National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances

NAC/AEGL-44 December 5-7, 2007

Orlando World Center Marriott 8701 World Center Drive Orlando, FL

AGENDA

Wednesday, December 5, 2007

*Development team meetings: Carbonyl fluoride, Chloropicrin, Methanesulfonyl
chloride, Methyl iodide, N,N-dimethyl formamide
Introductory remarks and approval of NAC/AEGL-43 Highlights (George Rusch Emie
Falke, and Paul Tobin)
Status Update: Chloropivaloyl chloride, Ethylene fluorohydrin Thiophosgene (Cheryl
Bast)
Review of Federal Register Comments: MTBE
Lunch
Review of Diethyldichlorosilane, Dimethylchlorosilane, Ethyltrichlorosilane, and
Methylvinyldichlorosilane (Ernie Falke/Cheryl Bast)
Status Update: Nerve Agent VX (Glenn Leach/Bob Young)
Revisit of N.N-Dimethylformamide (George Woodall/Claudia Travel)
Break
Review of Carbonyl Fluoride (Iris Camacho/Jennifer Payner)
Revisit of Tetrachloroethylene: PBPK Issues (Bob Denson/Cloudie Tract)
Revisit of 1.1.1-Trichloroethane: PBPK Issues (Bob Benson/Caudia Troxel)
Adjourn for the day

Thursday, December 6, 2007

*Development team meetings: Allyl chloride, Boron tribromide, 2-Chloroethanol
Carbonyl sulfide
Review of Stibine (Marcel van Raaij/Jennifer Rayner)
Review of Boron Tribromide (Bob/Benson/Sylvia Talmora)
Break
Review of Chloropicrin (Gail Chapman/Bob Voung)
Lunch
Toxicological Data Systems (Gary Perlman)
Review of Methyl iodide (Alan Backer/Sulvia Talman)
Break
Review of Allyl chloride (Richard Niemeier/Lewisco D
Review of Methanesulformul chloride (Reclinet Flenniter Rayner)
Adjourn for the day

Friday, December 7, 2007

8:00 a.m.	Review of Sulfuryl fluoride (Susan Ripple/Jennifer Pourser)
9:30	Break
9:45	Review of Carbonyl Sulfide (Ralph Gingell/Cheryl Bast)
10:45	Review of 2-Chloroethanol (George Rusch/Bob Young)
11:45	Administrative matters
12:00 noon	Adjourn meeting

*See page 2.

ANY INFORMATION DISCUSSED AT THE NAC/AEGL MEETINGS IS CONSIDERED PUBLIC INFORMATION.

Chemical: A	TTE	ENPAR	ICE	12/	5/	CAS Reg. No	D.:			Jenni Sylvia
Action: Proposed I		Inter	Interim				0	KIVL	Change	
Chemical Mar	nager:					Staff S	scientist	:		Acbert.
NAC Member	AEGLI	AEGL2	AEGL3	LOA	NA	AC Member	AEGL1	AEGL 2	AEGL3	LOA
Henry Anderson	V	•			Jo	hn Hinz				
Marc Baril	AG	eento			Jiı	n Holler	V			
ynn Beasley	V	1			GI	enn Leach				
Alan Becker					Ri	chard Niemeier				
Robert Benson					Su	isan Ripple				
Edward Bernas	1				Ge	eorge Rusch,				
Gail Chapman					M	artha Steele			1	
eorge Cushmac	Abo	ento		1.1.1	D٤	aniel Sudakin	•			
rnest Falke	$\overline{\mathcal{N}}$			1	M	arcel vanRaaij	V			
avid Freshwater	V				Ca	lvin Willhite	XV	1		
talph Gingell	$\overline{\mathbf{V}}$				Ge	eorge Woodall	1			
loberta Grant	V.	/			AI	an Woolf	V			
Dieter Heinz			-		ト	his Camado		-		
Paul Tolin	V			· ·		SSOT SUN'S		France		
Drew Lyke	.]					PASS/ FAIL	`			
MARCY BA	NTON	LY ON DE	ELL	· · ·	'N	Nichael Ac	rts · 1	Funila 1	FRUITH N	EGETAG
PPM, (mg/m ³)		10 Min		30 Min		1 Hr		Hr	8	Hr
AEGL 1		,()	,()	,()		()), ()
AEGL 2		,()	,()	,()		. ()), ,()
AEGL 3		,(')	, ()	,()		()), ,()
LOA		1								
* = ≥10% LEL					•					
** = ≥ 50% LEL	-							· · · · ·		
*** = ≥100% LE	EL									

*Safety considerations against the hazard(s) of explosion(s) must be taken into account. ** and ***Extreme safety considerations against the hazard(s) of explosion(s) must be taken into account.

NR= Not Recommended due to

AEGL 1	Motion by:	60000	Second by:	
AEGL 2	Motion by:		Second by:	
AEGL 3	Motion by:		Second by:	
LOA	Motion by:		Second by:	
Approve	d by Chair:	G. M. L. DFC	: lautsti	Date: /3// 201)

ATTACHMENT 3

MTBE

NAC/AEGL-44 December 5, 2007 Orlando, FL

Proposed AEGLs for MTBE

	10 min ppm	30 min ppm	1 hr ppm	4 hr ppm	8 hr ppm	Endpoint (Reference)
AEGL-1	50	50	50	50	50	NOAEL in humans; 50 ppm for 2 hr; UF = 1 (Nihlén et al., 1998)
AEGL-2	1400	800	570	400	400	Ataxia, piloerection, and decreased hindlimb strength; 4,000 ppm for 6 hr; UF = 10, n = 2 (Daughtrey et al., 1997) ADD: no loss of consciousness; NOEL for inability to escape
AEGL-3	13,000* *>10% LEL ** >50% LEL (# to footnote)	7,500 7,500* *>10% LEL	5,300 5,300*	2,700 2,700*	1,900 1,900*	BMCL ₀₅ = 26,690 for 4 hr; UF = 10; n = 2 (Arco, 1978) FIX: LEL = 16,000 ppm

Public Comments on MTBE

- One comment received
- "The AEGL values proposed for MTBE are appropriate and protective for the specified time exposure and endpoints"

Public Comments on MTBE

- Comment requested that the TSD include updated information on human exposure and epidemiological studies
- Comment requested clarification of some aspects of the genotoxicity and carcinogenicity data
- Comment requested clarification of some aspects of the metabolism section and inclusion of the metabolic scheme for MTBE
- Comment requested clarification of Appendix D on pharmacokinetic modeling

Disposition of Comments

- Changes will be made to the TSD to the extent feasible, keeping in mind that the COT often asks us to remove extraneous detail
- As none of the requested changes will change the AEGL values, recommend that MTBE be raised to interim status

T+-

Summary of Interim 1: 7/2005 AEGL values for DMF											
Level	10-min	30-min	1-h	4-h	8-h						
AEGL-1	NR	NR	NR	NR	NR						
AEGL-2	160	110	90	55	38						
AEGL-3	320	220	180	110	76						

AEGL-1: Not recommended; no data consistent with AEGL-1

AEGL-2: AEGL-3 \div 2 (because NAC felt the AEGL-3 values were protective base on monkey data)

AEGL-3: No mortality in rats exposed to 3700 ppm for 3 hours (Macdonald, 1982). Possible that proposed values are conservative. No effects observed in monkeys exposed to 500 ppm for 6 h/d, 5 d/wk for 2 or 13 wk.

➤Total UF of 30

3 for interspecies: appears there are limited species differences regarding toxic response to DMF. Similar hepatic effects in humans as in animals. The mechanism of hepatotoxicity related to metabolism by CYP2E1 to reactive metabolite. Study demonstrates similar K_m and V_{max} between rat and human liver

10 for intraspecies:

- CYP2E1 can be induced by alcohol, diabetes, and obesity
- Prior consumption of alcohol can exacerbate DMF toxicity
- Detoxification is partly dependent of glutathione conjugation; if GSH depleted, increased exposure to reactive metabolite
- DMF exposure can result in hepatotoxicity, so those with compromised liver function at increased risk

Time scaling:

Default value of n should be used in the temporal scaling of AEGL values across time. However, if one applies the default value of n = 1 for extrapolating from shorter to longer exposure periods, one obtains a 4-h value of 93 ppm and an 8-h value of 46 ppm. Using a default value results in AEGL values that are inconsistent with the available human data. Humans were exposed by inhalation to 87 ppm DMF for 4 h in a study designed to assess the metabolism of DMF (Kimmerle and Eben, 1975b). Although the study was not designed to assess the toxic effects resulting from DMF exposure, whatever effects may have been encountered were clearly not severe enough to be classified as AEGL-3 endpoints. Therefore, in the absence of any further data, an n of 2 was selected as a reasonable compromise between the possible values for n as reported by ten Berge et al. (1986).

AEGL-3 values are therefore derived using an n=3 for extrapolation to 10- and 30-min and 1- h duration, and an n=2 for extrapolation to 4- and 8-h duration. 5

Total UF of 3; con't

Intraspecies UF of 3:

10 would normally be applied because: 1) CYP2E1 can be induced by alcohol, diabetes, and obesity 2) Prior consumption of alcohol can exacerbate DMF toxicity; occupational exposure data suggest synergistic effect 3) detoxification partly dependent on glutathione conjugation, so GSH depletion can result in ↑ exposure to reactive metabolite; 4) DMF exposure can result in hepatotoxicity, so those with compromised liver function at ↑ risk

However, a total UF of 10 produces AEGL-2 values internally inconsistent: Values for 10-m, 30-m, 1-, 4-, and 8-h AEGL-2 using default time-scaling would be 49, 34, 27, 17, and 11 ppm, resp. Monkeys exposed to 500 ppm for 6 h/d, 5 d/wk for up to 13 wks had no effects; using the 500 ppm for 6 h as POD; UF of 10; default time scaling, values are 110, 110, 91, 57, and 38 ppm, resp.

Therefore, the intraspecies UF is reduced to 3, resulting in a total UF of 3. Default time scaling is applied, and the 30-m AEGL-2 value was set equal to the 10-m value because of the uncertainty in extrapolating from a 6-h exposure duration to a 10-m duration.

9

10-min	30-min	1-hr	4-hr	8-hr	UF
	Alte	ernative A	EGL-2 Va	lues	
Nme sca	These value ey data (exp	es are identi osure to 50	ical to those 0 ppm for 6	produced us hours)	sing the
⇔ Intras intern	pecies UF o ally inconsis	f 3: use of (itent	default value	e of 10 produ	ices values
⇔ Inters than i	pecies UF o odents	f 1: expecte	d that huma	ins are less :	sensitive
Total UF	of 3:				
AEGL-2	POD: 150 pp le effects (m	om for 6 h in alformation	rabbits to p s) (Hellwig et	rotect again al., 1991).	st

AEGL-3

- Leave as is, with n values = 3,2 and UF of 30 OR
- Reduce UF to 10 and use the default time scaling values of n=3, 1

Key study: groups of 3 male and 3 female rats were exposed to 3700 ppm DMF for 1 or 3 hours with no mortality, while exposure for 7 hours resulted in 83% mortality (Macdonald, 1982). Clinical signs limited to excess grooming in all exposure groups, with lethargy also noted in rats exposed for 7 hours.

POD: no mortality in rats exposed to 3700 ppm for 3 h

SUMMARY AEGL-3:

- AEGL-3 POD: 3700 ppm for 3 h is no effect level for mortality in rats (Macdonald, 1982)
- > Total UF of 10:
 - ⇒Interspecies UF of 1: expected that humans are less sensitive than laboratory animals
 - ⇒Intraspecies UF of 10
- > Time scaling: Default using n=3,1

10-min	30-min	1-hr	4-hr	8-hr	UF	
970	670	530	280	140	10	

			Sumr	nary		
Level	10 m	30 m	1 h	4 h	8 h	UF
New A	Iternati	ve AEGL	Values			
1	NR	NR	NR	NR	NR	
2	110	110	91	57	38	3
3	970	670	530	280	140	10
Interim	n 1 Valu	ies (7/20	05)			
1	NR	NR	NR	NR	NR	
2	160	110	90	55	38	AEGL3÷2
3	320	220	180	110	76	30

.

AEGL VX: New Data Revisit

Recent studies on the nerve agent VX have become available. These data were evaluated and analyzed with respect to the previously published (NRC, 2003) AEGL values for VX. The results of this analysis are summarized below and in the accompanying tables.

VX AEGL-1:

AEGL-1 values developed using recent data of Benton et al. (2006a) would eliminate MF and use a VX-specific "*n*" of 1.65 (for miosis) resulting in slightly greater (8-hr value is slightly lower) but operationally equivalent values. Published values (NRC, 2003) are protective and validated by new data.

VX AEGL-2:

New data (Benton et al., 2006a; Genovese et al., 2007) would result in slightly increased AEGL-2 values (operationally equivalent) due to interspecies UF of 3 vs 1 and time-scaling "*n*" value of 1.65 vs 2. Both the published (NRC, 2003) and new values address peripheral neuromuscular effects as well as missis. Published values are more protective and validated by new data.

