VERT Standards and Procedures for Retrofit to reduce Diesel Engine Emissions

Transport and Clean Air December 11-12, 2013 Moscow, Russia

Agenda

- History of VERT
- VERT testing of diesel particulate filters
- Durability testing and check of field capability
- Recommended procedure for a retrofit program
- Examples of global successful retrofit programs
- Summary

What stands VERT for?

- VERT = Verification of Emission Reduction Technologies
- VERT=
 - Diesel particle filter testing procedure
 - Certification of exhaust after treatment systems
 - Quality control system
- VERT is a Trade Mark for Particle Filters of Best Available Technology
- VERT is a global acting non-profit Association of filter manufacturers, engine builders and associates based in Switzerland

History of VERT

Soot particles a double risk because of:

- Very small < 100 nm
- High surface > 100 m²/g
- Transporting toxics persistent in organism
- Carcinogenic
- Black color | global warming effect
 - Long life toxic aerosol (weeks to month)
 - Defined by WHO 1988 as probably carcinogenic
 - Since 2012 as evidenced carcinogenic (class 1 like asbestos)

History of VERT

The roots are the NEAT New Transalpine Railways Program:

- One of the biggest tunneling project in Europe
- Maximum admissible workplace concentration of 100 µg/m³ diesel soot due to the carcinogenic
- Diesel particulate filter obligation to reach this value
- With finalizing the planning 1993 start of VERT

History of VERT

Improvement of air quality in Swiss tunneling

SUVA:Tunnel-Luftqualität 1998-2004

SUVA = Swiss Safty and Health Organization

VERT testing of diesel particulate filters

Concept of VERT-Filter Testing

- In-depth testing of exhaust gas filter structures for nanoscale filtration (Physical Properties)
- In-depth testing chemical phenomena in exhaust gas filter structures
- Testing a complete DPF system
- Type approval of one filter per filter family
- Endurance testing on typical vehicle application
- Testing is worst case oriented
- **Eest Available Technology is the moving target**

Testing the Combination Filter + Engine not required

VERT testing of diesel particulate filters

VERT-Requirements (total 21)

- Filtration efficiency > 97% for solid particles 20-500 nm
- Reduction of all toxic components
- No secondary toxic compounds
- Back pressure < 200 mbar
- Safe and complete regeneration
- No negative impact on noise
- No additional risks (heat radiation, visibility,...)
- Filter life = engine life
- Effects on fuel economy < 2 %

VERT testing is recognized worldwide by

BAFU, SUVA, ASTRA, BAV – Switzerland | AUVA, Wien, Tirol – Austria | BG Bau, UBA, TRGS 554 –Germany | CARB, MSHA, NY City – USA | VROM – Netherlands | Alto Adige – Italy | Santiago de Chile | DEEP – Canada | London LEZ – UK | Denmark LEZ | Beijing –China

VERT testing of diesel particulate filters

VERT verification process

 Filter Testing acc. to SN277206 Certification and Quality Control since 1998

VERT testing of diesel particulate filters

VERT testing of diesel particulate filters

Secondary Emissions

- VERT approved DPF systems do not release secondary emissions in relevant amounts, e.g.
- NO2, Dioxins/Furans, PAH, Nitro-PAH etc.
- Sulfuric acid aerosols
- Metal oxide (Ash) particles, mineral fibers etc.

Durability testing and check of field capability

Durability Test (Field test)

- VERT approved DPF systems must undergo a field test of at least 2000 operating hours
- To be done in a typical application of the specific DPF system (i.e. stationary or mobile application resp.)
- With periodic tests of filter performance, back pressure, regeneration, control and alert systems, mechanical construction etc.

Durability testing and check of field capability

VERT-Certificate

- 1. VERT-testing successfully completed
- 2. Application per System duly signed directed to VERT coordination office
- 3.Examination by VERT Scientific Committee unanimity required
- 4. Stamp "Valid" VERT-CEO
- 5. Filter listed
- 6. Certificate to manufacturer

The report of the manufacturer is confidential

Durability testing and check of field capability

Applications of DPF

Exhaust of a diesel vehicle equipped must stay perfectly clean even after 85'000 km like with this bus

Recommended procedure for a retrofit program

Pre retrofit phase | Information needed

- Operation cycle (temperature log)
- Raw emission: CO, HC, CO2, O2, NOx, Opacity
- Fuel and lubrication oil properties
- Fuel and lubrication oil consumption
- Typical daily work schedule
- Vibration level at silencer location
- Installation space (photos and silencer)
- drawings)
- Engine specs, age, mileage. Last maintenance
- Fact sheet for all vehicles during the test phase

