National Lake Assessment Survey Design: 2007

Contact:

Susan Holdsworth
Office of Water
OWOW Monitoring Branch
USEPA (4503T)
1200 Pennsylvania Ave. NW
Washington, DC 20460
(202) 566-1187

Email: Holdsworth.Susan@epa.gov

Description of Sample Design

Target population: All lakes, reservoirs, and ponds within the 48 contiguous United States greater than 1 hectare in surface area that are permanent waterbodies. Note that the minimum surface area actually implemented may be increased to either 4 hectares or 10 hectares. The word "lake" in the remainder of this document includes lakes, reservoirs and ponds. Lakes that are saline are excluded as are those used for aquaculture, disposal-tailings, sewage treatment, evaporation, or other unspecified disposal use.

Sample Frame: The sample frame was derived from the National Hydrography Dataset (NHD).

Survey Design: A Generalized Random Tessellation Stratified (GRTS) survey design for a finite resource is used. The design includes reverse hierarchical ordering of the selected lakes.

Multi-density categories: A complex unequal probability selection process was used to allocate number of lakes to be sampled to a number of lake categories. First, 791 lakes were identified as lakes sampled during the 1970s National Lake Eutrophication study (NES). Two lake area categories, $(1,4]$ and $(4,10]$ hectare ranges, were defined (excluding any NES lakes). All remaining lakes were categorized (1) by four lake area size categories, (10, 20], (20, 50], (50, 100], and >100 hectares; (2) by 48 states, and (3) by nine (9) aggregated Omernik Level 3 ecoregions. This resulted in 427 unique lake categories for the unequal probability design

Stratification: No stratification

Panels: Design uses a single panel with an over sample.
Expected sample size: Expected sample size 1000 lakes including all lakes/reservoirs greater than 1 hectare in surface area in the sample frame. Of the 1000
lakes, the expected sample size for NES lakes is 100 ; for lakes (1, 4] is 90 , for lakes (4, 10] is 90 , and 720 for the remaining 424 categories. The 720 lakes were allocated so that initially (1) 180 would occur in each of the four lake surface area categories of (10, 20], (20,50], $(50,100]$, and >100 hectares and (2) 15 would occur in each of the 48 states. Assuming independence of lake area and states resulted in an expected number of lakes for each state and lake area category combination. These were then adjusted to have an expected sample size of 80 lakes within each of the nine aggregated ecoregions.

Over sample: 4000 lakes were selected as potential replacement lakes. The large over sample size was done to accommodate those states who may want to increase the number of lakes sampled within their state for a state-level design.

Site Use: Each lake selected to be sampled is given unique site identification (siteID) that consists of two parts, NLA06608, and a number between 1 and 5000. It critical this siteID be used in its entirety to make sure that the lakes are correctly identified. Within each state, lakes evaluated for potential sampling must have all siteIDs from the largest to the lowest number evaluated. For example, if NLA06608-0235 is the largest siteID evaluated within a state, then all siteID that are lower than " 0235 " within the state must be evaluated. Even more critical is that if NLA06608-0235 is the largest siteID that is actually sampled in the field, then all lower siteIDs within the state that are evaluated to be a target lake and is accessible must be sampled in the field.

If lakes $(1,4]$ or $(4,10$] hectares in size are included in the target population, then only those lakes in the base sample of 1000 lakes (panel=Panel_1 lakes) will be evaluated. If one of these lakes can not be sampled, then it will not be replaced by another lake.

Sample Frame Summary

Number of NES lakes by lake surface area category \# Lakes

$(0,1]$	0
$(1,4]$	2
$(4,10]$	8
$(10,20]$	5
$(20,50]$	44
$(50,100]$	62
>100	670
Total	791

Number of lakes by lake surface area and nine aggregated ecoregions

	$(0,1]$	$(1,4]$	$(4,10]$	$(10,20]$	$(20,50]$	$(50,100]$	>100	Sum
CPL	0	45228	20781	7018	4199	1334	1475	80035
NAP	0	10847	5335	2421	1923	838	1047	22411
NPL	0	11363	5137	1438	764	286	235	19223
SAP	0	17309	4256	1275	672	247	365	24124
SPL	0	15536	6006	1863	881	252	351	24889
TPL	0	23213	9114	3041	2026	775	809	38978
UMW	0	17433	10979	5202	4339	1797	2016	41766
WMT	0	9537	4804	1763	1039	351	598	18092
XER	0	4735	2147	881	645	254	460	9122
OTH	0	0	0	0	0	0	0	0
Sum	0	155201	68559	24902	16488	6134	7356	278640

