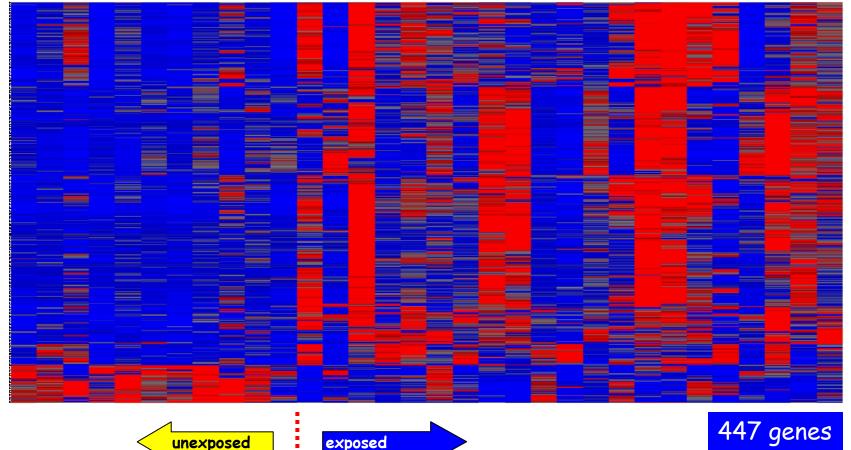
Identifying Differentially Expressed Genes Between the Two Populations



born to unexposed mothers 21 newborns born to exposed mothers

Robust Genome Wide Changes of PRENATAL Arsenic Exposure

1 14 15 2 6 3 4 17 18 5 6 19 7 20 21 22 23 8 9 10 11 24 25 26 27 28 29 30 12 13 31 32

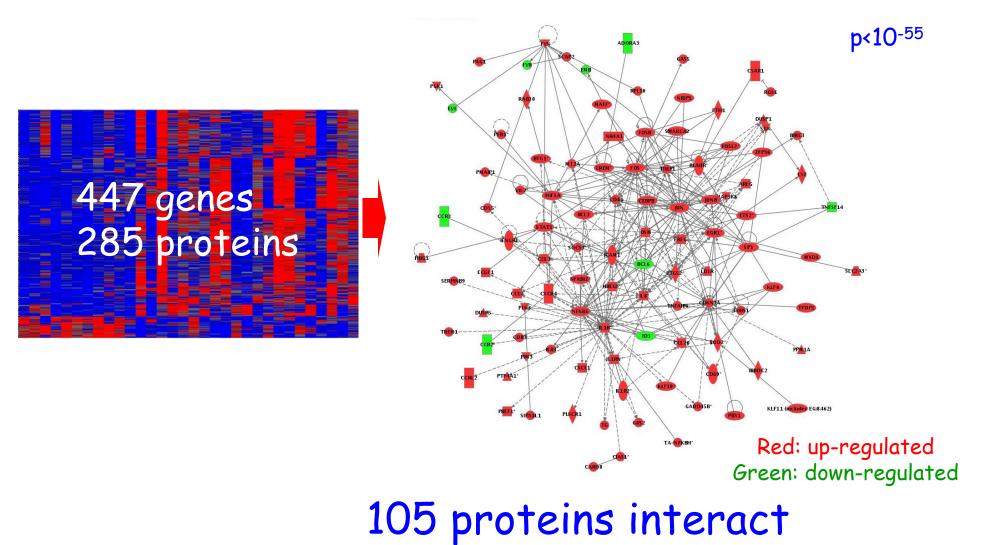


90% up-regulated

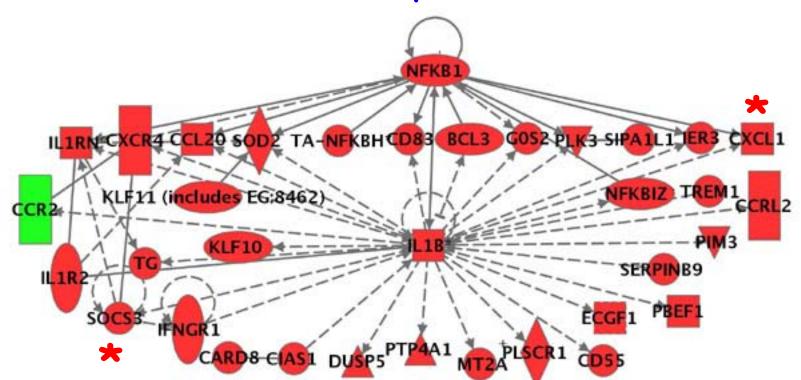
Are there known molecular interactions among the arsenic modulated genes??

Which biological pathways are modulated upon exposure to arsenic??

Large Arsenic-Modulated Interactome



Subnetwork 1 integrates 2 biomarkers with nuclear transcription factor, NF-KB

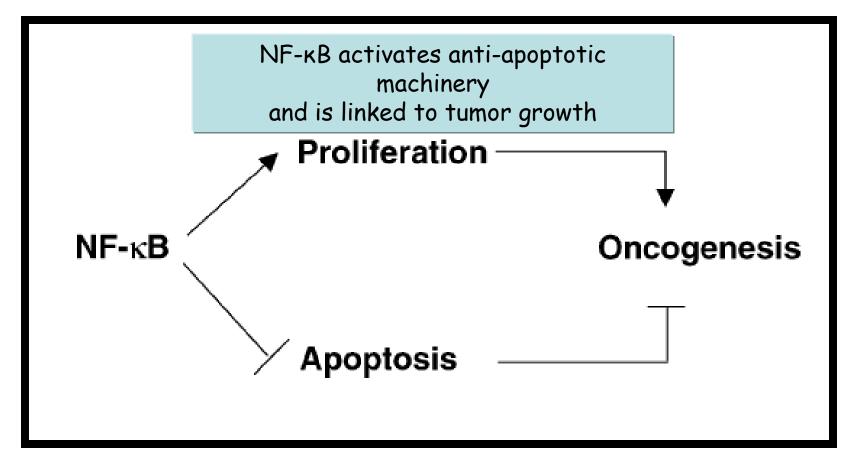


* Biomarkers of prenatal arsenic exposure

NF-KB regulates inflammation-related molecules Note: all targets are increased IL1-B is acute phase protein that increases in response to inflammation

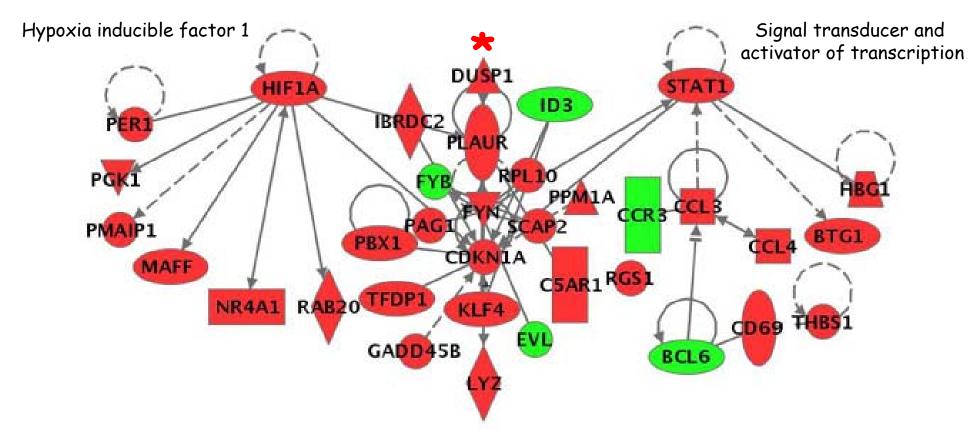
NF-KB activation has been identified in cell culture treated with arsenic (Huang et al, MCB 2001)

NF-kB is a key regulator of oncogenesis



Transient gene expression changes or epigenetic reprogramming?

