

3855 North Ocoee Street, Suite 200, Cleveland, TN 37312

(423) 336-4308 FAX: (423) 336-4166

January 15, 2010

Ms. Beth Walden Remedial Project Manager United States Environmental Protection Agency Atlanta Federal Center 61 Forsyth Street Atlanta, Georgia 30303-8960

Re: Revised Groundwater Investigation Report Olin Chemicals/McIntosh Plant Site, Operable Unit 2 McIntosh, Alabama

Dear Ms. Walden,

Enclosed please find four copies of the *Revised Groundwater Investigation Report, Operable Unit* (OU)-2, McIntosh, Alabama. The report was revised to incorporate draft comments from the United States Environmental Protection Agency (USEPA). The revisions also addressed discussions from our meeting on July 17, 2009.

Olin requests approval from USEPA to decommission the temporary micro-wells and piezometers installed as part of the OU-2 groundwater investigation. The wells were installed to aid in determining the hydrogeologic characteristics of OU-2 and to answer the three principal study questions. Answers to the principal study questions are provided in the enclosed report and indicate that OU-2 sediment is not a source of mercury to groundwater and the Tombigbee River above the screening levels. Olin requests to decommission the temporary wells and piezometers in accordance with well decommissioning procedures outlined in the EPA Guidance Document Number SESDGUID-101-R0 entitled, *Design and installation of Monitoring Wells*.

Please let me know if you have any questions. I can be reached at (423) 336-4388 or via e-mail (kdroberts@olin.com).

Sincerely,

OLIN CORPORATION

Kuth D Clets

Keith D. Roberts Manger, Environmental Sites

Enclosure cc: S.B. Favors – ADEM A.B. Carringer – Olin R.A. Kennedy – Olin

C.E. Draper - MACTEC T. B. Odom - Olin

U.S. EPA REGION IV

SDMS

POOR LEGIBILITY

PORTIONS OF THIS DOCUMENT MAY BE DIFFICULT TO VIEW DUE TO THE QUALITY OF THE ORIGINAL

TO MAKE THE DOCUMENT READABLE, TRY ONE OR MORE OF THE FOLLOWING:

From the Displays Settings in Windows Control Panel:

- 1. Set the Color Quality to the highest available: 24 bit or 36 bit.
- 2. Increase or decrease the Screen resolution.

From the Monitor/Display Controls:

- 1. For dark image page, increase the brightness and decrease the contrast.
- 2. For light image page, decrease the brightness and increase the contrast.

** PLEASE CONTACT THE APPROPRIATE RECORDS CENTER TO VIEW THE MATERIAL**

V. 2-040506

REVISED GROUNDWATER INVESTIGATION REPORT

OPERABLE UNIT 2 McINTOSH, ALABAMA

Prepared for:

(

OLIN CORPORATION

Prepared by:

MACTEC ENGINEERING AND CONSULTING, INC. KENNESAW, GEORGIA

January 15, 2010

Project No. 6107-10-0036

.7

REVISED GROUNDWATER INVESTIGATION REPORT OPERABLE UNIT 2 McINTOSH, ALABAMA

Prepared for:

OLIN CORPORATION Charleston, Tennessee

MACTEC Engineering and Consulting, Inc. Kennesaw, Georgia

Mhia C. Doper

Cynthia E. Draper Project Manager

JR Wallace

James Wallace, Sc.D, Senior Principal

January 15, 2010

MACTEC Project No. 6107-10-0036

%[

TABLE OF CONTENTS

Page

1.0	INTE	RODUCTION	1-1
	1.1	SITE BACKGROUND	1-1
	1.2	SITE DESCRIPTION	1-2
	1.3	REGULATORY STATUS	1-3
	1.4	CONCEPTUAL SITE MODEL	1-3
		1.4.1 Geologic Setting	
		1.4.2 Groundwater Flow	
		1.4.3 Media of Concern	
	1.5	PURPOSE	
2.0		DY AREA INVESTIGATION METHODS	
	2.1	INSTALLATION OF MICRO-WELLS	
	2.2	INSTALLATION OF PIEZOMETERS	
	2.3	SEDIMENT CORE SAMPLES	
	2.4	DESCRIPTION OF SITE LITHOLOGY	
	2.5	GROUNDWATER SAMPLING METHODOLOGY	
	2.6	GROUNDWATER SAMPLE ANALYSIS	
		2.6.1 Filtered and Unfiltered Mercury Analysis	2-4
		2.6.2 HCB 2.6.3 DDTR	
	2.7	SURFACE WATER ELEVATION MEASUREMENTS OF THE RIVER AND	
		BASIN	
3.0		ROGEOLOGY AND GEOCHEMISTRY	
	3.1	HYDROGEOLOGY	
		3.1.1 Riverine Deposits (R)	
		 3.1.2 Upper Clay Unit at the Alluvial Sediment (Q1) 3.1.3 Alluvial Aquifer System of the Quaternary Alluvial Sediment (Q2) 	3-2
		3.1.4 Miocene Confining Unit (Tm_1)	
		3.1.5 Miocene Aquifer	
	3.2	GEOCHEMISTRY	3-3
4.0	GRO	UNDWATER ANALYTICAL RESULTS	4-1
	4.1	GROUNDWATER ANALYTICAL RESULTS	4-1
		4.1.1 Mercury	4-1
		4.1.2 DDTR	
		4.1.3 HCB	
_		4.1.4 Groundwater Data Quality Evaluation	
5.0		E AND TRANSPORT	
	5.1	MERCURY TRANSPORT	
		5.1.1 Source Zone Width	
		5.1.2 Source Zone Thickness.5.1.3 Hydraulic Gradient	
		5.1.5 Ayuraune Orauchi	

ii

ç

		5.1.4	Effective porosity	5-3
		5.1.5	Hydraulic Conductivity	
		5.1.6	Dispersivity	
		5.1.7	Partitioning Coefficient	
		5.1.8	Source Concentration and Strength	5-5
		5.1.9	Degradation and Chemical Transformations	5-5
		5.1.10	Mercury Model Results	5-5
	5.2	HCB T	RANSPORT	5-5
		5.2.1	Source Zone Width	5-6
		5.2.2	Source Zone Thickness	
		5.2.3	Hydraulic Gradient	
		5.2.4	Effective Porosity	5-6
		5.2.5	Hydraulic Conductivity	
		5.2.6	Dispersivity	5-7
		5.2.7	Partitioning Coefficient with Respect to Organic Carbon (Koc)	5-7
		5.2.8	Source Concentration and Strength	
		5.2.9	Degradation and Chemical Transformations	
		5.2.10	HCB Model Results	5-8
6.0	DQO P	PRINCI	PAL STUDY QUESTIONS	6-1
7.0	SUMM	IARY A	ND CONCLUSIONS	7-1
8.0	REFEI	RENCE	S	8-1

Revised Groundwater Investigation Report Operable Unit 2 MACTEC Engineering and Consulting, Inc., Project 6107-10-0036

LIST OF TABLES

<u>Table</u>

- 2-1 Micro-Well and Piezometer Construction Details
- 2-2 Micro-Well and Piezometer Groundwater Elevation, September 22, 2008
- 2-3 Groundwater Field Parameters
- 4-1 Summary of Groundwater Analytical Data

LIST OF FIGURES

Figure

- 1-1 Location Map with Site Features
- 1-2 Cross Section Locations
- 1-3 Non-flood Conditions with River and Basin at 3' NAVD88 Conceptual West-East Cross Section, Groundwater Investigation Work Plan
- 1-4 Non-flood Conditions with River and Basin at 3' NAVD88 Conceptual North-South Cross Section, Groundwater Investigation Work Plan
- 2-1 Micro-Well and Piezometer Locations
- 2-2 Micro-Well Construction Detail
- 2-3 Piezometer Construction Detail
- 2-4 2009 Sediment Core Locations
- 3-1 Geologic Cross Section, West-East
- 3-2 Geologic Cross Section, North-South
- 3-3 Fence Diagram of OU-2 Basin
- 3-4 Groundwater Elevations September 22, 2008
- 4-1 Groundwater Analytical Results
- 4-2 Decision Diagram

LIST OF APPENDICES

<u>Appendix</u>

- A Well and Piezometer Boring Logs
- B Core Logs
- C Groundwater Field Sampling Log
- D Data Validation and CD for Laboratory Analytical Results Reports
- E BIOSCREEN-AT Model Inputs and Outputs

iv

	Prepared	Reviewed
Table/Figure	By	By
Table 2-1: Monitoring Well and Piezometer Construction Details	LRP	FKM
Table 2-2: Monitoring Well and Piezometer Groundwater Elevations,		
September 22, 2008	EJS	KPW
Table 2-3: Groundwater Field Parameters	LRP	KPW
Table 4-1: Summary of Groundwater Analytical Data	KPW	FKM
Figure 1-1: Location Map with Site Features and Micro-Well/Piezometer		
Locations	APS	CED
Figure 1-2: Cross Section Locations	APS	CED
Figure 1-3: Non-flood Conditions with River and Basin at 3' NAVD88		
Conceptual West-East Cross Section, Groundwater Investigation		
Work Plan	FKM	CED
Figure 1-4: Non-flood Conditions with River and Basin at 3' NAVD88		
Conceptual North-South Cross Section, Groundwater Investigation		
Work Plan	FKM	CED
Figure 2-1: Micro-Well and Piezometer Locations	THP	CED
Figure 2-2: Micro-Well Construction Detail	EAB	CED
Figure 2-3: Piezometer Construction Detail	EAB	CED
Figure 2-4: 2009 Sediment Core Locations	THP	FKM
Figure 3-1: Geologic Cross Section, West-East	FKM	CED
Figure 3-2: Geologic Cross Section, North-South	FKM	CED
Figure 3-3: Fence Diagram of OU-2 Basin	THP	FKM
Figure 3-4: Groundwater Elevations September 22, 2008	APS	CED
Figure 4-1: Groundwater Analytical Results	APS	FKM
Figure 4-2: Decision Diagram	EAB	CED

The undersigned have prepared or reviewed the tables and/or figures in this document as indicated in the table above.

Jula

EAB: Eric A Blomberg

hdinand apla

FKM: Ferdinand K. Mayila

a. h

EJS: Erin J. Squires

Gonthia C. Doper

CED: Cynthia E. Draper

LRP: Lisa R. Pfau

KPW: Kate P. Watson

THP: Ted H. Parks

No Longer with MACTEC

APS: Adam P. Stevens

v

January 15, 2010

Revised Groundwater Investigation Report Operable Unit 2 MACTEC Engineering and Consulting, Inc., Project 6107-10-0036

.

ABBREVIATIONS AND ACRONYMS

µg/L	microgram(s) per liter
AWQC	Ambient Water Quality Criteria/Criterion
Basin	Olin Basin
Battelle	Battelle Marine Sciences Laboratories
COC	constituent of concern
ĊSM	Conceptual Site Model
DDD	dichlorodiphenyldichloroethane
DDE	dichlorodiphenyldichloroethylene
DDT	dichlorodiphenyltrichloroethane
DDTR	total DDT, DDE, and DDD residues
DO	dissolved oxygen
DQO	Data Quality Objective
DPT	direct push technology
ESPP	Enhanced Sedimentation Pilot Project
HCB	hexachlorobenzene
HgII	inorganic mercury
Kd	partitioning coefficient
MACTEC	MACTEC Engineering and Consulting, Inc.
mL/g	milliliter(s) per gram
MS/MSD	matrix spike/matrix spike duplicate
NAVD88	North American Vertical Datum for 1988
NPDES	National Pollutant Discharge Elimination System
Olin	Olin Corporation
OU	Operable Unit
ORP	oxidation reduction potential
Pace	Pace Analytical Services, Inc.
Q ₁	Upper Clay Unit of the Quaternary Alluvial Sediments
Q ₂	Alluvial Aquifer of the Quaternary Alluvial Sediments
QA/QC	Quality Assurance/Quality Control
R	Riverine deposits
RCRA	Resource Conservation and Recovery Act

vi

ABBREVIATIONS AND ACRONYMS (Continued)

RI/FS	Remedial Investigation/Feasibility Study
river	Tombigbee River
RPD	relative percent difference
SDG	sample delivery group
site	McIntosh Plant Site, McIntosh, Washington County, Alabama
Tm ₁	Miocene Confining Unit
URS	URS Corporation
USEPA	U.S. Environmental Protection Agency
WCC	Woodward-Clyde Consultants
Work Plan	Groundwater Investigation Work Plan

Revised Groundwater Investigation Report Operable Unit 2 MACTEC Engineering and Consulting, Inc., Project 6107-10-0036

1.0 INTRODUCTION

Olin Corporation (Olin) is conducting a Remedial Investigation/Feasibility Study (RI/FS) at its McIntosh, Washington County, Alabama Plant Site (site) under the oversight of the United States Environmental Protection Agency (USEPA). Olin signed an Administrative Order of Consent, effective May 9, 1990, to satisfy the National Contingency Plan (40 Code of Federal Regulations 300). The site is an active chemical production facility, located approximately 1 mile east-southeast of the town of McIntosh, Washington County, Alabama (Figure 1-1).

The site is listed on the National Priority List of Comprehensive Environmental Response, Compensation, and Liability Act and is composed of two operable units (OUs). Operable Unit-1 (OU-1) comprises the Olin property except for the Olin property within Operable Unit-2 (OU-2) and includes the manufacturing process areas. OU-2 comprises the Olin Basin (Basin), Round Pond, surrounding wetlands on the Olin property, and the former wastewater ditch that discharged to the Basin from 1952 to 1974 The area for OU-2 and the adjacent portion of OU-1 are depicted in Figure 1-1.

1.1 SITE BACKGROUND

Numerous studies have been conducted at the site. Reports on these studies include an RI report (Woodward-Clyde Consultants [WCC], 1993a), FS report (WCC, 1993b), additional ecological studies to supplement the RI (WCC, 1994a and b), an Ecological Risk Assessment report (WCC, 1995), a second FS report (WCC, 1996), OU-2 Remedial Goal Option Support Sampling Report (URS Corporation [URS], 2002), the Enhanced Sedimentation Pilot Project Baseline Sampling Report (MACTEC Engineering and Consulting, Inc. [MACTEC], 2007a), and the Enhanced Sedimentation Pilot Project Annual Report – Year One Results (MACTEC, 2009). The FS and implementation of the remedial action have been completed for OU-1 and the remedial action is being monitored under the Resource Conservation and Recovery Act (RCRA) program. Work at OU-2 is ongoing.

Previous OU-2 studies, as listed above, focused on surface water, floodplain soils, sediment, and biota. This report focuses on groundwater and potential mitigation of constituents of concern (COCs) to or from OU-2. This report is being prepared to fulfill the USEPA's requirements for finalizing an FS and Record of Decision for OU-2.

1.2 SITE DESCRIPTION

The Basin and Round Pond within OU-2 cover approximately 76 and 4 acres, respectively. The Basin is located between the bluff to the west and the Tombigbee River (river) to the east. The bluff is approximately 20 to 30 feet higher in elevation than the floodplain area near the Basin and approximates the western boundary between OU-1 and OU-2. The Basin and Round Pond are part of a natural oxbow lake lying within the floodplain of the Tombigbee River.

The primary COC at OU-2 is mercury, which best represents the extent of COCs in sediments and biota in the Basin and Round Pond. The primary release mechanism for mercury to OU-2 was the discharge through the former wastewater ditch (Figure 1-1) from 1952 to 1974 (WCC, 1993). Surface runoff and treated wastewater from the plant have not been discharged to the Basin since 1974. The plant effluent and stormwater discharge are permitted and monitored under the National Pollutant Discharge Elimination System (NPDES). The current discharge is acceptable within the NPDES limits.

With the conditional approval of the U.S. Environmental Protection Agency (USEPA, 2005), an enhanced sedimentation pilot project (ESPP) was initiated by Olin in June 2006. The ESPP includes a berm and gate system plus an improved inlet channel that provides a hydraulic connection between the Basin and the Tombigbee River. The purpose of this constructed system is to enhance movement of sediment-laden floodwater into the Basin and then hold the water and sediment to allow the sediment to be deposited within the Basin. This ESPP is a treatability study being performed under the FS.

During base flow conditions or non-flood conditions in the Tombigbee River, water levels in the river are typically near 3 feet North American Vertical Datum of 1988 (NAVD88), and there is little or no flow from the Basin to the Tombigbee River or vice versa. Under rising river water levels up to 12 feet NAVD88, river water flows from the south to north from the Tombigbee River to the Basin through the inlet channel. When floodwaters overtop the berm (flood level above 12 feet NAVD88), water enters the Basin from the north and east through the floodplain areas surrounding the Basin and exits the Basin to the south. Minor tidal influences have also been observed at the Basin when the Tombigbee River level is about 3 feet NAVD88. The tidal influences result in flow within the Basin from south to north and north to south during a rising and falling tidal cycle, respectively.

The ESPP enhances the natural process for sediment in floodwaters to settle out and cover the existing sediments by holding floodwater in the Basin over a longer duration and in a more quiescent condition

than would occur naturally, thus providing conditions that increase sedimentation. The floodwater held in the Basin is released approximately 48 hours after the water level in the river falls below flood stage. The 48-hour holding time will not alter the pattern of flooding in OU-2 above that of the natural variability associated with the flood events. Therefore, the action of the berm and gate system is not expected to significantly inhibit natural hydrologic or biological processes. The effectiveness of the ESPP is currently being monitored during a three-year demonstration period.

1.3 REGULATORY STATUS

Previous ecological studies in the OU-2 Basin (WCC, 1994b; 1995) have demonstrated potential ecological risk associated with mercury concentrations in sediments. The main COC in sediments and biota is mercury. Inorganic mercury may undergo some degree of methylation in sediments to form the more biologically active methylmercury. Other COCs include DDTR (total dichlorodiphenyl-trichloroethane [DDT], dichlorodiphenyldichloroethylene [DDE], and dichlorodiphenyldichloroethane [DDD] residues) and hexachlorobenzene (HCB). As part of the proposed remedial action to reduce potential ecological risk, Olin implemented the ESPP. The berm and gate system became operational in March 2007; physical features and components of OU-2 and the berm/gate system are depicted in Figure 1-1. Baseline physical and chemical data were collected to document conditions before implementation of this remediation strategy. In addition, annual samples will be collected and analyzed over the three-year ESPP evaluation period to assess the effectiveness of the enhanced sedimentation as a remediation alternative.

1.4 CONCEPTUAL SITE MODEL

The Conceptual Site Model (CSM) is summarized in the following paragraphs. A more detailed description of the OU-2 CSM is presented in the Groundwater Investigation Work Plan (Work Plan) (MACTEC, 2009) and Section 3.0 of this report.

1.4.1 Geologic Setting

The Basin and Round Pond lie within the floodplain of the Tombigbee River. Alluvial deposits of unspecified ages are present from the land surface of OU-2 to a depth of approximately 20 to 30 feet. These deposits consist of reworked and redeposited sediments along with river-transported sediment. The sediments consist of interlayered sands, silty or clayey sands, silts, and clays. These sediments represent numerous depositional environments including natural levees, bars, infilled channels, channel deposits,

flood-splays, and other deposits associated with meandering rivers. Generalized geologic conditions based on hydrogeologic investigations at OU-2 are presented in Figures 1-2 though 1-4. The lithology depicted in these figures is described in descending order as follows:

<u>Riverine Deposits (R)</u>: Consists of reworked Q_1 , Q_2 , and Tm_1 sediments along with river-transported sediment. These sediments consist of interlayered sands, silty or clayey sands, silts, and clays. This unit is predominantly clay and silt near the Basin and Round Pond.

<u>Upper Clay Unit of the Quaternary Alluvial Sediments (Q_1)</u>: Variable, but primarily composed of silty/sandy clay (does not exist east of the Bluff at OU-2).

<u>Alluvial Aquifer of the Alluvial Sediments (Q_2)</u>: The upper zone of this aquifer is composed primarily of very fine to fine-grained, silty sand. The lower zone is composed of fine to very coarse sands containing varying amounts of fine to large gravel.

<u>Miocene Confining Unit (Tm₁):</u> This unit is dominantly clay with various amounts of discontinuous sands, silt, or fine gravel.

1.4.2 Groundwater Flow

Review of potentiometric surface maps from OU-1 investigations and monitoring reports (WCC, 1995; URS, 2007) indicates groundwater flow in the Alluvial Aquifer west of OU-2 to be generally toward the southeast in the vicinity of OU-2. However, during elevated flow events when the water surface of the Tombigbee River is higher than the potentiometric surface in the Alluvial deposits, the groundwater flow direction near OU-2 is likely to be temporarily toward the west (WCC, 1993). During flood events, OU-2 and surrounding flooded areas would be a recharge area for Q_2 , and groundwater flow is expected to be temporarily in a western direction immediately west of the flooded area. More discussion on groundwater flow is presented in Section 3.0.

1.4.3 Media of Concern

The media of concern at OU-2 with respect to the occurrence, concentration, distribution, and potential migration of mercury include surface water, sediment, and potentially groundwater. Surface water and sediment data at OU-2 have been collected in previous studies and as part of the ESPP. Groundwater data

at OU-1 and OU-2 were collected in accordance with the Work Plan and the Quality Assurance Project Plan (QAPP) (MACTEC, 2008) in September and November 2008 and are the focus of this report.

1.5 PURPOSE

The purpose of this groundwater report is to present the results of the groundwater investigation activities performed from July 2008 through November 2008 and to respond to the three Principal Study Questions. The three Principal Study Questions as identified in Step 2 of the Data Quality Objective (DQO) process presented in Section 4.0 of the Work Plan are:

- Are mercury and other COCs in the OU-2 sediments acting as a continuing source to groundwater?
- If COCs are detected in OU-2 groundwater, is there a plume that discharges to the Tombigbee River?
- Is mercury in the OU-1 groundwater plume migrating towards and beneath OU-2?

The responses to these questions are presented in Section 6.0.

This report is divided into the following sections: Section 1.0 presents the Introduction, Section 2.0 the Study Area Investigation Methods, and Section 3.0 the Hydrogeology and Geochemistry. The Groundwater Analytical Results are presented in Section 4.0, Fate and Transport are provided in Section 5.0, a response to the DQO Principal Study Questions is in Section 6.0, and the Summary and Conclusions are in Section 7.0.

2.0 STUDY AREA INVESTIGATION METHODS

This section summarizes the groundwater site investigation activities performed at OU-1 and OU-2 from July 2008 through November 2008. Several activities were performed to collect the data necessary to assess potential COC migration in groundwater in the study area. These activities included:

- Installation of piezometers and micro-wells
- Collection and analysis of groundwater samples and measurement of groundwater levels
- Description of site lithology from piezometer and micro-well borings
- Measurement of Basin and river levels

More detailed information is presented in the Work Plan (MACTEC, 2009). Coring within the Basin and Round Pond were also conducted in September 2009 as part of the ESPP studies. These activities are briefly described in the following paragraphs.

2.1 INSTALLATION OF MICRO-WELLS

Seventeen micro-wells were installed between July 31, 2008, and August 16, 2008, around the Basin at varying depths at eight locations (BA-MW1 through BA-MW8) to provide for the collection of groundwater samples. Micro-well BA-MW1 is located in OU-1 and serves as an upgradient well to the Basin during non-flood or baseline conditions. The remaining wells are located within OU-2. The OU-2 wells were spaced approximately 500 to 700 feet apart along the berm and located as depicted in Figure 2-1. In general, the micro-wells were positioned at locations thought to be potentially hydraulically downgradient and sidegradient from the largest area of higher mercury concentrations in the Basin sediments. The screens for the micro-wells were installed in the lithologic units R and Q_2 . The micro-wells were installed in clusters of two or three, shallow and intermediate depths so that water quality parameters from R and Q_2 could be collected.

The micro-wells were installed with a direct push technology (DPT) rig by advancing 3.5-inch innerdiameter, hollow steel rods to total depth. On reaching the desired depth, the micro-wells were set within the rods by installing a 1-inch Schedule 40 PVC screen with a factory installed sand pack and a 1-inch Schedule 40 PVC casing (Figure 2-2). Additional sand pack (a 20/40 silica sand) was installed between the factory-installed sand pack and the drill rods. The sand pack was placed up to a depth of 4 feet above the well screen. In some cases, due to bridging, small amounts of potable water were used to free bridging sand as the drill rods were being withdrawn from the borehole. Potable water was also used at some locations to keep sand from flowing into the borehole during well installation. After the sand pack was installed, the remaining annular space was tremie-grouted to land surface and the drill rods were extracted, leaving the micro-well in place. Additional details on well installation procedures are presented in the Work Plan. Well construction details are summarized in Table 2-1. Boring logs, including construction details and geologic cross sections, are presented in Appendix A.

2.2 INSTALLATION OF PIEZOMETERS

Ten piezometers were installed between August 17, 2008, and August 21, 2008, in clusters of two or three at four locations (BA-PZ1, BA-PZ2, BA-PZ3, and BA-PZ4) to provide permanent locations for water level measurements (Figure 2-1). Piezometers BA-PZ1 and BA-PZ2 are installed within OU-1 and are upgradient to the Basin during non-flood or baseline conditions. The remaining peizometers are located within OU-2. The screens for the piezometers were installed in R and Q₂ at varied depths.

The piezometers were installed using a DPT rig by advancing 3.5-inch inner-diameter steel rods to total depth. On reaching the desired depth, the piezometers were installed following the same procedure used in installing the micro-wells (Figure 2-3). The only difference between the installation method for micro-wells and piezometers was the grouting process. During piezometer installation, grout was not tremied but was slowly poured into the annular space between the casing and the rods. As the drill rods were slowly removed from the borehole, additional grout was poured into the annular space. This process continued until the annular space was filled to the land surface. Additional details on piezometer installation are presented in the Work Plan. Piezometer construction details are summarized in Table 2-1 and on Figure 2-3. Piezometer completion logs and geologic cross sections are presented in Appendix A.

2.3 SEDIMENT CORE SAMPLES

Sediment cores were collected during two sampling events (June 2009 and September 2009). A trial run for sediment coring was performed at one location during the week of June 1, 2009, to evaluate coring methods. During the week of September 21, 2009, sediment cores were collected from 12 additional sampling locations for a total of 13 core locations as depicted in Figure 2-4. Sediment cores were collected using vibracore techniques at depths ranging from 6.5 to 11 feet below the sediment surface.

Cores were kept in an upright position from the time they were retrieved until delivered to the shore for processing. A lithological description of the core was logged and sediment core and pore water samples were collected for analysis. Analytical results are pending and will be provided to EPA in a subsequent report. Core logs are included in Appendix B.

2.4 DESCRIPTION OF SITE LITHOLOGY

The lithologic characteristics of the subsurface formations at OU-2 (R, Q_1 , Q_2 , and Tm_1) were observed and noted during the advancement of the boreholes for micro-well and piezometer installation. Soil samples were collected using a 4-foot-long macro-core sampler. Continuous soil samples were collected from the existing land surface to the top of Tm_1 . Soil descriptions were made by visual inspection using the Unified Soil Classification System. Sediments encountered included interlayered sands, silty or clayey sands, silts, clays, and gravels. Lithologic descriptions were recorded on boring log sheets to provide information on site-specific geology and the depth to the top of the Tm_1 near OU-2. Additional information is provided in Section 3.0. Boring logs including lithology are presented in Appendices A and B.

2.5 GROUNDWATER SAMPLING METHODOLOGY

The wells were purged and sampled in accordance with the USEPA standard operating procedures and USEPA Method 1669 Sampling Ambient Water for Determination of Metals at EPA Water Quality Criteria Levels. The groundwater depth was measured in each well and piezometer at OU-2 and the groundwater elevations were calculated. Field parameters were measured when the micro-wells were purged. Groundwater samples for chemical analysis were collected from the newly installed micro-well clusters (BA-MW1 through BA-MW8). Purging was not completed and a groundwater sample for chemical analysis was not collected from micro-well BA-MW1A due to an insufficient quantity of groundwater in the micro-well.

Two groundwater sampling events were conducted. The first event occurred from September 23, 2008, to September 30, 2008. During this event, groundwater samples were collected from micro-well clusters (BA-MW1 through BA-MW8). The second groundwater sampling event occurred between November 11, 2008, and November 12, 2008. and served as a confirmation sampling event. During this confirmation event, groundwater samples were collected from micro-wells BA-MW1B, BA-MW1C, BA-MW2C, BA-MW3B, BA-MW4C, and BA-MW5C.

The micro-wells were purged before sample collection using low-flow purging techniques with a peristaltic pump and new polyethylene tubing. Field parameters (including temperature, pH, specific conductance, turbidity, dissolved oxygen [DO], and oxygen reduction potential [ORP]) were measured during purging. A groundwater sample was collected from each micro-well, with the exception of monitoring well BA-MW1A (which had insufficient groundwater to purge), when the field parameters stabilized (i.e., three consecutive measurements were within a range of 5 percent) and the water turbidity was less than 10 nephelometric turbidity units. Groundwater elevation and field parameters are summarized in Tables 2-2 and 2-3, respectively. Groundwater field sampling logs are provided in Appendix C.

2.6 GROUNDWATER SAMPLE ANALYSIS

The groundwater and quality control samples collected during the two groundwater sampling events were placed in coolers with "wet" ice and transported under chain-of-custody protocol to Battelle Marine Sciences Laboratories (Battelle), Sequim, Washington, and Pace Analytical Services, Inc. (Pace), Green Bay, Wisconsin, for analysis.

2.6.1 Filtered and Unfiltered Mercury Analysis

Battelle analyzed each^{*}groundwater samples for mercury (filtered and unfiltered) by USEPA Method E1631. Confirmation samples were collected from monitoring wells BA-MW1B, BA-MW1C, and BA-MW2C in November 2008 and analyzed for mercury (filtered and unfiltered).

2.6.2 HCB

Pace analyzed the groundwater samples for HCB by USEPA Method SW8081. The groundwater samples collected in September 2008 from monitoring wells BA-MW2B, BA-MW2C, BA-MW3B, BA-MW3C, BA-MW4B, BA-MW4C, BA-MW5B, and BA-MW5C were analyzed for HCB. These micro-wells were selected for HCB analysis as agreed upon with the USEPA because they were nearest and likely downgradient/sidegradient from the southern portion of the Basin, which contained the highest HCB concentrations in sediment. Confirmation groundwater samples were collected for HCB.

2.6.3 DDTR

Pace analyzed the groundwater samples for DDTR by USEPA Method SW8081. Groundwater samples collected in September 2008 from monitoring wells BA-MW2B, BA-MW2C, BA-MW4B, and BA-MW4C were analyzed for 2,4'- and 4-4'-DDD, 2,4'- and 4-4'-DDE, and 2,4'- and 4,4'-DDT, collectively referred to as DDTR. These micro-wells were selected for DDTR analysis based on potential preferred flow paths within a potential historical river channel.

2.7 SURFACE WATER ELEVATION MEASUREMENTS OF THE RIVER AND BASIN

Surface water elevation measurements of the Tombigbee River and the Basin were measured by the two water elevation sensing transducers located on the north and south sides of the gate (river side and Basin side). The digital readings of the river and Basin can be obtained from a display panel at the control building. The display readings were confirmed by obtaining measurements from the staff gauges placed on either side of the gate when water level from the micro-wells and piezometers were measured.

3.0 HYDROGEOLOGY AND GEOCHEMISTRY

3.1 HYDROGEOLOGY

The Basin and Round Pond are part of a natural oxbow lake lying within the floodplain of the Tombigbee River. Alluvial deposits of unspecified ages are present from the land surface of OU-2 to a depth of approximately 20 to 30 feet. These deposits consist of reworked and re-deposited sediments along with river-transported sediment. The sediments consist of interlayered sands, silty or clayey sands, silts, clays, and gravels. These sediments represent numerous depositional environments including natural levees, bars, infilled channels, and channel deposits, flood-splays, and other deposits associated with meandering rivers.

Geologic cross sections (Figures 3-1 and 3-2) were prepared from the lithologic data collected during the August/September 2008 and June/September 2009 field investigations. Cross-section lines N-S, and W-E, (Figure 1-2 Basin only) were selected to depict the lithology encountered during these field investigations. A 3-dimensional diagram is also depicted in Figure 3-3 to conceptually display the lithology in relationship to the Basin and Round Pond. The lithology from the microwells around the Basin confirmed the absence of the upper clay unit of Q_1 in OU-2. Cores collected within the Basin and Round Pond, including the deepest portion of the Basin, indicate the presence of predominantly clay Riverine deposits continuously beneath the Basin and Round Pond.

A brief description of these alluvial deposits, from the most recent to the oldest, and a hydrogeologic description is provided in the following paragraphs.

3.1.1 Riverine Deposits (R)

Riverine deposits (R), accumulated beneath the Basin and Round Pond, are flood deposits from the Tombigbee River. These sediments are typically composed of tan, black, and dark gray silty clays and clayey silts that are interspersed with fine, medium, and coarse-grained sands (Figure 3-1 through 3-3). The 2009 core data collected within the Basin and Round Pond indicate that these deposits are at least 6.5 to 11 feet in thickness and are continuously present beneath the Basin and Round Pond. These sediments are underlain by greenish brown, brown, grey, and black clay; organic silty clay; and clayey sand deposits.. They vary in thickness from approximately 13 feet to 23 feet and are unconfined. Groundwater

flow appears to be to the southeast, based on a Basin surface elevation of 2.9 feet and the water levels shown on Figure 3-4.

3.1.2 Upper Clay Unit at the Alluvial Sediment (Q₁)

The bluff to the west of OU-2 is approximately 20 to 30 feet higher in elevation than the floodplain area. Previous investigations indicate that Q_1 west of OU-2 primarily consist of a silty/sandy plastic clay (Figure 3-1) (WCC, 1993). During this investigation, Q_1 sediments were observed immediately west of the bluff in OU-1 at a thickness ranging from 10 to 20 feet. These sediments were composed of sandy clay, low plasticity clay, and clayey sand.

3.1.3 Alluvial Aquifer System of the Quaternary Alluvial Sediment (Q₂)

 Q_2 varies in thickness from approximately 37 feet in the west plant area to 60 feet in OU-1. East of the bluff, Q_2 averages about 40 feet thick and typically grades downward from fine sands to coarse-grained sands with some gravel in OU-2. Q_2 is divided into two zones, an upper zone and a lower zone, and is generally unconfined near the Basin. Groundwater flow is generally toward the southeast (Figure 3-4).

The upper zone of Q_2 is composed primarily of very fine to fine-grained, silty quartzose, subangular to subrounded sand. The lower zone of Q_2 is composed of fine to very coarse, orange-brown, quartzose, cherty, subangular to subrounded sands containing varying amounts of gravel. Although composed predominantly of sands, Q_2 also contains some thin beds of clay or silty, gravelly clay.

To the north, south, and east of the Basin it appears that Q_1 and the upper zone of Q_2 have been eroded by the Tombigbee River and are not present, but the lower zone of Q_2 is present.

Significant vertical gradients were not observed between R and Q_2 based on the September 22, 2008, groundwater measurements. It is likely that the variable lithology of the units as well as potential error in field measurement result in minor variations in the vertical gradients.

Bottom elevation of the Basin ranges from approximately 2 to -36 feet NAVD88. Shallow areas (2 to -4 feet NAVD88) are located in the southern portion of the Basin. The deepest part of the Basin is in the northwest. Floodplains are located to the north, northeast, and east of the Basin. The Basin is underlain by R followed by the alluvial sediments of the lower zone of Q_2 . Therefore, the Basin is in direct hydraulic connection with R

3.1.4 Miocene Confining Unit (Tm₁)

The Tm_1 underlies Q_2 . This unit consists of clays, sandy clays, or clayey sands. Although the lithology may be complex, it is predominantly clay, with various amounts of discontinuous sand, silt, or, fine gravel. Boring logs from wells that penetrate Tm_1 indicate that this unit is laterally continuous beneath OU-1 and approximately 80 to 100 feet thick in the plant areas west of OU-2. At OU-2, Tm_1 consisting of a low-plasticity clay was found along the bluff at depths ranging from 55 to 65 feet below land surface. Just above the clay unit, a 10- to 15-foot layer of coarse sand and gravel was present and served as a marker for the approaching Tm_1 unit. Along the southern berm, the top of Tm_1 was not always encountered at the depths drilled. Drilling beyond these depths was not possible with the DPT rig. Where Tm_1 was not encountered, a layer of well graded gravel underlain by poorly graded fine sand was used as a marker bed for approaching the top of Tm_1 . This gravel layer was encountered at depths ranging from 39 feet to 42 feet below the top of the berm.

3.1.5 Miocene Aquifer

Tm₁ is underlain by the Miocene Aquifer. The Miocene Aquifer is composed primarily of thick-bedded, coarse sand and gravel beds; however, sandy clay lenses occur within this unit. The attitude of the upper boundary of this aquifer is nearly horizontal in the main plant area; however, in the west plant area there is a pronounced southeastward dip, from -114 feet to -166 feet NAVD88 at OU-1. These differences are interpreted to be related to structural deformation of sediments associated with an underlying salt dome. The Miocene Aquifer was not encountered during the OU-2 investigation.

3.2 GEOCHEMISTRY

Field measurements pH, specific conductivity, ORP, DO, temperature, and turbidity were recorded during the two groundwater sampling events. In general, there was a distinct difference in the geochemistry of the Alluvial Aquifer groundwater between monitoring well clusters BA-MW1 and BA-MW2 and the clusters BA-MW3 through BA-MW8 located to the east along the berm.

The pH measured in micro-well cluster BA-MW1 and micro-well BA-MW2C ranged from 4.34 to 5.1, while the remainder of the Basin micro-wells had pH readings ranging from 6.33 to 6.95. Similarly, ORP measured in micro-well cluster BA-MW1 and micro-well BA-MW2C ranged from 151.1 to 278 compared to readings of -90 to -171 in the other Basin micro-wells. These results indicate that groundwater near micro-wells BA-MW1B/C and BA-MW2C are not similar in quality to the remaining

Revised Groundwater Investigation Report Operable Unit 2 MACTEC Engineering and Consulting, Inc., Project 6107-10-0036

micro-well clusters. These micro-wells are not likely influenced by the Tombigbee River to the same extent as the micro-wells located between the Basin and the river and indicate a difference in water quality parameters. The difference in water quality parameters between micro-well cluster BA-MW-1/BA-MW2C and the remaining micro-wells likely represents an inherent difference in groundwater quality between OU-1 and OU-2. These data are included in Table 2-3.

4.0 GROUNDWATER ANALYTICAL RESULTS

This section presents the evaluation of the analytical results of groundwater samples collected for the OU-2 groundwater investigation. The analytical results are described in the following text and are presented in both tabular (Table 4-1) and graphical forms (Figure 4-1). Laboratory reports and chain of custody documentation for the groundwater samples collected for the groundwater investigation are provided in a CD in Appendix D. The data have been validated and are appropriate for use as qualified. A brief discussion of data validation is also presented below.

4.1 **GROUNDWATER ANALYTICAL RESULTS**

Groundwater samples were collected from 16 micro-wells, BA-MW1B/C through BA-MW-8B/C. Six micro-wells (BA-MW1B/C, BA-MW2C, BA-MW3B, BA-MW4C, and BA-MW-5C) were resampled on November 11 to confirm the September 2008 results. Analytical results for both sampling events are summarized in the following paragraphs. One micro-well (BA-MW1A) could not be sampled due to insufficient recharge during purging.

4.1.1 Mercury

Filtered mercury results indicate that the micro-wells had concentrations below the screening level of 0.012 microgram per liter ($\mu g/L$) for mercury with the exception of BA-MW1B/C, which is associated with OU-1. The 0.012 $\mu g/L$ screening level is the Ambient Water Quality Criteria/Criterion (AWQC) for mercury. The mercury AWQC is compared to filtered mercury results from the groundwater micro-wells as a screening step as directed by the USEPA for this site. Filtered mercury concentrations in BA-MW1B/C ranged from 0.587 to 0.930 $\mu g/L$. Exceedance of this screening value does not necessarily indicate that an AWQC for surface water has been exceeded, but does indicate that additional evaluation such as modeling may be appropriate. Mercury in these wells may be the result of a historical remnant of the OU-1 plume near the bluff. Currently, the groundwater recovery system at OU-1 captures water above the OU-1 groundwater cleanup level. OU-1, including a closed sanitary landfill, is currently being addressed under RCRA.

The decision diagram (Figure 4-2) presented in the Work Plan was used to address the mercury detections in groundwater samples collected from micro-wells. Detections of mercury below the screening level do not require further evaluation or additional assessment based on the decision diagram. Detections of

Revised Groundwater Investigation Report Operable Unit 2 MACTEC Engineering and Consulting, Inc., Project 6107-10-0036

mercury above the screening level in groundwater samples collected from micro-wells BA-MW1B, and BA-MW1C, require further evaluation for potential mercury transport from OU-1 to OU-2 and the Tombigbee River. An evaluation of the mercury transport from these micro-wells is provided in Section 5.1.