Number of lakes by state and lake surface area

	$(0,1]$	$(1,4]$	$(4,10]$	$(10,20]$	$(20,50]$	$(50,100]$	>100	Sum
AL	0	4781	1440	359	179	67	55	6881
AR	0	2768	1445	570	362	118	143	5406
AZ	0	276	124	56	45	22	39	562
CA	0	3051	1479	586	346	112	240	5814
CO	0	2305	1073	332	202	72	117	4101
CT	0	1071	376	152	128	51	38	1816
DE	0	209	62	45	32	10	3	361
FL	0	7691	5213	1926	1296	451	476	17053
GA	0	7290	2974	709	325	73	62	11433
HI	0	0	0	0	0	0	0	0
IA	0	3014	711	202	152	48	58	4185
ID	0	1094	472	177	105	46	80	1974
IL	0	4077	1635	524	285	95	102	6718
IN	0	3224	1184	371	200	72	63	5114
KS	0	6428	1239	272	115	33	50	8137
KY	0	1433	434	172	73	25	27	2164
LA	0	5881	3188	1180	720	280	386	11635
MA	0	1427	742	372	313	130	86	3070
MD	0	597	242	93	50	9	12	1003
ME	0	1519	921	547	468	256	482	4193
MI	0	5164	3132	1380	1133	429	450	11688
MN	0	9312	5831	2876	2552	1114	1311	22996
MO	0	3976	1514	378	165	51	47	6131
MS	0	6389	1792	535	308	64	79	9167
MT	0	5685	2284	599	301	127	162	9158
NC	0	4544	846	266	145	62	94	5957
ND	0	3925	3157	1314	882	355	258	9891
NE	0	2278	1261	478	320	103	73	4513
NH	0	622	434	234	161	98	77	1626
NJ	0	1077	526	230	130	26	35	2024
NM	0	521	167	68	50	25	39	870
NV	0	204	127	70	67	20	72	560
NY	0	3576	1860	783	546	201	255	7221
OH	0	3148	931	217	123	53	76	4548
OK	0	4550	1749	472	212	61	89	7133
OR	0	999	554	237	171	59	138	2158
PA	0	2182	835	324	239	80	71	3731
PR	0	0	0	0	0	0	0	0
RI	0	226	115	53	49	25	20	488
SC	0	3755	1137	322	153	32	44	5443
SD	0	5093	2152	600	382	135	152	8514

TN	0	1030	467	175	114	33	49	1868
TX	0	14937	5880	1943	929	245	346	24280
UT	0	857	560	206	115	65	110	1913
VA	0	2912	801	263	146	39	45	4206
VT	0	389	205	76	75	38	39	822
WA	0	2237	1086	395	289	93	124	4224
WI	0	4200	2929	1312	1070	450	487	10448
WV	0	339	111	27	8	4	12	501
WY	0	2938	1162	424	257	77	83	4941
Sum	0	155201	68559	24902	16488	6134	7356	278640

Site Selection Summary

Number of NES lakes by Lake surface area in sample

Area Ca	Base		Sum
$(0,1]$	0	0	0
$(1,4]$	0	2	2
$(4,10]$	1	1	2
$(10,20]$	1	2	3
$(20,50]$	11	16	27
$(50,100]$	9	31	40
>100	91	354	445
Total	113	406	519