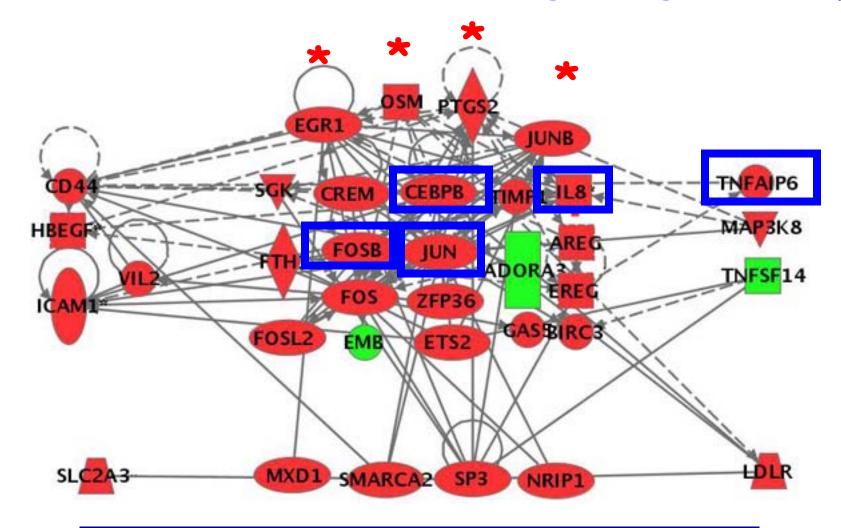
Subnetwork 2 integrates DUSP1 with stress activated transcription factors



STAT1 involved in cytokine signal transduction Activation of both transcriptions factors linked to arsenic exposure in cell culture and animal models

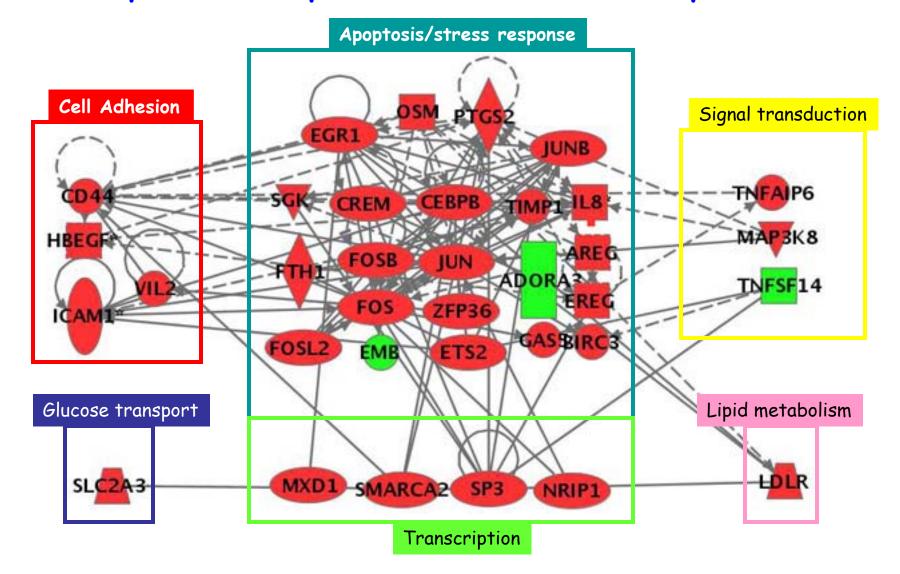
Chelbi-alix et al, Oncogene 2003 Kamat et al, Tox Sci 2005

Subnetwork 3 integrates 4 biomarkers with five members of the IL-6 Signaling Pathway



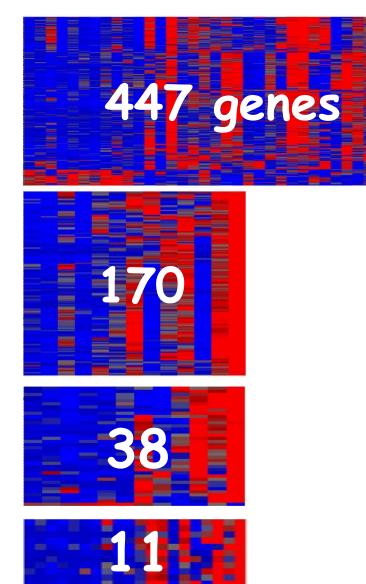
IL-6 is mediator of Acute-phase proteins

Many biological pathways are modulated in response to prenatal arsenic exposure



Evidence for Common Regulatory Control of the Arsenic-Associated genes??

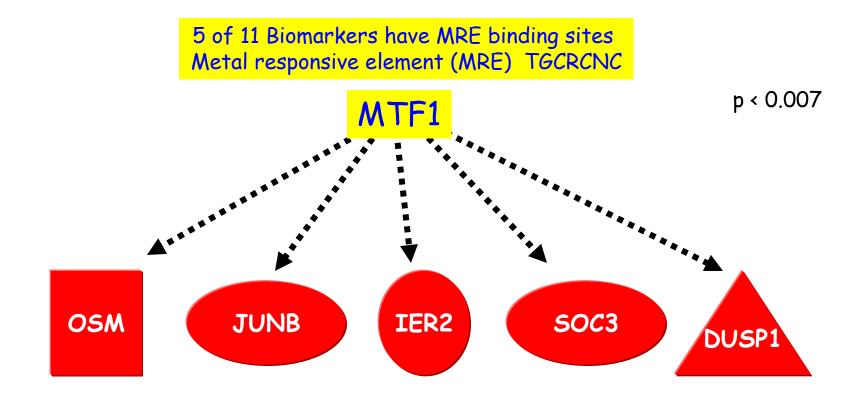
Transcription factor binding site analysis



Binding sites for three transcription factors show significant enrichment

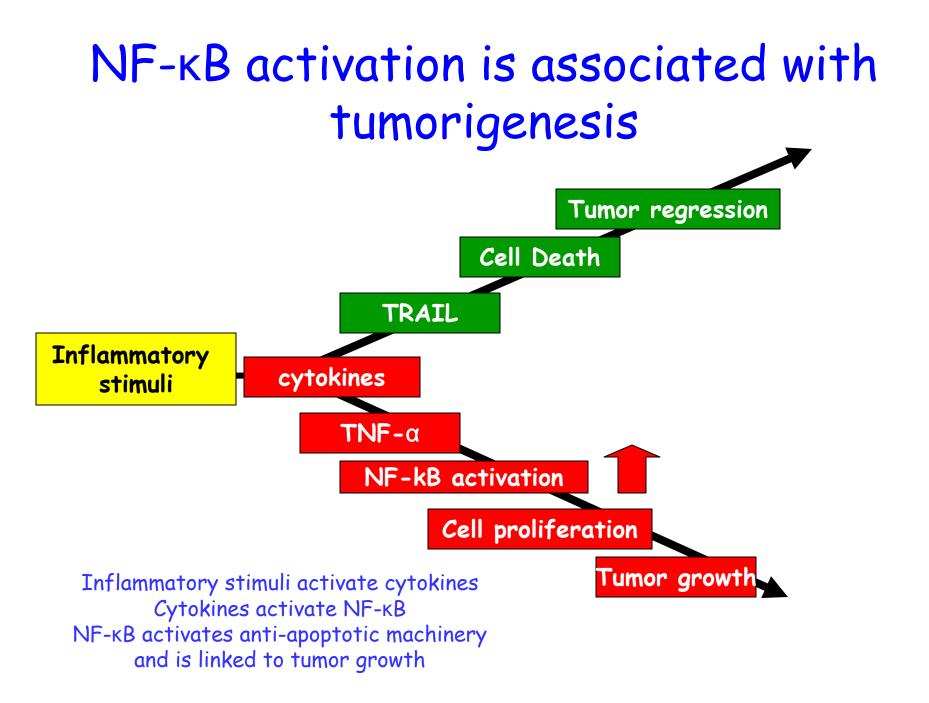
447 genes	SRF	NF-κB	MTF1
	p<1.7×10 ⁻⁵	p<8.52x10 ⁻⁶	p<0.02
	p.1.7 X10	p.0.02X10	p.0.02
170	SRF	NF-κB	MTF1
	p<8.46×10 ⁻⁴	p<1.39×10 ⁻⁴	p<0.02
38	SRF	NF-κB	MTF1
	p<0.01	_{p<0.01}	p<0.054
11	SRF	NF-κB	MTF1
	p<0.01	0.01	p<0.007

Metal Responsive Transcription Factor-1

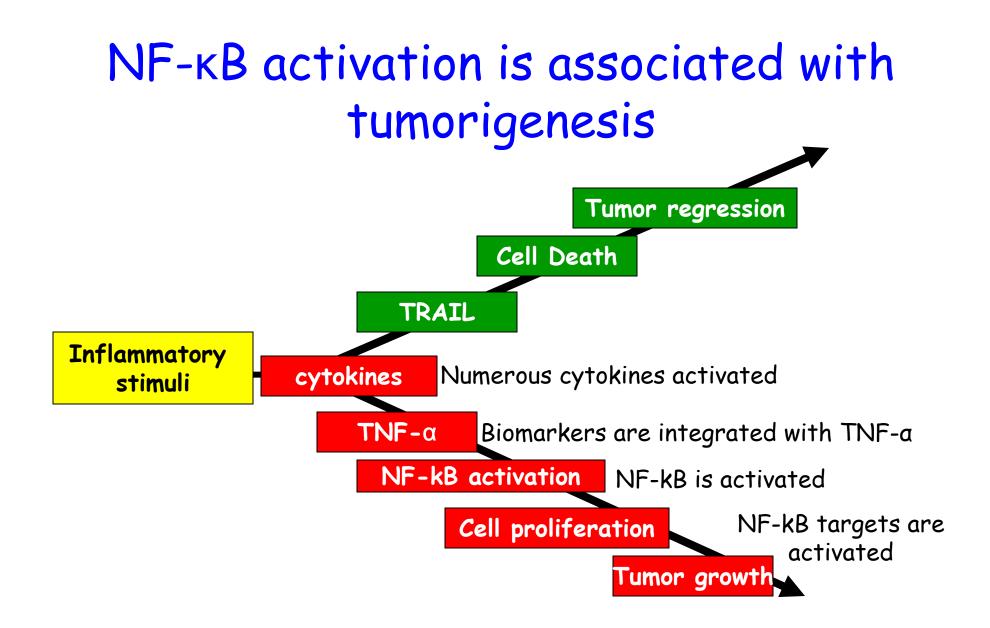


MTF1 known to be activated by arsenic in animal models Liu et al Tox Sci 2001 Kumagai, Ann Rev Pharm Tox 2006 SRF: Serum Response Factor, binds to a serum response element (SRE) associated with immediate early genes such as c-fos, fosB, junB*, egr-1*