Statistical analysis of the OU-2 filtered mercury detections (excluding micro-well BA-MW1B/C) are listed below.

	Filtered Groundwater
Mean (µg/L)	0.00124
95% Upper confidence Limit (µg/L)	0.00254
Min (µg/L)	0.000236 JB
Мах (µg/L)	0.00906

JB – Estimated value less than the reporting limit with blank concentration

Results from micro-well cluster BA-MW1 in OU-1were excluded from the statistical analysis so that the statistical analysis is representative of OU-2 only. The above values were calculated using the higher of the September and November 2008 analytical results. Both the mean and the 95% upper confidence limit are below the mercury screening levels. Mercury detected below the screening level in the micro-wells between the Basin the Tombigbee River may be related to mercury levels in the river rather than the Basin sediments. Studies of the Tombigbee River conducted by USEPA show mercury concentrations ranging from 0.001 to 0.004 ug/L upstream of the Basin and 0.005 ug/L near OU-2 (USEPA, 1995; USEPA1997). These concentrations (0.001 to 0.005 ug/L) likely represent background mercury concentrations in the river,

Core data collected from within the Basin during the RI further support that mercury concentrations in the micro-wells within OU-2 generally represent background mercury concentrations from the river and not a continuing source from the Basin sediment. Four cores were installed within the southern two-thirds of the Basin and extended from approximately 5.2 to 13.6 feet below the sediment surface during the RI. Mercury was detected in the upper portions of the sediment deposits beneath the Basin, but was not detected between 5 to 8 feet below the sediment surface. Reporting limits for the non-detect results ranged from 0.15 to 0.25 mg/kg. The RI core results indicate that mercury did not fully penetrate the

sediment deposits underlying the Basin (WCC, 1993a). The pathway for mercury transport between the Basin sediment and the underlying Alluvial Aquifer is not complete.

In summary, the micro-wells between the Basin and the Tombigbee River did not have detections above the screening criteria of $0.012 \ \mu g/L$ for filtered mercury. The only detection of filtered mercury exceeding the screening level was on the bluff in the BA-MW1 micro-well cluster in OU-1. These results indicate that sediments in the Basin are not a source of mercury above screening levels to groundwater in OU-2 or the Tombigbee River.

4.1.2 **DDTR**

DDTR was not detected above the reporting or method detection limit in the groundwater samples as shown on Figure 4-1 and Table 4-1.

4.1.3 HCB

Groundwater samples collected from eight micro-wells (BA-MW-2B/C, BA-MW3B/C, BA-MW4B/C, and BA-MW5B/C) were analyzed for HCB. HCB was detected above the reporting limit of 0.010 μ g/L at concentrations of 0.011 to 0.0113 μ g/L in one micro-well BA-MW3B. The screening level of HCB defaults to the reporting limit (0.010 μ g/L) because the AWQC of HCB (0.0003 μ g/L) is less than this limit. HCB was also detected in micro-wells BA-MW4C and BA-MW5C at an estimated concentration below the reporting limit and at concentrations similar to that detected in a laboratory blank sample. HCB was not detected in the November 2008 confirmation sample for BA-MW4C.

Since HCB was detected above the reporting limit in only one micro-well, its presence appears very isolated. An evaluation of the potential for HCB transport to the Tombigbee River is provided in Section 5.2.

4.1.4 Groundwater Data Quality Evaluation

Groundwater data were reported in seven sample delivery groups (SDGs). The quality of the groundwater data is discussed by SDG in Appendix D. The laboratory was able to meet the reporting limits presented in the Work Plan.

The following Quality Assurance/Quality Control (QA/QC) data were evaluated for each SDG:

Revised Groundwater Investigation Report Operable Unit 2 MACTEC Engineering and Consulting, Inc., Project 6107-10-0036

- Sample receipt (chain of custody) and report completeness
 - Holding times
 - Field blanks, equipment blanks, and laboratory method blanks
 - Field duplicates
 - Surrogate recoveries (organics only)
 - Matrix spike/matrix spike duplicates
 - Relationship between total and dissolved fractions (mercury only)

The QA/QC data were within limits for the SDGs with the following exceptions. HCB detections from two SDGs were flagged "JB" due to possible laboratory method blank contamination. Laboratory blanks contained $0.0021 \ \mu g/L$ of HCB. Mercury (filtered and unfiltered) samples from both SDGs were flagged "JB" due to possible equipment blank contamination ranging from 0.000286 to $0.000554 \ \mu g/L$ for filtered samples and 0.000168 to $0.00814 \ \mu g/L$ for the unfiltered samples. The data are useable as qualified in Table 4-1.

5.0 FATE AND TRANSPORT

This section presents the fate and transport for COCs (mercury and HCB). These constituents were found above the screening level for groundwater in one or more wells. The screening level is based on the AWQCs. It should be noted that concentrations above the screening level in groundwater do not necessarily indicate a surface water exceedance of the AWQC, which is applicable only to in-stream measurements in surface water. This section will focus on filtered (or dissolved) mercury concentrations since dissolved mercury is subject to migration. The purpose of the following assessment is to evaluate the potential for COCs detected above the screening levels to migrate to the Basin and/or the Tombigbee River.

Mercury was detected at concentrations exceeding the screening level concentration (0.012 μ g/L) in groundwater samples collected from micro-well cluster BA-MW1B/C installed in OU-1 near the bluff west of OU-2. Filtered mercury concentrations in this cluster ranged from 0.059 to 0.930 μ g/L during two sampling events. Mercury was not detected above the screening level for filtered mercury in micro-wells in OU-2. These results indicate that sediment in the Basin is not a source of mercury above screening levels to groundwater or the Tombigbee River. The detection of mercury in micro-well cluster BA-MW1B/C may be the result of a historical remnant of a mercury plume at OU-1 near the bluff.

The 0.010 μ g/L screening level for HCB represents the reporting limit for the analytical method because the method cannot detect down to the AWQC of 0.0003 μ g/L with statistical confidence. HCB exceeded its screening level (0.010 μ g/L) in the groundwater sample collected from micro-well BA-MW3B, which indicated an HCB concentration of 0.011 to 0.013 μ g/L.

5.1 MERCURY TRANSPORT

The potential for mercury in groundwater to discharge from micro-well cluster BA-MW1into the Basin and/or migrate to the Tombigbee River was calculated using the one-dimensional fate and transport model BIOSCREEN-AT. BIOSCREEN-AT is an enhanced version of BIOSCREEN (Newell et al., 1996) with an exact analytical solution for the transport of a contaminant (Karanovic et al., 2007). This model is based on Microsoft Excel software that solves the widely-used analytical Domenico equation (Karanovic et al, 2007). This equation describes transport of solute in groundwater (inorganic or organic, decaying or non-decaying). Features within the model designed to account for processes specific to natural attenuation of organic constituents were not used. The model simulates advection, adsorption and three-

dimensional dispersion of any dissolved constituent (inorganic or organic), and has the ability to simulate constant or decaying sources, and contaminant degradation using degradation constants. The use of BIOSCREEN AT was limited for this site-specific application to model only advection, dispersion, and adsorption onto porous media since mercury and HCB are not known to degrade at notable rates naturally. Processes such as degradation or other chemical/biological processes were not included in this model. The use of this model as described above is consistent with USEPA guidance (Ford et al, 2007), where the USEPA's Center for Subsurface Modeling Support state that the Domenico-based models in their current forms are reasonable for screening level tools, such as BIOCHLOR, BIOSCREEN, FOOTPRINT, AND REMCHIOR. BIOSCREEN AT is available free of charge at: http://www.sspa.com/Software/bioscreen.shtml.

Mercury is modeled as flowing from micro-well cluster BA-MW1 into the Basin with the following assumptions.

- The modeled mercury flow path is from OU-1 near the bluff into the Basin, which may be different from the actual flow path. This assumption, that there is a direct pathway for migration to the Basin, provides for a very conservative or overestimation of mercury concentrations that may potentially reach the Basin. The model assumes that mercury is transported through the sandy aquifer (Q₂) near BA-MW1, through the clay sediment deposits beneath the Basin (R) and into the Basin. The modeled flow path is depicted in Appendix E.
- The highest detected filtered mercury concentration in mirco-well cluster BA-MW1 is representative of mercury concentrations in OU-1 west of the bluff and is constant in concentration until it reaches the clay sediment deposits beneath the Basin. No adsorption or dispersion of mercury occurs as it migrates through the sandy aquifer (Q₂) This assumption tends to overestimate the mercury concentration that could potentially reach the Basin.

The parameters selected for use in the model are presented in the following subsections.

5.1.1 Source Zone Width

The source zone is defined as the two-dimensional cross sectional area that is perpendicular to the direction of groundwater flow and of known constituent concentration. Downgradient of this zone, the groundwater concentration is calculated by the model based on the dispersion, decay, adsorption, etc. that would occur in the flow field based on the value of the parameters used in the model. The modeled source is the area along the bluff on the eastern edge of OU-1. The planar two-dimensional source is represented by the highest detected dissolved mercury concentration in the sandy alluvial aquifer around

BA-MW1. The cross section of the source is assumed to be approximately 1,000 feet long, or the combined length of half the distance between BA-MW1 and BA-PZ1, and half the distance between BA-MW1 and BA-MW2.

5.1.2 Source Zone Thickness

The source zone thickness was assumed to be 35 feet in Q_2 based on the boring logs of the BA-MW1 micro-well cluster.

5.1.3 Hydraulic Gradient

The hydraulic gradient was calculated as 0.011 based on the change in head between BA-MW1B and the Basin (approximately 200 feet from BA-MW1 to the Basin, Figures E-1 and E-2).

The driving force for the assumed transport of mercury toward the Basin is the observed drop of hydraulic head of about 3 feet between BA-MW-1 and the Basin. It should be noted, however, that this difference in the hydraulic heads does not necessarily mean that the discharge of mercury into the Basin is actually taking place. The presence of thick organic clays and clayey silts underlying the Basin may be effective in preventing the discharge of mercury into the Basin.

5.1.4 Effective porosity

The effective porosity for the clayey and silty sediments underlying the Basin was assumed to be approximately 5 percent based on the predominance of fine-grained materials. This porosity is based on published values for this material (Kresic, 2008; Johnson, 1967).

5.1.5 Hydraulic Conductivity

Based on the prevalence of fine-grained sediments underlying the Basin (clays, silty clays, and clayey silts), the hydraulic conductivity was assumed to be approximately 1×10^{-4} centimeters per second (cm/s). This value is conservative and represents the upper limit of the reported hydraulic conductivities of fine-grained sediments (USBR, 1977).

5.1.6 Dispersivity

The longitudinal dispersivity was assumed to be 20 feet, and the transverse and vertical dispersivity of 2 and 0.2 foot, respectively, based on an assumed plume length of 200 feet and published guidelines for dispersivity (Newell et al., 1996).

5.1.7 Partitioning Coefficient

Soil-water partition coefficients (Kd) for inorganic mercury (HgII) are reported to range between 24,000 and 270,000 milliliters per gram (mL/g) with a mean value of about 60,000 mL/g (USEPA, 1997). For methylmercury (MeHg), values range between 2,700 and 31,000 mL/g with a mean value of about 6,700 mL/g. Methylmercury constitutes less than 1 percent of the total analyzed mercury based on the results of the 2006 baseline sampling event (MACTEC, 2007). Consequently, the Kd value selected for the analytical calculations of fate and transport of mercury between BA-MW-1 and the Basin is conservatively assumed to be 24,000 mL/g, or the lowest reported for HgII.

As discussed by the Federal Remediation Technologies Roundtable (FRTR; 2009;<u>http://www.frtr.gov/matrix2/section2/2_8_1.html</u>), sorption in soils and sediments is one of the most important controlling factors for removal of mercury from solution. Mercury is also strongly sorbed to humic materials that constitute a significant portion of the sediments underlying the Basin; these materials have described as "tan," "dark," and containing "natural organics" (WCC, 1993). Inorganic mercury sorbed to soils and sediments is not readily desorbed; therefore, freshwater and marine sediments are important repositories for inorganic mercury.

The retardation factor (R) of 80,000 was calculated assuming the bulk density of 1.5 kilograms per liter and the total porosity of 45 percent:

$$R = 1 + \frac{1.5 \times 24,000}{0.45} = 80,000$$

The retardation factor is also conservative because it is based on the lowest reported literature value for Kd (24,000 mL/g) in a range of 24,000 to 270,000 mL/g.

5.1.8 Source Concentration and Strength

The dissolved mercury concentration in the entire assumed 1,000-foot-wide source zone at BA-MW1 was estimated to be 0.122 μ g/L in the upper zone and 0.930 μ g/L in the lower zone, based on the November 2008 sampling results. This source was assumed to be of constant strength in time.

5.1.9 Degradation and Chemical Transformations

Degradation of mercury or chemical reactions was not assumed in the model.

5.1.10 Mercury Model Results

The results of the analytical one-dimensional model of mercury fate and transport from BA-MW1 toward the Basin show that (for the modeled travel times of 5 to 100 years) the mercury concentration in the Riverine zone immediately next to the Basin would be less than 0.000001 μ g/L (if this reporting limit were achievable). The input parameters and results of the model are provided in Appendix E. The calculated (modeled) concentration of mercury entering the Basin will be much greater than the concentration actually expected to enter the Basin because the model is based on the following conservative parameters:

- the highest reported literature value of the hydraulic conductivity for the fine-grained sediments
- a hydraulic gradient toward the Basin
- the highest detected dissolved mercury concentration in groundwater acting as a constant (non-decaying) source
- the lowest reported Kd value representing mercury sorption.

Based on this conservative evaluation, mercury above the AWQC would not enter the Basin from OU-1. Mercury concentrations from BA-MW1 entering the Tombigbee River would be orders of magnitude smaller than that entering the Basin, assuming groundwater from this location discharges to the Tombigbee River, a distance of approximately 1,900 feet from micro-well BA-MW1 to the river.

5.2 HCB TRANSPORT

A one-dimensional fate and transport model, BIOSCREEN AT, as described above, was used to determine whether the HCB represented by the November 2008 sampling results at BA-MW3B could be

transported to the Tombigbee River at concentrations above the AWQC of 0.0003 μ g/L. The parameters selected for use in the model are presented in the following subsections.

5.2.1 Source Zone Width

The width of the planar two-dimensional source of HCB in the high plasticity clays noted in the screened interval of BA-MW3B was assumed to be approximately 500 feet, based on the approximate mid-distance to the adjacent micro-wells; these micro-wells indicated HCB concentrations less than the reporting limit.

5.2.2 Source Zone Thickness

The source zone thickness was assumed to be 10 feet based on the cross section in Appendix A, Figure A-2.

5.2.3 Hydraulic Gradient

The driving force for the calculated transport of HCB toward the river was based on an assumed 3-foot decrease in the hydraulic head between the Basin and the river. This head decrease was based on the groundwater elevation at the berm (BA-MW3B) being equal to the prevailing water elevation in the Basin during non-flooding periods (3 feet NAVD88) and an elevation of 0.0 feet at the river. The zero elevation in the river is below that historically observed and possibly lower than that physically achievable. This hydraulic gradient was used in the model to obtain a very conservative assessment. The distance between BA-MW3B and the river is approximately 880 feet. Based on these water elevations and this distance, a hydraulic gradient of 0.0034 was calculated.

5.2.4 Effective Porosity

The effective porosity for the clay underlying the berm was assumed to be approximately 5 percent based on the soil description (high plasticity clay) in the BA-MW3B boring log. This porosity is based on published values for this material (Kresic, 2008; Johnson, 1967).

5.2.5 Hydraulic Conductivity

The hydraulic conductivity reported for high plasticity clay ranges from 1.2×10^{-7} to 1.2×10^{-8} cm/s (USBR, 1977). For the purpose of modeling under a conservative scenario, a hydraulic conductivity of 1.2×10^{-7} was selected.

5.2.6 Dispersivity

Based on the assumed plume length of 880 feet and on published guidelines, the longitudinal dispersivity was assumed to be 80 feet, and the transverse and vertical dispersivities were assumed to be 8 feet and 0.8 foot, respectively (Newell et al., 1996).

5.2.7 Partitioning Coefficient with Respect to Organic Carbon (Koc)

Log Koc for HCB is reported to range between 2.56 and 4.54 (Weast and Astle, 1981). Based on this information, a conservatively low value of 363 mL/g for Koc was selected. The associated distribution coefficient, Kd, was calculated using two different methods to provide a range of inputs and outputs based on different assumptions for the percent organic carbon (foc). The first method assumes a conservative foc of 0.005 from the following equation (Newell et al., 1996):

$$K_d = f_{oc} \times K_{oc} = 0.005 \times 363 mL/g = 1.815 mL/g$$

A retardation factor (R) of 7.0 was calculated assuming a bulk density (ρ_b) of 1.5 g/mL and a total porosity of 45%:

$$R = 1 + \frac{\rho_b \times K_d}{n} = 1 + \frac{1.5 \times 1.815}{0.45} = 7.0$$

The second method is based on the assumption that foc is the lowest average foc of 0.0033 (3,300 mg/kg) in a sediment core collected from the 2009 coring activities.

$$K_d = f_{oc} \times K_{oc} = 0.0033 \times 363 \, mL/g = 1.198 \, mL/g$$

The resulting retardation factor for the second method is estimated as follows.

$$R = 1 + \frac{\rho_b \times K_d}{n} = 1 + \frac{1.5 \times 1.198}{0.45} = 4.993 = 5.0$$

100036.01

The model outputs for both assumptions of foc are nearly equal as illustrated in the model output discussed below and provided in Appendix E.

5.2.8 Source Concentration and Strength

The HCB concentration in the entire assumed 500-foot-long source zone at BA-MW3B was estimated to be 0.013 μ g/L based on the November 2008 sampling results. This source was assumed to be of constant strength in time.

5.2.9 Degradation and Chemical Transformations

No degradation of HCB or chemical reactions was assumed in the model.

5.2.10 HCB Model Results

The results of the analytical one-dimensional model of HCB fate and transport from BA-MW3B toward the river show that (for travel times 5 to 100 years) the most conservatively calculated concentration in the saturated zone immediately adjacent to the river would be less than 0.000001 μ g/L (if this reporting limit were achievable) for both methods of estimating foc. The input parameters and outputs of the model are provided in Appendix E. Inputs are considered conservative (resulting in higher transported HCB concentrations) because of the following conservative assumptions:

- the highest reported literature value of the hydraulic conductivity for the sandysediments
- a high hydraulic gradient assuming zero-elevation of the Tombigbee River
- the highest detected HCB concentration in groundwater acting as a constant (non-decaying) source

Thus, the actual concentration potentially entering the river would be far less than that calculated with these conservative parameters. HCB above the AWQC would not enter the Tombigbee River based on this model prediction.

6.0 DQO PRINCIPAL STUDY QUESTIONS

The CSM for OU-2 was developed and presented in the Work Plan to identify potential migration pathways and aid the planning of groundwater investigation activities. The CSM was refined by responding to the Principal Study Questions in Step 2 of the DQO process as presented in the Work Plan. The responses are provided below.

1. Are mercury and other COCs in the OU-2 sediments acting as a continuing source to groundwater?

Micro-wells were placed at the most likely locations between the Basin and the Tombigbee River to detect the potential migration of mercury from sediments in groundwater. Mercury concentrations in micro-wells between the Basin and the river were not above the screening criterion of $0.012 \ \mu g/L$ (AWQC). The mean mercury concentration for filtered samples is $0.00124 \ \mu g/L$, and the 95% UCL is $0.00254 \ \mu g/L$ for micro-wells within OU-2. Both the filtered mercury mean and 95% UCL are below the screening level. The only detection of mercury exceeding the screening level was west of the bluff in the upgradient micro-well cluster BA-MW1 in OU-1. (Results from BA-MW1 were not included in the mean and 95% UCL calculations for OU-2.) The screening level was agreed upon with USEPA prior to implementation of the Work Plan. Mercury in the OU-2 sediments does not act as a continuing source to groundwater or the Tombigbee River because mercury above the screening level was not detected in groundwater associated with OU-2.

Mercury detected below the screening level in the micro-wells between the Basin the Tombigbee River may be related to mercury levels in the river rather than the Basin sediments. Studies of the Tombigbee River conducted by USEPA show mercury concentrations ranging from 0.001 to 0.004 ug/L upstream of the Basin and 0.005 ug/L near OU-2 (USEPA, 1995, USEPA, 1997). These concentrations (0.001 to 0.005 ug/L) likely represent background mercury concentrations in the river

Core data collected from within the Basin during the RI further support that mercury concentrations in the micro-wells within OU-2 generally represent background mercury concentrations from the river and not a continuing source from the Basin sediment. The RI core results indicate that mercury did not fully penetrate the

sediment deposits underlying the Basin such that the pathway for mercury transport between the Basin sediment and the underlying Alluvial Aquifer is not complete (WCC, 1993a).

HCB was detected above the screening level (0.010 μ g/L) in only one micro-well, BA-MW3B, along the southern portion of the berm. Since HCB was detected above the reporting limit in only one micro-well, its presence appears to be very isolated. The potential for HCB in groundwater to discharge to the Tombigbee River was calculated using the one-dimensional fate and transport model BIOSCREEN-AT. Very conservative inputs to the model were used and tend to overestimate the potential to transport HCB. Model results demonstrate that HCB concentrations at BA-MW3B would not result in an exceedance of the HCB AWQC in the Tombigbee River.

DDTR was not detected above the reporting limit in the groundwater samples and is not a continuing source to groundwater or the Tombigbee River.

The groundwater analytical data, RI core data, and the model results discussed above indicate that mercury and the other COCs in the OU-2 sediment do not act as a continuing source to groundwater or the Tombigbee River.

2. If COCs are detected in OU-2 groundwater, is there a plume that discharges to the Tombigbee River?

Mercury, HCB, and DDTR groundwater results are presented under Principal Study Question 1 above. Mercury concentrations in micro-wells between the Basin and the Tombigbee River were not detected above the screening criterion of 0.012 μ g/L. Therefore, a mercury groundwater plume at concentrations above the screening level at OU-2 is not evident.

Model results for HCB, which was detected above the screening level in BA-MW3B, indicate that the detected level will not cause an exceedance of the AWQC in the Tombigbee River. Therefore, the detection of HCB in one micro-well would not result in an exceedance of the AWQC in the Tombigbee River.

DDTR was not detected above the reporting limits; therefore, a DDTR groundwater plume above reporting limits is not present.

3. Is mercury in the OU-1 groundwater plume migrating towards and beneath OU-2?

Mercury was detected above the screening level in micro-well cluster BA-MW1 as noted in Principal Study Question 1. Mercury in these wells may be the result of a historical remnant of the OU-1 plume near the bluff. Currently, the groundwater recovery system at OU-1 captures water above the OU-1 groundwater cleanup level of 2 ug/l. OU-1 groundwater monitoring and compliance is currently regulated under RCRA.

The potential for mercury at concentrations between the OU-2 screening level and the OU-1 clean up level, as detected in OU-1 groundwater west of the bluff, to discharge to the Basin and the Tombigbee River was calculated using the fate and transport model BIOSCREEN-AT. Very conservative model inputs to the model were used and tend to overestimate the potential to transport mercury. The model results demonstrate that mercury concentrations at BA-MW1 would not result in an exceedance of the screening level in the Basin or in the Tombigbee River. Microwells between the Basin and the Tombigbee River do not contain mercury concentrations above the screening level. Therefore, a groundwater plume of mercury exceeding the AWQC in the Basin or the Tombigbee River is not currently evident or predicted in the future.

The decision diagram (Figure 4-2) presented in the Work Plan indicates the path forward based on the resulting data and evaluations presented herein. No further groundwater assessment for OU-2 is recommended based on the logic in this diagram and the findings of this groundwater investigation.

7.0 SUMMARY AND CONCLUSIONS

The purpose of this groundwater report was to present the results of the groundwater investigation and respond to the three Principal Study Questions presented in the Work Plan. These Principal Study Questions are listed with a response below.

1. Are mercury and other COCs in the OU-2 sediments acting as a continuing source to groundwater?

Micro-wells were placed at the most likely locations between the Basin and the Tombigbee River to detect the potential migration of mercury from sediments in groundwater. Mercury concentrations in micro-wells between the Basin and the river were not above the screening criterion of 0.012 μ g/L (AWQC). The mean mercury concentration for filtered samples is 0.00124 μ g/L, and the 95% UCL is 0.00254 μ g/L for micro-wells within OU-2. Both the filtered mercury mean and 95% UCL are below the screening level. The only detection of mercury exceeding the screening level was west of the bluff in the upgradient micro-well cluster BA-MW1 in OU-1. Mercury in the OU-2 sediments does not act as a continuing source to groundwater or the Tombigbee River because mercury above the screening level was not detected in groundwater associated with OU-2.

Core data collected from within the Basin during the RI further support that mercury in sediment in the Basin is not a continuing source to groundwater or the river. The RI core results indicate that mercury did not fully penetrate the sediment deposits underlying the Basin and, therefore, a pathway for mercury transport between the Basin sediment and the underlying Alluvial Aquifer (Q_2) is not complete (WCC, 1993a).

HCB was detected above the screening level (0.010 μ g/L) in only one micro-well, BA-MW3B, along the southern portion of the berm and the detection appears to be very isolated. The potential for HCB in groundwater to discharge to the Tombigbee River was calculated using a conservative, one-dimensional fate and transport model, BIOSCREEN-AT. Model results demonstrate that HCB concentrations at BA-MW3B would not result in an exceedance of the HCB AWQC in the Tombigbee River.

DDTR was not detected above the reporting limit in the groundwater samples. DDTR is not a continuing source to groundwater or the Tombigbee River.

The groundwater analytical data, RI core data, and the model results indicate that mercury and the other COCs in the OU-2 sediment do not act as a continuing source to groundwater or the Tombigbee River.

2. If COCs are detected in OU-2 groundwater, is there a plume that discharges to the Tombigbee River?

Mercury, HCB, and DDTR groundwater results are presented under Principal Study Question 1 above. Mercury concentrations in micro-wells between the Basin and the Tombigbee River were not above the screening criterion of $0.012 \mu g/L$. Therefore, a mercury groundwater plume above the screening level at OU-2 is not evident.

Model results for HCB, which was detected above the screening level in BA-MW3B, indicate that the detected levels will not cause an exceedance of the AWQC in the Tombigbee River. Therefore, the detection of HCB in one micro-well would not result in an exceedance of the AWQC in the Tombigbee River.

DDTR was not detected above the reporting limits; therefore, a DDTR groundwater plume above reporting limits is not present.

3. Is mercury in the OU-1 groundwater plume migrating towards and beneath OU-2?

Mercury was detected above the screening level in micro-well cluster BA-MW1 as noted in Principal Study Question 1. Mercury in these wells may be the result of a historical remnant of the OU-1 plume near the bluff. Currently, the groundwater recovery system at OU-1 captures water above the OU-1 groundwater cleanup level of 2 ug/l. OU-1 groundwater monitoring and compliance is currently regulated under RCRA.

The potential for mercury at concentrations between the OU-2 screening level and the OU-1 clean up level, as detected in OU-1 groundwater west of the bluff, to discharge to the Basin and the Tombigbee River was calculated using the fate and transport model BIOSCREEN-AT. The model results demonstrate that mercury concentrations at BA-MW1 would not result in an exceedance of the screening level in the Basin or in the Tombigbee River. Micro-wells between the Basin and the Tombigbee River do not contain mercury concentrations above the screening level. Therefore, a groundwater plume of mercury exceeding the AWQC in the Basin or the Tombigbee River is not currently evident or predicted in the future.

The overall goal of the OU-2 groundwater investigation was to determine whether the OU-2 sediments are acting as a continuing source to groundwater and impacting the Tombigbee River. Based on the evaluation of the analytical data collected and the model results, a groundwater plume above screening levels is not present at the Basin; nor will the AWQC in the Tombigbee River be exceeded. No further groundwater assessment for OU-2 is necessary based on the decision diagram (Figure 4-2) as previously presented in the Work Plan and the findings of this groundwater investigation.

8.0 **REFERENCES**

- Ford, R.G., Wilkin, R.T., and Puls, R. W., (editors), 2007, Monitored Natural Attenuation of Inorganic Contaminants in Ground Water. Volume 1 – Technical Basis for Assessment, EPA/600/R-07/139, U.S. Environmental Protection Agency, Office of Research and development, National Risk Management Research Laboratory, Ada, Oklahoma, 78 p.
- Johnson, A.I., 1967. Specific yield—compilation of specific yields for various materials. USGS Water-Supply Paper 1662-D, 74 p.
- Karanovic, M., Neville, C.J., and Andrews, C.B., 2007. BIOSCREEN-AT: BIOSCREEN with an Exact Analytical Solution. Ground Water, vol. 45, no. 2, pp. 242–245.
- MACTEC Engineering and Consulting, Inc. 2007. Enhanced Sedimentation Pilot Project (ESPP), Olin Chemicals, McIntosh Plant Site, McIntosh, Alabama. Prepared for Olin Corporation, Charleston, Tennessee (June 8, 2007).
- MACTEC Engineering and Consulting, Inc. 2008. Groundwater Investigation Work Plan, Operable Unit 2, McIntosh Alabama (May 2, 2008, Revised October 16, 2008, and January 12, 2009).
- MACTEC Engineering and Consulting, Inc. 2009. Enhanced Sedimentation Pilot Project Annual Report - Year One Results, Operable Unit 2, McIntosh Alabama (March, 2009).
- Newell, C.J., McLeod, R.K., and Gonzales, J.R., 1996. BIOSCREEN: Natural Attenuation Decision Support System User's Manual. EPA/600/R-96/087. Robert S. Kerr Environmental Research Center, Ada, Oklahoma.
- USBR, 1977. Ground Water Manual. U.S. Department of the Interior, Bureau of Reclamation, Washington, D.C., 480 p.
- URS Corporation. 2007. Semiannual Effectiveness Report, Second Semiannual Period for 2007, Olin Chemicals, McIntosh Plant Site, McIntosh, Alabama. Prepared for Olin Corporation, Charleston, Tennessee (November 2007).

- URS Corporation 2002. OU-2 RGO Support Sampling Report, McIntosh Plant Site, Olin Corporation, McIntosh, Alabama. April 2002.
- U.S. Environmental Protection Agency. 1995. Mobile River Study 1993-1994. U.S. Environmental Protection Agency, Environmental Services Division, Ecological Support Branch, Athens, Georgia.
- U.S. Environmental Protection Agency. 1997. Mercury Study Report to Congress, Volume III: Fate and Transport of Mercury in the Environment. Office of Air Quality Planning & Standards and Office of Research and Development, EPA-452/R-97-005, December 1997.
- Woodward-Clyde Consultants. 1993a. Remedial Investigation Report, Olin Chemicals, McIntosh Plant Site, McIntosh, Alabama. Prepared for Olin Corporation, Charleston, Tennessee. February 1993.
- Woodward-Clyde Consultants. 1993b. Feasibility Study Report, McIntosh Plant Site, Olin Corporation, McIntosh, Alabama. October 1993
- Woodward-Clyde Consultants, 1994a. Additional Ecological Studies of OU-2 Work Plan. McIntosh Plant Site, Olin Corporation, McIntosh, Alabama. May 1994.
- Woodward-Clyde Consultants, 1994b. Additional Ecological Studies of OU-2. Volumes 1 and 2. McIntosh Plant Site, Olin Corporation, McIntosh, Alabama. November 1994.
- Woodward-Clyde Consultants, 1995. Ecological Risk Assessment of Operable Unit 2. McIntosh Plant Site, Olin Corporation, McIntosh, Alabama. May 1995.
- Woodward-Clyde Consultants, 1996. Feasibility Study Operable Unit 2, McIntosh Plant Site, Olin Corporation, McIntosh, Alabama. February 1996.

Revised Groundwater Investigation Report Operable Unit 2 MACTEC Engineering and Consulting, Inc., Project 6107-10-0036

TABLES

Table 2-1 Micro-Well and Piezometer Construction Details OU-2 Groundwater Investigation Report McIntosh, Alabama

Well ID	TOC Elevation (ft)	Ground Elevation (ft)	Total Depth (ft)	Screen Interval (ft)	Well Material	Well Diameter (in)	Zone
BA-MW1A	34.39	32.60	30.61	20.61 - 30.61	PVC riser and Pre-packed screen	1	В
BA-MW1B	34,96	32 50	47.07	37.07 - 47.07	PVC riser and Pre-packed screen	1	В
BA-MWIC	34.26	32.00	67.09	57.09 - 67.09	PVC riser and Pre-packed screen	1	С
BA-MW2B	14.12	11.80	25.65	15.65 - 25.65	PVC riser and Pre-packed screen	I	A
BA - MW2C	14 25	11.80	46.37	36.37 - 46.37	PVC riser and Pre-packed screen	Į	С
BA-MW3B	13.72	11.50	25.67	15.67 - 25.67	PVC riser and Pre-packed screen	1	А
BA-MW3C	13.86	11.40	44,10	34.10 - 44.10	PVC riser and Pre-packed screen	1	С
BA-MW4B	14.15	11.70	28.41	18.41 - 28 41	PVC riser and Pre-packed screen	1	A
BA-MW4C	14,01	11.40	42.13	32.13 - 42.13	PVC riser and Pre-packed screen	1	С
BA-MW5B	14.25	11.80	27.01	17,01 - 27,01	PVC riser and Pre-packed screen	1	А
BA-MW5C	13.88	11.60	38.20	28.20 - 38.20	PVC riser and Pre-packed screen	1	С
BA-MW6B	13.73	11 70	26,60	16 60 - 26 60	PVC riser and Pre-packed screen	1	А
BA-MW6C	13.91	11 70	46.13	36,13 - 46,13	PVC riser and Pre-packed screen	1	С
BA-MW7B	14 10	11.90	26,95	16.95 - 26.95	PVC riser and Pre-packed screen	1	А
BA-MW7C	14.20	11.80	46.38	36 38 - 46 38	PVC riser and Pre-packed screen	1	С
BA-MW8B	14.64	12 50	25.18	15,18 - 25,18	PVC riser and Pre-packed screen	1	A
BA-MW8C	14 76	12 40	45.84	35.84 - 45.84	PVC riser and Pre-packed screen	1	С
BA-PZ1A	43 29	41.00	38,88	28 88 - 38,88	PVC riser and screen	I	В
BA-PZ1B	43 29	40,90	49,20	39 20 - 49 20	PVC riser and screen	1	В
BA-PZ1C	42 98	40.80	68 21	58 21 - 68.21	PVC riser and screen	1	С
BA-PZ2A	42 23	39.80	39.13	29 13 - 39,13	PVC riser and screen	1	В
BA-PZ2B	41.82	39,50	49 41	39.41 - 49.41	PVC riser and screen	1	В
BA-PZ2C	42.00	39.60	59.09	49.09 - 59.09	PVC riser and screen	1	С
BA-PZ3B	14.42	12.20	24.86	14.86 - 24 86	PVC riser and screen	1	В
BA-PZ3C	14.46	12.10	45.00	35.00 - 45.00	PVC riser and screen	1	С
BA-PZ4B	14.21	11.90	25.99	15.99 - 25 99	PVC riser and screen	1	В
BA-PZ4C	14 28	11.90	42 89	32 89 - 42 89	PVC riser and screen	1	с

NOTE: Monitoring wells and piezometers installed between July 29, 2008 and August 21, 2008

All measurements referenced to NAVD88, NAD83

A - Riverine

B - Upper Alluvial

C - Lower Alluvial

TOC - Top of casing

Prepared by: LRP/01/29/09 Checked by: FKM/01/30/09

.

Groundwater Investigation Report Operable Unit 2 MACTEC Engineering and Consulting, Inc. Project No. 6107090036

1

McIntosh, Alabama											
Well ID	Northing	Easting	TOC Elevation (ft)	Depth to Water (ft)	Groundwater Elevation (ft)						
BA-MW1A	460133.44	1815083.77	34.39	27.88	6.51						
BA-MW1B	460138.27	1815082.66	34.96	28.76	6.20						
BA-MW1C	460137.19	1815087.54	34.26	28.11	6.15						
BA-MW2B	459476.43	1815489.95	14.12	11.30	2.82						
BA-MW2C	459475.26	1815484.34	14.25	10.45	3.80						
BA-MW3B	459556.17	1815966.06	13.72	11.21	2.51						
BA-MW3C	459555.31	1815960.97	13.86	11.33	2.53						
BA-MW4B	459525.37	1816529.17	14.15	11.56	2.59						
BA-MW4C	459523.40	1816524.82	14.01	11.43	2.58						
BA-MW5B	459770.88	1816967.14	14.25	11.71	2.54						
BA-MW5C	459767.84	1816961.41	13.88	11.35	2.53						
BA-MW6B	460088.58	1817342.52	13.73	11.28	2.45						
BA-MW6C	460083.49	1817339.75	13.91	11.45	2.46						
BA-MW7B	460539.29	1817461.30	14.10	11.61	2.49						
BA-MW7C	460533.70	1817461.07	14.20	11.73	2.47						
BA-MW8B	461140.47	1817463.95	14.64	12.07	2.57						
BA-MW8C	461135.09	1817463.47	14.76	12.19	2.57						
BA-PZIA	461354.70	1814965.48	43.29	36.07	7.22						
BA-PZ1B	461359.50	1814967.78	43.29	36.14	7.15						
BA-PZ1C	461356.22	1814970.91	42.98	35.78	7.20						
BA-PZ2A	461997.92	1815072.89	42.23	34.96	7.27						
BA-PZ2B	462003.89	1815074.09	41.82	34.57	7.25						
BA-PZ2C	462000.29	1815075.88	42.00	34.81	7.19						
BA-PZ3B	462655.10	1815745.13	14.42	11.72	2.70						
BA-PZ3C	462654.68	1815749.43	14.46	11.47	2.99						
BA-PZ4B	462501.73	1816677.52	14.21	11.43	2.78						
BA-PZ4C	462501.18	1816682.59	14.28	11.63	2.65						

Table 2-2 Micro-Well and Piezometer Groundwater Elevations, September 22, 2008 OU 2 Groundwater Investigation Report McIntosh, Alabama

NOTE: All measurements referenced to NAVD88, NAD83

TOC = Top of casing

 Prepared by:
 KPW 2/13/09

 Checked by:
 EJS, LRP 11/7/2008

Groundwater Investigation Report Operable Unit 2 MACTEC Engineering and Consulting, Inc. Project No. 6107090036

Table 2-3

Groundwater Field Parameters OU 2 Groundwater Investigation Report McIntosh, Alabama

[Depth to			Specific			Dissolved		Purge
		Aquifer	Water	pН	Temperature	Conductivity	ORP	Turbidity	Oxygen	Purge Rate	Volume
Location:	Sample Date :	Monitored	(ft)	(std units)	°C	(mS/cm)	(mV)	(NTU)	(mg/L)	(mL/min)	(<u>g</u> al)
BA-MWIA*	09/30/2008	A	27.88	5.08	22.70	0.141	175	228	31	25	0.36
BA-MWIB	09/29/2008	A	28 76	4.34	20.85	0.302	179	1.1	1.58	220	2.2
BA-MWIC	09/30/2008	A	28.11	4.64	20.92	3.937	151.1	1.3	0 86	200	4.71
BA-MWIC	11/11/2008	A	28.50	4.49	19.73	3 51	278	0	0.34	500	4.7
BA-MW2B	09/23/2008	R	11.30	6.33	23.21	5.188	-110	5.15	0.9	150	1.8
BA-MW2C	09/23/2008	A	10.45	4.49	22,94	3 046	223	0.67	0.81	200	4.35
BA-MW2C	11/11/2008	A	11.24	4.53	20 27	2.74	224	1.08	0.3	500	4.3
BA-MW3B	09/25/2008	R	1121	6 55	22.90	1 959	-89.9	6.71	0.75	150	1.8
BA-MW3B	11/12/2008	А	12.65	6 73	22 29	2.171	-1401	2 07	0 22	280	1.6
BA-MW3C	09/24/2008	A	11.33	6.80	21 91	2.218	-145.4	1 35	0.38	260	4]
BA-MW4B	09/25/2008	R	11.56	6.64	22.56	1 23	-133.2	4.24	0.48	240	2
BA-MW4C	09/24/2008	A	11 43	6.55	23.62	1.212	-110.3	3.54	0.38	230	3.72
BA-MW4C	11/12/2008	A	12.40	6.61	20.80	1 13	-142	0.15	0.2	600	3.6
BA-MW5B	09/25/2008	R	11.71	6.71	22.97	1.137	-142.6	3.53	0.5	240	1.86
BA-MW5C	09/26/2008	A	11 35	6.88	21.26	0.963	-151.4	6.19	0 24	230	3.3
BA-MW5C	11/12/2008	A	12.47	6.95	20.69	0.868	-171	2.82	0.15	600	3.12
BA-MW6B	09/26/2008	R	11.28	6.69	22.07	1.089	-118 5	3.83	0.5	200	1.9
BA-MW6C	09/26/2008	A	11.45	6.87	22.23	1.133	-154.3	3.2	0.25	220	4.2
BA-MW7B	09/26/2008	R	11.61	6.41	22.40	0.708	-112.2	4.34	0.52	210	1.9
BA-MW7C	09/29/2008	A	11.73	6.61	21.29	0 525	-132 4	3.35	0.31	220	4.2
BA-MW8B	09/29/2008	R	12.07	6,61	23 17	0.469	-127.1	4.3	0.26	180	1.6
BA-MW8C	09/29/2008	A	12.19	6.68	21.89	0.854	-122.8	2.53	0.43	260	4.1

Notes:

ft = feet

°C = Degrees Celsius

mS/cm = millisiemen per centimeter

mV = millivolts

NTU = nephelometric turbidity units

mg/L = milligrams per liter

mL/min = milliliter per minute

gal = gallons

 $\Lambda = Alluvial$

R = Riverine

* BA - MW1A was not sampled due to insufficient water and

recharge. Parameters did not stabilize during purging.

