

Developmental Toxicity of ToxCast[™] Phase I and II Chemicals to Worms and Fish

EPA CompTox CoP May 22, 2014

Windy A Boyd, PhD MPH

Acknowledgments

- WormTox Group
 - Jonathan Freedman
 - Julie Rice
 - Paul Dunlap
- Data Analysis
 - Marjolein Smith
 - Jason Pirone
 - Grace Kissling
 - Keith Shockley

• EPA

- Keith Houck
- Stephanie Padilla
- Bill Mundy
- Ann Richard
- Richard Judson

Outline

- Introduction to *C. elegans*
 - WormTox Larval Growth and Development Assay
- ToxCast Phase I&II Chemical Library
 - Effects on C. elegans larval development
 - Comparisons to two zebrafish embryonic development assays
 - Comparisons to rabbit and rat development
 - Rat_Dev and Rabbit_Dev composite indices in ToxRefDB
- Data Analysis Methods
 - LECs
 - t-test and Effect Size Threshold
 - Concentration Response
 - Hill model fit AC50s and Isotonic Regression

Characteristics of C. elegans

- Non-parasitic nematode
- ~ 1 mm in length
- Transparent
- 10 day life span
- Highly differentiated digestive reproductive, muscular, and nervous systems

Development of *C. elegans*

COPAS Biosort

COPAS Biosort Optics Sample Flow – C. elegans **Sheath Flow Detectors** Fluorescence GFP, YFP, dsRED Time of Flight Laser Beams Extinction Air stream (to test plate)

Growth of untreated *C. elegans*

Linking log(EXT) to larval stage

 Effect size threshold provides direct link between the biological response (development) and the measured value (EXT)

C. elegans Growth Protocol

- Load 50 L1 stage nematodes to each well of a 96-well plate using COPAS Biosort
- Incubate at 20° C for 48 hours
- Measure size of nematodes (EXT) using Biosort

Z-factor

Positive control	Mean Z-factor	Std dev		
4% DMSO	0.698	0.175		
Parathion	0.779	0.0676		
Dichlorvos	0.859	0.0336		

- Z-factor provides measure of dynamic range and variability of response
- Excellent Z-factors range from 0.5-1
- Results from C. elegans growth assay highly consistent with clear separation between affected and unaffected groups

ToxCast Phl&Phll 960

Slide provided by Ann Richard, U.S. EPA

Comparison between t-test and log(EXT) effect size threshold

*Phase I chemicals identified as active at the highest concentration tested (200 μ M) using two analytical methods.

C. elegans LECs: Phase I & II

LEC (µM)	0.5	1	5	10	50	100	200
Phase I	6.5% (19)	1.7% (5)	3.4% (10)	4.1% (12)	15.7% (46)	8.5% (25)	30.7% (90)
PHASE II	2.4% (16)	1.3% (9)	5.2% (35)	5.2% (35)	12.7% (86)	7.5% (51)	24.3% (164)
Τοται	35	14	45	47	132	76	254
CUMULATIVE TOTAL	35	49	94	141	273	349	603

- 207/293 (71%) of Phase I active up to 200 μM; 86 inactive
- 396/676 (59 %) of Phase II active up to 200 μM; 280 inactive
- 603/969 (62 %) of Phase I & II active up to 200 μM; 366 inactive

Replicates: Phase I

Chemical	Mean size at 200 µM*	LEC	Hazard	AC50
	3.71	50	active	16.3
Bensulide	3.83	50	active	13.7
	3.49	100	active	79.8
	5.58	200	active	
Dibutyl phthalate	5.26	50	active	21.3
Diclofop-methyl	4.92	200	active	179
	4.46	50	active	179
	4.47	50	active	56
	6.02		inactive	
EPTC	5.70		inactive	
	5.01	100	active	76.7
Fenoxaprop-ethyl	5.36	50	active	46.0
	3.00	200	active	138.7
IPBC	3.34	100	active	74.3

Replicates: Phase II

Chemical	Phase	Mean size	LEC	Hazard
	II	5.39	100	active
Allethrin	II	4.93	50	active
	II	5.22	200	active
Azoxystrobin	I	5.51	200	active
	II	5.60	200	active
	II	5.43	200	active
	II	5.44	50	active
Bisphenol A	I	5.37	200	active
	II	5.57	200	active
	II	5.38	200	active
	II	5.52	200	active

Replicates: Phase II

Chemical	Phase	Mean size	LEC	Hazard
	I	3.61	200	active
	II	3.87	10	active
	II	3.83	50	active
Clorophene	II	3.65	50	active
	II	3.92	0.5	active
	II	3.79	50	active
	II	3.91	50	active
	I	5.75		inactive
	II	5.35	200	active
		5.37	200	active
Mancozeb		5.24	100	active
		5.47	0.5	active
		5.24	100	active
		5.29	200	active