NF-KB, or Nuclear Factor kappaB, is involved in cellular responses to stress



Luo, Kamata, and Karin The Journal of Clinical Investigation, 2005

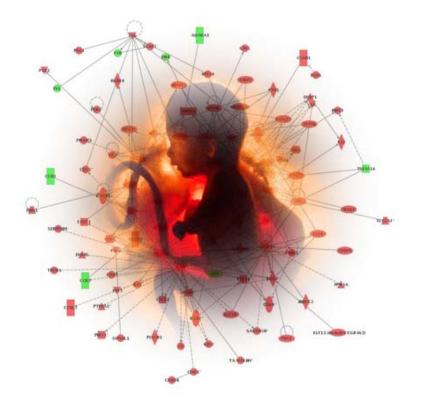


PRENATAL Arsenic Exposure Modulates Genes Involved in Inflammatory Response and Activates NF-kB Cascade

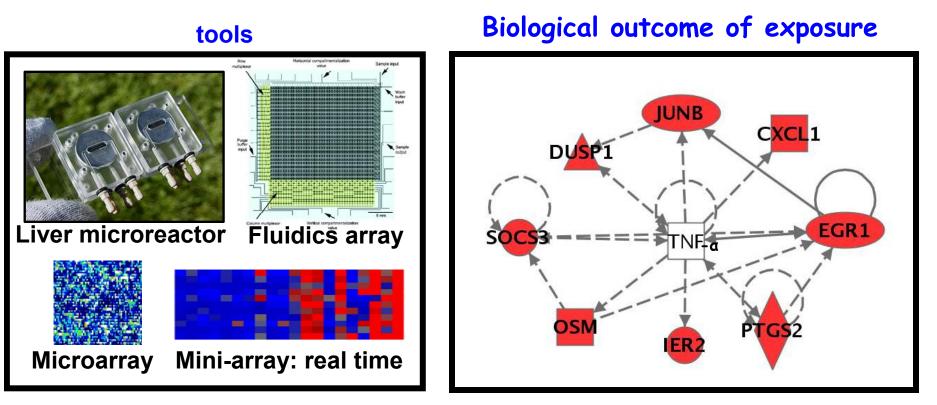
Robust genome-wide response to prenatal arsenic exposure

We can identify arsenic-associated gene sets that classify prenatal arsenic exposure

These genes map onto ontologies that include numerous processes including cell signaling, stress response and apoptosis

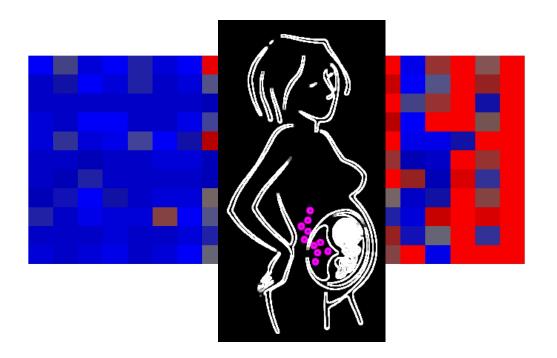


Increasing understanding of biological outcome of exposure and tool development



Biomarkers of Environmental exposures Mechanistic Insight

Can the Arsenic Biomarker genes classify prenatal arsenic exposure in a separate population??



Acknowledgements

Chandni Valiathan Peter Svensson Brad Hogan Manlin Luo Sanchita Bhattacharya Leona Samson Panida Navasumrit Krittinee Kandjanapa Sumitri Soontararuks Sumonotha Nookabkaew Chulabhorn Mahidol Mathuros Ruchirawat

OPEN O ACCESS Freely available online

PLOS GENETICS

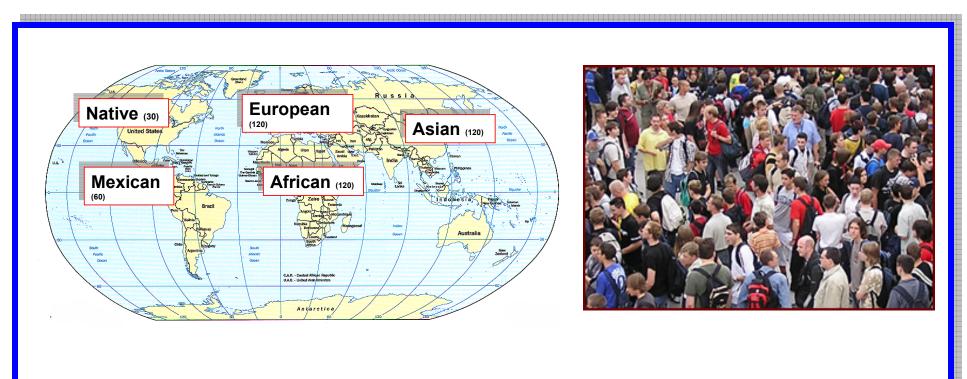
Activation of Inflammation/NF-κB Signaling in Infants Born to Arsenic-Exposed Mothers

Rebecca C. Fry^{1,2®}, Panida Navasumrit^{3®}, Chandni Valiathan^{1,2®}, J. Peter Svensson^{1,2}, Bradley J. Hogan^{1,2}, Manlin Luo^{1,2}, Sanchita Bhattacharya^{1,2¤}, Krittinee Kandjanapa³, Sumitra Soontararuks³, Sumontha Nookabkaew³, Chulabhorn Mahidol³, Mathuros Ruchirawat^{3*}, Leona D. Samson^{1,2*} Using genomics to predict population responses to exposures

Predict: How an individual will respond upon exposure?

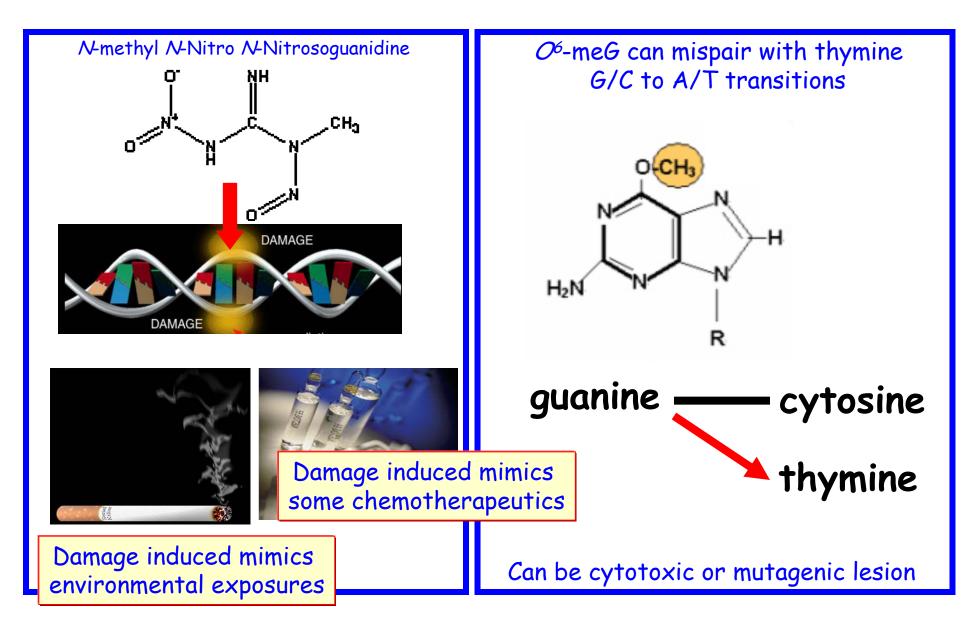
Who will be sensitive to exposure?

Cell Lines Represent Healthy Genetically Diverse Population

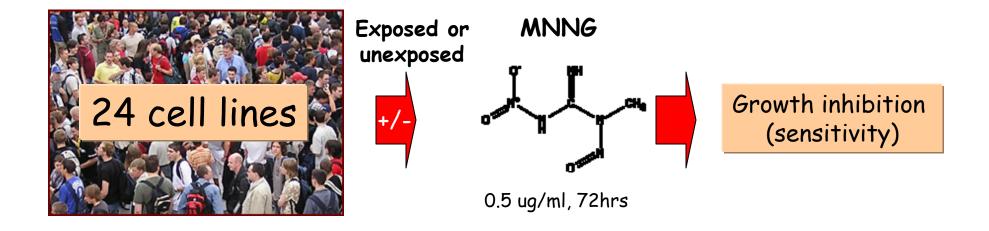


450 healthy, unrelated individuals 24 lymphoblastoid cell lines

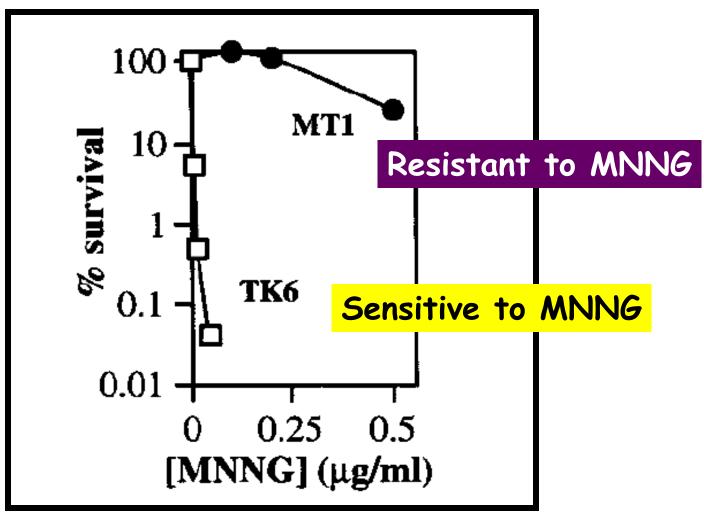
Model DNA damaging agent



What is the extent of inter-individual variation in sensitivity to a DNA damaging agent?