VX AEGL-3:

New data from Benton et al. (2006b) would justify elimination of the MF for a sparse database. Time scaling "n" of 0.92 vs 2 results in slightly lower values for the 4-hr and 8-hr durations but slightly higher values for the durations of 1 hour and less. However, the "n" of 0.92 may be a function of percutaneous absorption. The published values are sufficiently protective.

Overall, the new data support the approach/rationale used to develop the AEGL values for VX as published by the National Research Council.

						AEGL-1 Values f	or VX (mg/m ³)				
	10-min	30-min	1-hr	4-hr	8-hr	POD	Inter UF	Intra UF	MF	n	Reference
Published	0.00057	0.00033	0.00017	0.00010	0.000071	Relative potency to GB (GB POD was EC ₅₀ for miosis in adult female rats)	1: miosis response to nerve agent vapor is similar across species	10: Some individuals possess abnormally low levels of blood cholinesterase and carboxyesterase activity that may make them especially susceptible to the effects of cholinesterase inhibitors such as nerve agents	3: sparse VX database	2: GB lethality & miosis data)	NRC, 2003
New data	0.00070	0.00036	0.00020	0.00010	0.000066	EC ₅₀ for miosis in adult female rats: 10-min: 0.007mg/m ³ 1-hr: 0.002 mg/m ³ 4-hr: 0.001 mg/m ³	1: as above	10: as above	1: well- conducted study with VX	1.65: VX miosis data	Benton et al., 2006a

ر اس د

•

•

						AEGL-2 Values f	or VX (mg/m ³)				
	10-min	30-min	1-hr	4-hr	8-hr	POD	Inter UF	Intra UF	MF	n	Key Reference
Published	0.0072	0.0042	0.0029	0.0015	0.0010	Relative potency to GB (GB POD was miosis, dyspnea, RBC-ChE inhibition, SFEMG changes in human volunteers) 0.5 mg/m ³ for 30-min	1: human data	10: Some individuals possess abnormally low levels of blood cholinesterase and carboxyesterase activity that may make them especially susceptible to the effects of cholinesterase inhibitors such as nerve agents	3: sparse VX database	2: GB lethality & miosis data)	NRC, 2003
New data	0.015	0.0076	0.0050	0.0022	0.0014	Pinpoint pupils, NOEL for ataxia in rats: 0.15 mg/m ³ for 1-hr	3: even though miosis is similar across species and argues for a UF of 1, a 3 is applied to protect against ataxia. Also, allows for better separation from AEGL-3 values and more protective AEGL-2 values.	10: as above	1: well- conducted study with VX	1.65: VX miosis data (Benton et al., 2006a)	Genovese et al., 2007

·• , ·

						AEGL-3 Values f	or VX (mg/m ³)				
	10-min	30-min	1-hr	4-hr	8-hr	POD	Inter UF	Intra UF	MF	n	Key Reference
Published	0.029	0.015	0.010	0.0052	0.0038	Relative potency to GB (GB POD was female rat LC_{01} values between 10-min and 6-hr.	3: mechanism of toxicity is same in rodents and humans	10: Some individuals possess abnormally low levels of blood cholinesterase and carboxyesterase activity that may make them especially susceptible to the effects of cholinesterase inhibitors such as nerve agents	3: sparse VX database	2: GB lethality data)	NRC, 2003
New data	0.108	0.032	0.018	0.0041	0.0019	LC ₀₁ in female rats: 10-min: 3.24 mg/m ³ 1-hr: 0.525 mg/m ³ 4-hr: 0.123 mg/m ³	3: as above	10: as above	1: well- conducted study with VX	0.92: VX rat lethality data	Benton et al., 2006b
	1						1				

References:

Benton, B.J., J. M. McGuire, D.R. Sommerville, et al. (2006a). "Low-level effects of VX vapor exposure on pupil size and cholinesterase levels in rats," Chapter 5, pp. 91-108 In HA Salem and SA Katz (eds) Inhalation toxicology, 2nd Edition, CRC Press, Taylor and Francis, Boca Raton, FL.

Benton, B.J., J. M. McGuire, D.R. Sommerville, et al. (2006b). "Effects of whole-body VX vapor exposure on lethality in rats," *Inhalation Toxicology* 18: 1091-1099.

Genovese, R.F., B.J. Benton, E. H. Lee, et al (2007). "Behavior and biochemical evaluation of sub-lethal inhalation exposure to VX in rats." Toxicology 232 (104): 109-118.

NRC (National Research Council) (2003). Acute Exposure Guideline Levels for Selected Airborne Chemicals, vol 3. "Nerve agents GA, GB, GD, GF and VX Acute Exposure Guideline Levels. Chapter 1, pp. 15-300. The National Academies Press, Washington, DC.

ATTACHMENT 6

ACUTE EXPOSURE GUIDELINE LEVELS (AEGLs) FOR SELECTED CHLOROSILANES

NAC/AEGL-44 December 5-7, 2007 Orlando, FL

ORNL Staff Scientist: Cheryl Bast

Chemical Manager: Ernest Falke

Chemical Reviewers: George Cushmac and Paul Tobin

HCl AEGL document: Published in Volume 4.

NAC has previously derived AEGL values for five chlorosilanes:

Methyltrichlorosilane:	COT-Approved
Dimethyldichlorosilane:	COT-Approved
Trimethylchlorosilane:	COT-Approved
(FL District 3, #7 on EHS list)	
Methyldichlorosilane:	Interim: FR-10
Methylchlorosilane:	Interim: FR-10

For chlorosilanes where chemical-specific data existed, chemical-specific experiment used for AEGL value derivation.

For future chlorosilanes (the ones being discussed at this meeting and those discussed at NAC-43), the COT subcommittee suggested that values simply be derived by analogy to HCl

However, we should not go back and re-do the five previous chlorosilanes. (Values almost identical using either method)

Previously considered chlorosilanes may be included in "Selected Chlorosilanes" TSD.

All will be published in the same volume.

Revisions to the NAC-43 TSD Include:

Statement added to Executive Summary and introduction saying that only HCl is released into the air.

Paragraph added to the introduction on reported chlorosilane releases (amount, reason, etc).

Footnotes have been added to tables showing the formula to convert ppm to mg/m³.

Done so that separate tables would not be required for each of the 21 chlorosilanes at several places in the document.

A footnote has also been added to suggest that for mono-, di-, and tri- chlorosilanes not discussed in the TSD, use of an HCl equivalents approach may be considered for AEGL- value derivation.

AEGL Values for Four "New" Chlorosilanes.

Ethyl trichlorosilane (FL District 3, #6 on EHS list)

Diethyl dichlorosilane

Dimethylchlorosilane

Methylvinyl dichlorosilane*

At NAC-43 AEGL values were derived for 17 **Chlorosilanes:**

Allyl trichlorosilane (CAS Reg. No. 107-37-9) Amyl trichlorosilane (CAS Reg. No. 107-72-2) Butyl trichlorosilane (CAS Reg. No. 7521-80-4) Chloromethyl trichlorosilane (CAS Reg. No. 1558-25-4) Dichlorosilane (CAS Reg. No. 4109-96-5) Diphenyl dichlorosilane (CAS Reg. No. 80-10-4) Dodecyl trichlorosilane (CAS Reg. No. 4484-72-4) Hexyl trichlorosilane (CAS Reg. No. 928-65-4) Nonyl trichlorosilane (CAS Reg. No. 5283-67-0) Octadecyl trichlorosilane (CAS Reg. No. 112-04-9) Octyl trichlorosilane (CAS Reg. No. 5283-66-9) Propyl trichlorosilane (CAS Reg. No. 141-57-1) Tetrachlorosilane (Silicon Tetrachloride) (CAS Reg. No. 10026-04-7) Trichloro(dichlorophenyl)silane (CAS Reg. No. 27137-85-5) Trichlorophenylsilane (CAS Reg. No. 98-13-5) Trichlorosilane (CAS Reg. No. 10025-78-2) Vinyl trichlorosilane (CAS Reg. No. 75-94-5)

Alkylchlorosilanes react rapidly with water to produce hydrogen chloride gas and a silanol, which condenses spontaneously to form a highly cross-linked polymeric gel.

One-hour LC₅₀ studies of ten chlorosilanes and hydrogen chloride (Jean et al., 2006)

GLP Protocol:

Five F344 rats/sex/concentration; 14-day follow-up

Clinical signs in chlorosilane studies were consistent with hydrogen chloride exposure:

Lacrimation, salivation, dried material around or on the eyes and/or nose, green staining around the nose and mouth, and perineal urine staining.

Labored breathing, rales, hypoactivity, closed or partially closed eyes, prostration, corneal opacity or opaqueness, and swollen and/or necrotic paws

Hemorrhage, congestion and/or consolidation of the lungs, ectasia of the lungs, alopecia around the eyes and discoloration of hair were observed at necropsy.

Measured and predicted (based on molar HCl equivalents) 1-hr LC₅₀ values for

	cinore	JShanes		
	Measured	Predicted LC ₅₀	Predicted Ratio of LC ₅₀	Measured Ratio of LC ₅₀
Compound	LC ₅₀ (ppm)	(ppm)	values	values
Hydrogen chloride	3627 ppm			
Tetrachlorosilane*	1312 ppm	3627 ÷ 4 = 907	4:1	2.8 : 1
Propyl trichlorosilane*	1352 ppm	3627 ÷ 3 = 1209	3:1	2.7:1
Vinyl trichlorosilane*	1611 ppm	$3627 \div 3 = 1209$	3:1	2.3:1
Methyl trichlorosilane**	1365 ppm	$3627 \div 3 = 1209$	3:1	2.7:1
Ethyl trichlorosilane*	1257 ppm	3627 ÷ 3 = 1209	3:1	2.9:1
Methylvinyl Dichlorosilane*	2021 ppm	3627 + 2 = 1814	2:1	1.8 : 1
Dimethyldichlorosilane**	2092 ppm	$3627 \div 2 = 1814$	2:1	1.7:1
Methyl dichlorosilane**	`1785 ppm	$3627 \div 2 = 1814$	2:1	2: 1
Trimethyl chlorosilane**	4257 ppm	3627 ÷ 1 = 3627	1:1	0.9:1
Dimethyl chlorosilane*	4478 ppm	$3627 \div 1 = 3627$	1:1	0.8:1

*Chlorosilane in TSD for Value Derivation **AEGL Values Proposed or Interim

CONCLUSIONS (Jean et al., 2006)

Predicted 1-hr LC_{50} values for the mono-, di-, and trichlorosilanes are comparable to the experimentallyderived 1-hr LC_{50} values

log* log regression analysis of chlorosilane LC_{50} values vs. number of chlorine groups yielded an r^2 value of 0.97

The within-class LC_{50} values were not significantly influenced by the number or type of hydrocarbon R-group(s) present (methyl, ethyl, propyl, vinyl).

Data suggest that the acute toxicity of the chlorosilanes is similar to or slightly less than what would be expected based on hydrogen chloride molar equivalents

Cases where the predicted value is less may be attributed to incomplete hydrolysis in the test atmosphere

However, continued hydrolysis and generation of hydrogen chloride would be expected for any remaining chlorosilane when in contact with moist tissues (mucous membranes, lung)

Dichlorosilane (Nakashima et al., 1996):

4-Hr Mouse $LC_{50} = 144 \text{ ppm}$

Hydrogen Chloride (NRC, 2004):

1-Hr Mouse LC₅₀ = 1108 ppm

Scale 1-hr LC_{50} to 4-hr using $c^n x t = k$ relationship, where n=1 based on regression analysis of combined rat and mouse LC_{50} data (1 min. to 100 min.)

Approximate 4-hr LC₅₀ = 277 ppm for HCl

Predicted 4-hr LC₅₀ for dichlorosilane:

277 ppm ÷ 2 = 139 ppm

Agrees with experimentally-derived value of 144 ppm

Predicted LC_{50} values for the mono-, di-, and trichlorosilanes are comparable to the experimentallyderived LC_{50} values

This information taken in conjunction with the observed clinical signs suggests:

The acute toxicity of the chlorosilanes is both quantitatively and qualitatively similar to hydrogen chloride and therefore, the hydrogen chloride hydrolysis product is responsible for the acute inhalation toxicity of chlorosilanes.