Prepared by: <u>LRP 2/9/09</u> Checked by: <u>KPW 02/13/09</u>

Table 4-1 Summary of Groundwater Analytical Data **OU 2 Groundwater Investigation Report** Melntosh, Alabama

.

.

Location ID:		BA-N	4W1B			BA-M	WIC	•	BA-MW	/2B		BA-N	4W2C	
Sample ID [*]	BA-MWIB	3092908	BA-MW1B111108		BA-MW1C0093008		BA-MW1C111108		BA-MW2B092308		BA-MW2C092308		BA-MW2C111108	
Sample Date:	09/29/2	008	11/11/2	008	09/30/2	008	11/11/2	2008	09/23/20	008	09/23/20	58	11/11/2	008
Sample Type:	Samp	le	Samp	le	Samp	le	Sam	ole	Samp	e	Sample		Sam	ple
Mercury, E1631, µg/L														
Mercury, Filtered	0.0587	JB	0.122	JB	0.395	JB	0.93	JB	0.00104	JB	0.00517	JB	0.00906	JB
Mercury, Unfiltered	0.0825	ΊB	0.119	ΊB	0.458	.IB	0,965	ĴΒ	0.00186	JΒ	0.015	JΒ	0.0389	JΒ
Pesticides - SW846 8081, µg/L														
2.4'-DDD	NA		NA		NA		NA		< 0.050		< 0.052		NA	
2.4'-DDE	NA		NA		NA		NA		< 0.050		< 0.052		NA	
2.4'-DDT	NA		NA		NA		NA		< 0.050		< 0.052		NA	
4,4'-DDD	NA		NA		NA		NA		< 0.10		< 0 10		NA	
4,4'-DDE	NA		NA		NA		NA		< 0.10		< 0.10		NA	
4.4'-DDT	NA		NA		NA		NA		< 0.10		< 0.10		NA	
Hexachlorobenzene	NA		NA		NA		NA		< 0.010		< 0.010		NA	

Notes:

 $\mu g/L = micrograms per liter$

< = Less than reporting limit (RL) JQ = Listimated quantity. Detected

.

below the reporting limit but above

the method detection limit.

Quantification cannot be reported

with confidence.

JB = Estimated quantity; possibly

biased high or false-positive based

on blank contamination

Table 4-1 Summary of Groundwater Analytical Data OU 2 Groundwater Investigation Report McIntosh, Alabama

Location ID:		BA-MW3B	BA-MW3C	BA-MW4B	BA-N	/W4C
Sample ID.	BA-MW3B092	508 BA-MW3B111208	BA-MW3C092408	BA-MW4B092508	BA-MW4C092408	BA-MW4C111208
Sample Date:	09/25/2008	11/12/2008	09/24/2008	09/25/2008	09/24/2008	11/12/2008
Sample Type:	Sample	Sample	Sample	Sample	Sample	Sample
Mercurv, E1631, µg/L						
Mercury, Filtered	0,00332 J	B NA	0.000236 JB	0.000394 JB	0.000389 JB	NA
Mercury, Unfiltered	0.00883 J	Β ΝΑ	0,0004 JB	0.000534 JB	0.000265 JB	NA
Pesticides - SW846 8081, µg/1.						
2.4'-DDD	NA	NA	NA	< 0.054	< 0.050	NA
2.4'-DDE	NA	NA	NA	< 0.054	< 0.050	NA
2.4'-DDT	NA	NA	NA	< 0.054	< 0.050	NA
4,4'-DDD	NA	NA	NA	< 0 11	< 0.099	NA
4.4'-DDE	NA	NA	NA	< 0.11	< 0 099	NA
4.4'-DDT	NA	NA	NA	< 0.11	< 0.099	NA
Hexachlorobenzene	0.011 J	B 0.013	< 0.010	< 0.011	0.0018 JB	< 0.0096

Notes:

$$\begin{split} \mu g/L &= micrograms \ per \ liter \\ &\leq Less \ than \ reporting \ limit \ (RL) \\ JQ &= Estimated \ quantify. \ Detected \\ below \ the \ reporting \ limit \ but \ above \\ the \ method \ detection \ limit. \\ Quantification \ cannot \ be \ reported \\ with \ confidence. \\ JB &= Estimated \ quantify; \ possibly \\ biased \ high \ or \ false-positive \ based \\ on \ blank \ contamination \end{split}$$

.

.

Groundwater Investigation Report Operable Unit 2 MACTEC Engineering and Consulting, Inc. Project No. 6107090036

Table 4-1 Summary of Groundwater Analytical Data OU 2 Groundwater Investigation Report McIntosh, Alabama

Location ID.	BA-MW5B	BA-N	AW5C	BA-MW6B	BA-MW6C
Sample ID	BA-MW5B092508	BA-MW5C092608	BA-MW5C111208	BA-MW6B092608	BA-MW6C092608
Sample Date	09/25/2008	09/26/2008	11/12/2008	09/26/2008	09/26/2008
Sample Type	Sample	Sample	Sample	Sample	Sample
Mercury, E1631, µg/L					
Mercury, Filtered	0/000286 JB	0.000327 JB	NA	0.000375 JB	0.0003 JB
Mercury, Unfiltered	0.000298 JB	0.000475 JB	NA.	0.000422 JB	0,00048 JB
Pesticides - SW846 8081, µg/L		(. 			
2,4'-DDD	NA	NA	NA	NA	NA
2.4'-DDE	NA	NA	NA	NA	NA
2,4'-DDT	NA	NA	NA	NA	NA
4.4'-DDD	NA	NA	NA	NA	NA
4.4'-DDE	NA	NA	NA	NA	NA
4,4'-DDT	NA	NA	NA	NA	NA
Hexachtorobenzene	< 0.010	0.0046 JB	0.0070 JQ	NA	NA

Notes:

 $\mu g/L = micrograms per liter$ < = Less than reporting limit (RL) JQ = Estimated quantity. Detectedbelow the reporting limit but abovethe method detection limitQuantification cannot be reportedwith confidence.JB = Estimated quantity: possiblybiased high or false-positive basedon blank contamination .

Table 4-1 Summary of Groundwater Analytical Data OU 2 Groundwater Investigation Report MeIntosh, Alabama

Location ID ⁻	BA-MW7B	BA-MW7C	BA-MW8B	BA-MW8C		
Sample ID:	BA-MW7B092608	BA-MW7C092908	BA-MW8B092908	BA-MW8C092908		
Sample Date:	09/26/2008	09/29/2008	09/29/2008	09/29/2008		
Sample Type:	Sample	Sample	Sample	Sample		
Mercury, E1631, µg/L						
Mercury, Filtered	0.000382 JB	0.000392 JB	0.00048 JB	0 000428 JB		
Mercury, Unfiltered	0.000585 JB	0.00214 JB	0.00075 JB	0.000449 JB		
Pesticides - SW846 8081, µg/L						
2.4'-DDD	NA	NA	NA	NA		
2,4'-DDE	NA	NA	NA	NA		
2.4'-DDT	NA	NA	NA	NA		
4,4'-DDD	NA	NA	NA	NA		
4,4'-DDE	NΛ	NA	NA	NA		
4.4'-DDT	NA	NA	NA	NΛ		
Hexachlorobenzene	NA	NA	NA	NΛ		

.

Notes:

 μg/L = micrograms per liter

 <= Less than reporting limit (RL)</td>

 JQ = Estimated quantity: Detected

 below the reporting limit but above

 the method detection limit.

 Quantification cannot be reported

 with confidence.

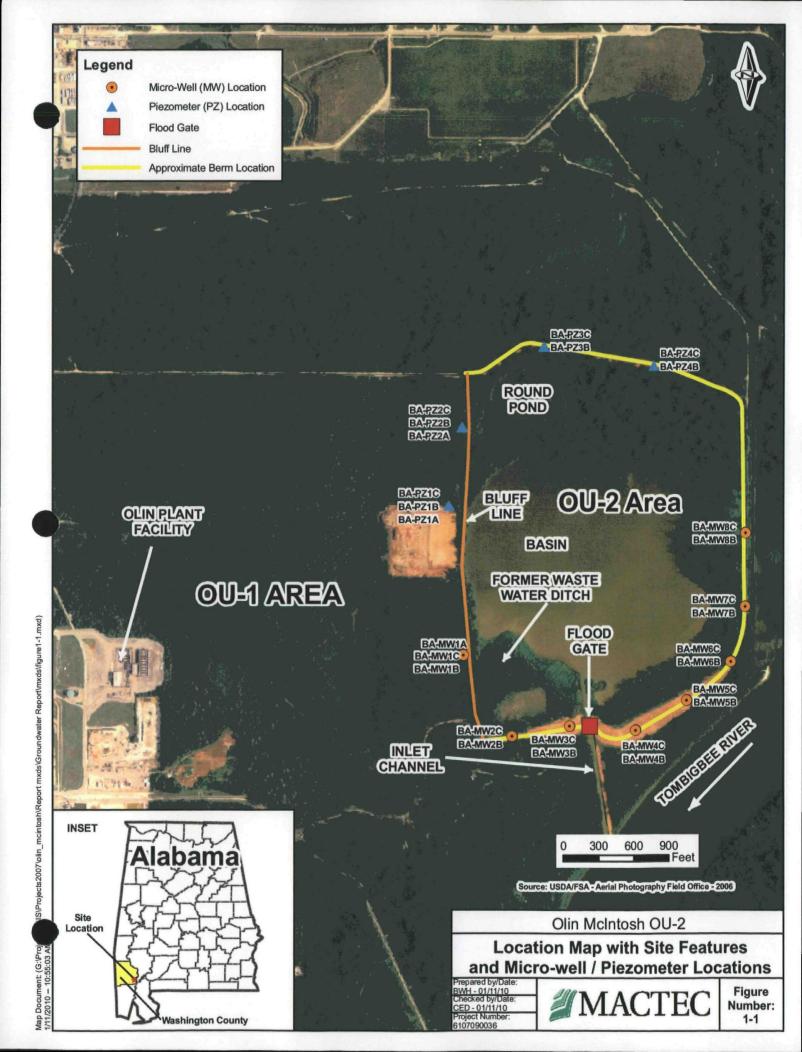
 JB = Estimated quantity: possibly

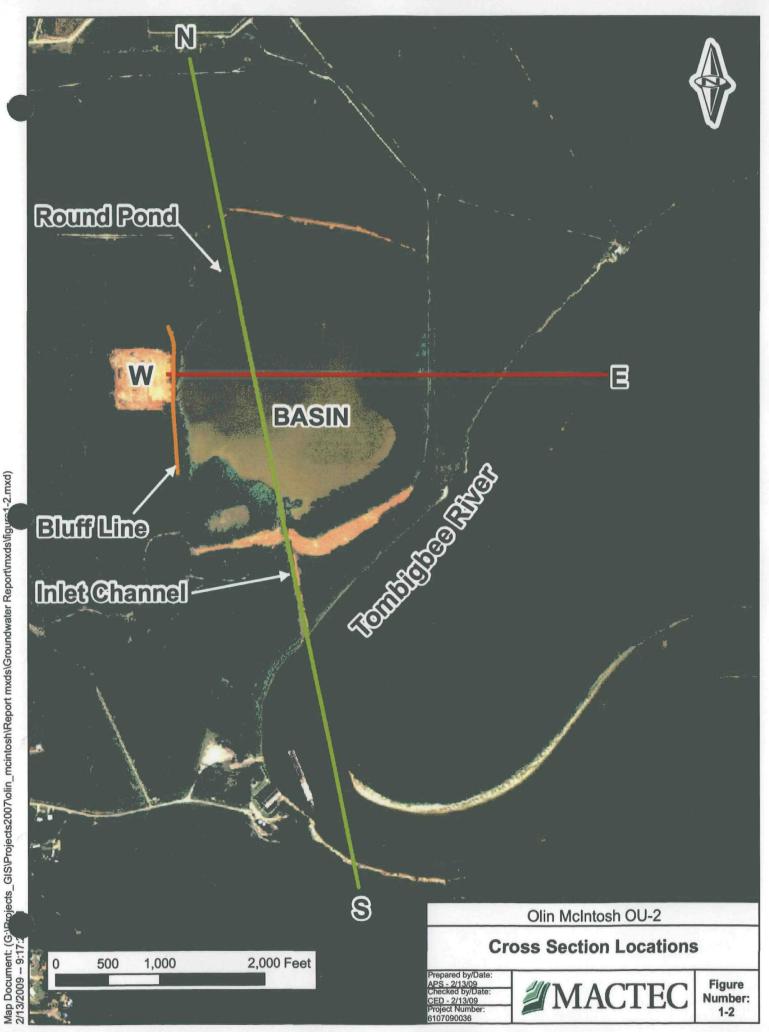
 biased high or false-positive based

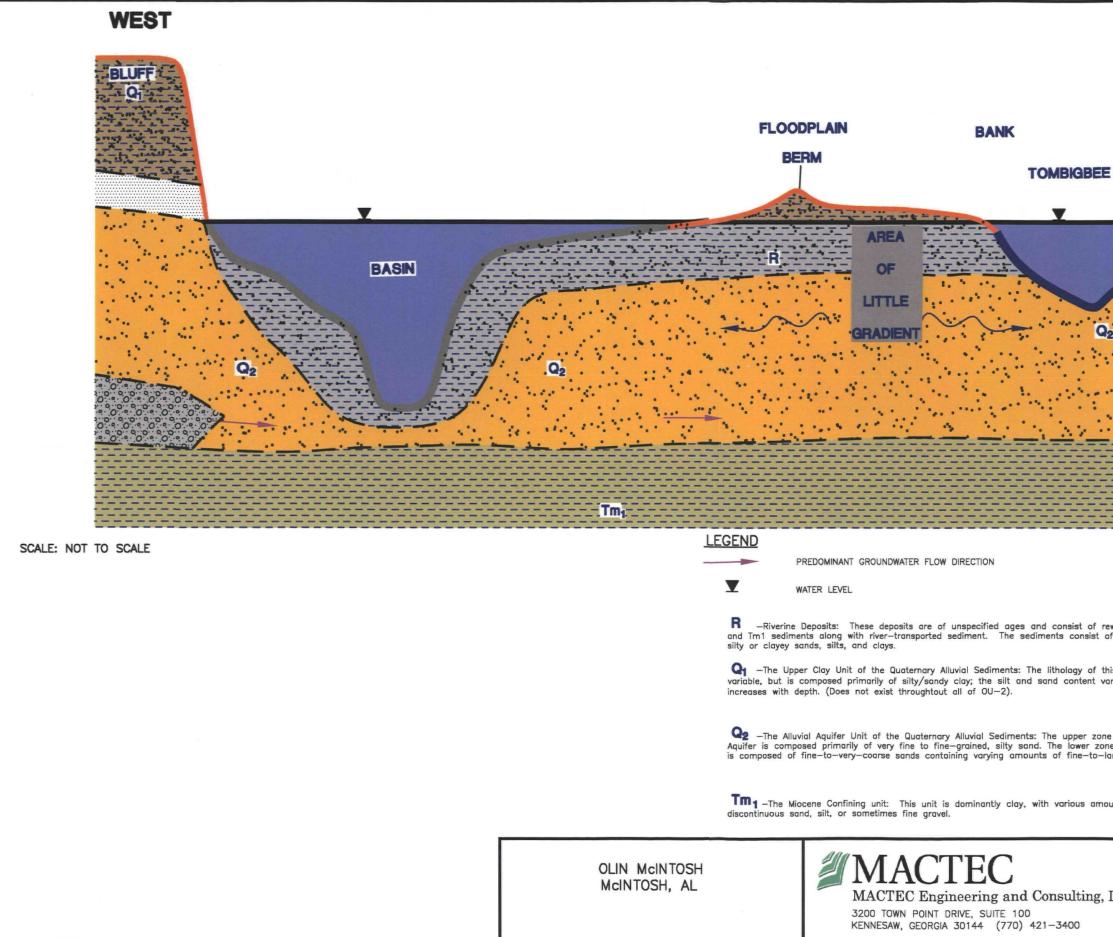
 on blank contamination

Prepared by: <u>KPW 02/13/2009</u> Checked by: <u>FKM 02/13/2009</u>

-

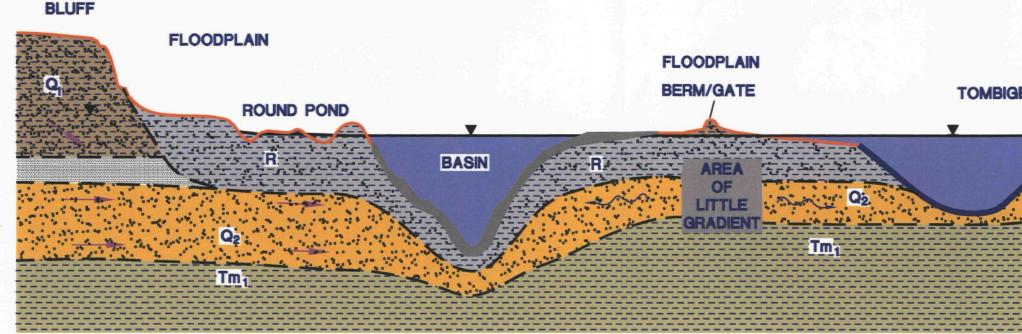

.


Revised Groundwater Investigation Report Operable Unit 2 MACTEC Engineering and Consulting, Inc., Project 6107-10-0036


FIGURES

1

·



EAST	
e river	
reworked Q1, Q2, of predominately	
varies and generally	
	3/2010 13/2010 13/2010
ounts of { CLAY (MIOCENE)	T.G. 1/13/2010 F.K.M. 1/13/2010 C.E.D. 1/13/2010
NON FLOOD CONDITIONS WITH RIVER AND BASIN AT 3' NAVD Inc. CONCEPTUAL WEST-EAST CROSS SECTION	PREPARED BY/DATE PREPARED BY/DATE CHECKED BY/DATE
JOB NO. 6107090036 FIGURE 1-3	

NORTH

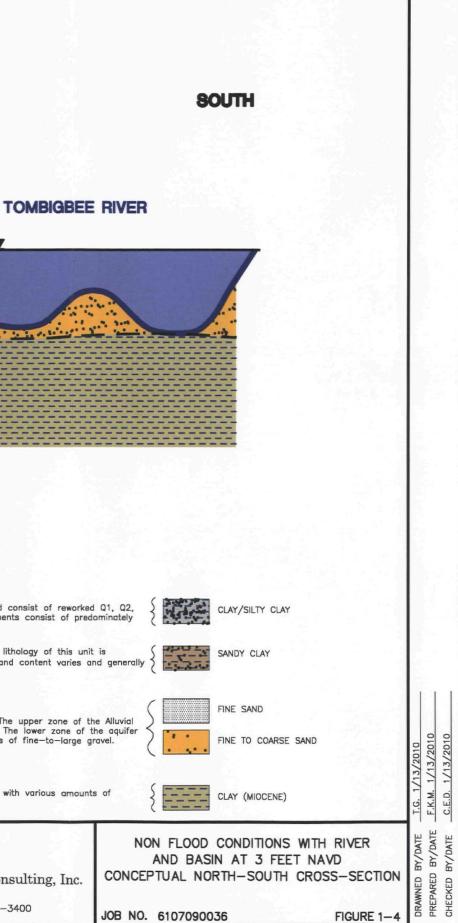
SCALE: NOT TO SCALE

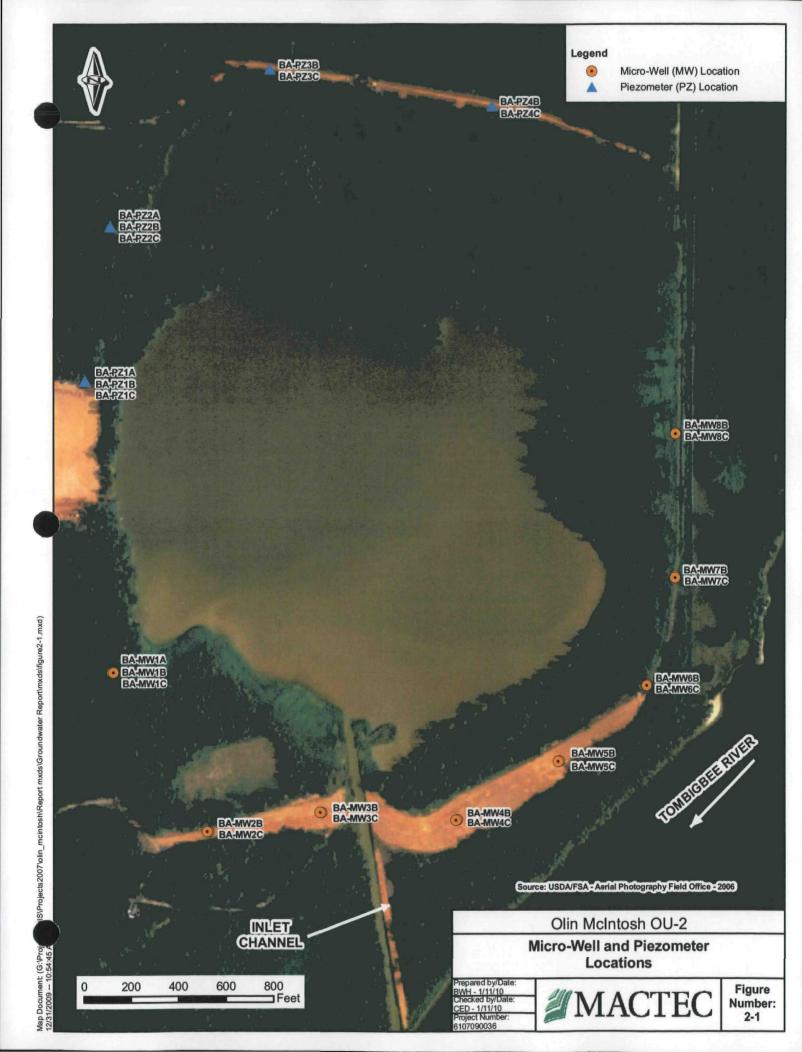
LEGEND

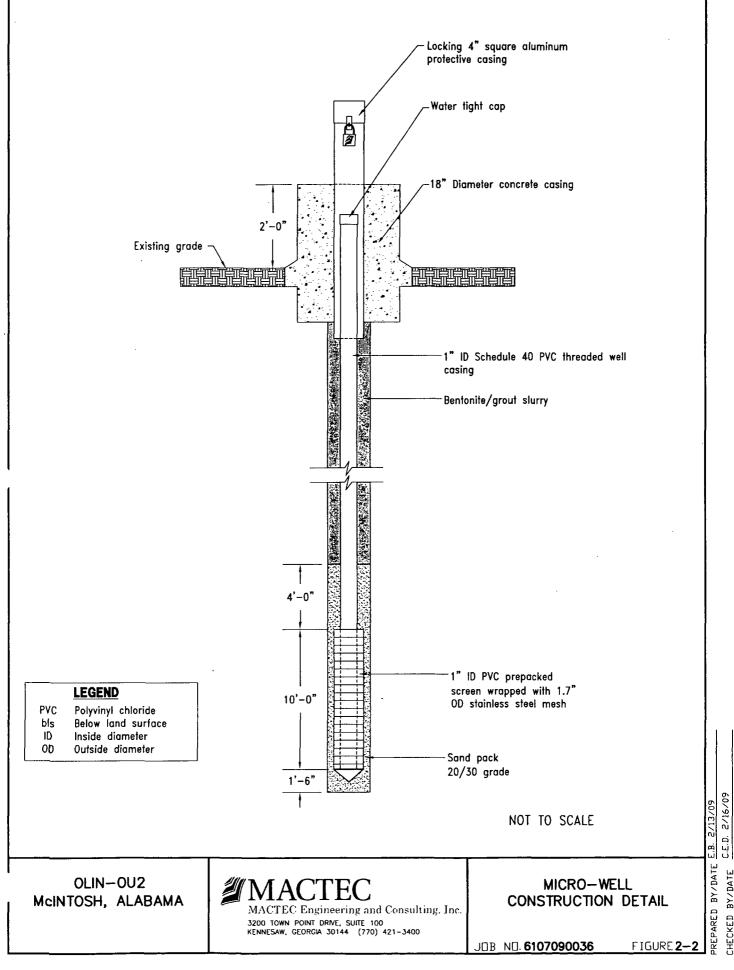
V

PREDOMINANT GROUNDWATER FLOW DIRECTION

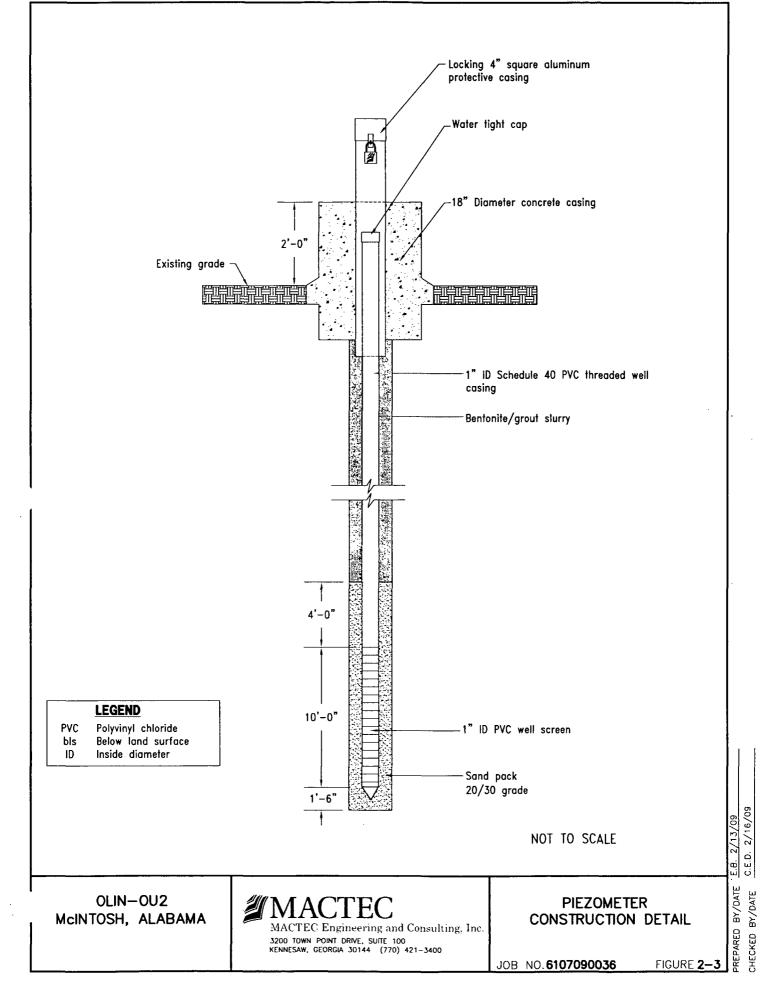
WATER LEVEL

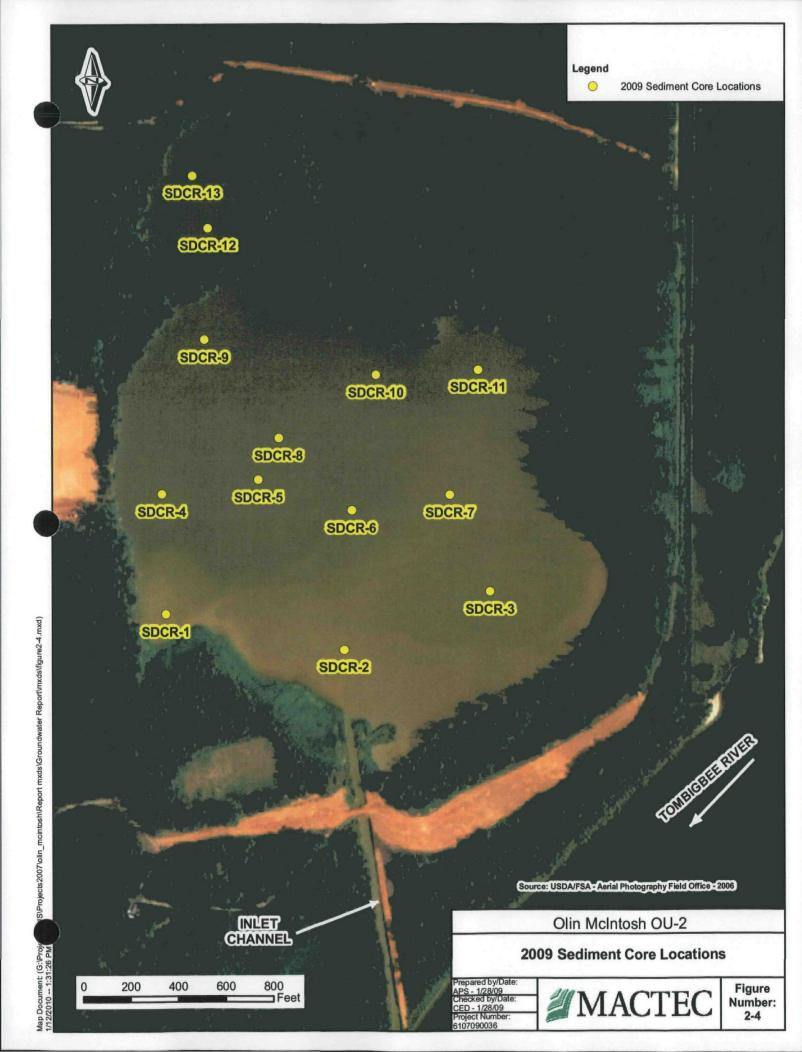

R -Riverine Deposits: These deposits are of unspecified ages and consist of reworked Q1, Q2, and Tm1 sediments along with river-transported sediment. The sediments consist of predominately silty or clayey sands, silts, and clays.

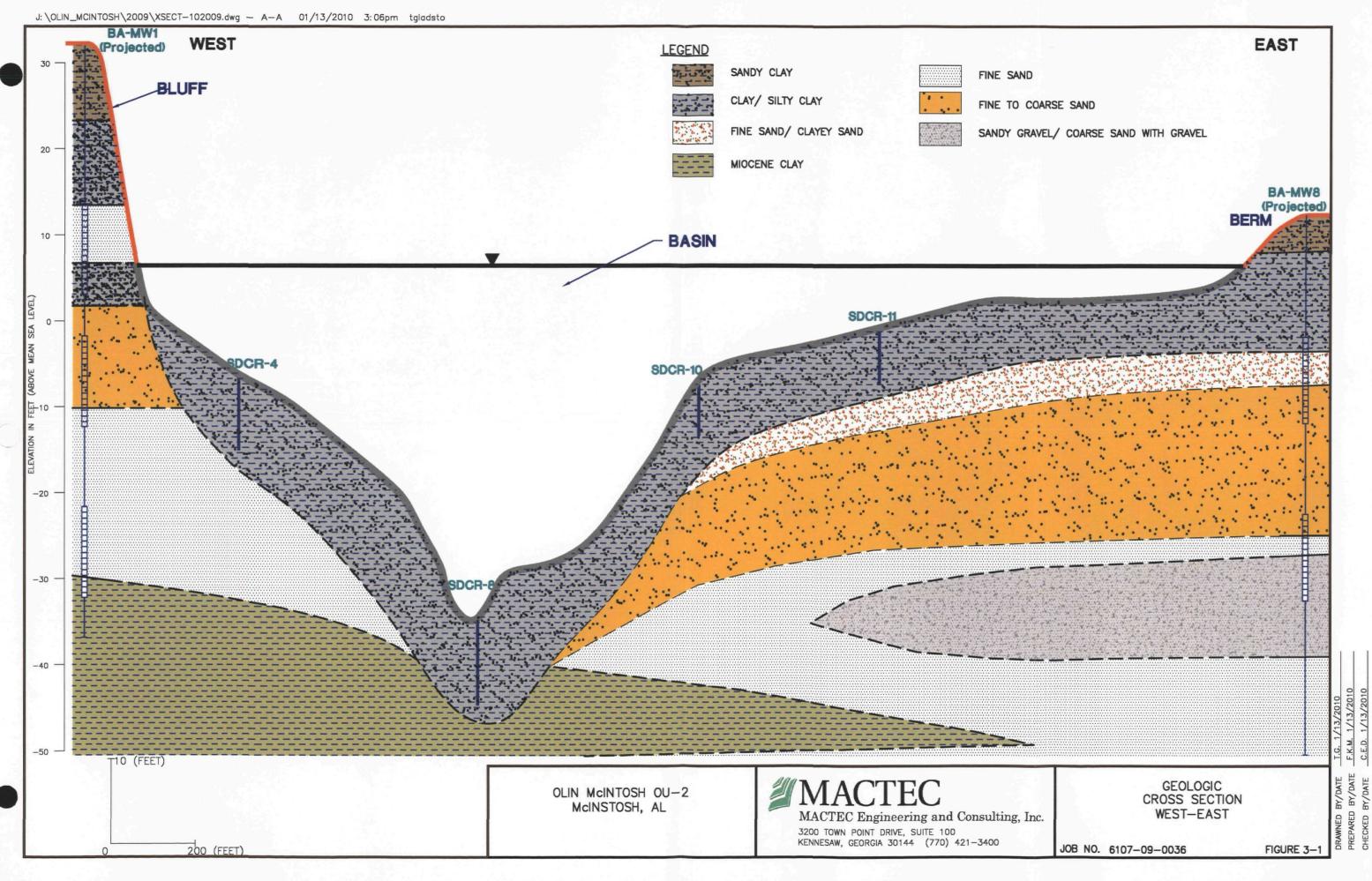

Q1 -The Upper Clay Unit of the Quaternary Alluvial Sediments: The lithology of this unit is variable, but is composed primarily of silty/sandy clay; the silt and sand content varies and generally increases with depth. (Does not exist throughtout all of OU-2).

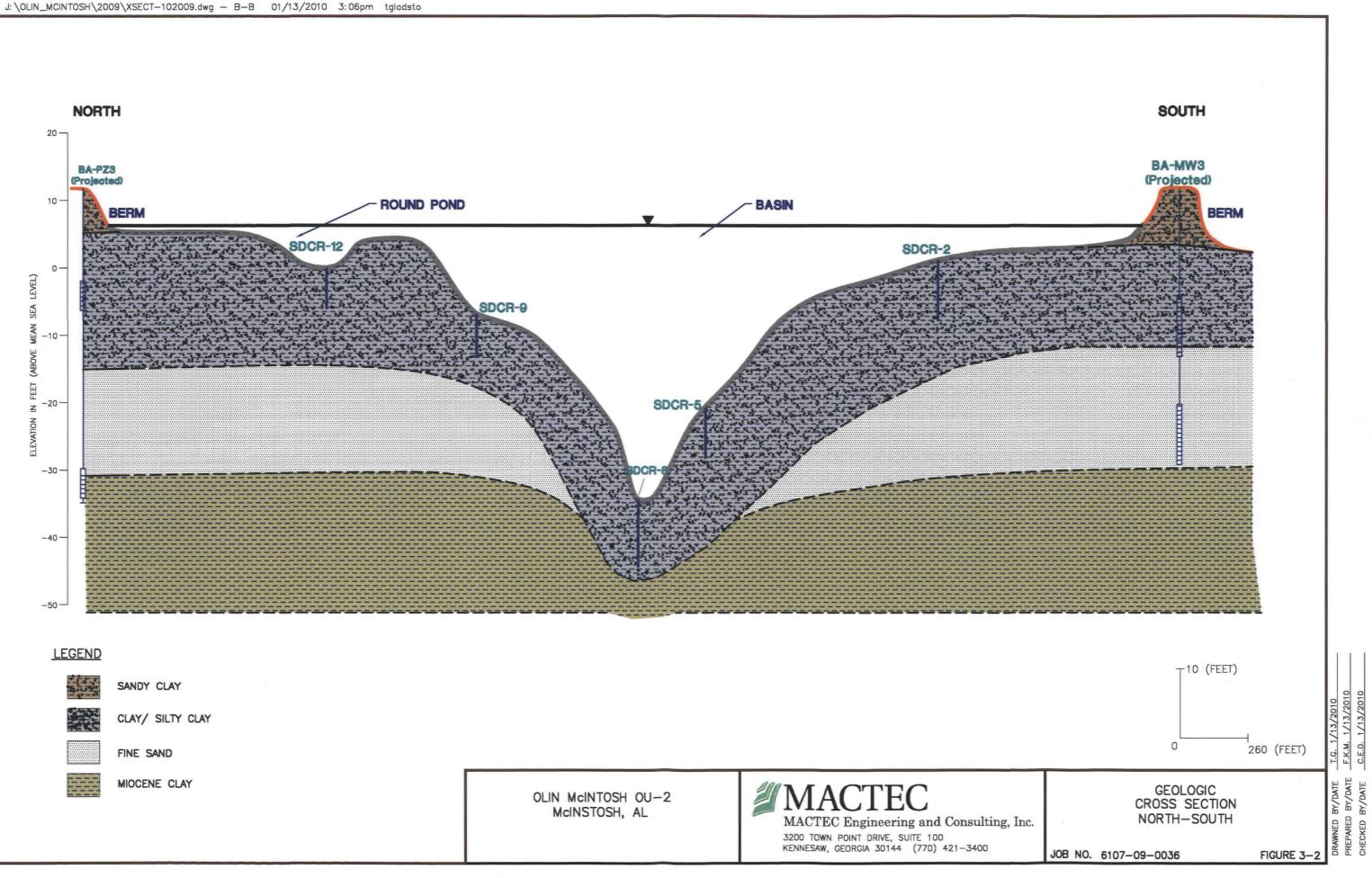

Q2 -The Alluvial Aquifer Unit of the Quaternary Alluvial Sediments: The upper zone of the Alluvial Aquifer is composed primarily of very fine to fine-grained, silty sand. The lower zone of the aquifer is composed of fine-to-very-coarse sands containing varying amounts of fine-to-large gravel.