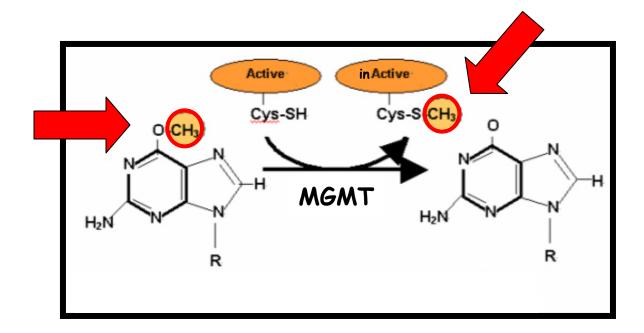


Control cell lines included in screen

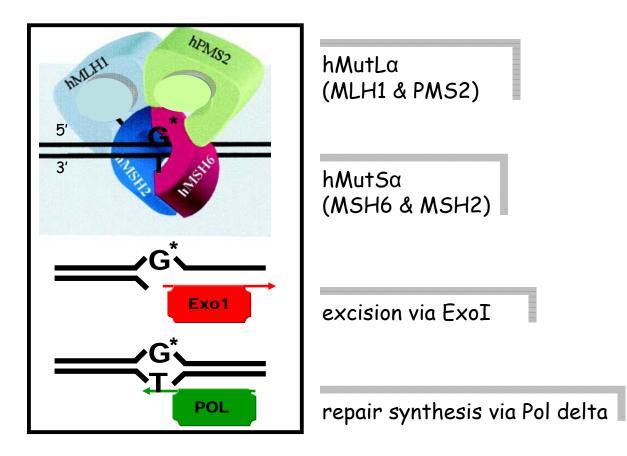


Hickman and Samson, PNAS 1999

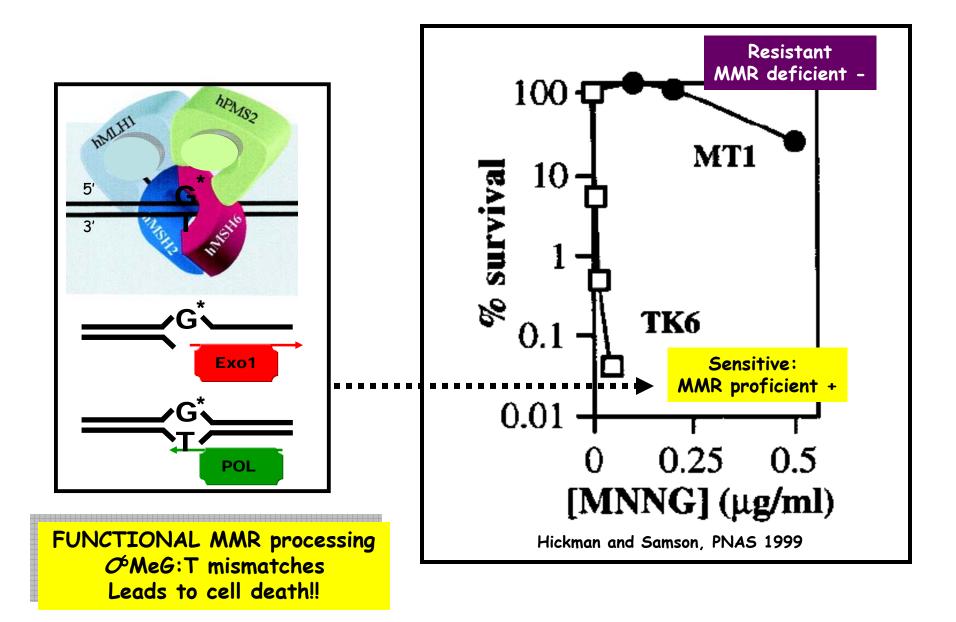
BOTH control cell lines lack MGMT: Direct Reversal of Damage



Different Mismatch Repair Status of control cell lines

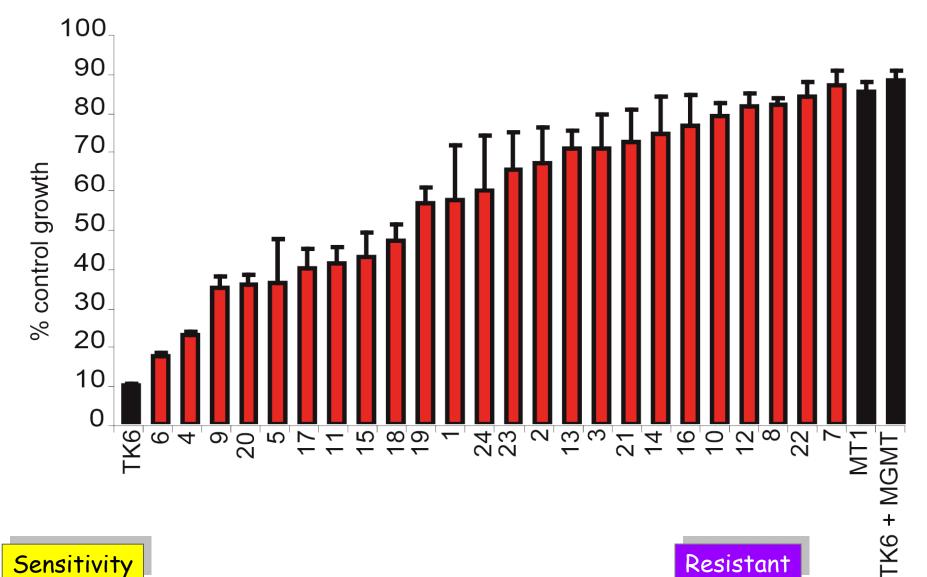


Paradox of Mismatch Repair



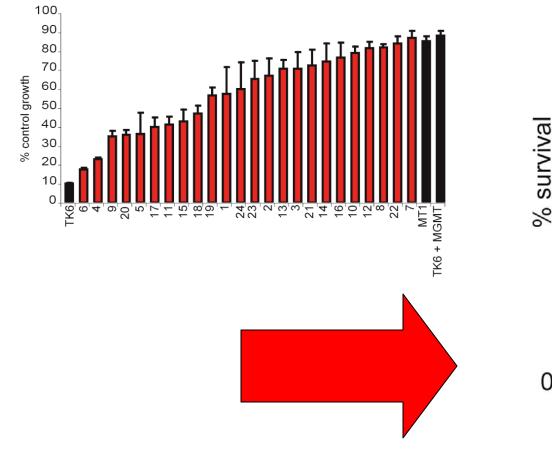
Establish Range of Sensitivity in Cells Exposed to MNNG

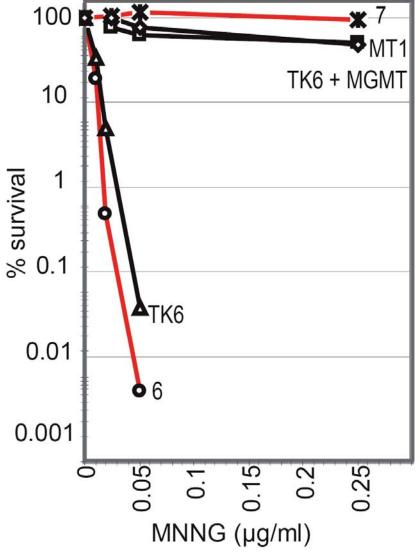
Establish Range of Sensitivity in Cells Exposed to MNNG