Therefore, AEGL values for chlorosilanes will be derived by analogy to hydrogen chloride AEGL values

		ummary of	ALUL Valu	es for Dichlo	rosilanes		
Compound	Classification	10-min	30-min	1-h	4-h	8-h	Endpoint
DICHLOROSILANES	AEGL-1	0.90 ppm	mqq 06.0	mqq 06.0	0.90 ppm	0.90 ppm	Hydrogen chloride
							AEGL-1 values
Dichlorosilane							divided by a molar
					11 12		adjustment factor of 2
Diethyl dichlorosilane	AEGL-2	50 ppm	22 ppm	11 ppm	5.5 pm	5.5 ppm	Hydrogen chloride
							AEGL-2 values
Diphenyl dichlorosilane					× .		divided by a molar
							adjustment factor of 2
Methylvinyl	AEGL-3	310 ppm	105 ppm	50 ppm	13 ppm	13 ppm	Hydrogen
<i>lichlorosilane</i>							chloride AEGL-
			20				3 values divided
							by a molar
							adjustment
							factor of 2

Compound	Classification	10-min	30-min	4-1	4-h	8-h	Fadnoint
NOCHLOROSILANE	AEGL-1	1.8 ppm	Hvdrogen chloride				
				•			(HCI) AEGL-1 va
ethy/chlorosilane		7					adopted as AEGL
	4						values for
							Monochiorosilan
							(NRC, 2004)
	AEGL-2	100 ppm	43 ppm	22 ppm	11 ppm	11 ppm	Hydrogen chlorid
							(HCI) AEGL-2 va
							adopted as AEGI
							values for
		1					Monochlorosilan
							(NRC, 2004)
	AEGL-3	620 ppm	210 ppm	100 ppm	26 ppm	26 ppm	Hydrogen chlorid
							(HCI) AEGL-3 va
							adopted as AEGI
							values for
							Monochlorosilane
							CNDC 2000

	Endpoint	n Hydrogen chloride AEGL-1 values divided by a molar adjustment factor of	3 1 Hydrogen chloride AEGL-2 values divided by a molar divided by a molar adjustment factor of 3 3	I Hydrogen chloride AEGL-3 values divided by a molar adjustment factor of 3
	8-b	0.60 ppr	3.7 ppm	8.7 pp
osilanes	4-h	0.60 ppm	3.7 pm	8.7 Pp.
for Trichlor	4	0.60 ppm	7.3 ppm	83 PP
GL Values	30-min	0.60 ppm	14 ppm	70 ppm
mary of AE	10-min	uidd 09.0	33 ppm	210 ppm
Sum!	Classification	AEGL-1	AEGL-2	AEGL-3
	Compound	<u>RICHLOROSILANES</u> lyl trichlorosilane myl trichlorosilane ityl trichlorosilane	ichlorosilane decyl trichlorosilane thyl trichlorosilane	exyltrichlorosilane onyl trichlorosilane tyl trichlorosilane etyl trichlorosilane opyl trichlorosilane ichlorodichlorosilane ichlorophenylsilane ichlorosilane oyl trichlorosilane

*

.:∦ ∷⊭:

ACUTE EXPOSURE GUIDELINE LEVELS (AEGLs) FOR CARBONYL FLUORIDE, COF₂ (CAS NO. 353-50-4)

.

NAC/AEGL-44 December 5-7, 2007

ORNL Staff Scientist: Jennifer Rayner

Chemical Manager: Iris Comacho

Chemical Reviewers: Richard Niemeier, Paul Tobin

Carbonyl Fluoride

Common Synonyms: Carbonyl difluoride, fluorophosgene, carbon fluoride oxide

Conversion

 $1 \text{ ppm} = 2.7 \text{ mg/m}^3$ $1 \text{ mg/m}^3 = 0.38 \text{ ppm}$

Physical Characteristics:

· Gas- colorless, pungent

Uses:

• Chemical intermediate in synthesis of fluoroalkanes, fluorinated alkyl isocyanates

Mechanism of Toxicity

 $COF_2 + H_2O = CO_2 + 2 HF$

COF2- Tracheal, pulmonary, liver congestion; pulmonary edema

CO₂- Dangerous at high concentrations, NIOSH TWA-TLV is 5000 ppm

HF- Irritates respiratory tract and eyes, causes pulmonary edema and hemorrhage

Susceptible Populations

Dubert (107() Of

Asthmatics- possible enhanced response to HF

HUMAN DATA

f

ANIMAL DATA

Carbonyl Fluoride Exposures

None available

DuPont (1956)- Single exposure for 2 or 2.5 hours Nominal concentration

CONC. ppm	Effects	
2.5	No effect	
5	Slight dyspnea and cyanosis	

DuPont (1959)- Single exposure for 4 hours

Conc.	Effects
5	Rapid, shallow respiration
10	Rapid. shallow respiration
100	LC ₅₀ , pulmonary congestion

AEGL-1 Values for Carbonyl Fluoride

10- minute	30-minute	1-hour	4-hour	8-hour
NR	NR	NR	NR	NÐ

Not recommended due to insufficient data.

Dur ont (1	9/0)- Single exposure for 4 hours
Conc.	Effects
26.7	50% mortality
30.8	30% mortality
32.7	30% mortality
41.3	60% mortality
44.7	80% mortality
47.2(48.8)	90% mortality
47.6	60% mortality
34.3	LC ₅₀ (calculated)

Effect: rapid shallow to convulsive respiration; pulmonary edema

Polytetrafluoroethylene Pyrolysis Exposures

Scheel Polytet	et al. (1968)- Single exposure for 1 hour rafluoroethylene pyrolyzed at 550°C
Conc.	Effects
250	Mortality threshold for 8 week old rat
360	LC ₅₀ , focal hemorrhage of lung nulmonary edema
350	Mortality threshold for 24 week old rat
460	LC ₅₀ , focal hemorrhage of lung, pulmonary edema
90	LCsn for 4 hour exposure

AEGL-2 Values for Carbonyl Fluoride

10- minute	30-minute	l-hour	4-hour	8-hour.
1.0 ppm	0.70 ppm	0.56 ppm	0.33 ppm	0.17 ppm

Key Study: DuPont (1976) Acute Inhalation Toxicity Studies of Hydrogen Fluoride and Carbonyl Fluoride. Haskell Laboratory Report No. 485-76. DuPont Co., Haskell Laboratory, Newark. DE.

Rationale: In the absence of empirical data, and in accord with AEGL derivation guidelines for chemicals with steep doseresponse curves (NAS 2001), the AEGL-2 values for carbonyl fluoride were set at one-third of the AEGL-3 values.

Summary of AEGL Values for Carbonyl Fluoride

Classification	Exposure Duration						
Classification	10-minute	30-minute	l-hour	4-hour	8-hour		
AEGL-1 (Notable discomfort)	NR	NR	NR	NR	NR		
AEGL-2 (Disabling)	1.0 ppm	0.70 ppm	0.56 ppm	0.33 ppm	0.17 ppm		
AEGL-3 (Lethal)	3.0 ppm	2.1 ppm	1.7 ppm	1.0 ppm	0.52 ppm		

	AEGL	Values	for Phosg	ene		
Exposure Duration						
n	10-minute	30-minute	l-hour	4-hour		

Classificatio

Classification	10-minute	30-minute	1-hour	4-hour	8-hour
AEGL-1 (Notable discomfort)	NR	NR	· NR	NR	NR
AEGL-2 (Disabling)	0.60 ppm	0.60 ppm	0.30 ppm	0.080 ppm	0.040 ppm
AEGL-3 (Lethal)	3.6 ppm	1.5 ppm	0.75 ppm	0.20 ppm	0.090 ppm

AEGL Values for Hydrogen Fluoride

Classification	Exposure Duration						
Classification	10-minute	30-minute	l-hour	4-hour	8-hour		
AEGL-1 (Notable discomfort)	l ppm	l ppm	l ppm	l ppm	l ppm		
AEGL-2 (Disabling)	95 ppm	34 ppm	24 ppm	12 ppm	12 ppm		
AEGL-3 (Lethal)	170 ppm	62 ppm	44 ppm	22 ppm	22 ppm		

Cabony AEGL-3 Values for Sulfuryl Fluoride

10-minute	30-minute	1-hour	4-hour	8-hour
3.0 ppm	2.1 ppm	1.7 ppm	1.0 ppm	0.52 ppm

Key Studies: DuPont (1976) Acute Inhalation Toxicity Studies of Hydrogen Fluoride and Carbonyl Fluoride. Haskell Laboratory Report No. 485-76. DuPont Co., Haskell Laboratory, Newark, DE.

Toxicity endpoint: Threshold for lethality, BMC₀₁ (10.4 ppm) $[LC_{50}/3 = 34.3 \text{ ppm}/3 = 11.4 \text{ ppm}]$

Time scaling: $C^n \times t = k$, temporal scaling, using n = 3 when extrapolation to shorter time points and n = 1 when extrapolating to longer time points due to lack of data to derive the value of n (NRC 2001).

Uncertainty Factors/Rationale: Total uncertainty factor: 10 Interspecies: 3- The concentration at which tissue damage occurs should not differ across species. As a respiratory irritant, the mechanism of toxicity is not expected to differ between animals and humans.

Intraspecies: 3- Although data on a sensitive subpopulation are lacking for carbonyl fluoride, it has a steep concentration curve which may be an indication of small variations of toxic effects within a population.

Extant Standards and Guidelines for Carbonyl Fluoride

Cuidalina	Exposure Duration					
Guiaenne	10 minute 30 minute 1 h		l hour	4 hour	8 hour	
AEGL-I	NR	NR	NR	NR	NR	
AEGL-2	1.0 ppm	0.70 ppm	0.56 ppm	0.33 ppm	0.17 ppm	
AEGL-3	3.0 ppm	2.1 ppm	1.7 ppm	1.0 ppm	0.52 ppm	
AEGL-I HF	1.0 ppm	1.0 ppm	1.0 ppm	1.0 ppm	1.0 ppm	
AEGL-2 HF	95 ppm	34 ppm	24 ppm	12 ppm	12 ppm	
AEGL-3 HF	170 ppin	62 ppm	44 ppm	22 ppm	22 ppm	
REL-TWA					2	
(NIOSH)					z ppm	
REL-STEL					5 nom	
(NIOSH)					5 ppm	
TLV-TWA					2 0000	
(ACGIH)					- pp	
TLV-STEL		1 - A			Sinnin	
(ACGIH)					- pp.u	
MAC Peak						
Limit					0.5 ppm	
(The					0.5 ppm	
Netherlands)						

ACUTE EXPOSURE GUIDELINE LEVELS (AEGLs) FOR STIBINE, SbH₃ (CAS NO. 7803-52-3)

NAC/AEGL-44 December 5-7, 2007

ORNL Staff Scientist: Jennifer Rayner Chemical Manager: Marcel van Raaij Chemical Reviewers: Lynn Beasley, Paul Tobin

Stibine

Common Synonyms: Antimony hydride, hydrogen antimonide

Conversion

 $1 \text{ ppm} = 5.11 \text{ mg/m}^3$ $1 \text{ mg/m}^3 = 0.196 \text{ ppm}$

Physical Characteristics:

- Gas- hydrogen sulfide-like odor
- Reacts with water or water vapor to form SO₂ and HCl

Uses:

- Used in infrared devices and solid-state lasers
- Dopant in computer industry (intentionally introducing impurities into an extremely pure semiconductor)

HUMAN DATA

Effects at lethal concentrations None known

Effects at non-lethal concentrations Possible ocular and respiratory irritation

Concurrent Exposures:

Arsine Sulfuric Acid

Epidemiologic Studies:

Data consists mostly of air sample data in battery production and assembly plants with no health related effects reported. One study reported health effects (sore throats, eye and

respiratory irritation) with concurrent exposures to arsine and sulfuric acid (Lucas and Cone 1982).

Mechanism of Toxicity

Unknown mechanism causing pulmonary inflammation, edema, and congestion. Changes in guinea pig erythrocyte morphology

Susceptible Populations

Workers, asthmatics- The respiratory irritation of stibine may cause increased bronchial response.

ANIMAL DATA

2

Webster (1946). Volatile hydrides of toxicological importance.

Species	Conc (ppm)	Exposure Time (min)	Effect
Cat	40-45	60	Pulmonary congestion and edema, death within few hours up to one day
Dog	40-45	60	Pulmonary congestion and edema, death within few hours up to one day
Guinea pig	65	30	Irreversible erythrocyte morphology changes, hemoglobinuria, anemia

Price et al. (1979). Toxicity evaluation for establishing IDLH values (Final Report) TR 1518-005.

Species	Conc (ppm)	Duration (min)	Effect
Rat	29.1	30	No untoward effects
Guinea Pig	29 .1	30	No untoward effects
Rat	191	30	Eye irritation and closure, generalized depressed activity 15 min into exposure, renal tubular dilation
Guinea Pig	191	30	Generalized depressed activity 25 min into exposure, renal tubular dilation, pulmonary inflammation
Rat	333	30	Generalized depressed activity, dyspnea, pulmonary congestion and edema, 70% mortality
Guinea Pig	333	30	Generalized depressed activity, tremors, pulmonary congestion and edema, 80% mortality

AEGL-1 Values for Stibine

10- minute	30-minute	1-hour	4-hour	8-hour
NR	NR	NR	NR	NR

Not recommended due to insufficient data.

AEGL-2 Values for Stibine

10- minute	30-minute	1-hour	4-hour	8-hour
4.2 ppm	2.9 ppm	1.5 ppm	0.36 ppm	0.18 ppm

Key Study: Price et al. (1979). Toxicity evaluation for establishing IDLH values (Final Report) TR 1518-005. Salt Lake City, UT.

Toxicity endpoints: Highest experimental exposure (29.1 ppm for 30 minutes) without AEGL-2 effects- eye closure, generalized depressed activity with ability to escape.

Time scaling: $C^n x t = k$, temporal scaling, using n = 3 when extrapolating to shorter time points and n = 1 when extrapolating to longer time points due to lack of data to derive a value of n (NRC 2001).