	Checklist-3.1	1
		Ŷ
Testohase: - 3.1 Selection of T	est-Vehicles¶	1
Subject	n and Evaluation¶	
¶		
Test-vehicle-name: ¶	Test-fleet-code: •••••	-
画 D51660¤	XM001¤	
1		-
	Contacts¤	1
0	Xiamen-Xinrunfa-Company¶	
contact person (a mail (mabile phones	1	
contact-person/re-main/mobile-phone.	Chenyonglai 13860160025 1269566572@qq.com	ı
Operator.company	Xiamen Xinrunfa Company	
contact-nerson-/-e-mail-/-mobile-phone-rr	1	
contact person / e-mail / mobile phone =	Chenyonglai 138601600251269566572@qq.com=	ı
Operation-site¤	Xiamen¤	_
Inspection-date-and-site-¤	Xiamen-2012-Nov¤	
1		
Vehicle	e-Specifications¤	
Type of usage¤	□ stationary 固定→□ mobile 移动→□	
Vehicle-manufacturer- ("brand")- and-vehicle-type=	Yutong ZK6113H, large passenger vehicle=	
Vehicle-identification-or-registration-number-a	闽 D51660; LFNJSRDKX41014800¤	
Engine-manufacturer- and engine-typea	Wuxi Diesel Engine Works, CA6110a	_
Engine-emissions-standard¤	China- II ¤	_
Engine-displacement-&-cylinder-number-¤	7127ML,6-cylinder∝	
Engine production year & op. time [hrs] or [km]	2002 May, 320000KM∞	
Rated power [kW] at nominal RPM [1/min] a	125KW¤	
Fuel-injection (common rail, unit pump?) a	Unit∙pump¤	
Turbocharging & intercooling	Turbocharging¤	
EGR, water-cooled?¤	No¤	
Fuel-supplier, type & sulfur content [ppm] =	350ppm¤	
Fuel consumption [I/h] or [I/100km]¤	30·1/100km¤	
Lube-oil-supplier, type, TBN-&-sulfur-content [ppm]	YuChai Lube oil CH-4 Shell Gear oil GL-5	Ī
Lube-oil-consumption-[I/h]-or-[I/100km]=	0.007·I/100km·;Gear·oil·none¤	
Exhaust after-treatment=	None¤	
1		
Vehicle·Hi	story·车俩历史信息¤	Ī
First-owner?¤	XiamenXinrunfaCompany¤	Ĩ
Vehicle or engine modified? When and what?	NOn	
Repairs?·Replacements?·When·and·what?=	NO-¤	
Operation range: inside and/or outside city areax	Inside-city-¤	
Actual number of operators (drivers) or shifts a	Fixed driver (One day off each week) =	-

8.hrs/day¤

Actual number of operators (drivers) or shifts a Operation time total per day [hrs/day]a

Expected operation time for next 6 month [hrs] a 1200 hrsa

Recommended procedure for a retrofit program

multifunctional system is used in the VERT Retrofit programs

Recommended procedure for a retrofit program

Compiled analysis and statistical results

Recommended procedure for a retrofit program

Prepare a pilot phase

- Agree on filter specifications
- Select from certified filter systems only
- Look for similar cases in data bases
- Think about cost optimization
- Merge DPF technologies with vehicles
- Install, measure and sign acceptance protocol
- Decide about fuel, lubricant and maintenance
- Plan periodic checks

Recommended procedure for a retrofit program

Start commercial retrofit program

- In Depth Filter Certification (worst case oriented)
- Electronic Filter Control onboard
- Stepwise build-up
- Public Support
- Periodic Checks and Sanctions
- Financing by Incentives or strict laws
- Subsidies will not work

Recommended procedure for a retrofit program

Key success factors

- Use only BAT Filter Quality
- Electronic Filter Control OBC
- Experienced consultancy for selection and installation
- Implement a database for the applications
- Periodic control and emission document
- Sanctions
- Financing by tender incentives
- Three stage responsibility:

Examples of global successful retrofit programs

Examples of global successful retrofit programs

- Use only BAT Filter Quality
- Electronic Filter Control OBC
- Experienced consultancy for selection and installation
- Implement a database for the applications
- Periodic control and emission document
- Sanctions
- Financing by tender incentives
- Three stage responsibility:

Examples of global successful Retrofit programs

Germany

- Phase | 1990/92
- Test: 1,500 trucks and buses
- Phase II from 1996 on
- 20,000 city buses
- Regulation for in-house constructions according TRGS 554, VERT Recognized
- Phase III bonus malus system for trucks Incentives due to the maut "maut= road tax"
- Phase IV 2008
- Low Emission Zones: Berlin y Munich starts to reduce BC (soot) by 60 % diesel driven cars without filters can not enter

total apr. 80,000 retrofits

Examples of global successful Retrofit programs

London, UK

- EST: Energy Saving Trust : 30 Mio £ yearly since 2000
- DPF-retrofits financially supported up to 75 %
- London Transport started large scale retrofit 2000
- New concessions only under condition: DPF
- 2004: ca 6,000 retrofits 2005: all 8,500 busses in London
- 2007 London Low Emission Zone 3 phases total > 100,000
- 2011 DPF for Construction Machines in London cross rail

en total apr. 35,000 retrofits

Examples of global successful Retrofit programs

USA

- EST: Energy Saving Trust : 30 Mio £ yearly since 2000
- 1998: DPF for construction machines in Boston "big dig"
- 2002: DPF for Diesels in all metal mines
- 2002: California Risk Reduction Plan, on-road and non-road
- 2005: New York and New Jersey
- Many activities in cities and counties under local law
- Large funds for school buses and transit buses
- EPA 2007: all new HDV with DPF

Examples of global successful Retrofit programs

Netherlands

- 2006/7 Low Emission Zones in all major cities, starting with onroad HDV,
- offroad vehicles following 2008
- based on VERT
- Today > 12,000 Retrofits (+ 25,000 pDPF)

Italy

- 2005 DPF for LDV in Südtirol
- 2006/7 DPF for Construction Machines in public construction, 2007 Low Emission Zones in Lombardia and Emilia
- 2008 New "Decreto" for retrofit of HDV
- Retrofits in the Milan and Turino area
- en total apr. 15,000 retrofits

Protection mark acc. ISO 16016

Examples of global successful Retrofit programs

South Korea

- Retrofit activity starting 2004 busses and trucks in Seoul
- 2008 intensified
- Apr. 140,000 Retrofits

Chile

- 2005 retrofit Euro1+2 buses in Santiago small scale
- 2008 retrofit Euro 3 buses large scale -3500 vehicles
- 2013 continuation in Santiago and other cities
- Apr. 3,000 retrofits

Examples of global successful Retrofit programs

China

- retrofit activity starting 2004 bus and truck in Seoul
- 2006 retrofit for the Olympics (8,000 buses)
- 2008 retrofit guide
- Swiss cooperation with Beijing, Nanging and Xiamen 2010
- other cities start LEZ (Nanging, ...)
- VERT recognized
- 2,000 bus retrofits for 2014 in Nanjing announced

Examples of global successful Retrofit programs

Bogota, Columbia

- Just started S < 30 ppm
- Pilot Fleet 18 buses
- 300 buses spring 2014
- 10.000 buses mid 2014-mid 2015
- 10 year plan for retrofit of all HDV

Examples of global successful Retrofit programs.

Tehran, Iran

- Just started sulfur 50 8000 ppm
- Pilot Fleet 10 buses
- 1000 buses 2014/2015
- 2000 buses 2015/2016
- 4000 buses 2016/2017

Summary

- Retrofit can reduce carcinogenic particles from diesel exhaust with an efficiency of > 97%
- Best available retrofit technology should be used always
- The technology is world wide available
- By taking the right steps retrofit is successful
- An intelligent finance plan has to be put in place
- There is a lot of experience out in the market with retrofit of busses and chance to learn from experience in the past

Thank you for your attention

You will find a lot of information on the website www.vert-dpf.eu

www.vert-dpf.eu

VERT testing of diesel particulate filters

Initial filter testing

VERT testing of diesel particulate filters

Particle Number Testing

VERT testing of diesel particulate filters

Measuring the right values – removing droplets from aerosol sample

 Combination of diluter and heater is used to eliminate droplet from the aerosol

VERT testing of diesel particulate filters

NO₂/NOx ratio increase

- Platinum coated filters use NO₂ for the regeneration process
- The diesel particulate filters (most passive systems) are tested against NO₂ increase
- The value for newly certified systems is

 $\Delta NO_2/NOx < 20\%$

With Pt-coating and FBC at 10 ppm S

Durability testing and check of field capability

Emission measurement in the field

- VERT-Filters have an exhaust gas access port upstream of the DPF
- Emission measurement upstream and downstream filter is possible in situ

or Soot ?

Today's VERT certified DPF Systems

65 DPF systems verified from 31 manufactureres

Today's VERT certified DPF Systems

65 DPF systems verified from 31 manufactureres

out of 8 countries

Published in the VERT Filter list www.VERT-certified.eu

