National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances

NAC/AEGL-36 April 12-14, 2005

U.S. EPA, Office of Research and Development Building C, Auditorium 109 T.W. Alexander Drive Research Triangle Park, NC 27709

AGENDA

Tuesday, April 12, 2005

9:00 am.	Introductory remarks and approval of NAC/AEGL-35 Highlights (George Rusch, Ernie Falke,
	and Paul Tobin)
9:15	Review of NAS/COT-15, February, 2005
	Process Issues (Ernie Falke and George Rusch)
	SOP Issues (Iris Camacho)
I1:15	Revisit of Allyl Alcohol- COT comments (Claudia Troxel)
12:00 p.m.	Lunch
1:00	Discussion of PBPK SOP White Paper (Jim Dennison/Claudia Troxel)
2:15	AEGL Chemical Priority List/Database Update (Paul Tobin)
3:00	Break
3:15	Revisit of Iron Pentacarbonyl- COT Comments (Ernie Falke/Bob Young)
3:30	Review of Methyl t-butyl ether (Steve Barbee/Dana Glass)
5:30	Adjourn for the day

Wednesday, April 13, 2005

8:30 a.m.	Revisit of Ammonia- COT Comments (Susan Ripple/Kowetha Davidson)
9:30	Review of Hexafluoroacetone (Paul Tobin/Bob Young)
10:30	Break
10:45	Review of Aluminum Phosphide (Ernie Falke/Cheryl Bast)
11:45	Revisit of Epichlorohydrin- FR08 comments (Richard Thomas/Kowetha Davidson)
12:15	Lunch
1:30	Revisit of Nitrogen Mustards (Richard Thomas/Bob Young)
2:30	Review of Methyldichlorosilane and Methylchlorosilane (Ernie Falke/Cheryl Bast)
3:30	Break
3:45	Revisit of Acrylic Acid- COT comments (Ernest Falke/Peter Griem/Ursula Gundert-Remy)
5:30	Adjourn for the day

Thursday, April 14, 2005

8:00 a.m.	Review of Diketene (Warren Jederburg/Kowetha Davidson)
9:45	Break
10:00	Revisit of Acetone- FR08 comments (Nancy Kim/Jens-Uwe Voss/Ursula Gundert-Remy)
11:00	Revisit of Sulfur Dioxide- COT comments (Cheryl Bast)
11:30	Administrative matters
12:00 noon	Adjourn meeting

E	THING-						• • •	· .	AT	TACHM	ENT 2	
	Chemical:					CAS F	Reg. N	0.:				
	Action: Propo	sed		Interi	im	Otl	her			- talan.	ty M	Du
	Chemical Mar	nager:	4/13	4/14		Staff	Scien	tist: 4/12	4/13	<i>4</i> /14	6	<i>%</i> =
	NAC Member				LOA	NAC Member					LOA	
	Steven Barbcc	SB	SB	SB		Nancy Kim		NK	NK	NK		13
	Lynn Beasley	LB	IB	ĪB		Glenn Leach						(I) [•]
	Robert Benson	BB	BB	BB	·	John Morawet	z	5M	M	IJM		U
	Jonathan Borak	JR	JB	utes	41305	Richard Niem	cier	RN	IRN	RAY		
	William Brcss					Marinelle Pay	ton					
	George Cushmac	GC	6C	GC		Susan Ripple.		SR	SR	SR		
	Ernest Falke	G.F	2F	G.F		George Rodge	ers	GR	GR	GR		
	Alfred Feldt					Marc Ruijten		MR	MR	mR		
	John Hin2	51	51	51		George Rusch	, Chair	GR	GR	Accent		
	Jim Holler		~~~			Richard Thom	nas	RT	RT	DT		
	Tom Hornshaw	TH	TH	12		George Wood	all	GIAT	GW	GINI		
105	Warren Jederberg					Irciala	Reme	V	~	Le cur		
la T.	Poh Vana	New	ORNY	ARNI		Popetral	at	enora	the men	lea		
Dennise	» Dane 6 lass	DEAN	SONI	OPNI		A MANUAL	TALLY	14/22	17/23	15/22	<u> </u>	
Cast	- Kurantha D	DEN	ORNL	ORNI		PAS	S/ FAIL	ΠU9.	7490	1.183		
_	CHRRYI Rad	OCN	ORNL	ORNI		·······		<u> </u>				
	PPM, (mg/m ³)	1	0 Min	30	Min	1 Hr		<u>4</u> भ	(r	8 H	r	than
	AEGL 1	,()	.()	,()	,()	,(note
	AEGL 2	,()	_,()	,()	,()	,()	Chre
	AEGL 3	, ()	, ()	,()	,()	,()	ي ما
ſ	LOA											Boy
	* ⇒ ≥10% LEL	_										
ſ	** = ≥ 50% LEL	1										
ļ	*** = >100% LET			`								
	Safety consideration	ns again	st the haza	urd(s) of	explosion	(s) must be ta	ken inte	o account.				
	** and ***Extreme	safety co	nsideratio	ons agains	t the haz	ard(s) of expl	osion(s)) must be ta	iken into a	ccount.		
	Gone MICLANG	u P	bary t	man	, Y	13/15*1	Sill	terz, Fe	retilize	e Insti	tak.	
×	Sham Schop	P	-		-			/				
]	NR= Not Recom	mend	ed due to	0	<u></u>		<u> </u>		<u> </u>	-		
-	AEGL 1 Motio	on by:	<u> </u>		————	Se	cond	by:				
L	AEGL 2 Motio	on by:_			· · ·	\$e	cond]	by:				
4	AEGL 3 Motio	on by:			·	<u>S</u>	econd	by:		_ _		
	LUA Motio	on by:		/		S	econd	by:				
1			12	1			110				7-	_

Outline of Presentation SOP Issues - Time Scaling: Rounding of n - Adjustment of Uncertainty Factors (UFs)

Issues Related to the AEGL's SOP- NAC38

1

Issues Reinted to the AEGL's SOP- NAC38

4

	Case#1	Case#2	Case#3
interpecies UF	3	3	10 -+ 3
Intrapecies UF	3	10 -+ 3	3
Total UF	3x3= 10	30 -++10	3 0 -+ 10
	Casedi	Case#2	CasedS
interpecies Rationale	Explain why 3 was chosen	Explain why 3 was chosen	Explain decrease from 10 to 3 due to conflict of derived values with supporting data
Intrapecies Rutio nale	Explain why 3 was chosen	Explain decrease from 10 to 3 due to conflict of derived values with supporting data	Explain why 3 was chosen
Total Rationale	Multiplication of Individual factors	is it better to explain decrease in total UF rationale?	la it better to explain decrease in total UF

ì

Issues Related to the AEGL's SOP- NAC36

.

٩

Where is it more appropriate to adjust the UFs based upon a weight-of-evidence evaluation of the supporting data? In the inter-/intraspecies UF rationale? In the total UF rationale?

Issues Related to the AEGL's SOP- NAC36

Weight-of-Evidence Factor (WOEF)

- Definition: An adjustment factor used to revise AEGL derivations based upon a weight-of-evidence evaluation of the supporting data and to make AEGL values consistent with the supporting data. Its magnitude (>0) will depend on the empirical data specific for the chemical under consideration. Values less than 1 should be expressed as a fraction, such as 1/3 or 1/10, to be consistent with the UF progression of 1, 3, and 10, and avoid a repeating decimal.
- The rationale for the selection of the weight-of-evidence factor should include:
 - 1. Citations and explanations of the supporting human and/or animal data
 - Justification for the selected factor, including discussion of why the initially derived AEGL values conflict with the published evidence

Issues Related to the AEGL's SOP- NAC38

12

Interspecies UF and Rationale = 1. The highest concentration causing no identical in mice, rats, and rabbits (200 ppm for 1hr) and at higher exposure species had mortality (20-100%). These data suggest little difference betwee response to alky alcohol exposure. Therefore, the interspecies uncertainty f Intraspecies UF and Rationale = 3. Although the traditional approach in a would argue for an UF of 10 because of the lack of data addressing inter-hid this would result in a composite UF of 10. An UF of 10 would result the AEG levels inconsistent with available empirical data. A total UF of 10 would result hour AEGL-3 values of 20. 51, and 2.5 ppm, respectively. Dunlag et al. (19 rate exposed for 7 hrd, 5 days/wk for 60 exposures to 1, 2, or 5 ppm had adverse effects, while rate sporsed to 70 ppm arkhibited only decreased bod Torkelson et al. (1959a) reported that no adverse effects were noted when n exposed to 7 2 hours of 20.0 here to 2 hours a diverse of the for 90 exposures to 1.0 here on the only decreased bod Torkelson et al. (1959a) reported that no adverse effects were noted when n exposed for 7 here on the for 90 more than the one of the for 90 exposures of the for 90 exposures to 1.0 here on the form of the form	mortality was s, each of these an species in actor was set to 1. case such as this ividual variability, 1-3 values to ft in 1, 4, and 8- 58) reported that observable
Intraspecies UF and Rationale = 3. Although the traditional approach in a would argue for an UF of 10 because of the lack of data addressing inter-hid this would result in a composite UF of 10. An UF of 10 would reve the AEG levels inconsistent with available empirical data. A total UF of 10 would reve hour AEGL-3 values of 20. 51, and 2.5 ppm, respectively. Dunlag et al. (19 rate exposed for 7 hrd, 5 days/wk for 60 exposures to 1, 2, or 5 ppm had no dverse effects, while rate supposed to 70 ppm arkhibited only decreased bod Torkelson et al. (1959a) reported that no adverse effects were noted when n behavior.	case such as this ividual variability, L-3 values to it in 1, 4, and 8- 58) reported that observable
rabits, and dogs were exposed to 2 pain for 7 hr/d, 5 d/wk for 134 exposure of rats, guines pigs, and rabbits to 7 ppm for 7 hr/d, 5 d/wk for 134 exposure reversible liver and kidney damage.	y weight gain. ats, guinea pigs, a, while exposure s resulted only in
Total uncertainty factor = 3	

Proposed Approach Example: Allyl Alcohol AEGL-3

Interspecies UF and Rationale = 1. The highest concentration causing no mortality was identical in mice, rats, and rabbits (200 ppm for 1hr) and at higher exposures, each of these species had mortality (20-100%). These data suggest little difference between species in response to aby alcohol exposure. Therefore, the interspecies uncertainty factor was set to 1. Intraspecies UF and Rationale = 10 because of the lack of data addressing inter-individual variability

Total uncertainty factor = 10

Total uncertainty factor = 10 Modifying factor = 1/3. A total UF of 10 would drive the AEGL-3 values to levels inconsistent with available empirical data. A total UF of 10 would result in 1, 4, and 8-hour AEGL-3 values of 20, 5.1, and 2.5 ppm, respectively. Dunlap et al. (1958) reported that rats exposed for 7 hr/d, 5 dayshive for 60 exposures to 1, 2, or 5 ppm had no observable advense effects, while rats exposed to 20 ppm exhibited only decreased body weight gain. Torketson et al. (1959a) reported that no advense effects were noted when rats, puines pigs, rate bash, and dogs were exposed to 2 ppm for 7 hr/d, 5 dwk for 134 exposures resulted only in revenable liver and libding damage. Therefore, a MF=1/3 was thought appropriate in order to make AEGL-3 values consistent with the available empirical data.

Issues Related to the AEGL's SOP- NAC36

15

Example	e: Allyl A	lcohol
UF	UF Value	Rationale
Inter	1	Data-derived
Intra	10	Default
Total	10	Multiplication of individual factors
Adjustment factor (MF or WOEF)	1/3	Weight-of- evidence-derived
Adjusted total UF	10)	(1/3 = 3

GUIDELINES AND CRITERIA FOR SELECTION OF WEIGH-OF-EVIDENCE ADJUSTMENT FACTORS

Sections 2.5.3.2.8 and 2.5.3.4.6 in the Standing Operating Procedures (SOP) allow for an adjustment to the interspecies and intraspecies uncertainty factors (UF) in order to derive Acute Exposure Guideline Levels (AEGL) values that are consistent with the empirical human and/or animal data. This represents a weight-of-evidence approach to select UF values that generate scientifically credible AEGL values. However, weight-of-evidence considerations may not provide the necessary experimental data to quantitatively allocate the uncertainty factor adjustment between inter- and intraspecies uncertainty factors.

The National Academies (NRC/AEGL Subcommittee) has expressed its concerns on the current weighof-evidence approach used to modify the UFs since it is usually not possible to assign the adjustment between the inter- and intraspecies uncertainty factors based upon the available data. As an alternative approach, the NAC/AEGL Committee could select UFs using the criteria stipulated in the SOP which rely on the thorough assessment of experimental data and scientific judment. A weigh-of-evidence assessment is independently conducted following selection of UFs to determine whether or not the AEGL values need to be adjusted with another factor to ensure that the range of AEGL values is consistent with the animal and/or human supporting data. This adjustment could be done with a modifying factor. However, using a modifying factor for such purposes may be inappropriate because the modifying factor is generally used to account for database uncertainties. This adjustment factor could be called the weight-of-evidence factor and be used to revise AEGL derivations based upon a weight-of-evidence evaluation of the supporting data and to make AEGL values consistent with the supporting data... Its magnitude (>0) will depend on the empirical data specific for the chemical under consideration. Values less than 1 should be expressed as a fraction, such as 1/3 or 1/10, to be consistent with the UF progression of 1, 3, and 10, and avoid a repeating decimal.

