Air Quality Index (AQI)

Air Quality Communication Workshop

San Salvador, El Salvador

April 16-17, 2012

How Do People Know What Particle Pollution Levels Are In their City or Country?

- Air quality monitors measure $PM_{2.5}$ and PM_{10} concentrations in $\mu g/m^3$
- Local, regional, and national governments decide how to disseminate monitor measurements to the public
- Preferred way to communicate is via a color-coded Air Quality Index (AQI) that is easy for the public to understand

What is the Air Quality Index?

- Index for reporting air quality
- Color is key for communication
- Ranges from 0 to 500 (no units)
- Provides indicator of the quality of the air and its health effects
- 101 typically corresponds to the level that violates the national health standard

Air Quality Index (AQI)

AQI Value	AQI Category	AQI Color
0 - 50	Good	Green
51 - 100	Moderate	Yellow
101 - 150	Unhealthy for Sensitive Groups	Orange
151 - 200	Unhealthy	Red
201 - 300	Very Unhealthy	Purple
301 - 500	Hazardous	Maroon

AQI Health Messages

AQI Value	Health Message	AQI Color
0 - 50	None	Green
51 - 100	Unusually sensitive people should reduce prolonged or heavy exertion	Yellow
101 - 150	Sensitive groups should reduce prolonged or heavy exertion	Orange
151 - 200	Sensitive groups should avoid prolonged or heavy exertion; general public should reduce prolonged or heavy exertion	Red
201 - 300	Sensitive groups should avoid all physical activity outdoors; general public should avoid prolonged or heavy exertion	Purple
301 - 500	Everyone should avoid all physical activity outdoors	Maroon

AQI Video

Actions People Can Take to Protect Their Health When Particle Pollution is High

- Avoid exercising or working outdoors for long periods of time
- Choose less strenuous outdoor activities
- Avoid exercising near busy roads
- Postpone outdoor recreational activities
- Avoid sources of particles indoors:
 - Wood-burning stoves
 - Fireplaces
 - Candles

Example of How Athletics Coaches Use the AQI to Protect Children's Health

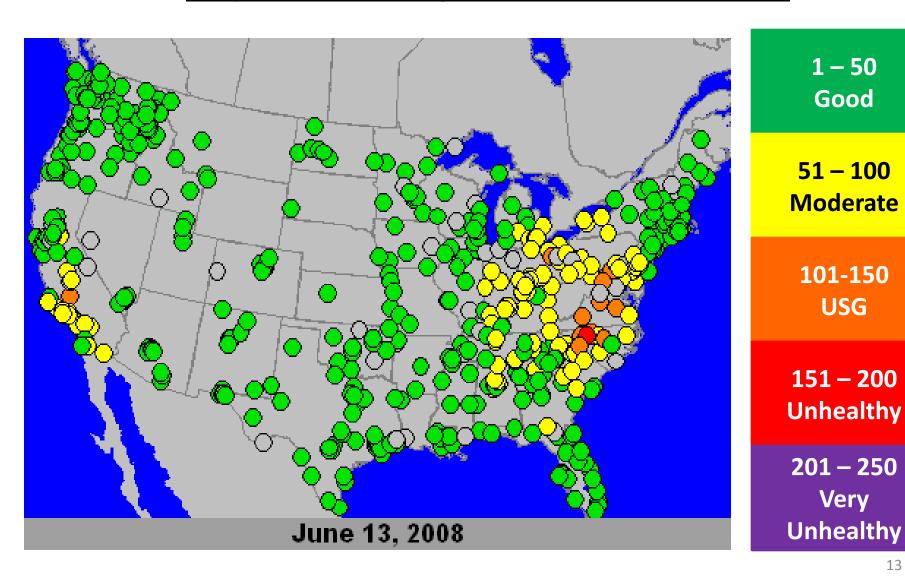
- "I coach youth baseball and I do not have strenuous practice sessions on bad air quality days."
- "Our school cancels practices for outdoor sports activities during air quality episodes, when the AQI exceeds the Code Yellow range."
- "I coach a boys' soccer team, and I cancel practice when the AQI reaches 100."

