

Providing innovative strategies for high content imaging and analysis

Patrick M. McDonough, Ph.D. VP of Biology, Vala Sciences Inc Computational Toxicology Communities of Practice webinar Nov. 17, 2011

A brief history of Vala Sciences Inc:

The Vala Sciences Inc was founded in 2003. The biology and engineering team previously founded Q3DM (Quantitative 3-Dimensional Microscopy), a San Diego based company that developed the EIDAQ/IC-100 one of the first High Content Assay workstations.

Jeffrey Price, MD. Ph.D., the CEO of Vala, and cofounder of both Q3DM and Vala is a pioneer in the field of High Content Analysis (HCA, typically cell-based assays which feature high resolution, multi-channel fluorescence imaging, with automated image acquistion and image analysis software).

Vala Sciences offers instrumentation, software, reagents, and assays for HCA for both cells and tissue, relevant to high throughput screening, preclinical research, and digital pathology applications.

Recent funded grants and contracts to Vala Sciences

Grants:

- 2006 NIH SBIR 1R43DK074333-01 Title: *HT Image Assay of Lipid Droplet Formation in Human Adipocytes*. Phase I = \$142,606, Phase II = \$1,503,000. PI: McDonough
- 2006 NIH STTR 1R41DK076510-01 Title: *Development automated assay-regulators insulin synthesis*. Phase I = \$200,371. PI: McDonough
- 2006 NIH FastTrack STTR 1R42HL086076-01 Proposal Title: Live cell and HCS assays to quantify production of cardiomyocytes from stem cells. Phase I = \$249,866, Phase II = \$1,305,000. PI: McDonough
- 2009 NIH 1R03MH082378-01 Proposal Title: High Throughput Imaging Assay for Beta-Catenin. \$25,000 (NIH Network Molecular Libraries Probe Production Centers). PI: McDonough
- 2009 NIH 1R03DA026213-01 Proposal Title: A High Throughput Imaging Assay for Hepatic Lipid Droplet Formation. \$25,000 (NIH Network Molecular Libraries Probe Production Centers. PI: McDonough
- 2009 CIRM Title *Differentiation of ventricular, atrial, and pacemaker type cardiomyocytes from stem cells*. 2 years, \$900,000. PI: McDonough
- 2010 NIH SBIR phase I Title: *High content analysis of mitochondrial replication* Phase I = \$270,000 PI: Whittaker
- 2010 NIH STTR 1R41DK082087-01 Title Automated quantification of lipid droplets in fatty liver tissue sections. Phase I = \$298,466. Phase II budget = \$1,464,024. PI: McDonough
- 2010 NIH STTR 1R41AR055604-01A2 Title Automated analysis of skeletal muscle fiber crossectional area and metabolic type. Phase I = \$153,853. Phase II budget = \$1,200,000. PI: McDonough
- 2011 (nearly approved) NIH STTR FastTrack Title: *Optogenetic Multiparametric Assay for HT Cardiotoxicity Testing*. PI: Cerignoli.

Contracts:

- 2009 NIH FastTrack SBIR contract Title: *Drug Safety Assessment in iPS Derived Cardiomyocytes*. Phase I = \$119,000 Phase II = \$840,000. PI: Cerignoli
- 2010 NIH SBIR FastTrack contract Title: *Hapten and Qdot based assay for breast cancer biomarkers*. Phase I = \$150,000 Phase II = \$1,700,000. PI: McDonough
- 2011 NIH SBIR contract Title: Automated karyometry as a companion diagnostic for chemoprevention of breast cancer Phase I = \$204,000 PI: McDonough

Overall, Vala has received approx. \$12,500,000 in funding from grants and contracts (the NIH has been the primary source of grant/contract support).

Additional recent contracts include:

Johnson & Johnson - project to develop Kinetic Image Cytometry (KIC) methods for simultaneous measurement of intracellular calcium and voltage in cardiac myocytes.

Sanofi Aventis - project to test candidate pharmaceuticals for effects on voltage-dependent channels in cardiac myocytes using KIC

Vala has also recently been approved for a \$1,500,000 loan from the SBA (Silvergate Bank, San Diego, CA).

Vala Collaborators:

Sanford-Burnham Medical Research Institute.