The rationale for the selection of the weigh-of-evidence factor should include the following:

- 1. Citations and explanations of the supporting human and/or animal data
- 2. Justification for the selected factor, including discussion of why the initially derived AEGL values conflict with the published evidence

1

The White Paper Methodology for Incorporating PBPK Modeling Into the AEGL Development Process

Jim Dennison, CIH, Ph.D. April 12, 2005 Physiologically Based Pharmacokinetic Modeling (PBPK) Use in Risk Assessment

- Endorsed by USEPA (1994, 2002, 2003) and NAS (1993, 1997)
- Broadly Used in Risk Assessment
 - IRIS, FIFRA, Office of Water, Air, OPP
 - Industry
 - OSHA
- Detailed risk assessments typically use PBPK

Improve the extrapolation of internal doses

Pharmacokinetics PBPK Models Pharmacodynamics PBPD Models

Use in AEGL Context

- 1. Animal to Human PK Extrapolation
- 2. Temporal Extrapolation
- 3. Assess Impact of Elevated Activity Level

Animal to Human PK $AEGL = POD/(UF_A + UF_H)$ $UF_A = UF_A, PK + UF_A, PD$

$AEGL_{PK} = POD_{PK} / (UF_{A, PD} + UF_{H})$

The default $UF_{A, PK}$ is 3. When PBPK modeling is used, the actual dosimetry is determined by the model in the POD_{PK} and the $UF_{A, PK}$ is re-set to 1. The other UFs are retained as they were, unless other kinds of modeling are used as well (which is not very often).

While the PBPK model-based AEGL values are often higher (if the $UF_{A, PK}$ is conservative), they can be lower, when this UF is not sufficient.

Temporal Extrapolation

- Flat line
- tenBerge
- PBPK

- > PBPK provides a dose-based method for extrapolating to other durations
- > PBPK is clearly better able to set values so that the internal dose is same for each exposure duration

Initial Determination of Feasibility

- Chemical manager, author, and modeler should discuss the chemical
- Is there an existing PBPK model?
- Is there a mode of action/dose metric that is model-accessible?
- BPK justification in the TSD (Y/N)

Model Development

- Evaluate all available models
- Select best one
- Modify if necessary
- Make a final determination whether modeling can be done for the chemical
- Compute the AEGL values

Application of UFs

6. Use Model to Determine the EC that Yields the DM

- If PBPK is used, retain UF_{A,PD} and UF_H
- Can apply to the dose metric or to EC
- If UF_{total} is 3 or 10, difference is slight
- If UF_{total} is 30, applying to EC gives an effective UF of 27-75 (toluene and xylene)
- If applied to dose metric, you have a clear reduction in internal dose
- USEPA and others are still debating this issue
- We recommend applying to the dose metric, for now

Workload – Activity Level

 Selection of an appropriate workload for each AEGL duration

Activity	Input W	Output W *
Bicycling, <10 mph	343	72
Bicycling, 12-13.9 mph, moderate effort	686	144
Conditioning exercise, stationary bike, 50W, very light effort	257	54
Conditioning exercise, stationary bike, 100W, light effort	472	99
Conditioning exercise, stationary bike, 150W, moderate effort	600	126
Conditioning exercise, stationary bike, 200W, vigorous effort	900	189
Conditioning exercise, stationary bike, 250W, very vigorous effort	1072	225
Conditioning exercise, rowing, 50W, light effort	300	63
Carpet sweeping, sweeping floors	214	45
Cleaning, heavy or major	386	81
Inactivity, quiet	86	18
Sleeping	77	16
Standing quietly	103	22
Reclining	86	18
Carrying heavy loads	686	144
Construction	472	99
Sitting- light office work	129	27
Standing, light/moderate activity	257	54
Running, 5 mph	686	144
Running, 10 mph	1372	288
Walking, <2 mph	172	36
Walking, 3 mph	300	63
Walking, 4.5 mph	386	81

Input workloads for various physical activities

* Assumes 21% efficiency

From PBPK White Paper

Recommended Workloads

Duration	10 min	30 min	1 hr.	4 hr.	8 hr.
Workload (Output)	150W	145W	137W	93W	35W

Acknowledgments

- Claudia Troxel
- USEPA/ORD/NCEA/NHEERL and others at EPA
- ORNL
- Several European colleagues
- Dr. Robert Gotshall (CSU), Dr. Tom Coleman (QCP)

Duration	10 m	30 m	1 hr	4 hr	8 hr
Workload (Output, W.)	200	193	181	112	20
8 hour value taken as a resting state	150	145	136	87	20
	125	120	114	73	20
	100	97	92	61	20
	75	73	69	48	20
	50	49	47	35	20

Duration	10 m	30 m	1 hr	4 hr	8 hr
Workload (Output)	200	193	183	120	35
	150	145	137	93	35
	125	121	116	81	35
	100	97	93	68	35
	75	73	71	55	35
250	50	49	48	43	35
$\begin{array}{c} 200 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$					

Acute Exposure Guideline Levels Revised Chemical Priority List

ATTACHMENT 5

Paul S. Tobin, Ph.D. Marquea D. King, Ph.D.

U.S. Environmental Protection Agency NAC/AEGL - Meeting 36 Research Triangle Park, NC April 12, 2005

Current Sources Identifying Priority AEGL Chemicals

Priority List 1 – 85 chemicals published (5/21/97 Federal Register) Priority List 2 – 371 chemicals published (5/31/02 Federal Register)

ORGANIZATION LISTS USED FOR THE SELECTION OF PRIORITY CHEMICALS

ATSDR Agency for Toxic Substances and Disease Registry (36) A = ATSDR "Top 20" Toxicology Profile Chemicals (6) B = Medical Management Guide Chemical (7) C = Chemicals with an ATSDR Toxicology Profile (33)

DOD Department of Defense (77) A = Chemical Weapons Convention Schedule 1, 2, or 3 (2)

B = Strategic Environmental Research and Development Program (SERDP) Chemical (7)

C = Air Force Installation Restoration Program Chemical (10)

D = Army Toxicity Summary Chemical (9)

E = Non-Stockpile Chemical Warfare Substance (4)

Current Sources Identifying Priority AEGL Chemicals

DOE	Department of Energy Subcommittee for Consequence Assessment SCAPA and Protective Action (80) A = TEEL chemical with vapor pressure >3.2 mm (35) B = TEEL chemical with TEEL-3 <25 ppm (9) C = Lab List (9) E = Other TEEL chemicals (39)
DOJ	Department of Justice Office of Justice Programs (23) A = "High" concern Toxic Industrial Material (TIM) (3) B = "Medium" concern TIM (19) C = "Low" concern TIM (10)
DOT	Department of Transportation Emergency Response Guidebook (201)
OSHA	Occupational Safety and Health Administration A = OSHA Process Safety Management Chemical (96)

Current Sources Identifying Priority AEGL Chemicals

EPA Environmental Protection Agency (95)

- A = Environmental Protection Agency Clean Air Act 112r (Risk Management Program) (10)
- B = CAAA 112b Chemical (Hazardous Air Pollutant) (40)
- B* = April 1, 1994 list submitted by OAQPS (HAP with current acute toxicity interest) (9)
- C = Environmental Protection Agency Superfund Chemical (24)
- D = EPA Extremely Hazardous Substance List (* = EHS solid with RTECS LC data) (8)
- E = CAAA 112r Risk Management Program (77)
- F = Office of Pesticides Nomination (28)
- G = National Homeland Security Research Center (NHSRC) (?)
- H = High Production Volume (HPV)
- ERPG Emergency Response Planning Guideline (American Industrial Hygiene Association) A = ERPG (87)

Other International State Local Organizations

Provisions for Chemical Priority List Modifications

... "the "working list," is subject to modification if priorities of the NAC/AEGL Committee or individual stakeholder organizations, including international members, change during that period..."

(2001 Standing Operating Procedures for Developing Acute Exposure Guideline Levels for Hazardous Chemicals, pg. 166, Appendix A)

Strategies to Identify AEGL Priority Chemicals

Stakeholder Sources

- RMP chemicals (77)
- DOT Emergency Response
Guidebook Isolation Table (201)
- OSHA Chemical Process Safety
Chemicals (135)
- SEVESO II Treaty Chemicals (23)

Common Chemical Criteria

- Criteria based
 - Toxicity
 - Vapor pressure
 - Structure/physical state
 - Production volume
 - Frequency/exposure potential

2005 Revised AEGL Chemical Priority List

AEGL Chemical Priority List Structure (arranged by Chemical Class)

CHEMISTRY		CASNo	ChemName	List	AEGL-3 1 Hr	AEGL-2 1 Hr	AEGL-1 1 Hr	s l(bp,vp) g	RMP	DOT	OSHA PSM	S II	Prod	ERPG
Acid Halides														
	a o	75-36-5	acetyl chloride											
0=0(0)0								1/52 /00mm		X-VV			HPV	
	a a	75-44-5	phosgene	1F	0.75	0.30	NR	g	×				RMP/	
O=C(CI)CI								Bullinger Landerthe		×	×	x	Y	x

320 chemicals in 46 classes

Advantages to Using AEGL Chemical Priority List

- Grouping chemicals for review/AEGL development
 - Toxic endpoints, pharmacokinetics, pharmacodynamics
 - Develop values for chemicals with sparse datasets
 - Guidance ranges for protective equipment (respirators)
 - Establish detection ranges for chemical classes

Advantages to Using AEGL Chemical Priority List

- Increase awareness and appreciation
 - Number of chemicals that different organizations are concerned about
 - Help in harmonizing organizations' efforts in chemical emergency programs
 - Fact sheets
 - Identify testing needs
 - Influence stakeholder lists (regulatory & non-regulatory)
- Current chemicals in commerce [100,000]
 - 70,000 TSCA Inventory*
 - *Inorganics NOT in TSCA Inventory Update Rule (TSCA IUR)
 - *Production reporting over 10,000 lbs only for organics; inorganics reporting in 2006 (results available 2007).

– 30,000 PMN
Dissemination Strategy

Concurrence & Outreach

April NAC meeting – comments
Additional Stakeholder feedback
Federal Register Notice
Present to societies, organizations, interest groups
Press Release

Legend for AEGL Chemical Priority List (March 15, 2005)

CHEMISTRY (structures)

note: structures do not show properly, because they were designed in Accord Software for Excel and do not move with edits to the table.

<u>CasNo.</u> Chemical Cas Registry Number.

<u>ChemName</u> The common chemical name.

<u>List</u>

Original chemical list/current AEGL chemical status. For example, 1F = Chemical Priority List One, Status = Final Status codes:F = Final; I = Interim; P = Proposed; H = Holding; pl = Planning

AEGL-3 1 Hr The AEGL 3 value for a one hour exposure.

AEGL-2 1 Hr The AEGL 2 value for a one hour exposure.

AEGL-1 1 Hr The AEGL 1 value for a one hour exposure. *These values has been arbitrarily selected for comparison from one chemical to another.

<u>Physical State: s l (bp, vp) g</u> The physical state for a chemical: s = solid; l = liquid (followed by boiling point and vapor pressure); g = gas

<u>RMP</u>

Indication 'x' if a chemical is listed on the EPA Clean Air Act and Amendments Risk Management Program (CAAA s. 112r) list for focus on prevention of industrial accidents that could harm community populations.

DOT

(a) Indication 'x' if a chemical is listed in the Department of Transportation Emergency Response Guidebook (ERG) Table of Initial Isolation and Protective Action Distances; 'x-W' reveals that the chemical is included at least in part due to release of toxic gas upon spill into water. All 201/201DOT Response Guidebook (ERG) Table of Initial Isolation and Protective Action Distances are included.

(b) Indication '0' if a chemical is listed in the DOT ERG but not in the Table of Initial Isolation and Protective Action Distances (the chemical did not meet specified qualification for vapor pressure to volatility ratio to make it onto this table, but did meet minimum qualification to make it into the ERG).

OSHA PSM

Indication 'x' that a chemical is listed in the OSHA Chemical Process Safety Table for focus on prevention of accidents in the workplace that could harm workers. 96/135 OSHA PSM chemicals appear on the AEGL Chemical Priority List. Some chemicals are listed on the OSHA PSM list for hazards other than toxicity, such as reactivity or explosivity and some listings are mixtures of toxic chemicals.

<u>S II</u>

Seveso II chemicals are a subset of chemicals from a Seveso I listing, list II was developed shortly after the Bohpal incident in 1984, for chemicals which met certain criteria.

Prod

(a) Indication of 'HPV" (High Production Volume, over 1 million lbs) chemical.

(b) Indication of 'RMP/Y' Risk Management Program chemical with at least one reporting facility.

(c) Indication of 'RMP/N' Risk Risk Management Program chemical without at least one reporting facility.

(d) Indication 'T a----b' of TSCA Inventory production information for 2002 (or a previous reporting year as indicated).

(e) Unfortunately, TSCA Inventory Update Rule (IUR) information on inorganics will not be available until about 2007-2008 and OPPT/EETD is helping us with production information on some of these chemicals.

(f) For some chemicals, a separate search in chemical handbooks and google indicates some qualitative opinion about "significant" production and is indicated by "yes" or "no" in parentheses: (Y = Indication of significant production; Y? = Possible indication of significant production; N? = Unlikely indication of significant production; N = Indication of no significant production).

