HUMAN HEALTH RISK ASSESSMENT for the ESTUARY, OPERABLE UNIT 1 MARSH TRESSPASSER, FISH AND SHELFISH CONSUMER, CLAPPER RAIL CONSUMER FINAL

LCP CHEMICAL SITE BRUNSWICK, GEORGIA

August 2011

Prepared for: LCP CHEMICALS SITE, BRUNSWICK, GEORGIA Prepared by: ENVIRONMENTAL PLANNING SPECIALISTS, INC.

HUMAN HEALTH BASELINE RISK ASSESSMENT FOR THE ESTUARY, OPERABLE UNIT 1 MARSH TRESPASSER, FISH AND SHELLFISH CONSUMER, CLAPPER RAIL CONSUMER FINAL August 2011

LCP CHEMICALS SUPERFUND SITE BRUNSWICK, GEORGIA

Prepared for:

LCP CHEMICALS SITE BRUNSWICK, GEORGIA

Prepared by:

ENVIRONMENTAL PLANNING SPECIALISTS, INC.

900 Ashwood Parkway, Suite 350

Atlanta, GA 30338

Kirk Kessler, Principal

August 2011

HUMAN HEALTH BASELINE RISK ASSESSMENT FOR THE ESTUARY, OPERABLE UNIT 1 MARSH TRESPASSER, FISH AND SHELLFISH CONSUMER, CLAPPER RAIL CONSUMER FINAL LCP Chemicals Superfund Site Brunswick, Georgia

August 2011

TABLE OF CONTENTS

1.0	INTRO	DUCTION1 -
	1.1	Overview 1 -
	1.2	Timeline
	1.3	Purpose 1 -
	1.4	Report Organization 2 -
2.0	PERT	INENT BACKGROUND INFORMATION 3 -
	2.1	Site Background and History 3 -
	2.2	Trespasser Access 3 -
3.0	DATA	ANALYSIS 4 -
	3.1	Overview 4 -
	3.2	Marsh Sediment 4 -
	3.3	Seafood Tissue 5 -
	3.4	Clapper Rail (Rallus longirostris) Tissue 6 -
4.0	EXPC	SURE ASSESSMENT
	4.1	Overview
	4.2	Conceptual Site Model 7 -
	4.3	General Exposure Assumptions
	4.4	Marsh Sediment Exposure Assumptions and Exposure Model 8 -
	4.5	Fish Consumption Exposure Assumptions and Exposure Model 13 -
	4.6	Dose Calculation for Fish Consumption 14 -
	4.7	Clapper Rail Exposure Assumptions and Exposure Model 15 -
5.0	TOXIC	CITY ASSESSMENT 17 -
	5.1	Overview 17 -
	5.2	General Toxic Effects 17 -
	5.3	Non-Carcinogenic Effects 17 -
	5.4	Carcinogenic Effects 18 -
	5.5	Toxicity Values 19 -
	5.6	Aroclor 1268 19 -
		5.6.1 Cancer Slope Factor for Aroclor 1268 20 -
		5.6.2 Reference Dose for Aroclor 1268 20 -
	5.7	Polycyclic Aromatic Hydrocarbons 21 -
	5.8	Mercury 22 -
	5.9	Aluminum
	5.10	Chromium 22 -
	5.11	Lead 23 -

5.12 Manganese	23 -
5.13 Thallium	24 -
6.0 RISK CHARACTERIZATION	25 -
6.1 Overview	25 -
6.2 General Concepts	25 -
6.3 RME Results – Marsh Trespasser	26 -
6.4 CTE Results – Marsh Trespasser	26 -
6.5 RME Results - Consumers of Recreationally Caught Fish	26 -
6.6 CTE Results - Consumers of Recreationally Caught Fish	27 -
6.7 RME Results – Hypothetical High Quantity Consumers of Fish	27 -
6.8 CTE Results – Hypothetical High Quantity Consumers of Fish	27 -
6.9 RME Results – Consumers of Shellfish	27 -
6.10 CTE Results – Consumers of Shellfish	28 -
6.11 RME Results – Consumers of Clapper Rail	28 -
6.12 CTE Results – Consumers of Clapper Rail	28 -
7.0 DEVELOPMENT OF REMEDIAL GOAL OPTIONS	29 -
8.0 UNCERTAINTY ASSESSMENT.	31 -
8.1 Overview	31 -
8.2 Hypothetical High Quantity Fish Consumption	31 -
8.3 Choosing a Toxicity Criterion for Aroclor 1268	33 -
8.4 Comparison of Noncancer Effects of PCBs in Monkeys and Humans.	35 -
8.5 Uncertainty Related to Aroclor 1268 Toxicity	38 -
8.6 Uncertainty in Exposure Estimates Related to Fish and Game Consu	mption - 39 -
0.0 DEFEDENCES	S

ATTACHMENTS

Figures

	1257 E B 195
Figure 1	Sample Locations

- Figure 2 Figure 3
- Clapper Rail Photo Conceptual Site Model

Tables

Table 1	Occurrence Summary, COPC selection and UCL95s for Marsh Sediment
	Samples, LCP Chemicals Site, Brunswick, GA
Table 2	Derivation of Benzo(a)Pyrene Toxic Equivalents Value
Table 3	Occurrence Summary, COPC Selection and UCL95s for Finfish, Shellfish and
	Clapper Rail Samples, LCP Chemicals Site, Brunswick, GA
Table 4	Size Fractions and Total Organic Carbon in Marsh Sediment Samples along with
	Spearmann Rank Correlation Coefficients and Probabilities
Table 5	Percent Moisture in Marsh Sediment Samples
Table 6	Calculation of DAevent for COPCs in Marsh Sediment
Table 7	Exposure Assumptions for Marsh Trespasser Scenario
Table 8a	RME Intake Doses and RME Cancer Risk Estimates for the Marsh Trespasser
	Scenario

Table 8b	CTE Intake Doses and CTE Cancer Risk Estimates for the Marsh Trespasser
Table 9a	RME Intake Dose and RME Noncancer Hazard Estimates for the Marsh
Table 9b	CTE Intake Dose and CTE Noncancer Hazard Estimates for the Marsh
Table 10	Exposure Assumptions for Finfish and Shellfish Consumption
Table 11	Percent of Total Catch for Use as Weighting Factors for the Various Fish Species based on Angling Success
Table 12a	Risk Estimates and Hazard Quotients for RME Recreational Adult Fish Consumer
Table 12b	Risk Estimates and Hazard Quotients for RME Recreational Adolescent Fish Consumer
Table 12c	Risk Estimates and Hazard Quotients for RME Recreational Child Fish Consumer
Table 13a	CTE Risk Estimates and Hazard Quotients for CTE Recreational Adult Fish Consumer
Table 13b	Risk Estimates and Hazard Quotients for CTE Recreational Adolescent Fish Consumer
Table 13c	Risk Estimates and Hazard Quotients for CTE Recreational Child Fish Consumer
Table 14a	RME Risk Estimates and Hazard Indices for Hypothetical Adult High Quantity Fish Consumers
Table 14b	RME Risk Estimates and Hazard Indices for Hypothetical Adolescent High Quantity Fish Consumers
Table 14c	RME Risk Estimates and Hazard Indices for Hypothetical Child High Quantity Fish Consumers
Table 15a	CTE Risk Estimates and Hazard Indices for Hypothetical Adult High Quantity Fish Consumers
Table 15b	CTE Risk Estimates and Hazard Indices for Hypothetical Adolescent High Quantity Fish Consumers
Table 15c	CTE Risk Estimates and Hazard Indices for Child Subsistence Fish Consumers
Table 16	RME Risks for Consumers of Shellfish
Table 17	CTE Risks for Consumers of Shellfish
Table 18	Consumption Rates for Clapper Rail
Table 19	RME Risk Estimates and Hazard Indices from Consumption of Clapper Rail
Table 20	CTE Risk Estimates and Hazard Indices from Consumption of Clapper Rail
Table 21	Summary of Toxicity Criteria
Table 22	Summary of Risk Estimates
Table 23a	Remedial Goal Options for Recreational Fish Consumers
Table 23b	Remedial Goal Options for Hypothetical High Quantity Fish Consumers
Table 23c	Remedial Goal Options for Shellfish Consumers
Table 23d	Remedial Goal Options for Clapper Rail Consumers
Table 24	Metabolism and Persistence of Various PCB Congeners Based on Park et al. (2007)
Table 25	Composition of the three Aroclor Mixtures
Table 26	Comparison of MOA-specific Bio-persistent Equivalents in Three Aroclor Mixtures
Table 27	Relative Potency Estimates for the Three Aroclor Mixtures for Three Modes of Action

Appendices

- Appendix A ProUCL Output
- Appendix B Development of RME and CTE Values for Hypothetical High Quantity Fish Consumers

1.0 INTRODUCTION

1.1 Overview

This report, which has been prepared by Environmental Planning Specialists Inc. (EPS) with assistance from Ted Simon LLC on behalf of the LCP Steering Committee, provides a human health baseline risk assessment (HHBRA) for Operable Unit 1 (OU1) of the LCP Chemicals Superfund Site in Brunswick, Georgia. This report is specific to marsh trespasser and consumption of fish, shellfish and clapper rail. These scenarios were requested by the US Environmental Protection Agency (USEPA) to evaluate any potential health risks associated with incidental or purposeful ingestion of estuarine biota from the LCP marsh and contact with LCP marsh sediment.

1.2 Timeline

Arcadis Geraghty Miller, Inc. previously prepared a draft HHBRA in 1997 and a revised HHBRA in 1999 (Geraghty & Miller, 1999), but at the time the estuary HHBRA was linked to the upland assessment (the upland is now recorded as Operable Unit 3). The USEPA segregated these into two OUs in late 2005, and subsequently requested a stand-alone HHBRA for the estuary (OU1) for the listed scenarios. Previous drafts of a stand-alone HHBRA were prepared by Ted Simon LLC and EPS in March 2008, October 2008, July 2009, and December 2010. The USEPA issued comments on the December 2010 draft in a letter to Honeywell dated May 17, 2011. Honeywell subsequently met with representatives of the USEPA and the Georgia Environmental Protection Division (GAEPD) on June 8, 2011 to discuss and resolve several outstanding issues. This version addresses the latest USEPA comments and incorporates the agreements reached at the June 8, 2011 meeting.

1.3 Purpose

The overall goal of this risk assessment is to develop essential scientific information that can be used in decision-making regarding the LCP Chemicals Site estuary in support of an evaluation of the need for remedial action. To accomplish this goal, the specific objective of this assessment is to quantitatively evaluate whether constituents of potential concern (COPCs) detected in post-removal action sediment and consumable marsh biota at the property present a potential exposure¹ and health risk² to future

¹ Exposure occurs when a person comes into direct contact with a chemical in an environmental medium (*e.g.*, soil, air). Exposure is quantified as the concentration of a chemical contacted in a medium averaged over the duration of the contact.

 ² Health risk is the probability of one or more harmful health effects occurring at either a measured or assumed level of exposure.

trespassers of the property or consumers of LCP marsh biota. Note that a separate assessment is also being performed for the ecological receptors.

This document serves as a comprehensive update to past drafts of the HHBRA for OU1. Certain elements of the HHBRA may be described by reference to past HHBRA submissions, where agreement had been reached with USEPA on key elements of the assessment (such references should assist in the review of this version).

1.4 **Report Organization**

To the degree possible, all methods and procedures used in this evaluation are consistent with standard USEPA methods and procedures.

The report consists of the following sections:

- 1. Introduction. Report objectives; general approach
- 2. Pertinent Background Information. Summary of historical land uses; description of the physical setting; description of the occurrence of chemicals at the property; and summary of environmental investigations
- 3. Data Analysis. Description of the data selection and exclusion process for the risk analysis
- 4. Exposure Assessment
- 5. Toxicity Assessment
- 6. Risk Characterization
- 7. Development of Remedial Goal Options
- 8. Uncertainty Assessment
- 9 References

2.0 PERTINENT BACKGROUND INFORMATION

2.1 Site Background and History

The LCP property is located in Brunswick, Georgia and occupies approximately 813 acres.³ Approximately 114 acres comprised the main contiguous area of former manufacturing operations at the Site (called the 'upland' area), while 670+ acres is occupied by tidal marshlands.

The upland area has been employed for industrial uses since 1919, beginning with the Atlantic Richfield Company (ARCO), who built a petroleum refining operation on the property. In 1937, 1942, and 1950, the Georgia Power Company (Georgia Power) acquired portions of the property. From 1941 to 1955, Dixie Paint and Varnish Company (subsequently the Dixie O'Brien Corporation and eventually a wholly owned subsidiary of the O'Brien Corporation) produced paints and varnishes on a portion of the property south of the Georgia Power site. In the mid 1950's, Allied Chemical (now Honeywell) acquired almost the entire property, and utilized it primarily for the production of caustic solutions, hydrogen gas, and chlorine gas. In 1979, LCP Chemicals-Georgia (LCP) acquired the property and continued the chlor-alkali manufacturing processes until operations ceased in early 1994. Honeywell repurchased the property in 1998 and currently owns the property.

Glynn County Planning Commission Land Use Maps show the property zoned as industrial property for both current and future use. Intended future land use for the property is continued industrial use.

2.2 Trespasser Access

The LCP marsh is surrounded primarily by industrial property. Access is limited by gate from the upland but accessible by watercraft from the Turtle River and marsh creeks. The upland and marsh are bordered by a county land disposal facility and a pistol firing range to the north, the Brunswick Pulp and Paper/Georgia-Pacific mill to the south, and Ross Road on the east and is defined as an industrial property. Access to the marsh from the upland is limited by fencing, onsite personnel and security patrols during off hours.

³ Based upon an updated property boundary survey by EMC Engineering Services, Inc. (2007).

3.0 DATA ANALYSIS

3.1 Overview

Analytical data from sediment and biota samples collected in the LCP marsh were used to identify constituents of potential concern (COPC) and to evaluate human exposure to those COPC. The initial data analysis for this HHBRA, including the identification of COPC and the derivation of exposure point concentrations (EPCs), was conducted by USEPA, and the results provided to Honeywell for use in the risk assessment (USEPA, 2010a).

Marsh Sediment 3.2

The sediment dataset used in this analysis was limited to samples of surface sediment (upper 15 cm) from the years 2000 through 2007 (i.e., following the marsh removal action of 1998-99). Sediment samples from the Turtle River and Purvis Creek domains were excluded as these areas remain inundated at low tide and afford no opportunity for Each result was treated as an individual sample; no averaging was exposure. performed. Sampling locations are shown in Figure 1.

Identification of COPC was conducted by comparing the maximum detected concentration of each constituent with the higher of: two-times the mean constituentspecific background concentration⁴ (inorganics only) and the appropriate USEPA Regional Screening Level (RSL) for residential soil (USEPA, 2010b). These comparisons are shown in Table 1. Consistent with USEPA Region 4 guidance, RSLs based on non-cancer endpoints were adjusted to a target hazard quotient of 0.1 by dividing the RSL value by 10 (USEPA, 2000). It should be noted that the residential RSL for Aroclor 1254 was used to screen Aroclor 1268 since no values specific to Aroclor 1268 exist. Additional discussion of Aroclor 1268 toxicity is provided in Sections 5 and 8.

Per USEPA Region 4 guidance, risk from carcinogenic polyaromatic hydrocarbons (cPAHs) was assessed in terms of benzo(a)pyrene toxic equivalents (BaP TEQ) rather than individual PAHs (USEPA, 2000). The derivation of the B(a)P TEQ is provided in Table 2.

⁴ Background concentrations for sediment were taken from the Human Health Baseline Risk Assessment for Marsh Sediment and Upland Soil, LCP Chemicals Site (Geraghty & Miller, 1999). These data represent the average concentration from a total of 38 background surface sediment samples collected in Jointer Creek (22 samples) and Clubbs Creek (16 samples), although not all analytes were included in all samples. For COPC selection, two-times the average background value was compared with the maximum detected concentration of inorganic constituents from site samples.

Regarding Aroclors, early testing for the full Aroclor suite demonstrated that only Aroclor 1268 was present in the marsh sediment and in biota. Hence, subsequent sampling was limited to Aroclor 1268. Polychlorinated Biphenyl (PCB) homologue analysis of sediment and biota were presented in Kannan et al. (1997) and Kannan et al. (1998). The homologue proportions are substantially similar to the proportions in Aroclor 1268. More recent work indicates the same conclusions (Sajwan et al., 2008; Cumbee et al., 2008; Pulster and Maruya, 2008; Pulster et al., 2005).

For chemicals identified as COPC based on the screening described above USEPA's ProUCL software version 4.00.02 (USEPA, 2007) was used to calculate EPCs. For each COPC dataset, the ProUCL software evaluates the data distribution (e.g., normal versus lognormal), the proportion of the samples reported as non-detect, and the total number of samples, and provides a recommendation for a specific statistical method as the basis for the EPC. These recommendations were followed in all cases. The ProUCL EPC recommendations are summarized in Table 1. Detailed output from the ProUCL software is provided in Appendix A.

3.3 Seafood Tissue

The occurrence data for the constituents detected in finfish and shellfish collected from the Brunswick area and the Turtle River adjacent to the LCP Site are presented in Table 3. Only samples collected from the LCP portion of the Turtle River estuary, identified as "Zone D (section of Turtle River from GA Highway 303 to Channel Marker 9)", "Zone H" (Purvis Creek), and "Zone I" (Gibson Creek) were included. These fish and shellfish were collected between 2002 and 2006 following guidance provided in Recommendations For A Fish Tissue Monitoring Strategy For Freshwater Lakes, *Rivers, And Streams* from the Georgia Department of Natural Resources (GA-DNR) (FTAC, 1992). The datasets are comprised of between 8 and 31 composite samples per species. The data consist of analytical results from fish species likely to be consumed by humans (e.g., red drum, spotted seatrout) as well as those less likely to be consumed (e.g., spot, striped mullet). The likelihood of consumption of a given species is based on a relative species harvest analysis of the Marine Recreational Fisheries Statistics Survey (MRFSS) data from 2001 through 2005. In addition, it continues to be common knowledge among recreational anglers that red drum and seatrout are more highly sought than are mullet or spot, both as game fish and fish for consumption. Additional discussion of the use of the MRFSS data is provided in Section 4.5. In addition to finfish, samples of blue crab and white shrimp were obtained and analyzed for PCBs, mercury, and other inorganics.

The COPC selection process applied for the seafood tissue data involved comparison of maximum detected constituent concentrations in fish and shellfish to USEPA Region 3

RSLs for fish ingestion (USEPA, 2010c). Following USEPA Region 4 guidance, for noncarcinogens, one-tenth of the fish ingestion RSL was used for screening (USEPA, 2000). It should be noted that the fish ingestion RSL for Aroclor 1254 was used to screen Aroclor 1268 since no values specific to Aroclor 1268 exist. Additional discussion of Aroclor 1268 toxicity is provided in Section 5. If the maximum detected concentration exceeded the RSL, the chemical was retained as a COPC. COPCs in finfish include Aroclor 1268 and mercury. COPCs in shellfish include Aroclor 1268, mercury, copper and zinc. The screening of COPCs in finfish and shellfish is provided in Table 3.

As with the marsh sediment data, EPCs in fish and shellfish were calculated using USEPA's ProUCL software version 4.00.02. Table 3 provides summary data, COPC selection, and EPCs for chemicals in fish and shellfish.

3.4 Clapper Rail (Rallus longirostris) Tissue

Clapper rail are small game birds living on the Atlantic coast (Figure 2). Clapper rail tissue was collected by USEPA from July through August 1995. A total of 16 clapper rail samples were obtained by USEPA sampling personnel from the most highly contaminated portion of the LCP marsh prior to the removal action. USEPA also collected 7 clapper rail from an off-Site reference area along Troup Creek. The USEPA sampling and analysis protocol included analysis for PCBs (specifically Aroclor 1268) and mercury. For purposes of the human health risk assessment, only the data from the breast tissue (the tissue generally consumed by humans) were included in the data set, providing a sample number of 14. The occurrence summaries for the clapper rail constituent concentrations at the Site are presented in Table 3. For screening of COPCs, the USEPA Region 3 RSLs for fish ingestion were used. ProUCL version 4.00.02 was used to calculate EPCs. It should be noted that for Aroclor 1268, ProUCL recommended an EPC based on the 99% Chebychev method, which corresponded to a value 19.94 mg/kg. However, this value exceeds the maximum detected concentration of 19.42 mg/kg. The maximum detected concentration was used for the intake calculations.

4.0 EXPOSURE ASSESSMENT

4.1 Overview

An exposure assessment was conducted as part of the health risk assessment to evaluate the potential exposure pathways at the LCP Site. An exposure pathway is defined by the following four elements: (1) a source and mechanism of constituent release to the environment; (2) an environmental transport medium for the released constituent; (3) a point of potential contact with the contaminated medium (the exposure point); and (4) an exposure route at the exposure point. The purpose of the exposure assessment is to estimate the way a population may potentially be exposed to constituents at a site. The conceptual site model (CSM) discussed below is specific to contact with the marsh sediment and fish and game consumption. The general CSM was presented in the earlier risk assessment previously reviewed by USEPA Region 4 and Georgia Environmental Protection Division (GAEPD) (Geraghty & Miller, 1999).

4.2 **Conceptual Site Model**

The conceptual site model provides the framework of the risk assessment. Generally, it characterizes the primary and secondary potential sources and release mechanisms and identifies the primary exposure points, receptors, and exposure routes. Receptors may include any living organism (plant, animal, and human). This risk assessment focuses on potential human exposure to COPCs detected in sediment and biota collected at, and adjacent to, the LCP Site. Exposure points are places or "points" where exposure could potentially occur, and exposure routes include the basic pathways through which COPCs may potentially be taken up by the receptor. Please note that the risk evaluation for fish and shellfish consumption in this section includes only these direct consumption pathways for contacting chemicals. Figure 3 shows a diagram of the simplified conceptual site model for the marsh trespasser and fish and game consumers.

Although analytical data for surface water do exist, it is not appropriate to include ingestion of surface water in a tidal marsh because the concentrations of whatever might be in the water would change with each tidal cycle, and any measured concentration would be meaningless relative to long term exposure. The existing surface water data for Aroclor 1268 at 12 locations ranges from non-detect to 0.18 micrograms per liter (µg/L). Aroclor 1268 is more similar toxicologically to Aroclor 1016 than to Aroclor 1254. The recreational water PRG for Aroclor 1016 obtained from the RAIS website based on noncancer effects in 790 µg/L. The recreational water PRG for Aroclor 1016 obtained from the RAIS website based on cancer effects for Aroclor 1016

is 66 μ g/L. Both are orders of magnitude above the maximum detected surface water concentration of 0.18 μ g/L.

A similar issue exists with respect to the evaluation of dermal contact with surface water. In addition, the implementation memo for *Risk Assessment Guidance for Superfund (RAGS), Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment)* (RAGS-E) (USEPA 2004a) indicates that for chemicals such as PCBs that have permeability coefficient (Kp) values outside the effective prediction domain, quantitative estimates of risk may be inaccurate. Hence, the appropriate qualitative statement of risk is that there may be some risk from dermal contact with surface water for the marsh trespasser; however, the ever-changing, tidally influenced and unknown concentrations in surface water and the lack of a credible exposure assessment methodology preclude any meaningful quantitative risk estimate for this pathway.

4.3 General Exposure Assumptions

To provide some understanding of the range of exposures and consequent risks, scenarios based on both reasonable maximum exposure (RME) and central tendency exposure (CTE) were evaluated. Standard default values for assessing risk that generally lead to the RME risk estimates were used (USEPA, 1991, 1997a). In several guidance documents, USEPA indicated that the RME approach is incomplete by presenting only a point estimate of risk with no indication of where it falls within the risk distribution (USEPA, 1992, 1997a, 2000).

The concept of RME provides an estimate of the highest reasonable exposure possible to an individual. Such an individual is defined as the RME receptor and is generally considered to be at the 90th percentile of the exposure distribution or higher whereas CTE provides a midrange estimate.

4.4 Marsh Sediment Exposure Assumptions and Exposure Model

It is important to note that exposure to sediment is not similar to exposure to surface soil. In fact, Region 4 USEPA's Supplemental Guidance to RAGS indicates that in most cases, it is unnecessary to assess the risk of human exposure to sediment (USEPA, 2000). Sediment occupies the skin surface for only a brief time before one's foot is moved into the water column and sediment is rinsed away. In addition, exposure to surface soil occurs by incidental ingestion from the hands. In the case of sediment, the water washes away or mixes the sediment on the hands and feet as they are withdrawn. In the case of an individual becoming really muddy, it is unlikely that this individual would put his hands on his face. There are subjective reports of soil in the mouth being gritty and unpleasant in quantities as low as 10 mg (Kissel et al., 1996;

Holmes et al., 1999). An individual crabbing or moving through the marsh would be reluctant to place his or her filthy hands near the face. Perhaps some tiny bits of mud caught beneath fingernails might later make its way to a receptor's mouth and be ingested. Regardless of these practical behaviors, sediment ingestion rates were assumed to be similar to those for residential soil - 100 mg/day for adult and adolescent receptors. Given the nature of sediment in the marsh, as discussed above, this is a conservative assumption.

This is a tidal marsh. Instead of seasonal periods, the marshes are covered by water about every 12 hours. Some areas of the marshes will be wet for longer periods than others depending on their elevation relative to the tidal change. Drought conditions do not affect the degree of diurnal seawater inundation of the marsh.

The marsh is a difficult place to negotiate on foot with any modicum of safety. There are many warnings about the dangers of "ploof" mud in the local newspapers along the Georgia and South Carolina coast. The sediment in the coastal marsh is often just like quicksand and individuals who choose to walk in the marsh may sink up to their waists or deeper. Based on discussions with USEPA and GAEPD personnel, exposure frequencies of 52 days per year and 6 days per year were selected for the RME and CTE trespasser receptors, respectively.

Exposure concentrations in sediment are also different than those in soil because of the high water content of sediment. In ecological risk assessment, moisture content of sediment and soil samples is routinely used to adjust laboratory-reported dry weight concentrations to wet weight concentrations. That procedure was also performed here because the receptor contacts wet sediment and hence, wet weight concentrations are more representative of the actual exposure situation. Please note that this adjustment is appropriate for dermal exposure to sediment but not for ingestion exposure. This method was used by USEPA in 2004 to assess sediment exposure by the dermal route to hydrophobic chemicals such as Aroclor 1268 and PAHs (USEPA, 2004b). Basically, the concentration is reduced by the percent of water as follows:

$$Concentration(wet weight) = \frac{Concentration(dry weight)}{100\% + Percent Moisture}$$
(Eq. 1)

Hydrophobic chemicals will tend to distribute among the various size particles of sediment according to the organic carbon content of the particular size fraction. This estimation is necessary because the upper bound of skin loading depends on particle size. This would be the case for Aroclor 1268 and PAHs. Metals in sediment would likely not show as much size partitioning. As a conservative measure, 100% of the total mercury present was assumed to be methylmercury. A size partitioning factor can calculated as follows:

$$Partition Factor = \frac{Percent Size Fraction_i}{\sum_{i=1}^{n} Percent Size Fraction}$$
(Eq. 2)

Equations 1 and 2 were combined as:

$$Effective Conc.(wet wt) = \frac{Concentration(dry weight) \times Partition Factor}{Percent Size Fraction \times (100\% + Percent Moisture)}$$
(Eq.3)

Grain size fractions along with total organic carbon (TOC) measurements were available for 26 separate sampling locations from the 2006 sampling event. Particles less than 0.075 mm in diameter are those that adhere to the skin to the greatest extent (USEPA, 2004b). Size fractions were available for these data for grain sizes greater than 0.075 mm in addition to separation into coarse, medium and fine sand as well as fines and gravel. There were statistically-significant correlations between TOC and the various sediment types in the sample (Table 4). TOC was positively correlated with fines and with gravel and negatively correlated with medium sand and fine sand. The conclusion is that the organic carbon in the sample is primarily in the fines. These small particles would also be trapped on the surface of the gravel particles and hence, be entrained in the gravel sample. It was assumed that all organic carbon in each sample was present as fines.

The organic carbon in fines was adjusted upward by dividing percent TOC by percent fines. Percent moisture was obtained from another set of 26 separate locations also obtained in 2006 (Table 5). Percent moisture showed a low variability and the mean of these data were used to represent percent moisture in all sediment.

Equation 3 was used to calculate effective concentrations using the EPC values. Effective concentrations were determined for Aroclor 1268 and carcinogenic PAHs only.

Calculation of Dermal Absorption per Event

The dermal absorbed dose per event was calculated as:

$$DA_{event} = C_{Effective} \times 10^{-6} \, \frac{\text{kg}}{\text{mg}} \times SAF \times ABS_i \tag{Eq. 4}$$

Table C-4 in RAGS-E gives the maximum particle loading per size of particle (USEPA, 2004a). The average maximum loading for particles less than 0.075 mm, i.e. the fines, calculated from Exhibit C-4 in RAGS-E is 13 mg/cm². This was used as the value for SAF, skin adherence factor. Note that this value is quite similar to that for Children-in-Mud from Exhibit C-3 in RAGS-E. Also note this value is about 20-fold higher than the value of 0.07 mg/cm² usually used for soil dermal pathway. Table 6 provides the calculation of DA_{event}.

"ABS Fraction" is the dermal absorption fraction for the COPC as reported by USEPA (2010b). These values are 0.14 for Aroclor 1268 and 0.13 for PAHs, including the benzo(a)pyrene equivalents used herein. For all metals evaluated in this risk assessment, dermal ABS Fraction values of zero were assigned per USEPA (2010b).

For the metals, DA_{event} was calculated using the EPCs without adjusting to an effective concentration.

For completeness, a sample calculation for DA_{event} for Aroclor 1268 is provided below.

$$DA_{event} = \frac{Partition \ Factor}{\% Size \ Fraction} \times \frac{EPC}{100\% + \% \ Moisture} \times 10^{-6} \ \frac{kg}{mg} \times SAF \times ABS_{i}$$

This is a combination of equations 1-4 above.

The calculation of DA_{event} for Aroclor 1268 is as follows:

$$DA_{event} = \frac{Partition Factor}{\% Size Fraction} \times \frac{EPC}{100\% + \% Moisture} \times 10^{-6} \frac{\text{kg}}{\text{mg}} \times SAF \times ABS_{i}$$
$$= 7.55\% \times \frac{2.571 \frac{\text{mg}}{\text{kg}}}{100\% + 67.82\%} \times 10^{-6} \frac{\text{kg}}{\text{mg}} \times 13 \frac{\text{mg}}{\text{cm}^{2}} \times 0.14$$
$$= 7.55\% \times 1.53 \frac{\text{mg}}{\text{kg}} \times 10^{-6} \frac{\text{kg}}{\text{mg}} \times 13 \frac{\text{mg}}{\text{cm}^{2}} \times 0.14$$
$$= 2.11E - 07$$

Calculation of Dermal and Oral Doses

The exposure assumptions for the marsh trespasser scenario are shown in Table 7.

The Dermal Absorbed Dose (DAD) is calculated as:

$$DAD = \frac{DA_{event} \times EF \times ED \times EV \times SA}{BW \times AT}$$
(Eq. 5)

EF is the exposure frequency in days/yr, ED is the exposure duration in years, EV is the events/day and SA is the skin surface area. BW is body weight and AT is averaging time. The following inputs were used for the RME receptors:

EF	52 days/yr
ED	30 yr for the adult
	10 yr for the adolescent
BW	70 kg for the adult
	45 kg for the adolescent
AT	25550 days for cancer
	ED*365 for noncancer
SA	3870 cm ² for the adult
	2559 cm ² for the adolescent

SA was determined as the skin surface area of the feet and lower legs. These values were 3870 cm² for adults and 2559 cm² for adolescents. They were suggested by GAEPD and were calculated based on Exhibit C-1 of RAGS-E. For Aroclor 1268 and PAHs, it was assumed that only the fines clung to the skin.

The oral dose is given by:

$$Oral Dose\left(\frac{mg}{kg-day}\right) = \frac{C_{sed} \times IR_{sed} \times EF \times ED \times CF}{BW \times AT}$$
(Eq. 6)

 C_{sed} is the concentration in sediment in mg/kg and IR_{sed} is the sediment ingestion rate in mg/day. CF is a conversion factor to obtain the appropriate units.

For noncarcinogens, Eq. 6 was applied to adults and adolescents separately. For carcinogens, the dose was apportioned to each age group separately. The dermal-specific toxicity criteria are then applied to Eq. 5 to obtain the dermal risk estimate. The oral toxicity criteria are applied to Eq. 6 to obtain the oral risk estimate. The lifetime receptor cancer risk was calculated by combining the risk for the individual age categories. To achieve a residential lifetime span of 30 years, the adult risk was multiplied by 0.67 and added to the adolescent risk (RME receptors only).

Tables 8a and 8b (RME and CTE cases, respectively) provide the intake doses of carcinogens and resulting cancer risk estimates for the Marsh Trespasser scenario. Tables 9a and 9b provide the intake doses of systemic toxicants and resulting noncancer hazard indices for the Marsh Trespasser scenario.

4.5 Fish Consumption Exposure Assumptions and Exposure Model

For the fish consumption risk assessment, both RME and CTE exposure assumptions (Table 10) were developed from USEPA (1997a) and other sources (DHHS, 1999; Appendix B). The goal in providing both RME and CTE risk estimate is to inform the risk decision makers about the potential range of risks associated with the site (USEPA, 1992; 2000).

Fish Consumption Rates

In this risk assessment for fish consumption, values reflecting the southeastern United States were used to represent recreational fish consumers (USEPA, 1997a). As an additional measure, information on seafood consumption from the Brunswick area obtained by the Agency for Toxic Substances and Disease Registry (ATSDR) and the Glynn County Health Department (GCHD) was used to develop exposure assumptions for hypothetical "high quantity"⁵ fish consumers.

In 1998, the ATSDR and GCHD conducted a survey to assess consumption of locally harvested seafood and mercury intake (DHHS, 1999). Because this study included two self-identified "subsistence"⁶ fishers, this dataset was used as a basis for the fish ingestion rates for the hypothetical high quantity fish consumer receptor. These estimates are shown in Table 10 and their derivation is presented in Appendix B.

Proportions of Species Consumed

The Marine Recreational Fisheries Statistics Program of the Office of Science and Technology within National Oceanic and Atmospheric Administration (NOAA) conducts the Marine Recreational Fisheries Statistics Survey (MRFSS) to produce catch, effort and participation estimates and to provide biological, social and economic data (NMFSS, 2007). USEPA made use of these data obtained from 1986 to 1993 to determine estimates of consumption of marine fish (USEPA, 1997a).

The MRFSS consists of a telephone survey and an intercept or creel survey conducted on two-month intervals. These two-month intervals are called waves. The period of two months was chosen because it was the maximum time for easy recall of past fishing trips. The intercept data from 2001 through 2005 was used here. These data are freely available on the internet (NMFSS, 2007).

A recent study by the National Academy of Science revealed that the MRFSS was flawed in its execution and the data generated are inaccurate and biased (NAS, 2006a).

⁵ The term "high quantity" is used in this risk assessment to describe consumers who consume more locally-caught fish than the typical recreational angler.

⁶ The GCHD/ATSDR study (2000) states that "subsistence fishers catch seafood as the primary source of their dietary protein."

The criticisms by the NAS were several: (1) sampling and statistical issues, such as failure to include anglers with access to private property and the use of different survey methods in different states; (2) lack of reliable human dimensions data, such as social, behavioral, attitudinal and economic data; (3) lack of coordination between federal and state personnel and "balkanization" of the survey methods and designs; and (4) the need for improved communication and outreach with anglers.

Even if the MRFSS data were reliable, its use would entail an estimation of consumption from the harvest. Others have attempted to perform this estimation and there is considerable uncertainty in the procedure (Rupp et al., 1980; ChemRisk, 1992; Ebert et al., 1993; Price et al., 1994). If MRFSS data from a sufficiently large area is included, it is appropriate to use MRFSS data to obtain the relative abundance of species in the overall catch. The proportion of various species in the MRFSS data would reflect both the relative abundance of various species and angler success. Table 11 shows the average percentage of the various species of fish caught by coastal Georgia anglers between 2001 and 2005 developed from the MRFSS data. The MRFSS data is available from the NOAA Fisheries website (<u>http://www.st.nmfs.gov</u>) as SAS export files.

Because the concentrations of COPCs are different in different species of fish, likely due to their feeding strategies, it is important to weight the species-specific exposure point concentrations according to angler success and preferences. This procedure is made quite simple by the use of a Fraction Ingested (FI) term applied to individual fish species as shown on Tables 12a-c,13a-c,14a-c, and 15a-c.

Concentrations in Finfish and Shellfish

Exposure point concentrations in fish were the 95% UCL of the arithmetic mean concentration calculated by a variety of statistical methods that were recommended by ProUCL. These values are shown in Table 3.

The effects of attenuation processes which would reduce the concentrations in fish and shellfish over time are not considered. Because the COPCs have been present at the Site for many years, any attenuation by fate and transport mechanisms is already reflected in the on-Site concentrations and in the EPCs.

4.6 Dose Calculation for Fish Consumption

The exposure dose was estimated for carcinogens as follows:

	ADD($\binom{mg}{\sqrt{kg-day}} = \sum_{i=1}^{species} \frac{P_i \times C_i \times FCR \times EF \times ED \times CF}{BW \times AT}$	(Eq. 1
Ci	=	Concentration in ith fish species (mg/kg)	
Pi	=	Proportion of the ith species in the total catch (%)	
FCR	=	Fish Consumption Rate (g/day)	
EF	=	Exposure Frequency (days/yr)	
ED	=	Exposure Duration (yr)	
BW	=	Body Weight (kg)	
CF	=	Conversion Factor (kg/g) = 1E-03	
AT	=	Averaging Time (days)	

where,

The unit analysis for Eq. 7 is as follows:

$$ADD\left(\frac{mg}{kg-day}\right) = \sum_{i=1}^{species} \frac{\frac{mg}{kg \times mg}}{\frac{kg \times g}{kg \times d}} = \frac{mg}{kg \times d} = \frac{mg}{kg - d}$$

The exposure dose was estimated for noncarcinogens as follows:

$$ADD\left(\frac{mg}{kg-day}\right) = \sum_{i=1}^{species} \frac{P_i \times C_i \times FCR \times CF}{BW}$$
(Eq. 8)

The unit analysis for Eq. 8 is as follows:

$$ADD\left(\frac{mg}{kg-day}\right) = \sum_{i=1}^{species} \frac{\frac{\% \times \frac{mg}{kg} \times \frac{g}{d} \times \frac{kg}{g}}{kg}}{kg} = \frac{mg}{kg-d}$$

Details of the risk estimation for consumption of finfish are provided in Tables 12a-c (RME Recreational), 13a-c (CTE Recreational), 14a-c (RME High Quantity), and 15a-c (CTE High Quantity). Details of the risk estimation for consumption of shellfish are provided in Tables 16 (RME) and 17 (CTE).

4.7 Clapper Rail Exposure Assumptions and Exposure Model

Residents living in the vicinity of the LCP Site could potentially obtain game from areas adjacent to the marsh. Similar to the seafood scenario, it is unlikely that individuals would hunt an appreciable amount in the vicinity of the Site due to the close proximity of more desirable and accessible areas. The USEPA and GAEPD requested at the time of the previous risk assessment (Geraghty & Miller, 1999) that potential risks associated with ingestion of clapper rails (*Rallus longirostris*) obtained in the vicinity of the LCP Site be evaluated. According to United States Fish and Wildlife (USFWS) representatives,

although the clapper rail is hunted, individuals do not commonly consume clapper rails due to their small size and lack of culinary satisfaction (Bowers, 1997, as cited in Geraghty & Miller, 1999). However, as a conservative measure in response to the request by USEPA and GAEPD, potential risks associated with clapper rail ingestion were assessed in the previous risk assessment and also here.

In order to estimate an ingestion rate for clapper rail, it was assumed that a wildlife consumer would obtain 10% of total game ingestion solely from clapper rail obtained near the LCP site. Data for total game ingestion were obtained from Table 11-6 in USEPA's *Exposure Factors Handbook* (USEPA, 1997a). The CTE value was assumed to be the mean and the RME value was assumed to be the mean plus two standard errors. The standard error was greater than the mean in all cases. Refer to the Section 8.7 for a discussion of how this issue contributes to the uncertainty of the RME risk estimates. Consumption for adults, adolescents and children were calculated in terms of g/day. Similar to the previous risk assessment, it was assumed that 10% of these ingestion rates reported in the Exposure Factors Handbook represented clapper rail consumption. The consumption rate estimation is shown in Table 18. The details of the intake dose and risk/hazard calculation are shown in Table 19 (RME) and Table 20 (CTE).

5.0 TOXICITY ASSESSMENT

5.1 Overview

This section discusses the two general categories of toxic effects (non-carcinogenic and carcinogenic) evaluated in risk assessments and the toxicity values used to calculate potential risks. Toxicity values for potential non-carcinogenic and carcinogenic effects are determined from available databases. For this risk assessment, toxicity values were first obtained from the USEPA's Integrated Risk Information System (IRIS). If toxicity criteria were not available in IRIS, other sources were consulted following a recommended hierarchy of toxicity values (USEPA, 2003).

5.2 General Toxic Effects

A distinction is made between carcinogenic and non-carcinogenic effects. For potential carcinogens, the previous regulatory guidelines (USEPA, 1989) use the linearized multistage model that assumes that any level of exposure to a carcinogen potentially could cause cancer. This point of view is changing and the 2005 Guidelines for Carcinogen Risk Assessment stress that knowledge of the mode of action is all important in the development of toxicity criteria (USEPA, 2005).

5.3 Non-Carcinogenic Effects

For many non-carcinogenic effects, protective mechanisms must be overcome before an effect is manifested. Therefore, a finite dose (threshold), below which adverse effects will not occur, exists for non-carcinogens. A single compound might elicit several adverse effects depending on the dose, the exposure route, the duration of exposure, and the susceptibility of the individual. Chemicals may exhibit their toxic effects at the point of application or contact (local effect), or they may exhibit effects at other sites (systemic effects) after they have been distributed throughout the body. Most chemicals can produce more than one type of toxic effect depending on the dose and the susceptibility of the exposed individual or receptor. The potential for noncarcinogenic effects is estimated by comparing a calculated exposure dose to an RfD or reference concentration (RfC) for each individual constituent. The RfD or RfC represents a daily exposure level which is designed to be protective of human health, even for sensitive individuals or subpopulations over a lifetime of exposure.

For a given chemical, the dose or concentration that elicits no adverse effect, usually in an animal bioassay, is referred to as the "no observed adverse effect level" (NOAEL). The lowest dose or concentration at which adverse effects are noticed is referred to as the "lowest observed adverse effect level" (LOAEL). Either the NOAEL or LOAEL is used to establish non-cancer toxicity values (RfDs) for oral or dermal exposure and RfCs for inhalation exposure. The RfD and RfC represent a daily exposure level, within

an order of magnitude, that is not expected to cause adverse health effects in any humans (USEPA, 1989). The RfD is an estimated oral dose of a chemical that is unlikely to cause adverse health effects. RfCs and unit risks are not discussed any further because none of the exposure scenarios in this risk assessment involve inhalation of chemicals. The uncertainty factor represents areas of uncertainty inherent in the extrapolation from the available data. The confidence levels (low, medium, high) assess the degree of confidence in the extrapolation of available data.

5.4 Carcinogenic Effects

Cancer induction in humans and animals by chemicals proceeds through a complex series of reactions and processes. Potentially carcinogenic chemicals may produce tumors at the point of application or contact, or they may produce tumors in other tissues after they have been distributed throughout the body. Some chemicals are associated only with one or two tumor types while others may cause tumors at many different sites.

One of the fundamental problems in cancer risk assessment is extrapolating from animal data to effects on humans. Typically, the USEPA extrapolates data from laboratory studies in which animals (usually rodents) have been exposed to the chemical in question. Epidemiological data are generally not used by USEPA to develop toxicity values because the studies do not have enough statistical power.

To develop cancer slope factors, USEPA extrapolates from observed laboratory animal data using mathematical models of dose-response. These models estimate a point-of-departure level, usually the 10% response level. The dose at the point-of-departure is known as the benchmark dose. Statistical 90% confidence limits around the point of departure level are developed and the slope of the line from the lower confidence limit on the benchmark dose through the origin is the slope factor. Hence, the cancer slope factor is the 95% upper bound on the slope of the dose-response curve in the low dose region. In the new Cancer Guidelines, USEPA recommends gaining an understanding of the mode of action in lieu of the default assumption of linearity (USEPA, 2005). Not all the values on IRIS reflect the emphasis on understanding the mode of action that is prescribed in the new Cancer Guidelines.

Chemical constituents are classified as known, probable, or possible human carcinogens based on a USEPA weight-of-evidence scheme in which chemicals are systematically evaluated for their ability to cause cancer in humans or laboratory animals. The USEPA classification scheme (USEPA, 1989) contains five classes based on the weight of available evidence, as follows:

- A known human carcinogen;
- B probable human carcinogen:

- B1 probable human carcinogen -- limited evidence in humans;
- B2 probable human carcinogen -- sufficient evidence in animals and inadequate data in humans;
- C possible human carcinogen -- limited evidence in animals;
- D inadequate evidence to classify; and
- E evidence of non-carcinogenicity.