Replicates: Phase II

Chemical	Phase	Mean size	LEC	Hazard
	I	3.97	50	active
	II	4.95	50	active
Oryzalin	II	4.72	10	active
	II	4.57	10	active
	I	3.66	200	active
	II	3.06	5	active
PFOS	II	3.22	0.5	active
	II	3.39	5	active
	I	4.99	200	active
	II	5.63	200	active
Triadimenol	II	5.94		inactive
	II	5.79		inactive
Triclosan	I	3.98	50	active
	II	3.83	10	active
	II	4.06	50	active
		4.15	10	active

Most active in Phase I screen:

Decreased growth at lowest concentration (0.5 µM)

- Milbemectin
- Chlorpyrifos oxon
- Abamectin
- Dicofol
- Tebufenpyrad
- Parathion
- Fentin
- (Z,E)-Fenpyroximate
- Methylene bis(thiocyanate)
- Oxyfluorfen
- Coumaphos

- Methoxychlor
- Quinoxyfen
- Isazofos
- Pyridaben
- Fenamiphos
- Emamectin benzoate
- Pyriproxyfen
- Molinate
- Mesosulfuron-methyl

Most active in Phase II screen:

Decreased growth at lowest concentration (0.5 µM)

- Tributyltin chloride
- Stannane, tributyl...
- Hexamethyl-p-rosaniline
- Benzo[b]fluoranthene
- O-Ethyl O-phenylphos
- Mancozeb
- N-Lauryl-2-pyrrolidone
- Phenylmercuric acetate
- 4-Dodecylbenzenesulfonic acid
- Octrizole

- Heptadecafluorooctanesulfoni c acid
- Octhilinone
- 6-chloro-...-indole-1carboxamide
- 3,4,4'-Trichlorocarbanilide
- Chlorpyrifos
- Darbufelone mesylate
- p,p'-DDD
- Clorophene
- PFOS

INTERSPECIES COMPARISONS

Comparison of Phase I compound activity in *C. elegans* and zebrafish

Concordance

- Worms and Tanguayfish = 59%
- Worms and Padilla fish= 79%
- Tanguay and Padilla fish = 65%
- Rat and rabbit = 58%
- 292 unique compounds

Comparison of Phase I&II compound activity in *C.* elegans and zebrafish (Tanguay)

Concordance

- 958 unique compounds

- 58.5%

Potency rank

- Compare rank of LELs
- Kendall's tau = 10.3% (p = 4.022e⁻⁵)
- Slight but significant correlation

*Compounds identified as active if no LEC up to highest concentration tested: in C. elegans (200 μ M) and zebrafish (64 μ M).

Prediction of rat and rabbit developmental outcomes*

- Balanced Accuracy
 - (Sensitivity+Specificity)/2
 - Worms predicting rabbits= 52.7%
 - Worms predicting rats = 52.3%
- Worms have greatest number of actives = higher sensitivity than specificity

*ToxRef database composite LECs for 27 fetal developmental outcomes in rat and 26 in rabbits including weight reduction, structural abnormalities, and general fetal pathology (Knudsen et al. 2009)

Prediction of rat and rabbit developmental outcomes*

	Predictor species						
Predicted	C. elegans	Zebrafish (P)	Zebrafish (T)				
Rabbits	BA = 52.7%	BA = 44.6%	BA = 49.6%				
	Sensitivity= 74.1%	Sensitivity= 68.2%	Sensitivity= 60.0%				
	Specificity= 31.3%	Specificity= 20.9%	Specificity= 39.1%				
Rats	BA = 52.3%	BA = 52.2%	BA = 50.6%				
	Sensitivity= 72.9%	Sensitivity= 76.3%	Sensitivity= 61.0%				
	Specificity= 31.7%	Specificity= 28.0%	Specificity= 40.2%				

*ToxRef database composite LECs for 27 developmental outcomes in rats and 26 in rabbits

**200 unique chemicals with data for all species

Activity across chemical classes

Chemical class	C. elegans	Zebrafish^P	Zebrafish ^T	Rat	Rabbit
Amides	14/24	18/24	18/24	10/21	8 / 22
Anilides	9/14	11/14	12/14	7 / 14	6 / 14
Carbamate	8/15	12/15	10/15	10 / 14	7 / 14
Conazole	18/18	18/18	16/18	16/16	11/16
Organophosphate	28/35	30/35	20/35	8/25	6/25
Phenoxy	8/12	11/12	4/12	6/8	3/11
Pyrethroid	11/12	12/12	8/12	6/12	4/10
Pyridine	7/10	6/10	4/10	3/7	3/6
Urea	5/8	6/8	5/8	5/6	3/5

