AQUATOX: Linking Water Quality with Aquatic Life February 11, 2014

Marjorie Coombs Wellman, Office of Water, US EPA Brenda Rashleigh, Office of Research and Development, US EPA

Outline

- Model capabilities
 - Introduction
 - Physics and Chemistry
 - Biology
 - Fate and Effects of Chemicals
 - Interface and Output

- Example Applications
 - Tenkiller Reservoir, OK
 - Lake Hartwell, GA/SC
- Wrap-up and model future

Acknowledgements

- Dr. Richard Park, Eco Modeling: model creator and developer
- Jonathan Clough, Warren Pinnacle Consulting: chief programmer

Introduction to AQUATOX

What is AQUATOX?

- Mechanistic simulation model for aquatic ecosystems
 - Streams, rivers, lakes, reservoirs, estuaries
- Fate and effects of multiple stressors
 - Nutrients
 - Organic toxicants
 - Suspended and bedded sediments
 - Flow
 - Temperature

AQUATOX Structure

Time-variable

- usually daily reporting time step
- can run from few days to decades

Spatially simple, but:

- thermal stratification
- salinity stratification
- can link multiple segments together
- Modular and flexible
 - model only what is necessary
 - simple to complex food web
- Control vs. perturbed simulations

AQUATOX Simulates Ecological Processes & Effects within a Volume of Water Over Time

- Site characteristics
- Biological characteristics default or
- Chemical characteristics
- Environmental loadings
 - Multiple sources
 - Variable or constant
- Watershed loads from BASINS (opt.)
- Library or user-supplied

AQUATOX Outputs

- Biomass

user-supplied

- Pollutant concentrations
 - **Tissue concentrations & BAFs**
- Process rates
- Direct & indirect effects
- Time variable

Why AQUATOX?

- A truly integrated eutrophication, contaminant fate and effect model
 - "is the most complete and versatile model described in the literature" (Koelmans et al. 2001)
- Comparison with other models
 - Includes more biological components than water quality models such as WASP7 or QUAL2K
 - CASM models toxic effects but not fate
- Comprehensive bioaccumulation model

One model, many questions

- Many waters are impaired, with multiple stressors
- To restore them we need to know:
 - Relative importance of stressors?
 - Combined effects?
 - Predicted effects of management actions?
 - Better water quality
 - Fewer and/or smaller algae blooms
 - More oxygen
 - Restore fisheries
 - Will the fish be safe to eat?
 - What is the best management scenario?
 - Which combinations of measures will work best?
 - Any unintended consequences?
 - How long will recovery take?

Worldwide applications

Physics and Chemistry in AQUATOX

Physical Characteristics of a Site

Water Balance and Sediment Structure

Nitrogen Cycle in AQUATOX

Biology in AQUATOX

How AQUATOX Models Plants

Multiple plant groups

Phytoplankton

• greens, cyanobacteria, diatoms or "other"

Periphyton

- greens, diatoms, cyanobacteria, or "other"
- include live material and detritus
- snails & other animals graze it heavily
- subject to sloughing, even at relatively low velocity

Macrophytes

- benthic, rooted-floating, or free-floating
- heavy growths have significant effect on light climate
- may act as refuge from predation for animals
- leaves can provide significant surface area for periphyton growth

Periphyton Controlled by Multiple Independent Factors

One important factor is grazing by snails another is sloughing

Modeling Animals in AQUATOX

Multiple Animal Groups

- Zooplankton
- Benthic invertebrates
- Benthic insects
- Fish, with multiple year classes

Foodweb Model specified as Trophic Matrix

AQUATOX-- Trophic Interaction Matrix

Preference percentages are initially normalized to 100% based on species in the simulation. Renormalize

Show Preferences	Show Egestion Coefficients
------------------	----------------------------

Show Comments

	Tubifex tubi	Daphnia	Rotifer, Brad	Predatory Z	Shad	Bluegill	White Perch	Catfish	Largemouth	Largemouth	Walleye
R detr sed	50.0							1.2			
L detr sed	50.0							4.7			
R detr part					12.5				2.1		
L detr part		30.0	40.0		12.5	3.9	0.5		2.1		
Cyclotella nan		35.0	5.0		12.5						
Greens		30.0	5.0		12.5						
Phyt, Blue-Gre					12.5						
Cryptomonad		5.0	50.0								
Tubifex tubife						9.5	29.8	46.5	40.4	0.3	1.0
Daphnia				50.0	12.5	15.7	29.9	2.9	27.7	0.3	
Rotifer, Brach				50.0	12.4	15.7					
Predatory Zoop					12.5	7.9	29.9	2.9	27.7	38.2	1.6
Shad						15.8		20.9		44.3	23.1
Bluegill										2.9	
White Perch						15.7	10.0	20.9		10.1	24.8
Catfish											24.8
Largemouth Bas						15.7					24.8
Largemouth Ba2											
Walleye										3.9	

Fate and Effects of Chemicals in AQUATOX

Modeling Toxicity

- Organic toxicants
- ≤ 20 chemicals simultaneously
- Lethal and sublethal effects
- Acute and chronic toxicity
- Effects based on total internal concentrations
- Option to model external toxicity
 - Useful if uptake and depuration are very fast (as with herbicides)
- Ecological effects direct and indirect
 - Non-target organisms
 - Food web disturbances
 - Unintended consequences?