Sanford-Burnham has previously collaborated with Vala Sciences Inc on the following grants and contracts including:

STTR Fast-Track 1 R42 HL086076-01 "Live cell and HCS assays to quantify production of cardiomyocytes from stem cells" and SBIR contract HHSN268200900044C "Drug Safety Assessment in IPS Derived Cardiomyocytes").

Two of Vala's MLSCN/MLPCN assays (to identify activators of beta-catenin (R03 MH082378), and inhibitors of hepatic lipid droplet formation (R03 MH083261) were screened on large chemical compound libraries (approx. 200,000 compounds) by the Conrad Prebys Center for Chemical Genomics at Sanford-Burnham.

Sanford Burnham Medical Research Institute From Research, The Power To Cure

Conrad Prebys Center Chemical Genomics

Conrad Prebys Center for Chemical Genomics

One of the most advanced infrastructure for small molecule drug discovery in non-profit world.

Staffed by ~80 professionals, most with pharmaceutical company experience
 Functional Units include:

- Assay Development (including advanced HC
- Assay Development (including advanced HCS for phenotypic screens)
 HTS & Compound library management (including ultra-HTS robotics and total libraries >
 900K compounds)
- Chemical fragment screening by NMR
- Affinity Selection-Mass Spectrometry (ASMS) screening
- Cheminformatics
- Medicinal Chemistry
- Pharmacology
- Structure-based drug optimization (robotic protein crystallography) (NMR)
- Current throughput is ~40 HTS campaigns per year, current capacity to undertake ~50/year.

World Class HTS Capabilities

Instrumentation:

2003 Q3DM Eidaq IC100 (also marketed by Beckman Coutler) (rapid autofocus, multichannel fluorescence, microtiter plates, slides)

Present: IC200 and IC300 product line. Even faster autofocus, continuous scanning, large format cameras, Kinetic Image Cytometry

Recent customers include the Sanford Burnham Medical Research Institute, University of Houston, Baylor College of Medicine, Genomics Institute of the Novartis Research Foundation.

Jeffrey H. Price, M.D., Ph.D.

Autofocus based upon chromatic abberation

Prosstate biopsy visualized via fluorescence microscopy

Software: CyteSeer®

0 0				Су	teSeer 2.7.10.	16					
Navigation:	() (- l		- () (26 20111027						
Source Folde	Source Folder: //Volumes/vala_public/Andrew/Experiments/AH68b_20111027										
Results Fold	er: /Volum	es/vala_publ	ic/Andrew/Expe	eriments/AH68	8b_20111027/	CyteSeerResul	ts_2011-10-2	27_15-40-14	•	Browse	
Image Namii	ng Conventio	n: [IC 100		🔹 💿 Pla	te 🔘 Batch						
Define Algorith	o Run: Col	ocalization	\$	New	Edit.) (Cop	ру)	Delete			
Channel Name C	hannel Folder	Analyze?	Prefilter	Filtering Radius	Thresholding	Sensitivity %	Size Parameter	Size Value	Loader	Configure	
Nucleus	channel_0	\checkmark	None	1	SavitskyGolay	100	Minimum Size		5 Single Slie	ce	
Lipid	channel_1		None	1	SavitskyGolay	50			0 Single Slie	ce	
Protein	channel_2	V	None	1	SavitskyGolay	50			0 Single Slie	ce	
Gates	Wells to Run Algorithm On: Well F01 F02 F03 F04 F04 F05 F06 F07 F08 F09 F10 Clear All Select All Confi				un?				Images Within Well: Images Across: 3 ¢ Images Down: 2 ¢ Computational Cluster Size: Images Across: 3 ¢ Images Down: 2 ¢		
Name		Source Da	taTable	Result Dat	aTable	Enabled?			Add (Remove Edit	Move Up Move Down	

Randall Ingermanson

Jeff Hilton

Features of CyteSeer®

- Coded in Java, cross-platform compatible
- True cell-by-cell cytometry
- Plug-in and pipe-line architecture.
- Easily modified and optimized for specific applications
- Can be downloaded and tested for free from our website

http://www.valasciences.com

The Lipid Droplet/Colocalization Algorithm:

(human adipocytes, lipolysis assay (nuclei, lipid droplets, phosphoperilipin)

A rich set of data parameters are derived by CyteSeer for each cell.