Actions People Can Take to Reduce Particle Pollution

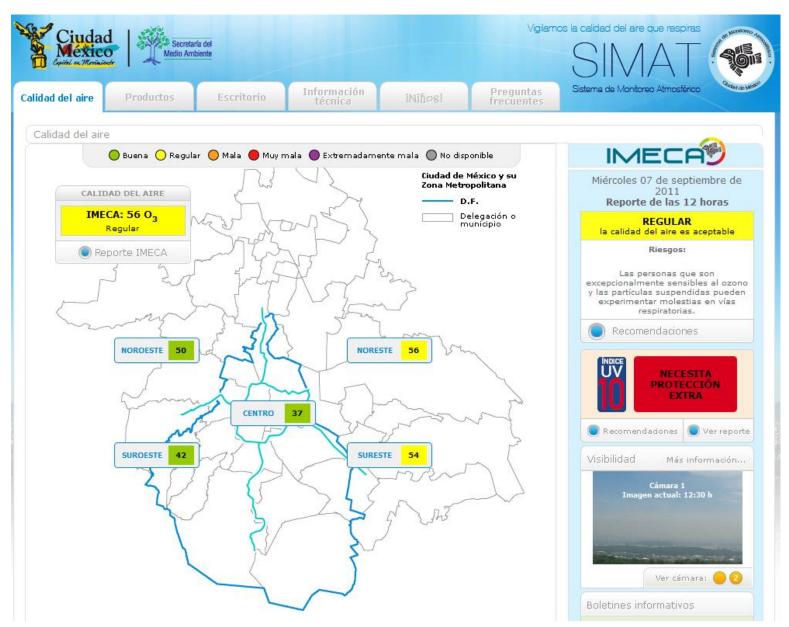
- Conserve electricity
- Use dry, seasoned wood for fireplaces and stoves
- Carpool, use public transportation, bike, or walk when possible
- Avoid idling of car engines for long periods of time
- Keep car tires properly inflated
- Maintain car, boat, and other engines to ensure maximum fuel efficiency

Communicating via AQI is Effective

- 52% of people in the U.S. had heard of AQI Code
 Orange or Code Red air quality days (2002)
- 46% of people in the U.S. who knew about the AQI had reduced their exposure to air pollution on
 Code Orange and Code Red air quality days (2002)
- 4-7% reduction in pediatric hospital admissions for asthma in the U.S. due to reduction in children's exposure on poor air quality days


U.S. EPA PM_{2.5} AQI

AQI Category	AQI Value	24-hr Average PM _{2.5} Concentration (µg/m³)
Good	0 - 50	0 - 15.4
Moderate	51 - 100	15.5 - 40.4
USG	101 - 150	40.5 - 65.4
Unhealthy	151 - 200	65.5 - 150.4
Very Unhealthy	201 - 300	150.5 - 250.4
Hazardous	301 - 500	250.5 - 500.4


U.S. EPA PM₁₀ AQI

AQI Category	AQI Value	24-hr Average PM _{2.5} Concentration (μg/m³)
Good	0 - 50	0 – 54
Moderate	51 - 100	55 – 154
USG	101 - 150	155 – 254
Unhealthy	151 - 200	255 – 354
Very Unhealthy	201 - 300	355 – 424
Hazardous	301 - 500	425 – 604

Example of PM_{2.5} Monitor Measurements Reported using the AQI in the U.S.

