Urban Surface Modifications: Ozone air quality impacts in California

US EPA Urban Heat Island Conference Call January 31, 2006

Haider Taha Altostratus Inc. haider@altostratus.com www.altostratus.com (925) 228-1573

Ongoing relevant urban meteorology/air quality projects at Altostratus

For:

California Energy Commission
 San Jose State University Foundation / Department of Homeland Security
 NASA / Goddard Space Flight Center
 National Science Foundation (NSF)

Meteorological and air-quality modeling of surface modifications: Impacts in California

Currently in Phase-2 of study (through mid 2007)
 CEC's objectives; interest in "approval" by ARB and EPA Region 9
 Interest and support by cities, as well as California APCDs and AQMDs: SIP modeling
 Study based on new generation met/AQ modeling

[Previous presentation/update: October 5, 2004]

Goals of CEC / PIEREA UHI study Phase 2

Update and use an urbanized (UCP) meteorological model (uMM5); link with emissions and photochemical models

Develop fine-resolution, region-specific input database and morphology characterization; Also use as a basis for developing control scenarios

Test modeling system and evaluate performance

Apply models to California with regional focus; Evaluate potential meteorological/air quality impacts; Estimate emission reduction equivalents

Some considerations

- Increased urban albedo vs. UV albedo
- Increased vegetation cover vs. biogenic emissions
- High levels of modifications vs. inadvertent meteorology (e.g., mixing height, wind speed)
 - Model performance: noise/signal
 - FDDA and strength of nudging 3-D variation in coefficients FDDA-free "bubble"
 - Input improvements, data resolution, overriding met-model LULC input

Heat Islands Control (surface modifications) And Ozone

Direct effect

Indirect effect

Proposed (via $\Delta \alpha$, $\Delta \eta$, etc)

ROG (...,T) + NOx (...,T) + $hv \rightarrow 03 +$

"conventional" (e.g., emission reduction)

Urban heat islands – NOx, VOC, O3

High albedo roadways and pavements to reduce exhaust emissions, e.g., **A/C** and engine

Natural or artificial shading/cooling to reduce evaporative losses / emissions

direct

indirect

Urban heat islands – NOx, VOC, O3

Modeling environment

Current study:

 MET: Urbanized MM5 (uMM5) v. 3.5-3.7, (UCP implementation in WRF)
 AQ: CAMx 4.03 - 4.20 / CMAQ v4.4 (SAPRC99 mechanism)
 Emissions update models

uMM5/fine-resolution modeling: some highlights

Fine-resolution meteorological modeling -- non-LULC Morphology and 3-D surface characterization Effective albedo / Urban geometry and radiation Modified dynamics, thermodynamics, LSM, physics Canopy/vegetation model, more realistic walls and roofs: not parameterizations Capability to more accurately model green roofs Capability of modeling multi-level heat sources and sinks

Typical UCP scaling parameters

1 Land-use fraction
2. Land-cover fraction (paved)
3. Land-cover fraction (roof)
4. Land-cover fraction (vegetation)
5. Land-cover fraction (water)
6. Building height-to-width ratio
7. Building wall-to-plan ratio
8. Connected impervious area
9. Mean orientation of streets
10. Mean building height
11. Standard deviation of building height
12. Vegetation mean height
13. Canopy mean height
14. Zo and Zd (multi-directional)
14. Zo and Zd (multi-directional)15. Building frontal area density (multi-directional)
14. Zo and Zd (multi-directional)15. Building frontal area density (multi-directional)16. Building top (roof) area density
 14. Zo and Zd (multi-directional) 15. Building frontal area density (multi-directional) 16. Building top (roof) area density 17. Building plan area density
 14. Zo and Zd (multi-directional) 15. Building frontal area density (multi-directional) 16. Building top (roof) area density 17. Building plan area density 18. Vegetation frontal area density
 14. Zo and Zd (multi-directional) 15. Building frontal area density (multi-directional) 16. Building top (roof) area density 17. Building plan area density 18. Vegetation frontal area density 19. Vegetation plan area density
 14. Zo and Zd (multi-directional) 15. Building frontal area density (multi-directional) 16. Building top (roof) area density 17. Building plan area density 18. Vegetation frontal area density 19. Vegetation plan area density 20. Vegetation top area density
 14. Zo and Zd (multi-directional) 15. Building frontal area density (multi-directional) 16. Building top (roof) area density 17. Building plan area density 18. Vegetation frontal area density 19. Vegetation plan area density 20. Vegetation top area density 21. Plan-area weighted mean building height
 14. Zo and Zd (multi-directional) 15. Building frontal area density (multi-directional) 16. Building top (roof) area density 17. Building plan area density 18. Vegetation frontal area density 19. Vegetation plan area density 20. Vegetation top area density 21. Plan-area weighted mean building height 22. SVF

