Cheminformatics and Toxicogenomics for Toxicity Prediction and Mechanistic Insight

George Daston

Overview

- Tiered approach to predicting toxicity of new chemicals
 - Cheminformatics- supported SAR
 - High-content methods to assess SAR solutions
- Identifying MOA using cheminformatics and toxicogenomics
 - MOA ontology
 - Connectivity mapping

Toxicology: From an Empirical to a Predictive Science

Traditional Approach (Black box): Use a model that we have (some) confidence in, but incomplete understanding of how it works

Desired Approach: Predictions based on deep, fundamental understanding

Taking Advantage of the Existing Literature

- Considerable outcome data in DART (almost 12,000 entries in publicly available databases)
- Pressing need is to identify initial molecular events
- Effort needed to connect initial events with tissue/organ level effects

Initial Screening for Human Hazards

- Substructure searching
 - Genotoxicity (19,300)
 - Carcinogenicity (15,800)
 - Skin Sensitization (9,400)
 - Skin Irritation (10,400)
 - Reproductive/Developmental Toxicity (11,300)
 - Subchronic/Chronic Toxicity (15,100)
 - Acute Toxicity (68,500)
- All assessment captured in CHS
- External Data Sources: BIBRA*, Cal Prop 65*, CTFA*, HERA*, HPV*, OECD*, IPCS*, NICNAS*, RIFM/FEMA*, SCCP*, WHO/JECFA*, SciFinder, ToxNet, ATSDR, CPDB, ECETOC, ECB, IARC, Thompson/MicroMedix, NTP, RTECS/NIOSH, Scopus, TSCATS, others

Flow chart of new analog identification & evaluation process

Wu et al., RTP, 2010

Searching GRASP- Substructure Searching

Output – Substructure

Searching RS3 Excel [rpdp v2.3.0 :: TL5734] - Carcinogencity Example 2.xls 🕮 File Edit View Insert Format Tools Data Window Help RS3 Discovery Type a guestion for help □ 🚅 🖫 🔒 🔁 🎒 🐧 💖 🐰 🖺 🗠 - 🦺 Σ - 👭 🛍 ② 👋 Arial SEARCH STRUCTURE Substances A. Alias B. CAS No. C. Study Type D. Species E. Route of Admin. F. Result N. Ref. Journal 140-67-0 MOUSE 103652 ANISOLE, p-ALLYL-BIOASSAY DIET RIFM 103652 ANISOLE, p-ALLYL-140-67-0 BIOASSAY MOUSE GAVAGE RIFM 103652 ANISOLE, p-ALLYL-140-67-0 BIOASSAY MOUSE 103652 ANISOLE, p-ALLYL-140-67-0 BIOASSAY MOUSE http://potency.berkeley 103652 ANISOLE, p-ALLYL-140-67-0 CA PROP 65 http://www.oehha.org/pr 103652 ANISOLE, p-ALLYL-140-67-0 OTHER MOUSE INTRAGASTRIC PHS149 140-67-0 MOUSE VSD 10 103652 ANISOLE, p-ALLYL-VSD DIET 11 104455 BENZYL ALCOHOL, p-METHOXY-alpha-VINYL- 51410-44-7 BIOASSAY MOUSE BENZYL ALCOHOL, p-METHOXY-alpha-VINYL- 51410-44-7 BIOASSAY MOUSE http://potency.berkelev.el H | N | Carcinogenicity Example 2 / Sheet2 / Sheet3 / Sheet4 / Sheet5 / Sheet6 / Sheet7 / She Ready

Suitable Analogs

Possibly Suitable

Unsuitable Analogs

- Nrf2 qHTS screen for inhibitors: counterscreen for cytotoxicity
- qHTS Assay for Inhibitors of RanGTP induced Rango (Ran-regulated importin-beta cargo) –
 Importin beta complex dissociation
- qHTS Assay for Inhibitors of JMJD2A-Tudor Domain

Chemical Probe = Active = Inactive = Inconclusive = Unspecified

Cheminformatics: Ontology

- Use large database to organize chemicals into mode of action groupings
- Start to estimate the extent of "the universe of toxicity mechanisms"
- This will allow us to design a suite of model systems that is comprehensive

Initial Concept

- An initial list of ~ 260 chemicals with DART data was originally developed as part of an evaluation of Threshold of Toxicologic Concern (TTC) (Laufersweiler et al., 2012)
- These chemicals were grouped based on their chemical characteristics and this tree was published in concept in Blackburn et al. (2011)

Original Tree

Expert system decision tree for

repro/dev toxicity

P&G DART tree + CAESAR for test set (106 active, 73 non-active)