This classification has been updated in USEPA's Guidelines for Carcinogen Risk Assessment (USEPA, 2005) and is slowly being replaced by the descriptors "Carcinogenic to Humans," "Likely to Be Carcinogenic to Humans," "Suggestive Evidence of Carcinogenic Potential," "Inadequate Information to Assess Carcinogenic Potential," and "Not Likely to Be Carcinogenic to Humans." IRIS remains to be updated in this regard.

5.5 Toxicity Values

Whenever possible, route-specific toxicity values have been used. However, toxicity values for dermal exposures have not yet been developed by USEPA; therefore, the oral toxicity values were used to derive adjusted toxicity values for use in assessing dermal exposure. The use of adjusted toxicity values represent the theoretical toxicity of the orally absorbed dose of the constituent based on the oral toxicity value and the assumed or measured gastrointestinal absorption (GI_{ABS}) in the study underlying the NOAEL or LOAEL. Thus, the calculated RfD and Cancer Slope Factor (CSF) values are:

$$RfD_a = RfD_o \times GI_{ABS}$$
 (Eq. 9a)

$$CSF_a = CSF_o/GI_{ABS}$$
 (Eq. 9b)

This approach is discussed in detail in Appendix A of USEPA (1989) and in USEPA (2004a). Chemical-specific GI_{ABS} values were available for all COPCs in marsh sediment (USEPA, 2010b).

The hierarchy of sources of toxicity values recommended by USEPA was used to obtain toxicity criterion (USEPA, 2003) with the exception of Aroclor 1268. Toxicity profiles below indicate the source of toxicity criteria used in this risk assessment. A summary of the toxicity criteria used and their sources is presented in Table 21.

5.6 Aroclor 1268

IRIS contains values for the cancer slope factor for PCB mixtures and reference doses for Aroclor 1016 and Aroclor 1254 only. Both a cancer slope factor value and a reference dose for Aroclor 1268 are available in the peer reviewed literature. This

source would be identified as Tier 3 in USEPA's hierarchy of toxicity values. OSWER directive 9285.7-53 (USEPA, 2003) states in this regard:

Priority should be given to sources that provide toxicity information based on similar methods and procedures as those used for Tier I and Tier II, contain values which are peer reviewed, are available to the public, and are transparent about the methods and processes used to develop the values.

Although there exist peer reviewed articles in the journal Regulatory Toxicology and Pharmacology on Aroclor 1268 that fulfill these requirements and do indeed use similar methods and processes, these values have not yet been placed in the IRIS database (Warren et al., 2004; Simon et al., 2007). Hence, the RfD value for Aroclor 1016 on the IRIS database (7E-05 mg/kg-day) was used as a surrogate toxicity criterion for Aroclor 1268. A further discussion of the choice of the Aroclor 1016 RfD and not the Aroclor 1254 RfD is presented below and in Section 8.

5.6.1 Cancer Slope Factor for Aroclor 1268

PCBs are classified as B2, a probable human carcinogen. The current PCB carcinogenicity assessment is based on dose-response cancer bioassays of Aroclor mixtures performed in rodents in 1996. USEPA used these studies to develop cancer slope factors (USEPA, 1996). Two slope factors were derived – one for high risk and persistence mixtures and the other for low risk and persistence mixtures. The values are 2.0 per mg/kg-day and 0.4 per mg/kg-day respectively. IRIS recommends using the high risk and persistence value for soil contact risk assessment. This value of 2.0 per mg/kg-day was also used for contact with PCBs in marsh sediment and PCBs consumed in fish.

5.6.2 Reference Dose for Aroclor 1268

The determination of whether Aroclor 1268 is more similar on a toxicological basis to Aroclor 1016 or Aroclor 1254 would determine the choice of a surrogate toxicity value. As will be shown below, Aroclor 1268 is more similar on a toxicological basis to Aroclor 1016 than to Aroclor 1254. Hence, the RfD for Aroclor 1016 was used.

To examine the potential similarities between the three mixtures, three modes of action (MOAs) were considered:

- A dioxin-like MOA characterized by binding to the aryl hydrocarbon receptor and quantified by dioxin TEQ (van den Berg et al., 2006);
- An MOA based on binding to the ryanodine receptor and consequent interference with cellular calcium homeostasis (Pessah et al., 2006; Simon et al., 2007); and

An MOA based on binding to trans-thyretin, a plasma thyroid binding protein, and subsequent increase metabolism of thyroxin (Chauhan et al., 2000).

In addition to these three MOAs, the effect of bioaccumulation and metabolism in humans was considered. Bioaccumulation and metabolism of PCBs was first guantified in the 1990s based on examination of tissue concentrations in relatively lightly exposed capacitor workers versus heavily exposed Yusho and Yucheng patients (Brown et al., 1989; Lawton et al., 1985a,b). A scheme of PCB metabolism was developed that now appears guite accurate when compared with recent data on congener measurements in humans (Brown, 1994; Brown et al., 2007; Park et al., 2007). Distribution data from Park et al. (2007) were normalized to the concentration of PCB153 in plasma because this is the most prevalent congener in humans. In this way, values between zero and one were developed for all 209 congeners. If a congener was not detected, it was assigned a value of zero. One can think of these values as a bioaccumulation "equivalent" for humans. The rationale for using this "bioaccumulation equivalence" scheme is that because PCBs tend to persist in humans, toxic effects are due to long term exposure.

Congener concentrations in Aroclor 1016, 1254 and 1268 were obtained from Anderson (1991) and Frame et al., (1996). For each MOA, the value of the relative potency of each congener was multiplied by the congener bioaccumulation equivalent and the congener concentration in Aroclor 1016, Aroclor 1254 and Aroclor 1268. For each mixture, the sum of these values represented the potential for the particular Aroclor mixture to produce toxicity specific to each MOA. Aroclor 1254 has more of each type of bioaccumulated equivalent and contains about 1 order of magnitude more of both bioaccumulated neurotoxic equivalents and bioaccumulated thyroid hormone equivalents than either of the other two mixtures. Additional details of this analysis are provided in Section 8.

The conclusion is that the reference dose for Aroclor 1016 is more likely to reflect the toxicity to humans than is the reference dose for Aroclor 1254 and the RfD of 7E-05 mg/kg-day was used as a surrogate toxicity criterion for Aroclor 1268.

5.7 Polycyclic Aromatic Hydrocarbons

These ubiquitous chemicals have a clear carcinogenic endpoint and are represented in the quantitative risk evaluation as benzo(a)pyrene equivalents. Benzo(a)pyrene has an oral cancer slope factor on IRIS and is classified as B2, a probable human carcinogen. IRIS indicates that human data on the carcinogenicity of benzo(a)pyrene is inadequate to demonstrate the chemical is responsible for human cancer. This assessment of inadequacy stems from the fact that benzo(a)pyrene occurs as part of a mixture of

chemicals and may not be the sole carcinogen present. However, PAHs and benzo(a)pyrene occur in cigarette smoke, roofing tar and coke oven emissions, and few would argue that cigarette smoking and lung cancer are unrelated. Tumors have occurred in rodents from administration of benzo(a)pyrene by a variety of exposure routes. The data are considered sufficient for quantitative analysis and the oral cancer slope factor on IRIS is 7.3 per mg/kg-day.

5.8 Mercury

Mercury is known to exist in sediment in equilibrium between inorganic forms and methylmercury. For all exposure scenarios considered here - sediment exposure, fish consumption or clapper rail consumption - all mercury was assumed to be present as methylmercury. The reference dose for methylmercury is available on IRIS and is 1E-04 mg/kg-day. The RfD for methylmercury was completed in 2001 and is based on the occurrence of neurodevelopmental effects from several epidemiological studies. The development of the RfD is available on IRIS and also in USEPA's Mercury Study Report to Congress (USEPA, 1997b).

5.9 Aluminum

The primary toxicological effect of aluminum is neurotoxicity. This effect was first observed in patients in the early days of renal dialysis – patients developed dementia within 6-9 months. Removal of aluminum from the dialysis fluid decreased the incidence of dementia. The critical endpoint for the provisional reference dose for aluminum is the occurrence of developmental neurotoxicity in mice observed in several studies. The LOAEL from the mouse studies was 100 mg/kg-day. The combined uncertainty factor was 100 resulting in an RfD of 1 mg/kd-day. The full derivation is provided in the professional peer-reviewed toxicity value (PPRTV) document for aluminum (USEPA, 2006).

5.10 Chromium

In keeping with previous versions of this HHBRA, total chromium detected in sediment was evaluated as hexavalent chromium (VI) for purposes of both COPC screening and risk characterization. The oral RfD is based on a NOAEL in a drinking water study in rats. This value was chosen rather than that of trivalent chromium (III) because it is lower (i.e., more conservative), reflecting the greater toxicity of chromium (VI) compared with chromium (III). The December 2010 version of the RSLT (USEPA, 2010b) incorporates a new oral cancer slope factor for chromium (VI). This value was developed by the California Environmental Protection Agency and is based on an increased incidence of tumors of the small intestine in mice exposed to chromium (VI) in a drinking water study conducted by the United States National Toxicology Program.

The use of these toxicity values for chromium (VI) makes for an extremely conservative assessment. Although the there are no site-specific data available on the speciation of chromium in the sediment in the LCP estuary, chromium (VI) was not known to be used in Site operations. Further, chromium (III) is strongly favored in natural waters and sediments because the concentrations of sediment constituents known to reduce chromium (VI) to chromium (III) generally far outweigh the concentrations of the few constituents known to oxidize chromium (III) to chromium (VI). Once reduced, chromium (III) is very stable in aquatic environments and highly unlikely to oxidize to chromium (VI). (James and Bartlett, 1983; Fendorf 1995; Weaver and Hochella, 2003).

5.11 Lead

Lead was identified as a COPC because maximum detected concentrations in sediment exceeded default screening levels. Because of its unique toxicological properties, lead is evaluated differently from other COPCs in the risk assessment process. Lead can produce a number of significant noncancer adverse effects, including effects on the gastrointestinal system, hematopoietic system, cardiovascular system, central and peripheral nervous system, and kidneys. Unlike other noncarcinogens, however, no RfD has been developed for lead. Instead, the metric used to evaluate the toxicological significance of lead exposure is the 10 μ g/dL blood lead "level of concern" established by the U.S. Centers for Disease Control (CDC, 1991). The USEPA has developed biokinetic models to estimate the effect of site- or media-specific lead exposure to changes in a receptor's baseline blood lead level (BLL) which can then compared to the 10 μ g/dL level of concern.

The USEPA has established a residential soil screening level for lead of 400 mg/kg (USEPA, 1994) that is based on the biokinetic modeling described above such that a hypothetical child would have no more than a 5% risk of exceeding a blood lead level of 10 μ g/dL. Although lead was identified as a COPC in marsh sediment based on the conservative screening approached used in this risk assessment, its EPC of 43.7 mg/kg (based on the 95% UCL) was nearly 10-times below the residential screening value of 400 mg/kg used by USEPA for residential land use. On this basis, no additional risk evaluation of lead in soil was performed.

5.12 Manganese

The RfD for manganese is based on dietary requirements in humans and a single epidemiological study from Greece. The value is 1.4E-01 mg/kg-day. Manganese does not appear to be carcinogenic and is classified in group D. Additional information is available on the IRIS database.

5.13 Thallium

The toxicity of thallium compounds was recently reviewed by the USEPA and it concluded that insufficient toxicological information exists to develop reliable quantitative dose-response estimates. As a result of that review, all toxicity values related to thallium were withdrawn from USEPA's IRIS database. For this risk assessment, the withdrawn RfD for thallium (soluble salts) was used. Previously, IRIS toxicity assessments were available for a number of thallium compounds; Thallium (soluble salts) was chosen because the water in the marsh and estuary is salt water. The withdrawn RfD is 6.5E-5 and based on a NOAEL in from rat subchronic study in which critical effect was elevation of serum enzymes. In the principal study, dose-related increases in alopecia, lacrimation, and exophthalmos were also observed. Thallium does not appear to be carcinogenic and is classified in group D. Additional information is available on the IRIS website.

6.0 RISK CHARACTERIZATION

6.1 Overview

This section discusses the potential risk to human health associated with sediment contact and fish and game consumption. A summary of risk estimates is presented in Table 22.

6.2 General Concepts

Potential risks to human health can be evaluated quantitatively by combining potential exposure and toxicity data. A distinction is made between non-carcinogenic and carcinogenic endpoints, and two general criteria are used to describe risk: the hazard quotient (HQ) for non-carcinogenic effects; and excess lifetime cancer risk (ELCR) for constituents thought to be potential human carcinogens.

Exposure doses are averaged only over the exposure duration period to evaluate noncarcinogenic effects. The HQ is the ratio of the estimated exposure dose and the RfD for oral, dermal and inhalation exposures. An HQ greater than 1 indicates that the estimated potential exposure for that constituent exceeds the RfD. This ratio does not provide the probability of an adverse effect, but does reflect the concept of a threshold for the adverse effects. While an HQ value of less than 1 indicates that health effects are highly unlikely to occur, an HQ value that exceeds 1 does not suggest that health effects will occur. RfDs have been developed as protective estimates of the human threshold for adverse effects and have a margin of safety included. The RfD is a very good tool for CERCLA-type risk assessments that are ultimately used to develop a cleanup level with a high expectation of protectiveness. The RfD is a poor tool for determining whether actual human effects will occur. The sum of the HQs is the hazard index (HI).

A limitation with the hazard index approach is that the assumption of dose additivity is applied to compounds that produce different effects by different mechanisms of action. Consequently, the summing of hazard indices for a number of compounds that are not expected to induce the same type of effects or that do not act by the same mechanism or on the same target organ may overestimate the potential for adverse effects (USEPA, 1989). Consistent with USEPA risk assessment guidelines for chemical mixtures, in the event that a total HI exceeds 1, HQs should be segregated HQs by target organ (USEPA, 1989). In this risk assessment, this is not an issue because the two risk drivers mercury and Aroclor 1268, produce effects on the same target organ — the brain and nervous system.

The ELCR is an estimate of the potential increased risk of cancer resulting from lifetime exposure to constituents detected in media at the facility. Estimated doses, or intakes,

for each constituent are averaged over the hypothesized lifetime of 70 years. It is assumed that a large dose received over a short period is equivalent to a smaller dose received over a longer period, as long as the total doses are equivalent. The ELCR, equal to the product of the exposure dose and the CSF, is estimated for each appropriate COPC in each medium. The risk values provided in this report are an indication of the potential increased risk from contact with Site media. Similar to RfDs, the cancer slope factor is a tool to develop protective cleanup levels, but a poor predictor of the actual occurrence of cancer in humans. Because ELCRs are probabilities, they can be summed across routes of exposure and COPCs to derive a "Total Site Risk" (USEPA, 1989). ELCR estimates are evaluated in the context of the risk range of 1 in 1,000,000 (10⁻⁶) to 1 in 10,000 (10⁻⁴) identified in the National Contingency Plan (NCP) (40 CFR Part 300).

6.3 RME Results – Marsh Trespasser

RME risk estimates and hazard indices were determined for adolescent, adult, and "lifetime" consumers in the marsh trespasser scenario (Table 8a, Table 9a, Table 22). The RME cancer risk for the lifetime receptor is 1E-05. The risk estimate for the adolescent was added to 67% of the adult estimate. This procedure provides a value for exposure duration of 30 years with 10 years as an adolescent and 20 years as an adult. This value is at the mid-point of the risk range identified in the NCP. The RME hazard indices for the adult and adolescent receptors are 0.06 and 0.08, respectively. These are both below the regulatory threshold of unity.

6.4 CTE Results – Marsh Trespasser

CTE risk estimates and hazard indices were determined for adolescent, adult, and lifetime receptors in the marsh trespasser scenario (Table 8b, Table 9b, Table 22). The CTE cancer risk for the lifetime receptor is 2E-07. This value is nearly 10-fold lower than the lower end of the risk range identified in the NCP. The CTE hazard indices for the adult and adolescent receptors are 0.005 and 0.006, respectively. These are both below the regulatory threshold of unity.

6.5 RME Results - Consumers of Recreationally Caught Fish

RME risk estimates and hazard quotients were determined for child, adolescent, adult, and lifetime consumers of fish. The estimated RME cancer risk for the lifetime fish consumer was 1E-04. The risk estimates for the child and adolescent were summed and added to one-half of the adult estimate. This procedure provides a value for exposure duration of 30 years with 6 years as a child, 9 years as an adolescent, and 15 years as an adult. The RME hazard indices for the adult, adolescent and child receptors in the recreational fish consumption scenario were 3, 3 and 4 respectively.

These calculations and results are shown in Tables 12a, b and c, and summarized in Table 22.

Following USEPA Region 4 risk assessment guidance (USEPA 2000), Aroclor 1268 and mercury are identified as constituents of concern (COCs). The guidance indicates that the total HI may be separated into target organ-specific HIs. However, in this case, both PCBs and mercury affect the brain and nervous system and thus should not be separated. Although mercury is a significant contributor to the total HI, it seems likely that mercury would be difficult to clean up in fish due to atmospheric deposition and mercury cycling. A further discussion of mercury related to fish clean up is presented in Section 8.

6.6 CTE Results - Consumers of Recreationally Caught Fish

The estimated CTE cancer risk for the lifetime recreational fish consumer is 2E-05 estimated in a similar fashion as described for the RME results. The lifetime risk was estimated as a sum of the risk estimates for the child, adolescent, and adult. The CTE HIs for the adult, adolescent, and child receptors in this scenario are 0.8, 0.9, and 1, respectively. These low CTE risk and hazard estimates support the conclusion that no chemicals would be likely to be selected as COCs. These calculations and results are shown in Tables 13a, b and c, and summarized in Table 22.

6.7 RME Results – Hypothetical High Quantity Consumers of Fish

The estimated RME cancer risk for the lifetime high quantity fish consumer is 2E-04. The lifetime risk was estimated as a sum as described in Section 6.5. The RME HIs for the adult, adolescent, and child receptors in this scenario are 5, 5, and 8, respectively. These calculations and results are shown in Tables 14a, b and c, and summarized in Table 22.

6.8 CTE Results – Hypothetical High Quantity Consumers of Fish

The estimated CTE cancer risk for the lifetime high quantity fish consumer is 4E-05. The lifetime risk was estimated as a sum as described in Section 6.6. The CTE HIs for the adult, adolescent, and child receptors in this scenario are 2, 3, and 2 respectively. These calculations and results are shown in Tables 15a, b and c, and summarized in Table 22.

6.9 RME Results – Consumers of Shellfish

The estimated RME cancer risk for the lifetime consumer of shellfish is 6E-05. The lifetime risk was estimated as a sum as described in Section 6.5. The RME hazard indices for the adult, adolescent, and child receptors in this scenario are 2, 0.7, and 4,

respectively. Table 16 shows the calculations and results. A summary is also provided in Table 22.

6.10 CTE Results – Consumers of Shellfish

The estimated CTE cancer risk for the lifetime consumer of shellfish is 9E-06. The lifetime risk was estimated as a sum as described in Section 6.6. The CTE hazard indices for the adult, adolescent, and child receptors in this scenario are 0.6, 0.2, and 2, respectively. Table 17 shows the calculations and results. A summary is also provided in Table 22.

6.11 RME Results – Consumers of Clapper Rail

The estimate of RME cancer risk for the lifetime consumer of clapper rail is 1E-04. The lifetime risk was estimated as a sum as described in Section 6.5. The RME hazard indices for the adult, adolescent, and child receptors are 2, 1, and 5, respectively. Table 19 shows the calculations and results. A summary is also provided in Table 22.

6.12 CTE Results – Consumers of Clapper Rail

The estimate of CTE cancer risk for the lifetime consumer of clapper rail is 8E-06. The lifetime risk was estimated as a sum as described in Section 6.6. The CTE hazard indices for the adult, adolescent, and child receptors are 0.4, 0.1, and 0.4, respectively. These are all below the regulatory threshold of unity. Table 20 shows the calculations and results. A summary is also provided in Table 22.

7.0 DEVELOPMENT OF REMEDIAL GOAL OPTIONS

Consistent with USEPA Region 4 guidance (USEPA 2000), a range of Remedial Goal Options (RGOs) is presented for each constituent identified as a COC. Region 4 guidance states:

Chemicals of Concern (COCs) are the Chemicals of Potential Concern (COPCs) that significantly contribute to a pathway in a use scenario for a receptor (e.g. hypothetical future child resident, current youth trespasser, current adult construction worker, etc.) that either (a) exceeds a 10-4 cumulative site cancer risk; or (b) exceeds a non-carcinogenic hazard index (HI) of 1. Note: generally, a 10-4 cumulative site risk level and an HI of 1 are used as the remediation "trigger." The exact level used as the "trigger" is at the discretion of the risk manager. The carcinogen "trigger" represents the summed risks to a receptor considering all pathways, media, and routes per land use scenario. The HI represents the total of the hazard quotients (HQs) of all COPCs in all pathways, media, and routes to which the receptor is exposed. If the HI exceeds 1.0, then more specific HIs should be developed by summing HQs of COPCs with Reference Doses (RfDs) based on toxic effects on the same target organs. This specific target-organ based HI should form the basis of COC selection. Chemicals are not considered as significant contributors to risk and therefore are not included as COCs if their individual carcinogenic risk contribution is less than 10-6 and their noncarcinogenic HQ is less than 0.1.

Examination of Table 22 indicates that the scenarios for which cancer risk estimates would trigger development of RGOs are that of the recreational fish consumer, with a lifetime risk of 1E-04 and HIs exceeding 1, the hypothetical high quantity fish consumer with a lifetime risk of 2E-04 and HIs exceeding 1, the shellfish consumer with HIs exceeding 1 for the adult and child receptors, and the clapper rail consumer, with a lifetime risk of 1E-04 and HIs exceeding 1 for the adult and child receptors. All of these cancer risk values are just slightly above the trigger level of 1E-04. RME hazard indices in fish and game consumption scenarios would generally trigger RGO development as most of these are greater than unity. Risk estimates and hazard indices for the marsh trespasser scenario would not trigger RGO development.

Table 23a presents the cancer and non-cancer based RGOs for recreational finfish consumption; Table 23b presents the cancer and non-cancer based RGOs for the hypothetical high quantity fish consumer; Table 23c presents the non-cancer based RGOs for shellfish consumption; Table 23d presents the cancer and non-cancer based RGOs for clapper rail consumption.

8.0 UNCERTAINTY ASSESSMENT

8.1 Overview

The risk estimates presented here are conservative estimates of potential risks associated with potential exposure to constituents detected in media at the LCP Site. Uncertainty is inherent in the risk assessment process, and a discussion of these uncertainties is presented in this section. Each of the three basic building blocks for risk assessment (monitoring data, exposure scenarios, and toxicity values) and for the exposure assessment (factors, models, and scenarios) contributes to the overall uncertainty.

Samples collected during site investigations were intended to characterize the nature and extent of potential contamination at the Site. Subsequently, most of the samples were collected from locations selected in a directed manner to accomplish this goal. Sampling locations selected in this way provide considerable information about the Site, but often tend to be concentrated in areas of higher levels of contamination. Therefore, data from sampling locations selected in this manner tend to overestimate constituent concentrations representative of the potential exposure area. This may not be as large an issue in this risk assessment because of the abundance of data at the LCP Site (Figure 1). Hence, this risk assessment (like others) is based on the assumption that the available sampling data adequately describe human contact with chemicals in environmental media at the LCP Site.

8.2 Hypothetical High Quantity Fish Consumption

This risk assessment included an evaluation of hypothetical high quantity consumers of fish because the ATSDR/GCHD seafood survey (DHHS, 1999) included two Glynn County residents who identified themselves as "subsistence" fishers. Data from the ATSDR/GCHD survey were used to develop fish intake estimates consumers of locally caught fish that might have higher rates of consumption than is reflected by the rates for the recreational consumer obtained from USEPA's Exposure Factors Handbook. The derivation of the fish ingestion rates for this receptor is described in Appendix B. However, because the ATSDR/GCHD study only included information about the survey respondants' recent seafood consumption (including both finfish and shellfish) from all sources (i.e., locally harvested and purchased), not only fish harvested from the Turtle River or its tributaries, these intake estimates are likely to significantly overestimate finfish consumption from the areas in close proximity to the LCP site. In addition, the ATSDR/GCHD study included a small number of respondants over a short period of time which adds to the uncertainty about the use of these data to estimate dietary intakes over the extended time periods evaluated in this risk assessment.

Although the ATSDR/GCHD study included individuals that identified themselves as subsistence fishers, it seems very unlikely that any of the Brunswick population could be considered subsistence fish consumers. One way to evaluate this is to compare the fish consumption rates among the Brunswick anglers included in the ATSDR/GCHD study to the recommended daily allowance (RDA) of protein. The recommended daily allowance of protein for adults and children greater than 1 year old is 0.8 g/kg-day (NAS, 2005). One can divide the subsistence RME fish consumption rates (FCR) by body weight to obtain the FCR in g/kg-day. The respective values are 0.22, 0.23 and 0.35 g/kg-day for the adult, adolescent and child subsistence fish consumers, all less than the RDA. In contrast, the mean intake of four Columbia River tribes is 59 g/day and the 95th percentile is 170 g/day (CRITFC, 1994). In a 70 kg adult, these would correspond to FCR values of 0.84 g/kg-day and 2.4 g/kg-day respectively. Note that these values are both greater than the RDA. Wolfe and Walker (1987) observed fish consumption rates up to 770 g/day in a study of 94 Alaskan communities, corresponding to 11 g/kg-day. Therefore, it seems very unlikely that individuals in the Brunswick population could be considered true subsistence fish consumers.

Another possible way to evaluate whether or not subsistence anglers are present is to examine monetary incomes of anglers based on the zip codes provided in the MRFSS data. The zip codes would presumably not be biased or inaccurate. For this exercise, subsistence anglers were assumed to be represented by those harvesting Spot or Striped Mullet, fish that can be easily caught from shore and would tend to be targeted by subsistence anglers (as opposed to Spotted Seatrout or Red Drum). There were very few consumers of Striped Mullet and Spot. Census data can provide the average income per zip code. The average income of the zip codes of anglers harvesting Spot and Striped Mullet were obtained from databases maintained by the Missouri Census Data Center (MCDC, 2006). The average yearly income of the zip codes of the coastal Georgia residents harvesting Spot from 2001 to 2005 was \$35,240. The average yearly income of the zip codes of the coastal Georgia residents harvesting Striped Mullet from 2001 to 2005 was \$37,847. The average yearly income of all the coastal Georgia zip codes was \$38,193. These income values seem quite similar.

Discussions with personnel at the Georgia DNR Coastal Resources Division suggest that the intercept survey was able to pick up all income levels and would include subsistence anglers if present (Spud Woodward, Kathy Knowlton, Georgia DNR, personal communication). It is interesting to note that of the group of nine anglers who harvested Spot from 2001 through 2005, only one came from Brunswick whereas four came from Savannah. The average zip code income of this single Brunswick angler was \$23,898. The average zip code income of the Savannah anglers ranged from

\$18,830 to \$60,182. In addition, there may be income variability within a single zip code but income data for smaller areas are not available.

It is possible that some subsistence anglers lived in the Savannah zip code in which the average income was \$18,830. However, none of these anglers were from the Brunswick area and there remains no evidence that there were subsistence anglers in the Brunswick area.

8.3 Choosing a Toxicity Criterion for Aroclor 1268

The determination of whether Aroclor 1268 is more similar on a toxicological basis to Aroclor 1016 or Aroclor 1254 would determine the choice of a surrogate toxicity value. As will be shown below, Aroclor 1268 is more similar on a toxicological basis to Aroclor 1016 than to Aroclor 1254. Hence, the RfD for Aroclor 1016 was used.

To examine the potential similarities between the three mixtures, the metabolism and persistence of the various congeners in humans, the composition of the three Aroclor mixtures and three MOAs for the toxicity of PCBs were considered.

Metabolism and Persistence of Individual Congeners

Data for metabolism and persistence were obtained from Park et al. (2007) who examined serum PCB concentrations in 87 Korean volunteers. Table 24 shows the lipid-normalized concentrations of congeners detected in serum along with the distribution. These values were obtained from Table 1 in Park et al (2007). The most abundant congener in human serum is PCB153 that has an average concentration of 39.2 ng/g lipid and comprises 22.6% of the total serum PCB concentration. The last column in Table 24 labeled "Relative Persistence" is the ratio between the serum concentration of each congener and that of PCB153 to obtain a value reflecting the biopersistence of each congener in the body relative to PCB153. These values are analogous to the familiar "TEF" scheme for the dioxin-like properties of PCBs.

Bioaccumulation and metabolism of PCBs was first quantified in the 1990s based on examination of tissue concentrations in relatively lightly exposed capacitor workers versus heavily exposed Yusho and Yucheng patients (Brown et al., 1989; Lawton et al., 1985a,b). Comparison of relative bio-persistence from Brown (1994) appears to predict quite well the observed relative serum concentrations in Park et al. (2007).

Congener Composition of the Aroclor Mixtures

The congener composition of Aroclor 1016 was obtained as the average percentage from Anderson (1991) and Frame et al. (1996). The congener composition of Aroclor 1254 was obtained as the average percentage from Anderson (1991), Frame et al., (1996) and Kodavanti et al. (2001). The congener composition of Aroclor 1268 was obtained from Anderson (1991). These are shown in Table 25.

Modes of Action (MOAs) of PCBs Related to Systemic Toxicity

The three modes of action considered are:

- A dioxin-like MOA characterized by binding to the aryl hydrocarbon receptor and quantified by dioxin TEQ (van den Berg et al., 2006).
- A MOA based on binding to the ryanodine receptor and consequent interference with cellular calcium homeostasis (Pessah et al., 2006; Simon et al., 2007).
- A MOA based on binding to trans-thyretin, a plasma thyroid binding protein, and subsequent increase metabolism of thyroxin (Chauhan et al., 2000).

Congener concentrations in Aroclor 1016, 1254 and 1268 were obtained from Anderson (1991) and Frame et al., (1996). For each MOA, the value of the relative potency of each congener was multiplied by the congener bioaccumulation equivalent and the congener concentration in Aroclor 1016, Aroclor 1254 and Aroclor 1268. For each mixture, the sum of these values represented the potential for the particular Aroclor mixture to produce toxicity specific to each MOA. Table 26 shows the amount of each bioaccumulated equivalent value in the mixture. As can be seen, Aroclor 1254 has more of each type of bioaccumulated equivalent and contains about 1 order of magnitude more of both bioaccumulated neurotoxic equivalents and bioaccumulated thyroid hormone equivalents than either of the other two mixtures.

Mixture Toxicity Estimates for the Three MOAs

For each MOA, the value of the relative potency of each congener was multiplied by the congener relative persistence of that congener and the congener concentration in Aroclor 1016, Aroclor 1254 and Aroclor 1268. These calculations are shown in Table 27 for all congeners that persist in the body based on Park et al. (2007) and comprise greater than 0.5% of any of the three Aroclor mixtures. In addition, the dioxin-like congeners PCB77, PCB81, PCB105, PCB114, PCB118, PCB123, PCB126, PCB156, PCB157, PCB167, PCB169 and PCB189 were included even if they were not persistent or were at very low percent composition values in the Aroclor mixtures. For each mixture, the sum of these values represented the potential for the particular Aroclor mixture to produce toxicity specific to each MOA. Table 26 and the bottom row of Table 27 show the amount of each bio-persistent equivalent value in the mixture. As can be seen, Aroclor 1254 has more of each type of bio-persistent equivalent. Aroclor 1254 contains at least two orders of magnitude more bio-persistent dioxin TEQ than either Aroclor 1016 or Aroclor 1268. Aroclor 1254 contains about 1 order of magnitude more bio-persistent Ca2+ neurotoxic equivalents than Aroclor 1016 and about 2 orders of magnitude more than Aroclor 1268. Aroclor 1254 contains 2 orders of magnitude more

bio-persistent thyroid hormone equivalents than Aroclor 1016 and 4 orders of magnitude more than Aroclor 1268.

The reference doses for Aroclor 1016 and Aroclor 1254 on IRIS are based on the critical endpoints of reduced birth weights in monkeys for Aroclor 1016 and ocular, dermal and immune effects for Aroclor 1254. It is likely that the critical effect for Aroclor 1016 is based on either the Ca²⁺ endpoint or the thyroid disrupting endpoint (Simon et al., 2007; Pessah et al., 2006; Dziennis et al., 2008; Lein et al., 2007; Howard et al., 2003; Kodavanti, 2005). It is likely that the critical endpoint for Aroclor 1254 is the Ca²⁺ endpoint.

Aroclor 1254 is orders of magnitude more toxic than either Aroclor 1016 or Aroclor 1268. The 3- to 4-fold difference in the RfD values is due to inconsistent application of extrapolation factors. In any case, the conclusion of the analysis is that the reference dose for Aroclor 1016 is more likely to reflect the toxicity to humans than is the reference dose for Aroclor 1254 and, hence, the RfD of 7E-05 mg/kg-day was used as a surrogate toxicity criterion for Aroclor 1268.

8.4 Comparison of Noncancer Effects of PCBs in Monkeys and Humans

The current USEPA oral RfD for Aroclor 1254 is 2E-5 mg/kg-day and follows standard USEPA guidance and procedures for the development of an RfD, and is based upon studies in monkeys by Arnold et al. (1993a,b) and Tryphonas et al. (1989, 1991a,b). The USEPA has interpreted these studies as indicating a LOAEL of 5.0 μ g/kg-day based on ocular, dermal and immunological effects as the critical endpoints. From this LOAEL, an RfD of 0.02 μ g/kg-day is calculated using a total Uncertainty Factor (UF) of 300 which was based on adopting a factor of 10 for sensitive individuals, 3 for interspecies extrapolation, 3 for use of a LOAEL instead of a NOAEL, and 3 for the use of subchronic rather than chronic data. The current USEPA oral RfD for Aroclor 1016 is 7E-5 mg/kg-day and was based on a different series of monkey studies evaluating perinatal and neurobehavioral effects (Barsotti and Van Miller, 1984; Levin et al., 1988; Schantz et al., 1991) that identified a NOAEL of 7 μ g/kg-day to which a total uncertainty factor of 100 was applied.

While the monkey clearly shares a great many anatomical and physiological similarities with humans, this does not necessarily mean that primates and humans share a similar responsiveness to a particular chemical. When available, empirical comparisons of potency may provide an important test of the validity of the animal model being used to extrapolate safe human exposure levels. Interestingly in this instance, the responsiveness of the experimental model used to derive the RfD and its ability to reflect accurately the dose-toxicity relationships in humans can be examined because some of these monkey studies also provided tissue concentration data that

corresponded to the daily applied dose. In the study by Tryphonas et al. (1991a,b), the observed oculodermal effects were associated with 5, 20, 40, or 80 µg/kg-day doses of Aroclor 1254 in the diet. The corresponding PCB serum concentrations at steady-state, achieved after about 10 months of treatment, were 10.4, 32.1, 68.1, and 105.1 ppb, respectively. Thus, if one were to assume that humans are as sensitive as the test species, then obvious oculo-dermal effects should be evident in humans with PCB blood levels above 10 ppb and immune dysfunction would appear at PCB blood levels of about 70-100 ppb.

In contrast to the projections one would reach from the available PCB monkey studies, a review of the PCB clinical studies in human populations environmentally and occupationally exposed to PCBs clearly indicates that humans are not as sensitive to PCB-induced effects as are primates. For example, during the 1970s and 1980s, over 90% of the general US population had detectable PCB blood levels and almost 30% had blood levels greater than 1000 ppb (ATSDR, 1997). With almost 30% percent of the U.S. having serum PCB levels 200 times greater than those that produced discolored and disfigured nails, and eye swelling and discharge in monkeys, people displaying these symptoms would be common and visible effects evident.

In addition, studies of occupationally-exposed capacitor manufacturing workers have failed to document the same oculo-dermal findings upon which the RfD is based - some of the clinical studies of occupationally exposed individuals were comprised of workers with average PCB concentrations of 400 ppb, with some individuals with serum PCB levels of 3,250 ppb (Baker et al., 1980; Emmett et al., 1988a,b; Lawton et al., 1985a,b; James et al., 1993; ATSDR, 1997).

There are no studies evaluating the potential immune effects of PCBs in humans in the same way as the Tryphonas monkey studies; these kinds of tests are not performed in humans. However, there is information regarding the functional immune status of PCB-exposed individuals. In one study, responsiveness to immune challenge with mumps and trichophyton antigens was compared between PCB-exposed workers and non-exposed controls (Emmett et al., 1988b). These antigen challenge tests are instructive because, like the SRBC test used in the monkey studies, interaction of the three principal cells of the immune system (macrophages, T-lymphocytes, and B-lymphocytes) is required. No significant effects on responsiveness were noted, despite the fact that the capacitor workers had PCB serum levels much greater than those in the monkeys in the Tryphonas studies. Similarly, morbidity analyses of occupationally exposed groups found no associations between PCB exposure and leukocyte or differential blood counts (Fischbein et al., 1979; Baker et al., 1980; Maroni et al., 1981; Chase et al., 1982; Stark et al., 1986; James et al., 1993). Likewise

mortality studies of these same groups of workers failed to find any increase in mortality from infectious disease (James et al., 1993). Again, individuals in some these workplaces had blood PCB levels that averaged hundreds of ppb with some individuals reaching levels greater than 1,000 ppb (Lawton et al., 1985a,b; James et al., 1993; ATSDR, 1997).

The general appropriateness of the monkey as a model for PCB toxicity in humans can also be evaluated through examination of other toxicological endpoints. For example, Arnold et al. (1993a,b) found significantly diminished serum cholesterol levels among rhesus monkeys receiving 40 or 80 µg/kg-day Aroclor 1254. At least five studies have examined serum cholesterol and other lipids in PCB-exposed workers and compared them with controls (Baker et al., 1980; Chase et al., 1982; Smith et al., 1982; Emmett, 1985; Emmett et al., 1988a,b). None found a significant increase or decrease in serum cholesterol among PCB-exposed workers.

Arnold et al. (1995) conducted breeding experiments with male and female monkeys treated with 0, 5, 20, 40, or 80 µg/kg-day Aroclor 1254. After 37 months of exposure, females were bred with an untreated male. During the study, two of the monkeys in the high dose group had to be euthanized because they developed a severe wasting syndrome associated with the PCB exposure. In this study PCB treatment appeared to result in increased adverse reproductive outcomes, including decreased numbers of live births, increased suspected resorptions, and perhaps increased risk of post-partum death. Evidence of these effects appeared at the lowest PCB dosage in this study, 5 µg/kg-day. As with the oculo-dermal effects, these kinds of severe reproductive sequelae would be difficult to miss in humans with comparable or greater serum PCB levels. However, among women exposed occupationally to PCBs the only effect that has been observed is a slight decrease in infant birth weight (Taylor et al., 1989). In studies of women with environmental PCB exposure, no consistent effect on infant birth weight has been observed (Longnecker et al., 1997). Also, studies of birth outcomes have found no increased risk of spontaneous abortion or stillbirth attributable to PCB exposure (Longnecker et al., 1997). These comparisons indicate that monkeys are more sensitive to the reproductive effects of PCBs than humans.

Last, the comparison showing monkeys are particularly sensitive to PCBs that is the most convincing is that of lethality. In the study by Barsotti et al. (1976), one of nine monkeys treated with either 100 or 200 μ g/kg-day died from toxicity during the course of the study. In studies by Tryphonas and co-workers (Tryphonas et al., 1986; Tryphonas et al., 1991a,b) these researchers suggest that doses between 80 μ g/kg-day and 200 μ g/kg-day can induce lethality following chronic exposures that produce blood levels of about 285 ppb at the lower dosage rate. In contrast, studies of PCB-exposed workers

find no evidence of increased mortality, even among groups of workers with average PCB concentrations of 400 ppb or more and with individuals having serum PCB levels as high as 3,250 ppb (Lawton et al., 1985a,b; James et al., 1993). Likewise the "wasting syndrome" described for these monkeys that led either to lethality has never been observed in humans (James et al., 1993; ATSDR, 1997). Thus, it is clear that monkeys do develop a number of frank adverse effects and may even die at PCB levels that were without any identifiable clinical effect in chronically exposed worker populations.

8.5 Uncertainty Related to Aroclor 1268 Toxicity

The hazard indices for contact with marsh sediment and fish and game consumption presented in Table 22 are artificially elevated due to the use of the RfD for Aroclor 1016 as a surrogate for that of Aroclor 1268.

The toxicity values and other toxicological information used in this report are likewise associated with significant uncertainty. In addition, humans are different than laboratory animals. The effects shown by the animals in the high dose studies are often very different than effects reported by humans in parallel epidemiology studies (e.g., Kimbrough et al., 1999; Kimbrough and Krouskas, 2003).

This is indeed the case for PCBs. The noncancer RfD for Aroclor 1268 used here is based on those for Aroclor 1016 presented on IRIS. The monkeys used in the studies that support the IRIS noncancer toxicity values for PCBs are exquisitely more sensitive than humans to the effects of PCBs. The monkeys in these studies developed a "wasting" syndrome at PCB body burden levels about 100 fold lower than seen in occupational studies of humans – and these higher levels in humans were without apparent effect.

Regarding PCBs and cancer, a study by Kimbrough et al. (1999) indicates that PCBs may not cause cancer to the extent previously thought. The researchers conducted a mortality study of workers with at least 90 days exposure to PCBs between 1946 and 1977. For the 7,075 workers studied, vital status was obtained for 98.7 percent of the workers. This makes this study the largest cohort of male and female workers exposed to PCBs studied. The authors concluded that there were no "significant elevations in the site-specific cancer mortality of production workers."

As far as the cancer effects of PCBs, the extent of the contribution of dioxin-like and non-dioxin like PCBs to the development of cancer in the rats in the study supporting the IRIS PCB cancer slope factor remains unclear. The National Academy of Sciences recently released a draft review of USEPA's Dioxin Reassessment (NAS, 2006b). The

review was highly critical and changes in the dioxin toxicity criteria will affect the evaluation for PCBs.

Hence, there is both scientific and regulatory/administrative uncertainty associated with the cancer slope factor and the reference doses for PCBs. In all likelihood, the values in IRIS are over-protective.

8.6 Uncertainty in Exposure Estimates Related to Fish and Game Consumption

It is likely that the greatest uncertainty on the exposure side of this risk assessment is related to the amount of clapper rail eaten. It is difficult to find current estimates of their population size, hunting statistics or hunting lore. Specific data regarding the amount of clapper rail ingestion were not available. This was not surprising, however, since local sportsmen and the GA-DNR indicated that clapper rail are generally hunted for sport and not as an edible game bird. An informal internet search using Google[®] found two recipes for clapper rail breasts – one where the tiny morsels were wrapped in bacon and served on a bed of rice; mention was made of the darkness of the breast meat and its gamey taste The birds are up to 400 g in size. The exposure assumptions used for clapper rail were obtained from USEPA (1997a) and were related to game in general. In addition, the mean game consumption rate in g/kg-day was provided along with a standard error of the mean. One notes in Table 18 that the standard errors were larger than the mean. Statistically speaking, that suggests that the mean consumption rate has a finite probability of being negative. Practically speaking, there is a great deal of uncertainty associated with the RME exposure estimates of clapper rail consumption.

Extrapolation of fish consumption rates between different age groups also bears considerable uncertainty. The survey of fish and game consumption practices conducted in Brunswick targeted adults. Ages were not reported in the data nor were individual fish consumption rates. In addition, the data were reported in three groups: < 1 meal per week, about 1 meal per week, and > 1 meal per week. These data obtained in adults were then applied to children without any changes to reflect possibly different preferences for fish that children might have. For example, the mean clapper rail consumption rate for children obtained from USEPA's *Exposure Factors Handbook* is one quarter that of adults (USEPA, 1997a; Table 18). If a child in the subsistence consumption scenario consumed one quarter of the amount of fish that an adult reduce the estimated HI in the child subsistence fish consumption scenario from 8 to 5.6. Given the small size of clapper rail, it does seem likely that consumption rates would be lower than consumption rates for fish. How much lower is not known.

9.0 REFERENCES

- Arnold, D.L., F. Bryce, K. Karpinski, J. Mes, S. Fernie, H. Tryphonas, J. Truelove, P.F. McGuire, D. Burns, J.R. Tanner, R. Stapley, Z.Z. Zawidzka, and D. Basford. (1993a). Toxicological consequences of aroclor 1254 ingestion by female rhesus (Macaca mulatta) monkeys. Part 1B. Prebreeding phase: Clinical and analytical laboratory findings. *Food Chem. Toxicol.* 31(11): 811-824.
- Arnold, D.L., F. Bryce, R. Stapley, P.F. McGuire, D. Burns, J.R. Tanner, and K. Karpinski. (1993b). Toxicological consequences of aroclor 1254 ingestion by female rhesus (Macaca mulatta) monkeys. Part 1A. Prebreeding phase: Clinical health findings. *Food Chem. Toxicol.* 31(11): 799-810.
- Arnold, D.L., F. Bryce, P. F. McGuire, R. Stapley, J.R. Tanner, E. Wrenshall, J. Mes, S. Fernie, H. Tryphonas, S. Hayward, and S. Malcolm. (1995). Toxicological consequences of Aroclor 1254 ingestion by female rhesus (Macaca mulatta) monkeys. Part 2-Reproduction and infant findings. *Food Chem. Toxicol.* 33(6): 457-474.
- Agency for Toxic Substances and Disease Registry (ATSDR). (1997). Toxicological Profile for Polychlorinated Biphenyls. November. At: <u>http://www.atsdr.cdc.gov/ToxProfiles/tp17.pdf</u>
- Anderson, J.W. (1991). Determination of Congeners of Polychlorinated Biphenyls in Reference Materials. *J. High. Res. Chromatog.* 14: 369-373.
- Baker, E.L., P.J. Landrigan, C.J. Glueck, M.M. Zack, J.A. Liddle, V.W. Burse, W.J. Houseworth, and L.L. Needham. (1980). Metabolic consequences of exposure to polychlorinated biphenyls (PCB) in sewage sludge. *Am. J. Epidemiol.* 112: 553.
- Barsotti, D.A., R.J. Marlar, and J.R. Allen. (1976). Reproductive dysfunction in rhesus monkeys exposed to low levels of polychlorinated biphenyls (Aroclor 1248). Food *Cosmet. Toxicol.* 14: 99.
- Barsotti, D.A. and J.P. Van Miller. (1984). Accumulation of a commercial polychlorinated biphenyl mixture (Aroclor 1016) in adult Rhesus Monkeys and their nursing infants. *Toxicology* 30: 31-44.
- Bowers, J. (1997). Personal Communication between Georgia Department of Natural Resources and Geraghty & Miller, Inc. March 5.
- Brown, J.F. (1994). Determination of PCB Metabolic, Excretion and Accumulation Rates for Use as Indicators of Biological Response and relative risk. *Environ. Sci. Technol.* 28(13): 2295-2305.