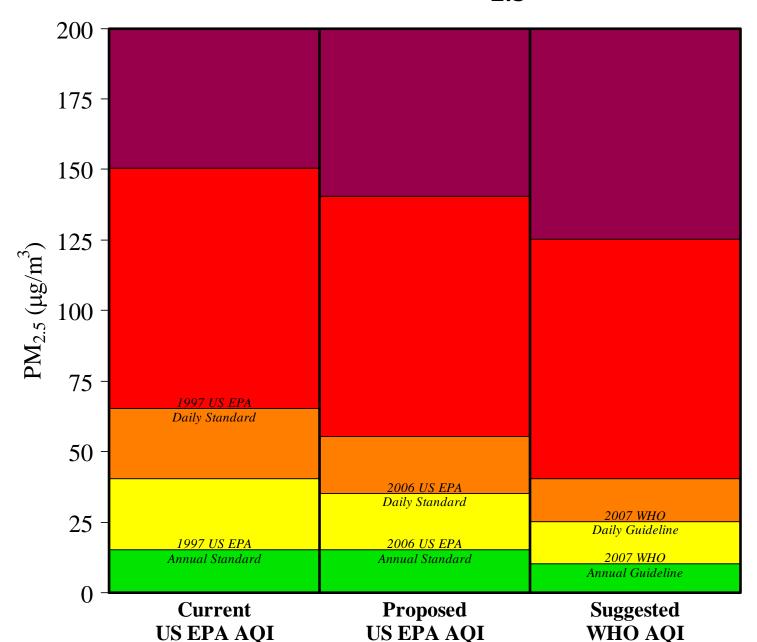
Example of IMECA in Mexico City

Índice Metropolitano de la Calidad del Aire

http://www.calidadaire.df.gob.mx/calidadaire/index.php?opcion=2&opcioninfoproductos=22

Valores	Clasificación	Recomendaciones
0 - 50	Buena	Adecuada para llevar a cabo actividades al aire libre.
51 - 100	Regular	Posibles molestias en niños, adultos mayores y personas con enfermedades.
101 - 150	Mala	Causante de efectos adversos a la salud en la población, en particular los niños y los adultos mayores con enfermedades cardiovasculares y/o respiratorias como el asma.
151 - 200	Muy mala	Causante de mayores efectos adversos a la salud en la población en general, en particular los niños y los adultos mayores con enfermedades cardiovasculares y/o respiratorias como el asma.
>200	Extremadamente mala	Causante de efectos adversos a la salud de la población en general. Se pueden presentar complicaciones graves en los niños y los adultos mayores con enfermedades cardiovasculares y/o respiratorias como el asma.

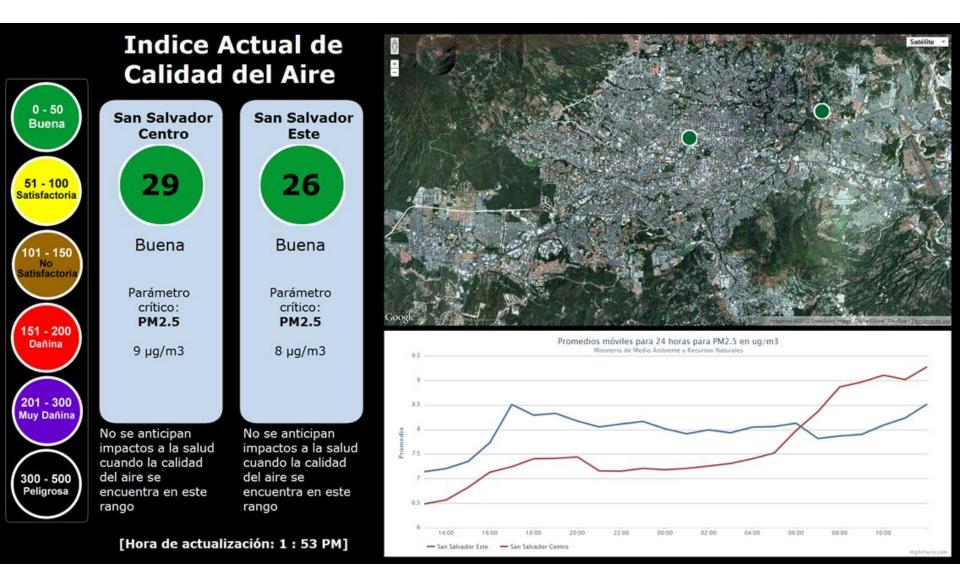
Example of Possible Regional Air Quality Measurements Reported using the AQI



Possible PM_{2.5} AQI Categories for Region

401		Current USEPA		Proposed USEPA		WHO-based	
Category	AQI Value	PM _{2.5} (μg/m³)	μg/m³ range		μg/m³ range	PM _{2.5} (μg/m³)	μ g/m ³ range
Buena	0 - 50	0 - 15.4	15.5	0 - 15.4	15.5	0 - 10.4	10.5
Normal	51 - 100	15.5 - 40.4	25	15.5 - 35.4	20	10.5 - 25.4	15
Mala	101 - 150	40.5 - 65.4	25	35.5 - 55.4	20	25.5 - 40.4	15
Muy Mala	151 - 200	65.5 - 150.4	85	55.5 - 140.4	85	40.5 - 125.4	85
Extremadamente Mala	>200	>150.4		>140.4		>125.4	1