(g) For some chemicals, like chemicals with use only as chemical weapons, but of interest for AEGL development, production is indicated as "N/A" = Not assigned.

<u>ERPG</u>

Notation that a chemical has been reviewed by the American Industrial Hygiene Association "Emergency Response Planning Guideline" Committee and values have been published. 87/111 ERPG chemicals appear on the AEGL Chemical Priority List.

<u>IDLH</u>

Notation that a chemical has been reviewed by NIOSH and an Immediately Dangerous to Life or Health value has been published for use in respirator selection. 111/387 IDLH chemicals appear on the AEGL Chemical Priority List. Some chemicals, for example, are more of a concern for workplace exposure, such as certain chemical dusts.

٠

		CASNo	ChemName	List	AEGL-3 1 Hr	AEGL-2 1 Hr	AEGL-1 1 Hr		RMD	DOT	OSHA PSM	S#	Prod	FRPO	
Acid Halides				<u> </u>				3 1(0p, vp) g			1 31	<u></u>	100	LING	
a		75-36-5	acetyl chloride												
O=C(CI)C				L			<u> </u>	1/52 700mm		x-W	<u> </u>		HPV	<u> </u>	
a	→ o	75-44-5	phosgene	1F	0.75	0.30	NR	g	×		v		PMP/Y		
		1	<u> </u>					<u>+</u>		<u>^</u>	<u> </u>	Ê		<u> </u>	
a- o'	a a a	76-02-8	trichloroscetyl chloride	2Н											
0=C(C(CI)(CI)CI)CI		<u> </u>						1/114 16mm		x			T 10-500K		
0 0=C(CCI)CI	a	79-04-9	chloroacetyl chloride	2P	52	1.6	0.040	l/108 25mm		x-W			нру	x	
							<u> </u>							1	-
o	a	79-22-1	methyl chloroformate	1H											4
O=C(OC)Cl								1/70 248mm	x	x	x		RMP/Y	ļ	-
		79-36-7	dichloroacetyl chloride	2P	52	1.6	0.040	I/107 23mm		c			T 1-10m		
0	o da	108-23-6	isopropyl chloroformate	1H				1/105 50mm					RMD√y		

CHEMISTRY	CASNo	ChemName	List	AEGL-3 1 Hr	AEGL-2 1 Hr	AEGL-1 1 Hr	s l(bp,vp) g	RMP	DOT	OSHA PSM	S II	Prod	ERPG	IDLH
	109-61-5	propyl chloroform a te	1H				1/105 45mm	×				BMP/Y		
O=S(=O)(C)Cl	124-63-0	methanesulfonyl chloride	2				l/161 3.1mm		x			T 1-10M		
O=C(F)F	353-50-4	carbonyl fluoride	2				g		x	x		(Y)		
	354-32-5	trifluoroacetyl chloride	2				a		x			T 1-10M		
	463-71-8	thiophosgene	2				1/73 116mm		x			(N?)		
СНЗСОІ	502-02-8	acetyl iodid e	2				l/105 20mm		x-W					
	503-38-8	diphosgene	2				l/128 10mm		x			(N?)		
O=C(Br)C	509-96-7	acetyl bromide	2				1/77 122mm		x-W_					

٠

Tobin_AEGL_Final List2b_modified_11.xls

														<u> </u>
	CASNo	ChemName	List	AEGL-3 1	AEGL-21	AEGL-1			.	OSHA				
CHEMISTRY				Hr	Hr	1 Hr	s l(bp,vp) g	RMP	DOT	PSM	S II	Prod	ERPG	IDLH
	541-41-3	ethyl chloroformate	2				1/93 22mm							
0=C(0CC)CI						l.			x			HPV		
	543-27-1	i-butyl chloroformate	2											
0=C(0CC(C)C)CI				<u> </u>	<u> </u>	 	1/129 8.4mm	_	x		<u> </u>	T_1-10M		
	592-34-7	n-butyl chloroformate	2				l/142 8mm							
0=C(0CCCC)CI					<u> </u>				×	<u> </u>	<u> </u>	(N?)		¦
	814-68-6	acrylyl chloride	1H				1/72 99mm					RMP/N		
					[072 93000	^		Ê				<u> </u>
FS(F)(=0)=0	2699-79-8	sulfuryl fluorid e	2				g		×					x
	2937-50-0	ally! chloroformate	2				1/(110.20mm					T 10-500K		
			<u> </u>						<u> </u>	+	+	,		
S d O=C(SCC)CI	2941-64-2	ethylchlorothio formate	2				I/132 10mm		x			HPV		

Tobin_AEGL_Final List2b_modified_11.xls

	CASNo	ChemName	List	AEGL-3 1	AEGL-2 1	AEGL-1				озна				
				Hr	Hr	1 Hr	s l(bp,vp) g	RMP	DOT	PSM	SII	Prod	ERPG	IDLH
oma	3282-30-2	trimethylacetyl chloride	2											
O=C(C(C)(C)C)Cl				 			l/105 36mm	-	x	<u> </u>		HPV	ļ'	
aa	4300-97-4	chloropivaloyl chloride	2				l/>200 <.1mm							
O=C(C(CCI)(C)C)CI								ļ	x				L	
a s a II O	7719-09-7	thionyl chloride	2									1986 T 10-		
O=S(CI)CI		 					l/79 97mm		X	x		500K i	×	
Р″/ S ≈0 Н0	7789-21-1	fluorosulfonic acid	2				l/166 2.5mm							
OS(F)(=O)=O									x			(Y)		
о s óо́н	7790-94-5	chlorosulfonic acid	2											
S(=O)(=O)(C!)O							1/151 1mm		x				x	
Alcohols	67-56-1	methanol		7100	2100	530								
							1/65 98mm		0		x	HPV	x	x
	107-18-6	allyl alcohol	11	67	4.2	2.1	l/96 24mm	x	x			RMP/Y		x
HOHO HOHO	107-19-7	propargyl alcohol	2				l/114 12mm		0			НР∨		
но он	107-21-1	ethylene glycol	2pl				W105.0.06mm							
							17:30 0.00mm			1				
Aldehydes													<u> </u>	
0==0	50-00-0	formaldehyde	2P	56	14	0.90	g	x		x	x	RMP/Y	×	x

Tobin_AEGL_Final List2b_modified_11.xls

														-
CHEMISTRY	CASNo	ChemName	List	AEGL-3 1 Hr	AEGL-2 1 Hr	AEGL-1 1 Hr	s_l(bp,vp) g	RMP	DOT	OSHA PSM	S 11	Prod	ERPG	IDLH
0	75-07-0	acetaldehyde	2P	840	270	45	g							
<u>O=CC</u>								-	(x		HPV	×	×
	78-85-3	methacryladehyde	2									T 1986 10-		
O=CC(=C)C							l/68 155mm		C	x		500K		
0	107-02-8	acrolein	1!	1,4	0.10	0.030								
			<u> </u>				1/53 200mm	<u>×</u>	×	×		RMP/Y	<u> </u>	<u>×</u>
م مربع مار م	107-20-0	chloroacetaldehyde	2Р	9.9	2.2	1.3	l/85 64mm		¥			T 1998 10- 500K		Y
0	123-38-6	propionaldehyde	2Р	840	260	45	1/48 317mm							
o-cc-cc	123-73-9	(E-) crotonaldehyde	11	14	4.4	0.19	1/104 32mm							
	4170-30-3	crotonaldehyde	11	14	4.4	0.19	l/101 32mm		×				x	×
Aluminum Compounds (not otherwis	se classified)					-			<u>^</u>				1^	
a_ _{AI} _a 	7446-70-0	aluminum chloride	2				S		x-W			T 1994 10- 500K		
	7727-15-3	aluminum bromide	2				S							
AlBr3						1			x-W					
Amides										-				
	68-12-2	dimethylformamide	11	180	90	NR	l/153 2.7mm							
O=CN(C)C									c			HPV	x	x

Tobin_AEGL_Final List2b_modified_11.xls

	CASNo	ChemName	List	AEGL-3 1	AEGL-2 1	AEGL-1				OSHA				
CHEMISTRY				Hr	Hr —	1 Hr	s l(bp,vp) g	RMP	DOT	PSM	SII	Prod	ERPG	IDLH
	7803-54-5	magnesium diamide	2				s							
Magnesium diamide		·							x-W					
Amines 8									<u> </u>		 			
N-Mustard 2	51-75-2	nitrogen mustard-2	2pl				l/200d 0.43mm		x			<u> </u>		
	57-14-7	1,1-dimethyl hydrazine	1F	11	3.0	NR	1/62 103mm	x	×	Y		RMP/Y		¥
	60-34-4	methyl hydrazine	1F	2.7	0.90	NR	1/87 38mm	Y	×	Y		RMP/Y		¥
	74-89-5	methyl amine	2pl				g		0	x			x	x
нул	75-04-7	ethyl amine	2pl				g		0	x		НР∨		x
N I	75-50-3	trimethyl amine	2pl											
	107-11-9	allyi amine	11	18	3.3	0.42	g 1/53 2 <u>1</u> 1mm	x	x	x			X	
	107-15-3	ethylene diamine	11	20	9.7	NR'	1/116 12mm	x	0			RMP/Y		x
NC(CCCC1)C1	108-91-8	cyclohexylamine	11	30	8.6	1.8	1/134 10mm	x	0			RMP/Y		

,

Tobin_AEGL_Final List2b_modified_11.xls

٠

	CASNo	ChemName	List	AEGL-3 1	AEGL-2 1	AEGL-1				озна				Ī
CHEMISTRY				Hr	Hr	1 Hr	s l(bp,vp) g	RMP	DOT	PSM	SII	Prod	ERPG	IDLH
HZN	109-89-7	diethyl amine	2											
N(CC)CC							l/56 237mm		0			HPV		x
	110-86-1	pyridine	2) .	V/445-24							
						†	1/116 2 Imm							×
N H	110-89-4	piperidine	1P	110	33	6.6						HPV		
N(CCCC1)C1							l/106 23mm	x	0			RMP/Y	x	
	124-40-3	dimethyl amine	2pl						0			HPV	Y	,
							9							Ê
HO-HZM KINH 2	302-01-2	hydrazine	11	35	13	0.10	l/114 10mm	x	0			RMP/Y	×	×
Nr12H	540-73-8	1,2-dimethylhydrazine	1F	11	3.0	NR	1/81 70mm		x					
	555-77-1	N-Mustard-3: tris(2- chloro ethyl) amine	2pl				256 0.01mm		x			T 1998 10- 500K (2000=0)		
	538-07-8	HN-1: bis(2-chloroethyl) ethylamine	2pi				1/194 0.25mm		x					
NT HN S	6581-06-2	BZ	x				s		x					

CHEMISTRY	CASNo	ChemName	List	AEGL-3 1 Hr	AEGL-2 1 Hr	AEGL-1 1 Hr	s l(bp,∨p) g	RMP	DOT	OSHA PSM	SII	Prod	ERPG	IDLH
	7803-49-8	hydroxyl amin e	2pl				I/110 53mm			¥				
Anilines 00 0														†
Nc(cccc1)c1	62-53-3	aniline	1F	20	12	8.0	l/184 0.7mm					н₽∨		x
Antimony Compounder(not otherwise cl	assified)													
F[Sb](F)(F)(F)F	7783-70-2	anitmony pentafluoride	2				i/141 7mm		x-W			(Y?)		
	7803-52-3	stibine	2				a		×	¥			Y	
Assonia Compounds (not otherwise class	eified)						5						-	
	541-25-3	lewisite	2P	0.74	0.12	NR	1/400.0.4							
							1/190 0.4mm		x					
	593-89-5	methyldichloroarsine	2P	0.16	0.053	NR	1/122 8					(61)		
							1/133 omm		*			(14)		
Chemistry 2	578-94-9	adamsite	2P	6.4	2.6	0.016	S		×					

Tobin_AEGL_Final List2b_modified_11.xls

CHEMISTRY	CASNo	ChemName	List	AEGL-3 1 Hr	AEGL-2 1 Hr	AEGL-1 1 Hr	s l(bp,vp) g	RMP	DOT	OSHA PSM	SII	Prod	ERPG	IDLH
a I As a	598-14-1	ethył dichloroarsine	2	0.086	0.029	NR								
CC[As](CI)CI				_			l/156 2.3mm		x			(N)		
	1303-28-2	arsenic pentoxide												
As4O10											×			-
	1327-53-3	arsenic trioxide												
As406					ļ			-			x	-		4
	7784-34-1	arsenic trichloride	1H											
							1/130 c.10mm	x	×			RMP/N		+
As [As]	7784-42-1	arsine	1F	0.5	0.17	NR	9	x	x	x	x	RMP/Y	x	×
Boron Comounds (hellotherwise classi	fied)													
ВF3 (СНЗОСНЗ)	353-42-4	boron trifluoride methyl etherate	1 T	14	3.1	0.12	a	x	x	x		RMP/Y	×	x
Br _B ,Br Br Br	10294-33-4	boron tribromide	2											
BrB(Br)Br				<u>i</u>			l/91_63mm		x			(Y)		
a s a	10294-34-5	boron trichloride	1 T	28	7.3	0.60								
						<u> </u>	g	x	x	×		RMP/Y		
B5H9 bridged	19624-22-7	pentaborane	2				I/58 170mm		x	x		(N?)		x
ВН ₂ Н Н ВН ₂ Н3В-ВН3	19287-45-7	diborane	1F	3.7	1.0	NR	g	×	x	x		RMP/Y	×	x

Tobin_AEGL_Final List2b_modified_11.xls

CHEMISTRY	CASNo	ChemName	List	AEGL-3 1 Hr	AEGL-2 1 Hr	AEGL-1 1 Hr	s l(bp,vp) g	RMP	DOT	OSHA PSM	S	Prod	ERPG	
Bromine Compounds (not otherwise cla	assied)													
Br—Br BrBr	7726-95-6	bromine	11	8.5	0.24	0.024	1/59 175mm	×	¥	¥	×	RMP/Y	x	Y
ŧ ¢ βi≥βi	7787-71-5	bromine trifluoride	2P	21	2.0	0.12								<u>^</u>
Br(F)(F)F							g	x	x-W	x		RMP/Y	-	x
	7789-30-2	bromine pentafluoride	2P	33	1.0	NR								
FBr(F)(F)(F)F							a		x-W	x		(N)	<u> </u>	
Br—a BrCl	13863-41-7	bromine chloride	2		 		9		x	x		(Y?) T 1986 1- 10M i	 	
Calcium compounds				 					 					
		calcium dithionite							x-W		I			
Chlorine Compositides Inordanic, not ot	herwise classifi	ed)												
	7782-50-5	chlorine	1 F	20	2.0	0.50	g	x	x	x	x		x	x
E SI N	7790-91-2	chlorine trifluoride	11	7.3	0.70	0.12								
							g		x	x			×	x
o ^{r at} o	10049-04-4	chlorine dioxide	11	2.4	1.1	0.15								T
[O.][CI+][O-]							g	x	x-W	×		RMP/Y	x	×
	13637-63-3	chlorine pentafluoride	2P	8	1.0	0.30								
CIF5					·		g		x	x		(N?)		
Chlorosilanes	75-54-7	methyl dichlorosilane	2											
MeSiCl2H	1 3- 34-1	metry demotositate	۷				I/41 350mm		x-W			HPV '	1	

.