Membrane algorithm (94) Lipid droplet/colocalization algorithm (98)

CyteSeer								A	7 📕 🕙	\$ 🔷 🖣 🚈 (91%) M	
000	CyteSeer 2.7.10.16			uinhagak, alaska - Google Search				A			
-Navigation				L							
					ToK8MomYiALBqlGVAw&start=20&sa=N&bav=on.2,or.r_gc.r_pw.,c 🚖 🔻 😋 🚼 Google					Q) 🏦	
Source Folder: //Volumes/vala_public/Andre	ource Folder: //Volumes/vala_public/Andrew/Experiments/AH68b_20111027			cipedia 🔚 News ▼ 📋 Popular ▼					Bookmarks 🔻		
Results Folder: /Volumes/vala_public/Andre	ults Folder: //Volumes/vala_public/Andrew/Experiments/AH68b_20111027/CyteSeerResults_2011-10-27_15-40-14							v	lasciencesinc@	≷gmail.com - 🗱 🗍	
Image Namine Results Folder:Experime	ments/AH68b 20111027/CyteSeerResults 2011-10-27 15-40-14				q						
Define Algorithn	Well Data Well Plate Data										
Algorithm To	Weil Data Weil Plate Data										
F01	Display Table										
Channel Name Cha F02			Configure								
Nucleus F03				Cell Da	ata Table for: F01						
Protein F04											
F05	DataTable: F01	Cell ID Well Z API Li Lm A	API Li Nm API Li Wm	API Li X Cm AI	PI Li X Nm API Ni Nm	API Ni Wm API Pi Cm API	Pi Lm API Pi Nm /	API Pi Pm API Pi Q Cn	API Pi Q Nm	API Pi Wm Area Cm	
Wells to Run Alg F07		1 F01 0 0 37.3597	32.4496 19.6216	18.1287	29.4522 116.2946	20.7249 44.4644	56.2770 58.6512	59.5833 44.378	8 58.6512	44.9069 4266.000	
F08	Gates	3 F01 0 0 36.4664	23.9504 22.1885	19.7820	22.1360 115.8369	33.0744 255.0000 2	55.0000 255.0000	255.0000	243.6000	255.0000 1929.000	
Well F09	Source Gate	4 F01 0 0 43.9259	32.6311 14.4042	14.0121	23.2203 123.2816	19.1840 38.1118	93.7778 88.8738	93.5106 38.071	9 132.7647	39.0616 5402.000	
F10	CyteSeer Remove Two Percent	5 F01 0 0 54.2505	28.9812 37.2701	34.4580	27.7613 102.2895	27.3500 53.5185	58.3111 53.3120	63.6500 53.280	1 53.2689	53.4888 2561.000	
F11 F12	Cyteseer Remove Two Sigma V	6 F01 0 0	14.0424 13.8596	13.8571	14.0424 84.7257	16.7355 34.4935	36.6035	52.3810 34.443	0 36.6035	34.5215 29822.00	
F13	CyteSeer Remove Boundary C	7 F01 0 0 57.0148	27.6432 27.6494	24.2805	25.9666 90.8865	36.0880 45.9401	56.6946 46.8811	64.7805 44.58	1 46.7339	46.0992 1770.000	
F14 4	CyteSeer Column A	8 F01 0 0 37.0526	15.3393 16.4457	16.1412	15.3393 91.9013	43.1806 235.5116 1	60.6667 255.0000	245.4131 111.892	5	240.1869 1806.00(
F15 ¥	User api pi pm less than	9 F01 0 0 41.7179	21./10/ 1/.30/4	13.9851	19.7154 155.9721	28.1331 80.0547 1	51 8993 45 0667	52 5882 30 071	2 82.0444	40.0200.53912.00	
	User area cm less than 10 🗴	11 F01 0 0 27.8644	14.9202 16.2158	16,1862	14.9202 103.2311	40.6667 255.0000 2	55.0000 255.0000	255.0000	45.0007	255.0000 2647.000	
		12 F01 0 0	17.7893 14.9488	14.7726	17.7893 109.4073	27.4020 234.0578	254.3062	247.2427 82.853	9	235.2405 5739.000	
Clear All Select All	New Edit Remove	13 F01 0 0 32.1225	14.3642 13.8857	13.8371	14.2956 92.7415	16.3743 31.5181	38.6716 36.3566	51.3084 31.452	6 35.0665	31.5496 81051.00	
	Data is: Ungated Gated	14 F01 0 0 44.9502	16.5046 19.5410	17.9650	16.1432 137.9032	35.0012 216.7628 1	52.0093 252.3848	241.3411 88.04	2	219.8424 4586.000	
	Butta ISI (Billigateta) (Batta)	15 F01 0 0 37.2974	25.1429 22.5088	20.7693	23.7103 107.9739	30.3539 41.8005	45.9538 45.9304	54.6047 41.716	6 55.4281	42.2949 5874.000	
	Significant Figures:	16 F01 0 0 20.3333	13.9526 14.1613	14.1552	13.9526 54.2414	27 5688 34 9054	40.7083 67.6853	207.0974 45.49	0 65.4165	82.1240 8383.000	
Gates		18 F01 0 0 65 9076	41 7283 41 5497	37 0406	28 1373 120 7658	39 0906 56 2682	50.8022 56.7049	68 9844 55 62	3 56 3621	56 2928 2394 000	