- Brown, J.F., R.W. Lawton, M.R. Ross, J. Feingold, R.E. Wagner, and S.B. Hamilton. (1989). Persistence of PCBs in Capacitor Workers and Yusho Patients. *Chemosphere* 19(1-6): 829-834.
- Brown, J.F., Jr., B.A. Mayes, J.B. Silkworth, and S.B. Hamilton. (2007). Polychlorinated biphenyls modulated tumorigenesis in Sprague Dawley rats: correlation with mixed function oxidase activities and superoxide (O2*) formation potentials and implied mode of action. *Toxico.I Sci.* 98(2): 375-394.
- Centers for Disease Control and Prevention (CDC). (1991). Preventing lead poisoning in young children: a statement by the Centers for Disease Control. Atlanta, Georgia: US Department of Health and Human Services, Public Health Service, 1991.
- Chase, K.H., O. Wong, D. Thomas, B.W. Berney, and R.K. Simon. (1982). Clinical and metabolic abnormalities associated with occupational exposure to polychlorinated biphenyls (PCBs). *J. Occup. Med.* 24:109.
- Chauhan, K.R., P.R. Kodavanti, and J.D. McKinney. (2000). Assessing the role of orthosubstitution on polychlorinated biphenyl binding to transthyretin, a thyroxine transport protein. *Toxicol. Appl. Pharmacol.* 162(1): 10-21.
- ChemRisk. (1992.) Consumption of freshwater fish by Maine anglers. A Technical Report. Portland, ME: ChemRisk, A Division of MeLaren / Hart. Revised July 24, 1994.
- Columbia River Intertribal Fish Commission (CRITFC). (1994). A fish consumption survey of the Umatilla, Nez Perce, Yakama and Warm Springs Tribes of the Columbia River Basin." Technical Report 94-2.
- Cumbee JC, Jr., K.F. Gaines, G.L. Mills, N. Garvin, W.L. Stephens Jr., J.M. Novak, and I.L. Brisbin Jr. (2008). Clapper rails as indicators of mercury and PCB bioavailability in a Georgia saltmarsh system. *Ecotoxicology* 17: 485-494
- Department of Health and Human Services (DHHS). (1999). Final Report: Consumption of Seafood and Wildgame Contaminated with Mercury, Brunswick, Glynn County, Georgia, July.
- Dziennis, S., D. Yang, J. Cheng, K.A. Anderson, N.J. Alkayed, P.D. Hurn, and P. Lein. (2008). Developmental exposure to polychlorinated biphenyls influences stroke outcome in adult rats. *Environ. Health Perspect.* 116(4): 474-480.
- Ebert, E.; N. Harrington, K. Boyle, J. Knight, and R. Keenan. (1993). Estimating consumption of freshwater fish among Maine anglers. *N. Am. J. Fisheries Management* 13: 737-745.

- Emmett, E.A. (1985). Polychlorinated biphenyl exposure and effects in transformer repair workers. *Environ. Health Perspect.* 60:185.
- Emmett, E.A., M. Maroni, J. Schmith, B. Levin, and J. Jefferys. (1988a). Studies of transformer repair workers exposed to PCBs: 1. Study design, PCB concentrations, questionnaire, and clinical examination results. *Am. J. Ind. Med.* 13: 415-427.
- Emmett, E.A., M. Maroni, J. Jefferys, J. Schmith, B.K. Levin, and A. Alvares. (1988b). Studies of transformer repair workers exposed to PCBs: II. Results of clinical and laboratory investigations. *Am. J. Ind. Med.* 14: 47-62.
- Fendorf, S.E. (1995). Surface Reactions of Chromium in Soils and Waters. *Geoderma* 57: 65-71.
- Fischbein, A., M.S. Wolff, R. Lilis, J. Thornton, and I.J. Selikoff. (1979). Clinical findings among PCB-exposed capacitor workers. *N.Y. Acad. Sci.* 320: 703.
- Frame, G. M., R.E. Wagner, J.C. Carnahan, J.F. Brown, R.J. May, L.A. Smullen, and D.L. Bedard. (1996). Comprehensive, Quantitative, Congener-specific Analyses of Eight Aroclors and Complete PCB Congener Assignments on DB-1 Capillary Columns. *Chemosphere* 33(4): 603-623.
- Fish Tissue Advisory Committee (FTAC). (1992). Recommendations For A Fish Tissue Monitoring Strategy For Freshwater Lakes, Rivers, And Streams prepared by: The Fish Tissue Advisory Committee for submission to the: Georgia Department of Natural Resources, Environmental Protection Division & Game and Fish Division
- Geraghty & Miller. (1999). Human Health Baseline Risk Assessment Marsh Sediment And Upland Soil, LCP Chemicals Site, Brunswick, Georgia
- Gray MN, L.L. Aylward, and R.E. Keenan. (2006). Relative cancer potencies of selected dioxin-like compounds on a body-burden basis: comparison to current toxic equivalency factors (TEFs). *J. Toxicol. Environ.* Health A 69(10): 907-917.
- Holmes K.K., J.H. Shirai, K.Y. Richter, and J.C. Kissel. (1999). Field measurement of dermal soil loadings in occupational and recreational activities. *Environ. Res.* 80(2 pt 1): 148-157.
- Howard, A.S., R. Fitzpatrick, I. Pessah, P. Kostyniak, and P.J. Lein. (2003). Polychlorinated biphenyls induce caspase-dependent cell death in cultured embryonic rat hippocampal but not cortical neurons via activation of the ryanodine receptor. *Toxicol. Appl. Pharmacol.* 190(1): 72-86.

- James, B.R., and R.J. Bartlett. (1983). Behavior of Chromium in Soils: VII. Adsorption and Reduction of Hexavalent Forms. *J Environ. Qual.* 12(2): 177–181.
- James, R.C., H. Busch, C.H. Tamburro, S.M. Roberts, J.D. Schell, and R.D. Harbison. (1993). Polychlorinated biphenyl exposure and human disease. *J. Occup. Med.* 35(2):136-148.
- Kannan K., K.A. Maruya, and S. Tanabe. (1997) Distribution and Characterization of Polychlorinated Biphenyl Congeners in Soil and Sediments from a Superfund Site Contaminated with Aroclor 1268. *Environ. Sci. Technol.* 31: 1483-1488.
- Kannan K.H., R. Nakata, G.R. Stafford, S. Masson, S. Tanabe, and J.P. Giesy. (1998). Bioaccumulation and Toxic Potential of Extremely Hydrophobic Polychlorinated Biphenyl Congeners in Biota Collected at a Superfund Site Contaminated with Aroclor 1268. *Environ. Sci. Technol.* 32: 1214-1221.
- Kimbrough, R.D., M.L. Doemland, and M.E. LeVois. (1999) Mortality in male and female capacitor workers exposed to polychlorinated biphenyls. *J. Occup. Environ. Med.* 41(3): 161-171.
- Kimbrough, R.D. and C.A. Krouskas. (2003). Human exposure to polychlorinated biphenyls and health effects: a critical synopsis. *Toxicol. Rev.* 22(4): 217-233.
- Kissel J.C., K.Y. Richter, and R.A. Fenske. (1996) Factors affecting soil adherence to skin in hand-press trials. Bull Environ Contam Toxicol 56(5): 722-728.
- Kodavanti, P.R. (2005). Neurotoxicity of persistent organic pollutants: Possible mode(s) of action and further considerations. *Dose Response* 3: 273-305.
- Kodavanti, P.R., N. Kannan, N. Yamashita, E. Derr-Yellin, T.R. Ward, D.E. Burgin, H.A. Tilson, and L.S. Birnbaum. (2001). Differential Effects of Two Lots of Aroclor 1254: Congener-specific endpoints and Neurochemical Analysis. *Environ. Health Perspect.* 109: 1153-1161.
- Lawton, R.W., M.R. Ross, J. Feingold, and J.F. Brown Jr. (1985a). Effects of PCB exposure on biochemical and hematological findings in capacitor workers. *Environ Health Perspect.* 60: 165-184.
- Lawton, R.W., J.F. Brown, Jr., M.R. Ross, and J. Feingold. (1985b). Comparability and precision of serum PCB measurements. *Arch. Environ. Health* 40: 29.
- Lein, P.J., D. Yang, A.D. Bachstetter, H.A. Tilson, G.J. Harry, R.F. Mervis, and P.R. Kodavanti. (2007). Ontogenetic alterations in molecular and structural correlates of dendritic growth after developmental exposure to polychlorinated biphenyls. *Environ Health Perspect* 115: 556-563.

- Levin, E.D., S.L. Schantz, and R.E. Bowman. (1988). Delayed spatial alteration deficits resulting from perinatal PCB exposure in monkeys. *Arch. Toxicol.* 62: 267-273.
- Longnecker, M.P., W.J. Rogan, and G. Lucier. (1997). The human health effects of DDT (dichlorodiphenyl-trichloroethane) and PCBs (polychlorinated biphenyls) and an overview of organochlorines in public health. *Annu. Rev. Public Health* 18: 211-244.
- Maroni, M., A. Colombi, S. Cantoni, E. Ferioli, and V. Foa. (1981). Occupational exposure to polychlorinated biphenyls in electrical workers. II. Health effects. *Brit. J. Ind. Med.* 38: 55.
- Missouri Census Data Center (MCDC, 2006). At: http://mcdc.missouri.edu/
- National Academy of Sciences (NAS) 2005. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids (Macronutrients). At <u>http://www.nap.edu/catalog/10490.html</u>
- National Academy of Sciences (NAS) (2006a). Review of Recreational Fisheries Survey Methods, Committee on the Review of Recreational Fisheries Survey Methods, Ocean Studies Board, Division on Earth and Life Studies. At: <u>http://www.nap.edu/catalog/11616.html</u>
- National Academy of Sciences (NAS) (2006b). Health Risks from Dioxin and Related Compounds: Evaluation of the USEPA Reassessment, 2006, available on the NAS website.
- National Marine Fisheries Statistics Survey (NMFSS) (2007). At: <u>http://www.st.nmfs.gov/st1/recreational/overview/overview.html</u>
- Park, H., S.J. Lee, J.H. Kang, and Y.S. Chang. (2007). Congener-specific approach to human PCB concentrations by serum analysis. *Chemosphere* 68(9), 1699-1706.
- Pessah, I.N., L.G. Hansen, T.E. Albertson, C.E. Garner, T.A. Ta, Z. Do, K.H. Kim, and P.W. Wong. (2006). Structure-activity relationship for non-coplanar polychlorinated biphenyl congeners toward the ryanodine receptor-Ca2+ channel complex type 1 (RyR1). *Chem. Res. Toxicol.* 19(1): 92-101.
- Price, P.; S, Su, and M. Gray. (1994). The effects of sampling bias on estimates of angler consumption rates in creel surveys. Portland, ME: ChemRisk.
- Pulster E.L. and K.A. Maruya. (2008). Geographic specificity of Aroclor 1268 in bottlenose dolphins (Tursiops truncatus) frequenting the Turtle/Brunswick River Estuary, Georgia (USA). *Sci. Total Environ.* 393: 367-375.

- Pulster E.L., K.L. Smalling, and K.A. Maruya. (2005) Polychlorinated biphenyls and toxaphene in preferred prey fish of coastal southeastern U.S. bottlenose dolphins (Tursiops truncatus). *Environ. Toxicol. Chem.* 24: 3128-3136.
- Rupp, E.; F.L. Miler, and C.F. Baes, III. (1980). Some results of recent surveys of fish and shellfish consumption by age and region of U.S. residents. *Health Physics* 39:165-175.
- Sajwan K.S., K.S. Kumar, M.A. Weber-Goeke, S. Weber-Snapp, C. Gibson, and B.G. Logan. (2008). Extremely hydrophobic Aroclor 1268 and residues of polybrominated diphenyl ethers (PBDEs) in marsh sediment collected from Superfund Site in Brunswick, Georgia, USA. *Mar. Pollut. Bull.* 56: 1371-1376.
- Schantz S.L., E.D. Levin, R.E. Bowman, M.P. Heironimus, and N.K. Laughlin. (1989). Effects of perinatal PCB exposure on discrimination-reversal learning in monkey. *Neurotox. Teratol.* 11:243-250.
- Schantz, S.L., E.D. Levin, and R.E. Brown. (1991). Long-term neurobehavioral effects of perinatal polychlorinated biphenyl (PCB) exposure in monkeys. *Environ. Toxicol. Chem.* 10: 747-756.
- Simon, T., J.K. Britt, and R.C. James. (2007). Development of a Neurotoxic Equivalence Scheme of Relative Potency for Assessing the Risk of PCB Mixtures. *Regul. Toxicol. Pharmacol.* 48(2): 148-170.
- Smith, A.B., J. Schloemer, L.K. Lowry, A.W. Smallwood, R.N. Ligo, S. Tanaka, W. Stringer, M. Jones, R. Heruin, and C.J. Glueck. (1982). Metabolic and health consequences of occupational exposure to polychlorinated biphenyls. *Brit. J. Ind. Med.* 39:361.
- Stark, A.D., K. Costas, H.G. Chang, and H.L. Vallet. (1986). Health effects of low-level exposure to polychlorinated biphenyls. *Environ. Res.* 41:174.
- Taylor P.R., J.M. Stelma and C.E. Lawrence. (1989). The relation of polychlorinated biphenyls to birth weight and gestational age in the offspring of occupationally exposed mothers. *Am. J. Epidemiol.* 129:395-406.
- Tryphonas, L., S. Charbonneau, H. Tryphonas, Z. Zawidzka, J. Mes, J. Wong, and D.L. Arnold. (1986). Comparative aspects of Aroclor 1254 toxicity in adult Cynomolgus Monkeys and Rhesus Monkeys: A pilot study. Arch. Environ. Contam. Toxicol. 15:159-169.

- Tryphonas, H., S. Hayward, L. O'Grady, J.C.K. Loo, D.L. Arnold, F. Bryce, and Z.Z. Zawidzka. (1989). Immunotoxicity studies on PCB (aroclor 1254) in the adult rhesus (macaca mulatta) monkey: Preliminary report. *Int. J. Immunopharmacol.* 11:199-206.
- Tryphonas, H., M.I. Luster, K.L. White, P.H. Naylor, et al. (1991a). Effects of PCB (Aroclor 1254) on non-specific immune parameters in rhesus (macaca mulatta) monkeys. *Int. J. Immunopharmacol.* 13:639-648.
- Tryphonas, H., M.I. Luster, G. Schiffman, L.-L. Dawson, M. Hodgen, D. Germolec, S. Hayward, F. Bryce, J.C. Loo, F. Mandy, and D.L. Arnold. (1991b). Effect of chronic exposure of PCB (Aroclor 1254) on specific and nonspecific immune parameters in the rhesus (macaca mulatta) monkey. *Fundam. Appl. Toxicol.* 16:773-786.
- U.S. Department of Agriculture (USDA). 2000. Continuing Survey of Food Intakes by Individuals 1994-96, 1998. USDA Agricultural Research Service. At: <u>http://www.ars.usda.gov/Services/docs.htm?docid=14531</u>
- U.S. Environmental Protection Agency (USEPA). (1989). Risk Assessment Guidance for Superfund: Volume I, Human Health Evaluation Manual (Part A, Baseline Risk Assessment). Office of Emergency and Remedial Response. Washington DC. EPA/540/I-89/002.
- USEPA. (1991). Supplemental Guidance, Standard Default Exposure Factors OSWER Directive 9285.6-03 June 25.
- USEPA. (1992). Guidance on Risk Characterization for Risk Managers and Risk Assessors, Memorandum from F. Henry Habicht II, 26, Feb 1992
- USEPA. (1994). Interim Soil Lead Guidance for CERCLA Sites and RCRA Corrective Action Facilities. OSWER Directive 9355.4-12. Office of Solid Waste and Emergency Response, Washington, D.C.
- USEPA. (1996). PCBs: Cancer Dose-Response Assessment and Application to Environmental Mixtures. U.S. Environmental Protection Agency, Office of Research and Development, National Center for Environmental Assessment, Washington Office, Washington, DC, EPA/600/P-96/001F, 1996.
- USEPA. (1997a). Exposure Factors Handbook Volumes I-III. Office of Research and Development. Washington, DC. EPA/600/P-95/002Fa.

- USEPA. (1997b). Mercury Study Report to Congress. Volume V: Health Effects of Mercury and Mercury Compounds. EPA-452/R-97-007. Office of Air Quality Planning and Standards and Office or Research and Development, December 1997. At: <u>http://www.epa.gov/mercury/report.htm</u>
- USEPA. (2000). Supplemental Guidance to RAGS: Region 4 Bulletins, Human Health Risk Assessment Bulletins. USEPA Region 4, originally published November 1995, Website version last updated May 2000:

At: http://www.epa.gov/region4/waste/oftecser/healtbul.htm

- USEPA. (2003). Human Health Toxicity Values in Superfund Risk Assessments. OSWER Directive 9285.7-53. Memorandum from Michael B. Cook to Superfund National Policy Managers, December 5, 2003.
- USEPA. (2004a). Risk Assessment Guidance for Superfund: Volume I, Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) Office of Solid Waste and Emergency Response, Washington DC. EPA/540/R/99/005.
- USEPA. (2004b). Risk Estimates for Wading in Mill Creek, Picayune Wood Treating, Picayune MS. Memorandum from Ted Simon to Humberto Guzman.
- USEPA (2005) Guidelines for Carcinogen Risk Assessment, Risk Assessment Forum, EPA/630/P-03/001F, March. At: <u>http://epa.gov/cancerguidelines/</u>
- USEPA. (2006). Provisional Peer Reviewed Toxicity Values for Aluminum. Superfund Technical Support Center. October 23.
- USEPA. (2007) ProUCL Software and User Guide. EPA/600/R-07/038, April. At: <u>http://www.epa.gov/osp/hstl/tsc/software.htm</u>
- USEPA. (2010a). Summary Statistics for the Baseline Human Health Risk Assessment, OU#1 (Estuary), Letter from Galo Jackson, EPA Region 4, to Prashant Gupta, Honeywell, October 20.
- USEPA. (2010b). Regional Screening Levels for Chemical Contaminants at Superfund Sites. December.

At: <u>http://www.epa.gov/reg3hwmd/risk/human/rb-concentration_table/index.htm.</u>

USEPA. (2010c). Region 3 Fish Tissue Screening Levels. May 24. At: <u>http://www.epa.gov/reg3hwmd/risk/human/pdf/MAY_2010_FISH.pdf</u>

- Van den Berg, M., L.S., Birnbaum, M. Denison, V.M. De, W. Farland, M. Feeley, H. Fiedler, H. Hakansson, A. Hanberg, L. Haws, M. Rose, S. Safe, D. Schrenk, C. Tohyama, A. Tritscher, J. Tuomisto, M. Tysklind, N. Walker, and R.E. Peterson. (2006). The 2005 World Health Organization reevaluation of human and Mammalian toxic equivalency factors for dioxins and dioxin-like compounds. *Toxicol. Sci.* 93(2): 223-241.
- Warren, D.A., B.D. Kerger, J.K. Britt, and R.C. James. (2004). Development of an oral cancer slope factor for Aroclor 1268. *Regul. Toxicol. Pharmacol.* 40(1): 42-53.
- Weaver, R.M., and M.F. Hochella. (2003). The reactivity of seven Mn-oxides with Cr3+aq : A comparative analysis of a complex, environmentally important redox reaction. *Amer. Mineralogist* 88: 2016-2027.
- Wolfe R.J. and R.J. Walker. (1987). Subsistence Economies in Alaska: Productivity, Geography and Developmental Impacts. *Arctic Anthropology* 24(2): 56-81.

FIGURES

Sampling Locations in the Marsh

TABLES

	Frequ	lency	Range	of SQLs	Range of	Detects		Avg	Residential	Percent			
	Det	Tot	Min	Max	Min	Max	Mean	BG ⁽¹⁾	Soil RSL ⁽²⁾	Detect	COPC?	UCL	Method
Semi-VOCs													
1-Methylnaphthalene	7	180	0.0067	0.17	0.004	0.43	0.0808		22	4%	no		
2-Methylnaphthalene	44	222	0.00014	1.3	0.00046	0.34	0.103		31	20%	no		
3/4-Methylphenol	1	10	0.43000	1.2	0.20000	0.2	0.717		NA	10%	no		
Acenaphthene	76	268	0.0001	0.2	0.00035	1.2	0.0585		340	28%	no		
Acenaphthylene	86	268	0.0001	0.2	0.00014	0.31	0.0581		170	32%	no		
Anthracene	102	268	0.0001	0.2	0.00019	0.76	0.0655		1,700	38%	no		
Benzo(g,h,i)perylene	102	268	0.0001	0.2	0.00047	9	0.13		170	38%	no		
Butylbenzylphthalate	T	10	0.4300	1.3	0.17000	0.17	0.734		260	10%	no		
Dibenzofuran	27	42	0.0001	1.3	0.00040	0.0026	0.198		7.8	64%	no		
Fluoranthene	121	268	0.0002	0.2	0.00077	4.9	0.118		230	45%	no		
Fluorene	86	268	0.0001	0.2	0.00011	0.097	0.054		230	32%	no		
Naphthalene	73	268	0.0002	0.2	0.00034	0.63	0.0587		3.6	27%	no		
Phenanthrene	95	268	0.0001	0.2	0.00052	0.25	0.0577		170	35%	no		
Phthalate, bis(2-ethylhexyl)	8	10	0.9200	0.97	0.07000	0.32	0.334		35	80%	no		
Pyrene	123	268	0.0002	0.25	0.0014	21	0.212		170	46%	no		
Carcinogenic PAHs													
B(a)P toxic equivalents ⁽³⁾	NA	NA	NA	NA	0.0014*	16.69*	NA		0.015	NA	YES	0.603*	95% Chebyshev
Benzo(a)pyrene	116	268	1.10E-04	0.2	3.10E-04	10	0.144		0.015	43%	NA		
Benzo(a)anthracene	113	268	2.10E-04	0.2	4.00E-04	12	0.149		0.15	42%	NA		
Benzo(b)fluoranthene	107	268	1.30E-04	0.2	3.50E-04	6.3	0.136		0.15	40%	NA		
Benzo(k)fluoranthene	106	268	1.20E-04	0.2	2.10E-04	2.5	0.0844		1.5	40%	NA		
Chrysene	112	268	1.70E-05	0.2	5.20E-04	17	0.204		15	42%	NA		
Dibenzo(a,h)anthracene	90	268	1.20E-04	0.2	0.0016	4.4	0.0892		0.015	34%	NA		
Indeno(1,2,3-cd)pyrene	98	268	1.10E-04	0.2	2.80E-04	4.2	0.094		0.15	37%	NA		
Pesticides													
4,4'-DDT	1	11	0.0043	0.013	0.0078	0.0078	0.00759		1.7	9%	no		
Endrin Aldehyde	1	11	0.0043	0.024	0.0023	0.0023	0.00836		1.8	9%	no		
PCBs													
Aroclor 1268	269	296	0.0022	5.699	0.043	300	3.408		0.22	91%	YES	2.571	95% H
Metals/Inorganics													
Aluminum	19	19	5.9	24	310	49100	19624	19,000	7,700	100%	YES	34812	95% Chebyshev
Antimony	4	19	0.0399	7.9	0.0599	0.1099	3.481	0.046	3.1	21%	no		
Arsenic	17	19	0.05	2.569	0.8399	22	10.18	15	0.39	89%	no		
Barium	19	19	0.2	1	3.4	64	27.05	22	1,500	100%	no		
Beryllium	18	19	0.02	0.46999	0.07	2.599	1.329	1.1	16	95%	no		
Cadmium	6	23	0.02	2	0.1299	0.372	0.643	0.13	7	26%	no		
Calcium	19	19	2.2	50	240	9760	3342	4,000	NA	100%	no		
Chromium	19	19	0.03	2.0299	0.62	99	48.46	34	0.29	100%	YES	123.6	99% Chebyshev

	Frequ	lency	Range	of SQLs	Range of	Detects		Avg	Residential	Percent			
	Det	Tot	Min	Max	Min	Max	Mean	BG ⁽¹⁾	Soil RSL ⁽²⁾	Detect	COPC?	UCL	Method
Cobalt	18	19	0.004	1.2	0.24	10	5.508	5.2	2.3	95%	no		
Copper	21	23	0.02	2.5	0.4699	17.79	9.02	7.9	310	91%	no		
Iron	19	19	0.699	14	230	37000	18591	23,000	5,500	100%	no		
Lead	273	274	0.02	6.199	2.099	765	28.42	17	40	100%	YES	43.67	95% Chebyshev
Magnesium	19	19	0.8	50	390	9210	5856	6,100	NA	100%	no		
Manganese	19	19	0.0799	1	5.09	1000	306.7	230	180	100%	YES	510	95% Approximate
Mercury	307	311	1.90E-04	0.41	0.02899	62.9	2.167	0.097	0.56	99%	YES	3.615	95% Chebyshev
Methylmercury	56	56	8.40E-06	4.00E-04	1.07E-04	0.0437	0.00834	NA	0.78	100%	YES	0.0105	95% Approximate
Nickel	21	23	0.0299	4.699	0.589	21.1	9.038	8.7	150	91%	no		
Potassium	19	19	8.2799	237	120	5000	3117	3,100	NA	100%	no		
Selenium	3	19	0.27	4	0.699	1.5	2.049	1.9	39	16%	no		
Silver	3	23	0.007	4	0.119	0.131	1.421	0.059	39	13%	no		
Sodium	19	19	5.9	250	2600	33000	16520	21,000	NA	100%	no		
Sulfide	27	30	0.4	96	2.8	1300	164.1	89	NA	90%	no		
Thallium	4	19	0.02	4	0.2	5.82	2.181	0.19	NA	21%	YES	2.167	97.5% Chebyshev
Vanadium	19	19	0.02	2.4	0.98	100	54.87	51	39	100%	no		
Zinc	23	23	0.2	2	1.799	93	49.77	39	2,300	100%	no	6	

All units are in mg/kg dry weight

NA = Not Applicable

SQL = Sample Quantitation Limit

(1) Average background concentrations for sediment taken from the Human Health Baseline Risk Assessment for Marsh Sediment and Upland Soil, LCP Chemicals Site (Geraghty & Miller, 1999). These data represent the average concentration from a total of 38 background surface sediment samples collected in Jointer Creek (22 samples) and Clubbs Creek (16 samples), although not all analytes were included in all samples. Two-times the average background value was compared with the maximum detected concentration of inorganic constituents from site samples.

(2) Values are the November 2010 Regional Screening Levels for residential soil. RSL values for non-carcinogens were adjusted to a HQ of 0.1.

(3) As an interim procedure, until more definitive Agency guidance is established, Region 4 has adopted a TEF methodology for carcinogenic Polycyclic Aromatic Hydrocarbons (cPAHs) on the Target Compound List. These TEFs are based on the relative potency of each compound relative to that of benzo(a)pyrene (BaP). The following TEFs were used to convert each cPAH concentration to an equivalent concentration of BaP: Benzo(a)pyrene: 1.0, Benzo(a)anthracene: 0.1, Benzo(b)fluoranthene: 0.1, Benzo(k)fluoranthene: 0.01, Chrysene: 0.001, Dibenzo(a,h)anthracene: 1.0 and Ideno(1,2,3-cd)pyrene: 0.1.

СРАН	TEE	Max	Fauivalents	95%UCI	May w/TFF	95%UCL w/TEF
CIAII	TEr	WIAX	Equivalents	95 /00CL	IVIAN W/ I LEF	W/1151
Benzo(a)pyrene	1	10	10	0.344	10	0.344
Benzo(a)anthracene	0.1	12	1.2	0.387	1.2	0.0387
Benzo(b)fluoranthene	0.1	6.3	0.63	0.272	0.63	0.0272
Benzo(k)fluoranthene	0.01	2.5	0.025	0.130	0.025	0.0013
Chrysene	0.001	17	0.017	0.593	0.017	0.000593
Dibenzo(a,h)anthracene	1	4.4	4.4	0.174	4.4	0.174
Indeno(1,2,3-cd)pyrene	0.1	4.2	0.42	0.177	0.42	0.0177

B(a)P toxic equivalents*

Max	16.69
95%UCL	0.603
Method	95% Chebyshev

*As an interim procedure, until more definitive Agency guidance is established, Region 4 has adopted a TEF methodology for carcinogenic Polycyclic Aromatic Hydrocarbons (cPAHs) on the Target Compound List.

	Frequ	lency	Percent	Range of	of SQLs	Ra	nge of Dete	ects	RBC	Percent	COPC?	UCL	Method
	Det	Tot	Detect	Min	Max	Min	Max	Mean	(HQ=0.1)	Detect			
Fin Fish													
Atlantic Croaker	Π						~					ð:	
Aroclor 1268	11	11	100%	0.0006	0.1	0.36	2.244	0.998	0.0016	100%	YES	1.427	95% Approximate Gamma
Copper	7	7	100%	3	3	2.76	4.42	3.983	5.4	100%	NO		
Mercury	11	11	100%	0.00004	0.02	0.139	0.522	0.236	0.014	100%	YES	0.302	95% Approximate Gamma UCL
Zinc	7	7	100%	3	3	4.35	7.13	4.947	41	100%	NO		
Black Drum												6	
Aroclor 1268	22	28	79%	0.0023	0.25	0.052	0.83	0.267	0.0016	79%	YES	0.343	95% Approximate Gamma UCL
Copper	9	9	100%	3	3	2.3	3.91	3.344	5.4	100%	NO		
Mercury	28	28	100%	0.00037	0.02	0.0858	0.288	0.162	0.014	100%	YES	0.177	95% Student's-t
Zinc	9	9	100%	3	3	7.28	11.04	9.172	41	100%	NO		
Red Drum											1		
Aroclor 1268	4	12	33%	0.0042	0.18	0.097	0.1936	0.129	0.0016	33%	YES	0.148	95% Student's-t
Methoxychlor	1	3	33%	0.05	0.05	0.44	0.44	0.44	0.68	33%	NO		
Copper	3	3	100%	3	3	1.65	3.52		5.4	100%	NO		
Mercury	12	12	100%	0.00037	0.02	0.05	0.44	0.292	0.014	100%	YES	0.348	95% Student's-t
Zinc	3	3	100%	3	3	4.5	6.6	41	41	100%	NO		
Sheepshead													
Aroclor 1268	8	8	100%	0.0077	0.1	0.16	0.858	0.432	0.0016	100%	YES	0.724	95% Approximate Gamma UCL
Copper	7	7	100%	3	3	3.12	4.84	3.927	5.4	100%	NO		
Mercury	8	8	100%	0.00037	0.02	0.263	0.448	0.334	0.014	100%	YES	0.372	95% Student's-t
Zinc	7	7	100%	3	3	5	9.24	6.871	41	100%	NO		
Southern Flounder (and Flou	under)											
Aroclor 1268	5	11	45%	0.04	0.1	0.026	0.408	0.143	0.0016	45%	YES	0.249	95%H
Copper	9	9	100%	0.1	0.1	2.52	3.45	2.911	5.4	100%	NO		
Mercury	11	11	100%	0.00367	0.02	0.198	0.315	0.238	0.014	100%	YES	0.257	95% Student's-t
Zinc	9	9	100%	3	3	5.88	8.64	7.198	41	100%	NO		
Southern Kingfish									-				
Aroclor 1268	11	12	92%	0.0042	0.1	0.1	1.344	0.5060	0.0016	92%	YES	0.716	95% Student's-t
Copper	8	8	100%	3	3	2.125	5.25	3.477	5.4	100%	NO		
Mercury	12	12	100%	0.00037	0.02	0.189	1.13	0.487	0.014	100%	YES	0.663	95% Approximate Gamma
Zinc	8	8	100%	3	3	5.5	9.89	7.081	41	100%	NO		

1 able 3. Occurrence Summary, COPC Selection and UCL95s, for Finfish, Shelifish and Clapper Rall Samples, LCP Chemical Site	e, Brunswick GA
---	-----------------

	Frequ	iency	Percent	Range	of SQLs	Ra	nge of Dete	ects	RBC	Percent	COPC?	UCL	Method
	Det	Tot	Detect	Min	Max	Min	Max	Mean	(HQ=0.1)	Detect			
Spot				983 - 18 19		5	9)						
Aroclor 1268	8	9	89%	0.1	0.1	0.69	3.072	1.2	0.0016	89%	YES	1.785	95% Student's-t
Copper	9	9	100%	3	3	2.775	5.25	3.839	5.4	100%	NO	6	
Mercury	9	9	100%	0.02	0.02	0.0495	0.166	0.101	0.014	100%	YES	0.124	95% Student's-t
Zinc	9	9	100%	3	3	4.8	8.88	6.433	41	100%	NO		
Spotted Seatrout													
Aroclor 1268	31	31	100%	0.0041	0.1	0.089	1.2	0.445	0.0016	100%	YES	0.556	95% Approximate Gamma
Copper	10	10	100%	3	3	2.2	5.32	3.259	5.4	100%	NO		
Mercury	31	31	100%	0.00037	0.02	0.12	0.941	0.439	0.014	100%	YES	0.495	95% Student's-t
Zinc	10	10	100%	3	3	4.68	9.5	6.1	41	100%	NO	2	
Striped Mullet													
Aroclor 1268	26	26	100%	0.0052	0.1	0.027	10.5	1.907	0.0016	100%	YES	2.704	95% Approximate Gamma
Copper	9	9	100%	3	3	2.34	4.34	3.323	5.4	100%	NO		
Mercury	26	26	100%	0.00037	0.02	0.0111	0.0775	0.0361	0.014	100%	YES	0.042	95% Student's-t
Zinc	9	9	100%	3	3	8.1	12.16	10.36	41	100%	NO	č	
SHELLFISH						-		-	-				
Blue Crab													
Aroclor 1268	15	18	83%	0.0035	0.1	0.0073	0.4	0.122	0.0016	83%	YES	0.195	95% Approximate Gamma UCL
Copper	9	9	100%	3	3	16.2	25.2	19.29	5.4	100%	YES	20.9	95% Student's-t
Mercury	18	18	100%	0.00037	0.02	0.255	1.12	0.602	0.014	100%	YES	0.708	95% Student's-t
Zinc	9	9	100%	3	3	30.6	52.8	42.88	41	100%	YES	46.94	95% Student's-t
					_								
White Shrimp													
Aroclor 1268	4	9	44%	0.1	0.1	0.1058	0.682	0.221	0.0016	44%	YES	0.533	95% Chebyshev
Copper	9	9	100%	3	3	7.48	22	10.53	5.4	100%	YES	13.3	95% Student's-t
Mercury	9	9	100%	0.02	0.02	0.0374	0.125	0.0903	0.014	100%	YES	0.112	95% Student's-t
Zinc	9	9	100%	3	3	11.4	12.1	11.81	41	100%	NO		
WILDLIFE													
Clapper Rail				92 - S		1	0						
Aroclor 1268	14	14	100%	0.296	0.636	0.19	19.42	5.02	0.0016	100%	YES	19.94	99% Chebyshev
Mercury	14	14	100%	0.917	0.68	0.68	7.3	3.124	0.014	100%	YES	4.671	95% Approximate Gamma UCL
												E.	

Table 3. Occurrence Summary, COPC Selection and UCL95s, for Finfish, Shellfish and Clapper Rail Samples, LCP Chemical Site, Brunswick GA

Notes:

All units are in mg/kg.

The 99% Chebyshev calculated value for the UCL for Aroclor 1268 was 19.94 mg/kg which exceeded the maximum detected value of 19.42 mg/kg. 19.42 mg/kg will be used as the exposure point concentration in the risk calculations.

							Est. TOC
Sample ID	Coarse Sand	Fine Sand	Fines	Gravel	Medium Sand	TOC	in Fines
06291-C-7	2.59%	1.49%	74.68%	20.12%	0.54%	5.75%	7.70%
06291-C-6	6.08%	0.56%	53.54%	33.57%	1.30%	6.56%	12.25%
06291-C-6	2.42%	2.14%	54.22%	40.50%	0.53%	6.56%	12.10%
06291-C-7	2.59%	1.49%	74.68%	20.12%	0.54%	5.75%	7.70%
06291-CR-C	1.04%	76.39%	15.19%	5.63%	1.26%	0.67%	4.41%
06291-D-C	8.23%	5.17%	61.00%	17.10%	2.56%	5.21%	8.54%
06291-MG-H7(M)	1.90%	0.38%	59.76%	36.14%	0.31%	5.81%	9.72%
06291-MG-K7(M)	1.33%	0.59%	57.99%	39.90%	0.17%	4.42%	7.62%
06291-TC-C	6.66%	24.39%	42.40%	24.12%	1.44%	3.00%	7.08%
06290-C-15	3.82%	2.76%	92.08%	0.52%	0.86%	4.22%	4.58%
06290-C-16	1.31%	69.59%	20.67%	0.55%	7.81%	0.96%	4.64%
06290-C-29	2.15%	0.68%	72.41%	25.61%	0.69%	5.23%	7.22%
06290-C-33	3.94%	75.34%	8.77%	0.69%	10.80%	1.63%	18.59%
06290-C-36	4.14%	1.48%	92.94%	1.34%	0.53%	4.66%	5.01%
06290-C-45	3.40%	1.50%	55.11%	39.68%	0.52%	4.92%	8.93%
06290-C-5	9.72%	13.26%	70.84%	7.92%	2.35%	4.72%	6.66%
06290-FS-AREA-2	6.61%	42.28%	38.77%	8.43%	4.29%	7.69%	19.84%
06290-FS-AREA-3	5.10%	8.90%	72.69%	12.13%	1.95%	7.71%	10.61%
06290-M-AB	9.62%	70.50%	7.41%	0.82%	10.99%	0.41%	5.53%
06289-C-103	6.91%	1.98%	73.25%	15.50%	0.14%	5.48%	7.48%
06289-C-104	6.49%	21.16%	48.92%	5.49%	17.57%	3.47%	7.09%
06289-C-105	15.41%	10.05%	49.09%	8.88%	16.22%	2.36%	4.81%
06289-FS-AREA-1	3.98%	42.51%	46.41%	4.24%	2.62%	2.43%	5.24%
06289-FS-AREA-4	8.19%	41.98%	32.61%	11.16%	5.74%	2.53%	7.76%
06289-FS-AREA-5	5.38%	12.46%	72.39%	7.61%	1.59%	4.35%	6.01%
06289-FS-AREA-6	3.42%	0.59%	49.05%	45.75%	0.48%	5.95%	12.13%
Correlations		rho	p-value				
TOC-Coarse Sand		-0.104	0.611	1	Median Est. TOC	in fines	7.55%
TOC-Fine Sand		-0.677	0.0002				
TOC-Fines		0.525	0.007				
TOC-Gravel		0.651	0.0005				
TOC-Medium Sand		-0.524	0.007				

Table 4. Size Fractions and Total Organic Carbon in Marsh Sediment Samples along with Spearmann Rank

 Correlation Coefficients and Probabilities.

Sample ID	Percent Moisture
06289-M-108	72.9
06289-FS-AREA-6	68.9
06289-M-106	72
06289-M-107	73.8
06290-M-104	71.2
06290-M-103	77.9
06290-M-100	73
06290-M-204	68.6
06290-M-37	72.4
06290-M-AB	19.3
06290-M-41	71.1
06290-NOAA-9-G	63.5
06291-MG-D9(M)	66
06291-NOAA-5-G	51.1
06291-M-25	65
06291-MG-K7(M)	66.1
06291-NOAA-3-G	78.7
06291-MG-H7(M)	66.2
06291-CR-M	63.7
06291-MG-N2(M)	81.3
06291-MG-B7(M)	71.3
06291-TC-M	61.4
06292-NOAA-8-G	77.4
06292-NOAA-7-G	71.6
06292-NOAA-6-G	69.2
06292-M-28	69.8
Average	67.82

Table 5. Percent Moisture in Marsh Sediment Samples

Chemical	EPC mg/kg	Effective Concentration Fraction percent	Percent Moisture percent	SAF mg/cm ²	ABS Fraction	DA _{event} mg/cm ²
B(a)P toxic equivalents	0.603	7.55%	67.82%	13	0.13	4.6E-08
Aroclor 1268	2.571	7.55%	67.8 <mark>2%</mark>	13	0.14	2.1E-07
Aluminum	34812			13	0	0.0E+00
Chromium	123.6			13	0	0.0E+00
Lead	43.67			13	0	0.0E+00
Manganese	510			13	0	0.0E+00
Mercury	3.615			13	0	0.0E+00
Methylmercury	0.0105			13	0	0.0E+00
Thallium	2.167			13	0	0.0E+00

Table 6. Calculation of $\mathsf{DA}_{\mathsf{event}}$ for COPCs in Marsh Sediment

	Adole	escent	Ac	lult
	CTE	RME	CTE	RME
SSA (cm²)	2559	2559	3870	3870
IR sed (mg/day)	50	100	50	100
AT cancer (days)	25550	25550	25550	25550
AT noncancer (days)	730	3650	2190	10950
ED (yr)	2	10	6	30
EF (days/yr)	6	52	6	52
BW (kg)	45	45	70	70

 Table 7. Exposure Assumptions for Marsh Tresspasser

Cancer Risk	DA _{event}	SSA	EF	ED	IR_sed	BW	AT	DAD	Oral Dose	GI	Oral SF	Dermal	Oral	Total
	mg/cm ²	cm ²	d/yr	yr	mg/day	kg	days	mg/kg-day	mg/kg-day	ABS		Risk	Risk	Risk
Adult			-70		1122-2 AA-	0.155								
B(a)P toxic equivalents	4.6E-08	3870	52	30	100	70	25550	1.5E-07	5.3E-08	1	7.3E+00	1.1E-06	3.8E-07	1.5E-06
Aroclor 1268	2.1E-07	3870	52	30	100	70	25550	7.1E-07	2.2E-07	1	2.0E+00	1.4E-06	4.5E-07	1.9E-06
Chromium	0.0E+00	3870	52	30	100	70	25550	0.0E+00	1.1E-05	0.025	5.0E-01	0.0E+00	5.4E-06	5.4E-06
												Adult		8.8E-06
Adolescent	-							-	-	_				
B(a)P toxic equivalents	4.6E-08	2559	52	10	100	45	25550	5.3E-08	2.7E-08	1	7.3E+00	3.9E-07	2.0E-07	5.9E-07
Aroclor 1268	2.1E-07	2559	52	10	100	45	25550	2.4E-07	1.2E-07	1	2.0E+00	4.9E-07	2.3E-07	7.2E-07
Chromium	0.0E+00	2559	52	10	100	45	25550	0.0E+00	5.6E-06	0.025	5.0E-01	0.0E+00	2.8E-06	2.8E-06
												Adolescent		4.1E-06
										Lifetime	e Receptor	2.6E-06	7.4E-06	1.0E-05

Table 8a. RME Intake Doses and RME Cancer Risk Estimates for the Marsh Trespasser Scenario

GI absorption value was used to convert Oral SF to dermal values.

Lifetime receptor risk was calculated using 0.67 times the adult risk plus the adolescent risk to equal a 30 year exposure period.

Cancer Risk	DA _{event}	SSA	EF	ED	IR_sed	BW	AT	DAD	Oral	GI	Oral SF	Dermal	Oral	Total
	mg/cm ²	cm ²	d/yr	yr	mg/day	kg	days	mg/kg-day	mg/kg-day	ABS		Risk	Risk	Risk
Adult									-					
B(a)P toxic equivalents	4.6E-08	3870	6	6	50	70	25550	3.6E-09	6.1E-10	1	7.3E+00	2.6E-08	4.4E-09	3.1E-08
Aroclor 1268	2.1E-07	3870	6	6	50	70	25550	1.6E-08	2.6E-09	1	2.0E+00	3.3E-08	5.2E-09	3.8E-08
Chromium	0.0E+00	3870	6	6	50	70	25550	0.0E+00	1.2E-07	0.025	5.0E-01	0.0E+00	6.2E-08	6.2E-08
												Adult		1.3E-07
Adolescent														
B(a)P toxic equivalents	4.6E-08	2559	6	2	50	45	25550	1.2E-09	3.1E-10	1	7.3E+00	8.9E-09	2.3E-09	1.1E-08
Aroclor 1268	2.1E-07	2559	6	2	50	45	25550	5.6E-09	1.3E-09	1	2.0E+00	1.1E-08	2.7E-09	1.4E-08
Chromium	0.0E+00	2559	6	2	50	45	25550	0.0E+00	6.5E-08	0.025	5.0E-01	0.0E+00	3.2E-08	3.2E-08
												Adolescen	t	5.7E-08
										Lifetime	Receptor	7.9E-08	1.1E-07	1.9E-07

 Table 8b.
 CTE Intake Doses and CTE Cancer Risk Estimates for the Marsh Trespasser Scenario

GI absorption value was used to convert Oral SF to dermal values.