	1997 USEPA NAAQS		2006 USEPA NAAQS		2007 WHO Guidelines	
DM Standard (a/m³)	daily	65	daily	35	daily	25
PM _{2.5} Standard (μg/m³)	annual	15	annual	15	annual	10


Comparison of Possible PM_{2,5} AQI Categories

PM_{2.5} AQI Used by University of Panama (Current USEPA AQI)

Categoría ICA	Valor ICA	Concentración PM _{2.5} Promedio en 24 Horas (µg/m³)
Buena	0 - 50	0 - 15.4
Moderada	51 - 100	15.5 - 40.4
Dañina para Personas Sensibles	101 - 150	40.5 - 65.4
Dañina	151 - 200	65.5 - 150.4
Muy Dañina	201 - 300	150.5 - 250.4
Peligrosa	301 - 500	250.5 - 500.4

PM_{2.5} AQI Used by MARN

Background and History in the U.S.

- Prior to 1976:
 - 55 cities used 14 different indices
 - Different cautionary messages
 - Confusing to the public
- In 1976:
 - U.S. Clean Air Act required U.S. Environmental Protection Agency (EPA) to establish a national air quality index
 - EPA established the Pollutant Standards Index (PSI)
- From 1976 to 1998, EPA and U.S. cities used the PSI that covered:
 - Ground-level ozone
 - Particulate matter
 - Carbon monoxide
 - Sulfur dioxide
 - Nitrogen dioxide

Background and History in the U.S.

- In 1999, EPA revised the PSI
 - Updated the index
 - Changed the name to Air Quality Index (AQI)
 - Received extensive input from:
 - State/local experts (outreach, health, and air quality)
 - General public (8 focus groups in major U.S. cities)
 - Workshops
- Ozone and particle pollution standards were added:
 - − 8-hour O₃ standard
 - 24-hour PM_{2.5} standard
- AQI has been used internationally in China, Mexico, Chile, and Brazil

Advantages of the AQI

- AQI is more successful than PSI in many ways:
 - Name is better "Quality" Index versus "Pollutant Standard"
 Index
 - Simple categories (Good, Moderate, etc.)
 - Colors are key for communication
 - Ability to visualize pollution via maps
 - Association between colors and health
 - Uniformity AQI is standard and consistent across the United States

Calculating AQI Values

 Calculate the AQI using pollutant concentration data in the following equation:

$$AQI = \left[\frac{PM_{obs} - PM_{\min} > PM_{\min} - AQI_{\min}}{PM_{\max} - PM_{\min}} \right] + AQI_{\min}$$

 PM_{obs} = observed 24-hour average concentration in $\mu g/m^3$ PM_{max} = maximum concentration of AQI color category that contains PM_{obs} PM_{min} = minimum concentration of AQI color category that contains PM_{obs} PM_{max} = maximum AQI value for color category that corresponds to PM_{obs} PM_{min} = minimum AQI value for color category that corresponds to PM_{obs}

Example AQI Calculation

Calculate the AQI corresponding to a 24-hr PM $_{2.5}$ concentration of 31 $\mu g/m^3$

AQI Value	PM _{2.5} Breakpoints (μg/m³)
0	0
51	15.5
101	40.5
151	65.5
201	150.5

$$AQI = \left[\frac{PM_{obs} - PM_{min} \chi(AQI_{max} - AQI_{min})}{PM_{max} - PM_{min}}\right] + AQI_{min}$$

$$AQI = \left[\frac{(01-51)(31-15.5)}{(40.5-15.5)}\right] + 51$$

$$AQI = 82$$

Summary

- The Air Quality Index (AQI) is a simple, color-coded, unitless index that is an effective way to communicate air pollution concentrations to the general public
- The AQI provides an indication of the quality of the air and its health effects
- Options exist for scaling the AQI categories to $PM_{2.5}$ and PM_{10} concentration values ($\mu g/m^3$)
 - Examples from El Salvador (MARN) and Panama (UP)
- Simple equation can be used to convert concentration values (µg/m³) to AQI values (unitless)