	Cell ID Count: 212/212 [100 %]	19 F01 0 0 65.4069	34.2299 44.4913	39.9748	28.3782 112.6090	39.0621 101.6786	95.1219 61.5948	198.2210 62.323	4 61.5948	95.4594 2172.000	
Name Source DataTable		20 F01 0 0 27.0765	15.8356 16.2871	16.0280	15.8356 121.2012	31.5502 249.9206 2	55.0000 255.0000	252.2285 92.909	1	250.2500 7455.000	
	All Measurements	21 F01 0 0 62.7562	14.1529 15.2135	14.4615	14.1529 96.9253	24.6247 96.6584	99.3760 62.5896	224.4894 50.883	4 60.7669	94.0864 13936.00	
		22 F01 0 0 47.5876	18.1913 21.2273	19.8907	17.6851 118.3739	26.2258 54.7783	96.0458 48.2804	196.9057 46.702	9 48.2804	54.3495 6510.000	
	*	23 F01 0 0	15.6862 14.3302	14.2876	15.6862 78.7973	18.5982 40.4159	78.2534	94.0333 40.105	1 68.9931	41.5660 32728.00	
	Measurement Show	24 F01 0 0 32.9620	16 9904 17 1845	15.9029	16.5753 128.0018	42.2079 255.0000 2	55.0000 255.0000	253.0000	2	255.0000 4045.000	
	Name of the well	26 F01 0 0 35.4589	22.6409 14.3588	14.1331	20.5586 152.3149	18.0746 36.2775	75.5308 62.6547	77.9798 36.03	6 60.6456	36,5369 36450.00	
	Index of the z-slice	27 F01 0 0 34.6396	15.7267 17.1986	16.6799	15.6539 129.2574	27.2655 150.3983 1	77.2792 251.6238	221.5924 71.356	0	156.1974 8310.000	
	Average Pixel Intensity of Lini	28 F01 0 0 53.3257	28.4767 25.0970	22.5412	27.1962 104.7312	28.2902 40.3707	49.5029 45.0573	55.1667 40.242	4 44.7000	40.9145 2401.000	
	Average Pixel Intensity of Lipi	29 F01 0 0 35.6103	16.1287 16.9276	16.2310	15.8357 145.0992	28.4175 36.2139	43.5897 40.9544	51.1964 36.038	1 40.9544	36.5776 4830.000	
	Average Pixel Intensity of Lipi	30 F01 0 0 22.8788	15.0593 14.6891	14.6412	15.0593 98.5826	21.6757 41.3935	48.1818 46.0996	41.393	5 46.0996	41.6205 9313.000	
•	Average Pixel Intensity of Lipi	31 F01 0 0 26.7429	17.2671 15.8972	15.3857	16.9498 165.0662	32.4591 34.9868	41.1214 41.3539	44.7143 34.934	6 41.3539	35.5916 3937.000	
	Average Pixel Intensity of Lipi	33 F01 0 0 33 9813	17.7101 10.2847	15.5550	15 1938 79 5046	23 1374 37 7787	45 5875 34 7587	49 5946 37 62	2 34 7587	37 5108 5839 000	
1 -	Average Pixel Intensity of Nu	34 F01 0 0 71.9276	32,1496 39.6290	32,7992	30.0785 119.5536	60.5399 53.7699	61.5882 57.0224	66.0816 53.054	4 56,7700	55.0826 678.000	
	Average Pixel Intensity of Pro	35 F01 0 0 68.0451	28.5448 33.2239	27.9283	28.3066 129.7534	35.0564 50.8450	61.0855 56.6345	66.9753 50.450	8 56.2668	51.5851 2800.000	
	Average Pixel Intensity of Pro	36 F01 0 0 100.5865	27.3629 19.3371	14.9803	20.6487 72.5327	18.8976 33.1986	67.4663 41.1480	75.4697 32.903	5 38.9457	33.5537 13553.00	
	Average Pixel Intensity of Pro	37 F01 0 0 26.6063	14.8088 13.9127	13.8720	14.7114 153.7328	18.1494 37.0237	41.0079 46.4865	56.8077 36.963	0 46.3337	37.1609 55465.00	
	Average Pixel Intensity of Pro	38 F01 0 0 29.3969	17.7284 15.5335	15.2606	17.2489 138.8470	23.6285 59.2600	90.1221 65.9914	160.3129 54.594	6 65.3220	59.5731 9511.000	
	(Indate) (Check All Shows)	39 F01 0 0 64.3659	41.9772 35.1147	30.7239	40.3587 121.3316	31.8832 52.8663	63.8785	66.9714 52.462	8 63.3784	53.8867 3868.000	
, in the second s	Opuate Check All Showh	40 F01 0 0 39.2310	21.5084 21.8470	19.4702	19.9924 152./10/	31 0042 140 6366 1	54.7092 254.8244 84.7466 124.2572	225 8797 67 66	2 96 1549	139 5162 6142 000	
	Export Uncheck All	42 601 0 0 54 6855	15 0544 15 5288	14 7261	14 9561 102 0000	20 1011 27 7717	55 8/81 /7 7708	ER 8400 37.60	5 17 7708	27 05 72 12704 00	
										74 1	