Noncancer Hazard	DA _{event}	SSA	EF	ED	IR_sed	BW	AT	DAD	Oral	GI	Oral RfD	Dermal	Oral	Total
	mg/cm ²	cm ²	d/yr	yr	mg/day	kg	days	mg/kg-day	mg/kg-day	ABS		HQ	HQ	HQ
Adult			~				281							
Aroclor 1268	2.1E-07	3870	52	30	100	70	10950	1.7E-06	5.2E-07	1	7.0E-05	2.4E-02	7.5E-03	3.1E-02
Aluminum	0.0E+00	3870	52	30	100	70	10950	0.0E+00	7.1E-03	1	1.0E+00	0.0E+00	7.1E-03	7.1E-03
Chromium	0.0E+00	3870	52	30	100	70	10950	0.0E+00	2.5E-05	0.025	3.0E-03	0.0E+00	8.4E-03	8.4E-03
Lead	0.0E+00	3870	52	30	100	70	10950	0.0E+00	8.9E-06	1	NA	NA	NA	NA
Manganese	0.0E+00	3870	52	30	100	70	10950	0.0E+00	1.0E-04	0.04	1.4E-01	0.0E+00	7.4E-04	7.4E-04
Mercury	0.0E+00	3870	52	30	100	70	10950	0.0E+00	7.4E-07	1	1.0E-04	0.0E+00	7.4E-03	7.4E-03
Methylmercury	0.0E+00	3870	52	30	100	70	10950	0.0E+00	2.1E-09	1	1.0E-04	0.0E+00	2.1E-05	2.1E-05
Thallium	0.0E+00	3870	52	30	100	70	10950	0.0E+00	4.4E-07	1	6.5E-05	0.0E+00	6.8E-03	6.8E-03
								-			5	Adult		0.06
Adolescent								v	~ ~ ~		w			
Aroclor 1268	2.1E-07	2559	52	10	100	45	3650	1.7E-06	8.1E-07	1	7.0E-05	2.4E-02	1.2E-02	3.6E-02
Aluminum	0.0E+00	2559	52	10	100	45	3650	0.0E+00	1.1E-02	1	1.0E+00	0.0E+00	1.1E-02	1.1E-02
Chromium	0.0E+00	2559	52	10	100	45	3650	0.0E+00	3.9E-05	0.025	3.0E-03	0.0E+00	1.3E-02	1.3E-02
Lead	0.0E+00	2559	52	10	100	45	3650	0.0E+00	1.4E-05	1	NA	NA	NA	NA
Manganese	0.0E+00	2559	52	10	100	45	3650	0.0E+00	1.6E-04	0.04	1.4E-01	0.0E+00	1.2E-03	1.2E-03
Mercury	0.0E+00	2559	52	10	100	45	3650	0.0E+00	1.1E-06	1	1.0E-04	0.0E+00	1.1E-02	1.1E-02
Methylmercury	0.0E+00	2559	52	10	100	45	3650	0.0E+00	3.3E-09	1	1.0E-04	0.0E+00	3.3E-05	3.3E-05
Thallium	0.0E+00	2559	52	10	100	45	3650	0.0E+00	6.9E-07	1	6.5E-05	0.0E+00	1.1E-02	1.1E-02
	54								oly,			Adolescent		0.08

Table 9a. RME Intake Dose and RME Noncancer Hazard Estimates for the Marsh Trespasser Scenario

GI absorption value was used to convert Oral RfD to dermal values.

No HQ was calculated for lead. See text for additional explanation.

Noncancer Hazard	DA _{event}	SSA	EF	ED	IR_sed	BW	AT	DAD	Oral	GI	Oral RfD	Dermal	Oral	Total
_	mg/cm ²	cm ²	d/yr	yr	mg/day	kg	days	mg/kg-day	mg/kg-day	ABS		HQ	HQ	HQ
Adult														
Aroclor 1268	2.1E-07	3870	6	6	50	70	2190	1.9E-07	3.0E-08	1	7.0E-05	2.7E-03	4.3E-04	3.2E-03
Aluminum	0.0E+00	3870	6	6	50	70	2190	0.0E+00	4.1E-04	1	1.0E+00	0.0E+00	4.1E-04	4.1E-04
Chromium	0.0E+00	3870	6	6	50	70	2190	0.0E+00	1.5E-06	0.025	3.0E-03	0.0E+00	4.8E-04	4.8E-04
Lead	0.0E+00	3870	6	6	50	70	2190	0.0E+00	5.1E-07	1	NA			
Manganese	0.0E+00	3870	6	6	50	70	2190	0.0E+00	6.0E-06	0.04	1.4E-01	0.0E+00	4.3E-05	4.3E-05
Mercury	0.0E+00	3870	6	6	50	70	2190	0.0E+00	4.2E-08	1	1.6E-04	0.0E+00	2.7E-04	2.7E-04
Methylmercury	0.0E+00	3870	6	6	50	70	2190	0.0E+00	1.2E-10	1	1.0E-04	0.0E+00	1.2E-06	1.2E-06
Thallium	0.0E+00	3870	6	6	50	70	2190	0.0E+00	2.5E-08	1	6.5E-05	0.0E+00	3.9E-04	3.9E-04
												Adult		0.005
Adolescent														
Aroclor 1268	2.1E-07	2559	6	2	50	45	730	2.0E-07	4.7E-08	1	7.0E-05	2.8E-03	6.7E-04	3.5E-03
Aluminum	0.0E+00	2559	6	2	50	45	730	0.0E+00	6.4E-04	1	1.0E+00	0.0E+00	6.4E-04	6.4E-04
Chromium	0.0E+00	2559	6	2	50	45	730	0.0E+00	2.3E-06	0.025	3.0E-03	0.0E+00	7.5E-04	7.5E-04
Lead	0.0E+00	2559	6	2	50	45	730	0.0E+00	8.0E-07	1	NA			
Manganese	0.0E+00	2559	6	2	50	45	730	0.0E+00	9.3E-06	0.04	1.4E-01	0.0E+00	6.7E-05	6.7E-05
Mercury	0.0E+00	2559	6	2	50	45	730	0.0E+00	6.6E-08	1	1.0E-04	0.0E+00	6.6E-04	6.6E-04
Methylmercury	0.0E+00	2559	6	2	50	45	730	0.0E+00	1.9E-10	1	1.0E-04	0.0E+00	1.9E-06	1.9E-06
Thallium	0.0E+00	2559	6	2	50	45	730	0.0E+00	4.0E-08	1	6.5E-05	0.0E+00	6.1E-04	6.1E-04
												Adolescent		0.006

Table 9b. CTE Intake Dose and CTE Noncancer Hazard Estimates for the Marsh Trespasser Scenario

GI absorption value was used to convert Oral RfD to dermal values.

No HQ was calculated for lead. See text for additional explanation.
	Ch	nild	Adole	escent	Ac	lult
	CTE	RME	CTE	RME	CTE	RME
FCR Finfish (g/day)						
Recreational Counsumers (EPA, 1997) ⁽¹⁾	1.6	5.3	3.2	10.6	4.7	15.9
High Quantity Consumers (DHHS, 1999) ⁽²⁾	3	10	11	18	13	27
FCR Shellfish (g/day)						
EPA, 1997, Table 10-6	2.3	6	0.8	3.4	3.9	11.8
FCR Clapper Rail (g/day)						
DHHS, 1999	0.02	0.21	0.02	0.17	0.08	0.34
ED (yr)	2	6	3	9	9	30
EF (days/yr)	365	365	365	365	365	365
BW (kg)	15	15	45	45	70	70

Table 10. Exposure Assumptions for Fish and Wildlife Consumption

Notes:

(1) Table 10-1, South Atlantic.(2) See Appendix B.

Wave	Sheepshead	Spotted Seatrout	Southern Kingfish	Black Drum	Red Drum	Southern Flounder	Spot	Atlantic Croaker	Striped Mullet
Jan-Feb	9.1%	52.5%	9.4%	0.5%	25.9%	2.6%	0.00%	0.0%	0.0%
Mar-Apr	12.9%	23.9%	40.8%	2.6%	16.4%	2.8%	0.04%	0.6%	0.0%
May-Jun	20.5%	28.9%	27.2%	5.9%	5.4%	5.8%	0.02%	1.8%	4.6%
Jul-Aug	3.3%	38.7%	22.5%	8.7%	12.8%	10.2%	0.07%	3.4%	0.2%
Sep-Oct	5.1%	35.3%	13.9%	4.4%	37.3%	3.5%	0.07%	0.5%	0.0%
Nov-Dec	8.7%	57.2%	4.5%	1.4%	26.2%	1.9%	0.04%	0.1%	0.01%
Yearly	9.9%	39.4%	19.7%	3.9%	20.7%	4.4%	0.04%	1.1%	0.8%

Table 11. Percent of Total Catch for Use as Weighting Factors for the Various Fish Species based on Angling Success

Notes:

Species-specific fish harvest data from 2001-2005 in Georgia were obtained from the Marine Recreational Fisheries Statistics Survey (MRFSS) (NMFSS, 2007).

Adult								Cancer	Nonca	Incer	Cumulative
	EPC	FI	FCR	EF	ED	BW	AT Cancer	Aroclor 1268	Aroclor 1268	Mercury	Hazard
	mg/kg	percent	g/day	day/yr	yr	kg	days	mg/kg-day	mg/kg-day	mg/kg-day	
Atlantic Croaker											
Aroclor 1268	1.427	1.1%	15.9	365	30	70	25550	1.5E-06	3.4E-06		
Mercury	0.302	1.1%	15.9	365	30	70		-		7.2E-07	
Black Drum											
Aroclor 1268	0.343	3.9%	15.9	365	30	70	25550	1.3E-06	3.1E-06		
Mercury	0.177	3.9%	15.9	365	30	70				1.6E-06	
Red Drum											
Aroclor 1268	0.148	20.7%	15.9	365	30	70	25550	3.0E-06	7.0E-06		
Mercury	0.348	20.7%	15.9	365	30	70				1.6E-05	
Sheepshead											
Aroclor 1268	0.724	9.9%	15.9	365	30	70	25550	7.0E-06	1.6E-05		
Mercury	0.372	9.9%	15.9	365	30	70				8.4E-06	
Southern Flounder											
Aroclor 1268	0.249	4.4%	15.9	365	30	70	25550	1.1E-06	2.5E-06		
Mercury	0.257	4.4%	15.9	365	30	70				2.6E-06	
Southern Kingfish											
Aroclor 1268	0.716	19.7%	15.9	365	30	70	25550	1.4E-05	3.2E-05		
Mercury	0.663	19.7%	15.9	365	30	70				3.0E-05	
Spot											
Aroclor 1268	1.785	0.04%	15.9	365	30	70	25550	6.9E-08	1.6E-07		
Mercury	0.124	0.04%	15.9	365	30	70				1.1E-08	
Spotted Seatrout											
Aroclor 1268	0.556	39.4%	15.9	365	30	70	25550	2.1E-05	5.0E-05		
Mercury	0.495	39.4%	15.9	365	30	70				4.4E-05	
Striped Mullet											
Aroclor 1268	2.704	0.8%	15.9	365	30	70	25550	2.1E-06	5.0E-06		
Mercury	0.042	0.8%	15.9	365	30	70				7.7E-08	
						Т	otal Intakes	5.1E-05	1.2E-04	1.0E-04	
					0	ral CS	SF/oral RfD	2	7.E-05	1.E-04	
							Risk or HQ	1.0E-04	1.7	1	2.7
					Lifet	ime C	ancer Risk	1.1E-04			

Table 12a. RME Intake/Risk Calculation for Adult Consumers of Recreationally-caught Finfish

Notes:

Lifetime receptor cancer risk was calculated using 0.5 times the adult risk plus the adolescent and child risk to equal a 30 year exposure period.

Adolescent								Cancer	Nonca	Incer	Cumulative
	EPC	FI	FCR	EF	ED	BW	AT Cancer	Aroclor 1268	Aroclor 1268	Mercury	Hazard
	mg/kg	percent	g/day	day/yr	yr	kg	days	mg/kg-day	mg/kg-day	mg/kg-day	
Atlantic Croaker											
Aroclor 1268	1.427	1.1%	10.6	365	9	45	25550	4.6E-07	3.5E-06		
Mercury	0.302	1.1%	10.6	365	9	45		C		7.5E-07	
Black Drum							(*				
Aroclor 1268	0.343	3.9%	10.6	365	9	45	25550	4.1E-07	3.2E-06		
Mercury	0.177	3.9%	10.6	365	9	45		2		1.6E-06	
Red Drum											
Aroclor 1268	0.148	20.7%	10.6	365	9	45	25550	9.3E-07	7.2E-06		
Mercury	0.348	20.7%	10.6	365	9	45				1.7E-05	
Sheepshead	_										
Aroclor 1268	0.724	9.9%	10.6	365	9	45	25550	2.2E-06	1.7E-05		
Mercury	0.372	9.9%	10.6	365	9	45				8.7E-06	
Southern Flounder	3										
Aroclor 1268	0.249	4.4%	10.6	365	9	45	25550	3.4E-07	2.6E-06		
Mercury	0.257	4.4%	10.6	365	9	45			_	2.7E-06	
Southern Kingfish											
Aroclor 1268	0.716	19.7%	10.6	365	9	45	25550	4.3E-06	3.3E-05		
Mercury	0.663	19.7%	10.6	365	9	45				3.1E-05	
Spot											
Aroclor 1268	1.785	0.04%	10.6	365	9	45	25550	2.2E-08	1.7E-07		
Mercury	0.124	0.04%	10.6	365	9	45	~			1.2E-08	
Spotted Seatrout											
Aroclor 1268	0.556	39.4%	10.6	365	9	45	25550	6.6E-06	5.2E-05		
Mercury	0.495	39.4%	10.6	365	9	45				4.6E-05	
Striped Mullet								1			
Aroclor 1268	2.704	0.8%	10.6	365	9	45	25550	6.6E-07	5.2E-06		
Mercury	0.042	0.8%	10.6	365	9	45		n		8.0E-08	
						Т	otal Intakes	1.6E-05	1.2E-04	1.1E-04	
					0	ral CS	SF/oral RfD	2	7.E-05	1.E-04	
							Risk or HQ	3.2E-05	1.8	1	2.8

Table 12b. RME Intake/Risk Calculation for Adolescent Consumers of Recreationally-caught Finfish

Child								Cancer	Nonca	Incer	Cumulative
	EPC	FI	FCR	EF	ED	BW	AT Cancer	Aroclor 1268	Aroclor 1268	Mercury	Hazard
	mg/kg	percent	g/day	day/yr	yr	kg	days	mg/kg-day	mg/kg-day	mg/kg-day	
Atlantic Croaker	_										
Aroclor 1268	1.427	1.1%	5.3	365	6	15	25550	4.6E-07	5.3E-06		
Mercury	0.302	1.1%	5.3	365	6	15		-		1.1E-06	
Black Drum											
Aroclor 1268	0.343	3.9%	5.3	365	6	15	25550	4.1E-07	4.8E-06		
Mercury	0.177	3.9%	5.3	365	6	15		-		2.5E-06	
Red Drum											
Aroclor 1268	0.148	20.7%	5.3	365	6	15	25550	9.3E-07	1.1E-05		
Mercury	0.348	20.7%	5.3	365	6	15				2.5E-05	
Sheepshead											
Aroclor 1268	0.724	9.9%	5.3	365	6	15	25550	2.2E-06	2.5E-05		
Mercury	0.372	9.9%	5.3	365	6	15				1.3E-05	
Southern Flounder											
Aroclor 1268	0.249	4.4%	5.3	365	6	15	25550	3.4E-07	3.9E-06		
Mercury	0.257	4.4%	5.3	365	6	15				4.0E-06	
Southern Kingfish											
Aroclor 1268	0.716	19.7%	5.3	365	6	15	25550	4.3E-06	5.0E-05		
Mercury	0.663	19.7%	5.3	365	6	15				4.6E-05	
Spot											
Aroclor 1268	1.785	0.04%	5.3	365	6	15	25550	2.2E-08	2.5E-07		
Mercury	0.124	0.04%	5.3	365	6	15				1.7E-08	
Spotted Seatrout											
Aroclor 1268	0.556	39.4%	5.3	365	6	15	25550	6.6E-06	7.7E-05		
Mercury	0.495	39.4%	5.3	365	6	15				6.9E-05	
Striped Mullet											
Aroclor 1268	2.704	0.8%	5.3	365	6	15	25550	6.6E-07	7.7E-06		
Mercury	0.042	0.8%	5.3	365	6	15				1.2E-07	
						Т	otal Intakes	1.6E-05	1.9E-04	1.6E-04	
					0	ral CS	SF/oral RfD	2	7.E-05	1.E-04	
							Risk or HQ	3.2E-05	2.6	2	4.3

Table 12c. RME Intake/Risk Calculation for Child Consumers of Recreationally-caught Finfish

Adult								Cancer	Nonca	ancer	Cumulative
	EPC	FI	FCR	EF	ED	BW	AT Cancer	Aroclor 1268	Aroclor 1268	Mercury	Hazard
	mg/kg	percent	g/day	day/yr	yr	kg	days	mg/kg-day	mg/kg-day	mg/kg-day	
Atlantic Croaker											
Aroclor 1268	1.427	1.1%	4.7	365	9	70	25550	1.3E-07	1.0E-06		
Mercury	0.302	1.1%	4.7	365	9	70				2.1E-07	
Black Drum											
Aroclor 1268	0.343	3.9%	4.7	365	9	70	25550	1.2E-07	9.1E-07		
Mercury	0.177	3.9%	4.7	365	9	70				4.7E-07	
Red Drum											
Aroclor 1268	0.148	20.7%	4.7	365	9	70	25550	2.6E-07	2.1E-06		
Mercury	0.348	20.7%	4.7	365	9	70				4.8E-06	
Sheepshead											
Aroclor 1268	0.724	9.9%	4.7	365	9	70	25550	6.2E-07	4.8E-06		
Mercury	0.372	9.9%	4.7	365	9	70				2.5E-06	
Southern Flounde	r										
Aroclor 1268	0.249	4.4%	4.7	365	9	70	25550	9.6E-08	7.4E-07		
Mercury	0.257	4.4%	4.7	365	9	70				7.7E-07	
Southern Kingfish											
Aroclor 1268	0.716	19.7%	4.7	365	9	70	25550	1.2E-06	9.5E-06		
Mercury	0.663	19.7%	4.7	365	9	70				8.8E-06	
Spot											
Aroclor 1268	1.785	0.04%	4.7	365	9	70	25550	6.1E-09	4.8E-08	PO1 200-02 60700	
Mercury	0.124	0.04%	4.7	365	9	70				3.3E-09	
Spotted Seatrout											
Aroclor 1268	0.556	39.4%	4.7	365	9	70	25550	1.9E-06	1.5E-05		
Mercury	0.495	39.4%	4.7	365	9	70				1.3E-05	
Striped Mullet											
Aroclor 1268	2.704	0.8%	4.7	365	9	70	25550	1.9E-07	1.5E-06		
Mercury	0.042	0.8%	4.7	365	9	70				2.3E-08	
						Ţ	otal Intakes	4.5E-06	3.5E-05	3.1E-05	
					(oral C	SF/oral RfD	2	7.E-05	1.E-04	
							Risk or HQ	9.1E-06	0.5	0	0.8
					Life	time	Cancer Risk	1.5E-05			

Table 13a. CTE Risk Calculation for Adult Consumers of Recreationally-caught Finfish

Adolescent								Cancer	Nonca	ancer	Cumulative
	EPC	FI	FCR	EF	ED	BW	AT Cancer	Aroclor 1268	Aroclor 1268	Mercury	Hazard
· ·	mg/kg	percent	g/day	day/yr	yr	kg	days	mg/kg-day	mg/kg-day	mg/kg-day	
Atlantic Croaker						0	1				
Aroclor 1268	1.427	1.1%	3.2	365	3	45	25550	4.6E-08	1.1E-06		
Mercury	0.302	1.1%	3.2	365	3	45				2.3E-07	
Black Drum						-10	4				
Aroclor 1268	0.343	3.9%	3.2	365	3	45	25550	4.1E-08	9.6E-07		
Mercury	0.177	3.9%	3.2	365	3	45				5.0E-07	
Red Drum						-11					
Aroclor 1268	0.148	20.7%	3.2	365	3	45	25550	9.3E-08	2.2E-06		
Mercury	0.348	20.7%	3.2	365	3	45				5.1E-06	
Sheepshead				365		8					
Aroclor 1268	0.724	9.9%	3.2	365	3	45	25550	2.2E-07	5.1E-06		
Mercury	0.372	9.9%	3.2	365	3	45				2.6E-06	
Southern Flounde	r										
Aroclor 1268	0.249	4.4%	3.2	365	3	45	25550	3.4E-08	7.9E-07		
Mercury	0.257	4.4%	3.2	365	3	_ 45				8.1E-07	
Southern Kingfish											
Aroclor 1268	0.716	19.7%	3.2	365	3	45	25550	4.3E-07	1.0E-05		
Mercury	0.663	19.7%	3.2	365	3	_ 45				9.3E-06	
Spot				365							[[
Aroclor 1268	1.785	0.04%	3.2	365	3	45	25550	2.2E-09	5.1E-08		
Mercury	0.124	0.04%	3.2	365	3	45				3.5E-09	
Spotted Seatrout											
Aroclor 1268	0.556	39.4%	3.2	365	3	45	25550	6.7E-07	1.6E-05		
Mercury	0.495	39.4%	3.2	365	3	45				1.4E-05	
Striped Mullet											
Aroclor 1268	2.704	0.8%	3.2	365	3	45	25550	6.7E-08	1.6E-06		
Mercury	0.042	0.8%	3.2	365	3	45				2.4E-08	
						Т	otal Intakes	1.6E-06	3.7E-05	3.2E-05	
					C	oral C	SF/oral RfD	2	7.E-05	1.E-04	
							Risk or HQ	3.2E-06	0.5	0	0.9

Table 13b. CTE Risk Calculation for Adolescent Consumers of Recreationally-caught Finfish

Child								Cancer	Nonca	ancer	Cumulative
	EPC	FI	FCR	EF	ED	BW	AT Cancer	Aroclor 1268	Aroclor 1268	Mercury	Hazard
	mg/kg	percent	g/day	day/yr	yr	kg	days	mg/kg-day	mg/kg-day	mg/kg-day	
Atlantic Croaker											
Aroclor 1268	1.427	1.1%	1.6	365	2	15	25550	4.6E-08	1.6E-06		
Mercury	0.302	1.1%	1.6	365	2	15				3.4E-07	
Black Drum											
Aroclor 1268	0.343	3.9%	1.6	365	2	15	25550	4.1E-08	1.4E-06		
Mercury	0.177	3.9%	1.6	365	2	15				7.4E-07	
Red Drum											
Aroclor 1268	0.148	20.7%	1.6	365	2	15	25550	9.3E-08	3.3E-06		
Mercury	0.348	20.7%	1.6	365	2	15				7.7E-06	
Sheepshead											
Aroclor 1268	0.724	9.9%	1.6	365	2	15	25550	2.2E-07	7.7E-06		
Mercury	0.372	9.9%	1.6	365	2	15				3.9E-06	
Southern Flounde	r										
Aroclor 1268	0.249	4.4%	1.6	365	2	15	25550	3.4E-08	1.2E-06		
Mercury	0.257	4.4%	1.6	365	2	15				1.2E-06	
Southern Kingfish											
Aroclor 1268	0.716	19.7%	1.6	365	2	15	25550	4.3E-07	1.5E-05		
Mercury	0.663	19.7%	1.6	365	2	15				1.4E-05	
Spot											
Aroclor 1268	1.785	0.04%	1.6	365	2	15	25550	2.2E-09	7.6E-08		
Mercury	0.124	0.04%	1.6	365	2	15				5.3E-09	
Spotted Seatrout											
Aroclor 1268	0.556	39.4%	1.6	365	2	15	25550	6.7E-07	2.3E-05		
Mercury	0.495	39.4%	1.6	365	2	15				2.1E-05	
Striped Mullet											
Aroclor 1268	2.704	0.8%	1.6	365	2	15	25550	6.7E-08	2.3E-06		
Mercury	0.042	0.8%	1.6	365	2	15				3.6E-08	
						Т	otal Intakes	1.6E-06	5.6E-05	4.9E-05	
					(oral C	SF/oral RfD	2	7.E-05	1.E-04	
							Risk or HQ	3.2E-06	0.8	0	1.3

Table 13c. CTE Risk Calculation for Child Consumers of Recreationally-caught Finfish

Adult								Cancer	Nonca	ncer	Cumulative
	EPC	FI	FCR	EF	ED	BW	AT Cancer	Aroclor 1268	Aroclor 1268	Mercury	Hazard
	mg/kg	percent	g/day	day/yr	yr	kg	days	mg/kg-day	mg/kg-day	mg/kg-day	
Atlantic Croaker		0612			01-11-						
Aroclor 1268	1.427	1.1%	27	365	30	70	25550	2.5E-06	5.8E-06		
Mercury	0.302	1.1%	27	365	30	70				1.2E-06	
Black Drum											
Aroclor 1268	0.343	3.9%	27	365	30	70	25550	2.2E-06	5.2E-06		
Mercury	0.177	3.9%	27	365	30	70				2.7E-06	
Red Drum											
Aroclor 1268	0.148	20.7%	27	365	30	70	25550	5.1E-06	1.2E-05		
Mercury	0.348	20.7%	27	365	30	70				2.8E-05	
Sheepshead											
Aroclor 1268	0.724	9.9%	27	365	30	70	25550	1.2E-05	2.8E-05		
Mercury	0.372	9.9%	27	365	30	70		Construction of the Parameter		1.4E-05	
Southern Flounder											
Aroclor 1268	0.249	4.4%	27	365	30	70	25550	1.8E-06	4.3E-06		
Mercury	0.257	4.4%	27	365	30	70				4.4E-06	
Southern Kingfish											
Aroclor 1268	0.716	19.7%	27	365	30	70	25550	2.3E-05	5.4E-05		
Mercury	0.663	19.7%	27	365	30	70				5.0E-05	
Spot											
Aroclor 1268	1.785	0.04%	27	365	30	70	25550	1.2E-07	2.7E-07		
Mercury	0.124	0.04%	27	365	30	70				1.9E-08	
Spotted Seatrout											
Aroclor 1268	0.556	39.4%	27	365	30	70	25550	3.6E-05	8.5E-05		
Mercury	0.495	39.4%	27	365	30	70				7.5E-05	
Striped Mullet											
Aroclor 1268	2.704	0.8%	27	365	30	70	25550	3.6E-06	8.5E-06		
Mercury	0.042	0.8%	27	365	30	70				1.3E-07	
							Total Intakes	8.7E-05	2.0E-04	1.8E-04	
						oral	CSF/oral RfD	2	7.E-05	1.E-04	
							Risk or HQ	1.7E-04	3.0	2.0	5.0
					Li	fetime	Cancer Risk	2.0E-04			

Table 14a. RME Risk Calculation for Hypothetical Adult High Quantity Consumers of Finfish

Notes:

Lifetime receptor cancer risk was calculated using 0.5 times the adult risk plus the adolescent and child risk to equal a 30 year exposure period.

Adolescent								Cancer	Nonca	Incer	Cumulative
	EPC	FI	FCR	EF	ED	BW	AT Cancer	Aroclor 1268	Aroclor 1268	Mercury	Hazard
	mg/kg	percent	g/day	day/yr	yr	kg	days	mg/kg-day	mg/kg-day	mg/kg-day	
Atlantic Croaker											
Aroclor 1268	1.427	1.1%	18	365	9	45	25550	7.7E-07	6.0E-06		
Mercury	0.302	1.1%	18	365	9	45				1.3E-06	
Black Drum											
Aroclor 1268	0.343	3.9%	18	365	9	45	25550	6.9E-07	5.4E-06		
Mercury	0.177	3.9%	18	365	9	45				2.8E-06	
Red Drum											
Aroclor 1268	0.148	20.7%	18	365	9	45	25550	1.6E-06	1.2E-05		
Mercury	0.348	20.7%	18	365	9	45				2.9E-05	
Sheepshead											
Aroclor 1268	0.724	9.9%	18	365	9	45	25550	3.7E-06	2.9E-05		
Mercury	0.372	9.9%	18	365	9	45				1.5E-05	
Southern Flounder											
Aroclor 1268	0.249	4.4%	18	365	9	45	25550	5.7E-07	4.4E-06		
Mercury	0.257	4.4%	18	365	9	45				4.6E-06	
Southern Kingfish											
Aroclor 1268	0.716	19.7%	18	365	9	45	25550	7.3E-06	5.6E-05		
Mercury	0.663	19.7%	18	365	9	45				5.2E-05	
Spot											
Aroclor 1268	1.785	0.04%	18	365	9	45	25550	3.7E-08	2.8E-07		
Mercury	0.124	0.04%	18	365	9	45				2.0E-08	
Spotted Seatrout											
Aroclor 1268	0.556	39.4%	18	365	9	45	25550	1.1E-05	8.8E-05		
Mercury	0.495	39.4%	18	365	9	45				7.8E-05	
Striped Mullet											
Aroclor 1268	2.704	0.8%	18	365	9	45	25550	1.1E-06	8.8E-06		
Mercury	0.042	0.8%	18	365	9	45				1.4E-07	7
						_	Total Intakes	2 7E-05	2 1E-04	1.8E-04	
						oral	CSF/oral RfD	2 00	7.E-05	1 E-04	
						orur	Risk or HQ	5.4E-05	3.0	01	5.0

Table 14b. RME Risk Calculation for Hypothetical Adolescent High Quantity Consumers of Finfish

1								Cancer	INONCE	ancer	Cumulative
il L	EPC	FI	FCR	EF	ED	BW	AT Cancer	Aroclor 1268	Aroclor 1268	Mercury	Hazard
	mg/kg	percent	g/day	day/yr	yr	kg	days	mg/kg-day	mg/kg-day	mg/kg-day	12
Atlantic Croaker		2000			01-11-						
Aroclor 1268	1.427	1.1%	10	365	6	15	25550	8.6E-07	1.0E-05		
Mercury	0.302	1.1%	10	365	6	15				2.1E-06	
Black Drum											
Aroclor 1268	0.343	3.9%	10	365	6	15	25550	7.7E-07	9.0E-06		
Mercury	0.177	3.9%	10	365	6	15				4.6E-06	
Red Drum											
Aroclor 1268	0.148	20.7%	10	365	6	15	25550	1.7E-06	2.0E-05		
Mercury	0.348	20.7%	10	365	6	15				4.8E-05	
Sheepshead											
Aroclor 1268	0.724	9.9%	10	365	6	15	25550	4.1E-06	4.8E-05		
Mercury	0.372	9.9%	10	365	6	15				2.5E-05	
Southern Flounder											
Aroclor 1268	0.249	4.4%	10	365	6	15	25550	6.3E-07	7.4E-06		
Mercury	0.257	4.4%	10	365	6	15				7.6E-06	
Southern Kingfish											
Aroclor 1268	0.716	19.7%	10	365	6	15	25550	8.1E-06	9.4E-05		
Mercury	0.663	19.7%	10	365	6	15				8.7E-05	
Spot											
Aroclor 1268	1.785	0.04%	10	365	6	15	25550	4.1E-08	4.7E-07		
Mercury	0.124	0.04%	10	365	6	15				3.3E-08	
Spotted Seatrout											
Aroclor 1268	0.556	39.4%	10	365	6	15	25550	1.3E-05	1.5E-04		
Mercury	0.495	39.4%	10	365	6	15				1.3E-04	
Striped Mullet											
Aroclor 1268	2.704	0.8%	10	365	6	15	25550	1.3E-06	1.5E-05		
Mercury	0.042	0.8%	10	365	6	15				2.3E-07	
							Total Intakes	3 0E-05	3 5E-04	3.0F-04	
						oral	CSF/oral RfD	2	7.E-05	1.E-04	
						21.01	Risk or HQ	6.0E-05	5.0	3	8.0

Table 14c. RME Risk Calculation for Hypothetical Child High Quantity Consumers of Finfish

Adult								Cancer	Nonca	ncer	Cumulative
	EPC	FI	FCR	EF	ED	BW	AT	Aroclor 1268	Aroclor 1268	Mercury	Hazard
	mg/kg	percent	g/day	day/yr	yr	kg	days	mg/kg-day	mg/kg-day	mg/kg-day	
Atlantic Croaker											
Aroclor 1268	1.427	1.1%	13	365	9	70	25550	3.6E-07	2.8E-06		
Mercury	0.302	1.1%	13	365	9	70				5.9E-07	
Black Drum					10						
Aroclor 1268	0.343	3.9%	13	365	9	70	25550	3.2E-07	2.5E-06		
Mercury	0.177	3.9%	13	365	9	70				1.3E-06	
Red Drum					17					ĺ	
Aroclor 1268	0.148	20.7%	13	365	9	70	25550	7.3E-07	5.7E-06		
Mercury	0.348	20.7%	13	365	9	70				1.3E-05	
Sheepshead				365	50 1						
Aroclor 1268	0.724	9.9%	13	365	9	70	25550	1.7E-06	1.3E-05		
Mercury	0.372	9.9%	13	365	9	70				6.9E-06	
Southern Flounder											
Aroclor 1268	0.249	4.4%	13	365	9	70	25550	2.6E-07	2.1E-06		
Mercury	0.257	4.4%	13	365	9	70				2.1E-06	
Southern Kingfish											
Aroclor 1268	0.716	19.7%	13	365	9	70	25550	3.4E-06	2.6E-05		
Mercury	0.663	19.7%	13	365	9	70				2.4E-05	
Spot				365							Í
Aroclor 1268	1.785	0.04%	13	365	9	70	25550	1.7E-08	1.3E-07		
Mercury	0.124	0.04%	13	365	9	70				9.2E-09	
Spotted Seatrout											
Aroclor 1268	0.556	39.4%	13	365	9	70	25550	5.2E-06	4.1E-05		
Mercury	0.495	39.4%	13	365	9	70				3.6E-05	
Striped Mullet											
Aroclor 1268	2.704	0.8%	13	365	9	70	25550	5.2E-07	4.1E-06		
Mercury	0.042	0.8%	13	365	9	70				6.3E-08	
						Tota	l Intakes	1.3E-05	9.7E-05	8.5E-05	
					ora	I CSF	oral RfD	2	7.E-05	1.E-04	
						Ri	sk or HQ	2.5E-05	1.0	1	1.8
					ifetim	e Car	ncer Risk	4.2E-05			

 Table 15a.
 CTE Risk Calculation for Hypothetical Adult High Quantity Consumers of Finfish

Adolescent								Cancer	Nonca	ncer	Cumulative
	EPC	FI	FCR	EF		BW	AT Cance	Aroclor 1268	Aroclor 1268	Mercury	Hazard
	mg/kg	percent	g/day	day/yr		kg	days	mg/kg-day	mg/kg-day	mg/kg-day	
Atlantic Croaker											
Aroclor 1268	1.427	1.1%	11	365	3	45	25550	1.6E-07	3.7E-06		
Mercury	0.302	1.1%	11	365	3	45			-	7.8E-07	
Black Drum											
Aroclor 1268	0.343	3.9%	11	365	3	45	25550	1.4E-07	3.3E-06		
Mercury	0.177	3.9%	11	365	3	45			ē.	1.7E-06	
Red Drum											
Aroclor 1268	0.148	20.7%	11	365	3	45	25550	3.2E-07	7.5E-06		
Mercury	0.348	20.7%	11	365	3	45				1.8E-05	
Sheepshead											
Aroclor 1268	0.724	9.9%	11	365	3	45	25550	7.5E-07	1.8E-05		
Mercury	0.372	9.9%	11	365	3	45				9.0E-06	
Southern Flounder											
Aroclor 1268	0.249	4.4%	11	365	З	45	25550	1.2E-07	2.7E-06		
Mercury	0.257	4.4%	11	365	3	45				2.8E-06	
Southern Kingfish											
Aroclor 1268	0.716	19.7%	11	365	3	45	25550	1.5E-06	3.4E-05		
Mercury	0.663	19.7%	11	365	3	45				3.2E-05	
Spot											
Aroclor 1268	1.785	0.04%	11	365	3	45	25550	7.4E-09	1.7E-07		
Mercury	0.124	0.04%	11	365	3	45				1.2E-08	
Spotted Seatrout											
Aroclor 1268	0.556	39.4%	11	365	3	45	25550	2.3E-06	5.4E-05		
Mercury	0.495	39.4%	11	365	3	45				4.8E-05	
Striped Mullet											
Aroclor 1268	2.704	0.8%	11	365	3	45	25550	2.3E-07	5.4E-06		
Mercury	0.042	0.8%	11	365	3	45			2	8.3E-08	
						Tota	al Intakes	5.5E-06	1.3E-04	1.1E-04	
oral CSF/oral RfD				2	7.E-05	1.E-04					
						Ri	sk or HQ	1.1E-05	2.0	1	3.0

 Table 15b.
 CTE Risk Calculation for Hypothetical Adolescent High Quantity Consumers of Finfish

Child								Cancer	Nonca	ncer	Cumulative
	EPC	Fl	FCR	EF		BW	AT Cance	Aroclor 1268	Aroclor 1268	Mercury	Hazard
	mg/kg	percent	g/day	day/yr		kg	days	mg/kg-day	mg/kg-day	mg/kg-day	
Atlantic Croaker											
Aroclor 1268	1.427	1.1%	3	365	2	15	25550	8.6E-08	3.0E-06		
Mercury	0.302	1.1%	3	365	2	15			2	6.4E-07	
Black Drum											
Aroclor 1268	0.343	3.9%	3	365	2	15	25550	7.7E-08	2.7E-06		
Mercury	0.177	3.9%	3	365	2	15			ē.	1.4E-06	
Red Drum											
Aroclor 1268	0.148	20.7%	3	365	2	15	25550	1.7E-07	6.1E-06		
Mercury	0.348	20.7%	3	365	2	15				1.4E-05	
Sheepshead											
Aroclor 1268	0.724	9.9%	3	365	2	15	25550	4.1E-07	1.4E-05		
Mercury	0.372	9.9%	3	365	2	15			-	7.4E-06	
Southern Flounder											
Aroclor 1268	0.249	4.4%	3	365	2	15	25550	6.3E-08	2.2E-06		
Mercury	0.257	4.4%	3	365	2	15				2.3E-06	
Southern Kingfish											
Aroclor 1268	0.716	19.7%	3	365	2	15	25550	8.1E-07	2.8E-05		
Mercury	0.663	19.7%	3	365	2	15				2.6E-05	
Spot											
Aroclor 1268	1.785	0.04%	3	365	2	15	25550	4.1E-09	1.4E-07		
Mercury	0.124	0.04%	3	365	2	15				9.9E-09	
Spotted Seatrout											
Aroclor 1268	0.556	39.4%	3	365	2	15	25550	1.3E-06	4.4E-05		
Mercury	0.495	39.4%	3	365	2	15				3.9E-05	
Striped Mullet											
Aroclor 1268	2.704	0.8%	3	365	2	15	25550	1.3E-07	4.4E-06		
Mercury	0.042	0.8%	3	365	2	15				6.8E-08	
						Tota	al Intakes	3.0E-06	1.0E-04	9.1E-05	
oral CSF/oral RfD				2	7.E-05	1.E-04					
					510	Ri	sk or HQ	6.0E-06	1.5		2.4

Table 15c. CTE Risk Calculation for Hy	thetical Child High Quantity Consumers of Finfish
--	---

Adults								Cancer	Noncancer		er).	Cumulative
	EPC	FI	FCR	EF	ED	BW	AT Cancer	Aroclor 1268	Aroclor 1268	Copper	Hg	Zn	Hazard
	mg/kg	percent	g/day	day/yr	yr	kg	days	mg/kg-day		mg/kg-da	ay	1	l
Blue Crab									250				
Aroclor 1268	0.195	50%	11.8	365	30	70	25550	7.0E-06	1.6E-05				
Copper	20.9	50%	11.8	365	30	70				1.8E-03			
Mercury	0.708	50%	11.8	365	30	70					6.0E-05		
Zinc	46.94	50%	11.8	365	30	70						4.0E-03	
White Shrimp													
Aroclor 1268	0.533	50%	11.8	365	30	70	25550	1.9E-05	4.5E-05				
Copper	13.3	50%	11.8	365	30	70				1.1E-03			
Mercury	0.112	50%	11.8	365	30	70					9.4E-06		
						Т	otal Intakes	2.6E-05	6.1E-05	2.9E-03	6.9E-05	4.0E-03	Adult
					O	al C	SF/oral RfD	2.0E+00	7.0E-05	4.0E-02	1.0E-04	3.0E-01	0.0000000000000000000000000000000000000
							Risk or HQ	5.3E-05	0.88	0.07	0.7	0.01	1.7
A	FDO	EL	FOR	EE			AT 0	August	A	0		7	
Addiescents	EPC	FI	FCR	EF	ED	BW	AT Cancer	AFOCIOF 1268	Arocior 1268	Copper	нg	Zn	
Blue Creb	mg/kg	percent	g/uay	uay/yr	yı	ĸg	uays	mg/kg-uay	mg/kg-uay				
Arcolor 1009	0 105	E00/	0.4	OCE	0	45	05550		7 45 00				
Arocior 1266	0.195	50%	3.4	365	9	45	25550	9.5E-07	7.4E-06				
Copper	20.9	50%	3.4	365	9	45				7.9E-04	0.75.05		
Nercury	0.708	50%	3.4	365	9	45					2.7E-05	4 05 00	
ZINC White Shrimp	46.94	50%	3.4	360	9	45						1.0E-03	
Aroolor 1069	0 500	E09/	0.4	OCE	0	45	05550						
Arocior 1266	0.533	50%	3.4	365	9	45	2000	2.00-00	2.0E-05				
Copper	13.3	50%	3.4	365	9	40				5.0E-04			
	0.112	50%	3.4	365	9	45					4.20-00		
						Т	otal Intakes	3.5E-06	2.8E-05	1.3E-03	3.1E-05	1.8E-03	Adolescent
					O	al C	SF/oral RfD	2.0E+00	7.0E-05	4.0E-02	1.0E-04	3.0E-01	
							Risk or HQ	7.1E-06	0.39	0.03	0.3	0.01	0.7
Child	EPC	FL	FCB	EF	ED	BW	AT Cancer	Aroclor 1268	Aroclor 1268	Copper	Ha	Zn	
	ma/ka	percent	g/dav	dav/vr	vr	ka	davs	ma/ka-dav	mg/kg-dav	pp		200 A.A.	
Blue Crab		F 51 5 5145	3										-
Aroclor 1268	0.195	50%	6	365	6	15	25550	3.3E-06	3.9E-05				
Copper	20.9	50%	6	365	6	15	9.5 III 5983 5 40 35898740		L RAMA SALAT PROVIDE	4.2E-03			
Mercury	0.708	50%	6	365	6	15					1.4E-04		
Zinc	46.94	50%	6	365	6	15						9.4E-03	
White Shrimp													
Aroclor 1268	0.533	50%	6	365	6	15	25550	9.1E-06	1.1E-04				
Copper	13.3	50%	6	365	6	15				2.7E-03			
Mercury	0.112	50%	6	365	6	15				10000000000000000000000000000000000000	2.2E-05		
			-			T	atal Intel/co	1 05 05		0.05.00	1.05.04	0.45.00	Child
							otal Intakes	1.2E-05	1.5E-04	6.8E-03	1.6E-04	9.46-03	Child
					O	arcs	Diak cr UC	2.0E+00	7.0E-05	4.0E-02	1.0E-04	3.0E-01	
					Lifet	ma	HISK OF HQ	2.5E-05	2.08	0.17	1.6	0.03	3.9
					Lifet	me C	Jancer Risk	5.8E-05					

Table 16. RME Intake/Risk Calculation for Consumers of Shellfish

Notes:

Lifetime receptor cancer risk was calculated using 0.5 times the adult risk plus the adolescent and child risk to equal a 30 year exposure period.