Number of lakes by Aggregated Ecoregion and lake surface area
Base Sample:
Lake surface area category (hectares)

| | $(0,1]$ | $(1,4]$ | $(4,10]$ | $(10,20]$ | $(20,50]$ | $(50,100]$ | >100 | Sum |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| CPL | 0 | 25 | 39 | 19 | 23 | 19 | 19 | 144 |
| NAP | 0 | 4 | 7 | 15 | 21 | 26 | 25 | 98 |
| NPL | 0 | 9 | 7 | 30 | 22 | 22 | 11 | 101 |
| SAP | 0 | 16 | 5 | 22 | 16 | 12 | 29 | 100 |
| SPL | 0 | 5 | 12 | 28 | 19 | 13 | 30 | 107 |
| TPL | 0 | 13 | 10 | 31 | 28 | 16 | 31 | 129 |
| UMW | 0 | 12 | 16 | 11 | 19 | 20 | 35 | 113 |
| WMT | 0 | 4 | 8 | 18 | 19 | 25 | 44 | 118 |
| XER | 0 | 3 | 0 | 11 | 17 | 19 | 40 | 90 |
| OTH | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Sum | 0 | 91 | 104 | 185 | 184 | 172 | 264 | 1000 |

Over Sample:

$(0,1]$		Lake surface area category				(hectares)		
		$(1,4]$	$(4,10]$	$(10,20]$	$(20,50]$	$(50,100]$	>100	Sum
CPL	0	126	100	96	102	61	101	586
NAP	0	28	23	65	86	100	111	413
NPL	0	33	34	104	85	74	59	389
SAP	0	23	27	100	64	73	126	413
SPL	0	32	36	107	62	66	105	408
TPL	0	61	38	94	91	83	137	504
UMW	0	41	50	64	101	94	137	487
WMT	0	28	28	82	76	60	115	389
XER	0	14	12	62	68	71	135	362

OTH	0	0	0	0	0	0	0	0
Sum	0	386	348	774	735	682	1026	3951

Total Sample:
Lake surface area category (hectares)

	$(0,1]$	$(1,4]$	$(4,10]$	$(10,20]$	$(20,50]$	$(50,100]$	>100	Sum
CPL	0	151	139	115	125	80	120	730
NAP	0	32	30	80	107	126	136	511
NPL	0	42	41	134	107	96	70	490
SAP	0	39	32	122	80	85	155	513
SPL	0	37	48	135	81	79	135	515
TPL	0	74	48	125	119	99	168	633
UMW	0	53	66	75	120	114	172	600
WMT	0	32	36	100	95	85	159	507
XER	0	17	12	73	85	90	175	452
OTH	0	0	0	0	0	0	0	0
Sum	0	477	452	959	919	854	1290	4951

Number of lakes by state and lake surface area

	OverSamp	Base	Sum
AL	62	18	80
AR	55	11	66
AZ	74	21	95
CA	90	22	112
CO	96	30	126
CT	49	14	63
DE	29	9	38
FL	107	23	130
GA	63	22	85
IA	72	19	91
ID	69	21	90
IL	87	20	107
IN	96	23	119
KS	97	20	117
KY	60	13	73
LA	75	17	92
MA	40	11	51
MD	40	5	45
ME	61	11	72
MI	139	31	170
MN	200	49	249
MO	79	20	99
MS	48	15	63
MT	180	44	224
NC	65	21	86
ND	179	43	222
NE	112	32	144
NH	48	13	61
NJ	48	10	58
NM	91	15	106
NV	82	19	101
NY	69	12	81
OH	67	20	87
OK	103	36	139
OR	73	30	103
PA	67	20	87

RI	44	12	56
SC	60	9	69
SD	139	43	182
TN	61	12	73
TX	143	31	174
UT	82	23	105
VA	60	16	76
VT	49	9	58
WA	78	20	98
WI	144	32	176
WV	36	8	44
WY	83	25	108
Sum	3951	1000	4951