Data parameters related to intensity of different cellular compartments in different image channels

TII Mi Nm	Total Integrated Intensity of Membrane Image on Nucleus Mask
API MI NM	Average Pixel Intensity of Membrane Image on Nucleus Mask
MPI Mi Nm	Median Pixel Intensity of Membrane Image on Nucleus Mask
SPI Mi Nm	Standard Deviation of Pixel Intensity of Membrane Image on Nucleus Mask
TII Mi Mm	Total Integrated Intensity of Membrane Image on Membrane Mask
API Mi Mm	Average Pixel Intensity of Membrane Image on Membrane Mask
MPI Mi Mm	Median Pixel Intensity of Membrane Image on Membrane Mask
SPI Mi Mm	Standard Deviation of Pixel Intensity of Membrane Image on Membrane Mask
TII Mi Cm	Total Integrated Intensity of Membrane Image on Cytoplasm Mask
API Mi Cm	Average Pixel Intensity of Membrane Image on Cytoplasm Mask
MPI Mi Cm	Median Pixel Intensity of Membrane Image on Cytoplasm Mask
SPI Mi Cm	Standard Deviation of Pixel Intensity of Membrane Image on Cytoplasm Mask
TII Mi Wm	Total Integrated Intensity of Membrane Image on Whole-Cell Mask
API Mi Wm	Average Pixel Intensity of Membrane Image on Whole-Cell Mask
MPI Mi Wm	Median Pixel Intensity of Membrane Image on Whole-Cell Mask
SPI Mi Wm	Standard Deviation of Pixel Intensity of Membrane Image on Whole-Cell Mask