Adults								Cancer	Noncancer			Cumulative	
	EPC	FI	FCR	EF	ED	BW	AT Cancer	Aroclor 1268	Aroclor 1268	Copper	Hg	Zn	Hazard
	mg/kg	percent	g/day	day/yr	yr	kg	days	mg/kg-day		mg/kg/	day		
Blue Crab											(1) Kee		
Aroclor 1268	0.195	50%	3.9	365	9	70	25550	7.0E-07	5.4E-06				
Copper	20.9	50%	3.9	365	9	70				5.8E-04			
Mercury	0.708	50%	3.9	365	9	70					2.0E-05		
Zinc	46.94	50%	3.9	365	9	70						1.3E-03	
White Shrimp												7	
Aroclor 1268	0.533	50%	3.9	365	9	70	25550	1.9E-06	1.5E-05				
Copper	13.3	50%	3.9	365	9	70				3.7E-04			
Mercury	0.112	50%	3.9	365	9	70					3.1E-06		
						Т	otal Intakes	2.6E-06	2.0E-05	9.5E-04	2 3E-05	1.3E-03	Adult
					0	ral C	SE/oral BfD	2.0E+00	7.0E-05	4.0E-02	1.0E-04	3.0E-01	, laun
						10.10	Risk or HO	5.2E-06	0.29	0.02	02	0.00	0.55
							Thore of The	0.22 00	0.20	0.02	0.2	0.00	0.00
Adolescents	EPC	FI	FCR	EF	ED	BW	AT Cancer	Aroclor 1268	Aroclor 1268	Copper	Hg	Zn	
	mg/kg	percent	g/day	day/yr	yr	kg	days	mg/kg-day	mg/kg-day		J	000000000	
Blue Crab													
Aroclor 1268	0.195	50%	0.8	365	3	45	25550	7.4E-08	1.7E-06				
Copper	20.9	50%	0.8	365	з	45			sagura publicarias	1.9E-04			
Mercury	0.708	50%	0.8	365	З	45					6.3E-06		
Zinc	46.94	50%	0.8	365	з	45						4.2E-04	
White Shrimp									-				
Aroclor 1268	0.533	50%	0.8	365	З	45	25550	2.0E-07	4.7E-06				
Copper	13.3	50%	0.8	365	3	45				1.2E-04			
Mercury	0.112	50%	0.8	365	3	45					1.0E-06		
						т	otal Intakos	2.8E-07	6.5E-06	3.0E-04	73E-06	4.2E-04	Adolescent
					0	ral C	SE/oral BfD	2.0E+00	7.0E-05	4 0E-02	1.0E-00	3.0E-01	Addiescent
					U		Risk or HO	5.5E-07	0.09	0.01	1.02-04	0.00-01	0.17
								5.5⊑-07	0.05	0.01	0.1	0.00	0.17
Child	EPC	FI	FCR	EF	ED	BW	AT Cancer	Aroclor 1268	Aroclor 1268	Copper	Ha Z	Zn	
	ma/ka	percent	g/day	dav/vr	vr	ka	davs	ma/ka-dav	mg/kg-day		- J		
Blue Crab		Contraction and the second second	<u> </u>		/	9							1
Aroclor 1268	0.195	50%	2.3	365	2	15	25550	4.3E-07	1.5E-05				
Copper	20.9	50%	2.3	365	2	15			110000000000000000000000000000000000000	1.6E-03			
Mercury	0.708	50%	2.3	365	2	15					5.4E-05		
Zinc	46.94	50%	2.3	365	2	15						3.6E-03	
White Shrimp		(12) (12) (12) (12) (12) (12) (12) (12)	0.00.00		10.0				ÿ.				
Aroclor 1268	0.533	50%	2.3	365	2	15	25550	1.2E-06	4.1E-05				
Copper	13.3	50%	2.3	365	2	15			1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	1.0E-03			
Mercury	0.112	50%	2.3	365	2	15					8.6E-06		
						т	otal Intakos	1.6E.06	5.6E-05	2 6E-02	6 3E-05	3.6E-02	Child
					~	ral C	SE/oral RfD	2 0E 100	7.0E-05	4 0F-03	1 0F-04	3.0E-03	Onic
					0	auo	Risk or HO	3 2E-06	0.80	0.07	0.00	0.01	1 50
					ifoti	moC	ancer Rick	0.0E.06	0.00	0.07	0.0	0.01	1.50
					_neu	me u	ancer misk	9.0E-00	2				

Table 17. CTE Intake/Risk Calculation for Consumers of Shellfish

		Game Inge	estion Rate ⁽¹⁾	Game Inge	estion rate ⁽²⁾
Age	BW	g/k	g-day	g/	day
Yr	kg	mean	SE	CTE	RME
Child					
<1	9.1	0.014	0.091	0.13	1.78
1-2	12	0.026	0.125	0.31	3.31
3-5	15	0.01	0.04	0.15	1.35
Adolescent					
6-11	30	0.004	0.016	0.12	1.08
12-19	55	0.004	0.019	0.22	2.31
Adult					
20-39	70	0.01	0.021	0.7	3.64
40-69	70	0.012	0.017	0.84	3.22
	Clapp	er rail Ingesti	on rates used ir	n the risk estir	mate (g/day) ⁽³⁾
		-		CTE	RME
Children				0.02	0.21
Adolescents	S			0.02	0.17
Adults				0.08	0.34

Table 18. Consumption Rates for Clapper Rail

Notes:

(1) Game ingestion rates for different age classes taken from Table 11-6 in USEPA (1997a).

(2) CTE game ingestion rate (in g/day) calculated by multiplying mean age-specific game ingestion rate times (in g/kg-day) age-specific body weight. RME game ingestion rate (in g/day) calculated by adding 2-times the age-specific standard error (SE) to the mean age-specific game ingestion rate (in g/kg-day) and multiplying that sum by the age-specific body weight.

(3) CTE and RME clapper rail ingestion rates (in g/day) calculated by multiplying the average CTE and RME game ingestion rates (in g/day) for each receptor grouping (i.e., child, adolescent, adult) by 0.10 (i.e., 10%).

							Cancer	Nonc	ancer	Cumulative
	EPC	FCR	EF	ED	BW	AT	Aroclor 1268	Aroclor 1268	Mercury	Hazard
Adult	mg/kg	g/day	day/yr	yr	kg	days	mg/kg-day	mg/kg-day	mg/kg-day	-
Clapper Rail										
Aroclor 1268	19.42	0.34	365	30	70	25550	4.1E-05	9.5E-05		
Mercury	4.671	0.34	365	30	70				2.3E-05	
					Total	Intakes	4.1E-05	9.5E-05	2.3E-05	Adult
				oral	CSF/c	oral RfD	2	7.E-05	1.E-04	
					Ris	k or HQ	8.2E-05	1.4	0.2	1.6
Adolescent										
Clapper Rail										
Aroclor 1268	19.42	0.17	365	9	45	25550	9.4E-06	7.3E-05		
Mercury	4.671	0.17	365	9	45		5		1.8E-05	
					Total	Intakes	9.4E-06	7.3E-05	1.8E-05	Adolescent
				oral	CSF/c	oral RfD	2	7.E-05	1.E-04	
					Ris	k or HQ	1.9E-05	1.0	0.2	1.2
Child										
Clapper Rail										
Aroclor 1268	19.42	0.21	365	6	15	25550	2.4E-05	2.8E-04		
Mercury	4.671	0.21	365	6	15		n		6.7E-05	
					Total	Intakes	2.4E-05	2.8E-04	6.7E-05	Child
				oral	CSF/d	oral RfD	2	7.E-05	1.E-04	
					Ris	k or HQ	4.8E-05	4.0	0.7	4.6
		Lif	etime	cer Risk	1.1E-04					

Table 19. RME Risk Calculation for Consumers of Clapper Rail

Notes:

Lifetime receptor cancer risk was calculated using 0.5 times the adult risk plus the adolescent and child risk to equal a 30 year exposure period.

							Cancer	Noncancer		Cumulative
	EPC	FCR	EF	ED	BW	AT	Aroclor 1268	Aroclor 1268	Mercury	Hazard
Adult	mg/kg	g/day	day/yr	yr	kg	days	mg/kg-day	mg/kg-day	mg/kg-day	
Clapper Rail								-		
Aroclor 1268	19.42	0.08	365	9	70	25550	2.7E-06	2.1E-05		
Mercury	4.671	0.08	365	9	70				5.1E-06	
	~				Total	Intakes	2.7E-06	2.1E-05	5.1E-06	Adult
				oral	CSF/	oral RfD	2	7.E-05	1.E-04	
					Ris	k or HQ	5.5E-06	0.3	0.1	0.4
Adolescent									5	
Clapper Rail										
Aroclor 1268	19.42	0.02	365	3	45	25550	3.1E-07	7.3E-06		
Mercury	4.671	0.02	365	3	45				1.8E-06	
					Total	Intakes	3.1E-07	7.3E-06	1.8E-06	Adolescent
				oral	CSF/	oral RfD	2	7.E-05	1.E-04	
					Ris	k or HQ	6.3E-07	0.1	0.0	0.1
Child							t.)		2	
Clapper Rail										
Aroclor 1268	19.42	0.02	365	2	15	25550	7.3E-07	2.5E-05		
Mercury	4.671	0.02	365	2	15				6.1E-06	
					Total	Intakes	7.3E-07	2.5E-05	6.1E-06	Child
				oral	CSF/	oral RfD	2	7.E-05	1.E-04	
Risk or HC						k or HQ	1.5E-06	0.4	0.1	0.4
	Lifetime Cancer Risk									

Table 20. CTE Risk Calculation for Consumers of Clapper Rail

Chemical	GI ABS	Oral CSF	Adj. Dermal CSF	Source	Oral BfD	Adj. Dermal RfD	Source
Benzo(a)pyrene toxic equivalents	1	7.3	7.3	IRIS			IRIS (Benzo(a)pyrene)
Aroclor 1268	1	2.0	2.0	IRIS (Aroclor 1254)	7.0E-05	7.0E-05	IRIS (Aroclor 1016)
Aluminum	1				1.0E+00	1.0E+00	PPRTV
Chromium	0.025	0.5	20	New Jersey DEP	3.0E-03	7.5E-05	IRIS (Cr(VI))
_ead	1						
Manganese	0.04				1.4E-01	5.6E-03	IRIS
Mercury	1				1.0E-04	1.0E-04	IRIS (Methylmercury)
Fhallium	1				6.5E-05	6.5E-05	IRIS Withdrawn (Soluble Salts)

Table 21. Summary of Toxicity Values

Notes:

With the exception of thallium, all toxicity values and GI ABS values were obtained from the EPA's December 2010 Regional Screening Level (RSL) Tables (USEPA, 2010b). The Reference Dose a GI ABS values for thallium (Soluble Salts) were blained from the April 2009 RSL Tables, because the value was withdrawn from EPA's Integrated Risk Information System (IRIS) Database and did not apper on updates of the RSL Tables subsequent to the April 2009 edition.

Risk values were not calculated for lead, see text for details.

		Cance	er Risk	Nonca	ncer HI
Exposure Scenario	Receptor	RME	CTE	RME	CTE
Marsh Trespasser					
1.02	Lifetime	1E-05	2E-07		
	Adult			0.06	0.005
	Adolescent			0.08	0.006
Recreational Finfish Co	nsumer				
	Lifetime	1E-04	2E-05		
	Adult			3	0.8
	Adolescent			3	0.9
	Child			4	1
High Quantity Finfish Co	onsumer	1100011000			
	Lifetime	2E-04	4E-05	24-37	1957
	Adult			5	2
	Adolescent			5	3
	Child			8	2
Shellfish Consumer					
	Lifetime	6E-05	9E-06	120	0001000011
	Adult			2	0.6
	Adolescent			0.7	0.2
	Child			4	2
Clapper Rail Consumer		1			
	Lifetime	1E-04	8E-06		
	Adult			2	0.4
	Adolescent			1	0.1
	Child			5	0.4

Table 22. Summary of Risk Estimates

Notes:

Risk and hazard estimates were rounded to one significant digit.

			Adult		A	dolescent			Child			ELCR	
Fish Species			Target HI		83	Target HI			Target HI			Target CR	
	EPCs	0.1	1	3	0.1	1	3	0.1	1	3	1.0E-06	1.0E-05	1.0E-04
Atlantic Croaker													
Aroclor 1268	1.427	0.052	0.52		0.050	0.50		0.033	0.335	1.0	0.012	0.124	1.244
Mercury	0.302	0.011	0.11		0.011	0.11		0.007	0.071	0.21			
Black Drum													
Aroclor 1268	0.343	0.013	0.13		0.012	0.12		0.008	0.080	0.24	0.003	0.030	0.299
Mercury	0.177	0.006	0.065		0.006	0.062		0.004	0.042	0.12	u		
Red Drum													
Aroclor 1268	0.148	0.005	0.054		0.005	0.052		0.003	0.035	0.10	0.001	0.013	0.129
Mercury	0.348	0.013	0.13		0.012	0.12		0.008	0.082	0.24			
Sheepshead													
Aroclor 1268	0.724	0.026	0.26		0.025	0.25		0.017	0.17	0.51	0.006	0.063	0.631
Mercury	0.372	0.014	0.14		0.013	0.13		0.009	0.087	0.262			
Southern Flounder		0											
Aroclor 1268	0.249	0.009	0.091		0.009	0.088		0.006	0.058	0.18	0.002	0.022	0.217
Mercury	0.257	0.009	0.094		0.009	0.090		0.006	0.060	0.18			
Southern Kingfish				2									2
Aroclor 1268	0.716	0.026	0.26		0.025	0.25		0.017	0.17	0.50	0.006	0.062	0.624
Mercury	0.663	0.024	0.24		0.023	0.23		0.016	0.16	0.47			
Spot													
Aroclor 1268	1.785	0.065	0.65		0.063	0.63		0.042	0.42	1.3	0.016	0.156	1.557
Mercury	0.124	0.005	0.045		0.004	0.044		0.003	0.029	0.087			
Spotted Seatrout													
Aroclor 1268	0.556	0.020	0.20		0.020	0.20		0.013	0.13	0.39	0.005	0.048	0.485
Mercury	0.495	0.018	0.18		0.017	0.17		0.012	0.12	0.35			
Striped Mullet		12											
Aroclor 1268	2.704	0.099	0.99		0.095	0.95		0.063	0.63	1.9	0.024	0.236	2.358
Mercury	0.042	0.002	0.015		0.001	0.015		0.001	0.010	0.030			

Table 23a. Remedial Goal Options for Recreational Fish Consumers

Calculated Hazard Index (HI)Adult2.7Adolescent2.8Child4.3

Excess Lifetime Cancer Risk (ELCR) 1.1E-04

Note:

RGO values greater than the EPC are not shown.

			Adult		A	dolescer	nt		Child			ELCR	
Fish Species		MARKET CONTROL	Target HI	2010		Target HI		1120 110	Target HI			Target CR	
	EPCs	0.1	1	3	0.1	1	3	0.1	1	3	1.0E-06	1.0E-05	1.0E-04
Atlantic Croaker													
Aroclor 1268	1.427	0.029	0.285	0.86	0.029	0.285	0.86	0.018	0.18	0.53	0.007	0.071	0.71
Mercury	0.302	0.006	0.060	0.18	0.006	0.060	0.18	0.004	0.038	0.11			
Black Drum													
Aroclor 1268	0.343	0.007	0.069	0.21	0.007	0.069	0.21	0.004	0.043	0.13	0.002	0.017	0.17
Mercury	0.177	0.004	0.035	0.11	0.004	0.035	0.106	0.002	0.022	0.066			
Red Drum													
Aroclor 1268	0.148	0.003	0.030	0.089	0.003	0.030	0.089	0.002	0.018	0.055	0.001	0.007	0.07
Mercury	0.348	0.007	0.070	0.21	0.007	0.070	0.209	0.004	0.043	0.13			
Sheepshead													
Aroclor 1268	0.724	0.014	0.14	0.43	0.014	0.14	0.434	0.009	0.090	0.27	0.004	0.036	0.36
Mercury	0.372	0.007	0.074	0.22	0.007	0.074	0.223	0.005	0.046	0.139			
Southern Flounder	<i></i>												
Aroclor 1268	0.249	0.005	0.050	0.149	0.005	0.050	0.15	0.003	0.031	0.093	0.001	0.012	0.12
Mercury	0.257	0.005	0.051	0.154	0.005	0.051	0.15	0.003	0.032	0.096			
Southern Kingfish													
Aroclor 1268	0.716	0.014	0.143	0.430	0.014	0.14	0.43	0.009	0.089	0.267	0.004	0.036	0.36
Mercury	0.663	0.013	0.133	0.398	0.013	0.13	0.40	0.008	0.082	0.247			
Spot													
Aroclor 1268	1.785	0.036	0.357	1.1	0.036	0.357	1.1	0.022	0.222	0.666	0.009	0.089	0.89
Mercury	0.124	0.002	0.025	0.074	0.002	0.025	0.074	0.002	0.015	0.046			
Spotted Seatrout													
Aroclor 1268	0.556	0.011	0.11	0.33	0.011	0.111	0.334	0.007	0.069	0.21	0.003	0.028	0.28
Mercury	0.495	0.010	0.099	0.297	0.010	0.099	0.297	0.006	0.062	0.185			
Striped Mullet													
Aroclor 1268	2.704	0.054	0.54	1.6	0.054	0.54	1.6	0.034	0.34	1.0	0.013	0.135	1.35
Mercury	0.042	0.001	0.008	0.025	0.001	0.008	0.025	0.001	0.005	0.016			

Table 23b. Remedial Goal Options for Hypothetical High Quantity Fish Consumers

Calculated Hazard Index (HI)Adult5.0Adolescent5.0Child8.0

Excess Lifetime Cancer Risk (ELCR) 2.0E-04

Tuble Loo. Hernedial abai options for orientish options	Table 23c.	Remedial	Goal	Options	for Sh	nellfish	Consumers
---	------------	----------	------	---------	--------	----------	-----------

Shellfish Species			Adult Target HI		A	dolescent Target HI			Child Target HI			ELCR Target CR	
	EPCs	0.1	1	3	0.1	1	3	0.1	1	3	1.0E-06	1.0E-05	1.0E-04
Blue Crab													
Aroclor 1268	0.20	0.012	0.12		0.026			0.005	0.050	0.15	0.003	0.033	
Copper	20.9	1.3	12.6		2.821			0.5	5.329	15.986			
Mercury	0.71	0.043	0.43		0.096			0.018	0.18	0.54			
Zinc	46.9	2.8	28.4		6.336			1.2	12.0	35.9			
White Shrimp													
Aroclor 1268	0.53	0.032	0.32		0.072			0.01	0.14	0.41	0.009	0.091	
Copper	13.3	0.8	8.0		1.795			0.3	3.4	10.2			
Mercury	0.11	0.007	0.07		0.015			0.003	0.029	0.086			

Calculated Hazard Index (HI) Adult 1.7

Excess Lifetime Cancer Risk (ELCR) 5.8E-05

Note:

Adolescent Child

RGO values greater than the EPC are not shown.

0.7 3.9

			Adult Target HI		A .	dolescent Target HI	100		Child Target HI			ELCR Target CR	
	EPCs	0.1	1	3	0.1	1	3	0.1	1	3	1.0E-06	1.0E-05	1.0E-04
Clapper Rail	. λ.												
Aroclor 1268	19.4	1.2	12.2		1.591	15.9		0.4	4.2		1.8E-01	1.8E+00	1.8E+01
Mercury	4.7	0.29	2.9		0.383	3.8		0.10	1.0				

Table 23d. Remedial Goal Options for Clapper Rail Consumers

Calculated Hazard Index (HI)	Excess Lifetime Cancer Risk (ELCR)
------------------------------	------------------------------------

Adult1.6Adolescent1.2Child4.6

1.1E-04

Note:

RGO values greater than the EPC are not shown.

				Relative
IUPAC Name	Structure	Serum Conc. (ng/g lipid)	Distribution	Persistence
11	3,3'-	0.35	0.16%	0.007
15	4,4'-	0.32	0.18%	0.008
16	2,2',3-	0.26	0.14%	0.006
17	2,2',4-	0.2	0.11%	0.005
18	2,2',5-	0.41	0.24%	0.011
22	2,3,4'-	0.23	0.17%	0.008
28	2,4,4'-	1.88	1.01%	0.045
31	2,4',5-	0.61	0.35%	0.015
32	2,4',6-	0.23	0.12%	0.005
33	2',3,4-	0.4	0.27%	0.012
37	3,4,4'-	0.23	0.26%	0.012
41	2,2',3,4-	0.16	0.15%	0.007
43	2,2',3,5-	0.14	0.10%	0.004
44	2,2',3,5'-	0.38	0.33%	0.015
47	2,2',4,4'-	0.3	0.17%	0.008
49	2,2',4,5'-	0.13	0.10%	0.004
52	2,2',5,5'-	0.33	0.22%	0.01
56	2,3,3',4'-	0.1	0.11%	0.005
59	2,3,3',6-	0.16	0.14%	0.006
60	2,3,4,4'-	0.31	0.35%	0.015
61	2,3,4,5-	0.83	0.46%	0.02
64	2,3,4',6-	0.27	0.26%	0.012
66	2,3',4,4'-	0.88	0.68%	0.03
70	2,3',4',5-	0.2	0.31%	0.014
72	2,3',5,5'-	0.33	0.22%	0.01
74	2,4,4',5-	2.73	1.52%	0.067
76	2',3,4,5-	0.08	0.12%	0.005
85	2,2',3,4,4'-	0.17	0.13%	0.006
87	2,2',3,4,5'-	0.32	0.22%	0.01
90	2,2',3,4',5-	0.22	0.16%	0.007
92	2,2',3,5,5'-	0.25	0.16%	0.007
95	2,2',3,5',6-	0.47	0.37%	0.016
99	2,2',4,4',5-	4.78	2.37%	0.105
101	2,2',4,5,5'-	0.87	0.60%	0.027
105	2,3,3',4,4'-	1.65	0.88%	0.039
108	2,3,3',4,5'-	0.32	0.17%	0.008
110	2,3,3',4',6-	0.4	0.41%	0.018
114	2,3,4,4',5-	0.4	0.21%	0.009
115	2,3,4,4',6-	0.21	0.14%	0.006
118	2,3',4,4',5-	7.61	3.94%	0.174
128	2,2',3,3',4,4'-	0.32	0.21%	0.009
130	2,2',3,3',4,5'-	1.79	0.97%	0.043
135	2,2',3,3',5,6'-	0.19	0.12%	0.005
137	2,2',3,4,4',5-	1.32	0.67%	0.03
138	2,2',3,4,4',5'-	13.4	7.00%	0.31
141	2,2',3,4,5,5'-	0.21	0.15%	0.007

Table 24. Metabolism and Persistence of Various PCB Congeners Based on Park et al. (2007)

				Relative
IUPAC Name	Structure	Serum Conc. (ng/g lipid)	Distribution	Persistence
146	2,2',3,4',5,5'-	5.13	2.85%	0.126
149	2,2',3,4',5',6-	0.56	0.50%	0.022
151	2,2',3,5,5',6-	0.38	0.21%	0.009
153	2,2',4,4',5,5'-	39.21	22.60%	1
156	2,3,3',4,4',5-	2.45	1.33%	0.059
157	2,3,3',4,4',5'-	0.73	0.41%	0.018
158	2,3,3',4,4',6-	0.44	0.23%	0.01
163	2,3,3',4',5,6-	13.33	7.00%	0.31
167	2,3',4,4',5,5'-	1.09	0.57%	0.025
168	2,3',4,4',5',6-	0.21	0.15%	0.007
170	2,2',3,3',4,4',5-	5.07	2.88%	0.127
171	2,2',3,3',4,4',6-	0.71	0.40%	0.018
172	2,2',3,3',4,5,5'-	1.26	0.74%	0.033
174	2,2',3,3',4,5,6'-	0.21	0.14%	0.006
177	2,2',3,3',4',5,6-	1.77	0.98%	0.043
178	2,2',3,3',5,5',6,-	1.63	0.92%	0.041
180	2,2',3,4,4',5,5'-	18.97	11.70%	0.518
183	2,2',3,4,4',5',6-	2.31	1.41%	0.062
187	2,2',3,4',5,5',6-	8.82	5.07%	0.224
189	2,3,3',4,4',5,5'-	0.29	0.16%	0.007
190	2,3,3',4,4',5,6-	1.16	0.66%	0.029
191	2,3,3',4,4',5',6-	0.25	0.15%	0.007
193	2,3,3',4',5,5',6-	1.06	0.64%	0.028
194	2,2',3,3',4,4',5,5'-	3.15	2.14%	0.095
195	2,2',3,3',4,4',5,6-	0.51	0.39%	0.017
196	2,2',3,3',4,4',5,6'-	1.05	0.73%	0.032
200	2,2',3,3',4,5,6,6'-	0.19	0.11%	0.005
201	2,2',3,3',4,5',6,6'-	3.11	2.07%	0.092
202	2,2',3,3',5,5',6,6'-	0.84	0.54%	0.024
203	2,2',3,4,4',5,5',6-	1.59	1.12%	0.05
206	2,2',3,3',4,4',5,5',6-	1.09	0.65%	0.029
207	2,2',3,3',4,4',5,6,6'-	0.19	0.10%	0.004
208	2,2',3,3',4,5,5',6,6'-	0.31	0.18%	0.008
209	2,2',3,3',4,4',5,5',6,6'-	0.84	0.45%	0.02

Table 24. Metabolism and Persistence of Various PCB Congeners Based on Park et al. (2007)

Note:

Only congeners detected in serum are shown

			Composition	
IUPAC Name	Structure	Aroclor 1016	Aroclor 1254	Aroclor 1268
1	2-	0.73%	0.00%	0.00%
2	3-	0.01%	0.00%	0.00%
3	4-	0.26%	0.00%	0.00%
4	2,2'-	1.91%	0.03%	0.00%
5	2,3-	3.26%	0.02%	0.00%
6	2,3'-	1.07%	0.01%	0.00%
7	2,4-	1.14%	0.00%	0.00%
8	2,4'-	1.59%	0.14%	0.00%
9	2,5-	4.47%	0.00%	0.00%
10	2,6-	2.09%	0.03%	0.00%
11	3,3'-	0.06%	0.00%	0.00%
12	3,4-	0.16%	0.00%	0.00%
13	3,4'-	0.25%	0.00%	0.00%
14	3,5-	0.00%	0.00%	0.00%
15	4,4'-	2.46%	0.01%	0.00%
16	2,2',3-	1.39%	0.01%	0.00%
17	2,2',4-	5.51%	0.14%	0.00%
18	2,2',5-	3.45%	0.17%	0.00%
19	2,2',6-	0.59%	0.00%	0.00%
20	2,3,3'-	3.48%	0.04%	0.00%
21	2,3,4-	1.99%	0.00%	0.00%
22	2,3,4'-	7.95%	0.02%	0.00%
23	2,3,5-	0.50%	0.00%	0.00%
24	2,3,6-	0.29%	0.00%	0.00%
25	2,3',4-	1.09%	0.00%	0.00%
26	2,3',5-	1.21%	0.01%	0.00%
27	2,3',6-	4.95%	0.00%	0.00%
28	2,4,4'-	5.57%	0.22%	0.00%
29	2,4,5-	0.15%	0.00%	0.00%
30	2,4,6-	1.19%	0.00%	0.00%
31	2,4',5-	2.70%	0.23%	0.00%
32	2,4',6-	4.24%	0.01%	0.00%
33	2',3,4-	1.90%	0.21%	0.00%
34	2',3,5-	0.89%	0.00%	0.00%
35	3,3',4-	0.20%	0.00%	0.00%
36	3,3',5-	0.00%	0.00%	0.00%
37	3,4,4'-	0.51%	0.00%	0.00%
38	3,4,5-	0.00%	0.00%	0.00%
39	3,4',5-	0.00%	0.00%	0.00%
40	2,2',3,3'-	0.57%	0.31%	0.00%
41	2,2',3,4-	1.15%	0.64%	0.00%
42	2,2',3,4'-	1.53%	0.06%	0.00%
43	2,2',3,5-	0.01%	0.00%	0.00%
44	2,2',3,5'-	1.93%	2.08%	0.00%
45	2,2',3,6-	1.20%	0.02%	0.00%
46	2,2',3,6'-	0.00%	0.00%	0.00%
47	2,2',4,4'-	0.81%	0.37%	0.07%
48	2,2',4,5-	0.87%	0.12%	0.00%

Table 25. Composition of the three Aroclor Mixtures

			Composition	
IUPAC Name	Structure	Aroclor 1016	Aroclor 1254	Aroclor 1268
49	2,2',4,5'-	1.49%	1.28%	0.00%
50	2,2',4,6-	0.00%	0.00%	0.06%
51	2,2',4,6'-	0.91%	0.01%	0.00%
52	2,2',5,5'-	2.72%	3.98%	0.00%
53	2,2',5,6'-	1.57%	0.09%	0.00%
54	2,2',6,6'-	0.00%	0.00%	0.00%
55	2,3,3',4-	0.29%	0.00%	0.00%
56	2,3,3',4'-	0.41%	0.00%	0.00%
57	2,3,3',5-	0.79%	0.12%	0.00%
58	2,3,3',5'-	0.14%	0.12%	0.00%
59	2,3,3',6-	0.03%	0.00%	0.00%
60	2,3,4,4'-	2.27%	0.20%	0.00%
61	2,3,4,5-	0.62%	0.00%	0.00%
62	2,3,4,6-	0.94%	0.00%	0.00%
63	2,3,4',5-	0.30%	0.14%	0.00%
64	2,3,4',6-	1.15%	0.39%	0.00%
65	2,3,5,6-	0.20%	0.00%	0.00%
66	2,3',4,4'-	0.92%	5.52%	0.00%
67	2,3',4,5-	0.85%	0.00%	0.00%
68	2,3',4,5'-	1.68%	0.00%	0.00%
69	2,3',4,6-	0.33%	0.01%	0.00%
70	2,3',4',5-	0.44%	3.74%	0.00%
71	2,3',4',6-	0.00%	0.12%	0.00%
72	2,3',5,5'-	0.16%	0.00%	0.00%
73	2,3',5',6-	0.01%	0.00%	0.00%
74	2,4,4',5-	2.65%	1.19%	0.00%
75	2,4,4',6-	0.30%	0.00%	0.00%
76	2',3,4,5-	0.48%	0.00%	0.00%
77	3,3',4,4'-	0.00%	1.79%	0.38%
78	3,3',4,5-	0.00%	0.00%	0.00%
79	3,3',4,5'-	0.00%	0.00%	0.00%
80	3,3',5,5'-	0.00%	0.00%	0.00%
81	3,4,4',5-	0.00%	0.01%	0.00%
82	2,2',3,3',4-	0.00%	1.60%	0.26%
83	2,2',3,3',5-	0.16%	0.55%	0.00%
84	2,2',3,3',6-	0.07%	1.68%	0.04%
85	2,2',3,4,4'-	0.02%	0.88%	0.00%
86	2,2',3,4,5-	0.00%	0.00%	0.00%
87	2,2',3,4,5'-	0.00%	3.15%	0.00%
88	2,2',3,4,6-	0.00%	0.00%	0.81%
89	2,2',3,4,6'-	0.00%	0.12%	0.00%
90	2,2',3,4',5-	0.02%	4.19%	0.00%
91	2,2',3,4',6-	0.08%	1.34%	0.00%
92	2,2',3,5,5'-	0.01%	2.01%	0.05%
93	2,2',3,5,6-	0.00%	0.01%	0.00%
94	2,2',3,5,6'-	0.01%	0.00%	0.07%
95	2,2',3,5',6-	0.29%	1.37%	0.00%
96	2.2'.3.6.6'-	0.03%	0.14%	0.08%

Table 25. Composition of the three Aroclor Mixtures

			Composition	
IUPAC Name	Structure	Aroclor 1016	Aroclor 1254	Aroclor 1268
97	2,2',3',4,5-	0.02%	1.73%	0.00%
98	2,2',3',4,6-	0.00%	0.00%	0.19%
99	2,2',4,4',5-	0.03%	2.97%	0.17%
100	2,2',4,4',6-	0.05%	0.00%	0.04%
101	2,2',4,5,5'-	0.01%	0.79%	0.15%
102	2,2',4,5,6'-	0.00%	0.13%	0.13%
103	2,2',4,5',6-	0.01%	0.14%	0.17%
104	2,2',4,6,6'-	0.00%	0.00%	0.00%
105	2,3,3',4,4'-	0.00%	5.46%	0.38%
106	2,3,3',4,5-	0.00%	0.00%	0.00%
107	2,3,3',4',5-	0.03%	0.14%	0.00%
108	2,3,3',4,5'-	0.00%	0.00%	0.00%
109	2,3,3',4,6-	0.00%	0.21%	0.00%
110	2,3,3',4',6-	0.00%	7.37%	0.00%
111	2,3,3',5,5'-	0.00%	0.00%	0.00%
112	2,3,3',5,6-	0.00%	0.00%	0.00%
113	2,3,3',5',6-	0.00%	0.00%	0.07%
114	2,3,4,4',5-	0.00%	0.02%	0.00%
115	2,3,4,4',6-	0.00%	0.00%	0.00%
116	2,3,4,5,6-	0.00%	0.00%	0.00%
117	2,3,4',5,6-	0.00%	0.00%	0.00%
118	2.3'.4.4'.5-	0.00%	10.60%	0.00%
119	2.3'.4.4'.6-	0.00%	0.16%	0.07%
120	2,3',4,5,5'-	0.00%	0.00%	0.00%
121	2.3'.4.5'.6-	0.00%	0.00%	0.00%
122	2'.3.3'.4.5-	0.00%	0.30%	0.00%
123	2',3,4,4',5-	0.03%	0.07%	0.00%
124	2'.3.4.5.5'-	0.00%	0.12%	0.00%
125	2'.3.4.5.6'-	0.00%	0.00%	0.00%
126	3,3',4,4',5-	0.00%	0.11%	0.07%
127	3.3'.4.5.5'-	0.00%	0.34%	0.00%
128	2,2',3,3',4,4'-	0.00%	1.00%	0.00%
129	2,2',3,3',4,5-	0.00%	0.65%	0.00%
130	2,2',3,3',4,5'-	0.00%	0.18%	0.00%
131	2,2',3,3',4,6-	0.00%	0.18%	0.00%
132	2.2'.3.3'.4.6'-	0.00%	3.14%	0.07%
133	2.2'.3.3'.5.5'-	0.00%	0.12%	0.32%
134	2.2'.3.3'.5.6-	0.00%	0.34%	0.07%
135	2.2'.3.3'.5.6'-	0.00%	1.14%	0.00%
136	2.2'.3.3'.6.6'-	0.00%	0.29%	0.00%
137	2.2'.3.4.4'.5-	0.00%	0.43%	0.05%
138	2,2',3,4.4'.5'-	0.00%	3.61%	0.10%
139	2,2',3,4.4'.6-	0.00%	0.00%	0.00%
140	2,2',3,4.4'.6'-	0.00%	0.00%	0.07%
141	2,2',3,4.5.5'-	0.00%	1.04%	0.39%
142	2,2'.3.4.5.6-	0.00%	0.00%	0.05%
143	2,2',3,4.5.6'-	0.00%	0.00%	0.00%
144	2,2',3,4,5',6-	0.00%	0.03%	0.00%

 Table 25.
 Composition of the three Aroclor Mixtures

			Composition	
IUPAC Name	Structure	Aroclor 1016	Aroclor 1254	Aroclor 1268
145	2,2',3,4',6,6'-	0.00%	0.00%	0.00%
146	2,2',3,4',5,5'-	0.00%	0.86%	0.00%
147	2,2',3,4',5,6-	0.00%	0.05%	0.00%
148	2,2',3,4',5,6'-	0.00%	0.00%	0.00%
149	2,2',3,4',5',6-	0.00%	2.95%	0.00%
150	2,2',3,4',6,6'-	0.00%	0.00%	0.00%
151	2,2',3,5,5',6-	0.00%	0.54%	0.39%
152	2,2',3,5,6,6'-	0.00%	0.00%	0.00%
153	2,2',4,4',5,5'-	0.00%	3.72%	0.08%
154	2,2',4,4',5,6'-	0.00%	0.00%	0.00%
155	2,2',4,4',6,6'-	0.00%	0.00%	0.00%
156	2,3,3',4,4',5-	0.00%	1.85%	0.00%
157	2,3,3',4,4',5'-	0.00%	0.65%	0.00%
158	2,3,3',4,4',6-	0.00%	0.40%	0.00%
159	2,3,3',4,5,5'-	0.00%	0.00%	0.01%
160	2,3,3',4,5,6-	0.00%	0.00%	0.00%
161	2,3,3',4,5',6-	0.00%	0.00%	0.32%
162	2,3,3',4',5,5'-	0.00%	0.00%	0.00%
163	2,3,3',4',5,6-	0.00%	0.12%	0.11%
164	2,3,3',4',5',6-	0.00%	0.12%	0.00%
165	2,3,3',5,5',6-	0.00%	0.00%	0.05%
166	2,3,4,4',5,6-	0.00%	0.00%	0.00%
167	2,3',4,4',5,5'-	0.00%	0.27%	0.00%
168	2,3',4,4',5',6-	0.00%	0.00%	0.00%
169	3,3',4,4',5,5'-	0.00%	0.00%	0.00%
170	2,2',3,3',4,4',5-	0.00%	0.45%	0.00%
171	2,2',3,3',4,4',6-	0.00%	0.04%	0.05%
172	2,2',3,3',4,5,5'-	0.00%	0.18%	0.00%
173	2,2',3,3',4,5,6-	0.00%	0.07%	1.14%
174	2,2',3,3',4,5,6'-	0.00%	1.50%	0.05%
175	2,2',3,3',4,5',6-	0.00%	0.01%	0.00%
176	2,2',3,3',4,6,6'-	0.00%	0.12%	0.00%
177	2,2',3,3',4',5,6-	0.00%	0.30%	0.00%
178	2,2',3,3',5,5',6,-	0.00%	0.14%	2.78%
179	2,2',3,3',5,6,6'-	0.00%	0.30%	0.00%
180	2,2',3,4,4',5,5'-	0.00%	0.65%	0.20%
181	2,2',3,4,4',5,6-	0.00%	0.00%	0.00%
182	2,2',3,4,4',5,6'-	0.00%	0.00%	0.06%
183	2,2',3,4,4',5',6-	0.00%	0.29%	0.00%
184	2,2',3,4,4',6,6'-	0.00%	0.00%	0.00%
185	2,2',3,4,5,5',6-	0.00%	0.01%	0.00%
186	2,2',3,4,5,6,6'-	0.00%	0.00%	0.16%
187	2,2',3,4',5,5',6-	0.00%	0.35%	0.09%
188	2,2',3,4',5,6,6'-	0.00%	0.00%	3.79%
189	2,3,3',4,4',5,5'-	0.00%	0.01%	0.00%
190	2,3,3',4,4',5,6-	0.00%	0.23%	0.00%
191	2,3,3',4,4',5',6-	0.00%	0.01%	0.00%
192	2.3.3'.4.5.5'.6-	0.00%	0.00%	0.00%

 Table 25.
 Composition of the three Aroclor Mixtures

			Composition	
IUPAC Name	Structure	Aroclor 1016	Aroclor 1254	Aroclor 1268
193	2,3,3',4',5,5',6-	0.00%	0.01%	0.00%
194	2,2',3,3',4,4',5,5'-	0.00%	0.01%	3.19%
195	2,2',3,3',4,4',5,6-	0.00%	0.00%	6.12%
196	2,2',3,3',4,4',5,6'-	0.00%	0.01%	5.67%
197	2,2',3,3',4,4',6,6'-	0.00%	0.00%	0.06%
198	2,2',3,3',4,5,5',6-	0.00%	0.00%	0.16%
199	2,2',3,3',4,5,5',6'-	0.00%	0.00%	0.91%
200	2,2',3,3',4,5,6,6'-	0.00%	0.06%	1.46%
201	2,2',3,3',4,5',6,6'-	0.00%	0.01%	14.92%
202	2,2',3,3',5,5',6,6'-	0.00%	0.15%	2.78%
203	2,2',3,4,4',5,5',6-	0.00%	0.01%	5.67%
204	2,2',3,4,4',5,6,6'-	0.00%	0.00%	0.00%
205	2,3,3',4,4',5,5',6-	0.00%	0.00%	0.00%
206	2,2',3,3',4,4',5,5',6-	0.00%	0.00%	28.70%
207	2,2',3,3',4,4',5,6,6'-	0.00%	0.00%	2.47%
208	2,2',3,3',4,5,5',6,6'-	0.00%	0.00%	6.12%
209	2,2',3,3',4,4',5,5',6,6	0.01%	0.00%	8.12%

 Table 25.
 Composition of the three Aroclor Mixtures

Mode of Action plus Bioaccumulation	Aroclor 1016	Aroclor 1254	Aroclor 1268
Bioaccumulated Dioxin Toxic Equivalents	0.0E+00	6.60E-07	4.50E-09
Bioaccumulated Neurotoxic Equivalents	2.50E-03	1.40E-02	2.90E-04
Bioaccumulated Thyroid Hormone Equivalents	2.20E-05	2.60E-03	7.30E-07

		Relative potency estimates			Percent Composition			Relative TEQ Amounts			Relative NEQ Amounts			Relative thyroid- disrupting Amounts		
			Ca ²⁺	Thyroid												
IUPAC	Rel.	Dioxin	NEQ	relative to	Aroclor	Aroclor	Aroclor	Aroclor	Aroclor	Aroclor	Aroclor	Aroclor	Aroclor	Aroclor	Aroclor	Aroclor
Name	Persist.	TEQ		PCB12/	1016	1254	1268	1016	1254	1268	1016	1254	1268	1016	1254	1268
15	0.008		0	0.001	2.46%						0.0E+00		0	2.40E-07		
16	0.006		0.50		3.48%						1.1E-04					
17	0.005		0.50		1.99%						4.8E-05					
18	0.011		0.50		7.95%						4.2E-04					
22	0.008		0.42		5.57%		-				1.7E-04					
28	0.045		0.30	0.006	5.51%						7.3E-04			1.50E-05		
31	0.015		0.20		4.95%						1.5E-04					
32	0.005		0.26		1.19%						1.6E-05					
33	0.012		0.35	0.007	4.24%					6	1.8E-04			3.70E-06		
37	0.012		0.08	0.001	0.51%						4.9E-06			7.10E-08		
44	0.015		0.79		2.27%						2.6E-04					
47	0.008		0.50	0.006	0.92%	5.52%					3.4E-05	2.1E-04		4.20E-07	2.5E-06	
49	0.004		0.39		1.68%						2.7E-05					
52	0.01		0.70	0.009	2.65%	1.19%					1.8E-04	8.1E-05		2.20E-06	9.8E-07	
56	0.005				1.53%											
59	0.006				0.81%											
60	0.015		0.21	2	0.87%						2.8E-05					
61	0.02				1.49%	1.28%										
64	0.012		0.38		0.94%						4.1E-05					
74	0.067		0.21		0.91%						1.3E-04					
77	0	0.0001	0.00	0.001	0.00%	1.79%	0.38%									
81	0	0.0003	0.13		0.00%	0.01%	0.00%							1		
95	0.016		0.99	0.062		0.55%						8.9E-05			5.6E-06	
99	0.105		0.23	0.024		4.19%						9.9E-04			1.1E-04	
101	0.027		0.52	0.024		1.73%						2.4E-04			1.1E-05	
105	0.039	0.00003	0.49	0.005		7.37%			8.6E-08			1.4E-03			1.4E-05	
114	0.009	0.00003			0.00%	0.02%	0.00%	0	5.7E-11	0						
118	0.174	0.00003	0.29		0.00%	10.60%	0.00%	0	5.5E-07	0	0.0E+00	5.4E-03	0.0E+00			
123	0	0.00003			0.30%	0.70%	0.00%	0								
126	0	0.1	0.00		0.00%	0.01%	0.07%									
128	0.009		0.31	0.001		1.85%						5.2E-05			2.1E-07	
138	0.31		0.12	0.214		3.61%						1.3E-03			2.4E-03	
141	0.007		0.12			3.72%						2.8E-05				
151	0.009		0.44			3.14%						1.3E-04				
153	1		0.09			1.14%						1.0E-03	0 0F			
156	0.059	0.00003	0.36		0.00%	1.85%	0.00%	0	3.3E-08	0	0.0E+00	3.9E-04	0.0E+00			
157	0.018	0.00003			0.00%	0.65%	0.00%	0	3.6E-09	0						
163	0.31					0.54%										
167	0.025	0.00003			0.00%	0.27%	0.00%	0	2.0E-09	0						

Table 27. Relative Potency Estimates for the Three Aroclor Mixtures for Three Modes of Action

		Relative potency estimates			Percent Composition		Relative TEQ Amounts			Relative NEQ Amounts			Relative thyroid- disrupting Amounts			
IUPAC Name	Rel. Persist.	Dioxin TEQ	Ca ²⁺ NEQ	Thyroid relative to PCB127	Aroclor 1016	Aroclor 1254	Aroclor 1268	Aroclor 1016	Aroclor 1254	Aroclor 1268	Aroclor 1016	Aroclor 1254	Aroclor 1268	Aroclor 1016	Aroclor 1254	Aroclor 1268
169	0	0.00003		0	0.00%	0.00%	0.00%									
178	0.041		0.19				2.78%						2.1E-04			
180	0.518		0.36	0.009		1.50%						2.8E-03			6.6E-05	
189	0.007	0.00003			0.00%	0.01%	0.00%		1.5E-11	0.00E+00						
194	0.095						3.19%									
195	0.017			e			6.12%				-					
196	0.032						5.67%									
200	0.005						1.46%									
201	0.092						14.92%									
202	0.024						2.78%									
203	0.05						5.67%						Į.			
206	0.029						28.70%									
207	0.004						2.47%									
208	0.008						6.12%			- -						
209	0.02						8.12%									
							Relative TEQ Amounts			Relative NEQ Amounts			Relative thyroid- disrupting Amounts			
								Aroclor	Aroclor	Aroclor	Aroclor	Aroclor	Aroclor	Aroclor	Aroclor	Aroclor
								1016	1254	1268	1016	1254	1268	1016	1254	1268
Mixture Relative Potency Estimates							0.00E+00	6.60E-07	4.50E-09	2.50E-03	1.40E-02	2.90E-04	2.20E-05	2.60E-03	7.30E-07	

 Table 27. Relative Potency Estimates for the Three Aroclor Mixtures for Three Modes of Action

APPENDIX A

ProUCL OUTPUT
General UCL Statistics	for Full Data Sets	
User Selected Options		
From File C:\Documents and Setti	ngs\pit60500\Desktop\ProUCL\Atlantic Croaker\Atlantic Croaker L	lata.wst
Full Precision OFF		
Confidence Coefficient 95%		
Number of Bootstrap Operations 2000		
Atlantic Croaker_Aroclor-1268		
General Statistics		
Number of Valid Observations	11 Number of Distinct Observations	11
Raw Statistics	Log-transformed Statistics	
Minimum	0.36 Minimum of Log Data	-1.022
vlaximum	2.244 Maximum of Log Data	0.808
Mean	0.998 Mean of log Data	-0.169
Vledian	0.806 SD of log Data	0.591
SD	0.645	
Coefficient of Variation	0.646	
Skewness	1.238	
Relevant UCL Statistics		
Normal Distribution Test	Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.821 Shapiro Wilk Test Statistic	0.935
Shapiro Wilk Critical Value	0.85 Shapiro Wilk Critical Value	0.85
Data not Normal at 5% Significance Level	Data appear Lognormal at 5% Significance Level	
Assuming Normal Distribution	Assuming Lognormal Distribution	
95% Student's-t UCL	1.351 95% H-UCL	1.546
95% UCLs (Adjusted for Skewness)	95% Chebyshev (MVUE) UCL	1.777
95% Adjusted-CLT UCL (Chen-1995)	1.396 97.5% Chebyshev (MVUE) UCL	2.118
95% Modified-t UCL (Johnson-1978)	1.363 99% Chebyshev (MVUE) UCL	2.789
Gamma Distribution Test	Data Distribution	
< star (bias corrected)	2.348 Data appear Gamma Distributed at 5% Significance Lev	vel
Theta Star	0.425	
vILE of Mean	0.998	
MLE of Standard Deviation	0.651	
nu star	51.66	
Approximate Chi Square Value (.05)	36.16 Nonparametric Statistics	
Adjusted Level of Significance	0.0278 95% CLT UCI	1 318
Adjusted Chi Square Value	34.05 95% Jackknife UCI	1 351
	95% Standard Bootstran LICL	1 304
Anderson-Darling Test Statistic	0.515 95% Bootstrap-t LICI	1.62
Anderson-Darling 5% Critical Value	0.333 95% Hall's Bootstrap LICI	1.52
Colmogorov Smirnov Test Statistic	0.100 95% Percentile Poststram LCL	1.02
Colmogorov-Smirnov Test Statistic	0.194 95% Percentile Bootstrap UCL	1.308
Colmogorov-Smirnov 5% Critical Value	0.257 95% BCA Bootstrap UCL	1.372
Data appear Gamma Distributed at 5% Significance Level	95% Chebyshev(Mean, Sd) UCL	1.846
	97.5% Chebyshev(Mean, Sd) UCL	2.213
Assuming Gamma Distribution	99% Chebyshev(Mean, Sd) UCL	2.934
95% Approximate Gamma UCL	1.427	
95% Adjusted Gamma UCL	1.515	
Potential UCL to Use	Use 95% Approximate Gamma UCL	1.427
Note: Suggestions regarding the selection of a 95% UCL a These recommendations are based upon the results of the	are provided to help the user to select the most appropriate 95% U a simulation studies summarized in Singh, Singh, and Iaci (2002)	CL.