	CASNo	ChemName	liet	AEGL-3 1	AEGL-2 1	AEGL-1				OSH	1			
CHEMISTRY	U.L.O.NO			Hr	Hr	1 Hr	s l(bp,vp) g	RMP	DOT	PSM	SII	Prod	ERPG	IDLH
a	75-77-4	trimethyl chlorosilane	1P	130	32	1.8								
							1/58 150mm	x	x-W		-	RMP/Y	x	
a si a	75-78-5	dimethyl dichlorosilane	11	53	13	0.90								
C[Si](C)(CI)CI							1/69 c.150mm	x	x-W	x	-	RMP/Y	×	
a a sí a	75-79-6	methyl trichlorosilane	11	28	6.2	0.60								
C[Si](CI)(CI)CI			— —				I/66 150mm	×	x-W	×		RMP/Y	×	
	75-94-5	vinyl trichlorosilane	2										- - - -	
							l/90 60mm		x-W			HPV		
	80-10-4	diphenyldichloro silane	2				1/205 Jam		~ \4			T 10 500K		
	98-12-4	cyclohexyltrichloro silane	2				1/200 2mm		x-W			1-10M		
	98-13-5	trichlorophenyl silane	2											
CI[Si](CI)(CI)c1ccccc1							1/202 0.43mm		x-W			HPV		
a a CISI(CI)(CI)CC=C	107-37-9	allyl trichlorosilane	2				1/117 18mm		x-W			(N?) T 1994 <10K		

Tobin_AEGL_Final List2b_modified_11.xls

CHEMISTRY	CASNo	ChemName	List	AEGL-3 1 Hr	AEGL-2 1 Hr	AEGL-1 1 Hr	s i(bp,vp) g	RMP	DOT	OSHA PSM	s II	Prod	ERPG	IDLH
	107-72-2	amyltrichlorosilan e	2				1/171 3.5mm		x-W			T 1998 10- 500K		
	112-04-9	octadecyltrichloro silane							x-W			1994 10- 500K		
a, a a ^{sia} cc[si](CI)(CI)CI	115-21-9	trichloroethyl silane	2				1/99 c.30mm		x-W			HPV		
	141-57-1	propyltrichlorosilane	2				i/c.125 c.15mm		x-W			т 10-500К		
	149-74-6	dichloromethył phenyl silane	2				1/205 0.4mm		x-W			H₽V		
	928-65-4	hexyltrichlorosilane	2				I/c 200 c 2mm		x-W			T 10-500K		
	1558-25-4	chloromethyl trichloro silane	2				1/118 30mm		x-W	x		(<u>N?)</u>		

Tobin_AEGL_Final List2b_modified_11.xls

CHEMISTRY	CASNo	ChemName	List	AEGL-3 1 Hr	AEGL-2 1 Hr	AEGL-1 1 Hr	s l(bp,vp) g	RMP	DOT	OSHA PSM	SII	Prod	ERPG) IDLH
	1719-53-5	diethyl dichlorosilane												
a a	4109-96-0	dichlorosilane	2				a		x-W	x		(Y) T 1986 <10K		
	4484-72-4	dodecyltrichloro silane	2				l/>200 <0.1mm		x-W					
	5283-67-0	nonyltrichloro silane	2				l/>200 <0.1mm		x-W	1				
	5283-66-9	octyltrichloro silane	2				l/>200 <0.1mm		x-W			T 1-10M	 	
	7521-80-4	butyl trichlorosilane	2											
	10025-78-2	trichlorosilane	2				l/149 c.4mm l/31 500mm		x-W	×		(N?) T 1-10M	×	<u> </u>
	27137-85-5	trichloro(dichlorophenyl) silane	2											
							l/260 <0.1mm		x-W	x	 	 		
CH3SiCIH2	993-00-0	methyl chlorosilane	2				9		x-W			(Y?)		
Chromium compounds									<u> </u>	<u> </u>	ļ			
	14977-61-8	chromium oxychloride							x-W					

Tobin_AEGL_Final List2b_modified_11.xls

				AEGI -3 1	AEGI -2 1	AEGL-1								
CHEMISTRY	CASNo	ChemName	List	Hr	Hr	1 Hr	s I(bp,vp) g	RMP	DOT	PSM	SI	Prod	ERPG	IDLH
Epoxides a a														
	75-21-8	ethylene oxide	11	200	45	NR								
O(C1)C1							g	×	x	×	×	RMP/Y	x	x
	75-56-9	propylene oxide	11	870	290	73								
0(C1C)C1							1/34 400mm	x	0		x	RMP/Y	×	x
	106-88-7	1,2-butylene oxide	2											
0(C1CC)C1				<u>.</u>			l/63 180mm		0			HPV		
a	106-89-8	epichlorohydrin	1P	72	24	6.8								
0(C1CCI)C1							l/115 14mm	×				RMP/Y	x	×
	371-62-0	ethylene fluorohydrin	2											
Esters A G							I/104 21mm			×		(N)		
	80-62-6	methyl methacrylate	2P	500	120	17								
					 		1/101 39mm							×
	80-63-7	methyl 2-chloroacrylate	2Н											
O=C(OC)C(=C)Cl							1/140 29mm			<u> </u>		(N)		
OH OH	108-05-4	vinyl acetate monomer	2рі	610	180	6.7						HPV		
IO=C(OC=C) 0 0(0=O) 0=O			L	<u> </u>			1/73 90mm	X	0			RMP/Y	x	

Tobin_AEGL_Final List2b_modified_11.xls

CHEMISTRY	CASNo	ChemName	List	AEGL-3 1 Hr	AEGL-2 1 Hr	AEGL-1 1 Hr	si(bp,vp)g	RMP	рот	OSHA PSM	SII	Prod	ERPG	IDLH
	141-32-2	butyl acrylate	2P	480	130	8.3	1/145 5.5mm		0			НРУ	×	
	140-88-5	ethyl acrylate	2P	240	36	8.3	1/100 39mm		0			HPV	x	x
	674-82-8	diketene	2pl											
					·		1/127 11mm		×			HPV	×	
	107-30-2	chloromethyl methyl ether	11	0.94	0.061	NA	1/55 180mm	×	x	x	x	RMP/Y	×	
	110-00-9	furan	1	29	10	NA	1/32 500mm	x	0			RMP/Y		
	123-91-1	1,4-dioxan e	11	760	320	17		-						
O(CCOC1)C1						ļ	l/100 40mm		0			T 1-10M		x
	542-88-1	bis-chloromethyl ether	2				1/104 30mm	x		×	×		x	
	1634-04-4	methyl t-butyl ether	2pl				1/55 250mm		0			HPV		
	1746-01-6	2,3,7,8-tetrachloro-p-dioxin									x			

Tobin_AEGL_Final List2b_modified_11.xls

	CASNo	ChemName	List	AEGL-3 1	AEGL-2 1	AEGL-1				озна				
CHEMISTRY				Hr	Hr	1 Hr	s l(bp,vp) g	RMP	DOT	PSM	s II	Prod	ERPG	IDLH
	136677-10-6	chloro dibenzofurans									x			
Fluorine Compounds (n ot otherwise clas	sified)											-		
IF5	7183-66-6	iodine pentafluoride	2				a		x-W					
	7616-94-6	perchloryl fluoride	2				a		×			(N?)		x
FF	7782-41-4	fluorine	11	13	5.0	1.7	9	x	x	x	x	RMP/Y	x	x
FOF	7783-41-7	oxygen difluoride	2				a		×	×		(N?)		¥
	7783-60-0	sulfur tetrafluoride	2					v				RMP/Y		
	7783-81-5	uranium hexafluoride	1F	36	9.6	3.6								
Germanium Compounds (not otherwise)	classified)						9		x			(*)	×	
	7782-65-2	germane	2									(Y) T 1986		
[H][Ge]([H])([H])[H]							g		x			<10K I		
Halogens														
	56-23-5	carbon tetrachloride	1)	170	56	12	1/76 91mm		0			T 100- 500M	x	×

Tobin_AEGL_Final List2b_modified_11.xls

	CASNo	ChernName	List	AEGL-3 1	AEGL-2 1	AEGL-1				OSHA				
CHEMISTRY				Hr	Hr	1 Hr	s l(bp,vp) g	RMP	DOT	PSM	s II	Prod	ERPG	IDLH
	67-66-3	chloroform	1P	1700	64	NR	1/61 160mm	x				RMP/Y	x	×
See CAS # 25323.89.1	71-55-6	1,1,1-trichloroethan e	11	4200	600	230	1/74 100mm				l l	HPV		
							1/14 100mm		<u>^</u>	<u> </u>	╄───		<u>^</u>	†
Br BrC	74-83-9	methyl bromide	2P	740	210	NR	a		×	×		HPV	×	×
a— CIC	74-87-3	methyl chloride	2P	3000	910	NR	9	x		x		RMP/Y	x	x
I	74-88-4	methyl iodide	2				1/43 405mm		x	x		T 10-500K	x	x
	75-01-4	vinyl chloride	2P	4800	1200	250								
FC=C	75-02-5	vinyl fluoride	2				g					HPV	× .	
	75-09-2	methylene chloride	1P	6900	560	200	9 1/40 350mm)			x	x
Br Br Br	75-25-2	bromoform	2				1/146 5mm					T 1998 10-		Y
	75-34-3	1,1-dichloroethane	2		•		1/c.83 c.87mm)		HPV		×

Tobin_AEGL_Final List2b_modified_11.xls

CHEMISTRY	CASNo	ChemName	List	AEGL-3 1 Hr	AEGL-2 1 Hr	AEGL-1 1 Hr	s l(bp,vp) g	RMP	DOT	OSHA PSM	s II	Prod	ERPG	IDLH
C(=C(C(=C1(C))C))(C1(C))(C1)(C))	77-47-4	hexachlorocyclopentadiene	2				1/239 0.6mm		×			HPV		
	79-01-6	trichloroethylene	1P	3800	450	130								
							g		0		<u> </u>		x	x
F Q F F	79-38-9	trifiuorochloro ethylene	2											
				<u> </u>			g		x	x		HPV	x	
BrCCBr	106- 9 3-4	dibromoethane	2P	26	NR	NR	l/131 11mm		x			HPV		x
	107-05-1	allyl chloride	2											
C(=C)CCI						<u> </u>	1/44 280mm		0	×			x	x
	107-06-2	1,2-dichloroethane	2				l/83 87mm					HPV	x	
но а	107-07-3	chioroethanol	2				1/130.15mm		Y			500K-1M		x
	110-57-6	trans-1,4-dichlorobutene	2				1/156 6mm		0			HPV		~
FC(F)=C(F)F	116-14-3	tetrafluoroethylene	2				g		0	x		HPV	x	

Tobin_AEGL_Final List2b_modified_11.xls

CHEMISTRY	CASNo	ChernName	List	AEGL-3 1 Hr	AEGL-2 1 Hr	AEGL-1 1 Hr	s l(bp,vp) g	RMP	DOT	OSHA PSM	SI	Prod	ERPG	IDLH
	116-15-4	hexafluoropropylene	2										,	
FC(F)(F)C(F)=C(F)F				<u> </u>	ļ		g		0			HPV		
	127-18-4	tetrachloroethylene	11	1200	230	35	V421 12							
a		<u></u>					1/121 13mm		0				×	×
	156-59-2	cis-1,2-dichloroethylene	11	850	500	140								
 cis CICH≂CHCI							I/81 215mm		o			T 1994 10- 500K		x
trans CICH=CHCI	156-60-5	trans-1,2-dichloroethylene	11	1700	1000	280	1/50 340mm		0					x
	382-21-8	perfluoroisobutylene	2											
$\frac{FC(F)=C(C(F)(F)F)C(F)(F)F}{F}$					<u> </u>		a		0			(Y?)		+
	453-18-9	methyl fluoroacetate	2				1/105 c 20mm					(N2)		
a a a	540-59-0	1,2-dichloroethylene	1				l/c.80 c.200mm		0			T 500K-1M		x
F—	593-53-3	methyl fluoride	2				g		0			(Y?)		