Colocalization of labels between differerent

- .
- image channels for different cellular compartments

PCC Ni Mi Wm Pearson Correlation Coefficient of Nucleus Image vs Membrane Image on Whole-Cell Mask K1 Ni Mi Wm Manders K1 Coefficient of Nucleus Image vs Membrane Image on Whole-Cell Mask K2 Ni Mi Wm Manders K2 Coefficient of Nucleus Image vs Membrane Image on Whole-Cell Mask Manders Overlap Coefficient of Nucleus Image vs Membrane Image on Whole-Cell Mask MOC Ni Mi Wm M1 Ni Mi Wm Manders M1 Coefficient of Nucleus Image vs Membrane Image on Whole-Cell Mask M2 Ni Mi Wm Manders M2 Coefficient of Nucleus Image vs Membrane Image on Whole-Cell Mask Masked PCC Ni Mi Nm Masked Pearson Correlation Coefficient of Nucleus Image vs Membrane Image on Nucleus Mask Masked K1 Ni Mi Nm Masked Manders K1 Coefficient of Nucleus Image vs Membrane Image on Nucleus Mask Masked K2 Ni Mi Nm Masked Manders K2 Coefficient of Nucleus Image vs Membrane Image on Nucleus Mask Masked MOC Ni Mi Nm Masked Manders Overlap Coefficient of Nucleus Image vs Membrane Image on Nucleus Mask Masked M1 Ni Mi Nm Masked Manders M1 Coefficient of Nucleus Image vs Membrane Image on Nucleus Mask Masked M2 Ni Mi Nm Masked Manders M2 Coefficient of Nucleus Image vs Membrane Image on Nucleus Mask

Kinetic Image Cytometer (KIC)

Fabio Cerignoli

Ross Whittaker

Data set #1

Data set #2

Data set #3

Vala is offering the following assays related to KIC-Cardiac Myocyte:

CD1, Cardiac differentiation , human cardiac myocytes (long term effects on iPS-derived cardiac myocytes)

CT1, Cardiac toxicity, human cardiac myocytes (acute effects on iPS-derived cardiac myocytes)

Adipogenesis

Excess adipogenesis, leads to obesity. Abnormally low adipogenesis may contribute to cachexia.

2006 NIH SBIR 1R43DK074333-01 Title: *HT Image Assay of Lipid Droplet Formation in Human Adipocytes*.

Collaborators: Zen-Bio Inc (suppliers of primary adipocytes and other cell types), Baylor College of Medicine (development of custom antibodies)

The basics of assay development were published in a peer-reviewed paper:

McDonough, P. M., Agustin, R. M., Ingermanson, R. S., Loy, P. A., Buehrer, B. M., Nicoll, J. B., Prigozhina, N. L., Mikic, I., Price, J. H. 2009. Quantification of lipid droplets and associated proteins in cellular models of obesity via high content/ high throughput microscopy and automated image analysis. *ASSAY and Drug Development Technologies, 7:440-460*. NIHMSID#194280

Early experiment demonstrating the effect of rosiglitazone on differentiation of preadipocytes (A) to adipocytes (B), lipid droplets as a gray scale image (C), creation of the Lipid Droplet Mask (D), and the correlation between biochemical analysis of triglycerides (E) and lipid droplets as assayed via microscopy (F).

Data from the adipogenesis assay

Vala is offering the following assays related to Adipogenesis:

A1, Adipogenesis, Human adipocytes, agonists

A2, Adipogenesis, Human adipocytes, antagonists

Related assay:

LD2, Lipid droplet formation, Huh-7 cells (hepatocytes). This is related to fatty liver disease.

Lipolysis

McDonough, P. M., Ingermanson, R. S., Loy, P.A., Koon, E. D., Whittaker, R., Laris, C. A., Hilton, J. M., Nicoll, J. B., Buehrer, B. M., Price, J. H. (2010). Quantification of Hormone Sensitive Lipase Phosphorylation and Colocalization with Lipid Droplets in Murine 3T3L1 and Human Subcutaneous Adipocytes via Automated Digital Microscopy and High-Content Analysis. Assay Drug Dev Technol. 2010 Dec 27.

For lipid droplets to be metabolized, the process of lipolysis must be initiated.