Uncertainty factors: A factor of 3 was applied for interspecies variability. In addition to dog and cat differences, Webster (1946) noted that three- or four-fold higher concentrations were needed to produce death in guinea pigs, however, the studies were not well documented. An uncertainty factor of 3 was used to account for intraspecies variability to protect sensitive individuals and reflect individual variability. Although the mechanism of action is unknown, it is unlikely that the response of normal and sensitive or susceptible individuals would differ significantly because the respiratory irritant action is not expected to vary much among individuals.

Summary of AEGL Values for Stibine

6

Classification	Exposure Duration						
clussification	10-minute	30-minute	1-hour	4-hour	8-hour		
AEGL-1 (Notable discomfort)	NR	NR	NR	NR	NR		
AEGL-2 (Disabling)	4.2 ppm	2.9 ppm	1.5 ppm	0.36 ppm	0.18 ppm		
AEGL-3 (Lethal)	23 ppm	16 ppm	8.1 ppm	2.0 ppm	1.0 ppm		

AEGL-3 Values for Stibine

10-minute	30-minute	1-hour	4-hour	8-hour
23 ppm	16 ppm	8.1 ppm	2.0 ppm	1.0 ppm

Key Studies: Price et al. (1979). Toxicity evaluation for establishing IDLH values (Final Report) TR 1518-005. Salt Lake City, UT.

Toxicity endpoint: Threshold for mortality, $BMCL_{05}$ 161 ppm for 30 minute exposure.

Time scaling: $C^n x t = k$, temporal scaling, using n = 3 when extrapolating to shorter time points and n = 1 when extrapolating to longer time points due to lack of data to derive a value of n (NRC 2001).

Uncertainty factors: A factor of 3 was applied for interspecies variability. In addition to dog and cat differences, Webster (1946) noted that three- or four-fold higher concentrations were needed to produce death in guinea pigs, however, the studies were not well documented. An uncertainty factor of 3 was used to account for intraspecies variability to protect sensitive individuals and reflect individual variability. Although the mechanism of action is unknown, it is unlikely that the response of normal and sensitive or susceptible individuals would differ significantly because the respiratory irritant action is not expected to vary much among individuals.

Extant Standards and Guidelines for Stibine

	Exposúre Duration					
Guideline	10 minute	30 minute	1 hour	4 hour	8 hour	
AEGL-1	NR	NR	NR	NR	NR	
AEGL-2	4.1 ppm	2.9 ppm	1.5 ppm	0.36 ppm	0.18 ppm	
AEGL-3	23 ppm	16 ppm	8.1 ppm	2.0 ppm	1.0 ppm	
ERPG-1 (AIHA) ^a			ID			
ERPG-2 (AIHA) ^a			0.5 ppm			
ERPG-3 (AIHA) ^a			1.5 ppm			
PEL- TWA(OSHA) ^b					0.1 ppm	
IDLH (NIOSH) ^c	·	5 ppm				
REL-TWA (NIOSH) ^d					0.1 ppm	
TLV-TWA (ACGIH) [¢]					0.1 ppm	
MAC (The Netherlands) ^f					0.1 ppm	

ATTACHMENT 9

ACUTE EXPOSURE GUIDELINE LEVELS FOR BORON TRIBROMIDE (BBr₃)

National Advisory Committee for AEGLs Meeting December 5-7, 2007

ORNL Staff Scientist: Sylvia S. Talmage

Chemical Manager: Bob Benson

Chemical Reviewers: Marc Baril Calvin Willhite

Comparison of LC₅₀ Data - Hydrogen Halides and Boron Trihalides

Hydrogen chloride and boron trichloride: 1-hour LC_{50} values in the rat (Vernot et al. 1977) Hydrogen chloride: 3124 ppm (males) Boron trichloride: 2541 ppm (males) 4418 ppm (females) Similar pathological findings

Hydrogen fluoride and boron trifluoride:
1-hour LC₅₀ in rats:
Hydrogen fluoride: 966-1300 ppm (NAS 2004)
4-hour LC₅₀ for boron trifluoride in male and female rats (Rusch et al. 1986)
1.21 mg/L (~435 ppm); tested as dihydrate
Time scaled to 1 hour = 690-1740 ppm (n = 3 to 1)
2 ppm for 13 weeks: no toxic response
Boron trifluoride also rapidly reacts with moisture

Relative toxicity of hydrogen halides: HF > HCl > HBr (Stavert et al. 1991) Relative toxicity of boron trihalides: $BF_3 > BCl_3 \dots > BBr_3$? Boron trihalides more toxic than/similar in toxicity to hydrogen halides....

BORON TRIBROMIDE

Colorless, fuming liquid

Important industrial chemical, but no data on production were located

Hydrolysis in the presence of moisture is rapid and violent (Albemarle Corp. 2007) Hydrolysis complete in aqueous environment; yields three moles of hydrogen bromide and one mole of boric acid

Mechanism of action: irritation, likely due to hydrogen bromide breakdown product Inhalation toxicity of boric acid in the mouse (Krystofiak and Schaper 1996): 300 mg/m³ for 3 hours (~120 ppm): <20% decrease in respiratory rate sensory irritation, no pulmonary effects

2

Human Studies: No data.

Animal Studies: No data.

BORON TRIBROMIDE

3

In absence of empirical data, the AEGLs were based on the breakdown product, hydrogen bromide.

Hydrogen Bromide AEGL Values							
Classification	Exposure Duration						
Classification	10-minute	30-minute	1-hour	4-hour	8-hour		
AEGL-1	l ppm	1 ppm	1 ppm	1 ppm	1 ppm		
AEGL-2	100 ppm	43 ppm	22 ppm	11 ppm	11 ppm		
AEGL-3	740 ppm	250 ppm	120 ppm	31 ppm	31 ppm		

AEGL-1: based on a NOAEL for notable discomfort (3 ppm) in a study with six human volunteers exposed to 2, 3, 4, 5, or 6 ppm HBr for several minutes (Connecticut State Department of Health 1955). An intraspecies uncertainty factor of 3 was applied. **AEGL-2**: Analogy with HCl (1300 ppm for 30 minutes; Stavert et al. 1991); however, mortality in rats exposed to HBr at this concentration/duration was 8%. **AEGL-3**: Based on 1-hour BMCL₀₅ of HBr in rats of 1239 ppm (MacEwen and Vernot 1972). Based on the mechanism of direct-acting irritation, UFs of 3 and 3 for a total of 10 were applied. Because HBr is well scrubbed in the upper respiratory tract, the 8-hour AEGL-2 and AEGL-3 values were set equal to the respective 4-hour values.

BORON TRIBROMIDE

Boron tribromide hydrolyzes into three moles of hydrogen bromide Hydrogen bromide considered the toxic breakdown product

AEGL-1: In the absence of empirical data, the AEGL-1 for boron tribromide was derived by dividing the AEGL-1 for hydrogen bromide by 3. For both hydrogen bromide and boron tribromide, the same value was used across all exposure durations because there is adaptation to the slight irritation defined by the AEGL-1.

AEGL-1 Values for Boron Tribromide					
10 minutes 30 minutes 1 hour 4 hours 8 hours					
0.33 ppm	0.33 ppm	0.33 ppm	0.33 ppm	0.33 ppm	

BORON TRIBROMIDE

AEGL-3: In the absence of empirical data and based on the breakdown of boron tribromide into three moles of hydrogen bromide, the AEGL-3 values for boron tribromide were set at one-third of the hydrogen bromide AEGL-3 values.

AEGL-3 Values for Boron Tribromide					
10 minutes 30 minutes 1 hour 4 hours 8 hours					
250 ppm	83 ppm	40 ppm	10 ppm	10 ppm	

BORON TRIBROMIDE

5

AEGL-2:

In the absence of empirical data and because the value for hydrogen bromide is two chemicals removed from boron tribromide, the AEGL-2 for boron tribromide was based on one-third of the hydrogen bromide AEGL-3 (according to SOP guidelines for chemicals with steep dose-response curves).

AEGL-2 Values for Boron Tribromide						
10 minutes 30 minutes 1 hour 4 hours 8 hours						
83 ppm	28 ppm	13 ppm	3.3 ppm	3.3 ppm		

6

PROPOSED BORON TRIBROMIDE AEGLs

7

	Exposure Duration				
Classification	10-Minute	30-Minute	1-Hour	4-Hour	8-Hour
AEGL-1	0.33 ppm	0.33 ppm	0.33 ppm	0.33 ppm	0.33 ppm
AEGL-2	83 ppm	28 ppm	13 ppm	3.3 ppm	3.3 ppm
AEGL-3	250 ppm	83 ppm	40 ppm	10 ppm	10 ppm

ALTERNATIVE BORON TRIBROMIDE AEGLs*

	Exposure Duration				
Classification	10-Minute	30-Minute	1-Hour	4-Hour	8-Hour
AEGL-1	0.33 ppm	0.33 ppm	0.33 ppm	0.33 ppm	0.33 ppm
AEGL-2	33 ppm	14 ppm	7.3 ppm	3.7 ppm	3.7 ppm
AEGL-3	250 ppm	83 ppm	40 ppm	10 ppm	10 ppm

*Based on 1/3 of all HBr values.

. N

Statements Concerning Boric Acid Added to Boron Tribromide TSD 2. Human Toxicity Data

No information on the inhalation toxicity of boric acid was located. Boric acid is used as an astringent and antiseptic. Orally, boric acid is of low acute toxicity to adults, but there are reports of fatalities (Jordan and Crissey 1957). Death has occurred from intake of <5 g in infants and from 5 to 20 g in adults (O'Neil et al. 2001). Very high doses (4.6-14 g) ingested by infants killed 5 of 14 within 2-3 days and those who survived consumed 2-4.5 g (Wong et al. 1964). Mortality was 70% among infants who were accidentally poisoned with oral boric acid (Goldbloom and Goldbloom 1953).

Boric acid has been held responsible for systemic intoxication after ingestion, injection, application to damaged skin or enema (Brooke and Boggs 1951; Ducey and Williams 1953; Johnstone et al. 1955; Jordan and Crissey 1957; Mcintyre and Burke 1937; Rosen and Haggerty 1956). There is no evidence boric acid or borates are absorbed through intact skin (Sciarra 1958). Whether the apparent increased susceptibility of infants and children is due to immaturity of the kidney (which accounts for the primary route of elimination) (Locksley and Sweet 1949) or is related to the relatively high administered dose on a body weight basis (Young et al. 1949) is not clear. Autopsy is generally unremarkable with deaths delayed several days after exposure, but pancreatic lesions and those in kidney and brain have been described (McNally and Rust 1928; Valdes-Dapena and Arey 1962). Although seizures can precede death, the hyperchloremic metabolic acidosis is a characteristic feature (Wong et al. 1964).

3. Animal Toxicity

No data on the lethality, developmental/reproductive effects, genotoxicity, or chronic toxicity/carcinogenicity of boron tribromide were available. Data on the breakdown products, boric acid and hydrogen bromide were available. Inhalation exposure of male Swiss-Webster mice to 300 mg/m^3 boric acid aerosol (approximately 120 ppm), the highest achievable concentration, resulted in a decrease in respiratory rate of <20%. The effect was attributed to sensory irritation; there were no pulmonary effects (Krystofiak and Schaper 1996). The oral LD₅₀ in rats for boric acid is 5 g/kg (O'Neil et al. 2001).

7.3. Derivation of AEGL-3

The toxicity of boric acid is of consideration. The intake of boric acid at the AEGL-3 for infants, the most susceptible population, can be calculated. The AEGL-3 is 100 mg/m^3 for 8 hours. The breathing rate of a child is 12 m^3 /day. Boron tribromide is 4.32% boron. Assuming complete uptake of boron from the respiratory tract the resulting uptake for a child is:

 $100 \text{ mg/m}^3 \text{ x } 12 \text{ m}^3/24 \text{ hours x } 8 \text{ hours x } 0.0432 = 17 \text{ mg of boron potentially absorbed.}$

This value is low compared to the 2-5 g needed for lethality in a child.