Tobin_AEGL_Final List2b_modified_11.xls

CHEMISTRY	CASNo	ChemName	List	AEGL-3 1 Hr	AEGL-2 1 Hr	AEGL-1 1 Hr	s I(bp.vp) g	RMP	рот	OSHA PSM	s II	Prod	ERPG	IDLH
	811-97-2	HFC 134a (1,1,1,2- tetrafluoroethane)	1F	27000	13000	8000			•			HPV		
	1717-00-6	HCFC 141b (1,1-dichloro-1- fluoroethane)	1F	3000	1700	1000	a					HPV		
Chemistry 0	163702-07-6	HFE 7100 (methyl nonafluorobutyl ether)	11	15000	8200	2500	g					T 500K-1M		
	163702-08-7	HFE 7100 (methyl nonafluoroisobutyl ether)	11	15000	8200	2500								
Chemistry 1 Hydrocarbons (Alighatio)							g					T 1M-10M		
	74-98-6	propane	2P	33,000	17000	5,500	a		0			HPV	Y	Y
C(C=C)=C	106-99-0	butadiene	2P	22,000	5300	670	g		0			HPV	x	x
	106-97-8	butane	2P	53,000	17000	5,500	g		0			HPV	<u>x</u>	
<u>c(cccc)c</u>	110-54-3	hexane	2P	8,600	3300	NR	l/69 151mm		0			HPV	x	x
	115-07-1	propylene	2pl				a					HPV		
СН Х	8006-61-9	gasoline	2				1		0				<u> </u>	
сн	70892-10-3	jet fuels 8	11	NA	1100	290	1		0			(Y)	^ x	

.

CHEMISTRY	CASNo	ChemName	List	AEGL-3 1 Hr	AEGL-2 1 Hr	AEGL-1 1 Hr	s l(bp,vp) g	RMP	DOT	OSHA PSM	s II	Prod	ERPG	IDLH
Hydrocarbons (Aromatic)						=		-						-
c(cccc1)c1	71-43-2	benzene	1P	4000	800	52	1/80 75mm		0			НР∨	x	x
	92-52-4	biphenyi	2P	NR	9.6	NR								
c(c(cccc1)c1)(cccc2)c2						-	1/256 0.0005mm					HPV	<u> </u>	x
	98-82-8	cumene	2P	730	300	50	1/152 4 5mm					HPV		÷
				— —			17152 4.5mm							^
	100-42-5	styrene	2P	1100	130	20	1/145.6.4mm		0			HPV	¥	¥
		<u> </u>		<u> </u>			1/143 0.411m						Ê	<u>^</u>
	108-88-3	toluene	11	2900	510	200	1/110 25mm				ç			
							1/110 20mm						×	<u> </u>
	1330-20-7	xylenes	11	1100	400	130								
							1/140 15mm		- 0			nrv		x
Imines				<u> </u>				<u> </u>	<u></u>				ļ	
Z H	75-55-8	propyleneimine	11	23	12	NR								
N(C1C)C1							I/66 112mm	x	0	<u>ا</u> ا	ļ	RMP/Y		x

Tobin_AEGL_Final List2b_modified_11.xls

CHEMISTRY	CASNo	ChemName	List	AEGL-3 1 Hr	AEGL-2 1 Hr	AEGL-1 1 Hr		PMP		OSHA	9 11	Brod	EBBG	
							s ((op,vp) g	KMF		FOM	51	Fiba		
H	151-56-4	ethyleneimine	11	9.9	4.6	NR			ĺ					
N(C1)C1							1/56 160mm	x	x	x	x	RMP/Y	+	x
Inorganic Acids													Í	
на	7647-01-0	hydrogen chloride gas	1F	100	22	1.8	9	x	x	x	×	RMP/Y	x	x
	7647-01-0	hydrochloric acid (solution)	1F	100	22	1.8	solution		x	x		HPV/Y		x
~									<u> </u>	<u> </u>				
но __ , мо	7664-38-2	phosphoric acid	2											
OP(0)(0)=0							l/260 <<0.1mm		0			нру		x ·
HF F	7664-39-3	hydrogen fluoride	1F	44	24	1.0	q	x	x	x		RMP/Y	x	x
но _с "О														
но	7664-93-9	sulfuric acid	1P	160	9	0.20	2							
OS(O)(=O)=O							1/290 <<0.1mm		x			>1B	x	×
о:о ОН	7697-37-2	nitric acid	1)	92	24	0.53								
O[N+]([O-])=O							I/121 8mm	x	x	x		RMP/Y	x	x
	7783-06-4	hydrogen sulfide	21	50	27	0.51	~	J						
<u> </u>							<u>u</u>	*	x	x			×	×
[Se]	7783-07-5	hydrogen selenide	2P	2.2	0.73	NR	g	x	x	x		RMP/Y	x	x
H	10034-85-2	hydrogen iodide	2P	120	22	1.0			¥					
HBr	10035-10-6	hydrogen bromide	2P	120	22	1.0	<u> </u>					T 1994 10-		- 1
Br							a		x	×		500K		<u>×</u>
lsocyanates														

	CASNo	ChemName	List	AEGL-3 1 Hr	AEGL-2 1 Hr	AEGL-1 1 Hr		RMP	DOT	OSHA PSM	s II	Prod	ERPG	IDLH
CHEMISTRY							s ((op,vp) g	remer	501	1.014	5 "			iben
	91-08-7	toluene 2.6-diisocyanate (2,6- TDI)	1F	0.51	0.083	0.020hh	1/132 3.2mm	×	C		×	RMP/Y	×	
								-						
O=C=Nc(cccc1)c1	103-71-9	phenyl isocyanate	2				1/165 2.6mm		×			T 10-500K		
N			2										}	
	109-90-0	ethyl isocyanate	2				1/60 220mm		×			(N?)		
	110-78-1	n-propyl isocyanate	2				1/83 c.50mm		x			T 1986 10- 500K		
	111-36-4	n-butyl isocyanate	2] /1 15 18mm		×			HPV	×	
O=C=NCCCCC N N O=C=Nc(c(ccc1N=C=O)C)c1	584-84-9	toluene 2,4-diisocyanate (2,4- TDI)	1F	0.51	0.083	0.020	1/251 0.01mm	×		0	x	RMP/Y		x
0 - N	624-83-9	methyl isocyanate	1F	0.20	0.067	NR	1/39 400mm	×	x	x	×	RMP/Y	×	x

.

Tobin_AEGL_Final List2b_modified_11.xls

		Ţ		AEGL-3.1	AEGL-2.1	AEGL-1					[
CHEMISTRY	CASNo	ChemName	List	Hr	Hr	1 Hr		DMD	DOT	OSHA	e 11	Brod	EPPG	
				<u>+</u>	ł — — —		a ((pp, ap) 8	IN WIF	001	- 3m	31		LINIO	ULA
	1609-86-5	t-butyl isocyanate	2								ļ			
	1003-00-0	t-baly isocyanato	2											
												(a.).		
				<u> </u>			1/85 c.50mm	<u> </u>	×			(N)		r
					1									
)											{			
	1795-48-8	isopropyl isocyanate	2					1						
						-	l/74 c.50mm	<u> </u>	×			<u> </u>		
Ň	1873-29-6	isobutyl isocyanate	2								ļ			
								[1			
												ĺ	}	
						<u> </u>	l/c.80 c.50mm	<u> </u>	X		}	(N)		
								}						
) N	3173-53-3	cyclohexyl isocyanate	2pl											
Ö														
O=C=NC(CCCC1)C1							i/69 1mm		x			HPV		
0	6427-21-0	methoxymethyl isocyanate	2						Ì	Ì				
				<u> </u>			l/c.100 c.20mm		×	<u> </u>		(N)		
Ketones o							_							
0														
NXX	67.64.4	,		5700	2200	200				(
1 Jon 1	67-64-1	acetone	28	5700.	3200	200								
							I/56 230mm		0			HPV		x
l fo														
	78-93-3	MEK)	11	4000	2700	200		1						
0 、														
O=C(CC)C						┨	1/80 91mm		0			HPV		x
	78.04.4	methyl vinul katone	20											
0	10-94-4	metnyi vinyi ketone	25							1		(N?)	(]	
O=C(C=C)C							1/81 152mm		x	×		1 1986 10- 500K		
	1		1	1	1	1	1 * • 1 * • • • • • • • • • • • • • • •	1	1.4	1.4	1	1	1	

Tobin_AEGL_Final List2b_modified_11.xls

CHEMISTRY	CASNo	ChemName	List	AEGL-3 1 Hr	AEGL-2 1 Hr	AEGL-1 1 Hr	s l(bp.yp) a	RMP	DOT	OSHA PSM	SII	Prod	ERPG	
	<u> </u>	·····			<u>}</u>	†					1			1
o d	78-95-5	chloroacetone	2P	13	4.4	NR								
							1/119 12mm		×			HPV		
C=C=O	463-51-4	këtene	2				9			x		(Y)		x
	598-31-2	bromoacetone	2											
BrCC(=O)C	<u> </u>	·					1/137 9mm		×			(N)		<u> </u>
	684-16-2	hexafluoroacetone	2pl				9		x	×		Т 10-500К	×	
a	1341-24-8	chloroacetophenone	2pl											
CICC(=O)c1ccccc1		}		·			l/225 0.0076mm	<u> </u>	0	Ì	<u> </u>	<u> </u>	<u> </u>	<u>×</u>
Lead Compounds (not otherwise classif	īed)		 	<u> </u>						ļ		ļ		<u> </u>
	75-74-1	tetramethyl lead	1H				l/110 c.20mm	x				RMP/N		x
Lithium compounds	·			<u> </u>					<u> </u>		 			<u> </u>
	26134-62-3	lithium nitride							x-W					
Mercaptans Rp														

Tobin_AEGL_Final List2b_modified_11.xls

	CASNo	ChemName	List	AEGL-3 1	AEGL-2 1	AEGL-1				оѕна				
CHEMISTRY							s I(bp,vp) g	RMP	DOT	PSM	<u>s II</u>	Prod	ERPG	IDLH
sc	74-93-1	methyl mercaptan	11	68	47	NR	a	x	×	x		RMP/Y	x	x
						1				1				
HS \	75-08-1	ethyl mercaptan	2P	360	120	1.0			1					
scc							l/82 89mm		0			HPV	<u> </u>	x
SH	108-98-5	phenyl mercaptan	2											
Sc(cccc1)c1							1/169 1mm		x	<u> </u>	-	HPV		
HS HS	141-59-3	t-octyl mercaptan	2											
SC(CC(C)(C)C)(C)C							l/c,200 <0.01mm		x	ļ		<u> </u>		
Mercury Compounds (not otherwise class	sified)					r.								
	7439-97-6	mercury	2pi				s 0.002mm		0			Т 1990 10- 500К	x	x
Metal Carbonvis								,						
0														
	13463-39-3	nickel carbonyl	11	0.16	0.036	NR								
Ni (CO)4							1/43 400mm	x	x	×		RMP/Y		x
	13463-40- 6	iron pentacarbonył	11	0.60	0.20	NR								
[Fe](C#[O:])(C#[O:])(C#[O:])(C#[O:])	_						I/103 35mm	x	x	×		RMP/Y		
Nitriles N									ĺ					
N=	74-90-8	hydrogen cyanide	1F	15	7.1	2.0	a	x	x	x		RMP/Y	×	x
		<u> </u>		 -					1	<u>† </u>				
N#CC	75-05-8	acetonitrile	2P	490	230	13	l/82 89mm		0			HPV		x

Tobin_AEGL_Final List2b_modified_11.xls

CHEMISTRY	CASNo	ChemName	List	Hr	Hr	1 Hr	s l(bp,vp) g	RMP	DOT	OSHA PSM	s II	Prod	ERPG	IDLH
HO	75-86-5	acetone cyanohydrin	1	15	7.1	2.0					1			
N#CC(O)(C)C					ļ		l/decompose 1mm		x			НР∨		
	78-82-0	isobutyronitrile	11	68	18	NR	l/107 c.20mm	x	0			RMP/Y	x	
	100-47-0	benzonitrile	2P	56	22	NR								
N#CCC	107-12-0	propionitrile	11	37	7.0	NR	/191 <0.1mm /98 40mm	x	0			T 500K-1M RMP/Y		
N#CC=C	107-13-1	acrylonitrile	2pl				1/77 109mm	x	0			HPV RMP/Y	x	x
N#CCCI	107-14-2	chloroacetonitrile	2P	49	23	NR	l/125 15mm		x			(Y?)	×	
N#CCO	107-16-4	formaldehyde cyanohydrin	2				l/183 0.02mm					HPV		
N#CCC#N	109-77-3	malononitrile	2Р	7.5	3.5	NR	1/220 0.08mm		0			Т 10-500К		
N#CC(=C)C	126-98-7	methacrylonitrile	11	25	13	1.0	1/90 60mm	x	x	x		RMP/Y		
Na ⁺ C≡N [Na+].[C-]#N	143-33-9	sodium cyanide	2				s 0.002mm		x-W			T 10-50M		x