Resistant

Killing Curve Establishes Range of Sensitivity

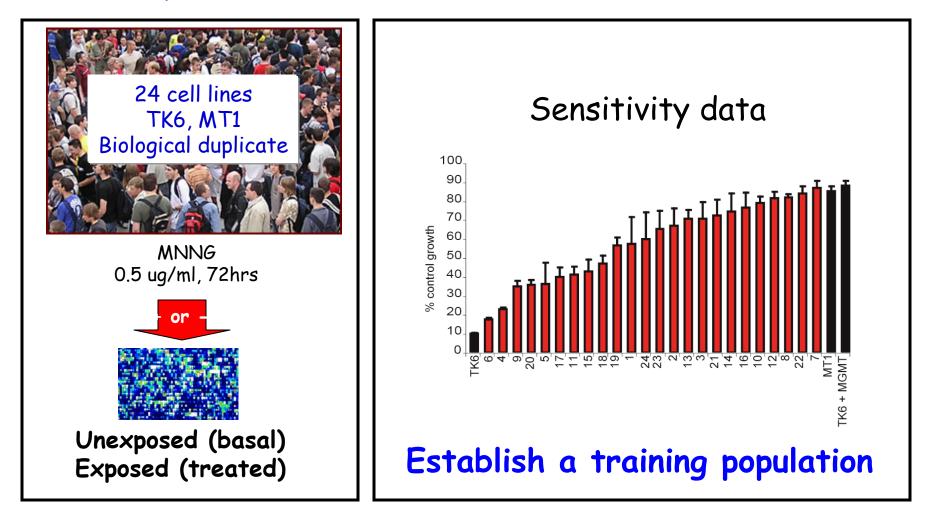




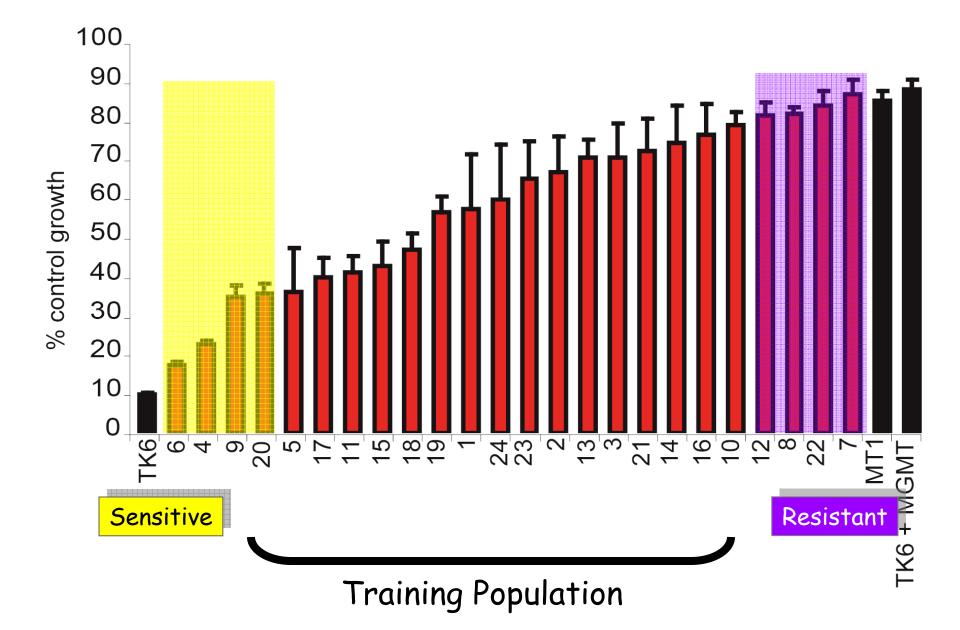
Can we predict the sensitivity of the cells upon exposure to MNNG ??

Two-class prediction algorithm

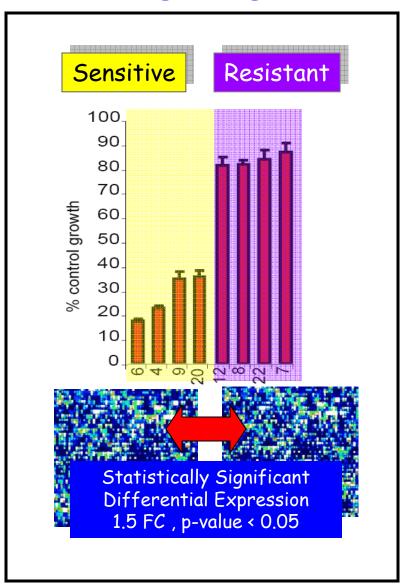
First step towards prediction: Integrate genome-wide expression data with sensitivity data



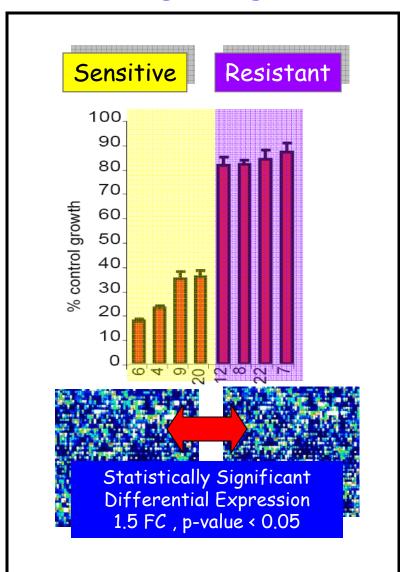
Establish Training Population based on extreme responders

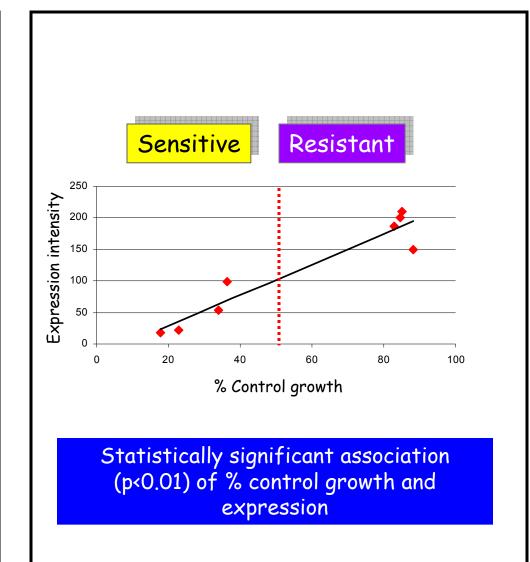


Alkylation-Sensitivity-Associated Gene Sets Identified by Integrating % Control Growth and Gene Expression



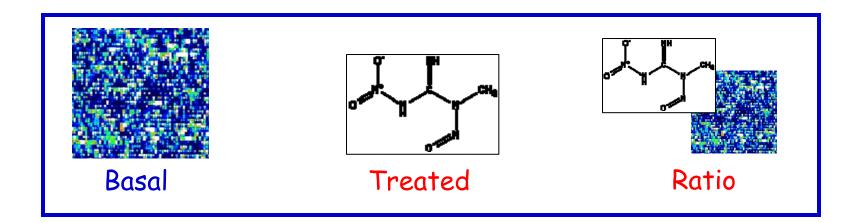
Alkylation-Sensitivity-Associated Gene Sets Identified by Integrating % Control Growth and Gene Expression



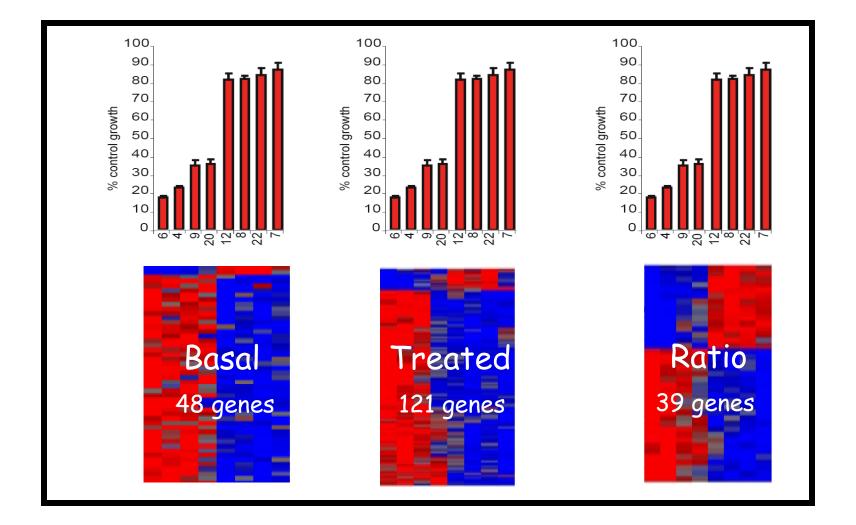


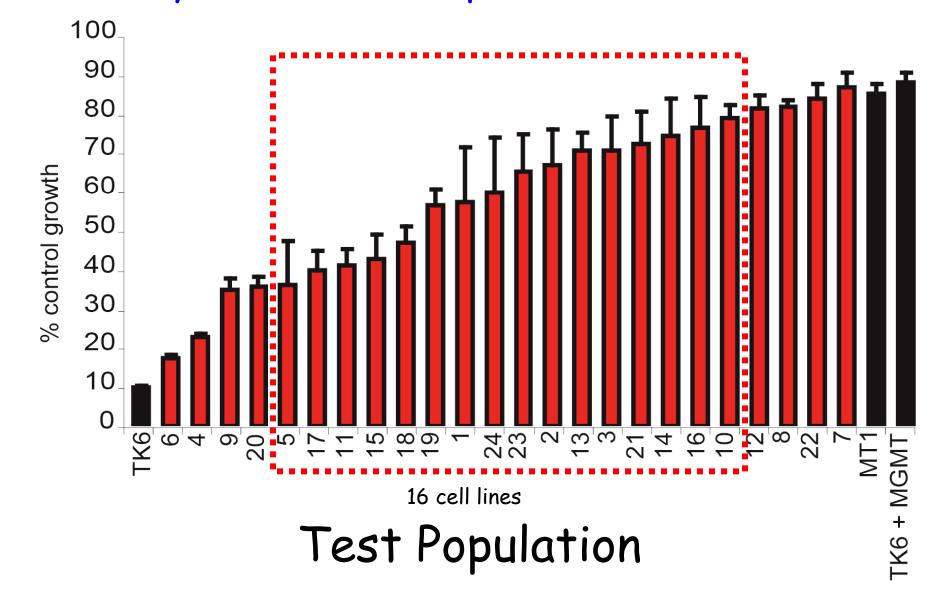
Basal and MNNG-induced transcripts were linked with sensitivity data