Number of lakes by state and lake area category for base sample only

	$(0,1]$	$(1,4]$	$(4,10]$	$(10,20]$	$(20,50]$	$(50,100]$	>100	Sum
AL	0	4	3	2	1	1	7	18
AR	0	1	3	0	3	2	2	11
AZ	0	0	0	2	7	4	8	21
CA	0	1	1	4	5	3	8	22
CO	0	0	2	7	4	6	11	30
CT	0	0	0	2	6	4	2	14
DE	0	1	0	1	1	5	1	9
FL	0	3	10	2	3	2	3	23
GA	0	8	6	1	3	0	4	22
HI	0	0	0	0	0	0	0	0
IA	0	1	1	8	4	2	3	19
ID	0	2	1	1	6	3	8	21
IL	0	3	1	4	5	2	5	20
IN	0	2	3	4	6	3	5	23
KS	0	2	1	7	4	3	3	20
KY	0	3	0	3	3	3	1	13
LA	0	3	4	0	1	4	5	17
MA	0	0	2	2	2	3	2	11
MD	0	1	0	3	1	0	0	5
ME	0	1	1	0	1	4	4	11
MI	0	2	6	1	6	7	9	31
MN	0	8	7	4	4	8	18	49
MO	0	1	6	6	2	3	2	20
MS	0	4	3	2	3	2	1	15
MT	0	4	4	10	6	10	10	44
NC	0	3	1	3	3	6	5	21
ND	0	5	3	8	13	9	5	43
NE	0	0	2	10	10	5	5	32
NH	0	0	1	3	0	5	4	13
NJ	0	2	0	1	4	1	2	10
NM	0	0	0	5	1	3	6	15
NV	0	0	0	0	2	4	13	19
NY	0	0	2	1	2	2	5	12
OH	0	1	1	4	3	4	7	20
OK	0	1	2	11	7	4	11	36
OR	0	0	2	4	5	6	13	30
PA	0	2	2	6	4	3	3	20
PR	0	0	0	0	0	0	0	0
RI	0	1	0	4	3	2	2	12

SC	0	3	3	1	0	0	2	9
SD	0	4	0	16	10	7	6	43
TN	0	0	0	3	5	1	3	12
TX	0	6	14	2	0	0	9	31
UT	0	0	1	2	1	6	13	23
VA	0	1	1	6	6	0	2	16
VT	0	0	0	0	3	3	3	9
WA	0	2	0	5	4	5	4	20
WI	0	3	2	4	6	5	12	32
WV	0	0	0	4	2	1	1	8
WY	0	2	2	6	3	6	6	25
Sum	0	91	104	185	184	172	264	1000

Description of Sample Design Output:

The dbf file for the shapefile ("NLA Lake Sites Final") has the following variable definitions:

Variable Name	Description
siteID	Unique identification label for each lake in the sample
xcoord	x-coordinate of lake centroid (see Albers projection information below)
ycoord	y-coordinate of lake centroid (see Albers projection information below)
mdcaty	inclusion probability used for the unequal probability selection of the sample lake
wgt	Weight (number of lakes) to be used in the statistical analyses. It is the inverse of the inclusion probability
stratum	Strata used in design. All equal to NLALake
panel	Panel_1 identifies the 1000 lakes in the base design. Oversamp identifies lakes to be used as replacements as necessary.
EvalStatus	Placeholder to record the results of the lake recon evaluation (see below)
EvalReason	Placeholder to record reason for the evalution result.
oid	ID from original lake frame shapefile
rch_com__1	From original NHD lake frame shapefile
com_id	From original NHD lake frame shapefile
ftype	NHD ftype field
frode	NHD fcode field
gnis_id	GNIS identification
name	Lake name
statecty	FIPS state and county code
st	State two-letter abbreviation
cntyname	County name
eco	Omernik level 3 ecoregion number (DO NOT USE)
level3	Omernik level 3 ecoregion number (USE THIS for ecoregion)
level3_nam	Omernik level 3 ecoregion name (DO NOT USE; not all are present)

huc_12__14	USGS hydrologic catalog code for 12-14 digit units
cu_name	USGS hydrologic catalog unit name
region	USGS hydrologic region number
storetassi	Storet number for NES lakes
area_ha	Area in hectares calculated from polygon lake frame in Albers projection
epa_reg	EPA region number
wsa_eco9	Name of nine aggregated Omernik level 3 ecoregion
wsa_eco3	Name of three aggregated Omernik level 3 ecoregion
area_cat	Detailed lake surface area categories in hectares
area_cat3	Three category lake surface area categories in hectares
area_cat5	Five category lake surface area categories in hectares
area_cat7	Seven category lake surface area categories in hectares
dsgn_cat	Multi-density categories used in unequal probabilty survey design
inc_nw	Inclusion probability based on nationwide sample of (1, 10] hectare lakes
inc_st	Inclusion probability based on states
inc_cat7	Inclusion probability based on seven area categories
inc_st7	Inclusion probability based on combined state and seven area categories
inc_9st7	Inclusion probability based on combined nine aggregated ecoregions,
inc_nes	Inclusion probability based on NES lakes
neslake	Identifies NES lake