	General UCL Statistics for Ful	ll Da	ta Sets	
User Selected Options				
From File	C:\Documents and Settings\pi	it605	00\Desktop\ProUCL\Atlantic Croaker\Atlantic Croaker Da	ta.wst
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
Atlantic Croaker Copper				
General Statistics				
Number of Valid Observations		7	Number of Distinct Observations	6
na na anana na hana ana ana ana ana ana				
Raw Statistics			Log-transformed Statistics	
Minimum	1	2.76	Minimum of Log Data	1.015
Maximum	4	4.42	Maximum of Log Data	1.486
Mean	3.	983	Mean of log Data	1.37
Median	2	4.34	SD of log Data	0.175
SD	0	623		
Coefficient of Variation	0	157		
Skewness	-1	642		
	30%			
Warning: A sample size of 'n' = 7	may not adequate enough to c	omo	ute meaningful and reliable test statistics and estimates	
	may not adequate enough to c	omp	ale meaningial and reliable lest statistics and estimates:	
It is suggested to collect at least \$	to 10 observations using these	o oto	tistical methodal	
If passible compute and collect D	ate Quelity Objectives (DOO) k	e su	a semple size and analytical results	
In possible compute and collect D	ata Quality Objectives (DQO) b	Jase	sample size and analytical results.	
10/				
Warning: There are only 7 Value	s in this data	116		
Note: It should be noted that eve	n though bootstrap methods m	ay b	e performed on this data set,	
the resulting calculations may not	be reliable enough to draw co	nclu	sions	
The literature suggests to use boo	otstrap methods on data sets h	avin	g more than 10-15 observations.	
Relevant UCL Statistics				
Normal Distribution Test			Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.	741	Shapiro Wilk Test Statistic	0.719
Shapiro Wilk Critical Value	0.	803	Shapiro Wilk Critical Value	0.803
Data not Normal at 5% Significan	ce Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution			Assuming Lognormal Distribution	
95% Student's-t UCL	4.	441	95% H-UCL	4.596
95% UCLs (Adjusted for Skewn	iess)		95% Chebyshev (MVUE) UCL	5.14
95% Adjusted-CLT UCL (Chen-	·1995) 4.	214	97.5% Chebyshev (MVUE) UCL	5.639
95% Modified-t UCL (Johnson-	1978) 4.	416	99% Chebyshev (MVUE) UCL	6.619
10 10 10 10 10 10 10 10 10 10 10 10 10 1				
Gamma Distribution Test			Data Distribution	
k star (bias corrected)	23	3.56	Data do not follow a Discernable Distribution (0.05)	
Theta Star	0.	169	· · · ·	
MLE of Mean	3.	983		
MLE of Standard Deviation	0.	821		
nu star	33	29.9		
Approximate Chi Square Value (.)	05) 28	88.8	Nonparametric Statistics	
Adjusted Level of Significance	0.0	158	95% CLT UCL	4 37
Adjusted Chi Square Value	27	77 1	95% Jackknife UCI	4 441
	2.		95% Standard Bootstran LICI	4 347
Anderson-Darling Test Statistic	0	989	95% Bootstrap-t IICI	4 305
Anderson-Darling 5% Critical Val	UB 0.	707	95% Hall's Bootstran LICI	4 227
Kolmogorov Smirnov Tost Statist		345	95% Percentile Reststran LICI	4.323
Kolmogorov-Smirnov Fest Statist	C U.	211	95% PCA Poststrap UCI	4.323
Ronnogorov-Siminov 5 % Chical	Value 0.	311	95% BCA Boolstrap UCL	4.244
Data not Gamma Distributed at 5	70 Significance Level		95 / Chebyshev(Mean, 30) UCL	5.01
Assuming Commer Distribut			00% Chabushaw(Masa, Sd) UCL	0.404
Assuming Gamma Distribution		E 4 0	99% Chebysnev(Mean, 5d) UCL	0.327
95% Approximate Gamma UCL	4.	549		
95% Adjusted Gamma UCL	4.	/41		
Potential UCL to Use			Use 95% Student's-t UCL	4.441
			or 95% Modified-t UCL	4.416
Recommended UCL exceeds the	maximum observation			
Note: Suggestions regarding the	selection of a 95% UCL are pro	ovide	d to help the user to select the most appropriate 95% UC	L.
These recommendations are base	ed upon the results of the simu	latio	n studies summarized in Singh, Singh, and laci (2002)	

General UCL Statistics	for Full Da	ta Sets	
User Selected Options			
From File C:\Documents and Set	tings\pit605	500\Desktop\ProUCL\Atlantic Croaker\Atlantic Croaker Data.	wst
Full Precision OFF			
Confidence Coefficient 95%			
Number of Bootstrap Operations 2000			
Atlantic Croaker_Mercury			
General Statistics			
Number of Valid Observations	11	Number of Distinct Observations	11
Raw Statistics		Log-transformed Statistics	
Minimum	0.139	Minimum of Log Data	-1.972
Maximum	0.522	Maximum of Log Data	-0.649
Mean	0.236	Mean of log Data	-1.527
Median	0.208	SD of log Data	0.401
SD	0.114		
Coefficient of Variation	0.481		
Skewness	1.88		
Relevant UCL Statistics			
Normal Distribution Test		Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.787	Shapiro Wilk Test Statistic	0.899
Shapiro Wilk Critical Value	0.85	Shapiro Wilk Critical Value	0.85
Data not Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	0.298	95% H-UCL	0.306
95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCL	0.359
95% Adjusted-CLT UCL (Chen-1995)	0.313	97.5% Chebyshev (MVUE) UCL	0.413
95% Modified-t UCL (Johnson-1978)	0.301	99% Chebyshev (MVUE) UCL	0.519
Gamma Distribution Test		Data Distribution	
k star (bias corrected)	4.615	Data appear Gamma Distributed at 5% Significance Level	
Theta Star	0.0511		
MLE of Mean	0.236		
MLE of Standard Deviation	0.11		
nu star	101.5		
Approximate Chi Square Value (.05)	79.29	Nonparametric Statistics	
Adjusted Level of Significance	0.0278	95% CLT UCL	0.292
Adjusted Chi Square Value	76.09	95% Jackknife UCL	0.298
		95% Standard Bootstrap UCL	0.289
Anderson-Darling Test Statistic	0.592	95% Bootstrap-t UCL	0.362
Anderson-Darling 5% Critical Value	0.731	95% Hall's Bootstrap UCL	0.566
Kolmogorov-Smirnov Test Statistic	0.188	95% Percentile Bootstrap UCL	0.295
Kolmogorov-Smirnov 5% Critical Value	0.256	95% BCA Bootstrap UCL	0.311
Data appear Gamma Distributed at 5% Significance Leve	al	95% Chebyshev(Mean, Sd) UCL	0.385
	76	97.5% Chebyshev(Mean, Sd) UCL	0.45
Assuming Gamma Distribution		99% Chebyshev(Mean, Sd) UCL	0.576
95% Approximate Gamma UCI	0.302		
95% Adjusted Gamma UCL	0.315		
Potential UCL to Use		Use 95% Approximate Gamma UCL	0.302
Note: Suggestions regarding the selection of a 95% UCL	are provide	ed to help the user to select the most appropriate 95% UCL.	
These recommendations are based upon the results of th	e simulatio	n studies summarized in Singh Singh and laci (2002)	
and Singh and Singh (2003). For additional insight, the	user may v	vant to consult a statistician.	

	General UCL Statistics for Full I	Data Sets	
User Selected Options			
From File	C:\Documents and Settings\pit6	0500\Desktop\ProUCL\Atlantic Croaker\Atlantic Croa	ker Data.wst
Full Precision	OFF		
Confidence Coefficient	95%		
Number of Bootstrap Operations	2000		
Atlantic Croaker_Zinc			
General Statistics			
Number of Valid Observations		7 Number of Distinct Observations	6
Raw Statistics		Log-transformed Statistics	
Minimum	4.3	35 Minimum of Log Data	1.47
Maximum	7.1	13 Maximum of Log Data	1.964
Mean	4.94	17 Mean of log Data	1.585
Median	4.6	65 SD of log Data	0.173
SD	0.98	33	
Coefficient of Variation	0.19	99	
Skewness	2.42	25	
Warning: A sample size of 'n' = 7 It is suggested to collect at least t	may not adequate enough to cor	npute meaningful and reliable test statistics and estin statistical methods!	nates!
If possible compute and collect D	ata Quality Objectives (DQO) ba	sed sample size and analytical results.	
Note: It should be noted that even the resulting calculations may not	in this data in though bootstrap methods may t be reliable enough to draw conc	/ be performed on this data set, lusions	
The literature suggests to use bo	otstrap methods on data sets hav	ing more than 10-15 observations.	
Polovant LICL Statistics			
Normal Distribution Test		Lognormal Distribution Test	
Shaniro Wilk Test Statistic	0.61	Se Shaniro Wilk Test Statistic	0.677
Shapiro Wilk Critical Value	0.80	3 Shapiro Wilk Critical Value	0.803
Data not Normal at 5% Significan	ce Level	Data not Lognormal at 5% Significance Level	0.000
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	5.66	89 95% H-UCL	5.682
95% UCLs (Adjusted for Skewr	ness)	95% Chebyshev (MVUE) UCL	6.349
95% Adjusted-CLT UCL (Chen-	-1995) 5.92	22 97.5% Chebyshev (MVUE) UCL	6.958
95% Modified-t UCL (Johnson-	1978) 5.72	6 99% Chebyshev (MVUE) UCL	8.155
Gamma Distribution Test		Data Distribution	
k star (bias corrected)	20.5	52 Data do not follow a Discernable Distribution (0.05)
Theta Star	0.24	1	
MLE of Mean	4.94	17	
MLE of Standard Deviation	1.09	92	
nu star	287	.3	
Approximate Chi Square Value (.	05) 24	19 Nonparametric Statistics	
Adjusted Level of Significance	0.015	58 95% CLT UCL	5.558
Adjusted Chi Square Value	238	.2 95% Jackknife UCL	5.669
		95% Standard Bootstrap UCL	5.512
Anderson-Darling Test Statistic	1.14	12 95% Bootstrap-t UCL	7.38
Anderson-Darling 5% Critical Val	ue 0.70	07 95% Hall's Bootstrap UCL	8.159
Kolmogorov-Smirnov Test Statist	ic 0.37	7 95% Percentile Bootstrap UCL	5.624
Kolmogorov-Smirnov 5% Critical	Value 0.31	1 95% BCA Bootstrap UCL	5.761
Data not Gamma Distributed at 5	% Significance Level	95% Chebyshev(Mean, Sd) UCL	6.566
		97.5% Chebyshev(Mean, Sd) UCL	7.267
Assuming Gamma Distribution		99% Chebyshev(Mean, Sd) UCL	8.643
95% Approximate Gamma UCL	5.70)7	
95% Adjusted Gamma UCL	5.96	36	
Potential UCL to Use		Use 95% Student's-t UCL	5.669
		or 95% Modified-t UCL	5.726
Note: Suggestions regarding the	selection of a 95% UCL are provi ed upon the results of the simula	ded to help the user to select the most appropriate 9 tion studies summarized in Singh, Singh, and laci (20	5% UCL.
mese recommendations are bas	ea apon me results or me simula	aon staales summanzed in olingh, olingh, and laci (20	52)

<u> </u>	General LICL Statistics f	for Full Da	ta Sate	
User Selected Ontions	General OCL Statistics I			
From File	BlackDrum wet			
Full Precision	OFF			
Confidence Coofficient	05%			
Number of Poststran Operations	90%			
Number of Bootstrap Operations	2000			
Blook Drum Arcolor 1269				
Black Drum Arocior-1268				
Conoral Statiation				
General Statistics		20	Number of Distinct Observations	22
Number of Valid Observations		28	Number of Distinct Observations	23
Pour Statistics			Log transformed Statistics	
Minimum		0.050	Log-transformed Statistics	2.057
		0.052	Minimum of Log Data	-2.957
waximum		0.83		-0.186
Mean		0.267	Mean of log Data	-1.591
Iniedian		0.176	SD of log Data	0.755
SD		0.205		
Coefficient of Variation		0.767		
Skewness		1.203		
Relevant UCL Statistics				
Normal Distribution Test			Lognormal Distribution Test	100000 20000 200
Shapiro Wilk Test Statistic		0.85	Shapiro Wilk Test Statistic	0.947
Shapiro Wilk Critical Value		0.924	Shapiro Wilk Critical Value	0.924
Data not Normal at 5% Significant	ce Level		Data appear Lognormal at 5% Significance Level	
Assuming Normal Distribution			Assuming Lognormal Distribution	0.070
95% Student's-t UCL		0.333	95% H-UCL	0.372
95% UCLs (Adjusted for Skewn	ess)	12/2/2/2	95% Chebyshev (MVUE) UCL	0.449
95% Adjusted-CLT UCL (Chen-	1995)	0.341	97.5% Chebyshev (MVUE) UCL	0.527
95% Modified-t UCL (Johnson-1	1978)	0.335	99% Chebyshev (MVUE) UCL	0.681
Commo Distribution Toot			Data Distribution	
Gamma Distribution Test		1 707	Data Distribution	aa Laval
Thete Char		1.797	Data Follow Appr. Gamma Distribution at 5% Significant	
		0.149		
MLE of Mean		0.267		
MLE of Standard Deviation		0.199		
nu star		100.7		
Approximate Chi Square Value (.0	J5)	/8.51	Nonparametric Statistics	0.001
Adjusted Level of Significance		0.0404	95% CLT UCL	0.331
Adjusted Chi Square Value		11.3	95% Jackknife UCL	0.333
		0 00-	95% Standard Bootstrap UCL	0.33
Anderson-Darling Test Statistic		0.825	95% Bootstrap-t UCL	0.35
Anderson-Darling 5% Critical Valu	le	0.758	95% Hall's Bootstrap UCL	0.345
Kolmogorov-Smirnov Test Statisti	C	0.155	95% Percentile Bootstrap UCL	0.333
Kolmogorov-Smirnov 5% Critical	Value	0.168	95% BCA Bootstrap UCL	0.344
Data follow Appr. Gamma Distribu	ution at 5% Significance L	_evel	95% Chebyshev(Mean, Sd) UCL	0.436
			97.5% Chebyshev(Mean, Sd) UCL	0.509
Assuming Gamma Distribution			99% Chebyshev(Mean, Sd) UCL	0.653
95% Approximate Gamma UCL		0.343		
95% Adjusted Gamma UCL		0.348		
Potential UCL to Use			Use 95% Approximate Gamma UCL	0.343
		225		
Note: Suggestions regarding the	selection of a 95% UCL a	re provide	d to help the user to select the most appropriate 95% UC	SL.
These recommendations are base	ed upon the results of the	simulatio	n studies summarized in Singh, Singh, and laci (2002)	
and Singh and Singh (2003). For	or additional insight, the u	ser may w	ant to consult a statistician.	

	General UCL Statistics for	or Full Da	ta Sets	
User Selected Options				
From File	C:\Documents and Settin	ngs\pit605	500\Desktop\ProUCL\Black Drum\Black Drum Data.wst	
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
57517 0.83				
andrea 1.66 (2014) 2.500				
Black Drum Copper				
General Statistics		1.22	959 14 551/05-07126 00/0616 755	1000
Number of Valid Observations		9	Number of Distinct Observations	8
Raw Statistics			Log-transformed Statistics	
Minimum		2.3	Minimum of Log Data	0.833
Maximum		3.91	Maximum of Log Data	1.364
Madian		3.344	Mean of log Data	1.192
iviedian		3.0	SD of log Data	0.194
SD Coefficient of Veriation		0.576		
Skowposs		1 247		
Skewness		-1.347		
Warning: There are only 9 Value	s in this data			
Note: It should be noted that eve	n though bootstran metho	ds may h	e performed on this data set	
the resulting calculations may not	the reliable enough to dra	w conclu	sions	
and resulting baloalations may not	be reliable chough to ara	iii oonola.	5015	
The literature suggests to use bo	otstrap methods on data s	ets havin	g more than 10-15 observations.	
	analogia in the second second second second		Constraint second second second second second	
Relevant UCL Statistics				
Normal Distribution Test			Lognormal Distribution Test	
Shapiro Wilk Test Statistic		0.776	Shapiro Wilk Test Statistic	0.741
Shapiro Wilk Critical Value		0.829	Shapiro Wilk Critical Value	0.829
Data not Normal at 5% Significan	ce Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution			Assuming Lognormal Distribution	
95% Student's-t UCL		3.703	95% H-UCL	3.823
95% UCLs (Adjusted for Skewn	iess)	10010203000	95% Chebyshev (MVUE) UCL	4.293
95% Adjusted-CLT UCL (Chen-	-1995)	3.569	97.5% Chebyshev (MVUE) UCL	4.702
95% Modified-t UCL (Johnson-	1978)	3.688	99% Chebyshev (MVUE) UCL	5.506
Gamma Distribution Test		04 70	Data Distribution	
K star (blas corrected)		21.73	Data do not follow a Discernable Distribution (0.05)	
MLE of Moon		0.104		
MLE of Standard Deviation		0.717		
nu star		301 1		
Approximate Chi Square Value (1	05)	346.3	Nonnarametric Statistics	
Adjusted Level of Significance	00)	0.0231	95% CLT LICI	3 661
Adjusted Chi Square Value		337.4	95% Jackknife UCI	3 703
		001.1	95% Standard Bootstrap UCI	3 643
Anderson-Darling Test Statistic		1.157	95% Bootstrap-t UCL	3.631
Anderson-Darling 5% Critical Valu	ue	0.721	95% Hall's Bootstrap UCL	3.573
Kolmogorov-Smirnov Test Statisti	ic	0.325	95% Percentile Bootstrap UCL	3.623
Kolmogorov-Smirnov 5% Critical	Value	0.279	95% BCA Bootstrap UCL	3.587
Data not Gamma Distributed at 5	% Significance Level		95% Chebyshev(Mean, Sd) UCL	4.184
			97.5% Chebyshev(Mean, Sd) UCL	4.548
Assuming Gamma Distribution			99% Chebyshev(Mean, Sd) UCL	5.262
95% Approximate Gamma UCL		3.778		
95% Adjusted Gamma UCL		3.877		
Potential UCL to Use			Use 95% Student's-t UCL	3.703
			or 95% Modified-t UCL	3.688
		the strengtheness and the		

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh and Singh (2003). For additional insight, the user may want to consult a statistician.

Genera	al UCL Statistics for Full Da	ta Sets	
User Selected Options			
From File C:\Doo	uments and Settings\pit60	500\Desktop\ProUCL\Black Drum\Black Drum Data.wst	
Full Precision OFF			
Confidence Coefficient 9	95%		
Number of Bootstrap Operations 2	000		
UNY DI			
Black Drum Mercury			
General Statistics			
Number of Valid Observations	28	Number of Distinct Observations	28
Raw Statistics		Log-transformed Statistics	
Minimum	0.0858	Minimum of Log Data	-2.456
Maximum	0.288	Maximum of Log Data	-1.245
Mean	0.162	Mean of log Data	-1.863
Median	0.153	SD of log Data	0.291
SD	0.0477		
Coefficient of Variation	0.295		
Skewness	0.729		
Relevant UCL Statistics			
Normal Distribution Test		Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.952	Shapiro Wilk Test Statistic	0.981
Shapiro Wilk Critical Value	0.924	Shapiro Wilk Critical Value	0.924
Data appear Normal at 5% Significance L	evel	Data appear Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCI	0 177	95% H-UCI	0 179
95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCI	0 201
95% Adjusted-CLT LICL (Chen-1995)	0 178	97 5% Chebyshev (MVUE) UCI	0.218
95% Modified-t UCL (Johnson-1978)	0.177	99% Chebyshev (MVUE) UCL	0.251
Gamma Distribution Test		Data Distribution	
k star (blas corrected)	11.11	Data appear Normal at 5% Significance Level	
Theta Star	0.0145		
MLE of Mean	0.162		
MLE of Standard Deviation	0.0485		
nu star	622.4		
Approximate Chi Square Value (.05)	565.5	Nonparametric Statistics	
Adjusted Level of Significance	0.0404	95% CLT UCL	0.176
Adjusted Chi Square Value	562.2	95% Jackknife UCL	0.177
		95% Standard Bootstrap UCL	0.176
Anderson-Darling Test Statistic	0.288	95% Bootstrap-t UCL	0.179
Anderson-Darling 5% Critical Value	0.745	95% Hall's Bootstrap UCL	0.179
Kolmogorov-Smirnov Test Statistic	0.119	95% Percentile Bootstrap UCL	0.177
Kolmogorov-Smirnov 5% Critical Value	0.165	95% BCA Bootstrap UCL	0.178
Data appear Gamma Distributed at 5% S	ignificance Level	95% Chebyshev(Mean, Sd) UCL	0.201
		97.5% Chebyshev(Mean, Sd) UCL	0.218
Assuming Gamma Distribution		99% Chebyshev(Mean, Sd) UCL	0.251
95% Approximate Gamma UCL	0.178		
95% Adjusted Gamma UCL	0.179		
Potential UCL to Use		Use 95% Student's-t UCL	0.177
Note: Suggestions regarding the selection	n of a 95% UCL are provide	ed to help the user to select the most appropriate 95% UCL.	
These recommendations are based upon	the results of the simulatio	n studies summarized in Singh, Singh, and laci (2002)	
and Singh and Singh (2003). For addition	onal insight, the user may v	/ant to consult a statistician.	

General UCL Statistics f	or Full Data Sets	
User Selected Options		
From File C:\Documents and Settin	lgs\pit60500\Desktop\ProUCL\Black Drum\Black Drum Data.wst	
Full Precision OFF		
Confidence Coefficient 95%		
Number of Bootstrap Operations 2000		
Black Drum Zinc		
General Statistics		
Number of Valid Observations	9 Number of Distinct Observations	9
Devis Chattanting	Les how former of Chaking	
Minimum	7.29 Minimum of Los Data	1 095
Maximum	11.04 Maximum of Log Data	1.905
Maan	0.172 Maan of log Data	2.402
Median	9.172 Mean of log Data	2.21
	9.24 SD 01 log Data	0.123
	1.113	
	0.121	
Skewness	-0.0554	
Warning: There are only 9 Values in this data		
Note: It should be noted that even though bootstrap metho	ds may be performed on this data set,	
the resulting calculations may not be reliable enough to dra	w conclusions	
Error all all h		
The literature suggests to use bootstrap methods on data s	ets having more than 10-15 observations.	
Relevant UCL Statistics		
Normal Distribution Test	Lognormal Distribution Test	
Shaniro Wilk Test Statistic	0.997 Shaniro Wilk Test Statistic	0 99
Shapiro Wilk Critical Value	0.829 Shapiro Wilk Critical Value	0.33
Data appear Normal at 5% Significance Level	Data appear Lognormal at 5% Significance Level	0.020
Assuming Normal Distribution	Assuming Lognormal Distribution	
95% Student's-t UCL	9.862 95% H-UCL	9.948
95% UCLs (Adjusted for Skewness)	95% Chebyshev (MVUE) UCL	10.82
95% Adjusted-CLT UCL (Chen-1995)	9.775 97.5% Chebyshev (MVUE) UCL	11.53
95% Modified-t UCL (Johnson-1978)	9.861 99% Chebyshev (MVUE) UCL	12.93
Gamma Distribution Test	Data Distribution	
k star (bias corrected)	50 14 Data appear Normal at 5% Significance Level	
Theta Star	0 192	
MI E of Mean	0.103	
MLE of Standard Doviation	1 205	
nu star	002.5	
Approximate Chi Square Value (05)	902.0 933 9 Nonnaramotrio Statistics	
Adjusted Level of Significance		0 782
Adjusted Chi Square Value	810.8 95% lackknife LICI	0.962
	019.0 95% Standard Bootetran LICI	9.002
Andorson Darling Tost Statistic	0.129 05% Boststrap t LICI	0.005
Anderson Darling 5% Critical Value	0.72 05% Hall's Restation LICI	0.000
Kolmonorov Smirnov Toot Statiatia	0.12 95% natis bootstrap UCL 0.117 05% Percentile Peotetree UCL	9.000
Kolmogorov-Smirnov Fest Statistic	0.117 95% Percentile bootstrap UCL	9.720
Rolmogorov-Smirnov 5% Chucal value	0.279 95% BCA BOOISITAP UCL	9.756
Data appear Gamma Distributed at 5% Significance Level	95% Chebyshev(Mean, Sd) UCL	10.79
Assuming Commo Distribution	97.5% Chebyshev(Mean, Sd) UCL	11.49
Assuming Gamma Distribution	99% Chebysnev(Mean, Sd) UCL	12.86
95% Approximate Gamma UCL	9.928	
95% Adjusted Gamma UCL	10.1	
Potential UCL to Use	Use 95% Student's-t UCL	9.862
Note: Suggestions regarding the selection of a OEV LICL -	re provided to belo the upper to callect the meet appropriate $0.50/11/2$	9
These recommendations are based when the service of	e provided to help the user to select the most appropriate 95% UC	(L.,
I nese recommendations are based upon the results of the	simulation studies summarized in Singh, Singh, and laci (2002)	
and Singh and Singh (2003). For additional insight, the us	ser may want to consult a statistician.	

l

General UCL St	atistics for Full Da	ta Sets	
User Selected Options			
From File R:\49023 - LCP\	0207 Risk Assess	ment\HHRA\OU1\Final HHRA Data Set 080320	10\ProUCL\Blue Crab\Blue Crab
Full Precision OFF			
Confidence Coefficient 95%			
Number of Bootstrap Operations 2000			
Entre Gr			
Blue Crab Aroclor-1268			
General Statistics			
Number of Valid Observations	18	Number of Distinct Observations	15
Raw Statistics		Log-transformed Statistics	
Minimum	0.0073	Minimum of Log Data	-4.92
Maximum	0.4	Maximum of Log Data	-0.916
Mean	0.122	Mean of log Data	-2.665
Median	0.0815	SD of log Data	1.206
SD	0.121		
Coefficient of Variation	0.992		
Skewness	1.165		
Relevant UCL Statistics			
Normal Distribution Test		Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.831	Shapiro Wilk Test Statistic	0.951
Shapiro Wilk Critical Value	0.897	Shapiro Wilk Critical Value	0.897
Data not Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Leve	el
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	0.172	95% H-UCL	0.341
95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCL	0.326
95% Adjusted-CLT UCL (Chen-1995)	0.178	97.5% Chebyshev (MVUE) UCL	0.409
95% Modified-t UCL (Johnson-1978)	0.173	99% Chebyshev (MVUE) UCL	0.571
Gamma Distribution Test		Data Distribution	
k star (bias corrected)	0.89	Data appear Gamma Distributed at 5% Significa	ance Level
Theta Star	0.137		
MLE of Mean	0.122		
MLE of Standard Deviation	0.13		
nu star	32.03		
Approximate Chi Square Value (.05)	20.09	Nonparametric Statistics	
Adjusted Level of Significance	0.0357	95% CLT UCL	0.169
Adjusted Chi Square Value	19.19	95% Jackknife UCL	0.172
20 III		95% Standard Bootstrap UCL	0.168
Anderson-Darling Test Statistic	0.315	95% Bootstrap-t UCL	0.182
Anderson-Darling 5% Critical Value	0.766	95% Hall's Bootstrap UCL	0.173
Kolmogorov-Smirnov Test Statistic	0.125	95% Percentile Bootstrap UCL	0.17
Kolmogorov-Smirnov 5% Critical Value	0.209	95% BCA Bootstrap UCL	0.177
Data appear Gamma Distributed at 5% Significance	e Level	95% Chebyshev(Mean, Sd) UCL	0.247
		97.5% Chebyshev(Mean, Sd) UCL	0.301
Assuming Gamma Distribution		99% Chebyshev(Mean, Sd) UCL	0.406
95% Approximate Gamma UCL	0.195		
95% Adjusted Gamma UCL	0.204		
Potential UCL to Use		Use 95% Approximate Gamma UCL	0.195
Note: Suggestions regarding the selection of a 95% These recommendations are based upon the result and Singh and Singh (2003). For additional incide	6 UCL are provide ts of the simulatio	ed to help the user to select the most appropriate n studies summarized in Singh, Singh, and laci (ant to consult a statistician	95% UCL. 2002)
and onlyn and onlyn (2003). For auditional insigi	n, the user may w	ant to consult a statisticidit.	

General UCL Statistics for	ull Data Sets	
User Selected Options		
From File C:\Documents and Settir	pit60500\Desktop\ProUCL\Blue Crab\	Blue Crab Data.wst
Full Precision OFF		
Confidence Coefficient 95%		
Number of Bootstrap Operations 2000		
· · · · ·		
Blue Crab Copper		
VALVET		
General Statistics		
Number of Valid Observations	9 Number of Distinct Observations	s 9
Raw Statistics	Log-transformed Statistics	
Minimum	16.2 Minimum of Log Data	2.785
Maximum	25.2 Maximum of Log Data	3.227
Mean	19.29 Mean of log Data	2.952
Median	18.92 SD of log Data	0.128
SD	2.608	
Coefficient of Variation	0.135	
Skewness	1.493	
Warning: There are only 9 Values in this data		
Note: It should be noted that even though bootstrap metho	may be performed on this data set,	
the resulting calculations may not be reliable enough to dra	conclusions	
	1 10 45 1	
The literature suggests to use bootstrap methods on data s	having more than 10-15 observations.	
Relevant UCL Statistics		
Normal Distribution Test	Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.875 Shapiro Wilk Test Statistic	0.917
Shapiro Wilk Critical Value	0.829 Shapiro Wilk Critical Value	0.829
Data appear Normal at 5% Significance Level	Data appear Lognormal at 5% S	Significance Level
Assuming Normal Distribution	Assuming Lognormal Distributio	n
95% Student's-t UCL	20.9 95% H-UCL	20.97
95% UCLs (Adjusted for Skewness)	95% Chebyshev (MVUE) UCL	22.86
95% Adjusted-CLT UCL (Chen-1995)	21.18 97.5% Chebyshev (MVUE) UC	L 24.4
95% Modified-t UCL (Jonnson-1978)	20.98 99% Chebysnev (MVUE) UCL	- 27.44
Commo Distribution Toot	Data Distribution	
k star (hiss corrected)	44.63 Data appear Normal at 5% Sign	ificance Lovel
Thete Star	0.422	
MI E of Moon	10.20	
MLE of Standard Doviation	2 997	
	2.007	
Approximate Chi Square Value (05)	738.6 Nonnarametric Statistics	
Adjusted Level of Significance		20.22
Adjusted Level of Significance	725.4 05% lookkrife LICI	20.72
Adjusted Chi Square value	725.4 95% Jackknile UCL	20.9
Andorson Darling Test Statistic	0.407 05% Restation t LICI	20.05
Anderson Darling Fl/ Oritical Value	0.407 95% Bootstrap-t OCL	21.01
Kelmagaray Smirney Tast Statistic	0.12 95% Hall'S Boolstrap UCL	20.37
Kolmogorov-Smirnov 5% Critical Value	0.270 95% BCA Bootstrap UCI	20.73
Data appear Gamma Distributed at 5% Significance Lovel	0.279 95% BCA Boolstrap UCL	20.94
Data appear Gamma Distributed at 5% Significance Lever	95% Chebyshev(Mean, Sd) UC	Cl 23.00
Accuming Commo Distribution	97.5% Chebyshev(Mean, Sd) UC	CL 24.72
05% Approximate Comma LICI	20.09	L 27.34
95% Adjusted Camma LICI	21.36	
	21.30	
Potential UCL to Use	Lee 95% Student's + LCI	20.0
	USE 5570 Student S-LUGE	20.9
Note: Suggestions regarding the selection of a 95% LICL as	rovided to bein the user to select the n	oost appropriate 95% LICI
These recommendations are based upon the results of the	nulation studies summarized in Singh (Singh and laci (2002)
and Singh and Singh (2003) For additional insight the us	may want to consult a statistician	טווקוו, מווע ומטו (2002)
	may mant to consult a statistician.	

General UCL Statistics f	or Full Data Sets	
User Selected Options		
From File C:\Documents and Setti	ngs\pit60500\Desktop\ProUCL\Blue Crab\Blue Crab Data.wst	
Full Precision OFF		
Confidence Coefficient 95%		
Number of Bootstrap Operations 2000		
Blue Crab Mercury		
General Statistics		
Number of Valid Observations	18 Number of Distinct Observations	18
Raw Statistics	Log-transformed Statistics	
Minimum	0.255 Minimum of Log Data	-1.366
Maximum	1.12 Maximum of Log Data	0.113
Mean	0.602 Mean of log Data	-0.597
Median	0.562 SD of log Data	0.445
SD	0.258	
Coefficient of Variation	0.429	
Skewness	0.553	
Relevant UCL Statistics		
Normal Distribution Test	Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.943 Shapiro Wilk Test Statistic	0.961
Shapiro Wilk Critical Value	0.897 Shapiro Wilk Critical Value	0.897
Data appear Normal at 5% Significance Level	Data appear Lognormal at 5% Significance Level	
Assuming Normal Distribution	Assuming Lognormal Distribution	
95% Student's-t UCL	0.708 95% H-UCL	0.752
95% UCLs (Adjusted for Skewness)	95% Chebyshev (MVUE) UCL	0.888
95% Adjusted-CLT UCL (Chen-1995)	0.711 97.5% Chebyshev (MVUE) UCL	1.011
95% Modified-t UCL (Johnson-1978)	0.71 99% Chebyshev (MVUE) UCL	1.252
Gamma Distribution Test	Data Distribution	
k star (bias corrected)	4.793 Data appear Normal at 5% Significance Level	
Theta Star	0.126	
MLE of Mean	0.602	
MLE of Standard Deviation	0.275	
nu star	172.5	
Approximate Chi Square Value (.05)	143.2 Nonparametric Statistics	
Adjusted Level of Significance	0.0357 95% CLT UCL	0.703
Adjusted Chi Square Value	140.6 95% Jackknife UCL	0.708
	95% Standard Bootstrap UCL	0.699
Anderson-Darling Test Statistic	0.255 95% Bootstrap-t UCL	0.723
Anderson-Darling 5% Critical Value	0.742 95% Hall's Bootstrap UCL	0.707
Kolmogorov-Smirnov Test Statistic	0.141 95% Percentile Bootstrap UCL	0.704
Kolmogorov-Smirnov 5% Critical Value	0.204 95% BCA Bootstrap UCL	0.709
Data appear Gamma Distributed at 5% Significance Level	95% Chebyshev(Mean, Sd) UCL	0.868
	97.5% Chebyshev(Mean, Sd) UCL	0.983
Assuming Gamma Distribution	99% Chebyshev(Mean, Sd) UCL	1.208
95% Approximate Gamma UCL	0.726	
95% Adjusted Gamma UCL	0.739	
Potential UCL to Use	Use 95% Student's-t UCL	0.708
Note: Suggestions regarding the selection of a 95% UCL a	re provided to help the user to select the most appropriate 95% UCL	
These recommendations are based upon the results of the	simulation studies summarized in Singh, Singh, and laci (2002)	
and Singh and Singh (2003). For additional insight, the u	ser may want to consult a statistician.	

	General UCL Statistics for	Full Da	ta Sets	
User Selected Options				
From File	C:\Documents and Setting	s\pit605	500\Desktop\ProUCL\Blue Crab\Blue Crab Data.wst	
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
Blue Crab Zinc				
Number of Valid Observations		9	Number of Distinct Observations	9
Raw Statistics		20.0	Log-transformed Statistics	2 4 2 4
Manimum		30.6	Minimum of Log Data	3.421
Maximum		52.8	Maximum of Log Data	3.907
Mean		42.88	Mean of log Data	3.747
Median		43.2	SD of log Data	0.16
SD		6.547		
Coefficient of Variation		0.153		
Skewness		-0.42		
Warning: There are only 9 Values Note: It should be noted that ever	in this data though bootstrap methods	s may b	e performed on this data set,	
The resulting calculations may not	be reliable enough to uraw	conclus	SIGHS	
The literature suggests to use boo	tstrap methods on data set	ts havin	g more than 10-15 observations.	
Relevant UCL Statistics				
Normal Distribution Test			Lognormal Distribution Test	
Shapiro Wilk Test Statistic		0.979	Shapiro Wilk Test Statistic	0.953
Shapiro Wilk Critical Value		0.829	Shapiro Wilk Critical Value	0.829
Data appear Normal at 5% Signific	ance Level		Data appear Lognormal at 5% Significance Level	
Assuming Normal Distribution			Assuming Lognormal Distribution	
95% Student's-t UCL		46.94	95% H-UCL	47.77
95% UCLs (Adjusted for Skewne	ess)		95% Chebyshev (MVUE) UCL	52.91
95% Adjusted-CLT UCL (Chen-1	1995)	46.14	97.5% Chebyshev (MVUE) UCL	57.24
95% Modified-t UCL (Johnson-1	978)	46.89	99% Chebyshev (MVUE) UCL	65.75
Gamma Distribution Test		1212 1212	Data Distribution	
k star (bias corrected)		30.39	Data appear Normal at 5% Significance Level	
Theta Star		1.411		
MLE of Mean		42.88		
MLE of Standard Deviation		7.778		
nu star		547.1		
Approximate Chi Square Value (.0	5)	493.8	Nonparametric Statistics	- 18-18-19 (18-19) ⁻¹
Adjusted Level of Significance		0.0231	95% CLT UCL	46.47
Adjusted Chi Square Value		483.1	95% Jackknife UCL	46.94
			95% Standard Bootstrap UCL	46.26
Anderson-Darling Test Statistic		0.216	95% Bootstrap-t UCL	46.6
Anderson-Darling 5% Critical Valu	e	0.721	95% Hall's Bootstrap UCL	46.5
Kolmogorov-Smirnov Test Statistic	2	0.129	95% Percentile Bootstrap UCL	46.28
Kolmogorov-Smirnov 5% Critical V	/alue	0.279	95% BCA Bootstrap UCL	46
Data appear Gamma Distributed a	t 5% Significance Level		95% Chebyshev(Mean, Sd) UCL	52.39
			97.5% Chebyshev(Mean, Sd) UCL	56.51
Assuming Gamma Distribution			99% Chebyshev(Mean, Sd) UCL	64.59
95% Approximate Gamma UCL		47.5	10 mm 20 mm 20 mm 20 mm 20	
95% Adjusted Gamma UCL		48.55		
Potential UCL to Use			Use 95% Student's-t UCL	46.94
Note: Suggestions regarding the c	election of a 05% LICL are	provide	d to help the user to select the most appropriate Q5% LICL	
These recommendations are base	d upon the results of the si	mulatio	n studies summarized in Singh Singh and laci (2002)	
and Singh and Singh (2002) Ear	r additional insidet the use	rmau	ant to consult a statistician	
and Singh and Singh (2003). FO	additional insight, the use	i iilay w	ant to consult a statisticidit.	

l

General UCL Statistics	for Full Data Sets	
User Selected Options		
From File R:\49023 - LCP\0207 F	isk Assessment\HHRA\OUT\Final HHRA Data Set 08032010\F	Prouce UR Notapper Rail D
Confidence Coofficient 05%		
Number of Bootstran Operations 2000		
Clapper rail Aroclor-1268		
General Statistics		
Number of Valid Observations	14 Number of Distinct Observations	14
Raw Statistics	Log-transformed Statistics	
Minimum	0.19 Minimum of Log Data	-1.661
Maximum	19.42 Maximum of Log Data	2.966
Mean	5.02 Mean of log Data	0.643
Median	4.645 SD of log Data	1.706
SD	5.61	
Coefficient of Variation	1.117	
Skewness	1.407	
Relevant UCL Statistics		
Normal Distribution Test	Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.822 Shapiro Wilk Test Statistic	0.833
Shapiro Wilk Critical Value	0.874 Shapiro Wilk Critical Value	0.874
Data not Normal at 5% Significance Level	Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution	Assuming Lognormal Distribution	
95% Student's-t UCL	7.675 95% H-UCL	56.37
95% UCLs (Adjusted for Skewness)	95% Chebyshev (MVUE) UCL	21.58
95% Adjusted-CLT UCL (Chen-1995)	8.088 97.5% Chebyshev (MVUE) UCL	28.05
95% Modified-t UCL (Johnson-1978)	7.769 99% Chebyshev (MVUE) UCL	40.75
Gamma Distribution Test	Data Distribution	
k star (bias corrected)	0.544 Data do not follow a Discernable Distribution (0.05)	
Theta Star	9.225	
MLE of Mean	5.02	
MLE of Standard Deviation	6.805	
nu star	15.24	
Approximate Chi Square Value (.05)	7.427 Nonparametric Statistics	-
Adjusted Level of Significance	0.0312 95% CLI UCL	7.486
Adjusted Chi Square Value	6.715 95% Jackknife UCL	7.675
Andorron Darling Toot Statistic	95% Standard Bootstrap UCL	7.396
Anderson Darling 7% Critical Value	0.791 05% Hall's Poststrap LICI	0.02
Kolmogorov-Smirnov Test Statistic	0.256 95% Percentile Bootstrap UCL	7 72
Kolmogorov-Smirnov 5% Critical Value	0.230 95% PCA Bootstrap UCL	7.830
Data not Gamma Distributed at 5% Significance Level	95% Chebysbey/Mean Sd) LICI	11 56
Bata not Gamma Distributed at 576 Orginitance Level	97 5% Chebyshev/Mean Sd) UCI	14 38
Assuming Gamma Distribution	99% Chebyshev(Mean, Sd) UCI	19.94
95% Approximate Gamma UCL	10.3	
95% Adjusted Gamma UCL	11.39	
Potential UCL to Use	Use 99% Chebyshev (Mean, Sd) UCL	19.94
Recommended UCL exceeds the maximum observation	units account of the second	
Note: Suggestions regarding the selection of a 95% UCI	are provided to help the user to select the most appropriate 95	% UCL.
These recommendations are based upon the results of th	e simulation studies summarized in Singh, Singh, and Iaci (200	(2)
and Singh and Singh (2003). For additional insight, the	user may want to consult a statistician.	1992 -

eneral Statistics umber of Valid Observations			
umber of Valid Observations			
	14	Number of Distinct Observations	14
aw Statistics		Log-transformed Statistics	
linimum	0.68	Minimum of Log Data	-0.386
laximum	7.3	Maximum of Log Data	1.988
lean	3.124	Mean of log Data	0.842
ledian	2.2	SD of log Data	0.835
D	2.28		
oefficient of Variation	0.73		
kewness	0.469		
elevant UCL Statistics			
ormal Distribution Test		Lognormal Distribution Test	
hapiro Wilk Test Statistic	0.863	Shapiro Wilk Test Statistic	0.893
hapiro Wilk Critical Value	0.874	Shapiro Wilk Critical Value	0.874
ata not Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
ssuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	4.203	95% H-UCL	5.909
95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCL	6.491
95% Adjusted-CLT UCL (Chen-1995)	4.207	97.5% Chebyshev (MVUE) UCL	7.921
95% Modified-t UCL (Johnson-1978)	4.215	99% Chebyshev (MVUE) UCL	10.73
amma Distribution Test		Data Distribution	
star (bias corrected)	1.486	Data appear Gamma Distributed at 5% Significance Level	
heta Star	2.102		
ILE of Mean	3.124		
ILE of Standard Deviation	2.562		
u star	41.61		
pproximate Chi Square Value (.05)	27.83	Nonparametric Statistics	
djusted Level of Significance	0.0312	95% CLT UCL	4.126
djusted Chi Square Value	26.34	95% Jackknife UCL	4.203
		95% Standard Bootstrap UCL	4.099
nderson-Darling Test Statistic	0.747	95% Bootstrap-t UCL	4.331
nderson-Darling 5% Critical Value	0.748	95% Hall's Bootstrap UCL	4.104
olmogorov-Smirnov Test Statistic	0.217	95% Percentile Bootstrap UCL	4.096
olmogorov-Smirnov 5% Critical Value	0.232	95% BCA Bootstrap UCL	4.164
ata appear Gamma Distributed at 5% Significance Leve	I	95% Chebyshev(Mean, Sd) UCL	5.78
		97.5% Chebyshev(Mean, Sd) UCL	6.929
ssuming Gamma Distribution		99% Chebyshev(Mean, Sd) UCL	9.186
95% Approximate Gamma UCL	4.671	2. is the	
95% Adjusted Gamma UCL	4.935		
otential UCL to Use		Use 95% Approximate Gamma UCL	4.671
ote: Suggestions regarding the selection of a 95% UCL	are provide	ed to help the user to select the most appropriate 95% UCL	
hese recommendations are based upon the results of th	e simulatio	n studies summarized in Singh Singh and Jaci (2002)	

Ge	neral UCL Statistics for Full Dat	ta Sets	
User Selected Options			
From File R:\	49023 - LCP\0207 Risk Assess	ment\HHRA\OU1\Final HHRA Data Set 0803	32010\ProUCL\Red Drum\Red Crat
Full Precision OF	F		
Confidence Coefficient	95%		
Number of Bootstrap Operations	2000		
Red Drum Aroclor-1268			
General Statistics			
Number of Valid Observations	12	Number of Distinct Observations	8
Raw Statistics		Log-transformed Statistics	
Minimum	0.097	Minimum of Log Data	-2.333
Maximum	0.194	Maximum of Log Data	-1.642
Mean	0.129	Mean of log Data	-2.082
Median	0.105	SD of log Data	0.273
SD	0.0371		
Coefficient of Variation	0.287		
Skewness	0.708		
Palavant LICI. Statistica			
Nermal Distribution Test		Lognormal Distribution Test	
Shapira Wilk Test Statistic	0 702	Shapira Wilk Test Statistic	0 702
Shapiro Wilk Critical Value	0.792	Shapiro Wilk Critical Value	0.792
Data not Normal at 5% Significance L	evel	Data not Lognormal at 5% Significance Leve	el
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	0.148	95% H-UCL	0.151
95% UCLs (Adjusted for Skewness)	0.110	95% Chebyshev (MVUE) UCI	0 174
95% Adjusted-CLT UCL (Chen-199)	5) 0 149	97.5% Chebyshev (MVUE) UCI	0 193
95% Modified-t UCL (Johnson-1978	3) 0.149	99% Chebyshev (MVUE) UCL	0.231
Gamma Distribution Test		Data Distribution	
k star (bias corrected)	10.76	Data do not follow a Discernable Distribution	ו (0.05)
Theta Star	0.012		
MLE of Mean	0.129		
MLE of Standard Deviation	0.0394		
nu star	258.1		
Approximate Chi Square Value (.05)	221.9	Nonparametric Statistics	
Adjusted Level of Significance	0.029	95% CLT UCL	0.147
Adjusted Chi Square Value	216.8	95% Jackknife UCL	0.148
Mart of Marco Marco Marco de Senteco desenvolos		95% Standard Bootstrap UCL	0.146
Anderson-Darling Test Statistic	1.215	95% Bootstrap-t UCL	0.153
Anderson-Darling 5% Critical Value	0.731	95% Hall's Bootstrap UCL	0.144
Kolmogorov-Smirnov Test Statistic	0.299	95% Percentile Bootstrap UCL	0.146
Kolmogorov-Smirnov 5% Critical Valu	e 0.245	95% BCA Bootstrap UCL	0.149
Data not Gamma Distributed at 5% Si	ignificance Level	95% Chebyshev(Mean, Sd) UCL	0.176
		97.5% Chebyshev(Mean, Sd) UCL	0.196
Assuming Gamma Distribution	Q ² ··· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·	99% Chebyshev(Mean, Sd) UCL	0.236
95% Approximate Gamma UCL 95% Adjusted Gamma UCL	0.15 0.154		
Potential UCL to Use		Use 95% Student's-t UCL	0.148
		or 95% Modified-t UCL	0.149

These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh and Singh (2003). For additional insight, the user may want to consult a statistician.