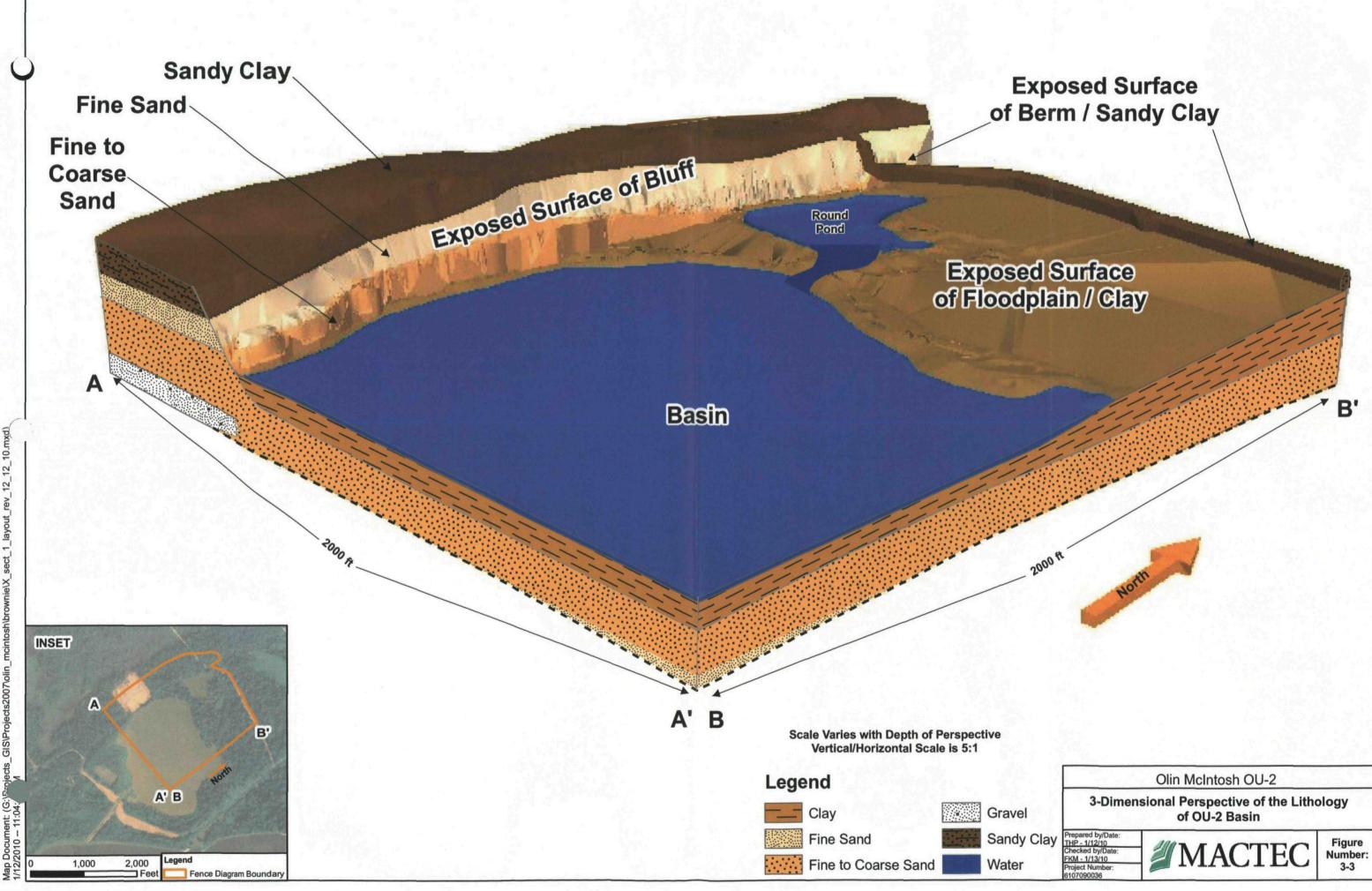
Tm₁ -The Miocene Confining unit: This unit is dominantly clay, with various amounts of discontinuous sand, silt, or sometimes fine gravel.

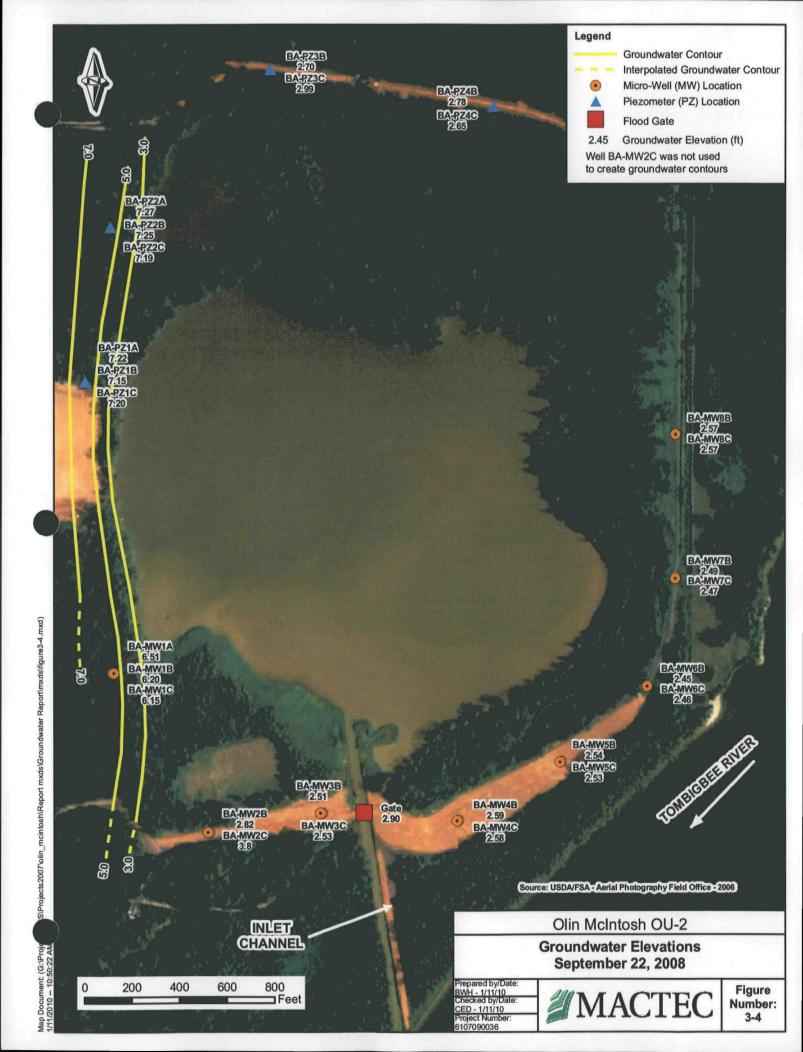

OLIN McINTOSH McINTOSH, AL MACTEC Engineering and Consulting, Inc. 3200 TOWN POINT DRIVE, SUITE 100 KENNESAW, GEORGIA 30144 (770) 421-3400








CHECKED BY/DATE



Legend •

Micro-Well (MW) Location

Piezometer (PZ) Location

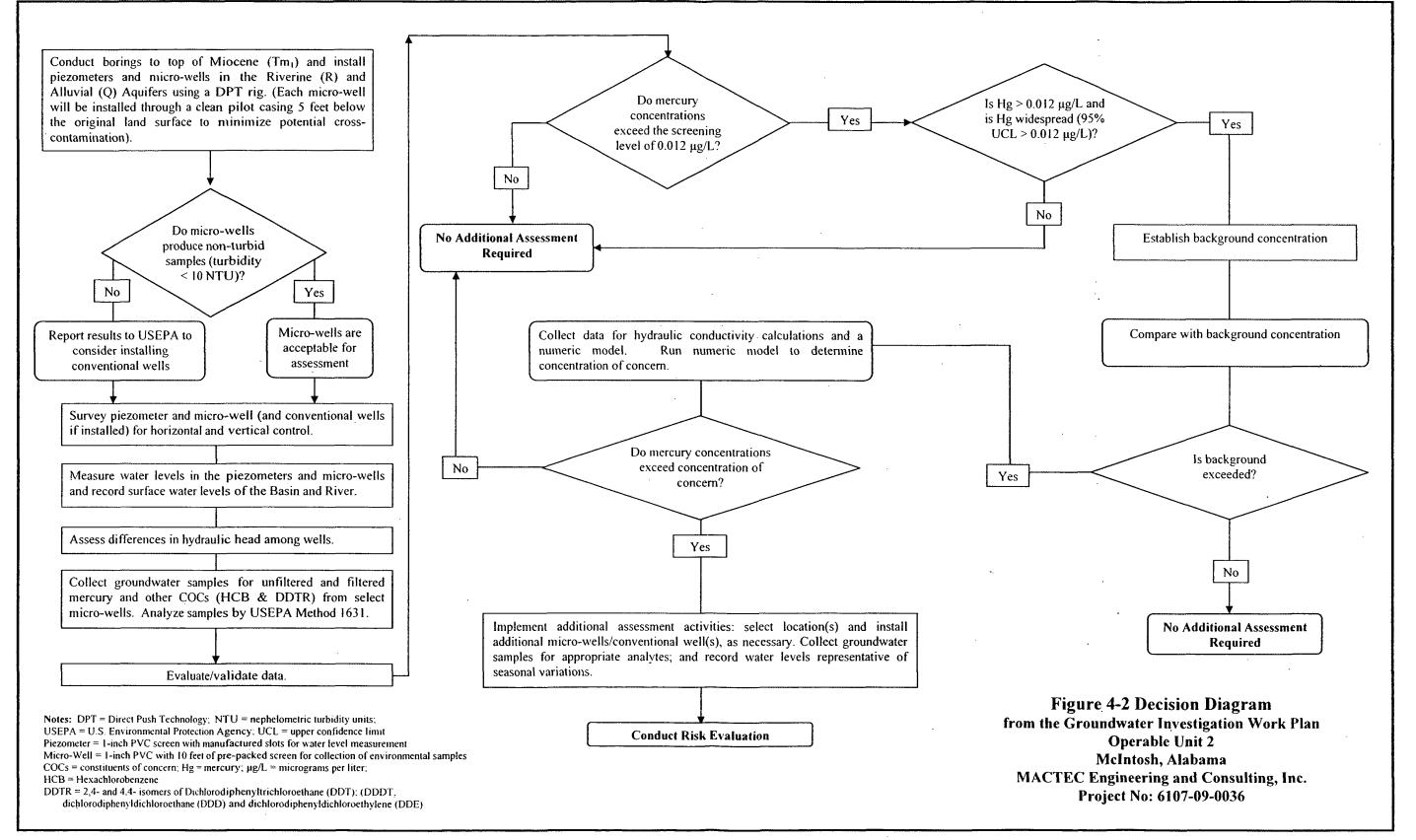
JQ - Estimated (< Reporting Limit) JB - Blank Contamination µg/L - micrograms per Liter NA - Not Analyzed BA-MW1A - Not Sampled due to insufficient amount of water

9/26/2008 0.000382 JB 0.000585 JB FIOL

9/29/2008 0.000392 JB 0.00214 JB

9/26/2008

Source: USDA/FSA - Aerial Photography Field Office - 2006


Olin McIntosh OU-2

Groundwater Analytical Results

repared by/D APS - 1/28/09 Checked by/Dat CED - 1/28/09 Project Number

Figure Number: 4-1

~

Prepared by: EAB 10/28/08 Checked by: CED 10/28/08 1

 $\frac{1}{2}$

Revised Groundwater Investigation Report Operable Unit 2 MACTEC Engineering and Consulting, Inc., Project 6107-10-0036

,

APPENDIX A

WELL AND PIEZOMETER BORING LOGS

.

Boring/Well Number : BA-PZ-1A

Site Name: Borehole Start Date: 08/19/08 Borehole Start Time: PM 1600 AM ГАМ ГРМ 08/19/08 OLIN-McIntosh, Alabama End Date: End Time: 1640 Environmental Contractor: Geologist's Name: Environmental Technician's Name: MACTEC Engineering and Consulting FK-MAYILA **J MOORE** Drilling Company: Pavement Thickness (inches): Borehole Diameter (inches): Borehole Depth (feet): Walker-Hill Environmental 3.5" 37' Drilling Method(s): Apparent Borehole DTW (in feet Measured Well DTW (in feet after OVA (list model and check type): Hollow-Stem Auger, Direct Push from soil moisture content): water recharges in well): NA 🚺 FID Backfill Disposition of Drill Cuttings [check method(s)]: Spread C Other 🔽 Drum (describe if other or multiple items are checked). Grout Backfill Borehole Completion (check one): 🔽 Well Bentonite C Other (describe) Sample Recovery (inches) Sample Depth Interval (feet) Moisture SPT Blows (per six inches) Sample Type USCS Symbol Depth (feet) **Sample Description** (include grain size based on USCS, odors, staining, and other Comments Conten remarks) Brown soil, red hard , clay HA 0-5 60 N/A 5 CĹ М red, hard clay DP 5-9 48 N/A q CL м red, light grey to tan, hard clay DP 9-13 N/A 13 48 CL М No Recovery DP 13-17 0 N/A 17 N/A N/A white, poorty graded fine sand, wet DP 17-21 48 N/A 21 SP w tan to white, fine sand DP 21-25 N/A 25 48 SP w tan to white, fine to medium sand, poorly graded 25-29 DΡ 48 N/A 29 SP w tan to white, fine to medium sand, poorty graded, with interlayered DP 29-33 48 N/A 33 w with gravel GP white, poorly graded, meduim white sand Piezometer set at 37', screened DE 33-37 48 N/A 37 SP w from 27-37'

Sample Type Codes: HA = Hollow-Stem Auger; DP = Direct Push;

Moisture Content Codes: D = Dry; M = Moist; W = Wet; S = Saturated

Page 1 of 1

Page 1 of 1

Boring/Well Number : BA-PZ-1B

Site Nam	ne:				Borehole Start Date:	08/19/08	Borehole Start Time:			1420 T AM 🔽 PM	
· .	OLIN	-McIntos	h, Alaba	ma	End Date:	08/19/08	End Time:			1510 Г АМ 🔽 РМ	
Environ	nental Co	ntractor:			Geologist's Name:		E	Environmental Technician's Name:			
			ng and C	onsulting	·	FK MAYILA		J MOORE			
-	Company:		amonto)	Pav	ement Thickness (inches):	Borehole Diar	neter (inches): 3.5"			Borehole Depth (feet): 47'	
								IVA (list n	odel and		
	Hollow-Stem Auger, Direct Push from soil moisture content): water recharges in well):						DVA (list model and check type): NA FID				
Dispositi	ion of Dril	ll Cutting	s [check n	nethod(s)]:	Drum	Spread	Backfill	C Stoc	kpile	□ Other	
(describe	e if other d	or multipl	e items ar	e checked):			· ·		-		
		ion (checl			Well Grout	F Bentonite	Backfill	'.	L Off	ner (describe)	
			,-								
		S							7		
San	Sample Depth Interval (feet)	Sample Recovery (inches)	SPT Blows (per six inches)	Dej		Sample Descripti		USC	Molsture Content		
nple	iple	le R inch	T B six i	pth (• •	rs, staining, and other	SS	ure	Comments	
Sample Type	Dep (fee	ecov es)	SPT Blows er six inche	Depth (feet)		remarks)		USCS Symbol	Con		
ñ	3 F	ery	es)	-				<u> </u>	tent		
НА	0-5	60	N/A		Brown soil, red hard , o	clay					
на	0-5	00	N/A	5				CL	M		
DP	5-9	48	N/A	9	red, hard clay			CL	м		
1 -					and Data and to top: b						
DP	9-13	48	N/A	13	red, light grey to tan; h	aru clay		CL	м		
					No Recovery						
DP	13-17	0	N/A	17				N/A	N/A.		
					white, poorly graded fir	ne sand, w et					
DP	17-21	48	N/A	21				SP	w		
DP	21-25	48	N/A	25	tan to white, fine sand		•	SP	w		
5	21-23	~	1977	25							
DP	25-29	48	. N/A	29	tan to white, fine to me	dium sand, poorly g	raded	SP	w		
					tan to white fine to me	ulium sand poorty o	raded, with interlayered				
DP	29-33	48	N/A	33	with gravel	diam sana, poorty g	abed, with intenayered	· GP	w		
					white, poorly graded, n	neduim white sand					
DP	33-37	48	N/A	37				SP	w		
					white, poorly graded, n	nedium to coarse sa	nd, wet				
DP	37-40	36	N/A	40				SP	w		
DP	40-43	36	N/A	43	tan to light brown poor $(< 5\%)$ at 42° 2° by the point of the second secon			GP	w		
	40-43	30	19/74	43	(<5%) at 42', 2" later of				٧٧		
DP	43-47	48	N/A	. 47	light brown, orange, po size with depth, mixing		n sand , increasing grain	GP	w	Piezometer set at 47', screened	
										from 37-47'	

Sample Type Codes: HA = Hollow-Stem Auger; DP = Direct Push:

1

Moisture Content Codes: D = Dry; M = Moist; W = Wet; S = Saturated

Page 1 of 1

Boring/Well Number : BA-PZ-1C

Site Nan	ne:				Borehole Start Date:	08/18/08	Borehole Start Time:			1355 ГАМ 🖗 РМ		
	OLIN	-McIntos	h, Alaba	ma	End Date:	08/19/08	End Time:			1025 🕅 AM 🦷 PM		
	mental Co				Geologist's Name:			Environmental Technician's Name:				
	ACTEC E Company:	_	ng and C	onsulting	ment Thickness (inches):	FK MAYILA Borehole Diar	natar (inches):	J MOORE Borehole Depth (feet):				
-	Walker-H		nmental	[ave	ment Therics (menes).	Dorenoie Dian	3.5"			75'		
Drilling	Method(s)	:		Apparent Bore	hole DTW (in feet	Measured Well DT	W (in feet after	OVA (list m	odel and	check type):		
Hollow	-Stem Au	ger, Dire	ct Push	from soil mo	sture content):	water recharges in	well):		NA	FID FID		
Disposit	ion of Dril	l Cuttings	[check m	ethod(s)]:	🔽 Drum	Spread	🔽 Backfill	∏ Stoc	kpile	Other		
				e checked):								
Borchok	e Completi	ion (checl	; one):	1	Well 🚺 Grout	Bentonite	F Backfill		[⊡ Oil	her (describe)		
Sample Type	Sample Depth Interval (feet)	Sample Recovery (inches)	SPT Blows (per six inches)	Depth (feet)	1	Sample Descripti based on USCS, odo remarks)	ion rs, staining, and other	USCS Symbol	Moisture Content	Comments		
					Brown soil, red hard , c	lay						
HA	0-5	60	N/A	5				CL	м			
DP	5-9	48	N/A	9	red, hard clay			CL	м			
					red, light grey to tan, ha	vrd clav						
DP	9-13	48	N/A	13			CL	м				
00	12.17				No Recovery	No Recovery						
DP	13-17	0	N/A	17								
DP	17-21	48	N/A	. 21	white, poorly graded fin	white, poorly graded fine sand, wet						
					tan to white, fine sand			i i				
DP	21-25	48	N/A	25				SP	w			
DP	25-29	48	N/A	29	tan to white, fine to med	lium sand, poorly g	raded	SP	w			
	25-27	4	1 Marx	. 20		tum and made	raded with interlevened					
DP	29-33	48	N/A	33	tan to white, fine to mee with gravel	num sano, poony y	radeu, with interlayered	GP	w			
					while, poorly graded, m	eduim white sand						
DP	33-37	48	N/A	37				SP	w			
DP	37-40	36	N/A	40	white, poorly graded, m	edium to coarse sa	nd, wet	SP	w			
-					tan to light brown poorly	and composit	duith como arqual					
DP	40-43	36	N/A	43				GP	w			
					light brown, orange, po		n sand , increasing grai					
DP	43-47	48	N/A	47	size with depth, mixing	with gravel		. GP	w			
DP	47-51	48	N/A	51	light tan to white, poorty	graded medium sa	and, wet	SP	w			
					light tan montul grade	d medium sand inr	reasing grain size, with:					
DP	51-55	48	N/A	55		coarse grained mix		GP	w			
							ome gravel, 57-59 wel					
DP	55-59	48	N/A	59		-	up to 1.4" diameter	GP	w			
DP	59-63	48	N/A	63	white to mediur	n coarse sand with	some gravel, wet	GP	w			
					tan coarse sand with	some gravel <5% 1	.5 * layer of well graded					
DP	63-67	48	N/A	67		pravel with some sa		GP	w			
np	67 71	,	N/A	74	light brown, coarse san				w			
DP	67-71	48	N/A	71	layer of gravel and 4" la	- •		GP	W			
	1 I		1		i orev	hard clay, miocen		•		Piezometer set at 68', screened		

Sample Type Codes: HA = Hollow-Stem Auger: DP = Direct Push;

Moisture Content Codes: D = Dry; M = Moist; W = Wet; S = Saturated

Boring/Well Number : BA-PZ-2A

Page 1 of _____

Site Nam	ne:				Borehole Start Date:	08/21/08	Borehole Start Time:			1030 🗭 ам Г рм
	OLIN	-McIntos	h, Alaba	ma	End Date:	08/21/08	End Time:			1130 🔽 АМ Г. РМ
Environd	nental Co	ntractor:			Geologist's Name:			Environmen	ital Techn	iician's Name:
M/	ACTEC E	ngineeri	ng and C	onsulting		FK MAYILA				J MOORE
Drilling	• •				ent Thickness (inches):	Borehole Dian	• •			Borehole Depth (feet):
		lill Enviro	nmental				3.5"			37'
1 ×	Method(s)		ot Duch	Apparent Boreho	,	Measured Well DTV		OVA (list n		check type):
				from soil moist		water recharges in			NA	
1 ·		-	•	nethod(s)]: re checked):	Drum		Backfill	T. Stoc	kpile	C Other
ŀ · · · · ·		ion (check			Well I Grout	F Bentonite	☐ Backfill		∏ Otl	ner (describe)
Sample Type	Sample Depth Interval (feet)	Sample Recovery (inches)	SPT Blows (per six inches)	Depth (feet)		Sample Descripti based on USCS, odor remarks)	ON rs, staining, and other	USCS Symbol	Moisture Content	Comments
НА	0-4	48	N/A	4	Brown soil, graded into	o clay	 	SC	M	
DP	4-8	48	N/A	· 8	red with shades of grey	r, hard and brittle, c	lay, (8-11')	CL	M	
DP	8-12	48	N/A	12	grey to light brown, mo sandy clay	ist, sandy clay, clay	layers changing within	sc	м	
DP	12-16	48	N/A	16	grey to light brown, mo	iist sandy clay		sc	M	
DP	16-20	48	N/A	20	red with shades of grey	, hard and brittle, c	lay, moist	CL	м	
DP	20-24	48	N/A	24	brownish to tan moist fi	ne sand with interla	yers of clay (6")	sc	M	
DP	24-27	36 .	N/A	27	brown to tan moist fine	sand with layers of	clay through sample	sc	M	
DP	27-31	48	N/A	31	tan and red, fine sand i	nterlayered with clay	y, wet	sc	w	
DP	31-35	48	N/A	35	grey, wet, fine sand inte	erlatered with clay		sc	. w	
DP	- 35-37	48	N/A	37	tan and grey, wet, med	ium sand interlayer	ed with clay	sc	w	Piezometer set at 37', screen 27- 37'

Sample Type Codes: HA = Hollow-Stem Auger; DP = Direct Push;

Moisture Content Codes: D = Dry; M = Moist; W = Wet; S = Saturated

Page 1 of

Boring/Well Number : BA-PZ-2B

Site Name: Borehole Start Date: 08/21/08 Borehole Start Time: 0830 АМ ГРМ 🖬 АМ Г РМ OLIN-McIntosh, Alabama End Date: 08/21/08 End Time: 0930 Environmental Contractor: Geologist's Name: Environmental Technician's Name: MACTEC Engineering and Consulting FK MAYILA **J'MOORE** Borehole Depth (feet): Pavement Thickness (inches): Borehole Diameter (inches): Drilling Company: Walker-Hill Environmental 3.5" 47' Apparent Borehole DTW (in feet Measured Well DTW (in feet after OVA (list model and check type): Drilling Method(s): Hollow-Stem Auger, Direct Push from soil moisture content): NA 🗖 FID water recharges in well): Drum F Backfill ☐ Stockpile Other Disposition of Drill Cuttings [check method(s)]: Spread (describe if other or multiple items are checked): 🔽 Well T Other (describe) Grout F Bentonite Backfill Borehole Completion (check one): Sample Recovery (inches) Moisture Sample Depth Interval (feet) SPT Blows (per six inches) USCS Symbol Sample Type Depth (feet) Sample Description (include grain size based on USCS, odors, staining, and other Comments Content remarks) Brown soil, graded into clay HA 0-4 48 N/A 4 sc м red with shades of grey, hard and brittle, clay, (8-11') ĊL DP 4-8 48 N/A 8 м grey to light brown, moist, sandy clay, clay layers changing within DP SC 8-12 48 N/A 12 sandy clay м grey to light brown, moist sandy clay DP 12-16 48 N/A 16 SC М red with shades of grey, hard and brittle, clay, moist DP 16-20 N/A 20 CL 48 м brownish to tan moist fine sand with interlayers of clay (6") DP 20-24 48 N/A 24 SC м brown to tan moist fine sand with layers of clay through sample DP N/A SC 24-27 36 27 м tan and red, fine sand interlayered with clay, wet DP 27-31 31 sc w 48 N/A grey, wet, fine sand interlatered with clay DP 31-35 48 N/A 35 SC W tan and grey, wet, medium sand interlayered with clay DP 35-39 48 N/A 39 SC w tan to white fine to medium sand, interlayered with clay, wet DP 43 sc w 39-43 48 N/A Red and tan, wet, medium to coarse sand with some gravel Piezometer set at 47', screened 37-GM DP 43-47 48 N/A 47 w 47'

Sample Type Codes: HA = Hollow-Stem Auger; DP = Direct Push; Moisture Content Codes: D = Dry: M = Moist; W = Wet; S = Saturated

Page 1 of 1

Boring/Well Number : BA-PZ-2C

Site Nam	ne:				Borehole Start Date:	08/20/08	Borehole Start Time:			1005 🔽 AM 🗌 PM
	OLIN	-McIntos	sh, Alaba	ma	End Date:	08/20/08	End Time:			1435 Г АМ 🔽 РМ
	nental Co				Geologist's Name:	· ·		Environmen	ntal Techn	ician's Name:
			ng and C	onsulting		FK MAYILA				J MOORE
	Company Malker-H	: Iill Envirc	Intromo	Pave	ment Thickness (inches):	: Borehole Dian	oeter (inches): 3.5"			Borehole Depth (feet): 60'
L	Method(s)			Apparent Bord	hole DTW (in feet	Measured Well DTW		OVA (list n	nodel and	check type):
1 -	-				sture content):	water recharges in			NA	Fi FiD
Dispositi	ion of Dri	ll Cutting	s [check n	nethod(s)]:	🔽 Drum	Spread	Backfill	T Stor	kpile	C Other
(describe	e if other o	or multipl	e items ar	e checked):						
Borehole	Complet	ion (checl	k one):	5	Well 🗍 Grout	Bentonite	☐ Backfill		C Oti	ner (describe)
Sample Type	Sample Depth Interval (feet)	Sample Recovery (inches)	SPT Blows (per six inches)	Depth (feet)		Sample Descripti based on USCS, odor remarks)	ON s, staining, and other	USCS Symbol	Moisture Content	Comments
НА	0-4	48	N/A	4	Brown soil, graded int	o clay		sc	м	
DP	4-8	48	N/A	8	red with shades of gre	y, hard and brittle, c	lay, (8-11')	CL	м	
DP	8-12	48	N/A	· 12		grey to light brown, moist, sandy clay, clay layers changing within sandy clay				
DP	12-16	48	N/A	16	grey to light brown, m	oist sandy clay		sc	м	
DP	16-20	48	N/A	20				CL	м	2
DP -	20-24	48	N/A	. 24				sc	м	
DP	24-27	36	N/A	27				sc	м	
DP	27-31	48	N/A	31			/, wet	sc	w	
DP	31-35	48	N/A	35				sc	w	
DP	35-39	48	N/A	39				sc	w	
DP	39-43	48	N/A	43		•		sc	w	
DP	43-47	48	N/A	. 47				GM	w	
DP	47-51	48	N/A ·	51		dium sand, interlayer	ed with clay, wet	sc	w	
ĐΡ	51-55	48	N/A	55				N/A	N/A	
DP	55-60	60	N/A	60	grey, hard well compa	cted clay, miocene c	lay	CL	w	Piezometer set at 57', screened from 47-57'

Sample Type Codes: HA = Hollow-Stem Auger; DP = Direct Push;

Boring/Well Number : BA-PZ-3B

Site Name: Borehole Start Date: Borehole Start Time: AM 08/18/08 0935 РМ 🕅 АМ Г РМ OLIN-McIntosh, Alabama End Date: 08/18/08 End Time: 1015 Geologist's Name: Environmental Technician's Name: Environmental Contractor: MACTEC Engineering and Consulting FK MAYILA **J MOORE** Drilling Company: Pavement Thickness (inches): Borehole Diameter (inches): Borehole Depth (feet): Walker-Hill Environmental 3.5" 24' Drilling Method(s): Apparent Borehole DTW (in feet Measured Well DTW (in feet after OVA (list model and check type): Hollow-Stem Auger, Direct Push from soil moisture content): water recharges in well): NA **FID** 🔽 Backfill T. Stockpile Disposition of Drill Cuttings [check method(s)]: Spread C Other 🔽 Drum (describe if other or multiple items are checked): Well Well Borehole Completion (check one): Grout ☐ Bentonite Backfill T Other (describe) Sample Recovery (Inches) Moisture Conten SPT Blows (per six inches) Sample Depth Interval (feet) Sample Type USCS Symbo Depth (feet) Sample Description (include grain size based on USCS, odors, staining, and other Comments remarks) Fill Material, from borrow pit HA 0-5 60 N/A 5 SM м sand silt mix, backfill material from borrow pit DP N/A 10 5-10 60 SM м greenish- grey soft, moist clay CL DP 10-15 60 N/A 15 М greenish-grey, wet soft clay, plastic, some fine sand present DP 15-19 48 N/A 19 sc м greenish-grey, wet, soft clay with interlayered poorly graded fine DP sc 19-23 48 N/A 23 М sand greenish, wet, soft clay, interlayered with poorly graded fine sand, Piezometer set at 23', screened 23-24 DP N/A sc 48 24 bottom 6" sandy clay from 13-23

Sample Type Codes: HA = Hollow-Stem Auger; DP = Direct Push;

Moisture Content Codes: D = Dry; M = Moist; W = Wet; S = Saturated

Page 1 of 1

Boring/Well Number : BA-PZ-3C

Site Name: Borehole Start Date: 08/17/08 Borehole Start Time: 1510 AM 🔽 РМ 🖬 АМ Г РМ 08/18/08 OLIN-McIntosh, Alabama End Date: End Time: 0935 Environmental Contractor: Geologist's Name: Environmental Technician's Name: MACTEC Engineering and Consulting FK MAYILA J MOORE Drilling Company: Pavement Thickness (inches): Borehole Diameter (inches): Borehole Depth (feet): Walker-Hill Environmental 3.5" 47 Apparent Borchole DTW (in feet OVA (list model and check type): Drilling Method(s): Measured Well DTW (in feet after Hollow-Stem Auger, Direct Push | from soil moisture content): water recharges in well): NA FID Stockpile Backfill Disposition of Drill Cuttings [check method(s)]: 🔽 Drum r Spread Г Other (describe if other or multiple items are checked): 🔽 Well Borehole Completion (check one): Grout **Bentonite** ☐ Backfill C Other (describe) Sample Recovery (inches) Sample Depth Interval (feet) SPT Blows (per six inches) Moisture **USCS** Symbol Sample Type Depth (feet) Sample Description (include grain size based on USCS, odors, staining, and other Comments Content remarks) Fill Material, from borrow pit HA 0-5 60 N/A 5 SM М sand silt mix, backfill material from borrow pit DP 5-10 10 60 N/A SM М greenish- grey soft, moist clay DP 10-15 60 N/A 15 CL Μ greenish-grey, wet soft clay, plastic, some fine sand present DP 15-19 SC 48 N/A 19 М greenish-grey, wet, soft clay with interlayered poorly graded fine DP 19-23 48 N/A 23 sc Μ sand greenish, wet, soft clay, interlayered with poorly graded fine sand, DP 23-27 48 N/A 27 bottom 6" sandy clay SC М greenish-grey wet, poorly graded fine sand DP 27-31 sc 36 N/A 31 М greenish -grey, wet, poorly grafrf fine sanf with layers of clay 31-35 sc DP 48 N/A w 35 present in sample wet greenish grey fine sand DP 35-39 48 N/A 39 SC w light grey, wet, poorly graded fine sand DP 39-43 48 N/A 43 SP W Light grey, hard clay, miocene clay Piezometer set at 43', screen 33-DP 43-47 48 N/A 47 CL w 43

Sample Type Codes: $\dot{H}A$ = Hollow-Stem Auger; DP = Direct Push; Moisture Content Codes: D = Dry; M = Moist; W = Wey; S = Saturated Page 1 of 1

Page I of 1

Boring/Well Number : BA-PZ-4B

Site Nan	ne:				Borehole Start Date:	08/17/08	Borehole Start Time	:		1330 ГАМ 🕅 РМ
	OLIN	HMcIntos	sh, Alaba	ma	End Date:	08/17/08	End Time:			1415 ГАМ 🔽 РМ
Environr	nental Co	ntractor:			Geologist's Name:			Environmen	ntal Techr	nician's Name:
M/	ACTEC E	Ingineeri	ng and C	onsulting		FK MAYILA				J MOORE
Drilling				Paver	ent Thickness (inches):	Borehole Dian	neter (inches):			Borehole Depth (feet):
1	Walker-F	lill Enviro	nmental				3.5"	·		24'
Drilling	Method(s)):		Apparent Boreh	ole DTW (in feet	Measured Well DTV	V (in feet after	OVA (list n	nodel and	check type):
Hollow	Stem Au	iger, Dire	ct Push	from soil moist	ure content):	water recharges in	well):		NA	FID
Dispositi	ion of Dri	Il Cutting	s [check n	nethod(s)]:	Drum	└── Spread	Backfill	☐ Stoc	kpile	Cother
(describe	e if other a	or multipl	e items ar	e checked):						
Borehole	Complet	ion (checl	k one):	ম	Well Crout	🖵 Bentonite	Backfill		T ou	her (describe)
Sample Type	Sample Depth Interval (feet)	Sample Recovery (inches)	SPT Blows (per six inches)	Depth (feet)		ON 75, staining, and other	USCS Symbol	Molsture Content	Comments	
	-	হ	<u> </u>	·	Fill Material, from borro	na nit	· · · · · · · · · · · · · · · · · · ·	_	.	
HA	0-5	60	N/A	5	Fill Material, from borro	w pit		SM	м	
DP	5-10	60	N/A	10	sand silt mix, backfill m soft, very plastic	aterial from borrow	pit TO 8', dark grey da	sy, SM	м	
DP	10-14	48	N/A	14	Dark grey, soft clay, ve	ry plastic		CL	M	
DP	14-19	60	N/A	· 19	same as above			CL	м	
DP	19-23	48	N/A	23	greenish, soft clay, inte	graded fine sand	SC	M		
DP	23-24'	48	N/A	24'	greenish-light grey, we	sand	SP	w	Piezometer set at 24', screened from 14-24	

Sample Type Codes: HA = Hollow-Stem Auger; DP = Direct Push;

Boring/Well Number : BA-PZ-4C

Page 1 of _____

Site Nam	ne:			······	Borehole Start Date:	08/17/08	Borehole Start Time:			0905 🔽 AM	РМ
ļ	OLIN	-Mcintos	h, Alaba	ma	End Date:	08/17/08	End Time:			1205 🔽 AM 🔽	РМ
Environ	nental Co		·	·····	Geologist's Name:		·	Environmer	tal Techn	ician's Name:	
M/	ACTEC E	ingineeri	ng and C	Consulting		FK MAYILA				J MOORE	
· ·	Company				ent Thickness (inches):	Borehole Diar	. ,			Borehole Depth (feet):	
<u> </u>	Walker-H		onmental				3.5"			43'	
3 -	Method(s)		et Duch	Apparent Boreho from soil moist	-	Measured Well DTV water recharges in	1	OVA (list n	nodel and NA	check type):	
├ ──				L	· · · · ·	Spread	Backfill	☐ Stoc		T FID	
1.		5	-	nethod(s)]: re checked):	Drum	i Spreau		4 5100	крие	I Other	
Borehole	Complet	ion (ch e cl	k one):	ম	Well F Grout	F Bentonite	☐ Backfill		∏ Otl	ner (describe)	
Sample Type	Sample Depth Interval (feet)	Sample Recovery (inches)	SPT Blows (per six inches)	Depth (feet)		Sample Descripti based on USCS, odol remarks)	0N rs, staining, and other	USCS Symbol	Molsture Content	Comments	
HA	0-5	60	N/A	5	Fill Material, from borro	ow pit		SM	м		
DP	5-10	60	N/A	10	sand silt mix, backfill m soft, very plastic	aterial from borrow	pit TO 8', dark grey cla	y, SM	м		
DP	10-14	48	N/A	14	Dark	grey, soft clay, very	plastic	CL	м	· · · · · ·	
DP	14-19	60	N/A	. 19		same as above		CL	м		
DP	19-23	48	N/A	23	greenish, soft clay,	interlayered with po	orly graded fine sand	sc	м		
DP	23-27	48	N/A	27	greenish-lighl	l grey, wel, poorly g	raded fine sand	SP	w		
DP	27-31	48	N/A	31	greenish, wet, poorly gi	raded fine sand grad bottom of sample		at SP	w ·		
DP	31-35	48	N/A	35	greenish, wet, poorly g	graded fine sand, gr	ading into medium san	d SP	w		
DP	35-39	48	N/A	39			edium size to coarse carse sand with gravel	SP	w		
DP	39-43	48	N/A .	43		, interlayered with s mposition of gravel,	ome fine sand, and a , miocene clay.	sc	w	Piezometer set at 41' , screen from 31-41'	ned

Sample Type Codes: **HA** = Hollow-Stem Auger; **DP** = Direct Push;

Boring/Well Number : BA-MW-1A

Borehole Start Date: Site Name: 08/16/08 Borehole Start Time: 1520 Г АМ 🕅 РМ End Date: 08/16/08 1800 🗌 AM 🔽 PM OLIN-McIntosh, Alabama End Time: Environmental Contractor: Geologist's Name: Environmental Technician's Name: MACTEC Engineering and Consulting FK MAYILA Pavement Thickness (inches): Borehole Diameter (inches): Borehole Depth (feet): Drilling Company: Walker-Hill Environmental 3.5" 29 Drilling Method(s): Apparent Borehole DTW (in feet Measured Well DTW (in feet after OVA (list model and check type): Hollow-Stem Auger, Direct Push from soil moisture content): water recharges in well): NA FID Stockpile Spread Backfill C Other Disposition of Drill Cuttings [check method(s)]: 🔽 Drum (describe if other or multiple items are checked): 🔽 Well Borehole Completion (check one): Grout **Bentonite** Backfill Other (describe) Sample Recovery (inches) Moisture Sample Depth Interval (feet) SPT Blows (per six inches) USCS Symbol Sample Type Depth (feet Sample Description (include grain size based on USCS, odors, staining, and other Comments Conten remarks) Light brown, sandy clay 5 HA 0-5 60 N/A SC Ð light brown- reddish, sandy clay 9 SC DP 5-9 48 .N/A D reddish, stiff and dry clay CL DP 9-11 24 N/A 11 D grey stiff silty clay, with orange streaks bottom turns red DP 11-15 48 N/A 15 CL м grey stiff clay grading into clayey silt DP 15-19 48 N/A 19 ML м poorly graded grey fine sand interlayered with clay DP 19-23 N/A 23 SC 48 м poorly graded grey fine sand grading into clay, bottom foot DP N/A sc 23-27 48 27 contained silty clay М grey, moist, soft clay, pieces of decomposed wood at approximately Well set at 29' screened from 19-DP 29 ОН 27-29 N/A М 24 29 ft BLS. 29

Sample Type Codes: HA = Hollow-Stem Auger; DP = Direct Push; Moisture Content Codes: $D \approx Dry; M =$ Moist; W = Wet; S = Saturated Page 1 of 1

Page 1 of 1

Boring/Well Number : BA-MW-1B

Site Nam	ne:				Borehole Start Date:	08/16/08	Borebole Start Time:		<u> </u>	1230	T AM	PM
		-McIntos	h, Alaba	ma	End Date:	08/16/08	End Time:			1500		PM
Environ	nental Co				Geologist's Name:		E	Invironmen	ital Techr	nician's Name	:	
			ng and C	onsulting		FK MAYILA				· · · · · · · · · · · · · · · · · · ·		
-	Company: Walker-H		emontei	Pavemo	ent Thickness (inches):	Borehole Dian	neter (inches): 3.5"			Borehole De	pth (feet): 44'	
	Method(s)			Apparent Boreho	le DTW (in feet	Measured Well DTV		OVA (list m	nodel and	check type):	44 .	
-	Stem Au		ct Push		-	water recharges in	4 ·	•	NA		🗖 Fil	D
Disposit	ion of Dril	l Cuttings	s [check n	nethod(s)]:	🔽 Drum	☐ Spread	Backfill	☐ Stoc	kpile		L Ot	ler
(describe	e if other a	or multipl	e items ar	e checked):						•		
Borchole	e Completi	on (checl	cone):	ম	Well 🗍 Grout	Bentonite	☐ Backfill		Γ΄ Οι	her (describe)		
Sample Type	Light brown, sandy clay							USCS Symbol	Moisture Content	(Comments	<u></u>
НА	0-5	60	N/A	.5	Light brown, sandy clay	,	······································	sc	Ð			
DP	5-9	48	N/A	9	light brown- reddish, sa	sc	D					
DP	9-11	24	N/A	11	reddish, stiff and dry ck	eddish, stiff and dry clay						
DP	11-15	48	N/A	_ 15	grey stiff silly clay, with	orange streaks bot	om turas red	CL	м			
ĐP .	15-19	48	N/A	19	grey stiff clay grading ir	nto clayey silt		ML	м			
DP	19-23	48	N/A	23	poorly graded grey fine	sand interlayered v	ith clay	sc ·	м			
DP	23-27	48 [.]	N/A	27 .	poorly graded grey fine contained silty clay	sand grading into c	lay, bottom foot	sc	м			
DP	27-29	24	N/A	29	grey, moist, soft clay, p 29 ft BLS.	ieces of decompose	ed wood at approximate	он	м			
ÐP	29-31	24	N/A	31	grey, moist, soft clay, p sample, wet	ieces of decompose	ed wood graded in soil	он	w			
DP	31-35	48	N/A	35-	poorly graded, light brov	wn, fine to medium	sand, wet	sw	w			
DP	35-39	48	N/A)/ 39	poorly graded, tan to lig	ht orange, medium	grade sand, wet	SP	w			
DP	39-43	48	· N/A	43	poorly graded, light orai	nge medium grade	sand, wet	SP	w			
DP	43-44	0	N/A		No sample, sample fell from the SS core, light o			GP	w	Well set at	44', screen	ed 34-44'