Fate and Bioaccumulation in AQUATOX

AQUATOX Interface and Output

AQUATOX Interface: Main Screen

Output: Animals decline at different rates following single dose of chlorpyrifos

% Difference Graph shows relative differences

Track concentrations in tissues and water

Process Rates

- Concentrations of state variables are solved using differential equations
 - Equation for periphyton concentrations is:

 $\frac{dBiomass_{Peri}}{dt} = Loading + Photosynthesis - Respiration - Excretion$

-Mortality-Predation+Sed_{Peri}-Slough

 Individual terms of these equations can be saved and graphed

Periphyton Rates show importance of grazing and sloughing

Limitations to Photosynthesis can also be Graphed

Automated Sensitivity Analysis

Sensitivity of Tubifex tubife (g/m2 dry) to 20% change in tested parameters 3/28/2008 3:31:16 PM

135% - Temp: Multiply Loading by 83.2% - Water Vol: Mult. Inflow Load by 66.6% - TSS: Multiply Loading by 62.4% - Cyclotella nan: Max Photosynthetic Rate (1/d) 51.2% - Cyclotella nan: Optimal Temperature (deg. C) 40.8% - Cyclotella nan: Temp Response Slope 23.1% - Water Vol: Multiply Loading by 19.7% - Daphnia: Optimal Temperature (deg. C) 16.5% - Cyclotella nan Min. Sat. Light (Ly/d) 16.3% - Daphnia: Max Consumption (g / g day) 13.1% - Cyclotella nan: Maximum Temperature (deg. C) 12.6% - Daphnia: Temperature Response Slope 6.82% - Susp&Diss Detr: Multiply Loading by 5.45% - Daphnia: Maximum Temperature (deg. C)

Integrated Uncertainty Analysis Capability

Example Applications of AQUATOX

• Eutrophication in TenKiller Lake Reservoir, OK

• PCB bioaccumulation in Lake Hartwell, SC/GA

Application of AQUATOX to Eutrophic Reservoir

- Tenkiller Lake in eastern Oklahoma formed by the damming of the Illinois River
- On Oklahoma's 303d list as impaired for phosphorus
- Nutrient concentrations and water clarity indicate eutrophic conditions
- Example of:
 - Multiple linked segments (complex system)
 - Linkage to watershed and hydrodynamic model
 - Scenario testing

Incoming waters very rich in algae

Tenkiller Lake Application

- River-reservoir system divided into nine segments
 - Riverine
 - Vertically stratified transition zone
 - Three vertically stratified lacustrine segments
- AQUATOX linked to HSPF (watershed) and EFDC (inlake hydrology) models
- Tested scenarios to predict chlorophyll *a* levels based on different nutrient, BOD and sediment loadings (BMPs)

Simulated & observed chlorophyll a

Simulated & observed algal composition

Predicted chl *a* levels under increasing load reductions of TP

Steinhaus Similarity Index illustrates increasingly dramatic changes in algal community

30% reduction in TP has relatively minor effect on the composition of the algal community

Trophic State Indices show differences between lake segments

Ecosystem Modeling for PCBs in Lake Hartwell

Study Site

- Sangamo-Weston Superfund Site discharged 400,000 lbs of PCBs in creek from 1955-1990s
- Creek/lake treated via Monitored Natural Recovery
- PCBs have declined since 1995 in lake sediment but not in all fishes (5-10ppm)

Predicted fish biomass is calibrated to observed values

Predicted PCB in fish is similar to observed

Future Prediction with Uncertainty

Fate of Input Detritus

• Ingested (14%) > Sedimented (4%)

Results

When will fish recover?

✓ Summer/Fall 2013

Why are fish still contaminated while sediment is recovering?

✓ Due to contaminated input detritus

Sensitivity of PCB Concentration in Fish to 10% 个Temperature

Wrap-up and Model Future

User Support

- Technical support materials on web site http://water.epa.gov/scitech/datait/models/aquatox/index.cfm
 - Technical notes
 - Data sources
 - Workshop materials
 - Annotated bibliography (newly updated)
 - Sensitivity analysis report (new)
 - Set up guide (*in draft*)
- AQUATOX listserver (>350 subscribers)
- One-on-one technical support available (subject to future funding)

Applicability to Sustainable and Healthy Communities Research Program

- Contaminated sites
- Nitrogen plus climate change
- Ecosystem Services
 - Food and Recreation
 - Biodiversity and Wildlife habitat
 - Aesthetic

Thanks For Your Attention

- Marjorie Coombs Wellman, Office of Water, US EPA, wellman.marjorie@epa.gov
- Brenda Rashleigh, Office of Research and Development, US EPA, <u>rashleigh.brenda@epa.gov</u>
- http://water.epa.gov/scitech/datait/models/aquatox/index.cfm