Projection Information

PROJCS["USA_Contiguous_Albers_Equal_Area_Conic",
GEOGCS["GCS_North_American_1983",
DATUM["D_North_American_1983",
SPHEROID["GRS_1980",6378137.0,298.257222101]],
PRIMEM["Greenwich",0.0],
UNIT["Degree",0.0174532925199433]],PROJECTION["Albers"],PARAMETER["False _Easting",0.0],
PARAMETER["False_Northing",0.0], PARAMETER["Central_Meridian",-96.0],
PARAMETER["Standard_Parallel_1",29.5],
PARAMETER["Standard_Parallel_2",45.5],
PARAMETER["Latitude_Of_Origin",37.5],
UNIT["Meter",1.0]]

Evaluation Process

The survey design weights that are given in the design file assume that the survey design is implemented as designed. Typically, users prefer to replace sites that can not be sampled with other sites to achieve the sample size planned. The site replacement
process is described above. When sites are replaced, the survey design weights are no longer correct and must be adjusted. The weight adjustment requires knowing what happened to each site in the base design and the over sample sites. EvalStatus is initially set to "NotEval" to indicate that the site has yet to be evaluated for sampling. When a site is evaluated for sampling, then the EvalStatus for the site must be changed.
Recommended codes are:

EvalStatus Code	Name	Meaning
TS	Target Sampled	site is a member of the target population and was sampled
LD	Landowner Denial	landowner denied access to the site
PB	Physical Barrier	physical barrier prevented access to the site
NT	Non-Target	site is not a member of the target population
NN	Not Needed	site is a member of the over sample and was not evaluated for sampling
Other codes		Many times useful to have other codes. For example, rather than use NT, may use specific codes indicating why the site was non-target.

Statistical Analysis

Any statistical analysis of data must incorporate information about the monitoring survey design. In particular, when estimates of characteristics for the entire target population are computed, the statistical analysis must account for any stratification or unequal probability selection in the design. Procedures for doing this are available from the Aquatic Resource Monitoring web page given in the bibliography. A statistical analysis library of functions is available from the web page to do common population estimates in the statistical software environment R .

For further information, contact

Anthony (Tony) R. Olsen
USEPA NHEERL
Western Ecology Division
200 S.W. 35th Street
Corvallis, OR 97333
Voice: (541) 754-4790
Fax: (541) 754-4716
email: Olsen.Tony@epa.gov

Bibliography:

Diaz-Ramos, S., D. L. Stevens, Jr, and A. R. Olsen. 1996. EMAP Statistical Methods Manual. EPA/620/R-96/002, U.S. Environmental Protection Agency, Office of Research and Development, NHEERL-Western Ecology Division, Corvallis, Oregon.

Stevens, D.L., Jr. 1997. Variable density grid-based sampling designs for continuous spatial populations. Environmetrics, 8:167-95.

Stevens, D.L., Jr. and Olsen, A.R. 1999. Spatially restricted surveys over time for aquatic resources. Journal of Agricultural, Biological, and Environmental Statistics, 4:415-428

Stevens, D. L., Jr., and A. R. Olsen. 2003. Variance estimation for spatially balanced samples of environmental resources. Environmetrics 14:593-610.

Stevens, D. L., Jr., and A. R. Olsen. 2004. Spatially-balanced sampling of natural resources in the presence of frame imperfections. Journal of American Statistical Association:99:262-278.

Horn, C.R. and Grayman, W.M. (1993) Water-quality modeling with EPA reach file system. Journal of Water Resources Planning and Management, 119, 262-74.

Strahler, A.N. 1957. Quantitative Analysis of Watershed Geomorphology. Trans. Am. Geophys. Un. 38,913-920.

Web Page: http://www.epa.gov/nheerl/arm