Sample Type Codes: HA = Hollow-Stem Auger; DP = Direct Push; 5 Cherch Moisture Content Codes: <math>D = Dry; M = Moist; W = Wet; S = Saturated <math>= 2MV

Page 1 of 1

Site Nam	ю:				Borehole Start Date:	08/13/08	Borehole Start Time:			1400 T AM F PM
	OLIN	I-McIntos	h, Alaba	ma	End Date:	08/13/08	End Time:			1815 🗌 ам 🔽 РМ
Environn	ental Con	tractor.			Geologist's Name:			Environment	al Techn	ician's Name:
M/	ACTEC E	ngineeri	ng and C	onsulting		FK MAYILA				
•	Company: Walker-H	lill Enviro	nmental	1	ement Thickness (inches):	Borehole Dian	3.5"			Borehole Depth (feet): 67
Drilling N	lethod(s)			Apparent Bor	shole DTW (in fect	Measured Well DTW	(in feet after	OVA (list m		check type):
Hollow	Stem Au	ger, Dire	ct Push	from soil mo	isture content):	water recharges in	· · · · · · · · · · · · · · · · · · ·		NA	∏ FID
-		•	•	ethod(s)]: e checked):	🗭 Drum	∑ Spre	ad 🚺 Backfil	r <u>F.</u>	Stockpi	le 🔽 Other
Borehole	Completi	on (check	one):	Ţ	Well Grout	E Bentonite	E Backfill		Γ Ot	her (describe)
Sample Type	Sample Depth Interval (feet)	Sample Recovery (inches)	SPT Blows (per slx laches)	Depth (feet)	(include grain size based	Sample Descripti d on USCS, odors, sta		USCS Symbol	Moisture Content	Comments
HA	0-5	60	N/A	5	Light brown, sandy clay	1	····	sc	D	
qQ		48			light brown- reddish, sa	indy clay		sc	D	
0~	5-9	40	N/A	, s					U	
qq	9-11	24	N/A	† †·	reddish, stiff and dry cla i	ay		CL	D	
qQ	11-15	48	N/A	1:	grey stiff silty clay, with	orange streaks botto	im turns red	CL	м	
qQ	15-19	48	N/A	19	grey stiff clay grading ir	nto clayey silt		ML	м	
DP	19-23	48	N/A	23	poorly graded grey fine	sand interlayered wi	th clay	sc	м	
qq	23-27	48	N/A	27	poorly graded grey fine silty clay	sand grading into cl	ay, bottom foot containe	sc sc	м	
qQ	27-29	24	N/A	29	grey, moist, soft clay, p 29 ft BLS.	ieces of decompose	d wood at approximatel	у он	м	
qQ	29-31	24	N/A	31	grey, moist, soft clay, p sample, wet	ieces of decompose	d wood graded in soil	он	w	
qQ	31-35	48	N/A	3	poorly graded, light bro	wn, fine to medium s	and, wet	sw	w	
qQ	35-39	48	N/A		poorty graded, tan to lig	iht orange, medium ç	rade sand, wet	SP	w	
qq	39-43	48	N/A	39	poorly graded, light ora	nge medium grade s	and, wet	SP	w	
DР	43-47	O	N/A	4	No sample, sample fell			GP	w	
	47-51	48	N/A	51	Light tan, wet medium t 47 ' to 47.5'	o coarse sand with g	ravel, gravel only from	GP	w	
	51-55	48	N/A	55	light tan to white mediu	m coarse sand with g	pravel < 5%	GW	w	
	55-59	48	N/A	5 55	wet, well graded grave	l with sand, gravel up	o to 1.4" in diameter	GW	w	
	59-63	48	N/A		wet, well graded gravel	with sand, pea grave	el, large pieces up to 1.	2 GW	w	
	63-67	48	N/A	9 10	soft grey clay, with som	soft grey clay, with some organic matter				well installed at 64', screened 54 64'

Sample Type Codes: HA = Hollow-Stem Auger; DP = Direct Push;

Boring/Well Number : BA-MW-1C

Boring/Well Number : BA-MW-2B

Site Nam	ie:				Borehole Start Date:	07/31/08	Borehole Start Time:			09:45	AM	Грм	٦
	OLIN	-Mcintos	h, Alaba	ma	End Date:	07/31/08	End Time:			13:00	Г дм	🔽 РМ	
Environt	nental Cor	itractor:			Geologist's Name:		•	Environmen	tal Techn	ician's Name:			
MA	ACTEC E	ngineerii	ng and C	onsulting		FK MAYILA	· · · ·			Jeff Moore			1
Drilling	Company:			Paveme	ent Thickness (inches):	Borehole Diar	neter (inches):			Borehole Dept	h (feet):		
١	Walker-H	ill Enviro	nmental				3.5"				24.3'		
Drilling I	Method(s)	:		Apparent Boreho	le DTW (in feet	Measured Well DTV	V (in feet after	OVA (list m	odel and	check type):			٦
Hollow-	Stem Au	ger, Dire	ct Push	from soil moiste	re content):	water recharges in	well):		NA		Γ FI	D	
Dispositi	ion of Dril	l Cuttings	s [check n	nethod(s)]:	Drum	Spread	Backfill	T Stoc	kpi le		T of	ner .	
(describe	e if other o	r multipl	e items ar	e checked):									
Borchole	Completi	on (checl	(one):	न	Well Grout	☐ Bentonite	☐ Back fill		∏ Oth	ner (describe)			٦
. Sample Type	Sample Depth Interval (feet)	Sample Recovery (inches)	SPT Blows (per six inches)	Depth (feet)		Sample Description (include grain size based on USCS, odors, staining, and other				Co	mments		
e Type	Depth I (feet)	lecovery hes)	3lows inches)	(feet)		remarks)		USCS Symbol	Moisture Content				
HA	0 . 5	60	N/A	5	Berm fill material, Clay, , moist, medium plastici		then brownish grey to t	CL	м				
DP	5-9.5	54	N/A	9.5	Clay, greenish brown, s above	oft, moist, medium	plasticity, soft fne as	CL	м				
DP	9.5-14.5	60	N/A	14.5	Clay, greenish brown, s above	soft, moist, medium	plasticity, soft fne as	CL	м				
DP	14.5- 18.5	48	N/A	18.5	Fat Clay, CH, dark grey, moist to wet, fine 100 % fines			сн	w				
DP	18.5- 22.5	48	N/A			ove to 17', then a layer of organics, black to 17.5' then clar It ,CL, greenish grey, wet 20% sand							
DP	22.5- 24.3	48	N/A			with silt ,CL, greenish grey, wet 20% sand Poorly graded sand, with thin zones of fat clay CH, clay layers thicker toward bottom of sample,			w .	Set well at 24'	screened	from14-24	4'

Sample Type Codes: HA = Hollow-Stem Auger, DP = Direct Push;Moisture Content Codes: D = Dry; M = Moist; W = Wet; S = Saturated Page 1 of

1

Page 1 of

Boring/Well Number : BA-MW-2C

Site Nan	ne:				Borehole Start Date:	07/29/08	Borehole Start Time:			12:22	AM	🕅 РМ
	OLIN	-McIntos	h, Alaba	ma	End Date:	07/30/08	End Time:			16:00	Г АМ	😿 РМ
	nental Cor				Geologist's Name:		E	invironmen	tal Techn	ician's Name	:	
· · · · · ·			ng and C	onsulting	L <u></u>	FK MAYILA		_		Jeff Moore		
-	Company:		_	Pavem	ent Thickness (inches):	Borehole Dian				Borehole De		
	Walker-H		nmental		1. 100111 (3.5				44.7'	
, v	Method(s) -Stem Au		et Duch		ble DTW (in feet	Measured Well DTW water recharges in		VA (list m	NA	check type):	Γ FI	
L						· · · · · · · · · · · · · · · · · · ·	Backfill	Γ Stoc				
l ·			•	tethod(s)]:	🔽 Drum			I Stoc	крие		Γ Oil	ler
[e checked):	The second se							
Borehole	Completi	on (check	: one):		Well Grout	E Bentonite	Backfill		∏: Otl	ier (describe)		
Sample Type	Sample Depth Interval (feet)	Sample Recovery (inches)	SPT Blows (per six inches)	Depth (feet)		Sample Descripti Dased on USCS, odor remarks)	OD s, staining, and other	USCS Symbol	Moisture Content	С	omments	
НА	0-5	60	N/A	5		Berm fill material, Clay, Cl, red brwon to 4' then brownish grey to 5 moist, medium plasticity, soft, fine						
DP	5-9.5	54	N/A	9.5	Clay, greenish brown, a above	soft, moist, medium	plasticity, soft fne as	CL	м			
DP	9.5-14.5	60	N/A	14.5	Clay, greenish brown, s above	soft, moist, medium	plasticity, soft fne as	CL	м			
DP	14.5- 18.5	48	N/A	18.5	Fat Clay, CH, dark gre	y, moist to wet, fine	100 % fines	сн	w			
DP	18.5- 22.5	48	N/A	22.5	as above to 17' , then a with silt ,CL, greenish g		lack to 17.5' then clay	CL	w			
DP	22.5- 26.5	48	N/A	26.5	Poorly graded sand, wit thicker toward bottom o		lay CH, clay layers are	СН	w			·
DP	26.5- 30.5	48	· N/A	30.5	As above, alternating to with sand, saturated.	poorly graded sark	I (SP) and Fat Clay, CH	SP,CH	S			
DP	30.5- 34.5	48	N/A	34.5	Poorly graded sand with of Fat Clay, mixed with		iraled lines, thin layers	SP,CH	w			
DР	34.5- 38.5	0	N/A	38.5	No Recovery		N/A	N/A				
DP	38.5- 42.5	0	N/A	42.5	No Recovery			N/A	N/A			
DP	42.5- 44.7	0	N/A	44.7	No Recovery	No Recovery				well set at	44', screen	ed 34-44'

Sample Type Codes: HA = Hollow-Stem Auger; DP = Direct Push;

Boring/Well Number : BA-MW-3B

Site Nam	ie:					Borehole Start Date:	08/04/08	Borehole Start Time:			07:20		М	Γ	PM
	OLIN	-McIntos	h, Alaba	ma		End Date:	08/04/08	End Time:			09:15		М	Γ^{+}_{-}	РМ
Environ	nental Cor	tractor:				Geologist's Name:			Environmen	tal Techn	ician's Name				
MA	ACTEC E	ngineerir	ng and C	onsulting	g	-	FK MAYILA		•		Jeff Moore	•			· .
Drilling (Company:			1	Paveme	nt Thickness (inches):	Borehole Dian	neter (inches):	**********		Borehole De	pth (fee	t):		
۱ N	Nalker-H	ill Enviro	nmental					3.5"				24.2			
Drilling l	Method(s)	:		Apparent	Borchol	e DTW (in feet	Measured Well DTV	/ (in feet after	OVA (list m	odel and	check type):				
Hollow-	Stem Au	ger, Dire	ct Push	from soi	il moistu	re content):	water recharges in	well):		NA		<u>_ 17</u>	FIL	2	
Dispositi	on of Dril	l Cuttings	[check n	nethod(s)]:	Drum	☐ Spread	Backfill	T Stoc	kpile		Γ.	Oth	er	
(describe	e if other o	r multiple	e items ar	e checked	d):	,									
(describe if other or multiple items are checked): Borehole Completion (check one): 🔽 Well T Grout 🖉 Bentonite T Backfill								C Oth	ier (describe)						
Sample Type	Sample Depth Interval (feet)	Sample Recovery (inches)	SPT Blows (per six inches)	Depth (feet)		S (include grain size b	Sample Descripti Dased on USCS, odor remarks)	USCS Symbol	Moisture Content	(Comme	ents			
НА	0-5	60	N/A		5	Red Brown Berm Fill, C	lay, high plasticity		Сң	м					
DP	5-9.5	54	N/A		9.5	Red Brown Berm Fill, C	ilay, high plasticity,	moist fine fat clay, (Ch	^{1)′} Сн	M					
DP	9.5-14.5	60	N/A		14.5	Same as above, dark g	rey		сн	м					
DP	14.5-15	48	N/A		15	Fat Clay, CH, dark grey	СН	w							
DP	15-19	48	N/A		19	Same as Above, soil content exhibiting slight mica content			сн	w					
DP	19-23	48	N/A		23	Fat Clay with sand, CH, dark geenish grey, wet, fine, 25% fine H 3 sand, slight mica content									
DP	23-24.2	0	N/A		24.2		No Recovery		N/A	N/A	well installe	ed 24', so	reer	ned 1	4-24

Sample Type Codes: HA = Hollow-Stem Auger; DP = Direct Push;Moisture Content Codes: D = Dry; M = Moist; W = Wet; S = Saturated Page 1 of 1

Page 1 of ____1

Boring/Well Number : BA-MW-3C

Site Na	me:				Borehole Start Date:	08/01/08	Borehole Start Time:			07:30	AM	r-	РМ
	OLIN	-McIntos	sh, Alaba	ma	End Date:	08/01/08	End Time:			12:15	Γ AM	P	РМ
	mental Co		ng and C	onsulting	Geologist's Name:	FK MAYILA	•	Environmer	ntal Techr	ician's Name Jeff Moore			
	Company: Walker-H		onmental		nent Thickness (inches):	Borehole Dian	neter (inches): 3.5"	··· ·		Borehole De	pth (feet): 43'		
÷	Method(s)		ect Push		ole DTW (in fect ture content):	Measured Well DTW water recharges in	·	OVA (list n	nodel and NA	check type):	Г г	1D	
-		-	-	nethod(s)]:	I⊽ Drum	☐ Spread	∫ Backfill	T Stoc	kpile		Γo	ther	
	e Completi			e checked):	Well F Grout	Bentonite	Backfill		Γ ot	her (describe)			
Sample Type	Sample Type Sample Type Red Brown Berm Fill, Clay, high plasticity							USCS Symbol	Maisture Content		Comment	s	
HA	0-5	60	N/A	5	Red Brown Berm Fill, C	ed Brown Berm Fill, Clay, high plaslicity							
DP	5-9.5	54	N/A	9.5	Red Brown Berm Fill, C	ed Brown Berm Fill, Clay, high plasticity, moist fine fat clay, ((
DP	9.5-14.5	60	N/A	14.5	Same as above, dark g	rey		сн	м				
DP	14.5-15	48	N/A	15	Fat Clay, CH, dark grey	, wet, fine, 5% fine s	sand, 95% fines	СН	w				
DP	15-19	48 ·	N/A	19	Same as Above, soil co	ntent exhibiting slig	ht mica content	СН	w				
DP	19-23	48	N/A	23	Fat Clay with sand, CH, sand, slight mica conter		, wet, fine, 25% fine	сн	w				
DP	23-27	0	N/A	27	No Recovery			N/A	N/A				
DP	27-31	48	N/A	31	Poortly graded sand, SF slight mica content	² , dark greenish gre	∋y, wet, fine soil with	SP	w				
DP	31-35	48	N/A	35	Same as Above, SP			SP	w				
DP	35-39	48	N/A	39	Same as Above, with in	creased mica conte	nt	SP	w				
DP	39-43	48	N/A	43	poortly graded sand (SF fines, with a 2" layer of c			SP,CL	w	Well set at 42 42'	?', screene	d from	n 32

Sample Type Codes: HA = Hollow-Stem Auger; DP = Direct Push; Moisture Content Codes: D = Dry; M = Moist; W = Wet; S = Saturated

Page 1 of _____

Boring/Well Number : BA-MW-4B

Site Nan	ne:			· .	Borehole Start Date:	08/05/08	Borehole Start Time:			7:30	7	AM	Г	РМ
	OLIN	-McIntos	sh, Alaba	ma	End Date:	08/05/08	End Time:			11:30	1	AM	Γ	PM
Environ	nental Co	ntractor:			Geologist's Name:		1	Environmer	ntal Techr	nician's Name	:			
M/	ACTEC E	ingineeri	ng and C	onsulting		FK MAYILA				J MOORE				
, v	Company			Pavem	ent Thickness (inches):	Borehole Dian	· /			Borehole De	• •	'		
	Walker-H		nmental	<u>_</u>			3.5"	<u></u>		<u> </u>	26.4	۲ ــــــــــــــــــــــــــــــــــــ		
	Method(s)			Apparent Boreho	,	Measured Well DTV		OVA (list n		check type):				
Hollow	-Stem Au	ger, Dire	ect Push	from soil moist	ure content):	water recharges in	·		NA			_FII		
Disposit	ion of Dri	l Cutting	s [check n	nethod(s)]:	🔽 Drum	Spread	Backfill	L. Stoc	kpile		Г	Oth)er	
(describe	e if other o	or multipl	e items ai	e checked):					•					•
										her (describe)				
Sample Type	Sample Depth Interval (feet)	Sample Recovery (inches)	SPT Blows (per six inches)	Depth (feet)		Sample Descripti based on USCS, odox remarks)	USCS Symbol	Moisture Content		Comm	ents	*****		
НА	0-5	60	N/A	5	Fill material from borrow	w pit		SM	.M					
DP	5-9.5	54	N/A	9.5	Fill material encountere	ed natural ground at	9.5'	SM	м					
DP	9.5-14.5	60	N/A	14.5	Dark grey- greenish gre	ey, clay with fine sar	nd ·	sc	м					
DP	14.5- 15.5	0	N/A	15.5	No Recovery	No Recovery								
DP	15.5- 19.5	48	N/A	19.5	Dark grey- greenish gre	ey, clay with fine sar	nd	sc	м					
DP	19.5- 23.5	48	N/A	23.5	light grey.poorly graded some organic material	fines to medium si	ze soil, wet, sand with	SM	w					
DP	23.5- 26.4	35	N/A	26.4	light grey- brownish we organic material and <5		, medium size with sor	ne SM	w	Well set at 2 26	6', scre	ened	fror	n 16-

Sample Type Codes: HA = Hollow-Stem Auger; DP = Direct Push;Moisture Content Codes: D = Dry; M = Moist; W = Wet; S = Saturated

Page 1 of

1

Boring/Well Number : BA-MW-4C

Site Name: Borehole Start Date: Borehole Start Time: 🔽 РМ 1220 AM 08/04/08 AM PM OLIN-McIntosh, Alabama End Date: 08/04/08 End Time: 1530 Environmental Contractor: Geologist's Name: Environmental Technician's Name: MACTEC Engineering and Consulting FK MAYILA **J MOORE** Drilling Company: Borehole Diameter (inches): Borehole Depth (feet): Pavement Thickness (inches): Walker-Hill Environmental 3.5" 43.5 Apparent Borehole DTW (in feet Measured Well DTW (in feet after OVA (list model and check type): Drilling Method(s): Hollow-Stem Auger, Direct Push from soil moisture content): NA FID water recharges in well): Disposition of Drill Cuttings [check method(s)]: Backfill ☐ Stockpile F Other Spread Drum (describe if other or multiple items are checked): Backfill Well ☐ Grout C Other (describe) Borehole Completion (check one): Bentonite Sample Recovery (inches) Molstuire Conten SPT Blows (per six inches) Sample Depth Interval (feet) USCS Symbol Sample Type Depth (feet Sample Description (include grain size based on USCS, odors, staining, and other Comments remarks) Fill material from borrow pit 0-5 60 N/A м HA 5 SM Fill material encountered natural ground at 9.5 DP 5-9.5 54 N/A 9.5 SM м Dark grey- greenish grey, clay with fine sand DP 9.5-14.5 60 N/A 14.5 SC м No Recovery 14.5-DP 0 N/A N/A N/A 15.5 15.5 Dark grey- greenish grey, clay with fine sand 15.5-DP 48 N/A 19.5 SC м 19.5 light grey, poorly graded fines to medium size soil, wet, sand with 19.5-DP 48 N/A 23.5 some organic material SM w 23.5 light grey- brownish wet poorly gradedsand, medium size with some 23.5-DP 48 N/A 27.5 organic material and <5% gravel ,(tan) SM w 27 5 light tan, wet, medium- coarse sand, <5% gravel no fines 27.5-DP 48 N/A 31.5 SP w 31.5 light tan wet, poorly graded coarse sand <15% gravel, no fines, a 31.5-DP 48 N/A SP 35.5 piece of clay at bottom of sample w 35.5 No Recovery 35 5-DP 36 N/A 38.5 N/A N/A 38.5 Light tan, wet, poorly graded coarse sand, .5 foot of gravel layer, at 38.5-DP N/A SP w 24 40.5 40-40.5 40.5 light grey- tan, clay, hard clay, very stiff 40.5well set at 40', screened 30-40' DP 36 N/A 43.5 CH w 43.5

Sample Type Codes: HA = Hollow-Stem Auger, DP = Direct Push; Moisture Content Codes: D = Dry; M = Moist; W = Wet; S = Saturated

Boring/Well Number : BA-MW-5B

Site Nam	ne:				Borehole Start Date:		08/07/08	Borehole Start Time:			1420	Г ам	РМ 🗹
	OLIN	-McIntos	h, Alabaı	ma	End Date:		08/07/08	End Time:			1500	Г АМ	🔽 РМ
Environn	nental Co	tractor:			Geologist's Name:				Environmen	tal Techn	ician's Name	e:	
MA	ACTEC E	ngineerii	ng and C	onsulting		F	K MAYILA				J MOORE		
Drilling (Company:			Pave	ment Thickness (inches):	:	Borehole Dian	eter (inches):			Borehole De	epth (feet):	
۱	Walker-H	ill Enviro	nmental					3.5"				25	
Drilling I	Method(s)	:		Apparent Bor	hole DTW (in feet	Mca	asured Well DTW	(in feet after	OVA (list m	odel and	check type):		
Hollow-	Stem Au	ger, Dire	ct Push	from soil mo	isture content):	w	ater recharges in	well):		NA		∏: FI	D
Dispositi	on of Dril	l Cuttings	s [check m	nethod(s)]:	Drum	Γ	Spread	☐ Backfill	☐ Stoc	kpile		T. Ot	her
(describe	e if other o	or multipl	e items ar	e checked):									
Borehole	ole Completion (check one):						Back fill		T Oth	her (describe)			
											-		
Sample Type	Sample Depth Interval (feet)	Sample Recovery (inches)	SPT Blows (per six inches)	Depth (feet)		Sample Description e grain size based on USCS, odors, staining, and other remarks)				Moisture Content	(Comments	3
НА	0-5	60	N/A	5	Fill material from borro	ow pit	:		SM	м			
DP	5-10	60	N/A	10	Fill material from borro	ow pit			ѕм	м			
DP	10-14.5	54	N/A	14	dark greenish grey clar 5	y cutt	lings		CL	м			
DP	14.5-19	. 54	N/A	19	Dark grey- greenish ck and fine sand, poorly g			ed with zones of clay	· sc	м			
DP	19-23	48	N/A	23	light grey -tan, wet, m sand	ediun	n to coarse san	l no fines, poorly grad	ed SP	w			
DP	23-25	48	N/A	25		nna ht tan, wet, medium poorly graded sand				w	Well set at 2	4', screener	14-24'

Sample Type Codes: HA = Hollow-Stem Auger; DP = Direct Push;

Moisture Content Codes: D = Dry; M = Moist; W = Wet; S = Saturated

Page 1 of 1

Page 1 of 1

Boring/Well Number : BA-MW-5C

Site Nam	ie:				Borehole Start Date:	08/05/08	Borehole Start Time:			1430 ГАМ 🕅 РМ
1	OLIN	-McIntos	h, Alaba	ma	End Date:	08/06/08	End Time:			1015 🕅 AM 🗍 PM
Environe	nental Co	atractor:		······································	Geologist's Name:			Environmer	ntal Techr	nician's Name:
MA	CTEC E	ngineeri	ng and C	onsulting		FK MAYILA				J MOORE
Drilling	Company:			Pavem	ent Thickness (inches):	Borehole Diar	neter (inches):			Borehole Depth (feet):
	Walker-H		nmental	l			3.5"			37.5
i v	Method(s)			Apparent Borelio		Measured Well DTV	•	OVA (list n		check type):
Hollow	Stem Au	ger, Dire	ct Push	from soil moist	are content):	water recharges in	well):	····	NA	<u> </u>
Dispositi	on of Dril	l Cuttings	s [check n	nethod(s)]:	🔽 Drum	🔽 Spread	Backfill	∏ Stoc	kpile	C Other
(deșcribe	if other o	or multipl	e items ar	e checked):						
Borehole	Completi	ion (check	(one):	ন	Well [Grout		Г Backfill		∫ Oti	her (describe)
Sample Type	Sample Depth Interval (feet)	Sample Recovery (inches)	SPT Blows (per six inches)	Depth (feet)		Sample Descripti based on USCS, odol remarks)	ON rs, staining, and other	USCS Symbol	Moisture Content	Comments
НА	.0-5	60	N/A	5	Fill material from borrow	w pit		SM	м	
DP	5-10	60	N/A	10	Fill material from borrow	w pit		SM	м	
DP	10-14.5	54	N/A	14.5	dark greenish grey clay	/ cuttings		CL	м	
DP :	14.5-19	54	N/A	19	Dark grey- greenish cla and fine sand, poorly g		ed with zones of clay	SC	м	
DP	19-23	48	N/A	23	light grey -tan, wet, me sand	edium to coarse san	d no fines, poorly grad	ed SP	w	
DP	23-27	48	N/A	27	light tan, wet, medium j	poorly graded sand	· .	SP	w	
DP	27-31	48	N/A	31	light tan wet medium p	oorly graded sand		SP	w	
DP	31-35	48	N/A	35	31-32.5' tan medium co poorly graded fine sand		sand 32.5'-35' white,	SP	w	
DP	35-38	36	N/A	38	white poorly graded ver	ry fine sand, compa	ct, hard to penetrate	SP	w	WELL SET AT 37', SCREENED FROM 27-37'
DP -	38-41	36	N/A	41	white poorly graded ver bottom of sample	ry fine sand interlay	ed with some clay at	sc	w	

Sample Type Codes: HA = Hollow-Stem Auger: DP = Direct Push;

Page 1 of 1

- Boring/Well Number : BA-MW-6B

	Name: OLIN-McIntosh, Alabama				Borehole Start Date:	08/14/08	Borehole Start Time:			1130	MA 🕅	j .	РМ
	OLIN	-McIntos	h, Alaba	ma	End Date:	08/14/08	End Time:			1400	Г ам	য	РМ
Environme	ental Co	ntractor:			Geologist's Name:		.	Environmer	ntal Techi	ician's Name	;		
MAC	CTEC E	ngineerir	ng and C	onsulting		FK MAYILA				J MOORE			
Drilling Co				Pavem	ent Thickness (inches):	Borehole Diar	neter (inches):			Borehole De	pth (feet):		
		lill Enviro	nmental				3.5"				25		
Drilling M				Apparent Boreho	•	Measured Well DTV	,	OVA (list n		check type):			
Hollow-S	Stem Au	ger, Dire	ct Push	from soil moist	tre content):	water recharges in	well):		NA		Fi Fi	D	
Disposition	n of Dril	Cuttings	s [check n	nethod(s)]:	🔽 Drum	Spread	Backfill	C Stoc	kpile		E Ot	her	
(describe i	if other c	or multiple	e items ar	e checked):									
Borehole (Completi	on (check	: one):	ম	Well Grout	F Bentonite	Backfill		T Ot	her (describe)			
Sa	. Saл Int	Sample Recovery (inches)	SPT Blows (per six inches)	De		Sample Description							
Sample Type	Sample Depth Interval (feet)	ple Reca (inches)	SPT Blows er six inche	Depth (feet)		Sample Description (include grain size based on USCS, odors, staining, and other				c c	omments	:	
ŤŢ	Del L (Le	leco les)	3low incl	(fee	(include Brain and t	remarks)	s, staining, and other	USCS Symbol	C C				
pe	ĉ Ť	very	les)	5				bol	Moisture Content				
					Fill material from borrow	w pit	-	-		<u> </u>			
НА	0-5	60	N/A	5				SM	м				
				_	Fill material from borrov	w pit							
	5-8	60	N/A	8				SM	м	1			
DP	8-10	54	N/A	10	Dark brown moist clay,	fight plasticity		CL	м				
	8-10	- 54	N/A	1 0					M				ļ
DP	10-14	54	N/A	14	dark brown moist clay, l	high plasticity		CL	м				
	10-14	54	1WA										
DP	14-19	48	N/A	19	same as above			CL	м				
	14 17	10					•						
DP	19-23	0	N/A	23	No recovery			N/A	- N/A				
		Ť								· ·			
DP	23-25	24	N/A	25	dark grey to greenish m graded fine sand	nterlayed with poorly	SP	w	Weli set at 25 25'	', screener	1 from	ı 15-	

Sample Type Codes: HA = Hollow-Stem Auger; DP = Direct Push;Moisture Content Codes: D = Dry; M = Moist; W = Wet; S = Saturated

Page 1 of ____1

Boring/Well Number : BA-MW-6C

Site Nan	ıe:				Borehole Start Date:	08/14/08	Borehole Start Time:			0805 🔽 AM 🔽 PM
	OLIN	-McIntos	h, Alaba	ma	End Date:	08/14/08	End Time:			1045 🕅 ам Г Рм
	nental Co ACTEC E		ng and C	onsulting	Geologist's Name:	FK MAYILA		Environmen	atal Techr	nician's Name: J MOORE
-	Company: Walker-H		onmenial		ent Thickness (inches):	Borehole Diar	neter (inches): 3.5"			Borehole Depth (feet): 51'
-	Method(s) -Stem Au		ect Push	Apparent Boreho from soil moist		Measured Well DTV water recharges in		OVA (list m	odel and NA	check type):
		-	-	nethod(s)]:	Drum	Spread	☐ Backfill	☐ Stoc	kpile	☐ Other
	Complet				Well G rout	Bentonite	☐ Backfill	····	Γ. Οι	ber (describe)
Sample Type	Ty S				1	ample Descripti based on USCS, odo remarks)	o n rs, staining, and other	USCS Symbol	Moisture Content	Comments
НА	0-5	60	N/A	. 5	Fill material from borrov	v pit		SM	м.	
DP	⊶5-8	60	N/A	. 8	Fill material from borrov		SM	M		
DP	8-10	54	N/A	10	Dark brown moist clay,		CL	м		
DP	10-14	54	N/A	14	dark brown moist clay, I	nigh plasticity		CL	м	
DP ·	14-19	48	N/A	19	same as above			a	м	
DP	19-23	0	N/A	23	No recovery			N/A	N/A	
DP	23-27	48	· N/A	27	dark grey to greenish m graded fine sand	edium sand, wet, ir	nterlayed with poorly	SP	w	
DP	27-31	48	N/A	31	grey poorly graded med	ium- coarse sand,	wet	SP	w	
DP	31-35	48	N/A	35	light brown, greyish poo	rly graded medium	coarse sand, wet	SP	w	
DP	35-39	48	N/A	39	same as above			SP	w	
DP	39-43	48	N/A	43	well gråded gravel with sand	<5% sand, 42-43' g	rey poorly graded fine	GW	W	
DP	43-47	48	N/A	47	Poorly graded white fine		SP	w	Well set at 44' screened from 34 44'	
DP	47-51	48	N/A	51	Poorly graded white fine	sand		SP	w.	

Sample Type Codes: HA = Hollow-Stem Auger; DP = Direct Push;

MACTEC

BORING LOG

Page 1 of ____1

Boring/Well Number : BA-MW-7B

Site Nam	Name: OLIN-McIntosh, Alabama				Borehole Start Date:	08/15/08	Borchole Start Time:	:		1350 АМ 🔽 РМ
	OLIN	-McIntos	sh, Alaba	ma	End Date:	08/15/08	End Time:			1510 Г АМ 🔽 РМ
	nental Co				Geologist's Name:			Environmer	stal Techr	nician's Name:
M/	ACTEC E	ngineeri	ng and C	onsulting		FK MAYILA				J MOORE
Drilling				Pavem	ent Thickness (inches):	Borehole Dian	· · ·			Borehole Depth (feet):
<u> </u>	Walker-H		mmental				3.5"			25'
-	Method(s)			Apparent Boreho		Measured Well DTW	•	OVA (list n		check type):
	Stem Au	.		L.,	ure content):	water recharges in			NA	☐ FID
Dispositi	on of Dri	II Cutting	s [check n	nethod(s)]:	🔽 Drum	Spread	Backfill	T Stoc	kpile	C Other
(describe	e if other o	or multipl	le items ai	e checked):						
Borehole	rebole Completion (check one):				Well F Grout	Entonite	☐ Backfill		l Ou	her (describe)
Sample Type	Sample Depth Interval (fect)	Sample Recovery (inches)	SPT Blows (per six inches)	Depth (feet)		Sample Description e grain size based on USCS, odors, staining, and other remarks)			Moisture Content	Comments
НА	0-5	60	N/A	5	Fill material from borrow	w pit		SM	м	
DP	5 - 9 -	48	N/A	9	Dark grey- greenish, m	oist, soft clay, highly	y plastic	SM	м	
DP	9-11	24	N/A	11	greenish, moist, soft cla	ay, highly plastic		CL	м	
DP	11-15	48	N/A	15	greenish, wet, poorly graded, fine sand interlayed with 6" later o clay			CL	w	
DP	15-19	48	N/A	19 '	grey, wet, poorly graded medium sand			SP	w	
DP	19-23	48	.N/A	Ż3	same as above			SP	w	
DP	23-25	24	N/A	25	light grey ,wet, poorly g	ł	SP	w	Well installed at 25', screened 15- 25'	

Sample Type Codes: HA = Hollow-Stem Auger; DP = Direct Push;

Page 1 of 1

Boring/Well Number : BA-MW-7C

Site Nan	1e:			·····	Borehole Start Date:	08/15/08	Borehole Start Time	:		0750	M AM	Г РМ
	OLIN	-McIntos	sh, Alaba	ma	End Date:	08/15/08	End Time:			1055	🕅 AM	Г РМ
Environ	nental Co	ntractor:			Geologist's Name:		.	Environmen	tal Tech	nician's Nam	e:	
M/	ACTEC E	ngineeri	ng and C	Consulting		FK MAYILA				J MOORE		
-	Company				ent Thickness (inches):	Borebole Dian				Borehole D		
	Walker-H		nmental				3.5*	A		<u> </u>	55	
~	Method(s) -Stern Au		of Duch	Apparent Boreho from soil moist		Measured Well DTV water recharges in		OVA (list m	NA	check type):	ΓF	ID.
				I	···· ···		Backfill	∏ Stoc				
-		-	-	nethod(s)]:	🔽 Drum	Spread	i Dackim	1 SIUC	крпе		1 0	uler
				re checked):						· · · · · · · · ·		<u></u>
Borchole	Completi	ion (check	k one):	14	Well T. Grout	E Bentonite	Backfill		l Ot	her (describe)	,	
Sample Type					2	Sample Descripti based on USCS, odor remarks)	O n %, staining, and other	USCS Symbol	Molsture Content		Comment	s
HA	0-5	60	N/A	5	Fill material from borrow	SM	м					
DP	5-9	48	N/A	9	Dark grey- greenish, moist, soft clay, highly plastic				м			
DP	9-11	24	N/A	11	greenish, moist, soft cla	CL	м					
DP	11-15	48	N/A	15	greenish, we t, poorty gr clay	aded, fine sand inte	erlayed with 6* later of	CL	w			
DP	15-19	48	N/A	19	grey, wel, poorly grade	d medium sand		SP	w			
DP	19-23	48	N/A	23	same as above			SP	w			
DP	23-27	48	N/A	27	light grey ,wet, poorly g	raded medium sand	I	SP	w			
DP	27-31	48	N/A	31	light tan- grey mix, wet,	poorly graded med	ium sand	SP	w			
DP	31-35	48	N/A	35	light tan, wet, poorly gra	aded medium sand		SP	, W			
DP	35-39	48	N/A	39	light grey- tan, wet, poo fine gravel content (<5%		n coarse sand mix to	SP	w			
DP	39-43	48	N/A	43	light grey- tan, wet, poorly graded medium- coarse sand with som gravel (<5%)				w			
DP	43-47	48	N/A	47	dark grey, coarse sand, poorly graded with some gravel (>15%)				w	Well installe	d at 45', sc 35'-45'	reened fron
DP	47-51	48	N/A	51 ·	poorly graded , fine white sand				w			
DP	51-55	48	N/A	55	same as above			SM	w			

ple Type Codes HA = Hollow-Stem Auger, DP = Direct Push;

MACTEC

BORING LOG

Page 1 of 1

Boring/Well Number : BA-MW-8B

Site Nam	ie:					Borehole Start Date:	08/08/08	Borehole Start Time:	****		1030	M	АМ	Г	РМ
	OLIN	-McIntos	h, Alaba	ma		End Date:	08/08/08	End Time:			1100	N	AM	Γ	РМ
Environn	nental Co	ntractor:			-	Geologist's Name:		1	Environmen	tal Techn	ician's Name	2:			
[м∕	ACTEC E	ngineerii	ng and C	onsulting			FK MAYILA				J MOORE				
Drilling	Company			Pa	aveme	nt Thickness (inches):	Borehole Dian	neter (inches):	• •		Borehole De	pth (fe	et):		
١	Valker-H	lill Envirc	nmental					3.5"				24			
Drilling l	Method(s)):		Apparent B	Borehol	e DTW (in feet	Measured Well DTV	V (in feet after	OVA (list m	odel and	check type):				
Hollow	Stem Au	ger, Dire	ct Push	from soil r	moistu	re content):	water recharges in	well):		NA		Г	FI	D	
Dispositi	on of Dri	ll Cutting:	s [check n	nethod(s)]:		Drum	Spread	Backfill	T Stoc	kpile		Г	Oth	iet .	
(describe	e if other o	or multipl	e items ar	e checked)):										
Borehole	Complet	ion (checl	k one):		ম	Well [Grout	F Bentonite	☐ Backfill		Γ Oth	ner (describe)				
Sample Type	Sample Depth Interval (feet)	Sample I (inc	SPT Blows (per six inche	Depth (feet)		S. (include grain size b	ample Descripti	USCS :	Moisture		Comm	onte			
e Type	e Depth al (feet)	Sample Recovery (inches)	SPT Blows (per six Inches)	(feet)		(Include grain size d	USCS Symbol	• Content			ciits				
НА	0-5	60	N/A		5	Fill material to 4', clay fr	om 4-5'		SM, CL	м					
DP	5-9	48	N/A		9	brown soft clay soil mate	erial		CL	м					
DP	9-12	[.] 24	N/A		12	same as above		CL	м						
DP	12-16	48	N/A			brown soft clay with inte greyish green clayey sa	, color changed to dark	CL	M						
DP	16-20	48	N/A		20	dark grey-greenish, wet		CL	w						
DP	20-24	48	N/A		24	grey-tan medium sand-	coarse sand <10%	fines,	SP	w	Well set at 2 24'	4', scre	ened	from	12-

Sample Type Codes: HA = Hollow-Stem Auger; DP = Direct Push; Moisture Content Codes: D = Dry; M = Moist; W = Wet; S = Saturated