The activation of lipolysis is associated with phosphorylation of perilipin (Peri), and Hormone Sensitive Lipase (HSL). Adipocyte triglyceride lipase (ATGL) is also critically important. Phosphorylation of perilipin attracts HSL and ATGL to the lipid droplets. HSL and perilipin are substrates for cAMP activated protein kinase (PKA), and cGMP-activated protein kinase (PKG)

Results from Vala's HCA-based lipolysis assay:

Vala is offering the following assays related to Lipolysis:

L1, Lipolysis, Human adipocytes, agonists

- L2, Lipolysis, Human adipocytes, antagonists
- L3, Lipolysis, murine 3T3L1 adipocytes, agonists

Cadherins and beta-catenin

Prigozhina, N. L., Zhong, L., Hunter, E. A., Mikic, I., Callaway, S., Roop, D. R., Mancini, M. A., Zacharias, D., Price, J. H., McDonough, P. M. (2007) Plasma membrane assays and three-compartment image cytometry for high content screening. ASSAY and Drug Development Technologies, 5:29-48

E-Cadherin

N-Cadherin

Beta-Catenin

A. Control

7.5 μM MSC#0267313

Vala is offering the following assays for Cadherins and Beta-Catenin:

ECAD1, E-Cadherin, A431 cells, agonists

NCAD1, N-Cadherin, HeLa cells, agonists

VCAD1, VE-Cadherin, Human vascular endothelial cells, agonists

BC1, Beta-Catenin, HeLa, agonists

Ross Whittaker

Assessing mitochondrial membrane potential ($\Delta \psi_M$) using HCA

Vala is offering the following assays related to Mitochondrial Function

MP1, Mitochondrial membrane potential, Huh-7 cells, acute

MP2 Mitochondrial membrane potential, Huh-7 cells, long term

Stem cell pluripotency

Mark Mercola

Assay SCP1, Stem cell pluripotency: Compounds that reduce pluripotency reduce GFP expression in human ES cells expressing GFP from an Oct4 promoter

Mesodermendoderm formation

Mark Mercola

Assay MEF1, Mesoderm endoderm formation, mouse embryonic stem cells

mESCs engineered to express eGFP under control of the vascular growth factor receptor-2. Cells are treated with compounds and assayed for both GFP (indicates mesoderm formation), and FoxA2 (indicates endoderm formation.

Heart cell formation

Mark Mercola

Assay HCF1: Heart cell formation, mouse embryonic stem cells

mESCs engineered to express eGFP under control of the alpha-myosin heavy chain promoter. Cells are subjected to a differentiation protocol in the presence of test compounds. Increases in GFP indicated increased formation of cardiac myocytes.

A related assay was recently published:

Willems, E., et al. 2011. Small-molecule inhibitors of the Wnt pathway potently promote cardiomyocytes from human embrynoic stem cellderived mesoderm. Circulation Ressarch 109:360-3641, Mesoderm endoderm formation, mouse embryonic stem cells

Pancreatic beta cell differentiation/ maturation

Pam Itkin-Ansari

Assay PBCD1: Pancreatic Beta Cell Differentiation

TPNE cells (derived from human fetal islets) express GFP downstream from the human insulin promoter. Compounds that promote differentiation of this pancreatic beta cell precursor towards the mature beta cell increase GFP expression.

Kiselyuk, A., et al. Phenothiazine neuroleptics signal to the human insulin promoter as revealed by a novel high-throughput screen. J Biomol Screen 15, 663-670 (2010).

The Notch pathway

Malene Hansen

The appearance of germ cells in C. elegans is dependent Notch activity and germ cells can be quantified via high content microscopy.

Assay CE1: C. elegans, Notch antagonists. Test for the ability of compounds to inhibit worms with a gain of function mutation in Notch.

Assay CE2: C. elegans, Notch agonists. Tests for the ability of compounds to increase germ cells in wild-type worms.

Alexi Terskikh

Assay NO1: Optogenetic-based assay of synaptic connectivity of human neurons

iPS- or neuronal-precursor-derived neurons are engineered to express channel rhodopsin, and loaded with fluo-4 to monitor calcium with KIC. Elevations in calcium in post-synaptic cells correspond to neurotransmission.

Assay MCDO1: Multiple choice differentiation outcomes

Utilizes pluripotent human neural crest stem cells. Quantifies the effects of compounds to influence differentiation to neurons, smooth muscle, glia, and melanocytes.

Vala people:

Andrew Heisel

Fabio Cerignoli

Ramses Agustin

Claire Weston

Robyn Garcia

James Evans

Ross Whittaker

Piyush Gehalot

Mike Markoudakis

Emily Arsenault

Constance Allison

Jeff Hilton