Red Drum Copper

General Statistics Number of Valid Observations

3 Number of Distinct Observations

Warning: This data set only has 3 observations! Data set is too small to compute reliable and meaningful statistics and estimates! The data set for variable Red Drum Copper was not processed!

It is suggested to collect at least 8 to 10 observations before using these statistical methods! If possible, compute and collect Data Quality Objectives (DQO) based sample size and analytical results. 3

Red Drum Mercury		
General Statistics		
Number of Valid Observations	12 Number of Distinct Observations	12
Raw Statistics	Log-transformed Statistics	
Minimum	0.05 Minimum of Log Data	-2.996
Maximum	0.44 Maximum of Log Data	-0.821
Mean	0.292 Mean of log Data	-1.338
Median	0.306 SD of log Data	0.578
SD	0.107	
Coefficient of Variation	0.367	
Skewness	-0.852	
Relevant UCL Statistics		
Normal Distribution Test	Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.954 Shapiro Wilk Test Statistic	0.739
Shapiro Wilk Critical Value	0.859 Shapiro Wilk Critical Value	0.859
Data appear Normal at 5% Significance Level	Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution	Assuming Lognormal Distribution	
95% Student's-t UCL	0.348 95% H-UCL	0.459
95% UCLs (Adjusted for Skewness)	95% Chebyshev (MVUE) UCL	0.534
95% Adjusted-CLT UCL (Chen-1995)	0.335 97.5% Chebyshev (MVUE) UCL	0.633
95% Modified-t UCL (Johnson-1978)	0.347 99% Chebyshev (MVUE) UCL	0.828
Gamma Distribution Test	Data Distribution	
k star (bias corrected)	3.642 Data appear Normal at 5% Significance Level	
Theta Star	0.0803	
MLE of Mean	0.292	
MLE of Standard Deviation	0.153	
nu star	87.42	
Approximate Chi Square Value (.05)	66.86 Nonparametric Statistics	
Adjusted Level of Significance	0.029 95% CLT UCL	0.343
Adjusted Chi Square Value	64.12 95% Jackknife UCL	0.348
	95% Standard Bootstrap UCL	0.341
Anderson-Darling Test Statistic	0.728 95% Bootstrap-t UCL	0.34
Anderson-Darling 5% Critical Value	0.733 95% Hall's Bootstrap UCL	0.34
Kolmogorov-Smirnov Test Statistic	0.178 95% Percentile Bootstrap UCL	0.34
Kolmogorov-Smirnov 5% Critical Value	0.246 95% BCA Bootstrap UCL	0.335
Data appear Gamma Distributed at 5% Significance Level	95% Chebyshev(Mean, Sd) UCL	0.427
	97.5% Chebyshev(Mean, Sd) UCL	0,486
Assuming Gamma Distribution	99% Chebyshev(Mean, Sd) UCL	0.601
95% Approximate Gamma UCL	0.382	0.0000700 <u>7</u> 0.70
95% Adjusted Gamma UCL	0.399	
Potential UCL to Use	Use 95% Student's-t UCL	0.348
Note: Suggestions regarding the selection of a 95% UCL a	e provided to help the user to select the most appropriate 95	5% UCL.
These recommendations are based upon the results of the	simulation studies summarized in Singh, Singh, and Iaci (20	02)
and Singh and Singh (2003). For additional insight, the us	er may want to consult a statistician.	

Red Drum Methoxychlor		
General Statistics		
Number of Valid Observations	3 Number of Distinct Observations	
Warning: This data set only has 3 observations!		
Data set is too small to compute reliable and me	aningful statistics and estimates!	
The data set for variable Red Drum Methoxychic	r was not processed!	
It is suggested to collect at least 8 to 10 observa If possible, compute and collect Data Quality Ob	tions before using these statistical methods! jectives (DQO) based sample size and analytical results.	

2

Red Drum Zinc General Statistics Number of Valid Observations 3 Number of Distinct Observations Warning: This data set only has 3 observations! Data set is too small to compute reliable and meaningful statistics and estimates! The data set for variable Red Drum Zinc was not processed! It is suggested to collect at least 8 to 10 observations before using these statistical methods! If possible, compute and collect Data Quality Objectives (DQO) based sample size and analytical results. The data set for variable Red Crab Methoxychlor was not processed! It is suggested to collect at least 8 to 10 observations before using these statistical methods! If possible, compute and collect Data Quality Objectives (DQO) based sample size and analytical results. The data set for variable Red Crab Methoxychlor was not processed! It is suggested to collect at least 8 to 10 observations before using these statistical methods! If possible, compute and collect Data Quality Objectives (DQO) based sample size and analytical results.

User Selected Options From File C:\Documents and Settings\pti60550\Desktop\ProUCL\Sediment\Sediment Data.vst Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000 Sediment 1-Methyl Naphthalene General Statistics Number of Valid Observations 180 Number of Distinct Observations 5 Raw Statistics Log-transformed Statistics Minimum 0.004 Minimum of Log Data -552 Maximum 0.43 Maximum of Log Data -064 Mean 0.0080 Mean of log Data -026 Mean 0.0080 Mean of log Data -279 Median 0.082 SD of log Data -278 Mean 0.0808 Mean of log Data -088 SD 0.0506 Scentes 1.77 Relevant UCL Statistics Numal Distribution Test Lognormal Distribution Test Lillefors Test Statistic 0.0911 Lillefors Test Statistic 0.222 Lillefors Critical Value 0.060 Data not Normal Distribution Sp% Studenfs+ UCL 0.087 597.5% Chebyshev (MVUE) UCL 0.10 95% UCLs (Adjusted for Skewness) 95% Studenfs+ UCL 0.017 95% Modified-ULCL (Johnson-1978) 0.0871 99% Chebyshev (MVUE) UCL 0.12 95% Modified-ULCL (Johnson-1978) 0.0871 99% Chebyshev (MVUE) UCL 0.13 95% Modified-ULCL (Johnson-1978) 0.0871 99% Chebyshev (MVUE) UCL 0.13 95% Modified-ULCL (Johnson-1978) 0.0871 99% Chebyshev (MVUE) UCL 0.13 95% Modified-ULCL (Johnson-1978) 0.0871 99% Chebyshev (MVUE) UCL 0.15 Gamma Distribution Test 0.042 MLE of Maard Deviation 0.0562 MLE of Statistic 0.0447 95% CLT UCL 0.057 Prefis Statistic 0.183 95% Statistic 0.068 99% Statistics 0.068 99% Statistics 0.067 99% Statistics 0.068 99% Statistics 0.067 99% Statistics 0.068 99% Statistics 0.067 99% Statistics 0.068 99% Statistics 0.068 99% Statistics 0.183 99% Statistics 0.068 99% Statistics 0.183 99% Precisite 0.068 99% Statistics 0.183 99% Precisite 0.0680 99% Statistics 0.183 99% Statistics 0.183 99% Precisite 0.0680 99%		General UCL Statistics for	Full Data	Sets	
Inform Prie C. Locutinems and Setungsphotodoubleakdpin-rouoCLSeduments.edument.Sedum	User Selected Options			0) Dealter / Dealtor / Sediment/Sediment Date wat	
Confidence Coefficient 95% Number of Bootstrap Operations 2000 Sediment 1-Methyl Naphthalene	From File	OFF	js\pito050	U/Desktop/Proocl/Sediment/Sediment Data.wst	
Continuence of Bootstrap Operations 2000 Sediment 1-Methyl Naphthalene General Statistics General Statistics Log-transformed Statistics Number of Valid Observations 5 Raw Statistics Log-transformed Statistics Minimum 0.004 Minimum of Log Data -5.52 Maximum 0.43 Maximum of Log Data -2.76 Median 0.082 SD of log Data -2.78 Scewness 1.77 Seeveness 1.77 Relevant UCL Statistics 0.094 Illiefors Test Statistic 0.22 State not Normal at 5% Significance Level Data not Lognormal Distribution Test 0.062 Lilliefors Test Statistic 0.22 0.066 Lilliefors Test Statistic 0.22 Students-t UCL Significance Level Data not Lognormal Distribution 25% Assuming Normal Distribution Assuming Lognormal Distribution 29% 29% 9% Koldsted-t UCL (Johnson-1978) 0.087 1 9% Chebyshev (MVUE) UCL 0.10 9% Koldsted-t UCL (Johnson-1978) 0.087 1 9% Chebyshev (MVUE) UCL 0.15 Gamma Distribution Test Data Distribution 1.325 Data do not follow a Discernable Distribution (0.05) <t< td=""><td>Confidence Coofficient</td><td>05%</td><td></td><td></td><td></td></t<>	Confidence Coofficient	05%			
Number of Dobstrap Operations 2000 Sediment 1-Methyl Naphthalene Image: Comparison of Valid Observations 5 Raw Statistics Log-transformed Statistics 5 Number of Valid Observations 0.004 Minimum of Log Data -5.52 Maximum 0.43 Maximum of Log Data -0.84 Mean 0.002 SD of log Data 0.83 SD 0.00506 0.00506 Coefficient O Variation 0.626 0.262 Skewness 1.77 Relevant UCL Statistics 0.0061 Lillefors Critical Value 0.021 Normal Distribution Test Lognormal Distribution Test 0.111 0.066 Lillefors Critical Value 0.06 Data not Normal Distribution Test Data not Lognormal at 5% Significance Level 0.087 9% H-UCL 0.10 Assuming Normal Distribution Assuming Lognormal Distribution 0.95% Chebyshev (MVUE) UCL 0.11 95% Modified-t UCL (Chen-1995) 0.087 97.5% Chebyshev (MVUE) UCL 0.13 95% Modified-t UCL (Obnson-1978) 0.0487 95% Chebyshev (MVUE) UCL 0.13 95% Modified-t UCL (Obnson-1978) 0.0487 95% Chebyshev (MUUE) UCL 0.15	Number of Poststren Operations	3000			
Sediment 1-Methyl Naphthalene General Statistics Number of Valid Observations 180 Number of Distinct Observations 5 Raw Statistics Log-transformed Statistics Minimum 0.0044 Minimum of Log Data -5.52 Maximum 0.0450 Maximum of Log Data -5.52 Median 0.0082 BO of Log Data -2.79 Median 0.082 BO of Log Data -2.79 Median 0.082 BO of Log Data -2.79 Relevant UCL Statistics Coefficient of Variation 0.626 Skewness 1.77 Relevant UCL Statistics 0.0011 Lilliefors Test Statistic 0.0011 Lilliefors Critical Value 0.06 Lilliefors Critical Value 0.06 Student'st UCL 0.087 Student'st UCL 0.088 Student'st UCL 0.088 Student'st UCL 0.088 Student'st UCL 0.087 Student'st UCL 0.088 Student'st UCL 0.	Number of Bootstrap Operations	2000			
General Statistics Number of Valid Observations 180 Number of Distinct Observations 5 Raw Statistics Log-transformed Statistics -5.52 Maximum 0.43 Maximum of Log Data -0.54 Maximum 0.43 Maximum of Log Data -0.64 Mean 0.0808 Mean of log Data -0.62 Median 0.0506 0.0506 Coefficient of Variation 0.625 -2.79 Skewness 1.77 -2.78 Relevant UCL Statistics 0.0506 -2.78 Normal Distribution Test Lognormal Distribution Test 0.22 Lillefors Test Statistic 0.22 -2.78 Normal Distribution Test Lognormal Distribution Test 0.066 Lillefors Critical Value 0.061 Hierors Critical Value 0.060 Data not Normal at 5% Significance Level 0.087 95% HotHier (MVUE) UCL 0.10 Systudent5+ UCL 0.087 95% Chebyshev (MVUE) UCL 0.12 Systudent5+ UCL (chonson-1978) 0.087 95% Chebyshev (MVUE) UCL 0.13 Systudent5+ UCL (chonson-1978) 0.087	Sediment 1-Methyl Naphthalene				
Number of Valid Observations 150 Number of Valid Observations 5 Raw Statistics Log-transformed Statistics Minimum 0.044 Minimum of Log Data -5.52 Maximum 0.43 Maximum of Log Data -0.84 Mean 0.0808 Mean of log Data -2.76 Median 0.082 SD of log Data 0.88 SD 0.0506 - Coefficient of Variation 0.626 - Skewness 1.77 - Relevant UCL Statistics 0.0911 Liliefors Test Statistic 0.22 Data not Normal at 5% Significance Level Data not Lognormal Distribution - Data not Normal at 5% Significance Level Data not Lognormal Distribution - Assuming Lognormal Distribution Assuming Lognormal Distribution - - 95% Adjusted for Skewness) 95% H-UCL 0.10 - - 95% Modified-UCL (Chen-1995) 0.087 95% H-UCL 0.13 - 95% Adjusted for Skewness - - - - 95% Madified-UCL (Chen-1995) 0.087	General Statistics		400	Number of Distinct Observations	E Á
Raw Statistics Log-transformed Statistics Minimum 0.004 Minimum of Log Data -5.52 Maximum 0.43 Maximum of Log Data -0.84 Mean 0.008 Mean of log Data -2.76 Maximum 0.028 250 of log Data 0.88 SD 0.0506 0.0506 Coefficient of Variation 0.822 S Skewness 1.77 Relevant UCL Statistics 0.0911 Lilliefors Test Statistic 0.22 Silliefors Test Statistic 0.0911 Lilliefors Test Statistic 0.22 Lilliefors Critical Value 0.066 Lilliefors Critical Value 0.02 Data not Normal at 5% Significance Level Data not Lognormal at 5% Significance Level 0.087 Assuming Norman Distribution Assuming Lognormal Distribution 95% Chebyshev (MVUE) UCL 0.10 95% Adjusted for Skewness) 95% Chebyshev (MVUE) UCL 0.13 95% Modified-t UCL (Johnson-1978) 0.087 97.5% Chebyshev (MVUE) UCL 0.13 95% Modified-t UCL (Johnson-1978) 0.087 95% Adjusted CLT UCL (Chen-1995) 0.087 95% 0.042 0.14 ME of Standard Deviation	Number of Valid Observations		180	Number of Distinct Observations	54
Minimum 0.004 Minimum of Log Data -5.52 Mean 0.638 Mean of log Data -0.84 Mean 0.0808 Mean of log Data -0.84 Median 0.082 SD of log Data 0.88 SD 0.0506 0.626 Sekwness 1.77	Raw Statistics		121121212	Log-transformed Statistics	120 120200
Maximum 0.43 Maximum of Log Data -0.89 Mean 0.080 Mean of log Data -2.79 Median 0.082 SD of log Data 0.88 SD 0.0506 0.6506 Coefficient of Variation 0.626 5 Skewness 1.77 Relevant UCL Statistics 0.221 Normal Distribution Test Lognormal Distribution Test 0.066 0.111 Lilliefors Critical Value 0.066 Lillefors Critical Value 0.060 Data not Normal at 5% Significance Level Data not Lognormal Distribution 95% 0.079 95% 1.01 95% Student's-t UCL 0.087 95% Chebyshev (MVUE) UCL 0.10 0.10 95% VicLs (Adjusted for Skewness) 95% Chebyshev (MVUE) UCL 0.13 0.13 0.067 95% 1.026 0.13 95% Modified-t UCL (Johnson-1978) 0.0871 99% Chebyshev (MVUE) UCL 0.13 0.13 95% Modified-t UCL (Johnson-1978) 0.0471 95% 1.026 0.043 1.026 0.045 1.126 0.042 0.041 0.051 1	Minimum		0.004	Minimum of Log Data	-5.521
Mean 0.0808 Mean of log Data -2.79 Median 0.0825 Dor log Data 0.88 SD 0.0506 0.8506 Coefficient of Variation 0.626 0.8506 Skewness 1.77	Maximum		0.43	Maximum of Log Data	-0.844
Median 0.082 SD of log Data 0.88 SD 0.0506 Coefficient of Variation 0.626 Skevness 1.77 Relevant UCL Statistics 0.0911 Lilliefors Test Statistic 0.22 Lilliefors Test Statistic 0.0911 Lilliefors Test Statistic 0.22 Lilliefors Critical Value 0.066 Lilliefors Critical Value 0.06 Data not Normal Distribution Assuming Lognormal Distribution 0.10 95% Student's-t UCL 0.087 95% H-UCL 0.10 95% Adjusted for Skewness) 95% Chebyshev (MVUE) UCL 0.10 95% Modified-t UCL (Johnson-1978) 0.0871 95% Chebyshev (MVUE) UCL 0.13 95% Modified-t UCL (Johnson-1978) 0.0871 95% Chebyshev (MVUE) UCL 0.15 Gamma Distribution Test Data Distribution 0.052 MLE of Mean 0.0680 0.0687 95% Jackknife UCL 0.06 Adjusted Chi Square Value (05) 633.4 Nonparametric Statistics 0.08 0.08 Adjusted Level of Significance 0.047 95% Halt's Bootstrap UCL 0.08 Adjusted Chi Square Value 633.5 95% Standard Bootstrap UCL 0.08 Adjusted Chi Square Value 0.767 95% Halt's Bootstrap UCL 0.08 Adjusted Chi Square Value	Mean		0.0808	Mean of log Data	-2.793
SD 0.0506 Coefficient of Variation 0.626 Skewness 1.77 Relevant UCL Statistics 0.0911 Normal Distribution Test 0.0911 Lilliefors Test Statistic 0.0911 Data not Normal at 5% Significance Level 0.066 Assuming Normal Distribution Assuming Lognormal Distribution 95% Kludent's-t UCL 0.087 95% VLG, Kajusted for Skewness) 95% Chebyshev (MVUE) UCL 0.12 95% Modified-t UCL (Johnson-1978) 0.087 97.5% Chebyshev (MVUE) UCL 0.13 95% Modified-t UCL (Johnson-1978) 0.087 97.5% Chebyshev (MVUE) UCL 0.15 Gamma Distribution Test Data Distribution 1.926 0.15 Gamma Distribution Test Data Distribution 1.926 1.926 MLE of Standard Deviation 0.0582 0.042 0.068 Adjusted Chi Square Value (05) 633.4 Nonparametric Statistics 0.08 Adjusted Chi Square Value 633 95% Standard Bootstrap UCL 0.08 Adjusted Chi Square Value 0.767 95% Adknife UCL 0.08 Adjusted Level of Significance 0.047 </td <td>Median</td> <td></td> <td>0.082</td> <td>SD of log Data</td> <td>0.884</td>	Median		0.082	SD of log Data	0.884
Coefficient of Variation 0.626 Skewness 1.77 Relevant UCL Statistics Normal Distribution Test Lognormal Distribution Test Lilliefors Test Statistic 0.021 Lilliefors Critical Value 0.066 Data not Normal at 5% Significance Level 0.066 Data not Normal Distribution Assuming Lognormal at 5% Significance Level 0.06 Skuent's-t UCL 0.087 95% H-UCL 0.10 95% Student's-t UCL 0.087 95% H-UCL 0.10 95% UCLs (Adjusted for Skewness) 95% Chebyshev (MVUE) UCL 0.12 95% Adjusted-CLT UCL (Chen-1995) 0.0871 99% Chebyshev (MVUE) UCL 0.13 95% Modified-t UCL (Johnson-1976) 0.0871 99% Chebyshev (MVUE) UCL 0.15 Gamma Distribution Test Data Distribution k star (bias corrected) 1.926 Data do not follow a Discernable Distribution (0.05) Theta Star 0.042 MLE of Mean 0.0808 MLE of Standard Deviation 0.0582 Adjusted Level of Significance 0.0487 95% CLT UCL 0.08 Adjusted Chi Square Value (.05) 633.4 Nonparametric Statistics Adjusted Chi Square Value (.05) 633.4 Nonparametric Statistics Adjusted Chi Square Value 0.05 633 95% Bootstrap UCL 0.08 Adjusted Chi Square Value 0.05 6.633 95% Bootstrap UCL 0.08 Anderson-Darling Test Statistic 0.183 95% Percentile Bootstrap UCL 0.08 Anderson-Darling S% Critical Value 0.067 95% CLT UCL 0.087 Anderson-Darling S% Critical Value 0.0697 95% CA Bootstrap UCL 0.087 Anderson-Darling S% Critical Value 0.0697 95% CA Bootstrap UCL 0.087 Anderson-Darling S% Critical Value 0.0697 95% CA Bootstrap UCL 0.087 Anderson-Darling S% Critical Value 0.0697 95% CA Bootstrap UCL 0.087 Anderson-Darling S% Critical Value 0.0697 95% CA Bootstrap UCL 0.087 S% Chebyshev(Mean, Sd) UCL 0.11 95% Approximate Gamma Distribution 99% Chebyshev(Mean, Sd) UCL 0.11 95% Approximate Gamma UCL 0.0885 Detential UCL to Use Use 95% Chebyshev(Mean, Sd) UCL 0.11 95% Approximate Gamma UCL 0.0885	SD		0.0506		
Skewness 1.77 Relevant UCL Statistics Lognormal Distribution Test Normal Distribution Test 0.001 Lilliefors Test Statistic Ellifeors Critical Value 0.066 Lilliefors Critical Value Data not Normal at 5% Significance Level Data not Lognormal Distribution 95% Student's-1 UCL 0.087 95% Adjusted-CLT UCL (Chen-1995) 0.0875 95% Modified-t UCL (Johnson-1978) 0.0871 99% Chebyshev (MVUE) UCL 0.13 95% Modified-t UCL (Johnson-1978) 0.0871 95% Modified-t UCL (Johnson-1978) 0.0871 95% Standard Deviation 0.582 MEE of Standard Deviation 0.0582 ME of Mean 0.042 MLE of Standard Deviation 0.0582 nu star 0.042 Adjusted Chi Square Value (.05) 633.4 Nonparametric Statistics Adjusted Chi Square Value 0.395% Bootstrap-UCL 0.087 95% Standard Deviation 0.0582 0.087 nu star 63.3 95% Standard Bootstrap UCL 0.087 Adjusted Chi Square Value 0.677 95% Advistrap UCL 0.087 Adjusted Chi Square Value 0.677 95% Bootstrap UCL 0.087 Adjusted Level of Significance 0.477 95% Chebyshev(Mean, Sd) UCL 0.087	Coefficient of Variation		0.626		
Relevant UCL Statistics Lognormal Distribution Test 0.0911 Lilliefors Test Statistic 0.22 Lilliefors Critical Value 0.066 Lilliefors Critical Value 0.066 Data not Normal at 5% Significance Level Data not Lognormal at 5% Significance Level 0.10 Assuming Normal Distribution Assuming Lognormal Distribution 0.10 95% Addent's-t UCL 0.087 95% H-UCL 0.10 95% Addent's-t UCL 0.087 97.5% Chebyshev (MVUE) UCL 0.13 95% Addent's-t UCL (Johnson-1978) 0.0871 99% Chebyshev (MVUE) UCL 0.13 95% Modified-t UCL (Johnson-1978) 0.0871 99% Chebyshev (MVUE) UCL 0.15 Gamma Distribution Test Data Distribution 0.052 0.052 0.057 MLE of Mean 0.0608 0.0582 0.0671 99% Chebyshev (MVUE) UCL 0.051 MLE of Mean 0.0582 0.042 0.063 0.052 0.067 0.042 0.06 Adjusted Level of Significance 0.0437 95% Standard Dootstrap UCL 0.068 0.06 Adjusted Chi Square Value 0.052 0.0437 95% Standard Bootstrap UCL 0.068 0.06 Adj	Skewness		1.77		
Normal Distribution Test Lognormal Distribution Test 0.0911 Lilliefors Test Statistic 0.021 Lilliefors Critical Value 0.066 Lilliefors Critical Value 0.066 Data not Normal Distribution Assuming Lognormal Distribution 0.07 95% Student's-t UCL 0.087 95% H-UCL 0.10 95% Addent's-t UCL 0.087 95% H-UCL 0.10 95% Addent's-t UCL 0.087 95% H-UCL 0.10 95% Addent's-t UCL 0.087 95% Chebyshev (MVUE) UCL 0.13 95% Modified-t UCL (Johnson-1978) 0.0871 99% Chebyshev (MVUE) UCL 0.15 Gamma Distribution Test Data Distribution 0.0582 0.042 MLE of Mean 0.0808 0.0582 0.0871 95% Standard Deviation (0.05) 0.084 Adjusted Level of Significance 0.042 0.083 95% Standard Deviation 0.0868 Adjusted Chi Square Value (.05) 63.3.4 Nonparametric Statistics 0.08 Adjusted Chi Square Value 0.679 95% Standard Bootstrap UCL 0.08 Anderson-Darling Test Statistic	Relevant UCL Statistics				
Lilliefors Test Statistic 0.0911 Lilliefors Critical Value 0.066 Lilliefors Critical Value 0.06 Data not Normal at 5% Significance Level Data not Lognormal Distribution 0.01 Assuming Normal Distribution Assuming Lognormal Distribution 0.010 95% Student's-t UCL 0.087 95% Chebyshev (MVUE) UCL 0.10 95% Modified-t UCL (Johnson-1978) 0.0875 97.5% Chebyshev (MVUE) UCL 0.13 95% Modified-t UCL (Johnson-1978) 0.0871 99% Chebyshev (MVUE) UCL 0.15 Gamma Distribution Test Data Distribution kstar (bias corrected) 1.926 Data do not follow a Discernable Distribution (0.05) Theta Star 0.0427 0.052 0.0875 95% CLT UCL 0.087 MLE of Standard Deviation 0.0582 0.0487 95% 0.0487 0.042 Adjusted Chi Square Value (.05) 633.4 Nonparametric Statistics 0.087 95% Standard Bootstrap UCL 0.088 Adjusted Chi Square Value 6.33 95% Standard Bootstrap UCL 0.087 95% Standard Bootstrap UCL 0.087 Anderson-Darling Test Statistic 6.183 95% Bootstrap UCL 0.087 0.087 <t< td=""><td>Normal Distribution Test</td><td></td><td></td><td>Lognormal Distribution Test</td><td></td></t<>	Normal Distribution Test			Lognormal Distribution Test	
Lilliefors Critical Value 0.066 Lilliefors Critical Value 0.066 Data not Normal at 5% Significance Level Data not Lognormal at 5% Significance Level 0.067 Assuming Normal Distribution Assuming Lognormal Distribution 0.10 95% Student's-t UCL 0.087 95% H-UCL 0.10 95% dijusted-CLT UCL (Chen-1995) 0.0875 97.5% Chebyshev (MVUE) UCL 0.13 95% Modified-t UCL (Johnson-1978) 0.0871 99% Chebyshev (MVUE) UCL 0.15 Gamma Distribution Test Data Distribution 0.052 0.052 MLE of Mean 0.0680 0.0582 0.0582 0.0582 Nu E of Standard Deviation 0.0582 0.042 0.08 0.068 Adjusted Level of Significance 0.0447 95% Jackknife UCL 0.08 Adjusted Chi Square Value (.05) 633.4 Nonparametric Statistics 0.068 Adjusted Level of Significance 0.0487 95% Jackknife UCL 0.08 Anderson-Darling Test Statistic 6.863 95% Jackknife UCL 0.087 Anderson-Darling 5% Critical Value 0.77 95% Hall's Bootstrap UCL 0.087 0.97 Kolmogorov-Smin	Lilliefors Test Statistic		0.0911	Lilliefors Test Statistic	0.228
Data not Normal at 5% Significance Level Data not Lognormal at 5% Significance Level Assuming Normal Distribution Assuming Lognormal Distribution 95% Student's-t UCL 0.087 95% Adjusted for Skewness) 95% Chebyshev (MVUE) UCL 0.12 95% Adjusted-CLT UCL (Chen-1995) 0.0871 97.5% Chebyshev (MVUE) UCL 0.13 95% Modified-t UCL (Johnson-1978) 0.0871 97.5% Chebyshev (MVUE) UCL 0.13 Gamma Distribution Test Data do not follow a Discemable Distribution (0.05) 0.15 Gamma Distribution Test Data do not follow a Discemable Distribution (0.05) 0.0871 MLE of Mean 0.0808 MUE of Standard Deviation 0.0582 nu star 693.5 633.4 Nonparametric Statistics Adjusted Level of Significance 0.0487 95% Jackknife UCL 0.08 Adjusted Chi Square Value (.05) 633.4 Nonparametric Statistics 0.08 Adjusted Chi Square Value 0.687 95% Bootstrap UCL 0.08 Anderson-Darling Test Statistic 6.863 95% Bootstrap UCL 0.087 Anderson-Darling S% Critical Value 0.767 95% Chebyshev(Mean, Sd) UCL 0.087 Assuming Gamma Distribution 95% Chebyshev(Mean, Sd) UCL 0.087 Assuming Gamma Distribution 95% Chebyshev(Mean, Sd) UCL<	Lilliefors Critical Value		0.066	Lilliefors Critical Value	0.066
Assuming Normal Distribution Assuming Lognormal Distribution 95% Student's-t UCL 0.087 95% H-UCL 0.10 95% UCLs (Adjusted for Skewness) 95% Chebyshev (MVUE) UCL 0.12 95% Adjusted-CLT UCL (Chen-1995) 0.0875 97.5% Chebyshev (MVUE) UCL 0.13 95% Modified-t UCL (Johnson-1978) 0.0871 99% Chebyshev (MVUE) UCL 0.15 Gamma Distribution Test Data Distribution 0.15 k star (bias corrected) 1.926 Data do not follow a Discernable Distribution (0.05) Theta Star MLE of Mean 0.0808 0.0812 Nus tar Approximate Chi Square Value (.05) 633.4 Nonparametric Statistics Adjusted Level of Significance 0.0487 95% CLT UCL 0.088 Adjusted Chi Square Value 633 95% Jackknife UCL 0.088 Adjusted Chi Square Value 0.767 95% Hall's Bootstrap UCL 0.087 Anderson-Darling Test Statistic 0.183 95% Percentile Bootstrap UCL 0.088 Kolmogorov-Smirnov 75% Critical Value 0.087 95% Chebyshev(Mean, Sd) UCL 0.097 Data not Gamma Distribution 99% Chebyshev(Mean, Sd) UCL 0.097 Assuming Gamma Distribution 99% Chebyshev(Mean, Sd) UCL 0.108 95% Approximate Gamma UCL 0.0885	Data not Normal at 5% Significanc	e Level		Data not Lognormal at 5% Significance Level	
95% Student's-t UCL 0.087 95% H-UCL 0.10 95% UCLs (Adjusted for Skewness) 95% Chebyshev (MVUE) UCL 0.12 95% Adjusted-CLT UCL (Chen-1995) 0.0875 97.5% Chebyshev (MVUE) UCL 0.13 95% Modified-t UCL (Johnson-1978) 0.0871 99% Chebyshev (MVUE) UCL 0.15 Gamma Distribution Test Data Distribution 0.057 97.5% Chebyshev (MVUE) UCL 0.15 K star (bias corrected) 1.926 Data do not follow a Discernable Distribution (0.05) 0.067 95% Adjusted CeLT UCL 0.052 Theta Star 0.042 0.0582 0.052 0.0875 95% OLCL 0.058 MLE of Standard Deviation 0.0582 0.042 0.068 0.0847 95% OLT UCL 0.08 Adjusted Level of Significance 0.047 95% OLT UCL 0.08 0.08 Adjusted Chi Square Value 633 95% Jackknife UCL 0.08 0.087 Anderson-Darling Test Statistic 6.863 95% Bootstrap UCL 0.087 0.087 Kolmogorov-Smirnov Test Statistic 0.183 95% Percentile Bootstrap UCL 0.087 <td>Assuming Normal Distribution</td> <td></td> <td></td> <td>Assuming Lognormal Distribution</td> <td></td>	Assuming Normal Distribution			Assuming Lognormal Distribution	
95% UCLs (Adjusted for Skewness) 95% Chebyshev (MVUE) UCL 0.12 95% Adjusted-CLT UCL (Chen-1995) 0.0875 97.5% Chebyshev (MVUE) UCL 0.13 95% Modified-t UCL (Johnson-1978) 0.0871 99% Chebyshev (MVUE) UCL 0.15 Gamma Distribution Test Data Distribution 0.057 0.0871 99% Chebyshev (MVUE) UCL 0.15 Gamma Distribution Test Data Distribution 1.926 Data do not follow a Discernable Distribution (0.05) 0.042 MLE of Mean 0.0808 0.042 0.0582 0.042 MLE of Standard Deviation 0.0582 0.0487 95% CLT UCL 0.08 Adjusted Level of Significance 0.0487 95% CLT UCL 0.08 Adjusted Chi Square Value 633 95% Bootstrap UCL 0.08 Adjusted Chi Square Value 0.767 95% Bootstrap UCL 0.08 Adjusted Chi Square Value 0.767 95% Bootstrap UCL 0.08 Adjusted Chi Square Value 0.767 95% Bootstrap UCL 0.087 Adjusted Chi Square Value 0.767 95% Bootstrap UCL 0.087 Anderson-Darling Test Statistic 0.13 95% BCA Bootstrap UCL 0.087 <	95% Student's-t UCL		0.087	95% H-UCL	0.104
95% Adjusted-CLT UCL (Chen-1995) 0.0875 97.5% Chebyshev (MVUE) UCL 0.13 95% Modified-t UCL (Johnson-1978) 0.0871 99% Chebyshev (MVUE) UCL 0.15 Gamma Distribution Test Data Distribution 0.15 k star (bias corrected) 1.926 Data do not follow a Discernable Distribution (0.05) 0.0875 Theta Star 0.042 0.042 0.0808 MLE of Mean 0.0808 0.0582 nu star 693.5 Approximate Chi Square Value (.05) 633.4 Nonparametric Statistics Adjusted Level of Significance 0.0487 95% CLT UCL 0.08 Adjusted Chi Square Value 633 95% Bootstrap-tUCL 0.08 Adjusted Chi Square Value 6.863 95% Bootstrap-tUCL 0.08 Adjusted Value 0.767 95% Hall's Bootstrap UCL 0.087 Anderson-Darling Test Statistic 0.183 95% Percentile Bootstrap UCL 0.087 Kolmogorov-Smirnov Test Statistic 0.183 95% Percentile Bootstrap UCL 0.087 Oata not Gamma Distributed at 5% Significance Level 95% Chebyshev(Mean, Sd) UCL 0.097 95% Approximate Gamma Distribution 99% Chebyshev(Mean, Sd	95% UCLs (Adjusted for Skewne	ess)		95% Chebyshev (MVUE) UCL	0.121
95% Modified-t UCL (Johnson-1978) 0.0871 99% Chebyshev (MVUE) UCL 0.15 Gamma Distribution Test k star (bias corrected) 1.926 Data Distribution a Discernable Distribution (0.05) 0.057 Theta Star 0.042 0.042 0.042 MLE of Mean 0.0582 0.0808 0.0582 nu star 693.5 0.042 0.08 Approximate Chi Square Value (.05) 633.4 Nonparametric Statistics 0.08 Adjusted Level of Significance 0.0487 95% CLT UCL 0.08 Adjusted Chi Square Value 633 95% Standard Bootstrap UCL 0.08 Anderson-Darling Test Statistic 6.863 95% Bootstrap-t UCL 0.087 Anderson-Darling 5% Critical Value 0.77 95% BCA Bootstrap UCL 0.087 Kolmogorov-Smirnov 5% Critical Value 0.0697 95% Chebyshev(Mean, Sd) UCL 0.097 Data not Gamma Distributed at 5% Significance Level 95% Chebyshev(Mean, Sd) UCL 0.010 95% Approximate Gamma UCL 0.0885 0.0885 0.0885 95% Adjusted Gamma UCL 0.0885 0.0885 0.0885	95% Adjusted-CLT UCL (Chen-1	995)	0.0875	97.5% Chebyshev (MVUE) UCL	0.134
Gamma Distribution Test Data Distribution k star (bias corrected) 1.926 Data do not follow a Discernable Distribution (0.05) Theta Star 0.042 MLE of Mean 0.0808 MLE of Standard Deviation 0.0582 nu star 693.5 Approximate Chi Square Value (.05) 633.4 Nonparametric Statistics Adjusted Level of Significance 0.0487 95% CLT UCL 0.08 Adjusted Chi Square Value 633 95% Standard Bootstrap UCL 0.08 Anderson-Darling Test Statistic 6.863 95% Bootstrap-t UCL 0.087 Anderson-Darling 5% Critical Value 0.767 95% Hall's Bootstrap UCL 0.087 Kolmogorov-Smirnov Test Statistic 0.183 95% Onebyshev(Mean, Sd) UCL 0.087 Data not Gamma Distributed at 5% Significance Level 95% Chebyshev(Mean, Sd) UCL 0.097 95% Approximate Gamma UCL 0.0885 99% Adjusted Gamma UCL 0.0885	95% Modified-t UCL (Johnson-19	978)	0.0871	99% Chebyshev (MVUE) UCL	0.159
k star (bias corrected) 1.926 Data do not follow a Discernable Distribution (0.05) Theta Star 0.042 MLE of Mean 0.0808 MLE of Standard Deviation 0.0582 nu star 693.5 Approximate Chi Square Value (.05) 633.4 Nonparametric Statistics Adjusted Level of Significance 0.0487 Adjusted Level of Significance 0.0487 Adjusted Chi Square Value 633 Adjusted Chi Square Value 633 Anderson-Darling Test Statistic 6.863 Anderson-Darling 5% Critical Value 0.767 Standard Bootstrap UCL 0.088 Kolmogorov-Smirnov Test Statistic 0.183 Kolmogorov-Smirnov 5% Critical Value 0.0697 95% Chebyshev(Mean, Sd) UCL 0.087 95% Approximate Gamma Distribution 99% Chebyshev(Mean, Sd) UCL 0.010 95% Approximate Gamma UCL 0.0885 0.0885	Gamma Distribution Test			Data Distribution	
Theta Star 0.042 MLE of Mean 0.0808 MLE of Standard Deviation 0.0582 nu star 693.5 Approximate Chi Square Value (.05) 633.4 Nonparametric Statistics Adjusted Level of Significance 0.0487 95% CLT UCL 0.08 Adjusted Chi Square Value 633 95% Jackknife UCL 0.08 Adjusted Chi Square Value 633 95% Standard Bootstrap UCL 0.08 Anderson-Darling Test Statistic 6.863 95% Bootstrap-t UCL 0.087 Anderson-Darling 5% Critical Value 0.767 95% Hall's Bootstrap UCL 0.087 Kolmogorov-Smirnov Test Statistic 0.183 95% Percentile Bootstrap UCL 0.087 Kolmogorov-Smirnov 5% Critical Value 0.0697 95% BCA Bootstrap UCL 0.087 Data not Gamma Distributed at 5% Significance Level 95% Chebyshev(Mean, Sd) UCL 0.010 95% Approximate Gamma UCL 0.0885 0.0885 95% Adjusted Gamma UCL 0.0885 0.0885	k star (bias corrected)		1.926	Data do not follow a Discernable Distribution (0.05)	
MLE of Mean 0.0808 MLE of Standard Deviation 0.0582 nu star 693.5 Approximate Chi Square Value (.05) 633.4 Nonparametric Statistics Adjusted Level of Significance 0.0487 95% CLT UCL 0.08 Adjusted Chi Square Value 633.95% Jackknife UCL 0.08 0.08 Adjusted Chi Square Value 633.95% Jackknife UCL 0.08 Adjusted Chi Square Value 633.95% Bootstrap UCL 0.08 Anderson-Darling Test Statistic 6.863 95% Bootstrap UCL 0.08 Anderson-Darling 5% Critical Value 0.767 95% Hall's Bootstrap UCL 0.087 Kolmogorov-Smirnov Test Statistic 0.183 95% Percentile Bootstrap UCL 0.087 Kolmogorov-Smirnov 5% Critical Value 0.0697 95% BCA Bootstrap UCL 0.087 Data not Gamma Distributed at 5% Significance Level 95% Chebyshev(Mean, Sd) UCL 0.097 95% Approximate Gamma UCL 0.0885 0.0885 95% Adjusted Gamma UCL 0.0885 0.0885	Theta Star		0.042		
MLE of Standard Deviation 0.0582 nu star 693.5 Approximate Chi Square Value (.05) 633.4 Nonparametric Statistics Adjusted Level of Significance 0.0487 95% CLT UCL 0.08 Adjusted Chi Square Value 633 95% Jackknife UCL 0.08 Adjusted Chi Square Value 633 95% Standard Bootstrap UCL 0.08 Anderson-Darling Test Statistic 6.863 95% Bootstrap-t UCL 0.08 Anderson-Darling 5% Critical Value 0.767 95% Hall's Bootstrap UCL 0.087 Kolmogorov-Smirnov Test Statistic 0.183 95% Percentile Bootstrap UCL 0.087 Kolmogorov-Smirnov 5% Critical Value 0.0697 95% BCA Bootstrap UCL 0.087 Data not Gamma Distributed at 5% Significance Level 95% Chebyshev(Mean, Sd) UCL 0.010 95% Approximate Gamma UCL 0.0885 95% 0.0885 95% Adjusted Gamma UCL 0.0885 0.0885 0.0885	MLE of Mean		0.0808		
nu star 693.5 Approximate Chi Square Value (.05) 633.4 Nonparametric Statistics Adjusted Level of Significance 0.0487 95% CLT UCL 0.08 Adjusted Chi Square Value 633 95% Jackknife UCL 0.08 95% Standard Bootstrap UCL 0.08 95% Standard Bootstrap UCL 0.08 Anderson-Darling Test Statistic 6.863 95% Bootstrap-t UCL 0.087 Anderson-Darling 5% Critical Value 0.767 95% Hall's Bootstrap UCL 0.088 Kolmogorov-Smirnov Test Statistic 0.183 95% Percentile Bootstrap UCL 0.087 Kolmogorov-Smirnov 5% Critical Value 0.0697 95% BCA Bootstrap UCL 0.087 Data not Gamma Distributed at 5% Significance Level 95% Chebyshev(Mean, Sd) UCL 0.097 97.5% Chebyshev(Mean, Sd) UCL 0.11 95% Approximate Gamma UCL 0.0885 95% Adjusted Gamma UCL 0.0885 Potential UCL to Use Use 95% Chebyshev (Mean, Sd) UCL 0.097	MLE of Standard Deviation		0.0582		
Approximate Chi Square Value (.05) 633.4 Nonparametric Statistics Adjusted Level of Significance 0.0487 95% CLT UCL 0.08 Adjusted Chi Square Value 633 95% Jackknife UCL 0.08 Adjusted Chi Square Value 633 95% Standard Bootstrap UCL 0.08 Anderson-Darling Test Statistic 6.863 95% Bootstrap-t UCL 0.087 Anderson-Darling 5% Critical Value 0.767 95% Hall's Bootstrap UCL 0.087 Kolmogorov-Smirnov Test Statistic 0.183 95% Percentile Bootstrap UCL 0.087 Kolmogorov-Smirnov 5% Critical Value 0.0697 95% BCA Bootstrap UCL 0.087 Data not Gamma Distributed at 5% Significance Level 95% Chebyshev(Mean, Sd) UCL 0.097 95% Approximate Gamma UCL 0.0885 0.0885 95% Adjusted Gamma UCL 0.0885 0.0885	nu star		693.5		
Adjusted Level of Significance 0.0487 95% CLT UCL 0.08 Adjusted Chi Square Value 633 95% Jackknife UCL 0.08 Anderson-Darling Test Statistic 6.863 95% Bootstrap-t UCL 0.08 Anderson-Darling 5% Critical Value 0.767 95% Hall's Bootstrap UCL 0.087 Kolmogorov-Smirnov Test Statistic 0.183 95% Percentile Bootstrap UCL 0.087 Kolmogorov-Smirnov 5% Critical Value 0.0697 95% BCA Bootstrap UCL 0.087 Data not Gamma Distributed at 5% Significance Level 95% Chebyshev(Mean, Sd) UCL 0.010 95% Approximate Gamma UCL 0.0885 0.0885	Approximate Chi Square Value (.0	5)	633.4	Nonparametric Statistics	
Adjusted Chi Square Value 633 95% Jackknife UCL 0.08 95% Standard Bootstrap UCL 0.08 Anderson-Darling Test Statistic 6.863 95% Bootstrap-t UCL 0.087 Anderson-Darling 5% Critical Value 0.767 95% Hall's Bootstrap UCL 0.088 Kolmogorov-Smirnov Test Statistic 0.183 95% Percentile Bootstrap UCL 0.087 Kolmogorov-Smirnov 5% Critical Value 0.0697 95% BCA Bootstrap UCL 0.087 Data not Gamma Distributed at 5% Significance Level 95% Chebyshev(Mean, Sd) UCL 0.097 97.5% Chebyshev(Mean, Sd) UCL 0.10 95% Approximate Gamma UCL 0.0885 95% Adjusted Gamma UCL 0.0885	Adjusted Level of Significance		0.0487	95% CLT UCL	0.087
95% Standard Bootstrap UCL 0.08 Anderson-Darling Test Statistic 6.863 95% Bootstrap-t UCL 0.087 Anderson-Darling 5% Critical Value 0.767 95% Hall's Bootstrap UCL 0.088 Kolmogorov-Smirnov Test Statistic 0.183 95% Percentile Bootstrap UCL 0.087 Kolmogorov-Smirnov 5% Critical Value 0.0697 95% BCA Bootstrap UCL 0.087 Data not Gamma Distributed at 5% Significance Level 95% Chebyshev(Mean, Sd) UCL 0.097 97.5% Chebyshev(Mean, Sd) UCL 0.10 Assuming Gamma Distribution 99% Chebyshev(Mean, Sd) UCL 0.11 95% Approximate Gamma UCL 0.0885 0.0885 0.0885	Adjusted Chi Square Value		633	95% Jackknife UCL	0.087
Anderson-Darling Test Statistic 6.863 95% Bootstrap-t UCL 0.087 Anderson-Darling 5% Critical Value 0.767 95% Hall's Bootstrap UCL 0.088 Kolmogorov-Smirnov Test Statistic 0.183 95% Percentile Bootstrap UCL 0.087 Kolmogorov-Smirnov 5% Critical Value 0.0697 95% BCA Bootstrap UCL 0.087 Data not Gamma Distributed at 5% Significance Level 95% Chebyshev(Mean, Sd) UCL 0.097 97.5% Chebyshev(Mean, Sd) UCL 0.10 Assuming Gamma Distribution 99% Chebyshev(Mean, Sd) UCL 0.11 95% Adjusted Gamma UCL 0.0885 0.0885	50 O			95% Standard Bootstrap UCL	0.087
Anderson-Darling 5% Critical Value 0.767 95% Hall's Bootstrap UCL 0.088 Kolmogorov-Smirnov Test Statistic 0.183 95% Percentile Bootstrap UCL 0.087 Kolmogorov-Smirnov 5% Critical Value 0.0697 95% BCA Bootstrap UCL 0.087 Data not Gamma Distributed at 5% Significance Level 95% Chebyshev(Mean, Sd) UCL 0.097 97.5% Chebyshev(Mean, Sd) UCL 0.10 Assuming Gamma Distribution 99% Chebyshev(Mean, Sd) UCL 0.11 95% Approximate Gamma UCL 0.0885 0.0885 95% Adjusted Gamma UCL 0.0885 0.0885	Anderson-Darling Test Statistic		6.863	95% Bootstrap-t UCL	0.0874
Kolmogorov-Smirnov Test Statistic 0.183 95% Percentile Bootstrap UCL 0.087 Kolmogorov-Smirnov 5% Critical Value 0.0697 95% BCA Bootstrap UCL 0.087 Data not Gamma Distributed at 5% Significance Level 95% Chebyshev(Mean, Sd) UCL 0.097 97.5% Chebyshev(Mean, Sd) UCL 0.10 Assuming Gamma Distribution 99% Chebyshev(Mean, Sd) UCL 0.11 95% Approximate Gamma UCL 0.0885 0.0885 95% Adjusted Gamma UCL 0.0885 0.0885	Anderson-Darling 5% Critical Value	e	0.767	95% Hall's Bootstrap UCL	0.0883
Kolmogorov-Smirnov 5% Critical Value 0.0697 95% BCA Bootstrap UCL 0.087 Data not Gamma Distributed at 5% Significance Level 95% Chebyshev(Mean, Sd) UCL 0.097 97.5% Chebyshev(Mean, Sd) UCL 0.10 Assuming Gamma Distribution 99% Chebyshev(Mean, Sd) UCL 0.11 95% Approximate Gamma UCL 0.0885 0.0885 95% Adjusted Gamma UCL 0.0885 0.0885	Kolmogorov-Smirnov Test Statistic		0.183	95% Percentile Bootstrap UCL	0.0871
Data not Gamma Distributed at 5% Significance Level 95% Chebyshev(Mean, Sd) UCL 0.097 97.5% Chebyshev(Mean, Sd) UCL 0.10 Assuming Gamma Distribution 99% Chebyshev(Mean, Sd) UCL 0.10 95% Approximate Gamma UCL 0.0885 0.0885 95% Adjusted Gamma UCL 0.0885 0.0885	Kolmogorov-Smirnov 5% Critical V	alue	0.0697	95% BCA Bootstrap UCL	0.0871
97.5% Chebyshev(Mean, Sd) UCL 0.10 Assuming Gamma Distribution 99% Chebyshev(Mean, Sd) UCL 0.11 95% Approximate Gamma UCL 0.0885 95% Adjusted Gamma UCL 0.0885	Data not Gamma Distributed at 5%	Significance Level	2.0001	95% Chebyshev(Mean, Sd) UCL	0.0972
Assuming Gamma Distribution 99% Chebyshev(Mean, Sd) UCL 0.11 95% Approximate Gamma UCL 0.0885 95% Adjusted Gamma UCL 0.0885				97.5% Chebyshev(Mean, Sd) UCI	0 104
95% Approximate Gamma UCL 0.0885 95% Adjusted Gamma UCL 0.0885	Assuming Gamma Distribution			99% Chebyshev(Mean, Sd) UCI	0 118
95% Adjusted Gamma UCL 0.0885	95% Approximate Gamma LICI		0 0885		0.110
Potential UCL to Use 95% Chebyshev (Mean, Sd) UCL 0 097	95% Adjusted Gamma UCL		0.0885		
	Potential UCL to Use			Use 95% Chebyshev (Mean, Sd) UCL	0.0972