Page 1 of 1

Boring/Well Number : BA-MW-8C

Site Nar	ne:				Borehole Start Date:	08/06/08	Borehole Start Time:			1350 AM PM
1	OLIN	-Mcintos	ih, Alaba	ma	End Date:	08/07/08	End Time:			0840 F AM [PM
	nental Co				Geologist's Name:			Environmen	tal Techr	nician's Name:
			ng and C	onsulting		FK MAYILA				J MOORE
-	Company				ent Thickness (inches):	Borchole Dian	. ,			Borehole Depth (feet):
	Method(s	lill Enviro	nmental	Apparent Boreho	la D'FBI (in feat	Measured Well DTW	3.5"	OVA diet m	a dal and	check type):
· ·			ct Push	from soil moist		water recharges in		OVA (list li	NA	FID
				nethod(s)]:		Spread	Backfill	J. Stoc		□ F [™] Other
1		•	-	re checked):	Drum	i spreau	I DACKIIL .	1 510C	крие	i Outer
—		ion (checl			Well T. Grout	Entonite	Backfill		Г Он	her (describe)
Sample Type						Sample Description based on USCS, odor remarks)	O n 5, staining, and other	USCS Symbol	Moisture Content	Comments
НА	0-5	60	N/A	5	Fill material to 4', clay fi	rom 4-5'		SM, CL	М	
DP	5-9	48	. N/A	9	brown soft clay soil mat	erial		CL ·	м	
DP	9-12	24	N/A	12	same as above			CL	м	
	5-12			1 12			• •		141	
· DP	12-16	48	N/A	16	brown soft clay with inte greyish green clayey sa		color changed to dark	CL	м	
DP	16-20	48	N/A	20	dark grey-greenish, wet	clayey sand		CL	w	
DP	20-24	.48	N/A .	. 24	grey-tan medium sand-	coarse sand <10%	fines,	SP	w	
· DP	24-28	48	N/A	28	grey, wet, medium sand	i - coarse sand		SP	w	
DP	28-32	48	N/A	32	grey medium- coarse sa	and, <10% fines, we	t	SP	w	
					light grey medium- coar	se sand, <10% fine	s, some gravel at the			
DP	32-36	48	N/A	36	bottom of the sample light grey -tan medium-i	correspond with cr	imp gravel at 37.5' to	SP	W	
DP	36-40	48	N/A	40	38', <5% gravel			SP	w	
DP	40-44	48 ·	N/A	44	silty gravel with sand, p	oorly graded, wet		GP	w	
DP	44-48	48 ⁻	N/A	48	well graded gravel with	<15% sand,		GW	w	Well set at 44', screened from 34- 44'
DP	48-52	48	N/A	52	poorly graded gravel wit some clay- greenish col		, interlayered with	GP	w	
DP	52-56	48	N/A	56	white poorly graded fine	sand		SP	w	
ÐP	56-60	48.	N/A	60	same as above, dense			SP	w	
DP	60-64	48	N/A	64	same as above			ŞP	w	

Revised Groundwater Investigation Report Operable Unit 2 MACTEC Engineering and Consulting, Inc., Project 6107-10-0036

APPENDIX B

CORE LOGS

	LIN	McIntosh, Alabama								 			
ocation ID		SDCR-1	Date: 6/3/20	009	Start Tim Finish Ti				10:40 11:00	<u></u>	AM AM	0	PM PM
eld Personr	nel:	F. Mayila/R. Hicks/A. Carringer	Drillers:	Pro-Diving Crew						 			
ore Tube		3-in	Core Tube	10.0 ft.	Recovere	de	5.0 ft						
iameter:	refus	al at approximately 7.0 ft.	Length:	1	Core:					 			
										 		. <u></u> .	
I Sal	BE	Sample Collection Time	,						US	~			
nple terv	0 W C	Tin C			Sample Descrip				CSS		omments		
Sample Depth Interval (in)	Blow Counts	ollec	-	(gra	in size, color, and of	her re	marks)		USCS Symbol				
~ -	<u> </u>	tion							2				
- 14"			Dark grey Cl	LAY					CL				
4 - 28"			Dark grey Cl	LAY mixed with sor	me sand at approxi	matel	y 2 ft.		CL				
ſ			Dark grey Cl	LAY with some fine	sand				CL	 			
8 · 42"			Dark grey Cl						CL				
2 - 56"							<u> </u>	 					
6 - 70"			Dark grey to	black CLAY					ОН	 			
0 - 84"	···		Dark grey Cl	LAY mixed with sor	me fine sand.				CL				
								(
				<u> </u>		-				 			<u> </u>
								·····					
						-							
		-								 			
					、 								
		t t	· · · ·	· · · · · · · · · · · · · · · · · · ·					t	 			

Sample Type, W = Water: S = Soil

		McIntosh, Alabama						10.45		
Location 1D		SDCR-2	Date: 9/24/2	2009	Start Tir Finish T			10:15 11:00	⊠ AM ⊡ 12 AM ⊡	PM PM
ield Personi	nel:	F. Maylia/E. Guillen	Drillers:	Kevin Sondag/Je	ff Clemens-Aqua S	Survey	(ASI)			
Core Tube Diameter:		4-in	Core Tube Length:	11.5 ft	Recover Core:	red	.5 ft	· · _ · _ ·		
		<u> </u>			I	ł-				
		·······			<u> </u>					
	_	S ar								
Sample Depth Interval (in)	Blow Counts	Sample Collectior Time			Sample Descriptio ze, color, and other		ks)	USCS Symbol	Comments .	
≻10"			very soft, dar	k grey clayey silt				CL		
0-20"			very soft, ligh	t brown silty CLA	, relic shells of co	rbicula		CL		
:0-30"			soft and firm,	dark grey-greenis	h. CLAY, corbicula	a shell		CL		
0-40"			"same"					CL		
10-50"			"same" with s	some wood chips/o	debris			он		
60-60"			firm, Dark gr	ey, CLAY, color gr	ades into greenish	۱		CL		
60-70"			firm, dark gre	ey-greenish CLAY				CL		
'0-80" 			firm, dark gre	ey CLAY				CL		
30-90"			firm, dark gre	ey CLAY			·	Cl.		
90-100"			firm, dark gre	ey CLAY, interlaye	red w/ wood chips			он		
100-110"			Firm, dark gr	ey CLAY				CL		
10-114"			Firm, dary gr	ey CLAY				CL		
				·····						
							····	_		
					···					
				<u></u>						

sample Type: W = Water: S = Soil

Site Name: O	LIN-	McIntosh, Alabama						
ocation ID		SDCR-3	Date: 9/27/2	2009	Start Time: Finish Time:		10:25	⊠ AM ⊡ PM ⊠ AM ⊡ PM
ield Personn	iel:	F. Maylia/E. Guillen	Drillers:	Kevin Sondag/Jeff Cleme	ns-Aqua Surv	ey (ASI)		
Core Tube Diameter:		4-in	Core Tube Length:	11 ft	Recovered Core:	9 ft	······································	
				I	·· I	-I	· . · · · · · · · · · · · · · · · · · ·	······································
Sample Depth Interval (in)	Blow Counts	Sample Collection Time		Sample I (grain size, color,	Description and other ren	uarks)	USCS Symbol	Comments
0-11"				,		<u> </u>		
1-22"			very soft, dar	k grey-black, CLAY, plant	matter		CL	· · ·
2-33"			soft, dark gre	ey-black, CLAY, organic/pla	int matter		CL	
33-44"			soft, dark gre	ey-dark greenish, CLAY			CL	
44-55"			soft, dark gre	ey-black, CLAY, plant matte	91		CL	
55-66"			soft, dark gre	ey, CLAY			CL	
56-77 "			soft, dark gre	ey, CLAY			CL	
⁷ -88"			soft, dark gre	ey, CLAY			CL	
88-99"			Firm/soft, da	rk grey, CLAY			CL	
99-108"			Firm, dark gr	ey, CLAYEY SILT			CL	
					·			
						<u> </u>		
						<u>-</u>		

sample Type: W = Water: S = Soil

	OLIN	McIntosh, Alabama								 			
ocation IC)	SDCR-4	Date: 9/26/	2009		t Time: sh Time:			11:30	 2 2	AM AM	0	PM PM
eld Perso		F. Maylia/E. Guillen	Drillers:	Kevin Sondag	Jeff Clemens-Aq		ey (ASI)						
ore Tube Diameter:		4-in	Core Tube Length:	9.5 ft	Rec	overed e:	8.25 ft			 			
		<u> </u>											
		(n		<u> </u>						 			
Sample Depth Interval (in)	Blow Counts	Sample Collection Time		(graiı	Sample Descri in size, color, and o		arks)		USCS Symbol	Co	oniments		
)-11"			very soft, da	irk grey, black, C	CLAY				CL				
11-22"			very soft, da	rk grey-black, C	CLAY				CL				
22-33"			soft, dark to	oft, dark to light grey, CLAY					CL				
3-44"			soft, dark to light grey, CLAY, wood chip						CL				
44-55"			soft, dark gr	soft, dark grey to black, CLAY					CL				
55-66"			soft, dark gr	soft, dark grey to black, CLAY					CL				
66-77 "			soft/firm, da	soft/firm, dark grey, CLAY									
7-88"			soft/firm, da	soft/firm, dark grey, CLAY, plant matter					CL				
88-99"			soft/firm, da	rk grey, CLAY					CL				
										<u> </u>			

Cample Type: W = Water: S = Soil

	_	McIntosh, Alabama				·								
ocation ID		SDCR-5	Date: 9/26/	2009		Start Time: Finish Time:			13:20			AM AM		PM PM
ield Persor	nel:	F. Maylia/E. Guillen	Drillers:	Kevin Sondag	Jeff Clemen	s-Aqua Surv	ey (ASI)							
Fore Tube Diameter:		4-in	Core Tube Length:	9.5 ft		Recovered Core:	8.0 ft		-					
		1 1		1			I		.				· · · ·	
Sample Depth Interval (in)	Blow Counts	Sample Collection Time		(grai	Sample D n size, color, a		arks)		USCS Symbol		C	omments		
)-11″			very soft, bl	ack, CLAY, over	r 50% organic	matter. laye	red		CL					
1-22"			very soft, bl	ack, CLAY, over	r 50% organic	matter. inte	layered		CL					
2-33"			soft, black,	soft, black, CLAY, over 50% organic matter. interlayered CL										
3-44"			soft, black,	CLAY		CL								
14-55"			soft, grey, C	LAY			· · · · · · · · · · · · · · · · · · ·		CL					
5-66"			soft, grey, C	LAY, some orga	anic matter, le	eaves-decon	posed		CL					
6-77"			soft, grey, CLAY CL											
7-88"			firm, grey, CLAY						CL					
38-99"			firm, grey, C	LAY	;	·			CL					
												-		
							-							

sample Type: W = Water: S = Soil

ite Name:	OLIN-	McIntosh, Alabama					
ocation ID		SDCR-6	Date: 9/26/2	009	Start Time: Finish Time:	14:10	
ield Person	nnel:	F. Maylia/E. Guillen	Drillers:	Kevin Sondag/Jeff Cleme	ns-Aqua Survey (ASI)		
ore Tube		4-in	Core Tube Length:	9.5 ft	Recovered Core: 8.2 ft		
		t					
		·					
Sample Depth Interval (in)	Blow Counts	Sample Collection Time			Description and other remarks)	USCS Symbol	Comments
-11"			very soft, bla	ck, CLAY, some plant matt	er-ocassional	CL	<u></u>
1-22"			very soft, bla	ck, CLAY, with some plant	matter-ocassional	CL	
2-33"			soft, dark gre	y, CLAY		CL	
3-44"			soft, dark gre	ey, CLAY	-	CL	
4-55"			soft, dark gre	y, CLAY, some plant matte	ir	CL	······
5-66"			firm, dark gre	ey-greenish, CLAY		CL	
6-77"			firm, dark gre	ey-greenish, CLAY		CL	
7-88"	 		firm, dark gre	ey-greenish, CLAY		CL	· · ·
8-98"		· · · · · · · · · · · · · · · · · · ·	firm, dark gre	ey-greenish, CLAY		CL	
	 			<u> </u>			
				·			
		·····					·
						·	

.

Sample Type: W = Water: S = Soil

.ocation ID SDCR-7		SDCR-7	Date: 9/26/2009		Start Time: Finish Time	Start Time: Finish Time:			0	F F
Field Persor	inel:	F. Maylia/E. Guillen	Drillers:	Kevin Sondag	Jeff Clemens-Aqua Sur		14:55	 		'
Core Tube Diameter:		4-in	Core Tube Length:	9.5 ft	Recovered Core:	8.25 ft				
	-									
Sample Depth Interval (in)	Blow Counts	Sample Collection Time		(grai	Sample Description in size, color, and other re	narks)	USCS Symbol	Consments		
0-11"			very soft,	dark + black, CLA	Υ		CL			
11-22"			soft, dark	grey, CLAY, w/ s	ome plant matter		CL			
22-33"			soft, dark	grey-greenish, Cl	_AY		CL			
33-44"			soft, dark	grey, CLAY	• .		CL			
44-55"			soft, dark	grey, CLAY			CL			
55-66"			soft, dark grey, CLAY, brownish spots							
66-77"			soft, dark grey, CLAY				CL			
"-88"			soft, dark	grey-greenish, Cl	AY		CL			
88- 9 9″			soft, dark	grey-greenish, Cl	AY		CL			
										_

		McIntosh, Alabama		<u></u>	Start Time:			······································	
ocation ID		SDCR-8	Date: 9/27/2	009	14:35	AM O AM O	PN PN		
ield Person	inel:	F. Maylia/E. Guillen	Drillers:	Kevin Sondag/Jeff Clem	ens-Aqua Surve	ey (ASI)			
Core Tube 4-in Diameter:			Core Tube Length:	11 ft	Recovered Core:	10.2 ft	, <u>, , , , , , , , , , , , , , , , , , </u>		
				<u> </u>		[
			. <u>.</u>		<u></u>				
Sample Depth Interval (in)	Blow Counts	Sample Collection Time		Sample (grain size, colø	Description r, and other rem	arks)	USCS Symbol	Comments	
)-10"			very soft,blac	k, CLAY			CL		
0-20"			very soft,blac	k, CLAY, organic matter			CL		
20-30"			very soft,blac	k, CLAY, organic matter			CL		
0-40"			very soft,blac	k, CLAY, interlayered with	n organic matte		CL		
10-50"			very soft,blac	k, CLAY, interlayered with	n organic matte		ĊL		
50-60"			very soft,grey	, CLAY, some organic m	atter		CL		
60-70"			very soft,grey	, CLAY			CL		
-80"			very soft.grey	, CLAY			CL		
30-90"			very soft,grey	/, CLAY			CL.		
90-100"	 		very soft,grey	/, CLAY			CL		
100-110"	 		very soft.grey	/. CLAY			CL		
10-120"			very soft.grey	/, CLAY			CL	<u> </u>	
	[···			

TE: Organic matter (black matter) is from the surface to approx. 5.5 ft.

sample Type: W = Water: S = Soul

.

	_	-McIntosh, Alabama	- ID.:			- T'								
ocation ID SDCR-9 F. Maylia/E. Guillen			Date: 9/25/	2009		rt Tune: ish Time:			15:30			AM AM		PM PM
			Drillers:	Kevin Sondag	g/Jeff Clemens-Ad	ua Surve	ey (ASI)							
Core Tube Diameter:		4-in	Core Tube Length:	6.5 ft	Rec Cor	overed e:	5.8 ft							
		L		L			L							
								.						
Sample Depth Interval (in)	Blow Counts	Sample Collection Time	Sample Description (grain size, color, and other remarks)					USCS Symbol		Co	niments			
)-]"	-		very soft, da	rk grey-black, (CLAY, plant matte	r			CL					
1-22"			very soft, da	rk grey-black, (CLAY, plant matte	r			CL					
22-33"			very soft, bla	ick, CLAY	·				CL					<u> </u>
3-44"			soft, black, (CLAY					CL					
44-55"			soft, dark gr	ey, CLAY					CL					
55-66"			soft, grey, C	LAY					CL					
66-72"			soft. grey, C	LAY					CL					
													,	
<u></u>														
/ <u></u>	 													
	ļ													
	-									 				

۰ [.]

Sample Type: W = Water: S = Soil

Location IE)	SDCR-10	Date: 9/26	6/2009	Start Tune:	8:00		
			<u> </u> L		Finish Time:	9:30		
		F. Maylia/E. Guillen	Drillers:	Kevin Sondag/Jeff (ey (ASI)		
Core Tube Diameter:		4-in	Core Tube Length:	6.5 ft	Recovered Core:	5.7 ft		
		J						
							<u> </u>	
		<u> </u>						
Sample Depth Interval (in)	Blov	Sample Collection Time					USCS Symbol	
ple D rval	Blow Counts	: Col			mple Description color, and other rem	arks)	s sy	Comments
(in)	Ins	lectio					mbol	
0-11"	<u> </u>	<u> </u>	4" of mostly	y water (60%) and 40%	silty clay		CL	
			soft, dark g	rey to black, CLAY, hig	h organic matter		CL	
22-33"			soft, dark g	rey to black, CLAY, or	ganic matter		CL	
33-44"			soft, dark g	rey + black, light browr	n spots, CLAY		CL	
44-55"			soft, dark g	Irey, CLAY			CL	
55-66"			soft, grey,	CLAY	CL			
66-72"			soft, grey,	CLAY			CL	
			NOTE: sm	ells like H ₂ S - Hydroge	n Sulfide		CL	
					· ·			
	\vdash							
	-							
	-		<u> </u>					
	<u> </u>							
			· · · · · · · · · · · · · · · · ·					
	ļ							
	1							· · · · · · · · · · · · · · · · · · ·

Sample Type: W = Water: S = Soil

	OLIN	McIntosh, Alabama							9:40					
ocation ID.)	SDCR-11	Date: 9/26/	Date: 9/26/2009 Start Tune: Finish Time:							0	AM AM	0	PM PM
ield Persor	nnel:	F. Maylia/E. Guillen	Drillers:	Kevin Sondag	/Jeff Clemens	-Aqua Surv	ey (ASI)	•					_	
Core Tube Diameter:		4-in	Core Tube Length:	6.5 ft		Recovered Core:	5.8 ft							
		<u> </u>		I			1							
													_	
		S S S S S S S S S S S S S S S S S S S												
Sample Depth Interval (in)	Blow Counts	Sample Collectior Time		(graiı	Sample Do n size, color, a		uarks)		USCS Symbol		Con	unents		
0-11″			soft, dark gr	ey-black, CLAY,	, organic mat	er			CL					
11-22"			soft, dark gr	ey-błack, CLAY,	, organic mat	er			CL					
22-33"			soft, grey, C	LAY, organic ma	atter				CL					
33-44"			soft, dark gr	ey, CLAY, orgar	nic matter, lea	ives			CL					
44-55"			soft, dark gr	ey, CLAY, orgar	nic matter				CL				_	
55-66"			soft, dark gr	ey, CLAY, orgar	nic matter				CL				_	
66-72"			soft, dark gr	ey, CLAY, orgar	nic matter				CL				_	
										·····				
													_	
		·····	<u>. </u>											
	ļ													
	<u> </u>	 												
	<u> </u>													
														•
	<u> </u>													
									1					

sample Type: W = Water: S = Soil

-

Site Name:		McIntosh, Alabama						
Location ID	SDCR-12			2009	Start Tune: Finish Time:	13:25 14:15		
Field Personnel: F. Maylia/E. Guillen			Drillers:	Kevin Sondag/Jef	f Clemens-Aqua Surv			
Core Tube Diameter:		4-in	Core Tube Length:	6.5 ft	Recovered Core:	5.75 ft		
			·····					
Sample Depth Interval (in)	Blow Counts	Sample Collectior Time Blow Counts			Sample Description se, color, and other ren	narks)	USCS Symbol	Comments
)-11"			very soft, da	rk grey, CLAY, w/ s	ome wood debris		CL	
1-22"			very soft, da	rk black, CLAY, pla	nt matter, wood chips		CL	
22-33"			very soft, da	rk grey-black CLAY			CL	
3-44"	1		very soft, da	rk grey to black CL/	AY, plant matter		CL	
14-55"	1		soft, dark gr	ey CLAY			CL	
55-66"	<u> </u>		very soft, da	rk grey CLAY		CL		
6-72"			very soft, da	rk grey CLAY			CL	
						· · · ·		
	1							· · · · · · · · · · · · · · · · · · ·
	1							
		,						

sample Type: W = Water; S = Soil

ocation IE)	SDCR-13	Date: 9/25	/2009	Start Time:	14:25	D AM D PN
ield Perso	nnet:	F. Maylia/E. Guillen	Drillers:		Finish Time: /Jeff Clemens-Aqua Survey (ASI)	14:45	
ore Tube		4-in	Core Tube	6.5 ft	Recovered 6 ft		
iameter:			Length:	0.5 1	Core:	·	·····
Sample Depth Interval (in)	Blow Counts	Sample Collection Time		(grair	Sample Description n size, color, and other remarks)	USCS Symbol	Comments
)-11"			very soft, d	ark grey, CLAY, s	some plant matter	CL	
1-22"			soft, dark g	rey, CLAY, some	e plant matter	CL	
22-33"			soft, dark g	rey, CLAY		CL	
3-44"			soft, dark g	rey-black, CLAY,	some plant matter	CL	
14-55"			soft, dark g	rey-black, CLAY,	some plant matter	CL	
5-66"			soft, dark g	rey-black, CLAY	·	CL	
66-72"			soft, dark g	rey, CLAY		CL	
	ļ						
	ļ						
	ļ						
	<u> </u>						

TE: Organic matter (black matter) is from the surface to approx. 5.5 ft. sample Type: W = Water: S = Soil

Revised Groundwater Investigation Report Operable Unit 2 MACTEC Engineering and Consulting, Inc., Project 6107-10-0036

.

APPENDIX C

GROUNDWATER FIELD SAMPLING LOG

West shares and a way as an

ALL LEAVE AND

MACTEC ENGINEERING AND CONSULTING, INC. 3200 TOWN POINT DRIVE, SUITE 100 KENNESAW GA 30144 . PHONE: (770) 421-3400 / FAX: (770) 421-3486

WELL ID: BAN	W1A	<u>.</u> .	DEPTH TO	PRODUC	T:	A		DATE: 93	0/08		
SAMPLE METHOD	pen	<u>'sta</u>	etiz	pun	rp_			TIME: 090	6		
DUP./REP. OF:	-		DEPTH T C	-		BB GRAB (H) COMPOSITE ())	
• •	TOTAL DEPTH: 30,0										
,			PURGE V	DLUME:	3.12	<u>×3</u> =01	36 gal	2.			
			[0.163 x w " = (ater colum 入りりら	nn heigi Al /	ht (ft) x 3 (well FI-	volumes) for	2" wells]	-		
	VOL. PU	RGED				SPEC. COND.				Pump Rate mi/min. (& pump	New Water
TIME	(ga	COLUMN TWO IS NOT	рН	TEMP	(°C)	(ms/cm)	ORP (mV)	TURB. (NTU)	DO (mg/L)	setting)	Level
Initial: 0922		annen.	4.46	21.1		0.122	22010	·	1.93	25. (m)	
0932	0.2	<u>ي.</u>	4.98	21.4	8	DIA		outoFrange			
1008			5.02	12	77	0.132	194.2	228	1.97 3.10	empty ch	20.48
1014	Tur	Bed	num	0 4F	F +	let w	×11 +	e Charge			30.11
1045 -	dec		Krom	Man	$\frac{1}{2}$	Drafter	+ KROD	nts) no	t to s	ample.	
		uis	e we	el yi	ielo	was	400 .	LOW 7	o mee		Th 1
· · · ·	Pur	<u>isyvø</u>	4 50	mplin	95	enda	dS.			0	<u> </u>
l											
6							·				
·											
							·			{	
								· · · · · · · · · · · · · · · · · · ·			
	Low	Flow SI	ability Cril	era: pH = •	0.1 0	ORP ≈ <u>+</u> 10m\	/ Sp. Cond ≈	<u>+</u> 3% DO= <u>+</u>	10% Turb. <	: 10.NTU	
COMMENTS:	Very	510	w ree	harg	C	te pum				not wei	Ľ
*	Dué	-ta	poq	- re'c	har	ge +	3-F+ in	itial wo	ter ed	luma	
	у.	5I	1 12	644	/	La	motte	2020 :	0410	8	
	,			-			· · · ·			0	
CONTAINER	ſ			ANALYT	ICAL		·····]
SIZE/TYPE	NO.		RVATIVE	METH					ALYSIS		
2-500ml	Sia	<u>s</u>	None	1631		. LL. Hg	(total	1 clissol	ued]		
								<u> </u>	· · · · · · · · · · · · · · · · · · ·		
	·	·····									
										· · · · · · · · · · · · · · · · · · ·	
		•••	!	•••••••••••••••••••••••••••••••••••••••						<u></u>	j

	Sunn.	GENERAL INFORMATION	
WEATHER:	clear n70°		
SHIPPED VIA:	PLAEX		
SHIPPED TO:	Battelle		
SAMPLER: DH	oward	OBSERVER: MROttenberg-	+1 EBlondera

MRoffenberg

1910-02

はためでいたので、おおおおいでいたであった。

ALCONTRACTOR ST

14

MACTEC ENGINEERING AND CONSULTING, INC. 3200 TOWN POINT DRIVE, SUITE 100 KENNESAW GA 30144 PHONE: (770) 421-3400 / FAX: (770) 421-3486

WELL ID: BAM	BAMW 1B DEPTH TO PRODUCT: NA METHOD: peristalat c pump 28 24						DATE: 91	291.08			
SAMPLE METHOD	: perista	ofe	mp	•			TIME: 15	39			
DUP IREP. OF:	·••	DEPTH TO	WATER: 2	8	16		GRAB (2) COMPOSITE ()				
		TOTAL DE	EPTH: 47	, 34	1 18.5	8					
					1×3= 2						
		[" =	a04 g	e,	ht (ft) x 3 (well	·····	2			·	
			~						M/Min Pump Rate	f4	
TIME	VOL PURGED (gal)	pH	ТЕМР	(°C)	SPEC. COND. (ms/cm) ^C	ORP (mV)	TURB. (NTU)	ĐO (mg/L)	ml/min. (& pump setting)	New Water Level	
Initial: 1545		4.56	22.17		0.271	155.7	40	2.01	250 (NL)		
1555	0.75	4.28	21.03		0.287	178.0	49	1.70	250	28.89	
1605	1.5	4.30	20.97		0.295	178,6	2.6	1.58	210	28.88	
1615	2.08	4.32	20.87		0.300	18.0.0	61	1.61	210	28.88	
1625	2.5	4.34	20.85		0.302	178.5	1.1	158	220	28:89	
•		[÷				
i		· .			~~~~	•	<u>.</u>	·	<u> </u>		
	·										
							<u> </u>	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
			······································				·	·			
		[
	1										
	1										
	Low Flow S	tability Cri	era: pH = ± 0.	.1 (ORP = + 10mV	Sp. Cond =	= ± 3% DO = ±	10% Turb. <	< 10 NTU		
COMMENTS:	Samp	le tir	nie 163?	2	·····	· · ·					
L	ŀ										
					-	· ·					
								,,,			

CONTAINER			ANALYTICAL	
SIZE/TYPE	NO.	PRESERVATIVE	METHOD	ANALYSIS
2-5094L		-	1631	LL Hg
				0
				······································
L	I			

			SENERAL INFORMATION	۱.		
WEATHER:	Partin cipo	udi	upper 80's			· · · · · · · · · · · · · · · · · · ·
SHIPPED VIA:	FEDEX	<u> </u>	- 18			
SHIPPED TO:	Battelle					
SAMPLER:	MRottenberg	OBSERVE	R: D. Howard	EBlomberg.	Arennedy	

FIELD SAMPLING REPORT PROJECT NO: 4100080036

Restrict the state of the state

and a share the second of the state of the state of the second second second second second second second second

n An the section of the section of the

MACTEC ENGINEERING AND CONSULTING, INC. 3200 TOWN POINT DRIVE, SUITE 100 KENNESAW GA 30144 PHONE: (770) 421-3400 / FAX: (770) 421-3486

WELL ID: BAM	w1C	DE	етн то	PRODUCT: N	<u>A</u>		DATE: 913	80/08		
SAMPLE METHOD	: per	istal	12	pump			TIME: 091	9		
DUPJREP. OF:	DE	ртн тс	WATER: 28	(1) GRAB (X) COMPOSITE ()						
		то	TAL DE	PTH: 67.3	0 39.	25	,*			
		PU	RGEV	DLUME: 157	x3=1	4.71 ga	l			
		[0.	163 x w 1‴	ater column heig = 0,04 ga	ht (fl) x 3 (well 1 / F.f	volumes) for	2" wells]			
ŢIME	VOL. PUI).	pH	TEMP (°C)	SPEC. COND. (ms/cm)	ORP (mV)	TURB. (NTU)	DO (mg/L)	Pump Rate nilmin. (& pump setting)	New Water Level
Initial: 0927		4	.48	20.52	3:603	242,6	18	1.25	220 ml)	
0937	0.5	4.	56	20.28	3,805	223,7	8.9 4		290	28.25
0950	1.5		:51	20.30	3,886	211.0	0.56	1.02	220	28,25
1000	a.25		.54	20,43	3.909	199.8	1.5	0.88	210	28.25
1010	3.00		1.68	20,48	3,920	190,0	1.3	0,88	200	28,25
1:020	3.5		:70	20.61	3,928	166.8	1.4	1.05	200	28.25
1030	<u>4.c</u>		.65	20,54	3,931	1692	1.6	0,92	000	99.96
1040	4.5	4	93	20.76	3.934	143.9	1.	0.88	200	28.25
1050	5.0) 4	.61	20,80	3,937	151.9	1.0	0.85	200	28.26
1055	5.2	5 4	,61	20,82	3.937	153,2	1.1	0.85	200	28.27
1100	5.5	04	,64	20,92	3,937	151.1	1.3	0.86	200	28.26
	L									
	[·									
	L							· .	l	L
· · · · · · · · · · · · · · · · · · ·				era: pH ≈ ± 0.1	ORP = <u>+</u> 10m\	Sp. Cond =	<u>+</u> 3% 00 = <u>+</u>	10% Turb.	< 10 NTU	
COMMENTS:	Samp	ple the	time 11/5							
									i	
		SI ID! 12642 hamotte ID; 03166								
L	75I	IV	ĹĽ	2642	h	amatt	c 4 D ;	0316	6	
CONTAINER				ANALYTICAL						
SIZE/TYPE	NO.	PRESERV	ATIVE	METHOD			analysis			
2-500 ml	glass		-	1631	LL HA	(total.)	dissolve	2)		
					9					
	T							·		

		GENE	RAL INFORMATION	
WEATHER:	Sunn, dea	n midd-60	D's	
SHIPPED VIA:	FEDER			
SHIPPED TO:	Battelle			
SAMPLER: D	toward	OBSERVER:	Eplanber	

M. Ro Horbers

.

PROJECT NO:

MACTEC ENGINEERING AND CONSULTING. INC. 3200 TOWN POINT DRIVE, SUITE 100 KENNESAW GA 30144 PHONE: (770) 421-3400 / FAX: (770) 421-3486

WELL ID: BAN	1W2 B	DEPTH TO	PRODUCT	<u> </u>	1A		DATE: 9/2	208		
SAMPLE METHOD	Peris	talt	ic			\bigcirc	TIME: 10	20		
DUPJREP. OF:		DEPTH T C	• WATER:	14	5611.3		GRAB 🗶 CO	MPOSITE ()		
		TOTAL DE	<u>ртн: 2</u>	5,	<u>92</u> =	14,61	2_			
		PURGE V		. (<u>5 x 3</u> =	:1.8				
	linch	[0.163 x w	ater column	heig	ht (ft) x 3 (well 10ms for	volumes) for	2" wells}			
									Pump Rate	-
	VOL. PURGED				SPEC. COND.				ml/mm. (& pump	New Water
TIME	(gal)	s pH	TEMP	(°C)	<u> </u>	ORP (mV)	TURB_1(NTU)	DO (mg/L)	setting}	Level
Initial: 1028		6.37	24.4	_	4.261	-117,5	24.1	1.14	200 ()	
1038	0.75	6.35	23.2	<u>8</u>	5.142	-120,0	8.56	10.87	150	12,62
1047	1.5	6.33	23.3	8	5313	-11.7.1	527	0.82	180	12.75
1055	2.0	6.34	23.51	<u>.</u>	5,109	-117.4	5.52	0.88	150	12.60
103	2.25	6.34	23,23		5.244	-120.4	6.28	0,98	150	12.63
11.09	2.30	6.34	23.44	1	5,221	<u>~114,1</u>	8.28	0.96	150	12.54
	2.75	6.35	24.0	I	5.177	-113.0	4.63	0.76	150	12.64
1126	3.00	6.33	24.2	L	5.202	-107.0	5.64			12.50
1135	3.25	6.33	24.00		5.242	-109.2	7.83	8.90	150	12.64
1144	3.50	6.33	23.21		5,188	-110.0	5.15	0.90	150	12.60
<u>i.</u>		<u>, 19</u>	·		<u> </u>					
		4974 								
⊅. 🍅	Low Flow S	tability Crit	era: pH = <u>+</u> (D.1	ORP = ± 10m	/ Sp. Cond =	+ 3% DO = +	10% Turb. <	10 NTU	
COMMENTS:	YJI	IDI	12640	+		Water 1	evel me	ter 14.	5781	
	LaMo	tte 20			51468					
1 .			ve 1210	· · · · · ·						
	, · · · · · · · · · · · · · · · · · · ·	····						<u></u>		
	· · · · · · · · · · · · · · · · · · ·			~~~~~~						

CONTAINER ANALYTICAL SIZERTYPE NO. PRESERVATIVE METHOD ANALYSIS 122 UL HS DOTT, 1 disfolved) 500ml glass 1 L Amber 1631 (total HUB None 8081, 8270 none

	GENERAL INFORMATION
WEATHER: Cle	ar + Sunny
SHIPPED VIA: Fad	Ex /
SHIPPED TO:	
SAMPLER: DHoward	OBSERVER: MROHENberg, Akunnedy, L. Geurge (1991)
·	OUN

÷

PROJECT NO:

MACTEC ENGINEERING AND CONSULTING. INC. 3200 TOWN POINT DRIVE, SUITE 100 KENNESAW GA 30144 PHONE: (770) 421-3400 / FAX: (770) 421-3486 and a service of the service of the

においてい

WELL ID: BAI	MW2C	DEPTH TO	PRODUCT:N	<u>14</u>		DATE: 9/23/08				
SAMPLE METHOD	Perist	altic	Pump			TIME: 14	45			
DUP./REP. OF:			WATER: 10,	<u>45</u> =		GRAB (X) COMPOSITE ()				
•		TOTAL DE	EPTH: 46.6	4=3	6.19					
		PURGE V	OLUME: 1.45	arx 3	= -3.3	5 4.35	. 2			
		[0.163 x w	ater column heigi	ht (ft) x 3 (well	volumes) for	2" wells]	Ja			
	i	Tinch P	ipe 0.04	galoer	1Ft.					
TIME	VOL. PURGED (gal)	pH	Temp (°C)	SPEC. COND. (ms/cm)	ORP (mV)	TURB. (NTU)	DO (mg/L)	Pump Rate mi/min. (& pump setting)	New Water Levél	
Initial: 1453		4.74		2,996	178.4	13.2	0.75	240 ,)		
15/13	0.5	4.47	23.98	3,174	206.1	31	0.76	200	10.80	
1512	7.0	4.48	23,62	3,197	206.8	1.46	0.79	200	10.85	
1523	1.5	4.51	23,48	3.190	209.5	10.77	0.99	200	10.84	
1533	2.0	4.49	23,76	3,181	202.6	0.81	0.87	200	10,85	
1543	2.5	4,49	23.18	3,158	201.6	0.73	0.79	200	10.85	
1553	3.0	4,48	23.88	3,131	207,0	0.50	0.76	200	10.80	
1603	3.5	4.52	23.70	3.111	216.7	6.65	1.03	200	10.80	
1613	4.0	4.51	22.82	3.088	214.6	0,69	0.89	200	10.88	
1623	4.5	4.50	23.24	3.050	220.5	0.39	0.83	200	10.80	
1628	4.75	મત્મવ	22.94	3.046	223.3	0.67	0.81	200	10:80	
				· · ·						
	<u> </u>					<u> </u>				
	ł	m								
	Low Flow S	tability Crit	era: pH = + 0.1 (DRP = + 10m\	/ Sp. Cond =	+ 3% DO = +	10% Turb. <			
COMMENTS:	YST	ID;	12644	-		evel net	· · · · · · · · · · · · · · · · · · ·	49882		
	LaMotte	2021	ID: 014	168	<u> </u>	with the second second	<u>~ · </u>	······································		
	Sample				Sample.	collected	l			
L	1									

CONTAINER SIZE/TYPE	NO.	PRESERVATIVE	ANALYTICAL METHOD	ANALYSIS
11 Amber		pore	3081	Dotr
1. L. Amber		mis	8270	HUS
2-SUD al gla	n	mon	1631	Utty total odissolved

GENERAL INFORMATION									
WEATHER:	clean -	+ Sunny							
SHIPPED VIA:	FiedE								
SHIPPED TO:									
SAMPLER D How	vard	OBSERVER:							

•					· .					
· :		· · ·		FIEL) SAMPL	ING REPO	DRT _	•	-	
				PROJECT	NO: LOLO	008003	6/2008	.FW	1	92
•			· · · ·			•			P, I	6
	-			3200 TOWN POL	NGINEERING A				•	0
	. * * *				(770) 421-3400					
:.	·		<u></u>							
	WELL ID: BAI	MW3B	DEPTH TO	PRODUCT:			DATE: 9/2	24/08	8 9/25/08	>
	SAMPLE METHOD	~	+ 1+	ic Pump	·····	· · ·	TIME: 09	-		
	DUP./REP. OF:	·) WATER: 11, 1		· · ·	GRAB (X) CO			
	201 And 7 01 A					4.73	01010 (12,00			· · · ·
			TOTAL DI		······································		1.		:	
				OLUME: D.G gal						
			[0.163 x w	ater column heig	ht (ft) x 3 (well	volumes) for	2" wells]			
•			1 inch	p:pe=0.04	jai pe	<u>r 177</u>			[·····
								· ·	Pump Rate	
		VOL PURGED		TEMP (°C)	SPEC. COND.			201	mi/min. (& pump	New Water
	TIME	(gal)	pH		(ms/cm) 2,093	ORP (mV)	TURB. (NTU)	00 (mg/L)	setting}	Level
	Initial: 0936 0947	0.5	6.58	23,53	2 171	-120,0	28.2	0.98	200 ()	16.39
• .	0957	1.0.	6.69	23.43	2145	-111.8	1.64	1.12	200	16.48
	1007	1.5	6.70	23,83	2,047	-114.2	1.75	D.98	200	16.56
•	1017	2.0	6,69	23,64	2.074	-118.1	·	0.88		20.98
	1028	2.25	6.69	24.70	2121	-115.0	335	1.06		22.8
	1225	2.50	6.56	24,35	1.927	-107,1	23.9	1.13	140	22.0
منابعة	Crew to	allon			harze	overnig	nt + co	monce	9125/08	
09 15	0933	0.25	wat	22,27	1.850		Ira	1 0 0	LEA DA	13.17
	0943	8460.5	1.55	22.67	1.877	-113,3	15,9 -10-524-	0.74	150.00	16.52
- '	0953	0,75	6.56	22.84	1.845	-97.0	10.41	A.75	150.0	18.55
	1004	1.0	6.55	22.90	1,959	- 89.9	6.11	0.7.5	150.0	21.36
	1012 -	- <u>e</u>	asid	DUISING	- 170	w to a	Low W	ett to re	darge >	22.25
	1245	water i	ever c	heck of	P				$ \rightarrow $	17.4
					ORP = + 10m		and the second	·	10 NTU	
	COMMENTS:	<u> </u>		12644		Water m	leter I:	0 748	82	
· ·	-			: 04168 1028 due	4. 1.	e water	I.e. I			
	· ·	1230 50	speed pr	mp due to	tow w	ater ter	el			
	9/25/08 te	start para	<u>e (15 e</u>	all this sa	inple per	· lignit +	eam.			
	CONTAINER			ANALYTICAL		Ū				
	SIZE/TYPE		ERVATIVE	METHOD		6		ALYSIS		
	1-6- glass A		ME	BOBIN	HCB		<u>4'-600,01</u> od 827		mar	
	1 L glaston 500 mL glass		ONE	1631		neth 5 total	<u>00 067</u>	0	······	{
	500ml 8/40		NE	1631			ved-not	field -	Glerid	
	01.00				<u> </u>					
										J.
	WEATHER:	. 0	+- /		al information					
	SHIPPED VIA:	Fed	+ 34.V Ex	<u>iny (</u>	emp~!.	J 1				
	SHIPPED TO:	Battill		re						
	SAMPLER: D	Howard			ikotten	berz				
			•					-		

Í.