Downtown Sacramento, CA

Altostratus Fest: 64.00 Temperature Horizontal wind vectors Init: 0600 UTC Sun 03 Aug 97 Valid: 2200 UTC Tue 05 Aug 97 (1400 PST Tue 05 Aug 97) at sigma = 0.399 at sigma = 0.899

180 T ×. Ś, ۹ 6 ÷. £. ¢ 6 9 BARD TECTORS: FULL BARE = 5 m s⁻⁴

Base-case conditions example. Southern California (August 5, 1997)

Altostratus Fest: 21.00 Temperature Horizontal wind vectors

ALTOSTRATUS

Init: 0100 UTC Mon 31 Jul 00 Valid: 2200 UTC Mon 31 Jul 00 (1400 PST Mon 31 Jul 00) at sigma = 0.999 at sigma = 0.999

Base-case conditions example. Central California (July 31, 2000)

Simulated temperature and winds at 1600 PST on July 31st (left) and August 1st (right) 2000, at σ = 0.999, for Central California.

Quantitative model performance evaluation and statistics presented in October 2005 call. Also see study report.

120 T 10-1 _د 6 6 6 6 15 5 k. Ś Γ. ſΫ́ 1 1 - 1 X **TECTORS:** FULL BARE = 5 m s⁻¹ -3.5 -3 -2.5-2 -1.5 -.5 .5 1.5 2 2.5 З ĸ -1

Example: 2-m temperature impacts – Southern California (high albedo) 1300 PDT (August 3)

Example: 2-m temperature impacts – Central California (high albedo) 1200 PDT (July 31)

ALTOSTRATUS

19

Ozone air-quality impacts assessment:

Photochemical impacts (atmospheric – indirect effects)
 Emission impacts (direct effects)

INDIRECT

Regional peak metrics (1 hour, 8 hour)
 RRF (8 hour)
 Area/averaged metrics
 Population-weighted exceedance exposure (e.g., >120,>90,>80 ppb)
 Sub-regional peaks
 Conversions to emission equivalents

DIRECT

Point source emissions / power plants
 Fugitive emissions / evaporative losses
 On/off-road mobile source emissions
 Biogenic emissions

Changes in ozone averaged over <u>all</u> grids in <u>LA</u> region

Indications from Phase-1:

Satisfactory meteorological and photochemical model performance
 Regional meteorology features captured reasonably well
 Heat islands ~2-3C in major urban areas
 Ozone field and location/magnitudes of highs reasonable

- Transport and coupling
- Statistical benchmarks similar to or better than AQMD's (although uneven)

Surface modifications: Impacts on meteorology

- Temperature reduction (2m)
 - ~up to 3.5C in large urban areas, up to 0.5C in smaller areas
- Impacts on wind speed and vertical mixing (up to ~1 m/s, 10%)
- Consistent/repetitive diurnal cycles

Surface modifications: Impacts on ozone/air quality

Peaks reduced in central CA (2-15 ppb), smaller impacts in SoCAL (1-6 ppb) (consistent decrease in central CA but can increase in SoCAL)
 Area-averaged metrics all decrease in central CA and SoCAL (slide 22)
 RRF ranges from 1 to 8% in SoCAL

Equivalent emissions reductions: UP TO 4% of each of NOx and VOC, (i.e., ~50 TPD of each) for the high albedo case in SoCAL

Next steps

All above results will be re-evaluated/re-visited in Phase 2

Presentation of modeling results to CEC/ARB/AQMDs/EPA
 Approval of modeling environment and model performance
 Begin modeling of more resolved scenarios
 Initiate "implementation" type of modeling specific to cities