Tobin_AEGL_Final List2b_modified_11.xls

	CASNo	ChemName	List	AEGL-3 1	AEGL-2 1	AEGL-1				OSHA				
CHEMISTRY							s l(bp,vp) g	RMP	DOT	PSM	SII	Prod	ERPG	IDLH
	151-50-8	potassium cyanide	2				s 0.002mm		x-W			T 1998 10- 500K		x
N	460-19-5	cyanogen	2											
N#CC#NBr	506-77-4	cyanogeл chloride	1H				9		x	x x				
N N	2698-41-1	o-chlorobenzylidene malononitrile	2				9 1/310 <0.01mm		x			T 1990 10- 500K		x
Nitro Compounds Br							_							
	76-06-2	chloropicrin	2											
O=[N+]([O-])C(CI)(CI)CI							l/112 c.20mm	_	x	x	<u> </u>	(Y)	x	x
	509-14-8	tetranitromethane	11	1.7	0.52	NR	1/426 B 4					BMDAL		
$\frac{[0+]([0-])C([n+]([0-])=0)([n+]([0-])=0)[n]}{[n+]([0-])=0)[n]}$		·					1/120 0.4mm	X	×	×			1	X
	6423-43-4	Otto Fuel (Propylene glycol dinitrate)	1F	13	1.0	0.17								
O=[N+]([O-])OCC(O[N+]([O-])=O)C						l	l/decompose 0.088	mm				HPV		
Nitrogen Compounds (not otherwise clas	sified)													
	1341-49-7	, ammonium fluoride	2				g					т 500К-1М		

Tobin_AEGL_Final List2b_modified_11.xls

				AEGL-3 1	AEGL-2 1	AEGL-1								
	CASNo	ChemName	List	Hr	Hr	1 Hr	sl(bovo)a Bi		лт 🛛	OSHA PSM	SI	Prod	FRPG	ын
									_					UCH.
a ^{_N} ≈o	2696-92-6	nitrosyl chloride	2											
CIN=O							a	x				(Y)		
NH											 			
,	7664-41-7	ammonia	11	1100	110	30								
							gX	X		x		RMP/Y	×	x
FF														
I F	7783-54-2	nitrogen trifluoride	2	1										
ENICE				-	1					~		\sim		
							<u> </u>		-i	*	-	(1)	<u> </u>	x
HN=0	10102-43-9	nitric oxide	11	20	12	0.50								
N=O							g x	X	:	x	 	RMP/Y		x
N														
07 0	10102-44-0	nitrogen dioxide	11	20	12	0.50						ļ		
0=N=0			<u> </u>				g	×		x			x	x
N2O4	10544-72-6	nitrogen tetroxide	2				a	x	Ì,	×		m		
													†	
°≥ _N r ^o .														
 N ₁	10544-73-7	nitrogen trioxide	2											
` 0													ļ	
0=[N+]([0-])N=0	_						g	x	2	x		(Y)		
Organic Acids														
NY COL	79-10-7	acrylic acid	11	180	46	1.5	I/141 4mm		0			HPV	~	
	<u></u>					1			~				Î	
	79-11-8	mono-chloroacetic acid	11	NR	6.6	NR								
F O														
<u>O=C(O)CCI</u>							s 0.002mm		0			HPV		
O H														
	79-41-4	methacrylic acid	2		 									
HD DA														
O=C(O)C(=C)C							l/163 1mm		0			HPV		
												1		
										1				
Metal phosphides													ļ	

Tobin_AEGL_Final List2b_modified_11.xls

CHEMISTRY	CASNo	ChemName	List	AEGL-3 1 Hr	AEGL-2 1 Hr	AEGL-1 1 Hr	s l(bp,vp) g	RMP	рот	OSHA PSM	SII	Prod	ERPG	IDLH
	1305-99-3	calcium phosphide	2											
	20770-41-6	Potassium phosphide	2				5		x-W					
	12057-74-8	magnesium phosphide	2				s		x-W					
	12058-85-4	sodium phosphide							x-W					
	12504-13-1	strontium phosphide	2				s		x-W					
	20859-73-8	aluminum phosphide	2				s		x-W					
	?	magnesium aluminum phosphide	2				5		x-W					
Osmium Compounds (n@Hotherwise clas	ssified)													
He , o d , o O=[Os](=O)(=O)=O	20816-12-0	osmium tetroxide	2				5		0	x				x
Oxygen Compounds (sot otherwise clas	sified)													

Tobin_AEGL_Final List2b_modified_11.xls

CHEMISTRY	CASNo	ChemName	List	AEGL-3 1 Hr	AEGL-2 1 Hr	AEGL-1 1 Hr	sl(bp,vp)g RMP	DOT	OSHA PSM	SII	Prod	ERPG	
O#N	630-08-0	carbon monoxide	21	330	83	NR							
O#CHO							g	×			HPV	×	×
Peroxides								_					
o dH	79-21-0	peracetic acid	11										
O=C(OO)C							l/105_15mm x		x	-	RMP/Y		L
Phenols H0===0H						 							
	108-95-2	phenol	1	47	15	4.5							
		·					s)		HPV	×	x
O O H	1319-77-3	cresol	2										
								C)		HPV		×
Phosphate & Thiophosphate Esters													
Phoenhand Alexandre													
	96-64-0	Soman (GD)	1F	0.017	0.0022	0.00018	1/198 0.40mm	×			(NA)		
	107-44-8	Sarin (GB)	1F	0.022	0.0060	0.00048							
CC(C)OP(C)(F)=O							I/158 2.1mm	×	x		(NA)		
· · · · · · · · ·	329-99-7	cyclohexylmethyl fluoridate (GF)	1F	0.018	0.0024	0.00022	1/239.0.044mm				(NA)		

Tobin_AEGL_Final List2b_modified_11.xls

CHEMISTRY	CASNo	ChemName	List	AEGL-3 1 Hr	AEGL-2 1 Hr	AEGL-1 1 Hr	s l(bp,vp) g	RMP	рот	OSHA PSM	s II	Prod	ERPG	IDLH
	50782-69-9	VX ·	1	0.0030	0.000090	0.0000073						A14.		
0=P(C)(0CC)SCCN(C(C)C)C(C)C							I/298 0.0007mm		x			(NA)		
	77-81-6	Tabun (GA)	1	0.039	0.0053	0.00042	1/245 0 037mm		¥			(NA)		
Phosphorus Compounds (not otherwise	classified)								~					
					•									
	676-83-5	methyl phosphonous dichloride	2				1/254 0.3mm		x			-		
	676-97-1	methyl phosphonic dichloride	2				1/>200 <0.1mm		Y					
				<u> </u>			17200 S0. Hall		^					
	993-13-5	methyl phosphonic acid	2			,	1/2200 <0.1mm							
							1/200 (0.11111							
	993-43-1	ethyl phosphono thioic dichloride							x					
	1314-80-3	phosphorus pentasulfide	2				S		x			Т 10-500К		x
СІ2Р-СН2СН3	1498-40-4	ethylphosphonous dichloride	2				/>200 <0.1mm		x			(N)		

Tobin_AEGL_Final List2b_modified_11.xls

CHEMISTRY	CASNo	ChemName	List	AEGL-3 1 Hr	AEGL-2 1 Hr	AEGL-1 1 Hr	s l(bp.yp) a	RMP	DOT	OSHA PSM	s II	Prod	ERPG	
	1498-51-7	ethylphosphonodichloridate	2				//>200 <0 1mm					HPV		
	7647-19-0	phosphorus pentafluoride	2											
P(F)(F)(F)(F)F							a		x-W			(N)		
a p a I a	7719-12-2	phosphorus trichloride	1	0.88	NA	NA								
							l/76 100mm	x	x	x		RMP/Y	×	x
	7789-69-7	phosphorus pentabromide	2											
P	7803-51-2	phosphine	11	3.6	2.0	NA	9	x	x-vv	x			x	x
a a a b a	10025-87-3	phosphorus oxychloride	11	0.85	NA	NA								
							1/106 40mm	x	x-W	x		RMP/Y		
a a_p a ciP(Ci)(Ci)(Ci)Ci	10025-13-8	phosphorus pentachloride	2			 	l/167 <1mm		x-W			1990 10- 500K		x
Pyridines														
Tobin_AEGL_Final List2b_modified_11.xls

						<u> </u>		<u> </u>				Γ	<u> </u>	
	CASNo	ChemName	List	AEGL-3 1	AEGL-21	AEGL-1				OSHA				
CHEMISTRY				Hr	Hr	1 Hr	s l(bp,vp) g	RMP	DOT	PSM	S II	Prod	ERPG	IDLH
	1737-93-5	3,5-dichloro-2,4,6- trifluoropyridine	2									4 4014		
							1/160 < 1mm	-	x		-	1-10M		
Selenium Compoundes (not otherwise cla	ssified)													
F[Se](F)(F)(F)(F)(F)	7783-79-1	selenium hexafluoride	2				9		x	x		(N?)		x
Silicon Compounds (notOptherwise class	ified)													
	681-84-5	tetramethoxy silane (methyl orthosilicate)	2											
CO[Si](OC)(OC)OC							l/121 c.10mm		x			HPV	x	
	2487-90-3	trimethoxysilane	2											
				<u> </u>			1/84 76mm	<u> </u>	×	×		HPV	X	
SH4 [Si]	7803-62-5	silane	2				g		0			(Y) T 1986 <10K i		
F Si F	7783-61-1	silicon tetrafluoride	2									(Y) T 1986		
[Si](F)(F)(F)F							g		x-W		-	<10K i		
	10026-04-7	silicon tetrachloride	2				1/58 >50mm		x-W			100-500K		
Sulfur Compounds (not otherwise classi	fied)													
	72-78-1	dimethyl sulfate							x					

•

Tobin_AEGL_Final List2b_modified_11.xls

.

	CASNo	ChemName	List	AEGL-3 1	AEGL-2 1	AEGL-1			Ī	OSHA				
						+	s l(bp,vp) g	RMP	DOT	PSM	SII	Prod	ERPG	IDLH
s	75-15-0	carbon disulfid e	21	480	160	4.0	l/47 360mm	x						
C(=S)=S									c)		RMP/Y	x	x
	463-58-1	carbonyl sulfide	2				l/50_>100mm		x			1986 1- 10M I	×	
	505-60-2	sulfur mustard	1F	0.32	0.020	0.010	I/215 0.1mm							
	556-61-6	methyl isothiocyanate	2						,					
N#CSC	556-64-9	methyl thiocyanate	2H	_			1/11/ 15mm	x	x					
a a a s a	594-42-3	perchloromethyl mercaptan	11				·							
S(C(Cl)(Cl)Cl)Cl							l/c.148d c.5mm	x	x	x		RMP/Y		x
	1120-71-4	1,3-propane sultone	2	5										
O=S(=O)(OCC1)C1							l/>200 <0.1mm					10-500K		
o ^{≠^S≈o}	7446-09-5	sulfur dioxide	1)	ļ								BMB M		
0~3-0 ∥ 0	7446-11-9	sulfur trioxide	1P				9	x	<u>x</u>	X		<u>RMP/1</u>	X	<u>×</u>
S(=O)(=O)=O							g	x	×	x	x	RMP/Y	x	
	7775-14-6	sodium dithionite	2											
							s		x-W			1-10M		

Tobin_AEGL_Final List2b_modified_11.xls

CHEMISTRY	CASNo	ChemName	List	AEGL-3 1 Hr	AEGL-2 1 Hr	AEGL-1 1 Hr	s l(bp,vp) g	RMP	рот	OSHA PSM	s II	Prod	ERPG	IDLH
F S F	7783-60-0	sulfur tetrafluoride	1H											
S(F)(F)(F)F				 			g	x	×	×		RMP/N		ļ
Q=S(=Q)(Cl)Cl	7791-25-5	sulfuryl chloride	2				1/69 140mm		~_\A/			(Y) T1986 500K-1M i		
	8014-95-7	oleum (fuming sulfuric acid)	1P	160	8.7	0.20	l/>200 <<0.1mm	x		×				
O=S(=O)(O)O.O=S(=O)(=O)									x			RMP/Y	x	
a ^{_s} s_ ^a	10025-67-9	disulfur dichloride	2P	15	6.4	0.53	l/138 c.10mm		x-W			1994 1- 10M		x
a ^{_s} _a	10545-99-0	sulfur dichloride	2	3	FALSE	TRUE	l/c.100 c.10mm		x-W		x	(Y?) T 1994 10- 500K		
	14989-32-3	disulfur dichloride	2				l/c.100 c.10mm		x-W		-	(N?)		
Tellurium Compounds (not otherwise cla	assified)													
F-Ta F-Ta FF F F F F F F F F F F F F	7783-80-4	tellurium hexafluoride	2	2	FALSE	TRUE	9		x	x		(N)		×
Titanium Compounds (pot otherwise cla	ssified)													
	7550-45-0	titanium tetrachloride	2P	92	TRUE	TRUE	1/136 10mm	x	x-W			RMP/Y	x	
aa i 	7705-07-9	titanium chloride	2	3	FALSE	TRUE			x-W			1990 10- 500K		
Tungsten Compounds (not otherwise cla	assified)													