- 		· .	FIEL	D SAMPL	ING REP	ORT ZUZB, GW	P,	292	
· · .				ENGINEERING A	÷				
				DINT DRIVE, SUIT :: (770) 421-3400				. ·	
WELL ID: BA MI	' 3 B	DEPTH	O/RRODUCT:	NIA.	<u></u>	DATE: 9	25/08		
SAMPLE METHOD:				·		TIME: 16			
DUPJREP. OF:		DEPTH T	0 WATER: 11.2	<u>21</u>	· ·	GRAB() CO	MPOSITE ()	
		TOTAL D	EPTH: 25.9	4 = 14.	13				
		PURGE V	OLUME: 0,6	$\beta \alpha \times 3 =$	ho gar				
۱		10.103 × v	vator column hei A.C.h. (^d fe c	9ht (11) x 3 (well 0,04 3al	F+	-2- wells}			
in the second	VOL. PURGED	ļ		SPEC. COND.				Pump Rate mt/min. (& pump	
TIME Initial:	(gal)	pH	TEMP (°C) (ms/cm)	ORP (mV)	TURB. (NTU)	DO (mg/L)	setting)	Level
			neck -						16.8
	ater l	t ver	check d turbie	lin	·			· · · · · · · · · · · · · · · · · · ·	14.4
1627				Y		13.1			
1629	0	J	pling		 	9.98			23.47
	ENO O	7 .Jam	ing		·	1.1.1			-5,1 1
l	, 							 .	
1									}
							· · · · · · · · · · · · · · · · · · ·		· · ·
COMMENTS:	Low Flow		tera: pH = ± 0.1 fille 1630	ORP = + 10m	Sp. Cond	<u>* + 3% DO = +</u>	10% Turb.	< 10 NTU	
COMMENTS.		you	1000	<u></u>					
					· · ·		· · · · · · · · · · · · · · · · · · ·		
L		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						· · ·	
r	<u>_</u>	<u>-</u>		·					
CONTAINER	NO. PRE	SERVATIVE	ANALYTICAL METHOD			AN	ALYSIS .	2.11	
		2.0	aA			······			
· · · · · · · · · · · · · · · · · · ·		ore	1.1		~~ <u>~</u>	· · ·			
								·····	
			1	1					
			GENE	RAL INFORMA					
WEATHER:	~					· · · · · · · · · · · · · · · · · · ·		<u>```</u>	· · ·
SHIPPED VIA:		et p	.У			······································			·
SHIPPED TO:		1	OBSERVED						
ISAMPLER:			OBSERVER:		·			······	
							• :		

FIELD SAMPLING REPORT PROJECT NO: 600000036/2007 GW

ALUTTO DELENSION POLY AND A LETTER AND A

ware a true

MACTEC ENGINEERING AND CONSULTING, INC. 3200 TOWN POINT DRIVE, SUITE 100 KENNESAW GA 30144 PHONE: (770) 421-3400 / FAX: (770) 421-3486

2443B

WELL ID: BAI	MW3C	DEPTH TO	PRODUCT:	·		DATE: 9/2	4/08				
SAMPLE METHOD	Peris	stalt	ic Pum	<u>p</u>		TIME: 09	•				
DUPJREP. OF:		DEPTH TC	WATER: 1	1.33		GRAB (7) COMPOSITE ()					
		TOTAL DE	PTH: 44	1.37= 3	33.04						
		PURGE V	DLUME: 1.3	= 4 gr	l						
		[0.163 x w	ater column he	ight (ft) x 3 (wel 04 yal per	l volumes) for	2" wells]		<u></u>	r		
TIME	VOL PURGED (gal)	Ha	TEMP (°C	SPEC. COND.	ORP (mV)	TURB. (NTU)	ĐO (mg/L)	Pump Rate m!/min. (& pump setting)	New Water Lev e l	D.S.F.C. D.A.C.L.F.A.	
Initiat: 0940		6,84	21.87	1.927	-142,2	41.6	0.65	2501 1			
0950	0.5	6.81	21,80	2,174	-131.9	5.70	0,40	280	12.02		
1000	1.25	6.27	21.61	2,219	-139.9	3.74	0.36	260	12.01		
1010	2.25	6,82	21,78		-156.6	3.59	0.51	260	12.00		
1090	3,0	6.81	21.86	2.218	-140,2	7.57	041	280	12:000	11,99	
1033	H.0	6,79	21.87	2.221	-134.2	5.47	0.37	260	11.99		
1040	4.25	6.80	21.81	2.222	-144,2	1.30	0.37	280	11.99		
045	4.5	6.81	21.74	2.224	-142.0	1.15	0.36	260	11.98		
1050	4,15	6.80	21.83	2.219	-136.0	1,40	0.32	260	11_9P		
1055	5.0	6,80	21.86	2,217	- 139.0	1.74	0.40	260	11.97		
100	5.25	6.8D	21.91	2.218	-145,4	<u>h35</u>	0.38	260	11.96		
00111171170				ORP = + 10m			the second s	and the second			
COMMENTS:	Lamitt		12642 1:05679 1125	3	Water	meter I	<u>D</u> (4 :		· · · · · · · · · · · · · · · · · · ·		
L	1	,	·····						·	j	

CONTAINER SIZE/TYPE	NO.	PRESERVATIVE	ANALYTICAL METHOD	ANALYSIS
Swind sigs	2	pone	1637	it the (total + dissolved)
Want sinss		pre	8081	ODTr
11 mour	1	nore	82.70	HLB

	GENERAL INFORMATION
WEATHER:	dear & Surn r 750F
SHIPPED VIA:	Feder
SHIPPED TO:	
SAMPLER: D	Howard OBSERVER: MRONENBERG.

PROJECT NO: 10100000086 /2008.GW

and an an and the first of the first of the first of the

MACTEC ENGINEERING AND CONSULTING, INC. 3200 TOWN POINT DRIVE, SUITE 100 KENNESAW GA 30144 PHONE: (770) 421-3400 / FAX: (770) 421-3486

4

11

	110				6 x				-100		
WELL ID: BAIMM		_) PRODUCT	: 10	<u>K</u>		DATE: 92	5100		
SAMPLE METHOD	<u>pen</u>	stalt	ic pu	imp				TIME: 005	3		
DUP IREP. OF:			DEPTH TO	WATER:	1.5	6		GRAB (X) CO	MPOSITE ()		
			TOTAL DE	ертн: <u>28</u>	68		ລ				
			DIRCEV	OF HAVE, O.	68	×3= 2.0)				
						<u></u> &: C ht (ff) x 3 (well		2" wetts]			•
·			linc	h well	*	0.04 9	al /for	\$1			
TIME	E Contraction of the second se	URGED al}	рH	TEMP	(°C)	SPEG. COND.	አፋ ORP (mV)	TURB. (NTU)	DO (mg/L)	Pomp Rate ml/min. (& pump setting)	New Water Level
Initial: 1058		9.00	6.61	22.97		1.331	-133.9	20,6	0.76	220 ()	
1908	0,9	2	6.64	22.69		1.307	-140.3	18.9	0.31	240	12.24
1118	1.0		Le. 64	22.61		1.286	-152.7	9.38	0.34	240	12.23
1033	<u> </u>		6.67	22.69		1,255	-127.3	4.14	0.54	220	12.21
1143		Q.h		22.6		1.253	-151.1	8.3	0.48	240	12,20
1148	2.	-		22.65		1.249	- 146,1	7.99	0.46	240	12.19
1158		2		22.6				7.80	0.53	240	12,17
1204	3.0		6,65	22.6		1,230	-130,8		0.51	240	12,16
1207	-21-	50	6167	24.5	10	1.230	· • 5 5, 2	4.24	6.78	270	12,10
									·		
				the second s		ORP = <u>+</u> 10mV	/ Sp. Cond =	± 3% D0 = ±	10% Turb. <	10 NTU	
COMMENTS:				era: pH = <u>+</u> (12, 1,		ORP = <u>+</u> 10m	/ Sp. Cond =	<u>+ 3%</u> DO = <u>+</u>	10% Turb. <	10 NTU	
COMMENTS:				the second s		ORP = ± 10m	/ Sp. Cond =	<u>+ 3%</u> DO = <u>+</u>	10% Turb. <	10 NTU	
COMMENTS:				the second s		DRP = + 10m	/ Sp. Cond =	<u>+ 3%</u> DO = <u>+</u>	10% Turb. <	10 NTU	
COMMENTS:				the second s		ORP = + 10m	/ Sp. Cond =	<u>+ 3% DO = +</u>	10% Turb. <	10 NTU	
COMMENTS:				the second s		ORP = ± 10mV	/ Sp. Cond =	<u>+ 3%</u> DO = <u>+</u>	10% Turb. <	10 NTU	
COMMENTS: CONTAINER SIZE/TYPE		~ple		ANALYTIC METHO	5 :AL D	ORP = ± 10mV	/ Sp. Cond =		10% Turb. <	10 NTU	
CONTAINER SIZE/TYPE	<u></u>	~ple	time	ANALYTIC METHON	5 	HuB	/ Sp. Cond =			10 NTU	
CONTAINER SIZE/TYPE L glass Amber I L glass Am	- 50-9	PRESE NON	time	ANALYTIC METHON 8270 8081	5 AL D			AN/		10 NTU	
CONTAINER SIZEITYPE L glass Amber I L glas Amber 500 nl gles	- 50-9	PRESE NON NU	time ERVATIVE Je ne	ANALYTIC METHOD 827C 8081 1637	5 	HUB DDTr U H	q (total	AN/		10 NTU	
CONTAINER SIZEMYPE L glass Amber 1 L glas Amber 500 nl gles	- 50-9	PRESE NON NU	time ERVATIVE Je NG	ANALYTIC METHON 8270 8081	5 	HUB DDTr	q (total	AN/		10 NTU	
CONTAINER SIZEMYPE L glass Amber 1 L glas Amber 500 nl gles	- 50-9	PRESE NON NU	time ERVATIVE Je ne	ANALYTIC METHOD 827C 8081 1637	5 	HUB DDTr U H	q (total	AN/		10 NTU	
CONTAINER SIZEMYPE L glass Amber 1 L glas Amber 500 nl gles	- 50-9	PRESE NON NU	time ERVATIVE Je ne	АNALYTIC МЕТНОІ 8270 8081 (631 1621	5 ;AL D	HCB DDTr UH UH	g (total Gligosi	AN/		10 NTU	
CONTAINER SIZEFTYPE L glass Amber I L glass Amber I L glass Am 500 nl glass 500 nl glass	NO.	PREST NON NUS NUS	time ervative je ne one one	ANALYTIC METHON 8270 8081 1631 1621	S AL D	HUB DDTr U H	g (total Gligosi	AN/		10 NTU	
CONTAINER SIZEMYPE L glass Amber I L glass Amber J L glass Amber 500 nl glass 500 nl glass 500 nl glass	NO.	PREST NON NUS NUS NUS NUS NUS NUS NUS NUS NUS NU	time ERVATIVE Je ne	ANALYTIC METHON 8270 8081 1631 1621	S AL D	HCB DDTr UH UH	g (total Gligosi	AN/		10 NTU	
CONTAINER SIZEFTYPE L glass Amber I L glass Amber I L glass Am 500 nl glass 500 nl glass	NO.	PREST NON NUS NUS	time ervative je ne one one	ANALYTIC METHON 8270 8081 1631 1621	S AL D	HCB DDTr UH UH	g (total Gligosi	AN/		10 NTU	

1990 Construction of the second second

PROJECT NO:

MACTEC ENGINEERING AND CONSULTING, INC. 3200 TOWN POINT DRIVE, SUITE 100 KENNESAW GA 30144 PHONE: (770) 421-3400 / FAX: (770) 421-3486

WELL ID: BAI	nwyc	DEPTH TO	PRODUCT:	NA		DATE: 9/2	4/08		
SAMPLE METHOD	Peri	stalt	tic Pu	<u>~~p</u>		TIME: 13	40		
DUP /REP. OF:			WATER:			GRAB (X) CO	MPOSITE ()	I	
1 A.		TOTAL DE	PTH: 44	3-16 42	.40 = 3	0,97			
		PURGEV	DLUME: 1.2	Hgal X3	= 3.72	- gal			
		[0.163 x w	ater column hei	ight (ff) x 3 (wel	t volumes) for	2" wells}			
		1" pi	1C = 0.04	gal per	1++				
· .	•			4					
			ĺ			1		Pump Rate	
	VOL PURGED			SPEC. COND.				mirmin. (& pump	New Water
TIME	(gal)	pH.	TEMP (°C		ORP (mV)	TURB. (NTU)		setting)	Level
Initial: 1346		6.62	23.99	1.258	-136,3	9.85	0.66	230(ml)	
1356	0.5	6.60	23,65	1,222	-136.6	4,30	0,25	230	11,86
14106	1.0	6.51	23.72	1.217	-130.3	3.24	0.27	250	11.85
1416	1.5	6,60	23.69	1.203	-125.8	299	0.39	250	11.86
1426	2.0	6.51	23.66	1.212	-128.1	3.17	0.37	250	11.85
1436	2.5	6,54	22.51	1.208	-119 3	327	0.35	230	11.85
1446	3.0	6.55	23 45	1.207	-165.0	3.27	0.50	750	11.85
1456	3.5	6,50	23,68	1 27 2	-118 4	2.24	0.39	250	1184
1502	3.75		23.39	1 774	-115.9	4.05	0.37	250	11.84
1507	4.0	6.55		1,212	-110.3	2.54	0.38	230	11.83
		200	~0.0~	11012	110,5	2.2.1		1.2.20	11.0-2
· }				··-{					
					<u> </u>				
.]					+				
·			<u> </u>				· · · · · ·		
·	l	L	L		l	L	L	1	L
			The second s	ORP = <u>+</u> 10m	V Sp. Cond =	<u>+</u> 3% DO = +	10% Turb. <	10 NTU	
COMMENTS:	collect		5/MSD_						
	Samp	le tim	u 1600						~
	· · · · · · · · · · · · · · · · · · ·					<u> </u>			

CONTAINER SIZE/TYPE	NO.	PRESERVATIVE	ANALYTICAL METHOD	ANALYSIS
500 ml glass	4	nthe	1631	Li the (total delissolical)
12 gruber	2	None	8081	HCB
		non	00 10	

.

		GENERAL INFORM	ATION
WEATHER:	Junny	temp= 851F	
SHIPPED VIA:	FedEx		
SHIPPED TO:			
SAMPLER: DHG.	isted	OBSERVER:	

Andrew William - Commission Wester Statute

.

PROJECT NO: _

MACTEC ENGINEERING AND CONSULTING. INC. 3200 TOWN POINT DRIVE, SUITE 100 KENNESAW GA 30144 PHONE: (770) 421-3400 / FAX: (770) 421-3486

WELL ID: BAM	W5B	DEPTH T C		VA		date: <u>9/2.5/08</u>				
SAMPLE METHOD	Perista	1tic	Pump			тіме:4	24			
DUP./REP. OF:		рертн то	WATER:	.71		GRAB (X CO	MPOSITE ()			
•		TOTAL DE	PTH: 27,	28=15	.57	•			· .	
		PURGE V	DLUME: 0.6	2 gal x 3	3 = 1.8	6				
		10.163 x w	ater column hei	aht iff) x 3 (wel	l volumes) for	2" wells]				
	· · · ·	well:	= 0.04gz	<u> /Ŧ+</u>	·····	1		· · · ·	r	1
TIME	VOL PURGED (gal)	pH	TEMP (°C	SPEC. COND.	ORP (mV)	TURB. (NTU)	DO (mg/L)	Pump Rate mi/min. (& pump setting)	New Water Level	17
Initiat: 1430		6.69	23.01	1,235	-144,9	11,4	0,48	240 (ml)		ſ,
10 ++3%	0.5	6.69	22.57	1,221	-138.9	4.0	0,48	240	12.11]
1450	1.0	6.68	23,65	11.199	-144.2	3.77	0.52	240	12.11	ł
1510	1.5	6.68	22.49	11/88	-146.5	7.91	0,48	240	12.15	-
1520	2.5	6.70	22,56	1.154	-147.2	345	0.46	240	12.12	1
1525	2.75	6.70	22,82	1.147	-144.1	3.56	0.52	240	12.13	ľ
1530	3.00	6.71	23,02	1.140	-150.9	3.37	0.50	240	12.14	
1535	3,25	6.71	22,97	1.137	-142.6	3.53	0.50	240	12.15	ł
1	· · · ·		<u> </u>							
										1
			· · · · · · · · · · · · · · · · · · ·	·	ļ		·····			
·	Low Floor St	ability Crit	era: pH = <u>+</u> 0,1	$\frac{1}{000} = \pm 1000$	L S= Cond=	+ 2% - DO - A	10% Tuch <			
COMMENTS:	d2	e tr			v sp. cona -		10% 10/0. \			
										1

CONTAINER SIZE/TYPE	NO.	PRESERVATIVE	ANALYTICAL METHOD	ANALYSIS
500 ml glass	2	none	1631	UHG
11 glass	1	hone	8270	HUR

		GEN	ERAL INFORMATION		
WEATHER:	clear a	Sunny			
SHIPPED VIA:	FedE	Χ		 	
SHIPPED TO:				 	
SAMPLER: DHO	ward.	OBSERVER:	Meathenber	 	
			5	 	

.

÷

PROJECT NO:

MACTEC ENGINEERING AND CONSULTING, INC. 3200 TOWN POINT DRIVE, SUITE 100 KENNESAW GA 30144 PHONE: (770) 421-3400 / FAX: (770) 421-3486

WELL 10: BAN	AW5C	DEPTH TO	PRODUCT:			DATE: 4	126/08	7				
SAMPLE METHOD:	Peri	stalt	ic Pyme	u		TIME: 09						
DUP_REP. OF: DEPTH TO WATER: 11.35 GRAB (X COMPOSITE ()												
TOTAL DEPTH: 38.47 = 27.12												
PURGE VOLUME: $1.1 \times 3 = 3.3$ [0.163 x water column height (ft) x 3 (well volumes) for 2" wells] $1'' \omega c 11 = 0.04 g d / Ft$												
TIME	VOL PURGED (gal)	р Н	TEMP (°C)	J SPEC. COND. (ms/cm)		TURB. (NTU)	DO (mgfL)	Pump Rate nil/min. (& pump setting)	Ne w Water Level			
Initial: 0942	0.5	6.81	21,29 21,00	0.947	-146,4	111	0.68	200 (ml) 220	11 00	la.3		
0952	$\frac{0.3}{1.0}$	6.89	20.97	0.953	-1659	20.2	0.36	220	12 12	ł		
1012	1.5	6.89	20.98	0.957	- 166.4	6.69	0.26	220	12.26			
1022	2.0	6.89	21.08	0.961	-155.0	7.27	0.25	230	12.24	•		
1032	2.5	6.88	21.18	0.962	-148.6	6.30	0.27	230	12.22	1		
1042	3.0	6,99	21.22	0.964	-150.7	5.21	0,24	230	12.21			
1052	3.5	6.88	21.26	0.963	-151.4	6.19	0.24	230	12.19			
			· · · · · · · · · · · · · · · · · · ·									
										I		
	Low Flow S	lability Crit	era: pH = ± 0.1 (ORP = + 10m	/ Sp. Cond =	<u>+</u> 3% DO = +	10% Turb. <	10 NTU		•		
COMMENTS:	jamp	ne 4	time 1	105	· · · · · · · · · · · · · · · · · · ·							
				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~								
· · ·					····	۱						

 CONTAINER
 NO.
 PRESERVATIVE
 ANALYTICAL

 SIZETTYPE
 NO.
 PRESERVATIVE
 METHOD
 ANALYSIS

 2-SUOMLSI28
 U.3(
 U.45

 1
 Multicat
 82.70
 Htcl

		GENERAL INFORMATIO	N .		
WEATHER:	Clear + 5	inny temp ~ 70'F	· · · · · · · · · · · · · · · · · · ·		
SHIPPED VIA:	FedEX	/ /		· · · · · · · · · · · · · · · · · · ·	
SHIPPED TO:		· · ·			
SAMPLER: D	Howard	OBSERVER: MROTA	nber.		
			8		

oversele market with design

n Karri Mali

.....

PROJECT NO:

MACTEC ENGINEERING AND CONSULTING. INC. 3200 TOWN POINT DRIVE, SUITE 100 KENNESAW GA 30144 . PHONE: (770) 421-3400 / FAX: (770) 421-3486

WELL ID: BA	MW	GB	DEPTH TO	PRODU	cr:			DATE: 9/2	6/08		
SAMPLE METHOD:	Pe	515	talt	ic P	ump	•••		TIME: 12	<u>44</u>		
DUP REP. OF:			<b>DEPTH TO</b>					GRAB (A) CO	MPOSITE ( )		
•			TOTAL DE	ертн:́	26,8	7=15	,59	·			
			PURGE V	OLUME:_	0.6	$2 \times 3 =$	= 1,9				
							volumes) for	2" weils]			
				- 11-	0,0	1gal/Ft		<b>I</b>	·	· · · · ·	
TIME		VRGED al}	pH	TEMP	(°C)	SPEC. COND. (ms/cm)	ORP (mV)	TURB_ (NTU)	DO (mg/L)	Pump Rate ml/min. (& pump setting)	11.79 New Water Level
Initial: 12.5A	2		6,59		00	1.088	79.9	13.5	0.74	180 (m))	
1300	0.	5	6.63	22	27	1.083	-104.9	6.84	0,68	200	11.77
1310	1.	0	6.65	22.		1.081	-109.5	4,92	0.61	200	11.77
1320	1.	5	6.66	22.	06_	1.081	113.2	4.27	0.49	200	11.76
1330	2.0	2	6.68	22.	17	1.085		4,24	0.47	200	11.75
1335	2.6	25	6.69	22	,07	1.089	-118.5	3.83	0.50	200	11.74
							·····	·		· · · · · · · · · · · · · · · · · · ·	
			·								
								<b> </b>			
				14.5							
				K							
				1						··· ···	·
					<u> </u>	i					
	L			<u> </u>							
COMMENTS:	LOW		Lole 1		1350		Sp. Cond =	= <u>+</u> 3% DO = <u>+</u>	10% 1unb. <	10 10 10	
COMINENTS.	¦		ep ce i		1.000	<u>````</u>			·	<u> </u>	
					······	*					
· .			AND	<i></i>							
CONTAINER				ANALY	TICAL	Г					
SIZEATYPE	NO.	PRES	ERVATIVE	MET				·AN/	NLYSIS		
2500M	μ		-			IL H	>				
L				<b></b>		ier ij	) 				
		ļ									<u>.</u>
·	·					ļ				·	
·I		ł		L							
					GENER	AL INFORMAT		<del></del>	·····		
WEATHER:											
SHIPPED VIA:											
SHIPPED TO:											
SAMPLER:	)Mon	anor		OBSERV	IER: M	Abttenb	ers				

# FIELD SAMPLING REPORT PROJECT NO: 1010080036

•• ف...

MACTEC ENGINEERING AND CONSULTING, INC. 3200 TOWN POINT DRIVE, SUITE 100 KENNÉSAW GA 30144 PHONE: (770) 421-3400 / FAX: (770) 421-3486

WELL ID: BAM	W6C	DEPTH TO	PRODUCT:N	<u>A</u>		DATE: -612-102-9126108					
SAMPLE METHOD	: pristo	utic.	ритр	`		TIME: 2	33	, F			
DUP /REP. OF:						GRAB (X) ÇO	MPOSITE ( )				
		TOTAL DE	PTH: 44.40	<u>~</u> 34.	95	" ÷					
			OLUME: 1.4								
			ater column heig		<b>v</b>	2# w.alla1					
	. –	1" we				<u> - wews</u>					
			. 0.0-1	gal/f	·			Pump Rate			
TIME	VOL PURGED (gal)	рH	TEMP (°C)	SPEC. COND. (ms/cm)	ORP (mV)	TURB. (NTU)	BO (mg/L)	mt/min. (& pump setting)	New Water Level		
Initial: 1249		6,85	22.19	1.127	-145.6	20.4	0.37	200 ( )		1198	
1300'	1.0	6.84	22.35	1.129	-157.2	16.0	0,29	200	11.94		
1310	a.0'	6.85	22.64	1.134	-154.3	7.99	0,30	230	11.94		
1320	2.75	6.85	22.18	1.135	-155,7	6.14	0.28	230	11.91		
1330	3,25	6.86	22.64	1.128	-151.6	5.2	0.25	200	11.91		
1340	3.75	6.85	22.72	1.130	-152.1	4:2	0.27	210	1190		
1357	4.75	6.87	22.23	1.133	- 154.3	3,2	0.25	220	11.88		
	<b> </b>		·.		<b>_</b>						
·			· · · · · · · · · · · · · · · · · · ·		<u> </u>						
					<u> </u>				·		
	l										
	1						· · · · · · · · · · · · · · · · · · ·				
	Low Flow S	ability Crit	era: pH = ± 0.1 (	DRP = + 10m	V Sp. Cond =	+3% DO=+	10% Turb. <	10 NTU	·		
COMMENTS:	Samo		ne = 141	2							
	r					·····					
·		<b>~</b>									
				•							

 CONTAINER
 ANALYTICAL

 SIZE/TYPE
 NO.

 PRESERVATIVE
 METHOD

 2-500 mL
 914 ss

 No.
 No.

	GENERAL INFORMATION	
WEATHER:	Sunny, clean upper 80's	
SHIPPED VIA:	Fider	
SHIPPED TO:	Battelle	
SAMPLER:	MEOTTENDER OBSERVER: DHOWard	

2

0

where a source is shown

いたいの代けたけない

Contraction of the second

PROJECT NO:

MACTEC ENGINEERING AND CONSULTING, INC. 3200 TOWN POINT DRIVE, SUITE 100 KENNESAW GA 30144 PHONE: (770) 421-3400 / FAX: (770) 421-3486

WELL ID: RAI	MW7B	<b>DEPTH</b> TO	PRODUCT:			DATE: 9/	26/08		
SAMPLE METHOD	: Peris	talt	ie			TIME: /	456		
DUP./REP. OF:		<b>DEPTH T</b> C	WATER: 11,	61		GRAB() CO	MPOSITE ( )	) .	
			ертн: <u>27.2</u> 2		Ĩ t		•		
		PURGE V	OLUME: 0.6	2×3=	= 1,9				
			ater column heig			7 <b>9</b>			
	TH. S.	11	ALL 1/+	' _/	volumes) for	z wensj			
· · · · · · · · · · · · · · · · · · ·	1º we	1120	.04g-1/7	<u> </u>	-		· · · · · · · · · · · · · · · · · · ·	T	F
			· • •						
					. •			Pump Rate	12.03
	VOL PURGED		TEMP (°C)	SPEC. COND. (ms/cm)	ORP (mV)	TURB. (NTU)	BQ (mg/L)	mimin. (& pump setting)	New Water
TIME	(gal)	pH				TORB. (MIG)		<u>~</u>	Ceves
Initial: 1500		6,46	22.88	0.712	-107.6	51.2	0.94	200 ml	
1510	0.5	6,40	23.18	0714	-116.1	19.8	0,76	180	12,02
1520	1.0.	6.41	22,42	0.710	-111.4	8,56	0,59	200	12.03
1530	1.5	6.41	22.22	0,710	-112,1	6,25	0.54	210	17.02
1540	2.0	6,41	22.26	AJIA	-11.7	4.50	1.53	210	12.00
1545	1.25	6.41	22,40	0.708	-117.7	4.34	1.52	210	12.01
					- unia			1	12101
		<u> </u>							
								<b>{</b>	<u> </u>
ļ		· .						·	<b></b>
,									
								· · · · · · · · · · · · · · · · · · ·	······
								1	
								1	
	Low Flow S	tability Crit	era: pH = ± 0.1 (	DRP = + 10m	/ Sn Cord=	± + 3% DO = +	10% Turb <	10 NTU	L
COMMENTS:					- op. conu -	576 504			
COMMENTS:	Jam	p 18 7	ime 15	<u></u>					
			·····						
1							·	<u> </u>	
	L	·						<u> </u>	
· · ·									
			·····						

 CONTAINER
 NO.
 PRESERVATIVE
 ANALYTICAL

 SIZEITYPE
 NO.
 PRESERVATIVE
 METHOD
 ANALYSIS

 2-500 mL

 <

	GENERAL INFORMATION	
WEATHER:	Sunny + alert temp 2880F	
SHIPPED VIA:	FedEr	·
SHIPPED TO:		
SAMPLER: DHO	ward OBSERVER: MPOHenbogy	

·					ING REP	DRT up leco	9080036		
	· ·		3200 TOWN POI	NT DRIVE, SUIT	ND CONSULTIN E 100 KENNES / FAX: (770) 421	AV¥ GA 30144		· .	
ELL ID: BANNO	V7C	DEPTH TO	PRODUCT: N	Ą		DATE: 912	9/08	·····	
AMPLE METHOD		altic	Duno	 · ·		TIME:09 4			
upjrep. of:		DEPTH TO	WATER: 11.7			GRAB (X) CO			
· ·		TOTAL DE	PTH: 46.64	5x34.4	2				
	•	, PURGE V	OLUME: 1.4	x 3=4	1.2		•		
	·	[0.163 x w	ater column height $11 = 0.04$	ht (ft) x 3 (weil	volumes) for	2" wells}			
	VOL, PURGED			SPEC. COND.				mump Rate Pump Rate mumin. (8 pump	<del>F+</del> New Water
ME	(gal)	рН	TEMP (°C)	(msicm) ^C	ORP (mV)	TURB. (NTU)	DO (mg/L)	setting)	Level
itial: 0929		6.55	21.60	0.538	-98.6	358	0.91	200 (ML)	
0939	0.5	6.62	20,70	0,542	-120,5	9.02 6.09	0.45	240	1a.40
	1.25	6.62	20,87	0,040	- 125.3	4.82	0.40	220	12.41
<u>    0959   </u> 1014	2.50	6.61	20,96	0.333	-122 -	4.10	0.33	220	12 42
1024	3.0	6.61	20.00	0.528	- 130.5	4.05	0,31	270	12.45
1034	3.5	6.60	20,90	0.528	-1318	3.67	0.31	220	12.47
1044	4.0	6:100	21.17	0.525	-131.8	3,55	0.32	220	12.48
1049	4.25	6.61	21.29	0. 222	-132.4	3.35	0.31	299	12,49
							·		
		}							·
		[							· · ·
	· ·	· .							
	Low Flow S	tability Crit	era: pH = <u>+</u> 0.1	ORP = <u>+</u> 10m	/ Sp. Cond =	<u>+</u> 3% D0 = +	10% Turb. <	: 10 NTU	
OMMENTS:	Dupli'ce		ulected -		Jup0209	12908 50	mple ti	ne 1200	
	Samp	le tin	ne 1055	<u> </u>					
	<u> </u>								

CONTAINER SIZENTYPE 2-500ml 2-500ml ANALYTICAL METHOD PRESERVATIVE NO. ANALYSIS 1637 1637 LL HE U.HE sample duplicate

	GENERAL INFORMATION	
WEATHER:	clean sunny NGBF	
SHIPPED VIA:	FedEx	
SHIPPED TO:	Battelle	
SAMPLER:	MROttenberg OBSERVER: D. HOWAND	

and the second second

2015/102

PROJECT NO: 6100080036

MACTEC ENGINEERING AND CONSULTING, INC. 3200 TOWN POINT DRIVE, SUITE 100 KENNESAW GA 30144 PHONE: (770) 421-3400 / FAX: (770) 421-3486

WELL ID: YBAMI	100		DEPTH TO		- N		<u></u>	DATE: C	170/08		
		-				<u> </u>					
SAMPLE METHOD	:_per							тіме: 12	50		
DUP.REP. OF:		_	<b>DEPTH TC</b>	WATER:	130	)7		grab (X) co	MPOSITE ( )	1	
· .			TOTAL DE	етн <u>: 2</u>	s,4 <b>s</b>	13,3	8				
			PURGE V	DI HIME: (	0,53	<u>×3=</u> 1.1	ogal				
			[0.163 x w	ater colun	nn heig	ht (ft) x 3 (well	volumes) for	2" wells]			
			1" vel	= 0,0	24 a	al/ft		1			······
	VOL PI	URGED		-		SPEC. COND.		ļ		Pump Rate	New Water
TIME	(g		рН	TEMP	(°C)	(ms/cm)	ORP (mV)	TURB. (NTU)	ĐO (mg/L)	setting)	Level
Initiat: 1255			6,49	23	77	0,470	-93.8	110	0.66	150 (ml)	
1305		کر	6.53	23.	<u>54</u>	0,471	-113,3	40	0.38	170	12,96
1315	0	)	6.56	23.	16_	0.468	-112.5	and 17 7 9	0.36	160	12.97
1323	1.0		6.58	1 2	<u></u>	0.770	-125.1	time for the second		160	12.19
1240	11.5	5	<u>6.60</u>	22.4	49	0.467	-128.8	6.7	0.28	180	12 60
1345	2.0	.a )	6.61	23.1	17	0.469	-127.1	4.2	0,26	180	17.99
	for		0101	~~~		0.101			V150		14.37
								1			
1											
	ļ									ļ	
	ļ						ļ				
	<b> </b>			<b>.</b>		}					
	L	Flow St	ability Crit	ora: nH =	+ 0 1	0PP = + 10m	So Cood a	= <u>+</u> 3% DO= <u>+</u>	10% Tarth of	10 NTH	<b>k</b> _
COMMENTS:	1 .	ma	12 F				· Sp. Cond.	- <u>-</u> 5% 00- <u>-</u>	10/0 1000.		
COMMENTO.		mp			<u>99</u>		<u> </u>				
	y:	SI	126	44		Taria	. Turbid	lity mete	r 0316	6	
						· ·		/			
CONTAINER				ANALY	TICAL			· · · · · · · · · · · · · · · · · · ·		·	······
SIZE/TYPE	NO.	PRES	ERVATIVE	METH	ØD	}		AN	ALYSIS		
500 ml	3			1431		LL Hg					
						0			···	<u></u>	
							·			<u> </u>	
L			1		- <del>*</del>	1					
	·····				GENER	AL INFORMAT	TION				
WEATHER:	Cle	m.s	unny								
SHIPPED MA:	1 Fed	GX	2								
SHIPPED TO:	Bat	tell	R								
SAMPLER: DI	towo	nd	· .	OBSERV	ER:	MRette	nberg				
						•					

# FIELD SAMPLING REPORT PROJECT NO: 101000 80036

LUNE -

a strategicki strategicka strategicka strategicka strategicka strategicka strategicka strategicka strategicka s

į

MACTEC ENGINEERING AND CONSULTING. INC. 3200 TOWN POINT DRIVE, SUITE 100 KENNESAW GA 30144 PHONE: (770) 421-3400 / FAX: (770) 421-3486

WELL ID: BAM			PRODUCT:			DATE: 9/2	9/08					
SAMPLE METHOD	Peris	talt:	e pump			TIME: 12	50					
DUP_REP. OF:	·,	DEPTH TO	WATER: 12.1	9		GRAB (X) CO	MPOSITE ()					
		TOTAL DE	PTH: 46.11	= 33.92	2							
			DLUME: 1.34									
[0.163 x water column height (ft) x 3 (well volumes) for 2" wells] $1^{4}$ well $= 0.04$ gal/Ft												
· . 	1 " w	re M z	0,04 gal	<u>/++</u>	<u> </u>	1						
		:					5. 	Pump Rate	F+			
	VOL. PURGED			SPEC. COND.				ml/min. (& pump	New Water			
TIME Initiat: 1254	(gat)	pHi	TEMP (°C)	(ms/cm) ^C	ORP (mV)	TURB. (NTU) C434	DO (mg/L)	setting) 210 (p.M.)	Level			
Initiat: 1254 1304	0,5	6.61	22.59	0.874	-107.3	279	0.39	220 (mc)	13.07			
1315	1.0	6.68	23.27	0,873	-1230	16.1	0.35	200	13.07			
1325	1.50	6,70	23,07	0,886	-128.1	8.14	0.44	200	13,07			
1335	2.05th	6.69	22.90	0.865	- 127.1	6.70	0.41	210	13100			
1345	2.5	6.68	23,12	0.863	-129.9	5.14	0.42	200	13.08			
1402	3.5	6.68	21.92	0.860	-126.5	3.47	0.38	210	13.10			
1410	4.0	6.69	21.40	0,856	-125,4	3.11	0.38	240	13.09			
1415	4.25	6.69	21,49	0.850	-123,9	3.21	0.43	260	13.11			
1420	4,50	6.68	22,02	0.851	-123.9	2.74	0.43	260	13.00			
1425	4.75	6.68	21.89	0,854	-123.8	2.53	0.43	260	13.10			
·	·							<u>.</u>	·			
					<u> </u>							
<u></u>	Low Flow St	l lability Crit	era: pH = ± 0.1 (	ORP = + 10m	/ Sp. Cond =	+ 3% DO = +	10% Turb. <	10 NTU	·			
COMMENTS:	Sample											
	-											
<u> </u>	I											

 CONTAINER
 NO.
 PRESERVATIVE
 ANALYTICAL

 SIZE/TYPE
 NO.
 PRESERVATIVE
 METHOD

 SUO ml
 2
 Ilp31
 LL He

	GENERAL INFORMATION	
WEATHER:	Clear sunny w687mb	
SHIPPED VIA:	Feder	
SHIPPED TO:	Battelle	
SAMPLER:	MROTENBERG OBSERVER: O. HOWARD	

# FIELD SAMPLING REPORT PROJECT NO: 10100080036/2008,6W

WHEN THE PARTY OF THE PARTY OF

MACTEC ENGINEERING AND CONSULTING, INC. 3200 TOWN POINT DRIVE, SUITE 100 KENNESAW GA 30144 PHONE: (770) 421-3400 / FAX: (770) 421-3486

WELL ID: BAMU	VIB		DEPTH TO	PRODUCT	. N	AL		DATE: 11 1	108	ary)	c)
SAMPLE METHOD	: <u>p</u> (	uist	altic	ping	2			TIME:		9:41	the
DUP_REP. OF:	•		<b>DEPTH</b> То	) WATER:	29.			GRAB (X) CO	MPOSITE ()	,	
			TOTAL DE	$\operatorname{PTH} \frac{47}{1}$	34	<u>x3=</u> 2,2	C., 1	1 1	Il. She	d Ampinzat	9:49
- -				ater column	1 heig	$\frac{20}{101} = \alpha_1 \alpha_2$ $\frac{101}{101} \times 3 \text{ (well)}$ $\frac{101}{101} \times 3 \text{ (well)}$		2" wells]	ary •10 +	F. 9	
ПМЕ	1 .	URGED	pH	TEMP	(°C)	SPEC, COND. (ms/cm)	ORP (mV)	TURB. (NTU)	DQ (mgfL)	Pump Rate ml/min. (& pump setting)	New Water Level
Initial: JAm						[	· · · · · · · · ·			( )	
9:51	Just fill	JYSE	4.53	18.9	7	0.241	217	0,63	2,67	130 - 12:	29.15
10:11	0.56		4.31	19,6	3	0.247	26.4	0.28	1.46	100 1/2.17	29.15
10:21	0,76		4.30	19.8	_	0,257	274.8	0.25	1,31	100 11/102	29,15
10:31	16	1	4.30	19.95		0,260	274.6	0,27	1.19	160-1/2014	29.15
10:4	1.40	امذ	4.31	20.4	9	0.265	276,9	0,25	1.19	100 minin	29,15
10:51	1.70		4.31	20.91		0.270	280	0,24	1.13	100 hih	29.15
11:01	26		4.33	20.96		0.272	281	0,23	1,14	100 milmit	29,16
	2.3	611	4.33	20.9	8	0.275	280	0.13	1.14	loumi/min	29.15
<u> 11:14-р</u>	uran	eters s	table.	Samp	le		· · · · · · · · · · · · · · · · · · ·			, ,	· · · · · · · · · · · · · · · · · · ·
	T										
	<u> </u>										
					0.1	ORP = <u>+</u> 10mV	Sp. Cond =	= <u>+</u> 3% DO = +	10% Turb. <	: 10 NTU	
COMMENTS:	YSI	- 10:	08410	10916					•		
	Lam	othe l	0: 05	600				•			
1			time:						· · · ·		
	wate	<u>Aw</u>	1 met	N 10:	076	520		· · · · · · · · · · · · · · · · · · ·			
						•					
CONTAINER	r	Į.		ANALYTIC	CAL.	1			<u>.                                    </u>		
SIZE/TYPE	NO.	PRES	ERVATIVE	METHO		1		AN/	VLY515		
SUDM	:2	non	e :	1631		LL HO	Ctotes	+ disse			······································
<u>v</u>	-	1	····			<u>, ''</u>					
		· .									
									·		