ATTACHMENT 10

Chloropicrin (CAS Reg. No. 6581-06-2)

NAC/AEGL-44 Orlando, FL December 5-7, 2007

ORNL Staff Scientist: Chemical Manager: Chemical Reviewer: Chemical Reviewer: Robert A. Young Gail Chapman Henry Anderson Jim Holler

Chloropicrin

- > Fumigant, soil insecticide
- Riot-control agent (Agent PS)
Chloropicrin Human Exposure

- Lethality following acute exposure
 - 120 ppm, 30 min (Vedder, 1925)
 - **300 ppm, 10 min (Prentiss, 1937)**
 - 120 ppm, 30 min (Prentiss, 1937)
 - No details on above

- > Nonlethal effect of acute exposure
 - Odor threshold 0.78 ppm (Speck et al., 1982)
 - Ocular and respiratory tract irritation

	Effects of a	cute chloro	picrin exposure on human volunteer subject:	5
Exposure Duration	Exposure Concentration	LOAEL (ppm)	Comments	Reference
Immediate to 30 seconds	1, 2.5, 5.0, 7.5, 10.0, 15.0, 20.0, 25 ppm	1	Eyes remain open (as a measure of irritation); at 2.5 to 20 ppm eyes close within 3 to 30 seconds depending on concentration and individual susceptibility; eyes close immediately at 25 ppm	Fries and West 1921
Immediate	1 ppm	1	Immediate eye irritation	Fairhall 1957
Few seconds	26 mg/m ³ (3.9 ppm)	26	Unfit for combat	Flury and Zernick, 1931
Few seconds	100 mg/m ³ (15 ppm)	15	Non-specified injury to respiratory tract	
Unspecified (presumably immediate or within 10 min)	0.002 mg/L (0.30 ppm)	0.3	Lacrimation	Prentiss 1937
10 min	0.05 mg/L (7.4 ppm)	7.4	Intolerable ocular and respiratory tract irritation	
	2.00 mg/L (300 ppm)	300	Lethality; no further details	
30 min	0.80 mg/L (120 ppm)	120		
30 min	0.8 mg/L (120 ppm)	120	Lethality; no further details	Vedder 1925
1 h/d for 4 d	0, 0.1, 0.15 ppm	0.1	Ocular irritation at 0.1 ppm	Cain 2004 (summarized in Reaves 2004, 2006a,b) ^a

Note: age, gender, and number of subjects not reported except as footnoted. ^a 15 males; 17 females

.

Chloropicrin Human Effects Data

Sensory irritation (Reaves, 2004)

	Summary of Human Sensory Irritation Testing with Chloropicrin							
Test Phase	Concentration (ppb)	Exposure Duration	Results					
Phase I	0, 356, 533, 800, or 1200	"sniff"	Median odor detection: 700 ppb (males 590 ppb; females 810 ppb Median eye detection: 900 ppb (males790 ppb; females 1010 ppb)					
Phase II	0, 50, 75, 100, or 150	20-30 minutes	1 Female subject left at 75 ppb 4 Subjects (2 of each gender) left at 150 ppb 16 of 42 Subjects detected chloropicrin at 50 ppb Ocular and nasal detection by sensitive individuals					
Phase III	100, or 150	60 min/day; 4 consecutive days	NOAEL: not established <100 ppb LOAL: 100 ppb; ocular irritation, differential ventilatory flow; time for recognition at either concentration was 5 minutes					

Reaves, 2004

 \triangleright

Chloropicrin Human Effects Data

Phase 3 was most comprehensive assessment of sensory, physiological, and clinical effects

- Sensory perception by volunteer subjects (Phase 3)
 - 0: no symptoms
 - 1: mild (easily tolerated)
 - 2: moderate (notable, bothersome but tolerated)
 - 3: severe (difficult to tolerate; possibly interfere with daily activity or sleep)

Chloropicrin Human Effects Data

e i ann e i i ann e	Human Subject Response to Chloropicrin During a 1-h Exposure ^a									
		Eyes		N	ose	Th	roat			
Exposure	Rating	Response Frequency	Time for Recognition	Average Symptom Rating	Time for Recognition	Average Symptom Rating	Time for Recognition			
0 ppb (0 mg/m ³)	0.1	Not available in summary report	NA	0.1	5 min	0.1	5 min			
100 ppb (0.67 mg/m ³)	0.5	Sporadic "severe" irritation in 8/32 subjects (25%) over the 60-min exposure duration	30 min	0.1	5 min	0.1	5 min			
150 ppb (1.0 mg/m ³)	1	Sporadic "severe" eye irritation scores in 7/32 subjects (22%) over the 60-min exposure duration	20 min	0.2	5 min	0.1	5 min			

^a Assessments made while subjects were in exposure chamber, with ratings given 30 seconds from initial exposure and every minute thereafter for the 60-minutes exposure duration.

Chloropicrin Animal Lethality Data Rats

- > Yoshida et al. (1987a)
 - o 4-hour: groups of 6-8 male F-344 rats exposed to 8.8, 11.0, 11.4, 12.1, 13.6 or 16.0 ppm (analytical); 14-day observation
 - 4-hr LC₅₀: 11.9 ppm
 - Biphasic lethality pattern
 - Primary target: respiratory tract
 - **30-min: 21.7 or 45.5 ppm**
 - No deaths at 21.7 ppm
 - 100% lethality at 45.5 ppm

Toxicity	of Chloropicrin	Vapor in Male Fi	scher Rats (4-hr E	(xposure) ^a				
	Dose in ppm ^b							
Effect	8.8	11.0	11.4	12.1	13.6			
Mortality	0/8	2/8	3/8	5/8	7/8			
Pathology								
Hydrothorax	0/8	0/8	0/8	3/8	5/8			
Lung			A					
Edema	3/8	6/8	6/8	7/8	7/8			
Emphysema	3/8	7/8	2/8	3/8	4/8			
Dark red patches	0/8	1/8	3/8	2/8	1/8			

Yoshida et al. 1987a.

^aAll rats in the 16.0 ppm group died within 24 hours and all exhibited hydrothorax, pulmonary edema, emphysema, and gaseous distention of the stomach. ^b Mean analytical concentration of chloropicrin vapor.

Chloropicrin Animal Lethality Data Rats

Yoshida et al. (1991)

- 4-hour nose-only or whole-body exposure of 8 male F-344 rats
 - Nose-only: 5.3, 5.9, 6.6, or 81. ppm
 - 4-hr LC₅₀: 6.6 ppm
 - Whole-body: 12.3, 13.9, or 15.4 ppm
 - 4-hr LC₅₀: 14.4 ppm
 - 14-day observation

	Lethality in rats exposed for 4 hours to chloropicrin.									
Days post exposure										
Test Group	0 ^a	1	2-7	8	9	10	11-14	Total		
Whole-body	4 14040									
12.3 ppm	1	0	0	0	0	0	0	1/8		
13.9 ppm	2	0	0	0	0	0	0	2/8		
15.4 ppm	5	0	0	0	2	0	0	7/8		
Nose-only		· · · · · · · · · · · · · · · · · · ·								
5.3 ppm	0	0	0	0	0	0	0	0/8		
5.9 ppm	1	0	0	0	0	0	0	1/8		
6.6 ppm	6	0	0	0	0	0	0	6/8		
8.1 ppm	6	0	0	0	0	0	0	6/8		

^a Represents 0-24 hrs. Yoshida et al., 1991

Chloropicrin Animal Lethality Data Rats

Hoffman (1999)

- 4-hr whole-body, 5 rats/gender; 0, 10.6, 18.0 or 28.5 ppm
- 4-hr LC₅₀: ~17 ppm (males), ~20 ppm (females)
- 10.5 ppm NOAEL for lethality
- Only 2-day observation period
- **Respiratory tract involvement**
- ➤ U.S. Testing Co., Inc. (1976)
 - 1-hr LC₅₀: 25.2 ppm
 - 14-day observation

Chloropicrin Animal Lethality Data Mice

Kawai (1973) aerosol vs vapor

- Vapor: 30-min exposure
 - NOAEL for lethality: 18 ppm
 - LC₅₀: 56 ppm
 - LC₁₀₀: 134 ppm
- Aerosol: 240-min exposure
 - NOAEL for lethality: 4.7 ppm (31 mg/m³)
 - LC₅₀: 99 ppm (370 mg/m³)
 - LC₁₀₀: 26 ppm (171 mg/m³)

Chloropicrin Animal Nonlethal Toxicity

- > Yoshida et al. (1987a)
 - 21.7 ppm, 30 min: no lethality in rats
 - gastric distention, red patches in lungs
- Yoshida et al. (1991)
 - 5.3 ppm (nose-only), 4 hrs: no lethality in rats
 - Salivation and rhinorrhea reversible at 24 hrs
 - Red stains around muzzle reversible by 48 hrs
 - Body wt. loss by Day 7, recovered by Day 14

Chloropicrin Animal Developmental Toxicity

Schardein (1993) – Rats; 30/group

- o 0, 0.4, 1.2, 3.5 ppm (whole-body), 6 hrs/day, g.d. 6-15
- Maternal NOAEL 0.4 ppm
- Maternal LOAEL 1.2 ppm
- Developmental NOAEL 1.2 ppm

York et al. (1994) – Rabbits; 20/group

- o 0, 0.4, 1.2, 2 ppm (whole-body), 6 hrs/day, g.d. 6-18
- Maternal NOAEL 0.4 ppm
- Maternal LOAEL 1.2 ppm (2/20 dead)
- Developmental NOAEL 0.4 ppm
- Developmental LOAEL 1.2 ppm

Chloropicrin Mode of Action

Direct-contact

• Lacrimation

 \circ respiratory tract irritation

> Systemic

 \circ Reacts with sulfhydryl groups

- Reduced O₂ transport by Hb
- Inhibition of pyruvate dehydrogenase activity

Chloropicrin AEGL-1

AEGL-1 Values for Chloropicrin (ppm)									
Classification	Classification 10-min 30-min 1-hr 4-hr 8-hr								
AEGL-1	0.15	0.097	0.073	0.041	0.031				

Key Study: Reaves, E. 2006a. Memorandum from Elissa Reaves, Ph.D., US EPA Health Effects Division to Nathan Mottl, Chemical Review Manager, Special Review and Reregistration Division. Review of the TERA Document: "Use of Benchmark Concentration Modeling and Categorical Regression to Evaluate the Effects of Acute Exposure to Chloropicrin Vapor. MRID 46614801."

Critical effect: BMCL₁₀ (0.073 ppm) for ocular irritation in human volunteers exposed to chloropicrin vapor for up to 30 minutes

Time scaling: $C^n x t = k$ where n = 2.4

Uncertainty factors: Total uncertainty factor adjustment was 1 <u>Interspecies</u>: 1; human volunteers (42 subjects, 18-35 years old) <u>Intraspecies</u>: 1; tests with human volunteers included sensitive individuals

Chloropicrin AEGL-2

AEGL-2 Values for Chloropicrin (ppm)									
Classification	10-min	30-min	1-hr	4-hr	8-hr				
AEGL-2	0.32	0.20	0.15	0.084	0.063				

Key Study: Reaves, E. 2006b. Memorandum from Elissa Reaves, Ph.D., Toxicologist, US EPA Health Effects Division, to Tina Levine, Ph.D., Director, US EPA Health Effects Division, "Human Studies Review Board: Weight of Evidence Discussion for Trichloronitromethane (Chloropicrin.)." June 7.

Critical effect: POD 150 ppb (0.15 ppm) 60 min.; intolerable ocular irritation, threshold for ventilatory effects in human volunteers

Time scaling: $C^n x t = k$ where n = 2.4

Uncertainty factors: Total uncertainty factor adjustment was 1 <u>Interspecies</u>: 1; human volunteers (42 subjects, 18-35 years old) <u>Intraspecies</u>: 1; tests with human volunteers included sensitive individuals

Chloropicrin AEGL-3

AEGL-3 Values for Chloropicrin(ppm)									
Classification	Classification 10-min 30-min 1-hr 4-hr 8-hr								
AEGL-2	3.0	1.9	1.4	0.79	0.59				

Key Study: Yoshida M., Ikeda, T., Iwasaki, M., Tsuda, S., Shirasu, Y. 1987a. Acute inhalation toxicity of chloropicrin vapor in rats. J. Pesticide Sci. 12:237-244.

Yoshida, M., Murao, N., Tsuda, S., Shirasu, Y. 1991. Effects of mode of exposure on acute inhalation toxicity of chloropicrin vapor in rats. Nippon Noyaku Gakkaishi (Journal of the Pesticide Science Society of Japan) 16:63-69.

Critical effect: Estimated lethality threshold in rats; POD BMCL₀₅ of 7.5 ppm, 240-min. exposure

Time scaling: $C^n x t = k$ where n = 2.4.

Uncertainty factors: Total uncertainty factor adjustment was 10 <u>Interspecies</u>: 3; variability in lethal response was not great; 3-fold adjustment sufficient for dosimetric variability across species.

<u>Intraspecies</u>: 3; lethality likely due to respiratory tract damage resulting from contact damage to epithelial surfaces.

Summary of AEGL Values for Chloropicrin									
Classification	10-min	30-min	1-hr	4-hr	8-hr				
AEGL-1	0.15 ppm	0.097 ppm	0.073 ppm	0.041 ppm	0.031 ppm				
(Nondisabling)	1.0 mg/m^3	0.65 mg/m^3	0.49 mg/m^3	0.27 mg/m^3	0.21 mg/m^3				
AEGL-2	0.32 ppm	0.20 ррт	0.15 ppm	0.084 ppm	0.063 ppm				
(Disabling)	2.1 mg/m^3	1.3 mg/m^3	1.0 mg/m^3	0.56 mg/m^3	0.42 mg/m^3				
AEGL-3	3.0 ppm	1.9 ppm	1.4 ppm	0.79 ppm	0.59 ppm				
(Lethality)	20 mg/m^3	13 mg/m^3	9.4 mg/m ³	5.3 mg/m^3	4.0 mg/m^3				

ATTACHMENT 11

ACUTE EXPOSURE GUIDELINE LEVELS FOR METHYL IODIDE (CH₁)

National Advisory Committee for AEGLs Meeting December 5-7, 2007

ORNL Staff Scientist: Sylvia S. Talmage

Chemical Manager: Alan Becker

Chemical Reviewers: David Freshwater John Hinz

METHYL IODIDE

1

Liquid at ambient temperatures, but readily volatilizes

Sweet ethereal odor, poor warning property

New use - soil pesticide; no recent production data

Human Studies:

Clinical and case studies provide insufficient data to derive AEGL values

Animal Studies:

Acute toxicity, including neurotoxicity; repeat-dose, developmental/reproductive toxicity; genotoxicity; and chronic toxicity/carcinogenicity

Recent well-conducted toxicity studies available only from secondary source – (U.S. EPA 2006)

2

METHYL IODIDE

Effects and Metabolism

Effects:

Lesions of the nasal passages, specifically the olfactory epithelium Neurotoxicity

Metabolism:

Monohalomethanes are conjugated with glutathione.