Accuracy: ~86%, Sensitivity: 93% and Specificity: 77%

Putative MOA Grouping by Chemical Structure

- 25 major categories, multiple sub-categories
- Highest level of confidence has
 - Similar structures
 - Identified molecular target
 - Similar DART outcome (e.g., common syndrome or highly specific effect)
- Along with toxicogenomics, has the potential to accelerate assigning MOA to DART compounds

Hierarchy Examples

- Nuclear hormone receptor ligands
- Prostaglandin receptor ligands
- Nicotinic ACh receptor ligands and AChesterase inhibitors
- Shh signaling interference/ cholesterol synthesis inhibitors
- Nucleotide derivatives

Nuclear Hormone Receptor Ligands

- Estrogen and androgen receptor ligands
- Glucocorticoid receptor ligands
- Retinoic acid receptor ligands
- Thyroid hormone receptor ligands
- Ah receptor ligands

Nuclear hormone receptor ligands

- Estrogen and androgen receptor ligands
 - steroid nucleus-derived compounds
 - Estradiol-like
 - Progesterone, androgens, steroidal anti-androgens
 - Non-steroidal compounds
 - Flavones and mycoestrogens
 - Alkylphenols
 - N-aryl-substituted ureas, carbamides, amides
 - other

Nuclear hormone receptor ligands

- Estrogen and androgen receptor ligands
 - steroid nucleus-derived compounds
 - Estradiol-like
 - Progesterone, androgens, steroidal anti-androgens
 - Non-steroidal compounds
 - Flavones and mycoestrogens
 - Alkylphenols
 - N-aryl-substituted ureas, carbamides, amides
 - other

R=OH, OMe R₁=OH @ C-2 or C-4 R₂=OH R₃=H, alkyne R₄=H, OH R₅=Me, H 17-OH (R2,R3) also can be C=O, H

R₁=H, F R₂= -COCH₂OH, -COCH₂Cl R₃=OH, CO, H R₄=H, Me R₂,R₃ can form

R₃,R₄ can form an acetal/ketal R₅=Me, -CHO R₆=H, OH, -CO C-1, C-2 can be C=C/C-C bond C-3 contains H or OH - in verv few cases.

Ke_V functional groups: C=O at C-3; -COCH₂OH and -COCH2CI at C-17; OH, C=O at C-11

R₁=H, CI, Me

 $R_2 = -COCH_3$ R₃=OH, H, OCOCH₃, OCOCH₂CH₃ $R_4=H$ R₅=Me R₆=H C-1, C-2 and C-6, C-7 can C-9, C-10 and C-11, be saturated/unsaturated C-1, C-2 can form c_Vclo_Dro_Dane Key functional groups: C=O at C-3; -COCH₃ and OH, OAc at C-17

R₁=H R₂=OH R₃=H, Me, Et, ethyn or allyl, actonitrile etc. R₄=H R₅=Me, Et $R_6 = H$ C-12 can be C=C/C-C bond Ke_V functional groups: C=O at C-3: -OH and alk_VI (C1-C3 carbons), ethyn at C-17

Nuclear hormone receptor ligands

- Estrogen and androgen receptor ligands
 - steroid nucleus-derived compounds
 - Estradiol-like
 - Progesterone, androgens, steroidal anti-androgens
 - Non-steroidal compounds
 - Flavones and mycoestrogens
 - Alkylphenols
 - N-aryl-substituted ureas, carbamides, amides
 - other

R=OH, H; R₁=OH R₂=mono-, di-, tri-, OH-Ph, MeO-Ph R₃=mono-, di-, tri-, OH-Ph R₂ and R₃ can not be present at C-2 and C-3 simutaneously

Nuclear hormone receptor ligands

- Estrogen and androgen receptor ligands
 - steroid nucleus-derived compounds
 - Estradiol-like
 - Progesterone, androgens, steroidal anti-androgens
 - Non-steroidal compounds
 - Flavones and mycoestrogens
 - Alkylphenols
 - N-aryl-substituted ureas, carbamides, amides
 - other

R=H, 4-OH R_1 =H, OMe R_2 =CI, Me, Et R_3 =H, $(Me)_2$ CH $_2$ CH $_2$ O-

R=OH, NH₂ n=1, X=C, R₁=Alkyl (C1-C4) R₂=Me R₁,R₂=isobenzofuranone n=2, R₁ and R₂ are on different C's n=2, X=C-C, R₁, R₂=H, Me, Et n=2, X=C=C, R₁, R₂=H, Me, Et n=1, X=O, S, SO_{2} , R₁=R₂=none

$$\begin{array}{c|c}
R_1 \\
CI & \downarrow & CI \\
\vdots & \vdots \\
R
\end{array}$$

X-Y=C-C R=OH, CI, OMe $R_1=H, CI$ X-Y=C=C R=OH, CI, OMe $R_1=none$

Ah Receptor Ligands

- TCDD-like chemicals
 - cleft palate, hydronephrosis and reproductive system defects
- Indole-related compounds: repro system
- Polycyclic aromatics
- Halogenated aromatics (e.g., PCBs)
 - Liver cyp induction leads to DART effects?