Chemical class concordance

Chemical Class	<i>C. elegans</i> and Zebrafish ^p	<i>C. elegans</i> and Zebrafish [⊤]	Zebrafish ^p and Zebrafish [⊤]	
Amide	18/24 = 0.75	12/24 = 0.50	18/24 = 0.75	
Anilide	12/14 = 0.86	7/14 = 0.50	9/14= 0.64	
Carbamate	9/15 = 0.60	11/15 = 0.73	11/15 = 0.73	
Conazole	Conazole 18/18 = 1		16/18 = 0.89	
Organophosphate 29/35 = 0.83		17/35 = 0.48	19/35 = 0.54	
Phenoxy	Phenoxy 9/12 = 0.75		5/12 = 0.42	
Pyrethroid	11/12 = 0.92	7/12 = 0.58	8/12 = 0.67	
Pyridine	9/10 = 0.90	5/10 = 0.50	6/10 = 0.60	
Urea	3/8 = 0.38	4/8 = 0.50	3/8 = 0.38	

Prediction by chemical class: BAs

Chemical Class	<i>C. elegans</i> to Rat	Zebrafish ^P to Rat	Zebrafish [⊤] to Rat	<i>C. elegans</i> to Rabbit	Zebrafish ^P to Rabbit	Zebrafish [⊤] to Rabbit
Amide	<mark>0.623</mark>	<mark>0.632</mark>	0.536	<mark>0.759</mark>	<mark>0.714</mark>	0.420
Anilide	0.571	0.571	0.500	<mark>0.813</mark>	<mark>0.688</mark>	0.333
Carbamate	0.500	<mark>0.700</mark>	0.425	<mark>0.643</mark>	<mark>0.714</mark>	<mark>0.714</mark>
Conazole				0.500	0.500	0.409
Organophosphate	0.434	0.526	0.360	0.496	0.579	0.596
Phenoxy	0.500	<mark>0.750</mark>	<mark>0.750</mark>	0.521	0.333	0.313
Pyrethroid	0.417	0.500	0.333	0.375	0.500	0.333
Pyridine	<mark>0.625</mark>	<mark>0.750</mark>	0.417	0.333	0.500	1.00
Urea	0.300	0.300	<mark>0.9000</mark>	<mark>0.750</mark>	0.167	<mark>0.750</mark>

CONCENTRATION RESPONSE

Concentration Response

- LECs identify chemicals with significant response at each concentration
- But, C-R data collected for every chemical
- Can determine additional measures of chemical toxicity (efficacy, potency).

Concentration Response

- Hill equation used to model concentration-response
 - Calculated AC50s for active chemicals but problematic
- With the *C. elegans* growth assay, see increasing risk with increasing exposure
 - I.e., the response is *monotonic*.
- Isotonic regression provides a good balance of complexity and simplicity

Isotonic regression

- Fits model using pool adjacent violators algorithm (PAVA²)
- Linear interpolation between fitted values
- If means are decreasing, the isotonic fit is identical to the data means

²Barlow, R. E., Bartholomew, D., Bremner, J. M. & Brunk, H. D. (1972), *Statistical inference under order restrictions; the theory and application of isotonic regression*, Wiley, New York.

Isotonic regression

 Otherwise, isotonic regression finds a solution that smooths the nonmonotonic region

Toxicity parameters

- For each of the Phase II chemicals:
 - Fit isotonic regression model and calculate:
 - change in response between control and highest concentration (Δ)
 - concentration where half of Δ is reached (C_{\Delta\!/\!2})

Summary of toxicity parameters

Summary of toxicity parameters

- Active chemicals from Phase II
- Color: cluster assigned by PAM
- Clusters do not represent formal toxicity classes

Summary of toxicity parameters

Summary

- C. elegans growth assay
 - consistent and reliable according to Z-factor
 - predicts rat and rabbit development at least as well as zebrafish
- Two approaches to rank compound activity
- Single concentration \rightarrow LEC
 - t-test: so much power that even small size differences are statistically but not biologically relevant
 - Effect size threshold: adds biological relevance
- Concentration-response
 - o AC50
 - $\circ~\Delta$ and $C_{\Delta\!/2} \to$ Integrate size thresholds to identify chemicals of most concern

Questions/comments?

Boot-strapped t-statistics

- Data have plate effects, column effects, and well effects
- Using data from 24 control plates
 - Adjusted for plate effects by subtracting plate means
 - For each treatment group (column), 12500 samples of 4 well means with corresponding well means from the vehicle control were drawn and t-statistics calculated
 - Formed 8 null distributions for t-statistics that include column effects between designated treatment column and vehicle control column
- For each compound/concentration, t-statistics were calculated using 4 well means with 4 plate control well means and compared to the null distributions
 - If fewer than 0.05/#(compounds) observations from the null distributions were found to the right of the estimated t-statistic, the compound was called significantly different from controls