Glutathione is a tripeptide present in significant concentrations in all tissues. The function of glutathione is to protect cells from oxidizing agent which might otherwise damage them. Oxidizing agents react with the -SH group of cysteine of the glutathione instead of doing damage elsewhere.... acts as a detoxifying agent.

Conjugation may be either enzymatic, via glutathione transferase, or non-enzymatic. For other monohalomethanes, enzymatic conjugation with glutathione is thought to vary no more than 3-fold in humans (Nolan et al. 1984).

METHYL IODIDE

3

Uncertainty factors and time-scaling

Uncertainty factors:

Interspecies: 1: greater chemical uptake in rodents based on higher respiratory rate and cardiac output

Intraspecies; 3: metabolism via glutathione conjugation is not expected to vary greatly among humans (Nolan et al. 1985). Furthermore, conjugation with glutathione may be non-enzymatic, which could further minimize individual differences.

Time-scaling:

The glutathione depletion which may be responsible for olfactory epithelial lesions and neurotoxicity is considered on a continuum with lethality. Therefore, all AEGL levels were time-scaled. The time-scaling value of n of 1.8 was calculated by entering two sets of lethality data for rats into the ten Berge (2006) probit analysis program. The BMCL₀₅ was calculated for each exposure duration.

METHYL IODIDE

AEGL-1: Animal Data (Rat) - Weight-of-evidence approach

27 ppm for 6 hours: NOAEL for neurotoxicity (U.S. EPA 2006)

100 ppm for 1 hour: no observable change, nasal passages (Reed et al. 1995)

100 ppm for 6 hours: no effect on respiratory parameters (DeLorme et al. 2005)

25 ppm for 6 hours/day, 5 days/week, 4 weeks: NOAEL for nasal lesions, neurotoxicity (Monsanto et al. 1983)

21 ppm for 6 hours/day, 5 days/week for 13 weeks: NOAEL for nasal lesions and other effects (U.S. EPA 2006)

Point of departure: 27 ppm for 6 hours

To time-scale or not to time-scale?

Values were time-scaled ($C^{1.8} \times t = k$)

Proposed AEGL-1 Values for Methyl Iodide							
10-minute 30-minute 1-hour 4-hour 8-hour							
66 ppm	35 ppm	24 ppm	11 ppm	11 ppm			

5

METHYL IODIDE

AEGL-3

Animal data – Rat 1-Hour study (Eastman Kodak Co. 1987)

Mortalities of 20%, 60%, 90% at 1190 ppm, 1554 ppm, 1973 ppm, respectively

4-Hour study (U.S. EPA 2006) Mortalities of 0%, 80%, 80%, 100% at 581 ppm, 710 ppm, 797 ppm, and 1198 ppm

Both data sets entered into ten Berge probit analysis program: Values set at BMCL₀₅ Values automatically time-scaled; time scaling value (n) = 1.8

Proposed AEGL-3 Values for Methyl Iodide								
10-minute	10-minute 30-minute 1-hour 4-hour 8-hour							
670 ppm	390 ppm	280 ppm	130 ppm	86 ppm				

METHYL IODIDE

Proposed Methyl Iodide AEGL Values									
	Exposure Duration								
Classification	10-minute	30-minute	1-hour	4-hour	8-hour				
AEGL-1	66 ppm	35 ppm	24 ppm	11 ppm	11 ppm				
AEGL-2	240 ppm	130 ppm	90 ppm	42 ppm	28 ppm				
AEGL-3	670 ppm	670 ppm 390 ppm 280 ppm 130 ppm 86 ppm							

AEGL-1: based on weight of evidence approach. The point of departure was a NOAEL for clinical signs in the rat, 27 ppm for 6 hours. Interspecies and intraspecies uncertainty factors of 1 and 3, respectively, were applied.

AEGL-2: based on reversible lesions of the olfactory epithelium, 100 ppm for 6 hours. Inter- and intraspecies uncertainty factors of 1 and 3, respectively, were applied. **AEGL-3**: based on 1- and 4-hour BMCL₀₅ values calculated with the ten Berge probit analysis program. Inter- and intraspecies uncertainty factors of 1 and 3, respectively, were applied

METHYL IODIDE

AEGL-2

Animal data - Rat (Reed et al. 1995)

100 ppm for 0.5 hours: no observable change, nasal passages
100 ppm for 1 hour: no observable change, nasal passages
100 ppm for 2 hours: minimal lesions, olfactory epithelium
100 ppm for 3 hours: slight lesions, olfactory epithelium
100 ppm for 4 hours: moderate lesions, olfactory epithelium
100 ppm for 6 hours: reversible lesions of the olfactory epithelium

Point of departure was 100 ppm for 6 hours Values were time-scaled ($C^{1.8} x t = k$)

Proposed AEGL-2 Values for Methyl Iodide						
10-minute	10-minute 30-minute 1-hour 4-hour 8-ho					
240 ppm	130 ppm	90 ppm	42 ppm	28 ppm		

METHYL IODIDE

Comparison of AEGL values for monohalomethanes:

AEGL Values for Halomethanes							
	Exposure Duration						
Classification	10-min	30-min	1-h	4-h	8-h		
Methyl Iodide							
AEGL-1	66 ppm	35 ppm	24 ppm	11 ppm	11 ppm		
AEGL-2	240 ppm	130 ppm	90 ppm	42 ppm	28 ppm		
AEGL-3	670 ppm	390 ppm	280 ppm	130 ppm	86 ppm		
•	Methyl Bromide						
AEGL-1	NR	NR	NR	NR	NR		
AEGL-2	940 ppm	380 ppm	210 ppm	67 ppm	67 ppm		
AEGL-3	3300 ppm	1300 ppm	740 ppm	230 ppm	130 ppm		
Methyl Chloride							
AEGL-1	NR	NR	NR	NR	NR		
AEGL-2	1100 ppm	1100 ppm	910 ppm	570 ppm	380 ppm		
AEGL-3	3800 ppm	3800 ppm	3000 ppm	1900 ppm	1300 ppm		

NR - Not Recommended; values are not recommended because there are no odor or warning properties and toxic effects may occur below the odor threshold. AEGL values reflect the known toxicity: MeI>MeBr>MeC1.

ATTACHMENT 12

ACUTE EXPOSURE GUIDELINE LEVELS (AEGLs) FOR ALLYL CHLORIDE, C₃H₅Cl (CAS NO. 107-05-1)

NAC/AEGL-44 December 5-7, 2007

ORNL Staff Scientist: Jennifer Rayner Chemical Manager: Richard Niemeier Chemical Reviewers: Marc Baril, Roberta Grant

Allyl Chloride

Common Synonyms: 3-Chloropropene, Chlorallylene, 1-Chloro-2-propene

Conversion

 $1 \text{ ppm} = 3.13 \text{ mg/m}^3$

 $1 \text{ mg/m}^3 = 0.32 \text{ ppm}$

Physical Characteristics:

- Liquid- colorless, pale yellow, purple, brown, read
- Odor- irritating, unpleasant, and pungent odor, similar to garlic

Uses:

• Synthesis of allyl compounds

Mechanism of Toxicity

Unknown- It is possible that toxic metabolites are formed and cause kidney lesions.

Susceptible Populations

Asthmatics- possible increased bronchial response from respiratory irritation

HUMAN DATA

Effects at lethal concentrations None known

Effects at non-lethal concentrations

Torkelson et al. (1959). Vapor toxicity of allyl chloride as determined in laboratory animals.

Species	Concentration (ppm)	Exposure Time	Effect
Human	3	1-3 min	Odor detection in 10 of 13 volunteers, no irritation

Shell Chemical Company (1959). Industrial Hygiene Bulletin No. SC-57-80.

Species	Concentration (ppm)	Exposure Time	Effect
Human	3-6	5 min	Threshold, Odor ₅₀
Human	25	5 min	Threshold, Odor ₁₀₀
Human	> 25	5 min	Threshold, Nose Irritation ₅₀ ; Pulmonary Discomfort ₅₀
Human	50-100	5 min	Threshold, Eye Irritation ₅₀

3

ANIMAL DATA

2

Adams et al. 1940. The acute vapor toxicity of allyl chloride

Species	Conc. (ppm)	Exposure Time (hr)	Mortality (%)	Effect
Rat	290	2 3 4 6 7 8 9	0 0 20 20 0 100 100	Drowsiness, unsteadiness, eye irritation, unconsciousness, death within 24 hr
Rat	2,900	0.5 1 2 2 3 4 4	0 0 80 66 100 100 100	Slight eye and nose irritation, increased death during exposure
Rat	5,800	0.5 1 2	0 20 100	Eye and nose irritation, drowsiness, death within 24 hr
Rat	14,500	0.5 1 1.25 1.25 2	0 80 100 100 100	Eye and nose irritation, drowsiness, weakness, instability, labored breathing, death within 24 hr
Rat	29,300	0.25 0.5 0.5 1	0 100 100 100	Eye and nose irritation, unconsciousness, death within a short time

4

Adams et al. (1940) cont.

Species	Conc. (ppm)	Exposure Time (hr)	Mortality (%)	Effect
Guinea Pig	290	1 2 4 6 9	0 20 100 100 100	Drowsiness, unsteadiness up to 4 hr. eye irritation, unconsciousness up to 6 hr, death within 24 hr
Guinea Pig	2,900	0.5 1 2	0 0 100	Slight eye and nose irritation in 2 hr; death after exposure
Guinea Pig	14,500	0.16 0.25 0.5 0.5 0.5 0.75 1	0 0 50 100 66 100 100	Eye and nose irritation, drowsiness, weakness, instability, labored breathing, death within 24 hr

Quast et al. 1982a. Results of Single 6-Hour Inhalation Exposure Studies in Laboratory Rodents

Species	Conc. (ppm)	Exposure Time (hr)	Mortality (%)	Effect
Rat	200 300 500 800 1000 1000 2000	6 hr	0 0 0 5 5 55	Slight palpebral closure and conjunctival hyperemia; 500 and 800 ppm diarthea, lethargy; female \geq 300 ppm and males \geq 500 ppm acute renal tubular degeneration, recoverable
Mouse	500 800 1000 1000 1200 2000	6 hr	0 0 70 50 25 100	Slight to moderate palpebral closure; females 800 ppm acute renal tubular degeneration, recoverable

AEGL-1 Values for Allyl Chloride

10- minute	30-minute	1-hour	4-hour	8-hour
1 ppm	l ppm	1 ppm	1 ppm	1 ppm

Key Study: Torkelson et al. 1959. Vapor toxicity of allyl chloride as determined in laboratory animals. Am. Ind. Hyg. Assoc. J. 20:217-223; Shell Chemical Co. 1959. Allyl Chloride. Industrial Hygiene Bulletin No. SC-57-80. New York: Shell Chemical Co., Industrial Hygiene Department, January 1959. pp. 1-6.

Toxicity endpoint: No observed adverse effect level

Time scaling: None

Uncertainty factors: An intraspecies uncertainty factor of 3 was used to protect asthmatics who may have increased bronchial response in the presence of allyl chloride. No interspecies uncertainty factor was used because the number was derived from human data.

The AEGL level was held constant across all exposure time points. That approach was considered appropriate because mild irritant effects generally do not vary greatly over time.

7

AEGL-2 Values for Allyl Chloride

6

10- minute	30-minute	1-hour	4-hour	8-hour
69 ppm	69 ppm	54 ppm	34 ppm	22 ppm

Key Study: Quast et al. 1982a. Allyl Chloride- Acute Studies. Results of Single 6-Hour Inhalation Exposure Studies in Laboratory Rodents. Final Report, Toxicology Research Laboratory, Dow Chemical, U.S.A., Midland, MI (June 4, 1982).

Toxicity endpoints: AEGL-2 values were based upon lowest concentration (300 ppm) at which reversible kidney tubular degeneration was observed and the highest concentration for slight eye closure and redness. This estimate of a threshold for irreversible effects was justified because of the absence of exposure-response data related to irreversible or other serious, long-lasting effects.

Time scaling: Temporal scaling was performed, using n = 3 when extrapolating to shorter time points and n = 1 when extrapolating to longer time points using the Cⁿ x t = k equation (NRC 2001). The 30-minute value was also adopted as the 10-minute value.