•

Tobin_AEGL_Final List2b_modified_11.xls

CHEMISTRY	CASNo	ChemName	List	AEGL-3 1 Hr	AEGL-2 1 Hr	AEGL•1 1 Hr	s l(bp,vp) g	RMP	DOT	OSHA PSM	S II	Prod	ERPG	IDLH
	7783-82-6	tungsten hexafluoride	2											
F [W](F)(F)(F)(F)F				+			g		x			(Y)		
Zinc Compounds														
		zinc dithionite												
Zinc Dithionite							S		x					

ATTACHMENT 6

DERIVATION OF AEGL-1 VALUES FOR EPICHLOROHYDRIN

RESPONSE TO FEDERAL REGISTER COMMENTS

KOWETHA DAVIDSON, ORNL STAFF SCIENTIST

RICHARD THOMAS, CHEMICAL MANAGER

NAC/AEGL MEETING, Research Triangle Park, NC April 12-14, 2005

AEGL-1 DERIVATION

- AEGL-1 values in the TSD were derived based on odor detection
- AEGL-1 derivation has to be revised, because these values are no longer based on odor detection
- Two proposal are presented

Summary	of Effects of E	Exposure of Humans to Non-Lethal Concentrations of	of Epichlorohydrin
Conc.	Duration of Exposure	Effect	Reference
10-12 ppm	5 min.	50% of subjects detected the odor	Shell Oil Co., 1992
10-20 ppm	work shift	cause irritation (not otherwise described)	Enterline et al. (1990)
17 ppm	2 min.	odor detected by 2/4 subjects, no irritation reported	UCC, 1983
25 ppm	5 min.	odor detection for 100% of subjects	Shell Oil Co., 1992
20 ppm	1 hour	burning of eyes and nasal mucosa	Wexler, 1971
40 ppm	1 hour	throat irritation that lasted 48 hours	Wexler, 1971
68 ppm	2 min.	odor detected for 4/4 subjects; 1/4 reported pharyngeal irritation	UCC, 1983
136 ppm	2 min.	2/4 subjects reported cooling sensation reported by;2/4 subjects reported eye or pharyngeal irritation	UCC, 1983

PROPOSAL NO. 1

- Human study (UCC, 1983)
- Four subjects exposed to epichlorohydrin at concentrations of 17, 68, and 136 ppm for 2 minutes
- **17 ppm:** 2/4 subjects detected and identified odor of epichlorohydrin
- **68 ppm:** 4/4 subjects detected odor; 1/4 subjects reported irritation to the pharynx
- 136 ppm: 2/4 subjects reported cooling sensation to eyes or mouth; 2/4 subjects reported irritation in the eyes or pharynx

Proposal No. 1 (cont.)

- Point of departure (POD): 68 ppm, 2 min.
- Uncertainty factors (UF):
 - Interspecies UF: NA
 - Intraspecies UF: 3 (irritant)
 - Scaling: $C^n x t = k, n = 0.87$
 - AEGL-1 for 10 min = 3.6 ppm
 - No scaling to longer durations, epichlorohydrin is an irritant

AEGL-1 VALUES FOR EPICHLOROHYDRIN (ppm)						
10 min	30 min	1 h	4 h	8 h		
3.6	3.6	3.6	3.6	3.6		

•

PROPOSAL NO. 2

- Recommend no values for AEGL-1
- Rationale
 - Values derived under proposal no. 1 are below odor detection ($OD_{50} = 10 \text{ ppm}$)
 - Values derived under proposal no. 1 are lower than 17 ppm where no irritation was detected (UCC, 1983)

ATTACHMENT 7

Acute Exposure Guideline Levels (AEGLs)

for

Acetone

(CAS Reg. No. 67-64-1)

H₃C O CH₃

NAC/AEGL-36, April 12-145, 2005

Research Triangle Park, NC

Scientists (Toxicological Consultants):

Jens-Uwe Voss/Gerhard Rosner

Chemical Manager USA:

Nancy Kim

Chemical Reviewer for German Expert Group:

Ursula Gundert-Remy

Chemical Manager in German Expert Group:

Rudolf Jäckh

NAC/AEGL-36; April 2005

Revisit of Acetone

	SUM	MARY TA	ABLE OF	AEGL VA	ALUES F	OR ACETONE ^a
Classification	10- Minute	30- Minute	1-Hour	4-Hour	8-Hour	Endpoint (Reference)
AEGL-1 (Nondisabling)	200 ppm (470 mg/m ³)	200 ppm (470 mg/m ³)	200 ppm (470 mg/m ³)	200 ppm (470 mg/m ³)	200 ppm (470 mg/m ³)	NOAEL for slight irritation (Ernstgard et al. 1999; Matsushita et al., 1969a; Nelson et al. 1943; Stewart et al. 1975)
AEGL-2 (Disabling)	9,300 ppm* (22,000 mg/m ³)	4,900 ppm* (11,000 mg/m ³)	3,200 ppm* (7700 mg/m ³)	1,400 ppm (3400 mg/m ³)	950 ppm (2300 mg/m ³)	Ataxia in rats (Bruckner and Petersen 1981a; Goldberg et al. 1964)
AEGL-3 (Lethality)	see below	8,600 ppm* (20,000 mg/m ³)	5,700 ppm* (14,000 mg/m ³)	2500 ppm (6000 mg/m ³)	1,700 ppm (4000 mg/m ³)	No lethality in rats (Bruckner and Petersen 1981a; Smyth et al. 1962)

a: Cutaneous absorption of liquid acetone may occur. Since liquid acetone is an eye irritant, eye contact must be avoided.

#: The lower explosive limit (LEL) of acetone in air is 2.6 % (26,000 ppm). The AEGL-3 value of 16,000 ppm (39,000 mg/m³) for 10 minutes is higher than 50 % of the LEL. Therefore, extreme safety considerations against hazard of explosion must be taken into account.

*: Concentrations are higher than 1/10 of the lower explosive limit of acetone in air. Therefore, safety considerations against hazard of explosion must be taken into account.

Comments made by

- GAMA (Global Acetate Manufacturers' Association, Brussels, Belgium), very detailed and complex comments; and by
- John Morawetz (ICWUC Center for Worker Health & Safety, Cincinnati, Ohio),

GAMA: report "is very well written and reasonably detailed in many regards and .. most, but not all, of the critical studies described"; proposed limits are deficient in four areas:

- <u>"AEGL-2 and AEGL-3</u> limits can be improved by establishing a human biological effect concentration that corresponds to the appearance of a particular neurological effect." (GAMA considers <u>approach using animal data</u> <u>"peculiar"</u>, instead, values not in accordance with observations at workplace, data from human case reports and PBPK model should be used)
- <u>"AEGL-1</u> limits derived using outdated and unreliable information from unscientific symptom surveys." (refer to new review of Arts et al., 2002)
- 3. <u>AEGL-1</u> limits do not conform with SOP for AEGL (use only sensory irritation as relevant endpoint, acetone is a very weak sensory irritant, AEGL-1 far too conservative)
- 4. AEGL-1 very close to LOA of 160 ppm, may result in unnecessary alarm or panic in an emergency situation.

(balance the need to keep people safe without causing widespread fear and confusion in the affected population) 5. (errors or omissions in Table 8.2 regarding extant standards and guidelines for acetone; will be checked and corrected, but not be dealt further here)

John Morawetz

• Basis for <u>AEGL-1</u>: The "bottom line is that without any factor, the population variability stated in the SOP is not taken into account."

(do not use study of Nelson et al. (1943) since its use was rejected recently by NAC/AEGL in the derivation of AEGL for another substance (acetaldehyde).

Remaining studies considered to have limitations because of the number of subjects were small, all were male and healthy.

Therefore a modifying factor of 2 is recommended and 250 ppm be used as a starting point.

This would lead to a (rounded) AEGL-1 of 130 ppm for all time points.

Alternatively, John Morawetz also suggests to discuss that a higher concentration (with, however, effects above AEGL-1 threshold) and an intraspecies uncertainty factor of 3 might be used. Statement to GAMA comments for AEGL-2 and -3

Case reports:

- show that high blood levels (2500 mg/L) may be survived but these patients received intensive medical care at stationary hospital admittance, outcome otherwise not known
- sometimes biased by history of disease (chronic alcoholism) and medication
- uptake of mixtures, acetone not considered cause of death
- uptake of isopropanol, acetone is active metabolite but role of both hard to differentiate

PBPK models:

- may be useful to describe toxikokinetics at lower concentrations (about 500 ppm), but not validated at high exposure concentrations relevant for AEGL-2 and AEGL-3
- use of interspecies uncertainty factor would still be necessary to account for possible kinetic and, especially, toxikodynamic differences

Recommendation:

Retain derived AEGL-2 and AEGL-3 values for all time points.

AEGL-1

- GAMA states that AEGL-1 rely on "sensory irritation" which is observed for acetone at concentrations far higher than 1,000 ppm
- Statement to GAMA comments
 - Definition for AEGL-1:

"airborne concentration ... above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. ... effects... not disabling...transient and reversible...."

Not restricted to "objective" sensory irritation as suggested by GAMA, other factors also relevant.

NRC (2001), derivation of SMAC ("Spacecraft Maximum Allowance Concentrations for Selected Airborne Chemicals"):

- "For 1-h and 24-h SMACs, a slight degree of adverse effects is acceptable as long as the effects do not limit an astronaut's ability to perform during an emergency. The slight adverse effects at 200 ppm reported by Stewart et al. (1975) and those at 250 ppm reported by Matsushita et al. (1969a) are acceptable for short-term exposures (24 h), and, on the basis of the 1000-ppm results in the Stewart study, and the 500-ppm results in the Matsushita study, a 1h exposure at 500 ppm should not affect performance."
- Follow NRC (2001), but consider different protection level and group (trained astronaut's

ability vs. general public exposed without warning);

- AEGL-1 is in accordance with definition and fully consistent with NRC-evaluation in the derivation of SMACs.
- GAMA: AEGL-1 of 200 ppm close to LOA of 160 ppm, suggests widespread panic and mass confusion could develop in an emergency situation when people are exposed at or near the AEGL-1 level.
- Statement to GAMA comments

• Cognitive bias can influence perceived irritation and health symptoms from acetone exposure (more health symptoms in "negatively biased" experimental groups)

• Reaction to Acetone does not depend on the level of the AEGL-1 but on the subjective signs that may be felt at exposure. In an emergency situation, it is to be expected that persons exposed to acetone will react rather more than a "negatively" biased group.

• Therefore, we consider an AEGL-1 level of 200 ppm as appropriate.

NAC/AEGL-36; April 2005

- John Morawetz
 - without any factor, the population variability stated in the SOP is not taken into account. Use mofifying factor of 2.
- Statement to comment of J. Morawetz
 - Concentrations around 200 500 ppm represent the lowest level of the concentration range above which effects of exposure to acetone are increasingly reported. Although in the studies used all volunteers were males, not much variance is expected in the outcome between males and females with respect to the endpoints considered relevant here. Therefore, we suggest that a modifying factor is not necessary.
- Recommendation:

Retain derived AEGL-1 values for all time points.

NAC/AEGL-36; April 2005

Revisit of Acetone

AEGL-1

- Key studies: Ernstgard et al. 1999; Matsushita et al. 1969a; Nelson et al. 1943; Stewart et al.1975
- **Endpoint:** 200 ppm: subjective symptoms (irritation) not reported more often than in controls (Nelson et al., 1943; Stewart et al.1975);

250 ppm: slight irritation, few complaints about discomfort in one study (Matsushita et al. 1969a) but not in another (Ernstgard et al. 1999)

300 ppm: slight irritation in majority of volunteers (Nelson et al. 1969);

Scaling: one value for all time points since local effect, accommodation, complaints about discomfort not reported to increase during several hours of exposure

1

Total uncertainty factor: 1

Intraspecies:

200 ppm as NOEL for local effects, effects weak at higher conentrations

		AEGL-1 Valu	les	
10 minutes	30 minutes	1 hour	4 hours	8 hours
200 ppm (470 mg/m ³)				

Remark: AEGL-1 is above odor recognition threshold.

AEGL-2

Key studie	es: Goldberg Bruckner	et al. (1964); and Peterson 1	981a	
Endpoint:	Effects on	CNS in rats		
	LOAEL:	12000 ppm, 4 h 12600 ppm, 3 h (ataxia, reduce	ı; 1 d escape respo	onse)
NOEL:	6000 ppm	, 4h		
Scaling:	$C^n x t = k$ and $n = 1$, with n = 3 for for longer time	shorter time p periods (defa	eriods ult).
Total unc	ertainty factor	r: 4.2		
Inter Intra	species: 1; be variability neurotoxi factor of 3 (total UF 4-h AEGL species: 4.2; h different a	cause data do y in toxikokinet: c effects betwe incompatible = 10 would giv -2: 600 ppm; 8- based on span age	not indicate mu ics and in acut een species; with human da e h AEGL-2: 300 of LD ₅₀ in rats o	uch e ta ppm) of
		AEGL-2 Values	5	
10 minutes	30 minutes	1 hour	4 hours	8 hours
9300 ppm* (22,000 mg/m ³)	4000 ppm* (11,000 mg/m ³)	3200 ppm* (7500 mg/m³)	1400 ppm (3400 mg/m ³)	950 ppm (2300 mg/m ³)
*: Values hi	gher than 1/10 c	of lower explosive	limit in air (2.6 %	6).