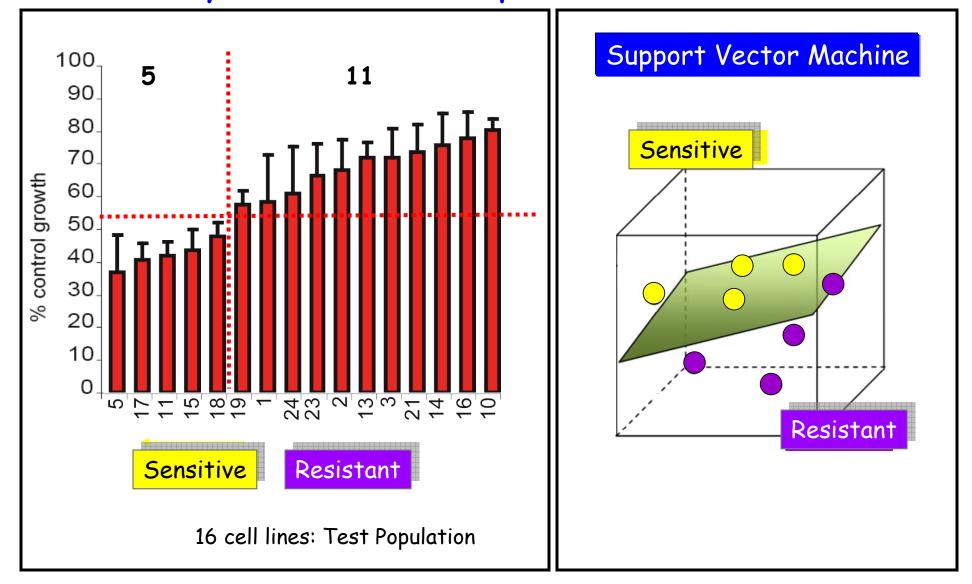
<u>A</u>lkylation-<u>S</u>ensitivity-<u>A</u>ssociated Gene Sets

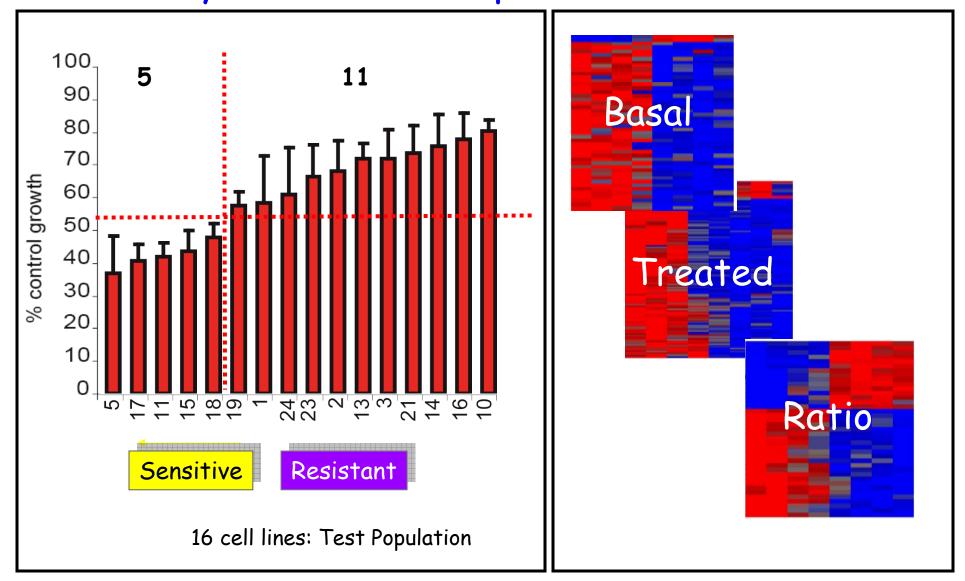


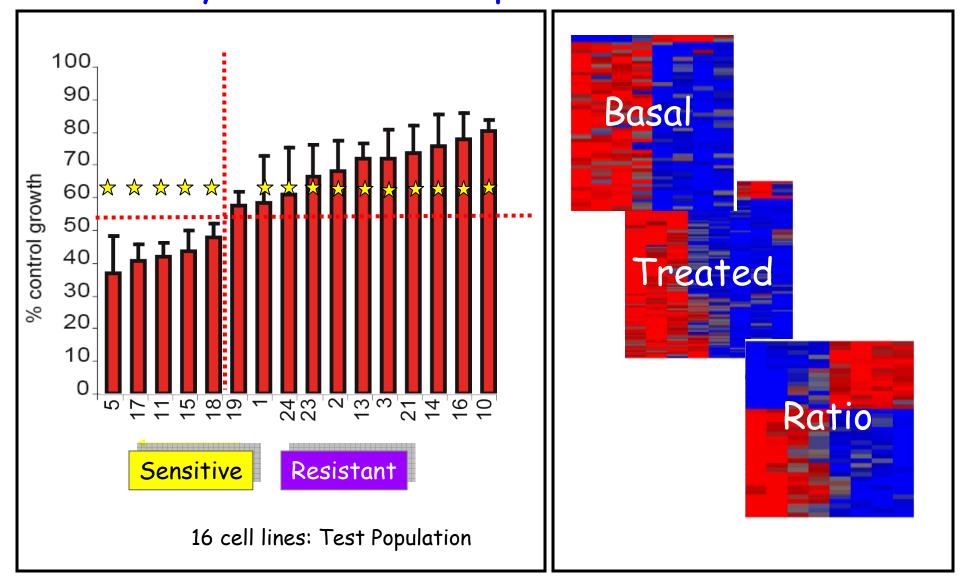
Three ASA Gene Sets Identified



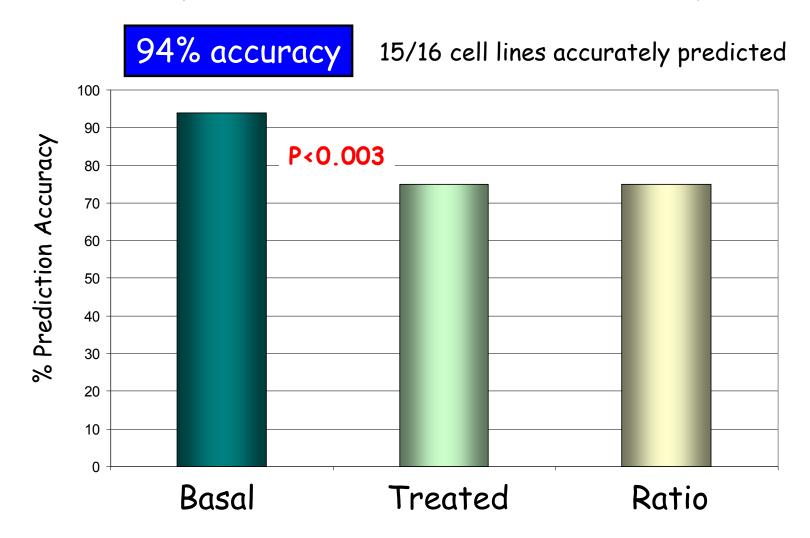








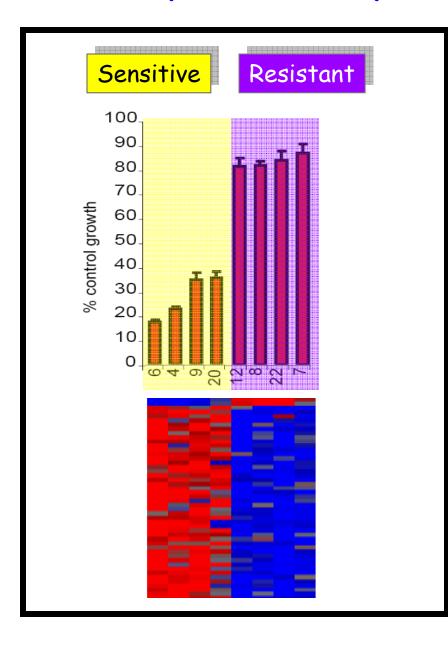
Basal gene expression is most predictive of sensitivity



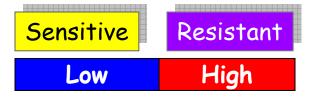
Which genes are contained in the highly predictive basal gene set?