Uncertainty factors: A factor of 3 was applied for interspecies variability because it is expected that the mechanism of action (eye and respiratory tract irritation) would not differ across species, but the guinea . pig appears to be more sensitive to allyl chloride than the rat (Adams et al. 1940; Lu et al. 1982). Although data on sensitive subpopulations are lacking for allyl chloride, an intraspecies uncertainty factor of 3 is protective of asthmatics and other sensitive individuals.

AEGL-3 Values for Allyl Chloride

10-minute	30-minute	1-hour	4-hour	8-hour
180 ppm	180 ppm	140 ppm	90 ppm	60 ppm

Key Study: Quast et al. 1982a. Allyl Chloride- Acute Studies. Results of Single 6-Hour Inhalation Exposure Studies in Laboratory Rodents. Final Report, Toxicology Research Laboratory, Dow Chemical, U.S.A., Midland, MI (June 4, 1982).

Toxicity endpoint: The AEGL-3 values were based upon the highest experimental concentration with no mortality (800 ppm). Moderate eye closure, diarrhea, and lethargy were observed. Concentrations equal to and greater than 1000 ppm produced mortality.

Time scaling: $C^n x t = k$, temporal scaling, using n = 3 when extrapolation to shorter time points and n = 1 when extrapolating to longer time points due to lack of data to derive the value of n (NRC 2001). The 30-minute value was adopted for the 10-minute value.

Uncertainty factors: A total uncertainty factor of 10 was applied to account for interspecies extrapolation (3) and intraspecies variability (3). A factor of 3 was applied for interspecies variability because it is expected that the mechanism of action (eye and respiratory tract irritation) would not differ across species. Although human data did not provide quantitative exposure information, they described effects similar to those seen in rats; eye and respiratory tract irritation. Although data on sensitive subpopulations are lacking for allyl chloride, an intraspecies uncertainty factor of 3 is protective of asthmatics and other sensitive individuals.

Summary of AEGL Values for Allyl Chloride

Classification	Exposure Duration						
Classification	10-minute	30-minute	l-hour	4-hour	8-hour		
AEGL-1 (Notable discomfort)	1 ppm	1 ppm	1 ppm	1 ppm	1 ppm		
AEGL-2 (Disabling)	69 ppm	69 ppm	54 ppm	34 ppm	22 ppm		
AEGL-3 (Lethal)	180 ppm	180 ppm	140 ppm	90 ppm	60 ppm		

10

Extant Standards and Guidelines

	Exposure Duration						
Guideline	Guideline 10 minute m	30 minute	1 hour	4 hour	8 hour		
AEGL-1	1 ppm	1 ppm	1 ppm	1 ppm	1 ppm		
AEGL-2	69 ppm	69 ppm	54 ppm	34 ppm	22 ppm		
AEGL-3	180 ppm	180 ppm	140 ppm	90 ppm	60 ppm		
ERPG-1 (AIHA) ^a			3 ppm				
ERPG-2 (AIHA)			40 ppm				
ERPG-3 (AIHA)			300 ppm				
PEL-TWA					1 ppm		
IDLH (NIOSH) ^c		250 ppm					
REL-TWA (NIOSH) ^d					1 ppm		
REL-STEL (NIOSH) ^e					2 ppm		
TLV-TWA (ACGIH) ^f					1 ppm		
TLV-STEL (ACGIH) ^g					2 ppm		
MAC (The Netherlands) ^h					1 ppm		

п

ATTACHMENT 13

Document History:

NAC-43 (June, 2007):

Document tabled due to extremely sparse data.

Dr. Sylvie Tissot offers to try to obtain unpublished data- Success!

ACUTE EXPOSURE GUIDELINE LEVELS (AEGLs) FOR METHANESULFONYL CHLORIDE

NAC/AEGL-44 December 5-7, 2007 Orlando, FL

ORNL Staff Scientist: Cheryl Bast

ŧ

Chemical Manager: Roberta Grant

Chemical Reviewers: George Rusch and Richard Niemeier

Pennwalt Corporation, 1987

1	5	
	e	
	id	
	2	
1	- P	
	1	
İ	E	
2	Ifc	
	Su.	
	ne l	
	ha	
	let	
	Ξ	
	5	
	ed	
	0S	,
	XD	I.
	6	
I	ate	
ł	E	
1	-	
	Ē	
i	al	
I	E	
ľ	ž	
	Ξ.	
I	2	
	Ξ	
ł	g	
	Z	
1	۲,	

1

	and the second	IIOUL	
Concentration		Mortal	lity
	Males	Females	Combined
165 pppm	1/5	0/5	1/10
174 ppm	1/5	1/5	2/10
300 ppm	5/5	5/5	10/10
Pennwalt Corpora	ation, 1986		

The data did not allow for the calculation of an LCs value; however, the study authors stated that the one-hour LCs is most likely in the range of 175 to 250 ppm.

AEGL-1 VALUES: METHANESULFONYL CHLORIDE						
10 minute	30 minute	1 hour	4 hour	8 hour		
NR	NR	NR	NR	NR		

NR: Not Recommended due to insufficient data.

A	AEGL-2 Values for Methanesulfonyl Chloride							
10-min	30-min	1-h	4-h	8-h				
1.0 ppm	1.0 ppm	0.83 ppm	0.53 ppm	0.26 ppm				

Endpoint: Three-fold reduction of AEGL-3 values.

Approach justified by steep concentration-response curve

4-hr Rat data (Pennwalt Corporation, 1987)

10% mortality at 20 ppm

90% mortality at 28 ppm

10 minute	30 minute	1 hour	4 hour	8 hour
3.1 ppm	3.1 ppm	2.5 ppm	1.6 ppm	0.78 ppm
Species:	Rat		· .	
Concentration	: 15.5 ppm			
Time:	4 hours			
Endpoint:	BMCL ₀₅			
Reference:	Pennwalt	Corporation, 1	987	
, Time Scaling:	$c^n x t = k, where the test is the test $	ere the expone	nt, n, is the co	nservative
	default of 1 (8	8-hr) or 3 (30-n	nin and 1-hr.	30-Min valu
	is adopted as	10-min value.	•	
		,		
<u>Uncertainty Fa</u>	actors:			
<u>Uncertainty Fa</u> Interspecies =	actors: 3: Irritant			
<u>Uncertainty Fa</u> Interspecies = Intraspecies =	actors: 3: Irritant 3: Irritant			
<u>Uncertainty Fa</u> Interspecies == Intraspecies =	actors: 3: Irritant 3: Irritant			

Using the TerHaar (1978) study (POD of 29 ppm for 6-hours; no mortality, but severe irritation present) and applying time scaling and uncertainty factors as described above:

10 minute	30 minute	1 hour	4 hour	8 hour
6.6 ppm	6.6 ppm	5.3 ppm	3.3 ppm	2.2 ppm

	ummary of AEGL Values for Methanesulfonyl Chloride	Exposure Duration	10-min 30-min 1-h 4-h 8-h	NR NR NR NR NR	1.0 ppm 1.0 ppm 0.83 ppm 0.53 ppm 0.26 ppm	3.1 ppm 3.1 ppm 2.5 ppm 1.6 ppm 0.78 ppm	cended due to insufficient data. Absence of an AEGL-1 value does not imply as below the AEGL-2 are without effect.	
·	mmary of AEG		10-min	NR	1.0 ppm	3.1 ppm	nded due to insuf i below the AEGL	
	Su	Classification	CIASSILIVATIVU	AEGL-1	AEGL-2	AEGL-3	NR: Not Recomment that concentrations	

There are no other standards or guidelines for methanesulfonyl chloride!

ATTACHMENT 14

ACUTE EXPOSURE GUIDELINE LEVELS (AEGLs) FOR SULFURYL FLUORIDE, SO₂F₂ (CAS NO. 2699-79-8)

NAC/AEGL-44 December 5-7, 2007

ORNL Staff Scientist: Jennifer Rayner Chemical Manager: Susan Ripple Chemical Reviewers: Daniel Sudakin, Alan Woolf

Sulfuryl Fluoride

Common Synonyms: Sulfonyl fluoride, Vikane, ProFume, sulfuryl difluoride, sulfur fluoride oxide

Conversion

 $1 \text{ ppm} = 4.17 \text{ mg/m}^3$ $1 \text{ mg/m}^3 = 0.2392 \text{ ppm}$

Physical Characteristics:

· Gas- colorless, odorless

Uses:

- Restricted use fumigant-Insecticide, rodenticide
- Used in organic drug and dye synthesis

Mechanism of Toxicity

Sulfuryl Fluoride- The toxicity is thought to be due to the fluoride ion. Sulfuryl fluoride is hydrolyzed to fluorosulfate and then to sulfate with the fluoride ion being released.

Susceptible Populations

Workers using the fumigant, people entering fumigated structures prematurely

HUMAN DATA

Effects at lethal concentrations

Cardiopulmonary arrest Fatal pulmonary congestion edema Generalized seizures Dyspnea

Effects at non-lethal concentrations Nausea

Vomiting Nasal mucosa inflammation

Concurrent exposures

Small amount of chloropicrin is mixed in to serve as warning agent

ANIMAL DATA

2

Miller et al. (1980). Sulfuryl fluoride (Vikane fumigant): An LC50 determination.

Species	Conc. (ppm)	Exposure Time	Mortality (%)	Effect
Rat	2025	4 hr	100 B	Central nervous system
	1425		100 B	depression; convulsions;
	1250		60 M	ocular irritation; lesions of the
	1200		90 F	respiratory tract, kidneys, and
	1020		10 F	liver
l	1000		10 M	
	1000		100 F	
	1122		LC50 M	
	991		LC ₅₀ F	
	790		0	Some reduced body weight
1	700	1	0	gain
	450		0	1
1	320		0	

Gorzinski and Streeter (1985). Effect of acute Vikane exposure on selected physiological parameters in rats.

Species	Conc. (ppm)	Exposure Time	Mortality (%)	Effect
Rat	20000 4000	20 min	100 100	↓ Body temperature; ↓ heart rate; ↓ respiration; pale extremities

Nitschke et al. (1986). Incapacitation and treatment of rats exposed to a lethal dose of sulfuryl fluoride.

3

Species	Conc. (ppm)	Exposure Time	Mortality (%)	Effect
Rat	40000	~ 6 min	100	Tonic convulsions:
	20000	~10 min	100	incapacitation; † serum
	10000	~17 min	100	fluoride; cyanosis at ≥ 10000
	4000	~42 min	100	ppm

Nitschke and Lomax (1989). Sulfuryl fluoride: Acute LC_{50} study with B6C3F1 mice.

Species	Conc. (ppm)	Exposure Time	Mortality (%)	Effect
Mouse	1003	4 hr	100	Tremors, lethargy
	603		100	1. Contract (1. Co
1	404		0	No effects

Nitschke and Quast (1990). Sulfuryl fluoride: Acute LC₅₀ study with CD-1 mice.

Species	Conc. (ppm)	Exposure Time	Mortality (%)	Effect
Mouse	806	4 hr	70	Tremors; lethargy; visceral
mouse	692		80	congestion
	596		0	No effects

AEGL-1 Values for Sulfuryl Fluoride

10- minute	30-minute	1-hour	4-hour	8-hour
NR	NR	NR	NR	NR

AEGL-1 values were not derived due to steep dose response relationship and lack of effects below 603 ppm. Absence of an AEGL-1 value does not imply that exposure below the AEGL-2 concentration is without adverse effects.

AEGL-2 Values for Sulfuryl Fluoride

10- minute	30-minute	l-hour	4-hour	8-hour
_37 ppm	26 ppm	20 ppm	13 ppm	6.3 ppm

Key Study: Nitschke and Lomax (1989). Sulfuryl fluoride: Acute LC₅₀ study with B6C3F1 mice. The Dow Chemical Company. Midland, MI (March 22, 1989).

Toxicity endpoints: AEGL-2 values were based upon a 3-fold reduction in the AEGL-3 values. This estimate of a threshold for irreversible effects was justified because of the steep dose-response curve. In acute studies with the most sensitive species tested (mouse), no signs of toxicity were found at 404 or 596 ppm, but mortality occurred at 603 and 692.

Time scaling: Not directly applicable; AEGL-2 values derived from 3-fold downward adjustment of AEGL-3 values

Uncertainty factors: See discussion in the AEGL-3 section; AEGL-2 is 1/3 of the AEGL-3.

AEGL-3 Values for Sulfuryl Fluoride

10-minute	30-minute	1-hour	4-hour	8-hour
110 ppm	77 ppm	61 ppm	38 ppm	19 ppm

Key Studies: Nitschke and Lomax (1989). Sulfuryl fluoride: Acute LC₅₀ study with B6C3F1 mice. The Dow Chemical Company. Midland, MI (March 22, 1989).

Toxicity endpoint: The AEGL-3 was based upon the BMCL₀₅ (383 ppm) in mice exposed for 4 hr. Mortality was present at 603 ppm.

Time scaling: $C^n x t = k$, temporal scaling, using n = 3 when extrapolating to shorter time points and n = 1 when extrapolating to longer time points due to lack of data to derive a value of n (NRC 2001).