NAC/AEGL-36; April 2005

,

,

AEGL-3

Key studi	i es: Smyth et a Death in 1 16,000 ppr	al. (1962): /6 animals foll n 4 hours	owing exposu	re to
	Bruckner a No lethalit 12,600 ppr	and Peterson 1 zy in rats follov m for 3 hours	981a: ving exposure	to
Endpoint	: No lethalit	y in rats at 12,	,600 ppm, 3 ho	urs
Scaling:	$C^n x t = k$ and n=1 f	with n=3 for s or longer perio	horter periods ds of time	of time
Total und	ertainty factor	: 3		
Inte Intra	r species: 1 (see factor of 3 (total UF = 4-h AEGL: aspecies: Because the	e AEGL-2); incompatible = 10 would giv -3: 950 ppm; 8- 4.2 he threshold fo	with human da e h AEGL-2: 470 or acute neurot	ata) ppm) oxic
	in humans	the CINS IS not	c expected to v	ary much
	AEGL	-3 Values Ace	tone	
10 minutes	30 minutes	1 hour	4 hours	8 hours
see below **	8600 ppm* (20,000 mg/m ³)	3200 ppm* (7700 mg/m ³)	1400 ppm* (3400 mg/m ³)	950 ppm (2300 mg/m ³)
*: Values h	igher than 1/10 of value highe	f lower explosive r than 50 % of LE	e limit in air (2.6 s EL in air.	%); **
	Level of Di	stinct Odor A	Awareness	
LOA = 16	60 ppm			

NAC/AEGL-36; April 2005

•

Summary of proposed AEGL values for AllOH									
Level	10-min	30-min	1-h	4-h	8-h				
AEGL-1	2.1	2.1	2.1	2.1	2.1				
AEGL-2	4.2	4.2	4.2	4.2	4.2				
AEGL-3	130	130	67	17	8.3				

AEGL-1: Slight to moderate irritation in humans at 6.25 ppm for 5 minutes (Dunlap et al., 1958) [UF = 3]

AEGL-2: NOAEL for severe eye irritation in humans exposed at 12.5 ppm for 5 minutes (Dunlap et al., 1958) [UF = 3]

AEGL-3: Highest concentration w/ no mortality in mice, rats, and rabbits of 200 ppm for 1 h (Union Carbide, 1951) [UF = 3]

AEGL-3

- n value: derived value of 0.78 based on LC₅₀ data from Dunlap et al., 1958; rounded to 1 to be consistent with other chemicals; the 10 min value was set equal to the 30-min value in order not to exceed the 150 ppm conc. that killed almost all the rats only two 7- or 8-hour exposures
- COT: NAC has had chemicals with n value of less than 1; rounding to 1 not in SOP

AEGL-3 Total UF of 3

Interspecies UF – 1 because the highest concentration causing no mortality was identical in all three species

- Intraspecies UF 3 because UF of 10 inconsistent with data; 1, 4, and 8- hour would be 20, 5.1, and 2.5 ppm, respectively.
- Dunlap rats: 7 hr/d, 5 days/wk for 60 exp. No effects at 1, 2, or 5 ppm; ↓ bw gain at 20 ppm.
- Torkelson rats, guinea pigs, rabbits, and dogs: no effects at 2 ppm for 7 hr/d, 5 d/wk for 28 exp., reversible liver and kidney damage at 7 ppm for 7 hr/d, 5 d/wk for 134 exp.

COT: AEGL-3 Total UF of 3

- Interspecies UF 1 not justified; insufficient data to conclude that all species (including humans) respond similarly to the effects resulting from exposure (suggest UF of 3)
- Intraspecies UF 3 It is illogical to make a scientific judgment about what the UF should be based on the data and available information, and if the end result values seem inconsistent with other values, go back and adjust the UFs. The UFs should remain the same and then, if there is a strong reason to change the resulting numbers, an adjustment should be made.

n	UF	10 m	30 m	1 h	4 h	8 h
1	3	400	130	67	17	8.3
1	10	120	40	20	5	2.5
1	30	40	13	6.7	1.7	0.83
0.8	3	620	160	67	12	5
0.8	10	190	48	20	3.5	1.5
0.8	30	62	16	6.7	1.2	0.5
AEG	L-1	2.1	2.1	2.1	2.1	2.1
AEG	L-2	4.2	4.2	4.2	4.2	4.2

ł

COT COMMENTS FOR ALLYL ALCOHOL

Two main issues: selection of UF and value of n

Selection of UF of AEGL-3:

The NAC used an interspecies UF of 1 in deriving an AEGL-3 based on data from an animal study. The rationale provided for this determination is that "these data suggest little difference between species in response to allyl alcohol exposure" (page vii, line 28; page 17, lines 25-26). However, no data are provided in the Executive Summary to support this claim. The text (page 17, Section 4.3 Species) discusses some data, but it is not sufficient to conclude that all species (including humans) respond similarly to the effects resulting from exposure to allyl alcohol.

The data discussed in Section 4.3 are mostly lethality data, and no data on humans were presented that are comparable to the animal data. In addition, the text states that "the lethality data summarized in Table 5 lack LC_{50} values suitable for direct comparisons of species sensitivity" (page 17, lines 19-20). In addition, the data presented on nonlethal effects come from a study in which all the animal data were grouped together such that the reader cannot determine which specific effects occurred in which specific species. The text states that these results were "discussed in general terms for all species" (page 9, line 33). For these reasons, selecting an interspecies UF of 1 for AEGL-3 may not be justified, and a UF of 3 could be used to derive AEGL-3.

The argument for selecting an intraspecies UF of 3 for AEGL-3 is weak and not scientifically based; the values would be "inconsistent with available empirical data" (page vii, line 33). Inconsistency between the results and other established values is not sufficient reason to alter the UFs. It is illogical to make a scientific judgment about what the UF should be based on the data and available information, and if the end result values seem inconsistent with other values, go back and adjust the UFs. The UFs should remain the same and then, if there is a strong reason to change the resulting numbers, an adjustment should be made. There needs to be a solid scientific basis for moving away from the default value of 10. This should not be done in order to "make the numbers work."

Value of n for AEGL-3:

As written, it is not clear why the experimentally derived n = 0.8 in Section 4.4 was not used for time scaling since page 94 of the SOP lists TCE as one example of a substance with n = 0.8. There is nothing in Section 2.7 of the SOP that states empirical n values < 1.0 shall be assumed equal to the default n value of 1; SOP page 103 states, "The lowest value of n was 0.8 and the highest value of n was 3.5." Therefore, additional justification for n = 1 (page 20, lines 28-29) is needed unless the empirical n = 0.8 is used in time scaling.

EXECUTIVE SUMMARY

.

Allyl alcohol is a colorless liquid that is a potent sensory irritant. Signs of intoxication following inhalation exposure to allyl alcohol vapor include lacrimation, pulmonary edema and congestion, and inflammation, hemorrhage, and degeneration of the liver and kidney. Human data were limited to voluntary exposures for short durations and general statements about the symptoms following accidental occupational exposures to unknown concentrations of allyl alcohol for unspecified amounts of time. Animal data were limited to studies in which lethality was the only endpoint of interest, subchronic exposures, or single-exposure experiments in which the model was questionable.

The basis for derivation of AEGL-1 values was human data that reported exposure to 6.25 ppm allyl alcohol for 5 minutes resulted in slight or moderate nose irritation in 3/6 or 1/6 volunteers, respectively (Dunlap et al., 1958). An intraspecies uncertainty factor of 3 was used because irritation is not likely to vary greatly among individuals. The same 2.1 ppm value was applied across the 10- and 30-minute, and 1-, 4-, and 8-hour exposure times because mild irritancy generally does not vary greatly over time, and prolonged exposure is not expected to result in an enhanced effect.

The basis for derivation of AEGL-2 values was the human data from Dunlap et al. (1958). At 12.5 ppm for 5 minutes, moderate or greater nose irritation was reported in 4 of 7 volunteers, and 1/7 reported slight eye irritation. At 25 ppm for 5 minutes, severe eye irritation and moderate nose irritation were reported in 5/5 subjects. The 12.5 ppm was taken as a no-effect-level for severe eye irritation. An intraspecies uncertainty factor of 3 was applied based on the steep dose-response curve for eye irritation in humans (only one individual reported slight eye irritation at 6.25 or 12.5 ppm for 5 minutes, while all 5 individuals reported severe eye irritation at 25.0 ppm for 5 minutes). The same 4.2 ppm value was applied across the 10- and 30-minute, and 1-, 4-, and 8-hour exposure times because mild irritancy generally does not vary greatly over time, and because it is not expected that prolonged exposure will result in an enhanced effect.

The highest concentration causing no mortality in mice, rats, and rabbits of 200 ppm for 1 hour was chosen as the AEGL-3 endpoint (Union Carbide, 1951). The highest concentration causing no mortality was identical in all three species. At higher exposures each of these species had mortality. These data suggest little difference between species in response to allyl alcohol exposure. Therefore, the interspecies uncertainty factor was set to 1. An intraspecies uncertainty factor of 3 was chosen. Although the traditional approach for uncertainty factors in a case such as this would argue for an uncertainty factor of 10 because of the lack of data addressing interindividual variability, this would result in a composite uncertainty factor of 10. An uncertainty factor of 10 would drive the AEGL-3 values to levels inconsistent with available empirical data. A total uncertainty factor of 10 would result in 1, 4, and 8- hour AEGL-3 values of 20, 5.1, and 2.5 ppm, respectively. Dunlap et al. (1958) reported that rats exposed for 7 hr/d, 5 days/wk for 60 exposures to 1, 2, or 5 ppm had no observable adverse effects, while rats exposed to 20 ppm only exhibited decreased body weight gain. Torkelson et al. (1959) reported that no adverse effects were noted when rats, guinea pigs, rabbits, and dogs were exposed to 2 ppm for 7 hr/d, 5

d/wk for 28 exposures, while exposure of rats, guinea pigs, and rabbits to 7 ppm for 7 hr/d, 5 d/wk for 134 exposures resulted only in reversible liver and kidney damage.

The experimentally derived exposure value was then scaled to AEGL time frames using the concentration-time relationship given by the equation $C^n x t = k$, where C = concentration, t = time, k is a constant, and n generally ranges from 1 to 3.5 (ten Berge et al., 1986). To calculate n for allyl alcohol, a regression plot of the LC₅₀ values was derived from the rat LC₅₀ data (1-, 4-, and 8-hour LC₅₀ values of 1060, 165, and 76 ppm, respectively) from Dunlap et al. (1958) The regression analysis resulted in an n value of 0.78. The NAC committee recommended using an n of 1 ($C^l x t = k$; Haber's Law) for consistency with other chemicals when an n of less than 1 is derived from the data.

The 10-minute AEGL-3 value was set equal to the 30-minute value. Repeated 7-hour and 8-hour exposures at 100 ppm required 32 or more days for all rats to die (Dunlap et al., 1958; Shell Chemical Corporation, 1957). At 150 ppm, however, all rats in one study (Shell Chemical Corporation, 1957), and 8 of 10 of the rats in the other study (Dunlap et al., 1958) died by the end of the first two exposures. In order not to exceed the 150 ppm concentration that killed almost all the animals in only two 7- or 8-hour exposures, the calculated 10-minute value of 400 ppm was set equal to the 30-minute value of 130 ppm.

SUMMARY OF AEGL VALUES FOR ALLYL ALCOHOL (ppm [mg/m ³])						
Classification	<u> 10-min</u>	<u> 30-min</u>	1-hr	4-hr	<u>8-hr</u>	Endpoint (Reference)
AEGL-1 (Nondisabling)	2.1 [5.1]	2.1 [5.1]	2.1 [5.1]	2.1 [5.1]	2.1 [5.1]	Slight to moderate irritation in humans at 6.25 ppm for 5 minutes (Dunlap et al., 1958)
AEGL-2 (Disabling)	4.2 [10]	4.2 [10]	4.2 [10]	4.2 [10]	4.2 [10]	NOAEL for severe eye irritation in humans exposed at 12.5 ppm for 5 minutes (Dunlap et al., 1958)
AEGL-3 (Lethality)	130 [310]	130 [210]	67 [160]	17 [41]	8.3 [20]	Highest concentration causing no mortality in mice, rats, and rabbits of 200 ppm for 1 hr (Union Carbide, 1951)

The derived AEGL values are listed in the table.

References:

- Dunlap, M.K., Kodama, J.K., Wellington, J.S., Anderson, H.H., and Hine, C.H. 1958. The toxicity of allyl alcohol. A.M.A. Arch. Ind. Health 18: 303-311.
- Shell Chemical Corporation. 1957. Initial submission: Review of allyl alcohol toxicity with cover letter dated 10/15/92. Shell Chemical Corporation, New York, N.Y. Doc. # 88-920010558.
- ten Berge, W.F., Zwart, A., and Appelman, L.M. 1986. Concentration-time mortality response relationship of irritant and systemically acting vapours and gases. J. Hazard. Mat. 13: 301-309.
- Torkelson, T.R., Wolf, M.A., Oyen, F., and Rowe, V.K. 1959. Vapor toxicity of allyl alcohol as determined on laboratory animals. Am. Ind. Hyg. Assoc. J. 20: 224-229.
- Union Carbide and Carbon Corporation. 1951. Initial submission: Letter from DuPont Chem to USEPA regarding a letter about toxicity studies with allyl alcohol with cover letter dated 10/15/92. Union Carbide and Carbon Corporation, New York, N.Y. Doc. # 88-920009857.