Can we identify a potential molecular basis for the sensitivity?

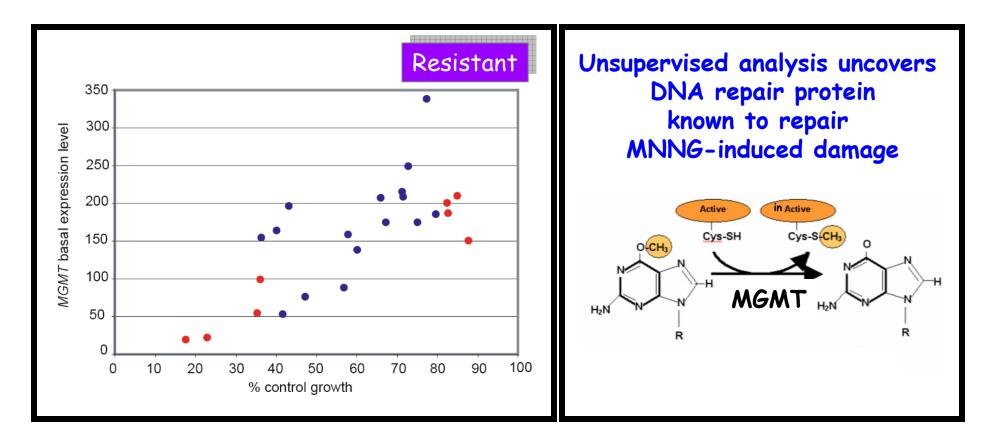
Two expression patterns in basal set



1: High expression in resistant cells



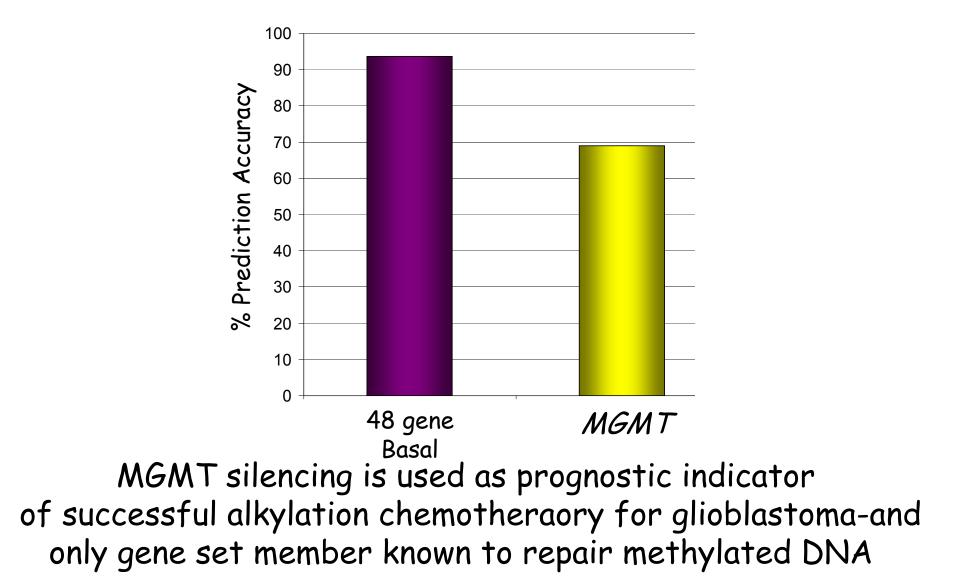
THE most significant positive association of MGMT expression with low sensitivity



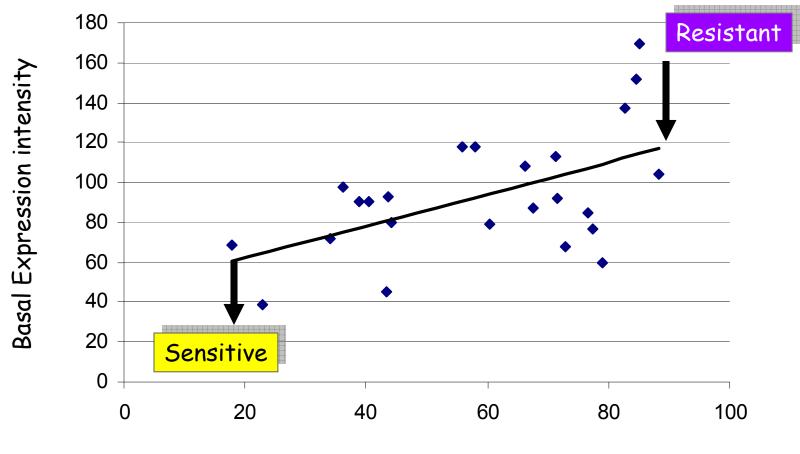
MGMT activity known to vary among individuals *MGMT* expression associated with resistance to certain chemotherapeutics

Is the existence of *MGMT* in the basal set the sole reason for high prediction??

The Basal gene set is a better predictor of alkylation sensitivity than *MGMT* alone

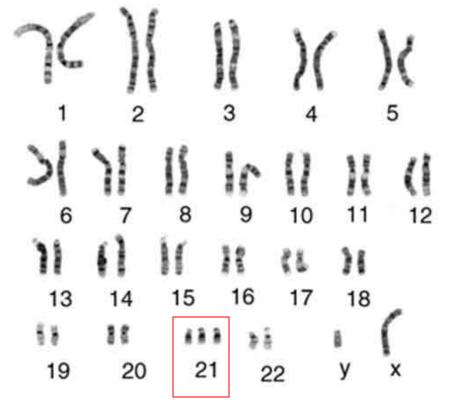


Second most significant positive association: *C210RF56*



% Control Growth

Chromosome 21: Associated with Numerous Diseases

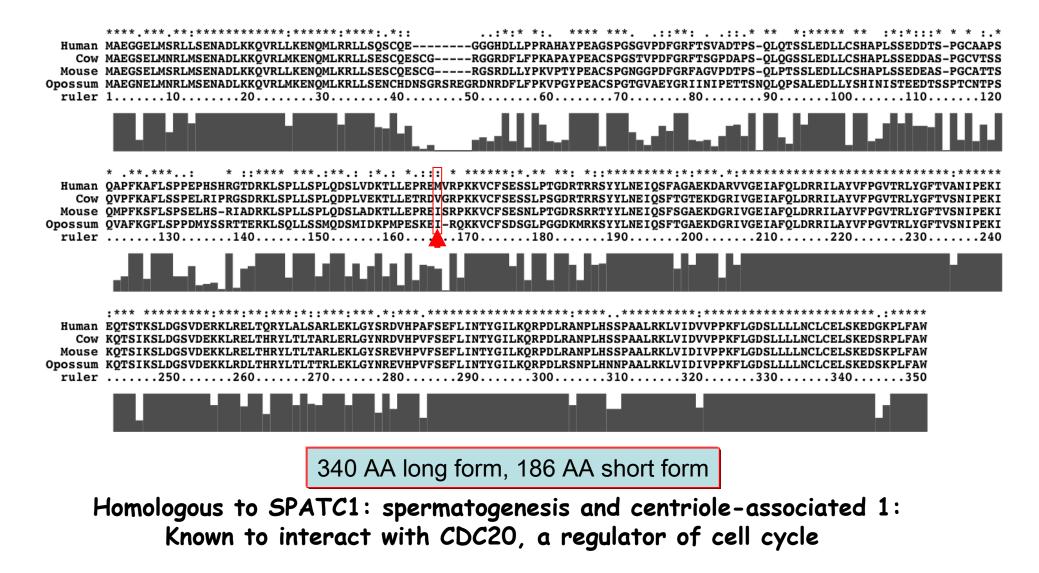


Chromosome 21 associated with disease:

Down Syndrome Alzheimer's Acute Myeloid Leukemia Autoimmune Disease

biotechnologyonline.gov

C21ORF56 conserved across mammals

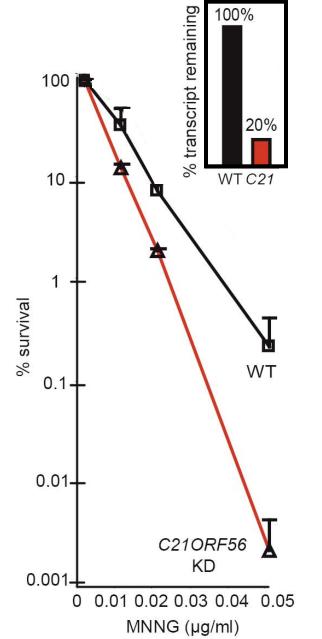


C210RF56 shows variation in expression in CEPH cell lines

	OPEN a ACCESS Freely available online		PLOS genetics	
	Genome-Wide Ass	ociations of G	Gene Expression	
	Variation in Huma	ns		
	Barbara E. Stranger ¹ [®] , Matthew S. Forrest ¹ [®] , Sarah Hunt ¹ , Brenda Kahl ⁴ , Stylianos E. Antona 1 Wellcome Trust Sanger Institute, Wellcome Trust Genome Cam New York, United States of America, 3 Department of Genetic M Diego, California, United States of America, 5 Department of Oncc Molecular and Computational Biology, University of Southern Ca	arakis ³ , Simon Tavaré ^{5,6} , Panagiotis I pus, Hinxton, United Kingdom, 2 Department of Mr edkine and Development, University of Geneva M rlogy, University of Cambridge, Hutchison/MRC Res	Deloukas ^{1*} , Emmanouil T. Dermitzakis ^{1*} olecular Biology and Genetics, Cornell University, Ithaca, edical School, Geneva, Switzerland, 4 Illumina, Inc., San earch Centre, Cambridge, United Kingdom, 6 Program in	
PLoS Genetics www	w.plosgenetics.org	0695	December 2005 Volume 1 Issue 6 e78	
	CEU samples: <u>C</u> entre derived from 60 ur	e d' <u>E</u> tude du Po	ymorphisme Humain sidents descended	