Problems with the chemical approach

- Promiscuous chemicals that have more than one molecular target
- Seemingly similar compounds that have different developmental outcome
 - PK differences?
 - More than one target?
 - Insufficient potency against target?

Outcome of chemistry assessment is hypothesis generation

- Chemical is metabolized to a tested chemical, or to a known active metabolite
 - Currently, assessment is done by wet lab metabolism
- Chemical is sufficiently similar in structure to analogs of known toxicity that similar biological activity is inferred
 - Currently, assessment is done by MOA-specific evaluation
 - Add ToxCast and other PubChem data to our databases and our expert considerations about mechanism
 - Global analysis of gene expression

Using Gene Expression Analysis to Inform MOA and AOP

- Gene expression is specific for MOA
- In vitro models may have great potential to identify MOA via gene expression

Two Close Structural Analogs

CELL CYCLE Convince Convince

KEGG Cell cycle Example

EE-RAT-24hr (Up-regulated)

Connectivity Mapping: Highthroughput toxicogenomics

- Concept developed by Lamb in 2006
 - A relatively small number of carefully selected cell types contained all of the pathways necessary to define gene expression profiles for all therapeutic agents in current use
- Can we do the same for toxicants?
 - Cell types: rich in either small molecule receptors or metabolizing enzymes

MOAs to Interrogate with CMAP

- Estrogens, environmental estrogens
- Anti-estrogens
- PPAR agonists
- Anti AndrogenAndrogens
- CAR/PXR agonists
- RAR agonists
- TR agonists
- AhR agonists
- Vitamin D agonist
- Glucocorticoid receptor agonists

- EGFR receptor agonists
- FXR receptor agonists
- Progesterone receptor agonists
- EGFR antagonist
- Steroid synthesis inhibitors
- HDAC inhibitors
- Folate/one-carbon metabolism inhibitor
- Glycolytic inhibitors
- Oxidative phos/mitochondral inhibitors
- Iron chelators
- Microtubule inhibitors
- Liver cholestasis inducerss

Genes Significantly Changed

Chemical	MCF7	Ishikawa	HepG2
Bisphenol A	76	5262	9247
Trenbolone	188	18	3
methotrexate	3296	16	5376
vorinostat	17342	19432	21798
RU486	106	4	22
Vitamin D3	519	93	2
Amoxicillin	6	29	810

Connectivity Mapping: Example

Bisphenol A comparisons

DES
resveratrol
epitiostanol
equilin
genistein
genistein
estrone
genistein
estrone

levonorgestrel resveratrol equilin

landmark genes

- expression of 978 landmark genes measured
 - selected from large, diverse, high-quality microarray dataset
 - orthogonal expression and validated predictive power
- inputs for genome-wide inference model
 - compute expression of transcripts not explicitly measured
 - flagged as LM (rather than INF) in output data file

>100,000 Affy U133 scans

gene gene correlation

landmarks

AFFX versus L1000

- create signatures for each treatment from AFFX data
 - treatment (n=1) versus corresponding vehicle control (n=1)
 - 50 up- and 50 down- regulated genes by signal-to-noise
- create instances for each treatment from L1000 data
 - rank all features by extent of differential expression
 - treatment compared with matched control sample
- compute enrichment of each signature in each instance
 - rank instances based on these connectivity scores
 - AFFX signature finds expected L1000 instances in 9 of 10 tests

signature: bisphenol A

AFFX versus L1000

ranks of L1000 instances of each treatment with specified AFFX signature

Modeling PK to Ensure the Right In Vitro Concentration

- Dose matters: data obtained in vitro at irrelevant concentrations is also irrelevant in predicting risk
- Active concentrations at the target tissue in vivo are predictable

PK workflow

Modeling AUC for a Range of Absorption Values

Conclusions

- Chemical ontology can aid in assigning chemicals to groups with same putative MOA
- It is possible to estimate the size of the MOA universe
- Linking initial molecular event with outcome will require considerable hypothesis testing, aided by gene expression data, modeling and simulation
- It is already possible to estimate tissue dose using computation, phys chem parameter estimation, and judicious data generation

Acknowledgements

- Cheminformatics
 - Shengde Wu
 - Karen Blackburn
 - Jorge Naciff
 - Joan Fisher
- Toxicogenomics
 - Jorge Naciff
 - Yuching Shan
 - Xiaohong Wang
 - Jay Tiesman
 - Greg Carr
 - Nadira deAbrew

- PK Modeling
 - Joanna Jaworska
 - Russell Devane
 - John Troutman
- CMAP (external)
 - Justin Lamb
 - Rusty Thomas
 - Ed Carney