Uncertainty factors: A total uncertainty factor of 10 was applied to account for interspecies extrapolation and intraspecies variability. A factor of 3 was applied for interspecies variability because a more sensitive species was used. Mortality in rats was observed at concentrations around 1000 ppm while a lower concentration 600 ppm caused mortality in mice. The calculated 4 hr LC₅₀s for rats was 991 and 1122 ppm and 642 and 660 ppm for mice. An uncertainty factor of 3 was used to account for intraspecies variability to protect sensitive individuals.

Summary of AEGL Values for Sulfuryl Fluoride

Classification	Exposure Duration						
Classification	10-minute	30-minute	l-hour	4-hour	8-hour		
AEGL-I (Notable discomfort)	NR	NR	NR	NR	NR		
AEGL-2 (Disabling)	37 ppm	26 ppm	20 ppm	13 ppm	6.3 ppm		
AEGL-3 (Lethal)	110 ppm	77 ppm	61 ppm	38 ppm	19 ppm		

ppm. Absence of an AEGL-1 value does not imply that exposure below the AEGL-2 concentration is without adverse effects.

Extant Standards and Guidelines for Sulfuryl Fluoride

Guidalina		Ex	posure Dura	tion	
Ourdenne	10 minute	30 minute	1 hour	4 hour	8 hour
AEGL-1	NR	NR	NR	NR	NR
AEGL-2	37 ppm	26 ppm	20 ppm	13 ppm	6.3 ppm
AEGL-3	110 ppm	77 ppm	61 ppm	38 ppm	19 ppm
PEL-TWA					5 ppm
IDLH (NIOSH)		200 ppm			
REL-TWA (NIOSH)					5 ppm
REL-STEL (NIOSH)					10 ppm
TLV-TWA (ACGIH)	-				5 ppm
TLV-STEL (ACGIH)	10 ppm				
MAC (The Netherlands)					5 ppm

AEGL-1 values were not derived due to steep dose response relationship and lack of effects below 603 ppm. Absence of an AEGL-1 value does not imply that exposure below the AEGL-2 concentration is without adverse effects.

Similar to hydrogen sulfide:

An irritant at low concentrations

Causes respiratory paralysis and neurotoxicity at higher concentrations.

The hydrogen sulfide produced from the metabolism of carbonyl sulfide via carbonic anhydrase is thought to be responsible for carbonyl sulfide toxicity

ACUTE EXPOSURE GUIDELINE LEVELS (AEGLs) FOR CARBONYL SULFIDE

NAC/AEGL-44 December 5-7, 2007 Orlando, FL

ORNL Staff Scientist: Cheryl Bast

Chemical Manager: Ralph Gingell

Chemical Reviewers: Ed Bernas and Ernest Falke

STEEP CONCENTRATION-RESPONSE CURVE

Mortality in rats exposed to carbonyl sulfide for 4-hours (DuPont, 1981)

Concentration (ppm)	Mortality
943	0/10
1090	4/10
1210	10/10

Mortality in rats exposed to carbonyl sulfide for 4-hours (Monsanto, 1985a)				
Concentration (ppm)	Mortality			
993	0/12			
1060	4/12			
1147	11/12 -			

Thiess et al. (1968) : Rats

No mortality:

3/6 dead:

1000 ppm for 75-min

1000 ppm for 90-min

26 ppm	26 ppm	23 ppm	16 ppm	14 ppm
Sanaiaa				
	-			
species:	Rat			Sec. 1
Concentration:	150 ppm			
Time:	6 hours			
Endpoint:	NOEL for	all effects (next	t highest conce	ntration of
	300 ppm is	a NOEL for se	vere clinical si	one and
	brain path	ology)		-Buo and
Reference:	Morgan et	al. 2004		· · · · ·

Uncertainty Factors:

Intraspecies: 3: Considered sufficient due to the steep concentrationresponse curve

Interspecies: 3

Although the animal data suggest some species variability and the rat is not the most sensitive species, use of the full default interspecies UF of 10 would yield AEGL-1 values that are less consistent with the overall database.

Proposed AEGL-1 values are considered protective:

No treatment-related effects in rats repeatedly exposed to 51 ppm, 6-hr/day for 11 days (Monsanto, 1985b).

AEGL-2 Values for Carbonyl Sulfide					
10-min	30-min	1-h	4-h	8-h	
53 ppm	53 ppm	45 ppm	33 ppm	28 ppm	

Species:	Rat
Concentration:	300 ppm
Time:	6 hours
Endpoint:	NOEL for clinical signs and brain pathology
Reference:	Morgan et al, 2004

Time Scaling: cⁿ x t = k, where the exponent, n, is 4.4, derived from hydrogen sulfide rat lethality data ranging from 10-min to 6-hr. 30-Min value is adopted as 10-min value.

Uncertainty Factors:

Intraspecies: 3: Considered sufficient due to the steep concentrationresponse curve

Interspecies: 3

Although the animal data suggest some species variability and the rat is not the most sensitive species, use of the full default interspecies UF of 10 would yield AEGL-2 values that are less consistent with the overall database.

Proposed AEGL-2 values are considered protective:

No treatment-related effects in rats repeatedly exposed to 51 ppm, 6-hr/day for 11 days (Monsanto, 1985b) and 75 or 150 ppm 6-hr/day for 4 days (Morgan et al., 2004).

10-min	30-min	1-h	4-h	8-h
150 ppm	150 ppm	130 ppm	95 ppm	81 ppm
		1		
Species:	Rat			
Concentration:	952 ppm			
Time:	4 hours	and the second		
Endpoint:	Lethality th	reshold (BMC	L ₀₅ and BMC	01)
Reference:	Monsanto,	1985a		

hydrogen sulfide rat lethality data ranging from 10-min to 6-hr. 30-Min value is adopted as 10-min value.

Uncertainty Factors:

Intraspecies: 3: Considered sufficient due to the steep concentrationresponse curve

Interspecies: 3

Although the animal data suggest some species variability and the rat is not the most sensitive species, use of the full default interspecies UF of 10 would yield AEGL-2 values that are less consistent with the overall database.

Proposed AEGL-3 values are considered protective:

No treatment-related effects in rats repeatedly exposed to 75, 150, or 300 ppm 6-hr/day for 4 days (Morgan et al., 2004).

No treatment-related clinical signs of FOB effects in male and female rats exposed to 300 ppm, 6 hr/day, 5 days/week for 12 exposures in a two-week period; brain lesions were noted only in 1/5 females in this study (Morgan et al., 2004).

No mortality or clinical signs in rats exposed to 200, 300, or 400 ppm 6 hr/day, 5 days/week for 12-weeks; however, significant decreases in brain cholinesterase activity were noted at all three concentrations (Morgan et al., 2004).

No other standards or guidelines!

Summary of AEGL Values For Carbonyl Sulfide					
Classification	Exposure Duration				
	10-min	30-min	1-h	4-h	8-h
AEGL-1	26 ppm	26 ppm	23 ppm	16 ppm	14 ppm
AEGL-2	53 ppm	53 ppm	45 ppm	33 ppm	28 ppm
AEGL-3	150 ppm	150 ppm	130 ppm	95 ppm	81 ppm

ATTACHMENT 16

2-Chloroethanol (Ethylene Chlorohydrin) (CAS Reg. No. 107-07-3)

NAC/AEGL-44 Orlando, FL December 5-7, 2007

1

ORNL Staff Scientist: Chemical Manager: Chemical Reviewer: Chemical Reviewer: Robert A. Young George Rusch Martha Steele Dieter Heinz
2-Chloroethanol

- > Intermediate for pesticides, plasticizers, dyes, ethylene oxide
- High production volume; generally >99% purity

2-Chloroethanol Human Exposure

> Lethality

 \succ

- 2 hrs, 300ppm (est.) (Dierker and Brown, 1944)
- Exposure terms insufficient or absent

- Nonlethal effects (multi-organ involvement)
- Odor threshold 0.4 ppm (Semenova et al., 1980)

- Qualitative information only
 - Nausea, epigastric pain
 - Shock, circulatory effects
 - Headache, giddiness, incoordination
 - Rhonchi, cough
 - Dermal erythema

2-Chloroethanol Animal Lethality

- > Data for multiple species
 - Generally, lethality occurred post exposure
 - Exposure-response relationship data are limited
 - Most data for nonlethality or 100% (or near 100%) lethality

> Additional data may be available (BASF ??)

2-Chloroethanol Animal Lethality

Lethality in Laboratory Species Following a single Exposure to 2-Chloroethanol Vapor.						
Species/Exposure	Exposure Duration	Cumulative Exposure				
Concentration	(min.)	(ppm · min.)	Response			
Rat						
0.003 g/L (840 ppm)	15	12,600	Non lethal			
0.004 g/L (1120 ppm)	30	33,600	3/3 dead next day			
0.003 g/L (678 ppm)	60	40,680	Lethal next day			
0.003 g/L (226 ppm)	120	27,120	Non lethal			
32 ppm	240	7,680	LC ₅₀			
33 ppm	240	7,920	LC ₅₀			
Mouse 0.001 g/L (280 ppm) 0.003 g/L (840 ppm) 0.0032 g/L (896 ppm) 0.0039 g/L (1,090 ppm) 0.0039 g/L (1,090 ppm) 0.0045 g/L (1,260 ppm) 0.0052 g/L (1,460 ppm) 0.007 g/L (1,960 ppm)	120 60 60 15 120 30 60 120	33,600 50,400 53,760 16,350 130,800 37,800 87,600 235,2000	Non lethal 3/3 dead next day 3/3 dead next day 2/3 dead after 2 days 3/3 dead in 140-170 min. 3/3 dead next day 3/3 dead in 100 min. to next day 3/3 dead in 110-129 min.			
Guinea Pig 0.003 g/L (840 ppm) 0.003 g/L (840 ppm) 0.0039 g/L (1,090 ppm) 0.005g/L (1,460 ppm)	30 120 108 55	25,200 100,800 117,720 80,300	Non lethal Dead next day Dead next day Non lethal			

AEGL-2 Values for 2-Chloroethanol (ppm)							
Classification	Classification 10-min 30-min 1-hr 4-hr 8-hr						
AEGL-2	11	4.7	3.2	1.3	0.63		

> Data are insufficient for developing AEGL-2 values for 2-chloroethanol.

> AEGL-2 values estimated as one third of AEGL-3 values (NRC, 2001)

- Limited data suggest steep exposure-response relationship
 - 280 ppm, 120 min not lethal to mice
 - 1,090 ppm 120 ppm 100% lethality (3/3) in mice

AEGL-1 Values for 2-Chloroethanol (ppm)						
Classification	ssification 10-min 30-min 1-hr 4-hr				8-hr	
AEGL-1	NR	NR	NR	NR	NR	

Data are unavailable with which to develop AEGL-1 values for 2-chloroethanol

AEGL-2 Values for 2-Chloroethanol (ppm)							
Classification	ication 10-min 30-min 1-hr 4-hr 8-hr						
AEGL-2	11	4.7	3.2	1.3	0.63		

> Data are insufficient for developing AEGL-2 values for 2-chloroethanol.

> AEGL-2 values estimated as one third of AEGL-3 values (NRC, 2001)

- Limited data suggest steep exposure-response relationship
 - 280 ppm, 120 min not lethal to mice
 - 1,090 ppm 120 ppm 100% lethality (3/3) in mice

AEGL-3 Values for 2-Chloroethanol (ppm)						
Classification	10-min	1-hr	4-hr	8-hr		
AEGL-3	32	14	9.5	3.8	1.9	

Key Study: Goldblatt, M.W. 1944. Toxic effects of ethylene chlorohydrin. Part II. Experimental. Br. J. Ind. Med. 1:213-223.

Critical effect/POD: Estimated lethality threshold in rats based upon lowest nonlethal exposure. 840 ppm, 15 min. (for 10-min and 30-min AEGL-3 values) 226 ppm, 120 min. (for 1-hr, 4-hr, and 8-hr AEGL-3 values)

Time scaling: $C^n x t = k$, where n = 1 or 3

Uncertainty factors Total uncertainty factor: 30

<u>Interspecies</u>: 3; Based upon the differences in the lethal response between the rats and mice, an interspecies uncertainty factor of 3 was considered appropriate.

<u>Intraspecies</u>: 10; 2-Chloroethanol does not appear to be a direct-contact irritant and death in animals does not appear to be a function of damaged respiratory tract epithelial tissue. In the absence of data regarding the mode of action of 2-chloroethanol toxicity and because of the small numbers of animals used in the reported studies, an intraspecies uncertainty of 10 is retained.

Summary of AEGL Values for 2-Chloroethanol							
Classification	10-min	30-min	1-hr	4-hr	8-hr		
AEGL-1							
(Nondisabling)	NR	NR	NR	NR	NR		
AEGL-2	11 ppm	4.7 ppm	3.2 ppm	1.3 ppm	0.63 ppm		
(Disabling)	36 mg/m^3	15 mg/m^3	11 mg/m^3	4.3 mg/m^3	2.1 mg/m^3		
AEGL-3	32 ppm	14 ppm	9.5 ppm	3.8 ppm	1.9 ррт		
(Lethality)	110 mg/m^3	46 mg/m^3	31 mg/m^3	13 mg/m^3	6.3 mg/m^3		

.