		GENERAL INFORMATION	
WEATHER:		· · · · · · · · · · · · · · · · · · ·	
SHIPPED VIA:	RdEL		
SHIPPED TO:	Batterie	······································	· · · · · · · · · · · · · · · · · · ·
-MPLER:	URIJA	OBSERVER:	

# FIELD SAMPLING REPORT PROJECT NO: 10100080036/2008.6W

We have an and the second second and the second second second second second second second second second second

:

MACTEC ENGINEERING AND CONSULTING, INC. 3200 TOWN POINT DRIVE, SUITE 100 XENNESAW GA 30144 PHONE: (770) 421-3400 / FAX: (770) 421-3486

WELL 10: BAM	WIC	DEPTH TO	PRODUCT	. N	A		DATE: 11	11/08		
SAMPLE METHOD	penst	itic.	pump	)			TIME: DIZ	start		
DUP JREP. OF:		DEPTH TO	WATER:	<del>2</del> 8,	50		GRAB X CO	MPOSITE ()	·	
		differen PURGE VO [0.163 x w		55 1 heig	$\frac{x - 3}{x - 3} = 4$		2" wells]			
TIME	VOL. PURGED (gal)	рH	TEMP	୯୨	SPEC. COND. (ms/cm)	ORP (mV)	Turb. (NTU)	DO (mg/L)	Pump Rəte ml/min. (& pump setting)	New Water Level
Initial: JHM									()	
10:22	0,75	4.69	19.52		3.22	192	2,41	2.49	500 milling	28.55
10:27	1.50	4.51	19.69		3.46	257	0	0.56	500 mi (min	28.55
10:37	3	4.49	19.70		3.49	272	0	0,40	500 m1/min	28.56
10:47	4.5	4.49	19,73		3.51	278	0	0,34	500m1/min	22,56
10-50-1	prometers S	table-	Samp	le	·		· · · · · · · · · · · · · · · · · · ·			
			1							
i	· · ·									
•										
L										
			·						·	
	·								L	
· · · · · · · · · · · · · · · · · · ·					DRP = + 10mV	Sp. Cond =	<u>+ 3% DO = +</u>	10% Turb. <	10 NTU	
COMMENTS:	VSI ID:			1						
	Lamote	1D: 42	130						· · · · ·	•
	Sample ti	me:	10:50							
· · · · · · · · · · · · · · · · · · ·	water u			):0	3431					

 CONTAINER
 NO.
 PRESERVATIVE
 ANALYTICAL

 SIZETTYPE
 NO.
 PRESERVATIVE
 METHOD

 SUD NU
 2
 NOne
 [63]

 LL Hg
 (btal + dlized/vpd)

				 _
·	· · · · · · · · · · · · · · · · · · ·	GENERAL INFORMATION	-	 <u>.</u>
WEATHER:			 -	 Π
SHIPPED VIA:	FEDEX		 •.	 ]
SHIPPED TO:	Battelle			 ٦
TAMPLER: MP	Ju	OBSERVER:	 	

# FIELD SAMPLING REPORT PROJECT NO. 41000 80036/2008, GW

MACTEC ENGINEERING AND CONSULTING, INC. 3200 TOWN POINT DRIVE, SUITE 100 KENNESAW GA 30144 PHONE: (770) 421-3400 / FAX: (770) 421-3486

WELL ID: BA M	NZC	L	<b>DEPTH</b> TC	PRODUCT	<u>N</u>	<u>A</u>		DATE: 11-11-	08		
SAMPLE METHOD	per							TIME: 12:	25 Star	+	
DUP_REP. OF:	~_'		<b>DEPTH TC</b>	WATER:	1,21	4		GRAB (X) CO	MPOSITE (	)	
				ртн: <u>46</u>	,64		Eor	10 Not Ge	t water 1	evels die t	o joints
			differ PURGE VO	Lnce = DLUME: <u>1</u>	4623	EH.3	in :	sample tul	oing & Sem	oll diameter	well
						ht (ft) x 3 (well	volumes) for	2" wells	-		· ·
<b></b>		<u>1" pi</u>	<u>pe 0.0</u>	4 sal	14+	r	·	Y		1	······
ТИМЕ	VOL. PI		Hq	TEMP	(°C)	SPEC. COND. (mstcm)	ORP (mV)	TURB. (NTU)	00 (mg/L)	Pump Rate ni/min. (& pump setting)	New Water Level
Initial: JAM			4.66	20.7	2	3.172	195	29.6	227	Son A: 41'	
12:30	16		4.54	20.39		2.923	211.7	14,2	0.84	600m Vinin	NA
12:40	2,5		4.53	20.2		2.852	219.5	9.33	0.43	Sount Min	NA
12:50	<u>40</u> 3.5	×	4.53	20.2		2.808	220 224	3.41	0.37	500 m1/min	NA NA
1.00			1.3.3	201					0,00		· N /4
SAMON	q+	:0	5 - Au	unetus S	talls		· · · · · · · · · · · · · · · · · · ·				
			· · ·				·				
										†	·
	1		ability Call		0.1.		Sa Cood -	<u>+</u> 3% DO = <u>+</u>	108( Turk a	1	
COMMENTS:			> OTE					level met			
			10:4					user pres			
	Sam	24 10	ine :	1305						· · · · · · · · · · · · · · · · · · ·	
L	Water	leve	1 meter	- unu	<u>d</u> n	of fit in	well wi	th tubing	j due t	o multiple	(4)
	CUAN	necti	ons/jo	ints.					-		
CONTAINER				ANALYTIC	CAL					· · · ·	
SIZE/TYPE	NO.		RVATIVE	метно	00				ALYSIS		
500 mL	2	no	one	1631	· · ·	LL Hg	-(tota	1 + clisso	(ved)		
· · · · · · · · · · · · · · · · · · ·											
		<u> </u>									
				· · · · · · · · · · · · · · · · · · ·		<u>-</u>					`
······		· · · · · · · · · · · · · · · · · · ·				·	· · · · · · · · · · · · · · · · · · ·				 
	· · · · · ·			G	ENER	AL INFORMAT	ION _			·····	
WEATHER: SHIPPED VIA:	5010			·····					· · · · · · · · · · · · · · · · · · ·	<u> </u>	
SHIPPED TO:	Fede	trd	D							- <u> </u>	
SAMPLER: M	RIJ	MAL		OBSERVE	<u>.</u>		· · ·		· ·		

Stander all were builded addressed.

# FIELD SAMPLING REPORT PROJECT NO: 4000 80036 /2008, 6-10

------

MACTEC ENGINEERING AND CONSULTING, INC. 3200 TOWN POINT DRIVE, SUITE 100 KENNESAW GA 30144 PHONE: (770) 421-3400 J FAX: (770) 421-3486

WELL ID: BANW	13B	DEPTH TO	) PRODUC	:т:			DATE: 11	12/08		
SAMPLE METHOD	: perista	etic p	ump	>			TIME: 104	0 start		
DUP /REP. OF:		DEPTH TO			65		GRAB (X) CO	MPOSITE ( )		
<i>:</i>					74 13.					
	•	PURGE V	OLUME: 0	1,53 x	13= 1.6	gal				
		10.163 x w	ater colun ().	nn heigl 04 g	ht (ft) x 3 fwell L / F-F	volumes) for	2" wells)			
TIME	VOL. PURGED (931)	рH	ТЕМР	የዓ	SPEC. COND. (mstcm)	ORP (mV)	Ture_ (NTU)	DO (mgfL)	Pump Rəle milmin. (& pump setting)	New Water Level
Initial: MR		<u> </u>							with 1	
1045	cortain	6.60				-135,3	5:50	0.58	210	16,5
1050	1.0	6.66	22.2		2.200		8.28	0.36	300	16.52
1055	1.5	6.71	33.3	16	2.192	-143.8	2.19	0.22	300	16.53
1100	210	6,73	2.2.		2,171	-140,1	2.07	0.22	280	6.83
1105	·	stop	ped g	runge	- all	bu to	recharge			19.7
1108									~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	17.05
1111									<u> </u>	16.84
1112 Ve	start p	ump t	10 col	lect	sample					
1113	sample.	the	<u>_</u>			<b></b>				
L	i		[			·				·
			ļ							
	<b> </b>		ļ							
	<u>.</u>	L		·······	L	l	l			
					ORP = + 10m	/ Sp. Cond =	= <u>+</u> 3% DO = <u>+</u>	10% Turb. <	10 NTU	
COMMENTS:	YSE ID	- 08H	10081	<u>، ما</u>						<u></u>
	Lamothe									
ĺ	Waterlevo		er 10	<u> </u>	3431					
	Sample	time -	• =							
•	•									

ſ	CONTAINER SIZE/TYPE	NO.	PRESERVATIVE	ANALYTICAL METHOD	ANALYSIS
ſ	amber &	ass		HUB	-8270, method 8081A
$\left  \right $				· · · · · · · · · · · · · · · · · · ·	
$\left  \right $			r 		· · · · · · · · · · · · · · · · · · ·
ŀ					

			GENE	RAL IN	FORMATION	4		·	 
WEATHER:	10070	iland	cover		rain	cape ched	ertin.		
SHIPPED VIA:	FEDER					· · · · ·		·.	 
SHIPPED TO:	PACE								 
CAMPLER: MR	-IJM	C	BSERVER:						 

	والمعممية التقاديقان معاملين	را که مهده میرود. راه دا	۵۰۰۰ «۲۰ ۵۰۰»، ۵۰ ۲۰ ۲۰ ۵۰ ۵۰ ۵۰ ۵۰ ۵۰ ۵۰ ۵۰ ۵۰ ۵۰ ۵۰ ۵۰ ۵۰ ۵۰				يرديني بالمتحجين			
• •					<b>.</b> .					100
• .				NO: 61000		DRT 2008, G-W				1. 4 1 4 1 K 1 K
• •			3200 TOWN POP	NGINEERING A 17 DRIVE, SUITI 1770) 421-3400 /	E 100 KENNESA	W GA 30144	,			
WELL ID: BAM	W4C	DEPTH TO	PRODUCT: NA	<u> </u>		DATE: 111	2108		· · · · · · · · · · · · · · · · · · ·	•
SAMPLE METHOD:	peristal	shi pu	mp			TIME: 11:0	<u>58</u>			
DUP REP. OF:	•		WATER: 12.	40		GRAB A CO	MPOSITE ( )	i		
			PTH: 42.4			1.5				ľ
·.		PURGE V	12	x3 = 3,	6					
		[0.163 x w	ater column heigh 0,04 ga	nt (ft) x 3 (well   f <del> </del>	volumes) for	2" wells}				
TIME	VOL. PURGED (gal)	pH	TEMP (°C)	SPEC. COND. (ms/cm)	ORP (mV)	TURB. (NTU)	DO (mg/L)	Pump Rate nd/min_ (& pump setting)	New-Water Level	
Initial: 11:09		6.49	20,85	1.067	-17.4	3,48	.6.05	600 % (37')		12.46
11:13		6.60	20,79	1.123	-137	1,19	0.39	600 million	1246	1
11.18	2	6.61	20.81	1,128	-140	0,21	0,25	11 11	12.46	
11:23	3	6.61	20.80	1,129	-141	0.19	0.21	<u>11</u> 11 11	12.46	
11:28	Ц	6.61	20.80	1.130	-142	0.15	0,20	· /	12.46	
Param	ters Stat	6 - 5	ample 11:	30 1 10	6 Deat	rate				
			- <u>h_ipz</u> i		- Coop					
l						42				
						. <b>v</b>				
							·			
		·					·····			
}										
						· · ·				
	Low Flow St	lability Crit	era: pH = <u>+</u> 0_1 (	DRP ≃ .+ 10m\	Sp. Cond =	+ 3% DO = +	10% Turb. <	: 10 NTU	L	1
COMMENTS:	VSI 10		= 100 541			<u></u>	•			
	LaMore		1430		DUPSa	mple here	- 200	o sample		
	water u				time	1				
	sample.	hme	= mp	. 1130						]

CONTAINER ANALYTICAL PRESERVATIVE NK SZETTYPE METHOD BUBIA NO. ANALYSIS 31233-ahb 16 HCB .

		GENER	RAL INFORMATION	 · ·	14 
WEATHER:	10070	cloud cover	roin pepeded		
SHIPPED VIA:	FEDEX				
SHIPPED TO:	PACE			 	
SAMPLER: JA	NMR	OBSERVER:	· · ·		

# FIELD SAMPLING REPORT PROJECT NO: 6(00080036/3008, G-W

<u>.</u>...

.....

·······										
•		-	<b>*</b> -	FIELI	D SAMPLI	NG REPO	ORT			
•							1005.G-W			
							•			
				3200 TOWN POL	INGINEERING AI					
				PHONE:	(770) 421-3400 /	FAX: (770) 421	-3486		•	
	155			·····						
WELL ID: BAM				PRODUCT:		·	DATE:U			
SAMPLE METHOD	_per	istal	latic pr	ump			TIME: 11:5	4 start		
DUP./REP: OF:			обрани то	WATER: 12.4	17		GRAB (X) CO	MPOSITE	1	
				PTH: 38,4						
			PURGE V	olume: 1.04	<u>×3</u> = 3.	12				
· .			[0.163 x w	ater column heig		volumes) for	2" wells]			
	(			0.04 22	1/++					
									Pump Rate	
RME	VOL PU (gal		pН	TEMP (°C)	SPEC. COND. (mstcm)	ORP (mV)	TURB. (NTV)	DO (mg/L)	mVmin, (& pump setting)	New Water Level
nitial:			6.75	21.41	0,874	-66	18.4	5,0	600"%(33)	and the second second
11:59	<b>]</b>		6.94	20,75	0,867	-160.4	12.7	Q,36	600 "/min	12.51
12:04	2		6.96	20.72	0.867	-167	7,54	0.22		12.51
12:05	3		6.95	20,69	0.868	-171	2,92	0,15		12.51
12:12- (	Game	ters	Stall	Sample						
	<b></b>					·		·	<u> </u>	
		i	· · · ·	· · · · · · · · · · · · · · · · · · ·						
								•		
					Į					<u> </u>
								· 		
<u></u> _	Low F	Flow St	ability Crif	tera: pH = <u>+</u> 0.1	i ORP = <u>+</u> 10mV	Sp. Cond =	1 = <u>+</u> 3% DO = +	10% Turb.	1	J
COMMENTS:	YSF	10-	- 071	= 100591				· ·		
			10:	4430	+11 · · ·		· · · · · · · · · · · · · · · · · · ·			
				ten 10-	1620				· ·	
· · · ·	Sum	r <u>v</u>	- nme	-12.12	<u> </u>					
CONTAINER		_		ANALYTICAL	1					
SIZE/TYPE	NO.	_		METHOD	1.0		AN	ALYSIS		
11- yrass	╞╌┸╌┨	11	A	8081A	HCB			<u>_</u>		
	<u>├</u> ∱	·······		<b> </b>		· · ·				

		GENERA	L INFORMATION		
WEATHER:	100 %. clou	d love -	rain ex	pected	
SHIPPED VIA:	FedEx			y	
SHIPPED TO:	PACE				 
MPLER: MI	MR	OBSERVER:			 

Revised Groundwater Investigation Report Operable Unit 2 MACTEC Engineering and Consulting, Inc., Project 6107-10-0036

### APPENDIX D

# DATA VALIDATION AND CD FOR LABORATORY ANALYTICAL RESULTS REPORTS

### APPENDIX D

#### DATA VALIDATION

The groundwater sample laboratory analytical data packages consisted of seven sample delivery groups (SDGs). Each SDG was evaluated to determine compliance with the Quality Assurance/Quality Control (QA/QC) protocols established in the Groundwater Investigation Work Plan (Work Plan) (MACTEC, 2009) listed below:

- Sample receipt (chain of custody) and report completeness
- Holding times
- Field blanks, equipment blanks, and laboratory method blanks
- Field duplicates
- Surrogate recoveries (organics only)
- Matrix spike/matrix spike duplicates (MS/MSDs)
- Relationship between total and dissolved fractions (mercury only)

The laboratory met the reporting limit for the constituents of concern (COCs) as specified in the Work Plan. The COCs include mercury; hexachlorobenzene (HCB); and 2,2- and 2,4- isomers of dichlorodiphenyldichloroethane (DDD), dichlorodiphenyldichloroethylene (DDE), and dichlorodiphenyltrichloroethane (DDT), collectively referred to as DDTR. Data from the seven SDGs are useable with the qualifications discussed below.

### EVALUATION OF SDGS ANALYZED FOR HCB AND DDTR

**SDG 4011410** consisted of five samples, including one equipment blank and one field duplicate, which were analyzed by Pace Analytical Services, Inc. in Green Bay, Wisconsin, by U.S. Environmental Protection Agency (USEPA) Method 8081 for HCB. The samples were received by the laboratory in good condition, and anomalies were not reported on the chain of custody. The samples were analyzed within the applicable holding time. The equipment blank and laboratory method blank were free of contamination. Samples BAMW4C111208 and BAMWDUP01111208 were collected as field duplicates. HCB was not detected in either field duplicate, so precision could not be calculated. Surrogate recoveries for the HCB analysis were within laboratory recovery acceptance ranges. Volume was insufficient to prepare an MS/MSD sample for this SDG. The data from SDG 4011410 are useable without qualification.

#### Groundwater Investigation Report Operable Unit 2 MACTEC Engineering and Consulting, Inc., Project 6107-09-0036

**SDG 409490** consisted of four samples, including one field blank and one field duplicate, which were analyzed by Pace Analytical Services, Inc. in Green Bay, Wisconsin, by USEPA Method 8081 for HCB, DDD, DDE, and DDT. The samples were received by the laboratory in good condition, and anomalies were not reported on the chain of custody. The samples were analyzed within the applicable holding time. The field blank was free of contamination. The laboratory method blank had a detection of HCB of 0.0021J micrograms per liter ( $\mu$ g/L); however, the environmental samples were non-detect for HCB, and qualification was not necessary. Samples BAMW2C092308 and BAMWDUP01092308 were collected as field duplicates. HCB was not detected in either field duplicate, so precision could not be calculated. Surrogate recoveries for the analyses were within laboratory recovery acceptance ranges. The MS/MSD was performed on a sample from another SDG. The data from SDG 409490 are useable without qualification.

**SDG 409500** consisted of three samples, including a field blank, that were analyzed by Pace Analytical Services, Inc. in Green Bay, Wisconsin, by USEPA Method 8081 for HCB, DDD, DDE, and DDT. The samples were received by the laboratory in good condition, and anomalies were not reported on the chain of custody. The samples were analyzed within the applicable holding time. The field blank was free of contamination. The laboratory method blank had a detection of HCB of 0.0021J  $\mu$ g/L. Environmental sample BAMW4C092408 was flagged "JB" as estimated with possible blank contamination. The other samples were non-detect for HCB and did not require qualification. Surrogate recoveries for the analyses were within laboratory recovery acceptance ranges. The MS/MSD was performed on sample BAMW4C092408, and recoveries were within laboratory limits. The data from SDG 409500 are useable with the qualifications discussed above.

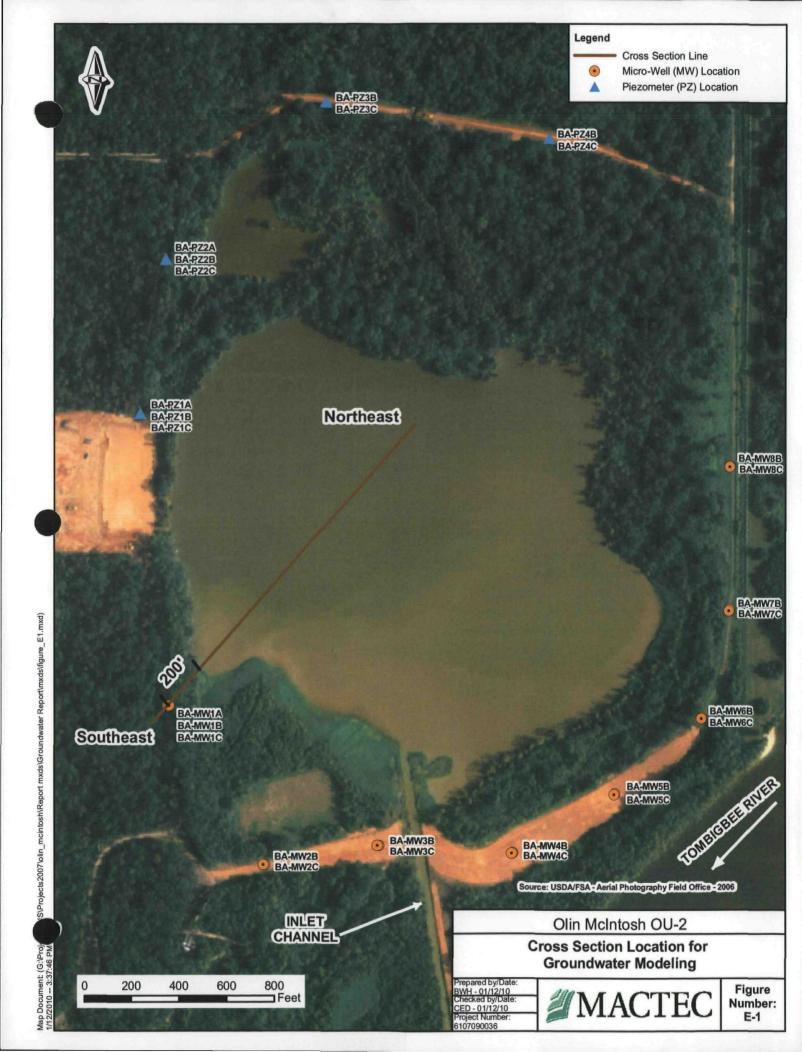
**SDG 409501** consisted of five samples, including a field blank and equipment blank, which were analyzed by Pace Analytical Services, Inc. in Green Bay, Wisconsin, by USEPA Method 8081 for HCB, DDD, DDE, and DDT. The samples were received by the laboratory in good condition, and anomalies were not reported on the chain of custody. The samples were analyzed within the applicable holding time. The field blank and equipment blank were free of contamination. The laboratory method blank had a detection of HCB of 0.0021J  $\mu$ g/L. All samples with detections of HCB were flagged "JB" as estimated with possible blank contamination. Surrogate recoveries for the analyses were within laboratory recovery acceptance ranges. The MS/MSD was performed on a sample from another SDG. The data from SDG 409501 are useable with the qualifications discussed above.

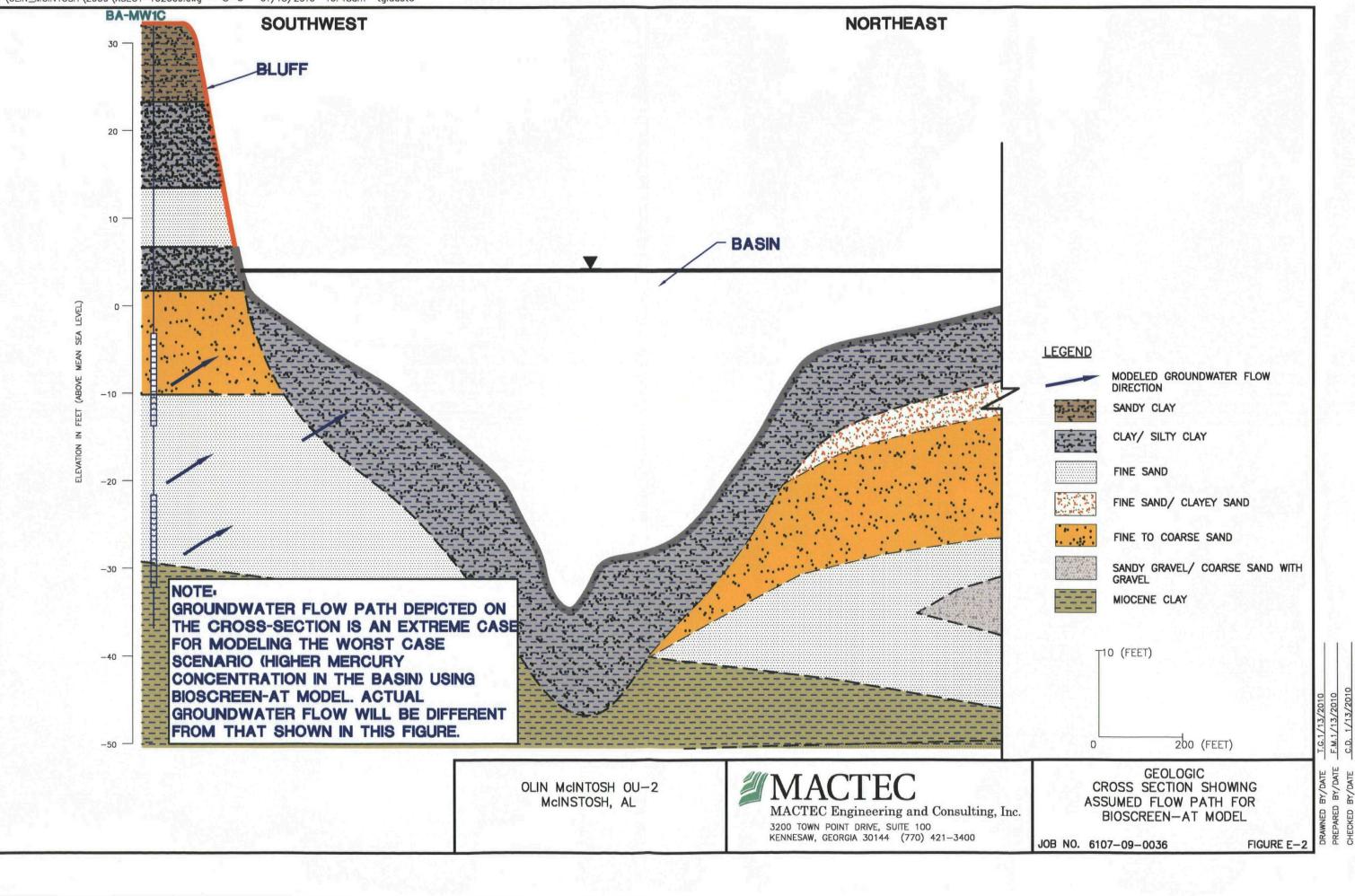
D-2

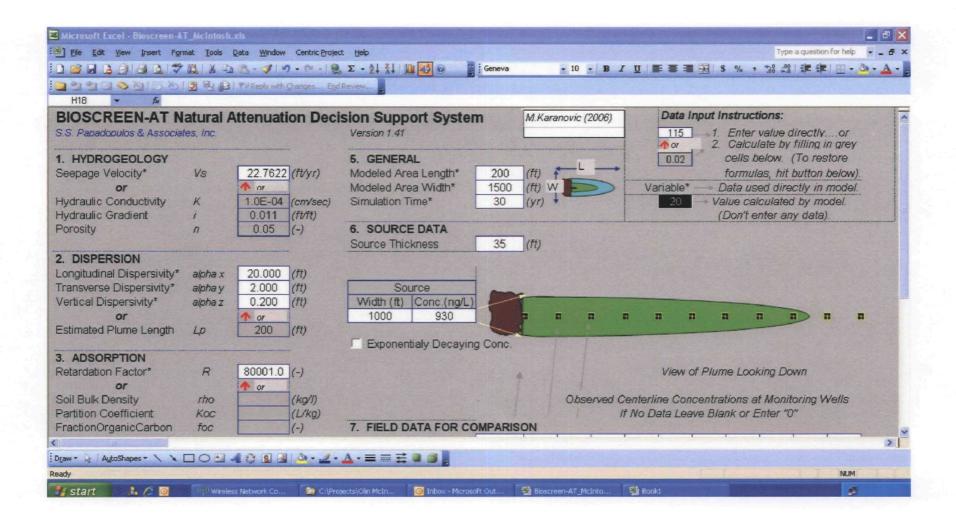
**SDG 409570** consisted of two samples, including a field blank, that were analyzed by Pace Analytical Services, Inc. in Green Bay, Wisconsin, by USEPA Method 8081 for HCB, DDD, DDE, and DDT. The samples were received by the laboratory in good condition, and anomalies were not reported on the chain of custody. The samples were analyzed within the applicable holding time. The field blank was free of contamination. The laboratory method blank had a detection of HCB of 0.0021J  $\mu$ g/L. Environmental sample BAMW5C092608 was flagged "JB" as estimated with possible blank contamination. The other sample was non-detect for HCB and did not require qualification. Surrogate recoveries for the analyses were within laboratory recovery acceptance ranges. The MS/MSD was performed on a sample from another SDG. The data from SDG 409570 are useable with the qualifications discussed above.

### **EVALUATION OF SDGS ANALYZED FOR MERCURY**

**SDG 2950 1-50** consisted of 25 samples, including 2 field duplicate pairs, one equipment blank, and 6 field blanks. SDG 2950 1-50 was analyzed via Battelle Marine Sciences Laboratory in Sequim, WA Washington, for filtered and unfiltered mercury by USEPA Method 1631. The samples were received by the laboratory in good condition, and anomalies were not reported on the chain of custody. The samples were analyzed within the applicable holding time. Field blanks were free of contamination as were the laboratory method blanks. The equipment blank had a filtered mercury result of 0.000554  $\mu$ g/L and unfiltered mercury result of  $0.00814 \,\mu g/L$ . The samples with mercury results (dissolved or total) greater than the detection limit were flagged "JB" for estimated with possible blank contamination. MS/MSDs were performed on seven samples from this SDG and recoveries were within laboratory method limits. Two field duplicate pairs were collected: BAMW7C092908 is a duplicate of BAMWDUP02092908, and BAM2C092308 is a duplicate of BAMWDUP01092308. The relative percent differences (RPD) between duplicates 20 the the were less than percent except for total mercury for BAMW7C092908/BAMWDUP02092908, which was 141 percent. A "J" flag would be applied to these two samples; however, they are already flagged "JB," which is higher than "J" in the evaluation hierarchy. The filtered mercury results were less than 110 percent of the corresponding unfiltered mercury results. The data from SDG2950 1-50 are useable with the qualifications discussed above.

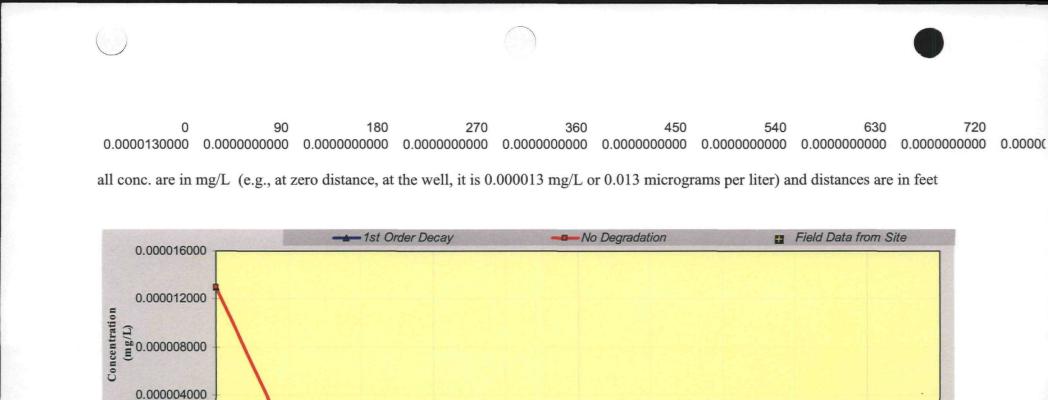

**SDG 2950_51-62** consisted of 6 samples, including one field duplicate pair, one equipment blank, and one field blank. SDG 2950_51-62 was analyzed by Battelle Marine Sciences Laboratory in Sequim, Washington, for filtered and unfiltered mercury via USEPA Method 1631. The samples were received by the laboratory in good condition, and anomalies were not reported on the chain of custody. The samples were analyzed within the applicable holding time. The field blank and laboratory method blanks were


free of contamination. The equipment blank had a filtered mercury result of 0.000286 JQ  $\mu$ g/L and an unfiltered mercury result of 0.000168 JQ  $\mu$ g/L. Samples with total or dissolved mercury results above the detection limit were flagged "JB" for estimated with possible blank contamination. An MS/MSD was performed on sample BAMW2C111108, and the recoveries were within laboratory method limits. The field duplicate pair (BAMW2C11108 and BAMWDUP01111108) had RPDs within 20 percent. The filtered mercury results were less than 110 percent of the corresponding unfiltered mercury results. The data from SDG2950_51-620 are useable with the qualifications discussed above.


Revised Groundwater Investigation Report Operable Unit 2 MACTEC Engineering and Consulting, Inc., Project 6107-10-0036

### **APPENDIX E**

## **BIOSCREEN-AT MODEL INPUTS AND OUTPUTS**





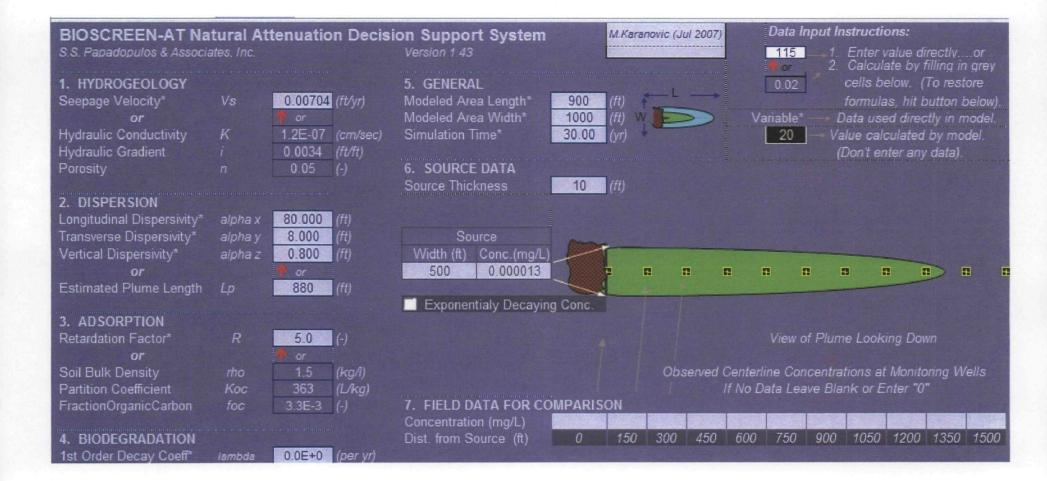



			ata Windr	w Centric Pr	roject Halo							Type a	question for help	
12200						A1 - 21   Mai		Geneva		- 10 - 1	TI	\$ % , .0 .00	Solar and the second second second	
	and the second se					and the second design of the s			1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		- 2	- 10 .000		-
Q33 👻				at Winnington (	affe i se tre tri	7								less to be
				DISSOLVE	D HYDROC	ARBON COI	CENTRAT	TIONS IN PL	UME (ng/L	at Z=0)		A State of the second		Ī
										Distance from	Source (t)			
	0	20	40	60	80	100	120	140	160	180	200			
No Degradatio			0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
1st Order Deca		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
						and the		and the second						
	Time=30 y	ears						Return to	Input	View Plun	e Output			
1000.0			1st Order D	lecav	-	No Deg	radation		🖬 Fiel	d Data from S	Site			
900.0		And Section		1000										
800.0										1.2.2				- 25
700.0				-			_							
600.0 500.0														199
₽ 500.0														
3 400.0 3														
400.0														
400.0 300.0 200.0	1													
400.0														
400.0 300.0 200.0	1			+		• • • •	• • •							
400.0 300.0 200.0 100.0	20	40	60		····	•	120	140	160 Distan	180 ce From Sou	200			

Source thickness: 35 ft Hydraulic gradient: 0.011

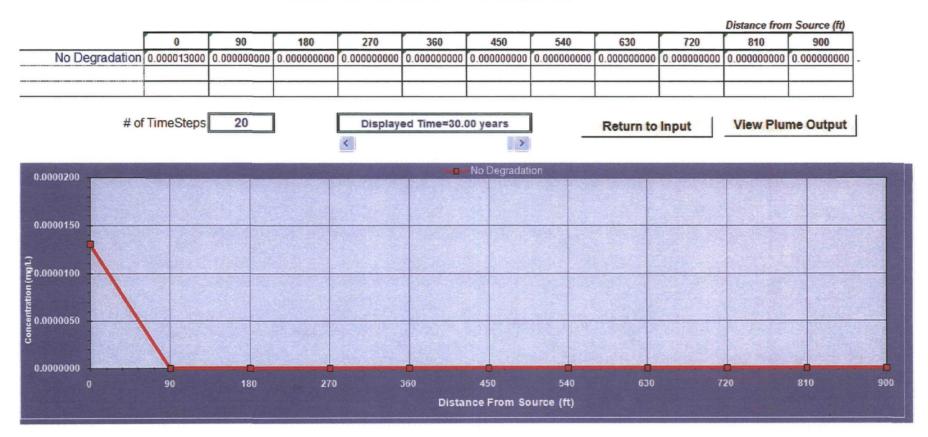


Distance From Source (ft)

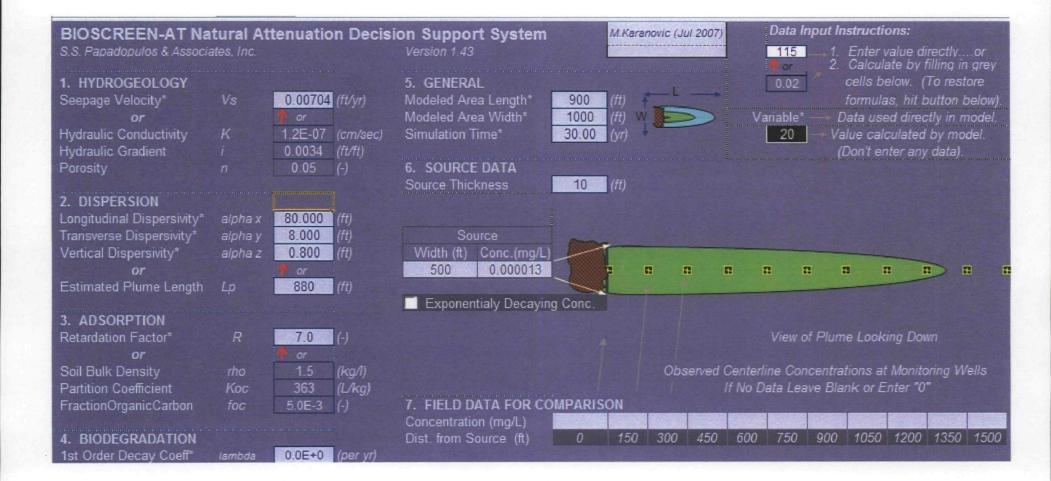

Hydraulic conductivity is  $1 \times 10^{-7}$  cm/s ( $1 \times 10^{-4}$  m/d; USBR reference)

Zone thickness is 10 feet

0.000000000

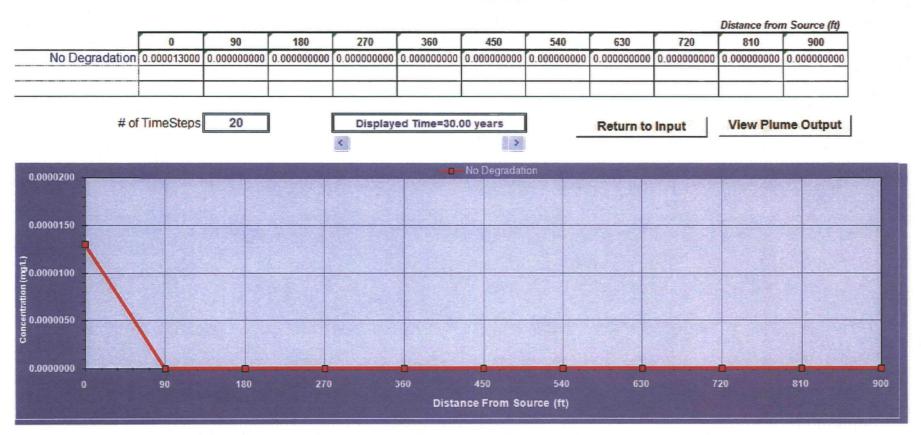

Effective porosity is 0.05






Input for total porosity of 45% and fraction organic carbon of 0.0033 (R ~ 5.0)

#### DISSOLVED HCB CONCENTRATIONS IN PLUME (mg/L at Z=0)




Output for total porosity of 45% and fraction organic carbon of 0.0033 ( $R \sim 5.0$ )



Input for total porosity of 45% and fraction organic carbon of 0.005 (R ~ 7.0)

#### DISSOLVED HCB CONCENTRATIONS IN PLUME (mg/L at Z=0)



Output for total porosity of 45% and fraction organic carbon of 0.005 (R ~ 7.0)