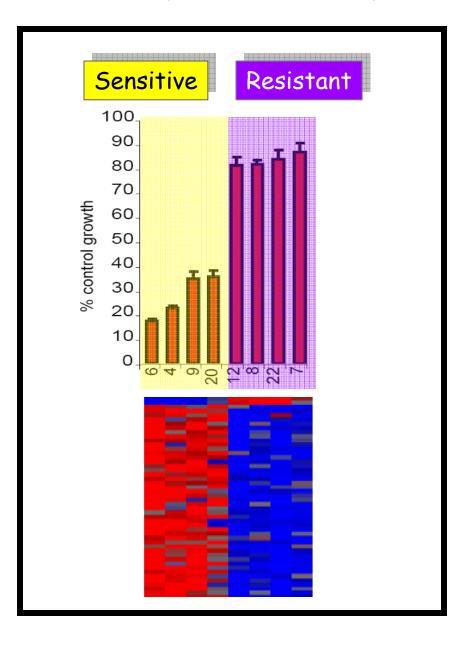
Does C210RF56 influence MNNG sensitivity??

Does C210RF56 influence MNNG sensitivity??

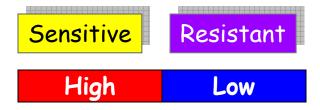


Does C210RF56 influence MNNG sensitivity??

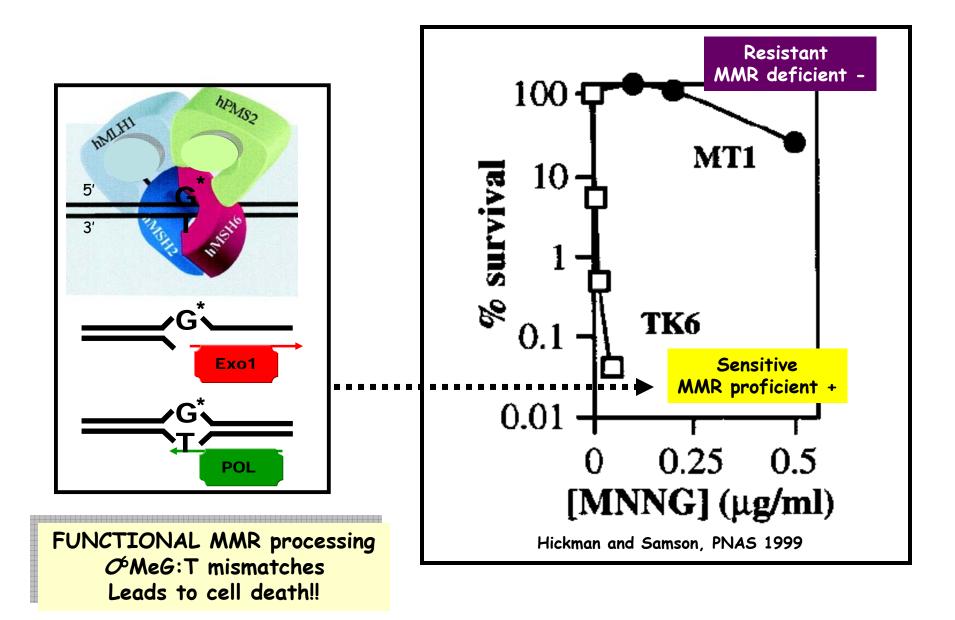
Two expression patterns in basal set



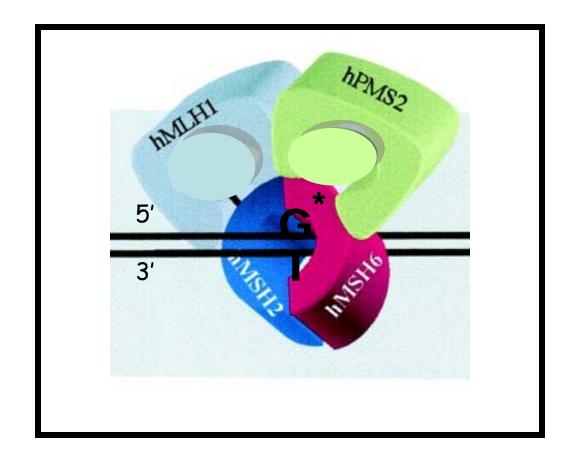
2: High expression in Cells with high sensitivity



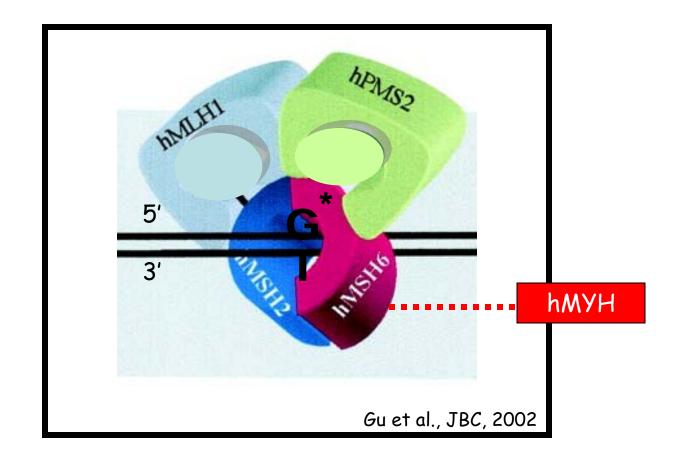
Paradox of Mismatch Repair



Predicted high expression of Mismatch Repair transcripts in sensitive cell lines



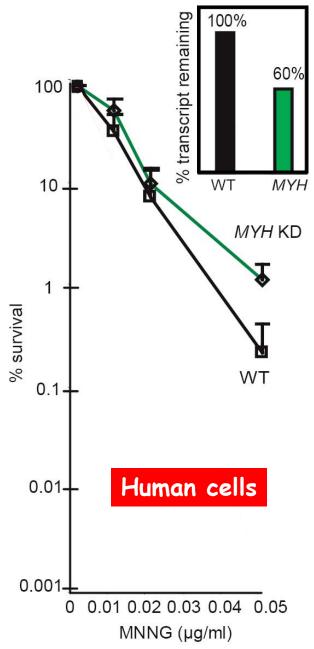
Base excision repair protein MYH has high expression in sensitive cell lines



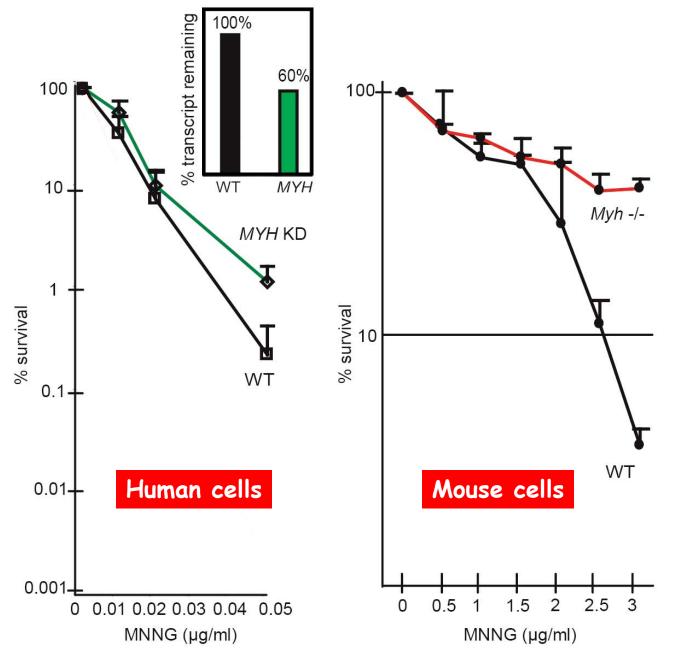
Does deficiency for MYH confer resistance to MNNG in the same manner as MMR deficiency?

Does MYH influence MNNG sensitivity??

Does MYH influence MNNG sensitivity??



Does MYH influence MNNG sensitivity??



Summary

- Broad range of variation in sensitivity across cell lines derived from healthy genetically diverse individuals
- Basal gene expression predicts variation in sensitivity upon exposure to DNA damaging agent
- MGMT-currently used as predictor of tumor response to chemotherapy-is a member of our ASA set
- Tested and verified that two members of ASA set influence cellular sensitivity: MYH (DNA repair) and C210RF56 (unknown function)