User Selected Options	
From File C:\Documents and Settings\pitb0500\Desktop\ProUC	_\Sediment\Sediment Data.wst
Canfidence Coefficient OFF	
Confidence Coefficient 95%	
Number of Bootstrap Operations 2000	
Sediment 2-Methylnaphthalene	
General Statistics	A Observations 20
Number of Valid Observations 222 Number of Distin	t Observations 89
Raw Statistics Log-transformed	Statistics
Vinimum 4.60E-04 Minimum of Log	Data -7.684
Maximum 1.3 Maximum of Log	Data 0.262
vlean 0.103 Mean of log Data	-3.18
Median 0.078 SD of log Data	1.629
SD 0.179	
Coefficient of Variation 1.741	
Skewness 4.83	
Relevant UCL Statistics	
Normal Distribution Test Lognormal Distri	ution Test
Lilliefors Test Statistic 0.328 Lilliefors Test Sta	tistic 0.226
illiefors Critical Value 0.0595 Lilliefors Critical	(alue 0.0595
Data not Normal at 5% Significance Level Data not Lognorr	nal at 5% Significance Level
Assuming Normal Distribution Assuming Logno	mal Distribution
95% Student's-t UCL 0.122 95% H-UCL	0.212
95% UCLs (Adjusted for Skewness) 95% Chebyshe	v (MVUE) UCI 0.264
95% Adjusted-CLT UCL (Chen-1995) 0 127 97 5% Chebysh	w (MVUE) UCI 0.311
95% Modified-t UCL (Johnson-1978) 0.123 99% Chebyshe	v (MVUE) UCL 0.404
Gamma Distribution Test Data Distribution	
k star (bias corrected) 0.667 Data do not follo	a Discernable Distribution (0.05)
Theta Star 0 154	
MIE of Mean 0 103	
MLE of Standard Deviation 0.126	
nu star 296	
Approvimate Chi Square Value (05) 257 1 Nonparametric S	atistics
Adjusted Level of Significance	0 122
Adjusted Level of Significance 0.0409 95% CET OCL	0.122
Aujusted Offi Square Value 250.9 95% Jackhille	Contestion LICI 0.122
Anderson Darling Test Statistic	+UOL 0.123
Anderson-Daning rest Statistic 7.824 95% Bootstrap	1 UGL 0.129
Anderson-Daning 5% Unitical value 0.804 95% Hall's Boo	Destation UOL 0.127
Voimogorov-Sinimov Test Statistic U.165 95% Percentile	DODISITAD UCL 0.124
Colmogorov-Smirnov 5% Critical Value 0.0639 95% BCA Boot	Strap UCL 0.128
Data not Gamma Distributed at 5% Significance Level 95% Chebysheve	Mean, Sd) UCL 0.155
97.5% Chebyshe	v(Mean, Sd) UCL 0.178
Assuming Gamma Distribution 99% Chebyshev	Mean, Sd) UCL 0.222
95% Approximate Gamma UCL 0.118	
95% Adjusted Gamma UCL 0.118	
Potential UCL to Use 95% Cheby:	hev (Mean, Sd) UCL 0.155
Note: Suggestions regarding the selection of a 95% LICL are provided to help the user t	select the most appropriate 95% LICI
tote, ouggestions regarding the selection of a 35% OOL are provided to help the user to	ad in Singh Singh and Ioai (2002)
These recommendations are based upon the results of the simulation studios summariz	

General UCI	L Statistics for Full Data	Sets	
User Selected Options			
From File C:\Documen	ts and Settings\pit6050	0\Desktop\ProUCL\Sediment\Sediment Data.wst	
Full Precision OFF			
Confidence Coefficient 95%			
Number of Bootstrap Operations 2000			
Sediment 3/4-Methylphenol			
General Statistics			
Number of Valid Observations	10	Number of Distinct Observations	9
Raw Statistics		Log-transformed Statistics	
Minimum	0.2	Minimum of Log Data	-1.609
Maximum	1.2	Maximum of Log Data	0.182
Mean	0.717	Mean of log Data	-0.469
Median	07	SD of log Data	0 585
SD	0 354		0.000
Coefficient of Variation	0.004		
Skewness	-0.0123		
Relevant IICI Statistics			
Normal Distribution Test		Lognormal Distribution Test	
Shaniro Wilk Test Statistic	0.883	Shaniro Wilk Test Statistic	0 874
Shapiro Wilk Critical Value	0.003	Shapiro Wilk Critical Value	0.0/7
Data approx Nermal at 50/ Cignifeenee Level	0.042	Data appage Lagrange at 50/ Cignificance Layel	0.042
Data appear Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	0.922	95% H-UCL	1.173
95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCL	1.329
95% Adjusted-CLT UCL (Chen-1995)	0.901	97.5% Chebyshev (MVUE) UCL	1.589
95% Modified-t UCL (Johnson-1978)	0.922	99% Chebyshev (MVUE) UCL	2.1
Gamma Distribution Test		Data Distribution	
k star (bias corrected)	2.748	Data appear Normal at 5% Significance Level	
Theta Star	0.261		
MLE of Mean	0.717		
MLE of Standard Deviation	0.433		
nu star	54 96		
Approximate Chi Square Value (05)	38.92	Nonnarametric Statistics	
Adjusted Level of Significance	0.0267		0 901
Adjusted Chi Square Value	36.50	95% Jackknife LICI	0.001
Adjusted On Square value	30.39	95% Standard Destation LICI	0.922
Anderson Dealing Test Chatistic	0.047	95% Standard Boolstrap UCL	0.892
Anderson-Darling Test Statistic	0.647		0.926
Anderson-Darling 5% Critical Value	0.73	95% Hall's Bootstrap UCL	0.876
Kolmogorov-Smirnov Test Statistic	0.251	95% Percentile Bootstrap UCL	0.89
Kolmogorov-Smirnov 5% Critical Value	0.268	95% BCA Bootstrap UCL	0.898
Data appear Gamma Distributed at 5% Signific	ance Level	95% Chebyshev(Mean, Sd) UCL	1.205
100.707		97.5% Chebyshev(Mean, Sd) UCL	1.417
Assuming Gamma Distribution		99% Chebyshev(Mean, Sd) UCL	1.832
95% Approximate Gamma UCL	1.012	n an service service service production developing and an analysis of the State Stat	
95% Adjusted Gamma UCL	1.077		
Potential UCL to Use		Use 95% Student's-t UCL	0.922
Note: Suggestions regarding the selection of a These recommendations are based upon the re	95% UCL are provided esults of the simulation	to help the user to select the most appropriate 95% studies summarized in Singh, Singh, and laci (200	% UCL. 2)

General UC	L Statistics for Full Data	Sets	
User Selected Options			
From File C:\Documer	nts and Settings\pit6050	0\Desktop\ProUCL\Sediment\Sediment Data.wst	
Full Precision OFF			
Confidence Coefficient 95%			
Number of Bootstrap Operations 2000			
Sediment 4,4'-DDT			
General Statistics			
Number of Valid Observations	11	Number of Distinct Observations	10
Raw Statistics		Log-transformed Statistics	
Minimum	0.0043	Minimum of Log Data	-5.449
Maximum	0.013	Maximum of Log Data	-4.343
Mean	0.00759	Mean of log Data	-4.963
Median	0.0078	SD of log Data	0.431
SD	0.00316		
Coefficient of Variation	0.417		
Skewness	0.318		
Relevant UCL Statistics			
Normal Distribution Test		Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.874	Shapiro Wilk Test Statistic	0.856
Shapiro Wilk Critical Value	0.85	Shapiro Wilk Critical Value	0.85
Data appear Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	0.00932	95% H-UCL	0.0102
95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCL	0.012
95% Adjusted-CLT UCL (Chen-1995)	0.00926	97.5% Chebyshev (MVUE) UCL	0.0139
95% Modified-t UCL (Johnson-1978)	0.00934	99% Chebyshev (MVUE) UCL	0.0176
Gamma Distribution Test		Data Distribution	
k star (bias corrected)	4.58	Data appear Normal at 5% Significance Level	
Theta Star	0.00166		
MLE of Mean	0.00759		
MLE of Standard Deviation	0.00355		
nu star	100.8		
Approximate Chi Square Value (.05)	78.61	Nonparametric Statistics	
Adjusted Level of Significance	0.0278	95% CLT UCL	0.00916
Adjusted Chi Square Value	75.42	95% Jackknife UCL	0.00932
		95% Standard Bootstrap UCL	0.00907
Anderson-Darling Test Statistic	0.726	95% Bootstrap-t UCL	0.00942
Anderson-Darling 5% Critical Value	0.731	95% Hall's Bootstrap UCL	0.00907
Kolmogorov-Smirnov Test Statistic	0.253	95% Percentile Bootstrap UCL	0.00917
Kolmogorov-Smirnov 5% Critical Value	0.256	95% BCA Bootstrap UCL	0.00925
Data appear Gamma Distributed at 5% Signific	cance Level	95% Chebyshev(Mean, Sd) UCL	0.0117
		97.5% Chebyshev(Mean, Sd) UCL	0.0135
Assuming Gamma Distribution	0.00070	99% Chebyshev(Mean, Sd) UCL	0.0171
95% Approximate Gamma UCL	0.00973		
95% Adjusted Gamma UCL	0.0101		
Potential UCL to Use		Use 95% Student's-t UCL	0.00932
Note: Suggestions regarding the selection of a	95% UCL are provided	to help the user to select the most appropriate 95% UCL.	
These recommendations are based upon the r	results of the simulation	studies summarized in Singh, Singh, and laci (2002)	
and Singh and Singh (2003). For additional i	nsight, the user may wa	nt to consult a statistician.	

Ger	neral UCL Statistics for Full Data	Sets	
User Selected Options			
From File G:\L	Jocuments and Settings/pito050	U/Desktop/ProUCL/Sediment/Sediment Data.wst	
Canfidance Coefficient	05%		
Number of Boststeen Operations	95%		
Number of Bootstrap Operations	2000		
Sediment Acenaphthene			
General Statistics			
Number of Valid Observations	267	Number of Distinct Observations	92
Raw Statistics		Log-transformed Statistics	
Minimum	1.20E-04	Minimum of Log Data	-9.028
Maximum	1.2	Maximum of Log Data	0.182
Mean	0.0585	Mean of log Data	-3.959
Median	0.054	SD of log Data	1.95
SD	0.0867		
Coefficient of Variation	1.482		
Skewness	8.705		
Relevant UCL Statistics			
Normal Distribution Test		Lognormal Distribution Test	
Lilliefors Test Statistic	0.25	Lilliefors Test Statistic	0.209
Lilliefors Critical Value	0.0542	Lilliefors Critical Value	0.0542
Data not Normal at 5% Significance Le	evel	Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	0.0673	95% H-UCL	0.185
95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCL	0.232
95% Adjusted-CLT UCL (Chen-1995	j) 0.0703	97.5% Chebyshev (MVUE) UCL	0.279
95% Modified-t UCL (Johnson-1978)) 0.0677	99% Chebyshev (MVUE) UCL	0.37
Gamma Distribution Test		Data Distribution	
k star (bias corrected)	0.554	Data do not follow a Discernable Distribution (0.05)	
Theta Star	0.106		
MLE of Mean	0.0585		
MLE of Standard Deviation	0.0786		
nu star	295.8		
Approximate Chi Square Value (.05)	256.9	Nonparametric Statistics	
Adjusted Level of Significance	0.0491	95% CLT UCL	0.0672
Adjusted Chi Square Value	256.7	95% Jackknife UCL	0.0673
89 97		95% Standard Bootstrap UCL	0.0672
Anderson-Darling Test Statistic	8.515	95% Bootstrap-t UCL	0.072
Anderson-Darling 5% Critical Value	0.816	95% Hall's Bootstrap UCL	0.109
Kolmogorov-Smirnov Test Statistic	0.173	95% Percentile Bootstrap UCL	0.0682
Kolmogorov-Smirnov 5% Critical Value	e 0.0589	95% BCA Bootstrap UCL	0.0724
Data not Gamma Distributed at 5% Sig	gnificance Level	95% Chebyshev(Mean, Sd) UCL	0.0816
		97.5% Chebyshev(Mean, Sd) UCL	0.0916
Assuming Gamma Distribution		99% Chebyshev(Mean, Sd) UCL	0.111
95% Approximate Gamma UCL	0.0674		
95% Adjusted Gamma UCL	0.0674		
Potential UCL to Use		Use 95% Chebyshev (Mean, Sd) UCL	0.0816
Note: Suggestions	tion of a OEW LICL and and ited	to help the upper to coloret the most energy into 05% U.O.	
Note: Suggestions regarding the selec	tion of a 95% UCL are provided	to neip the user to select the most appropriate 95% UCL.	
I nese recommendations are based up	on the results of the simulation	studies summarized in Singh, Singh, and laci (2002)	
and Singh and Singh (2003). For add	altional insight, the user may wa	nt to consult a statistician.	

	General UCL Statistics for Fu	ll Data	Sets	
User Selected Options				
From File	C:\Documents and Settings\p	it6050	0\Desktop\ProUCL\Sediment\Sediment Data.wst	
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
Sediment Acenaphthylene				
General Statistics		000		
Number of Valid Observations		268	Number of Distinct Observations	92
Raw Statistics			Log-transformed Statistics	
Minimum	1.4	0E-04	Minimum of Log Data	-8.874
Maximum		0.31	Maximum of Log Data	-1.171
Mean	C	.0581	Mean of log Data	-3.411
Median		0.054	SD of log Data	1.275
SD	C	.0494		
Coefficient of Variation		0.85		
Skewness		0.884		
Relevant UCL Statistics				
Normal Distribution Test			Lognormal Distribution Test	
Lilliefors Test Statistic		0.194	Lilliefors Test Statistic	0.177
Lilliefors Critical Value	C	.0541	Lilliefors Critical Value	0.0541
Data not Normal at 5% Significand	ce Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution			Assuming Lognormal Distribution	
95% Student's-t UCL		0.063	95% H-UCL	0.0894
95% UCLs (Adjusted for Skewne	ess)	1/17/2012/12/12/12/12	95% Chebyshev (MVUE) UCL	0.107
95% Adjusted-CLT UCL (Chen-	1995) 0	.0632	97.5% Chebyshev (MVUE) UCL	0.122
95% Modified-t UCL (Johnson-1	978) 0	.0631	99% Chebyshev (MVUE) UCL	0.15
Gamma Distribution Test			Data Distribution	
k star (bias corrected)		1.01	Data do not follow a Discernable Distribution (0.05)	
Theta Star	0	.0575		
MLE of Mean	C	.0581		
MLE of Standard Deviation	C	.0578		
nu star		541.6		
Approximate Chi Square Value (.0	15)	488.6	Nonparametric Statistics	
Adjusted Level of Significance	C	.0491	95% CLT UCL	0.063
Adjusted Chi Square Value		488.4	95% Jackknife UCL	0.063
		0 000	95% Standard Bootstrap UCL	0.0631
Anderson-Darling Test Statistic		6.099	95% Bootstrap-t UCL	0.0631
Anderson-Darling 5% Critical Value	le	0.784	95% Hall's Bootstrap UCL	0.0633
Kolmogorov-Smirnov Test Statistic	C /_l	0.15	95% Percentile Bootstrap UCL	0.063
Kolmogorov-Smirnov 5% Critical	/alue u	0.0574	95% BCA Bootstrap UCL	0.0629
Data not Gamma Distributed at 5%	% Significance Level		95% Chebyshev(Mean, Sd) UCL	0.0712
Assessing Course Distribution			97.5% Chebysnev(Mean, Sd) UCL	0.0769
05% Approvimete Comme LICI	~	0644	as the one by snev (wean, 50) UCL	0.0681
95% Adjusted Gamma UCL	0	.0644		
Potential UCL to Use			Use 95% Chebyshev (Mean, Sd) UCL	0.0712
Note: Suggestions regarding the s	selection of a 95% UCL are pro	ovided	to help the user to select the most appropriate 95% UCL.	
I nese recommendations are base	ea upon the results of the simu	ation	studies summarized in Singh, Singh, and Iaci (2002)	
and Singh and Singh (2003). Fo	r additional insight, the user m	ay wa	nt to consult a statistician.	

(General UCL Statistics	for Full Data	Sets	
User Selected Options				
From File S	Sediment.wst			
Full Precision 0)FF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
Sediment Aluminum				
General Statistics		10.2		
Number of Valid Observations		19	Number of Distinct Observations	18
Raw Statistics			Log-transformed Statistics	
Minimum		310	Minimum of Log Data	5.737
Maximum		49100	Maximum of Log Data	10.8
Mean		19624	Mean of log Data	9.293
Median		21500	SD of log Data	1.453
SD		15188		
Coefficient of Variation		0.774		
Skewness		0.553		
Relevant UCL Statistics				
Normal Distribution Test			Lognormal Distribution Test	
Shapiro Wilk Test Statistic		0.891	Shapiro Wilk Test Statistic	0.827
Shapiro Wilk Critical Value		0.901	Shapiro Wilk Critical Value	0.901
Data not Normal at 5% Significance	Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution			Assuming Lognormal Distribution	
95% Student's-t UCL		25666	95% H-UCL	96852
95% UCLs (Adjusted for Skewnes	ss)		95% Chebyshev (MVUE) UCL	76623
95% Adjusted-CLT UCL (Chen-19	995)	25827	97.5% Chebyshev (MVUE) UCL	97568
95% Modified-t UCL (Johnson-19	78)	25740	99% Chebyshev (MVUE) UCL	138709
Gamma Distribution Test			Data Distribution	
k star (bias corrected)		0.859	Data do not follow a Discernable Distribution (0.05)	
Theta Star		22846		
MLE of Mean		19624		
MLE of Standard Deviation		21174		
nu star		32.64		
Approximate Chi Square Value (.05	5)	20.58	Nonparametric Statistics	
Adjusted Level of Significance		0.0369	95% CLT UCL	25355
Adjusted Chi Square Value		19.74	95% Jackknife UCL	25666
		with the second s	95% Standard Bootstrap UCL	25122
Anderson-Darling Test Statistic		1.043	95% Bootstrap-t UCL	26381
Anderson-Darling 5% Critical Value		0.77	95% Hall's Bootstrap UCL	26395
Kolmogorov-Smirnov Test Statistic		0.237	95% Percentile Bootstrap UCL	25589
Kolmogorov-Smirnov 5% Critical Va	alue	0.204	95% BCA Bootstrap UCL	25658
Data not Gamma Distributed at 5%	Significance Level		95% Chebyshev(Mean, Sd) UCL	34812
			97.5% Chebyshev(Mean, Sd) UCL	41384
Assuming Gamma Distribution			99% Chebyshev(Mean, Sd) UCL	54293
95% Approximate Gamma UCL		31123		
95% Adjusted Gamma UCL		32441		
Potential UCL to Use			Use 95% Chebyshev (Mean, Sd) UCL	34812
Note: Suggestions regarding the se	lection of a 95% UCL	are provided	to help the user to select the most appropriate 95% UCL.	
These recommendations are based	l upon the results of the	e simulation	studies summarized in Singh, Singh, and laci (2002)	
and Singh and Singh (2003). For	additional insight, the	user may wa	nt to consult a statistician.	

	General UCL Statistics	for Full Data	Sets	
User Selected Options				
From File	Sediment.wst			
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
165.2 20				
Sediment Anthracene				
General Statistics				
Number of Valid Observations		268	Number of Distinct Observations	102
Raw Statistics			Log-transformed Statistics	
Minimum		1.90E-04	Minimum of Log Data	-8.568
Maximum		0.76	Maximum of Log Data	-0.274
Mean		0.0655	Mean of log Data	-3.247
Median		0.0555	SD of log Data	1.173
SD		0.0732		
Coefficient of Variation		1.117		
Skewness		5.325		
Relevant UCL Statistics				
Normal Distribution Test		attop - stade	Lognormal Distribution Test	2006271002862550am0
Lilliefors Test Statistic		0.186	Lilliefors Test Statistic	0.152
Lilliefors Critical Value		0.0541	Lilliefors Critical Value	0.0541
Data not Normal at 5% Significanc	e Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution			Assuming Lognormal Distribution	
95% Student's-t UCL	the contract of the	0.0729	95% H-UCL	0.0912
95% UCLs (Adjusted for Skewne	ess)		95% Chebyshev (MVUE) UCL	0.108
95% Adjusted-CLT UCL (Chen-1	995)	0.0744	97.5% Chebyshev (MVUE) UCL	0.121
95% Modified-t UCL (Johnson-19	978)	0.0731	99% Chebyshev (MVUE) UCL	0.148
Gamma Distribution Test			Data Distribution	
k star (bias corrected)		1.087	Data do not follow a Discernable Distribution (0.05)	
Theta Star		0.0603		
MLE of Mean		0.0655		
MLE of Standard Deviation		0.0628		
nu star		582.4		
Approximate Chi Square Value (.0	5)	527.4	Nonparametric Statistics	
Adjusted Level of Significance		0.0491	95% CLT UCL	0.0728
Adjusted Chi Square Value		527.1	95% Jackknife UCL	0.0729
			95% Standard Bootstrap UCL	0.0728
Anderson-Darling Test Statistic		3.473	95% Bootstrap-t UCL	0.075
Anderson-Darling 5% Critical Value	e	0.782	95% Hall's Bootstrap UCL	0.0779
Kolmogorov-Smirnov Test Statistic	;	0.111	95% Percentile Bootstrap UCL	0.0731
Kolmogorov-Smirnov 5% Critical V	alue	0.0573	95% BCA Bootstrap UCL	0.075
Data not Gamma Distributed at 5%	Significance Level		95% Chebyshev(Mean, Sd) UCL	0.085
			97.5% Chebyshev(Mean, Sd) UCL	0.0934
Assuming Gamma Distribution		o o700	99% Chebyshev(Mean, Sd) UCL	0.11
95% Approximate Gamma UCL		0.0723		
95% Adjusted Gamma UCL		0.0723		
Potential UCL to Use			Use 95% Chebyshev (Mean, Sd) UCL	0.085
Note: Suggestions regarding the s	election of a 95% UCL	are provided	to help the user to select the most appropriate 95% UCL.	
These recommendations are base	d upon the results of th	ne simulation	studies summarized in Singh, Singh, and laci (2002)	
and Singh and Singh (2003). For	r additional insight, the	user may wa	nt to consult a statistician.	

	General UCL Statistics	for Full Data	Sets	
User Selected Options				
From File S	Sediment.wst			
Full Precision 0	JFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
00 2653 28				
Sediment Antimony				
General Statistics				
Number of Valid Observations		19	Number of Distinct Observations	16
Raw Statistics			Log-transformed Statistics	
Minimum		0.06	Minimum of Log Data	-2.813
Maximum		7.9	Maximum of Log Data	2.067
Mean		3.481	Mean of log Data	0.527
Median		2.73	SD of log Data	1.73
SD		2 614		
Coefficient of Variation		0.751		
Skewness		0.304		
Relevant UCL Statistics				
Normal Distribution Test			Lognormal Distribution Test	
Shaniro Wilk Test Statistic		0 908	Shaniro Wilk Test Statistic	0 733
Shapiro Wilk Critical Value		0.901	Shapiro Wilk Critical Value	0.901
Data appear Normal at 5% Significa	ance Level	0.001	Data not Lognormal at 5% Significance Level	0.001
Assuming Normal Distribution			Assuming Lognormal Distribution	
95% Student's-t UCL		4 521	95% H-UCL	35.32
95% UCI's (Adjusted for Skewnes	ss)		95% Chebyshev (MVUE) UCI	19.81
95% Adjusted-CLT UCL (Chen-19	995)	4 512	97.5% Chebyshev (MVUE) UCI	25.61
95% Modified-t UCL (Johnson-19	178)	4.528	99% Chebyshev (MVUE) UCL	36.99
Gamma Distribution Test			Data Distribution	
k star (bias corrected)		0 726	Data appear Normal at 5% Significance Level	
Theta Star		4 792	Bata appear Normal at 576 Orginiteance Lever	
MI E of Mean		3 481		
MLE of Standard Deviation		4 084		
nu star		-1.004		
Approximate Chi Square Value (05	5)	16.62	Nonnarametria Statistics	
Adjusted Level of Significance	<i>י</i> ן	0.02		4 467
Adjusted Chi Square Value		0.0309	95% CET UCL	4.407
Adjusted Chi Square Value		15.07	95% Jackknile UCL	4.521
Andorson Darling Test Statistic		4.400	05% Standard Douisirap UCE	4.440
Anderson Darling Fest Statistic		1.408	05% Hollia Postetron LICI	4.004
Kalmanaray Oning 5% Critical Value		0.776	95% nalis boolstrap UCL	4.482
Kolmogorov-Smirnov Test Statistic		0.262		4.424
Kolmogorov-Smirnov 5% Critical Va	alue	0.206	95% BCA Bootstrap UCL	4.462
Data not Gamma Distributed at 5%	Significance Level		95% Chebyshev(Mean, Sd) UCL	6.095
			97.5% Chebyshev(Mean, Sd) UCL	7.226
Assuming Gamma Distribution			99% Chebyshev(Mean, Sd) UCL	9.448
95% Approximate Gamma UCL		5.781		
95% Adjusted Gamma UCL		6.052		
Potential UCL to Use			Use 95% Student's-t UCL	4.521
Note: Suggestions regarding the se	election of a 95% UCL	are provided	to help the user to select the most appropriate 95% UCL.	
These recommendations are based	d upon the results of th	e simulation	studies summarized in Singh. Singh. and Iaci (2002)	
and Singh and Singh (2003). For	additional insight, the	user may wa	nt to consult a statistician.	

General UCL Statistics	s for Full Data	Sets	
User Selected Options			
From File Sediment wst			
Full Precision OFF			
Confidence Coefficient 95%			
Number of Bootstrap Operations 2000			
Sediment Aroclor-1268			
General Statistics			
Number of Valid Observations	296	Number of Distinct Observations	158
	200	Number of Distinct Observations	100
Raw Statistics		Log-transformed Statistics	
Minimum	0.043	Minimum of Log Data	-3 147
Maximum	300	Maximum of Log Data	5 704
Mean	3 408	Mean of log Data	-0.252
Median	0.765	SD of log Data	1 408
SD	18 84		1.400
Coefficient of Variation	5 528		
Skewpess	13.8		
Skewness	13.0		
Relevant LICL Statistics			
Normal Distribution Test		Lognormal Distribution Test	
Lilliefore Test Statistic	0 429	Lilliefors Test Statistic	0.0444
Lilliefors Critical Value	0.429	Lilliefors Critical Value	0.0444
Data not Normal at 5% Significance Level	0.0515	Deta appear Lagnermal at E% Significance Lavel	0.0515
Data not Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
05% Student's t UCI	5 215		2 571
95% LICL (Adjusted for Skowness)	5.215	95% Chabyshov (MV/UE) UCI	2.371
95% Adjusted CLT LICL (Chap 1995)	6 147	97.5% Chebyshev (MV/LE) LICI	3.556
95% Adjusted-CLT OCE (Chen-1993)	5 261		3.330
95% Modified-LOCE (Johnson-1978)	5.301	99% Chebysnev (MVOE) UCL	4.432
Gamma Distribution Test		Data Distribution	
k star (bias apprested)	0 426	Data Distribution	
Thoto Star	7 900	Data appear Lognormal at 5% Significance Lever	
MLE of Moon	2 409		
MLE of Standard Doviation	5 150		
nu star	259 /		
Approvimate Chi Square Value (05)	200.4	Nonnaramotria Statistics	
Adjusted Level of Circuitionnes	0.0402		F 200
Adjusted Level of Significance	0.0492	95% CLT UCL	5.209
Adjusted Chi Square value	222	95% Jackknie UCL	5.215
Andrew Dedies Test Oblinit	0.005.00	95% Standard Bootstrap UCL	5.207
Anderson-Daning Test Statistic	3.30E+20	95% Boolstrap-LOC	0.092
Anderson-Daning 5% Childai Value	0.837	95% Hall's Bootstrap UCL	F 24
Kolmogorov-Smirnov Test Statistic	0.209	95% Percentile Boolstrap UCL	5.34
Kolmogorov-Smirnov 5% Critical Value	0.056	95% BCA Bootstrap UCL	6.899
Data not Gamma Distributed at 5% Significance Level		95% Chebyshev(Mean, Sd) UCL	8.181
		97.5% Chebyshev(Mean, Sd) UCL	10.25
Assuming Gamma Distribution		99% Chebyshev(Mean, Sd) UCL	14.3
95% Approximate Gamma UCL	3.964		
95% Adjusted Gamma UCL	3.967		
			0.574
Potential UCL to Use		Use 95% H-UCL	2.571
		and the second	
Prouge computes and outputs H-statistic based UCLs to	or historical re	asons only.	
In-statistic often results in unstable (poth high and low) va	alues of UCLS	tion as shown in examples in the Technical Guide.	
It is interefore recommended to avoid the use of H-statisti	C Dased 95%	UULS.	
Use or nonparametric methods are preferred to compute	UCL95 for sk	ewed data sets which do not follow a gamma distribution.	
Note: Suggestions regarding the selection of a 05% LICL	are provided	to belo the upper to called the meet entremists OFM LICI	
These recommendations are based upon the results of the	are provided	to help the user to select the most appropriate 95% UCL.	
and Circle and Circle (2002) East different inside the	e sinulation	studies summanzed in Singh, Singh, and faci (2002)	

General UCL Statist	ics for Full Data	Sets	
User Selected Options			
From File Sediment.wst			
Full Precision OFF			
Confidence Coefficient 95%			
Number of Bootstrap Operations 2000			
Sediment Arsenic			
General Statistics			
Number of Valid Observations	19	Number of Distinct Observations	18
Raw Statistics		Log-transformed Statistics	
Minimum	0.84	Minimum of Log Data	-0.174
Maximum	22	Maximum of Log Data	3.091
Mean	10.18	Mean of log Data	1.993
Median	11	SD of log Data	1.008
SD	6.12		
Coefficient of Variation	0.601		
Skewness	-0.092		
Relevant UCL Statistics			
Normal Distribution Test		Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.942	Shapiro Wilk Test Statistic	0.808
Shapiro Wilk Critical Value	0.901	Shapiro Wilk Critical Value	0.901
Data appear Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	12.62	95% H-UCL	22.75
95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCL	24.96
95% Adjusted-CLT UCL (Chen-1995)	12.46	97.5% Chebyshev (MVUE) UCL	30.68
95% Modified-t UCL (Johnson-1978)	12.61	99% Chebyshev (MVUE) UCL	41.91
Gamma Distribution Test		Data Distribution	
k star (bias corrected)	1.444	Data appear Normal at 5% Significance Level	
Theta Star	7.052	14.8 E	
MLE of Mean	10.18		
MLE of Standard Deviation	8.473		
nu star	54.86		
Approximate Chi Square Value (.05)	38.84	Nonparametric Statistics	
Adjusted Level of Significance	0.0369	95% CLT UCL	12.49
Adjusted Chi Square Value	37.67	95% Jackknife UCL	12.62
		95% Standard Bootstrap UCL	12.42
Anderson-Darling Test Statistic	1.21	95% Bootstrap-t UCL	12 61
Anderson-Darling 5% Critical Value	0.755	95% Hall's Bootstrap UCL	12.48
Kolmogorov-Smirnov Test Statistic	0.274	95% Percentile Bootstrap UCL	12 49
Kolmogorov-Smirnov 5% Critical Value	0 202	95% BCA Bootstrap UCI	12.10
Data not Gamma Distributed at 5% Significance Level	0.202	95% Chebyshev(Mean_Sd) LICI	16.3
		97.5% Chebyshev(Mean, Sd) UCI	18 95
Assuming Gamma Distribution		99% Chebyshev/Mean, Sd) UCI	24.15
95% Approvimate Gamma LICI	1/ 20	oon onebysnev(mean, ou) oor	24.15
95% Adjusted Gamma UCL	14.83		
Potential UCL to Use		Use 95% Student's-t UCL	12.62
Note: Suggestions regarding the selection of a 95% UC	CL are provided	to help the user to select the most appropriate 95% I.	CI
These recommendations are based upon the results of	the simulation	studies summarized in Sinch Sinch and laci (2002)	
and Singh and Singh (2003) For additional insight th	ne user may wa	nt to consult a statistician	

4	General UCL Statistics for F	Full Data	Sets	
User Selected Options				
From File	Sediment.wst			
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
Sediment Barium				
General Statistics				
Number of Valid Observations		19	Number of Distinct Observations	17
Raw Statistics			Log-transformed Statistics	
Minimum		3.4	Minimum of Log Data	1.224
Maximum		64	Maximum of Log Data	4.159
Mean		27.05	Mean of log Data	3.055
Median		29	SD of log Data	0.817
SD		15.99		
Coefficient of Variation		0.591		
Skewness		0.422		
Relevant UCL Statistics				
Normal Distribution Test			Lognormal Distribution Test	
Shapiro Wilk Test Statistic		0.947	Shapiro Wilk Test Statistic	0.878
Shapiro Wilk Critical Value		0.901	Shapiro Wilk Critical Value	0.901
Data appear Normal at 5% Signific	cance Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution			Assuming Lognormal Distribution	
95% Student's-t UCL		33.41	95% H-UCL	46.74
95% UCLs (Adjusted for Skewne	ess)		95% Chebyshev (MVUE) UCL	54.66
95% Adjusted-CLT UCL (Chen-	1995)	33.46	97.5% Chebyshev (MVUE) UCL	65.78
95% Modified-t UCL (Johnson-1	978)	33.47	99% Chebyshev (MVUE) UCL	87.6
Gamma Distribution Test			Data Distribution	
k star (bias corrected)		1.899	Data appear Normal at 5% Significance Level	
Theta Star		14.24		
MLE of Mean		27.05		
MLE of Standard Deviation		19.63		
nu star		72.16		
Approximate Chi Square Value (.0	15)	53.6	Nonparametric Statistics	
Adjusted Level of Significance		0.0369	95% CLT UCL	33.08
Adjusted Chi Square Value		52.21	95% Jackknife UCL	33.41
			95% Standard Bootstrap UCL	33.02
Anderson-Darling Test Statistic		0.707	95% Bootstrap-t UCL	34.03
Anderson-Darling 5% Critical Valu	e	0.751	95% Hall's Bootstrap UCL	34.15
Kolmogorov-Smirnov Test Statistic	3	0.206	95% Percentile Bootstrap UCL	33.31
Kolmogorov-Smirnov 5% Critical \	/alue	0.201	95% BCA Bootstrap UCL	33.44
Data follow Appr. Gamma Distribu	tion at 5% Significance Leve	el	95% Chebyshev(Mean, Sd) UCL	43.04
			97.5% Chebyshev(Mean, Sd) UCL	49.96
Assuming Gamma Distribution			99% Chebyshev(Mean, Sd) UCL	63.56
95% Approximate Gamma UCL		36.41		
95% Adjusted Gamma UCL		37.39		
Potential UCL to Use			Use 95% Student's-t UCL	33.41
Note: Suggestions regarding the s	election of a 95% LICL are r	provided	to bein the user to select the most appropriate 95% LICI	
These recommendations are base	d upon the results of the sin	nulation	studies summarized in Singh Singh and Jaci (2002)	
and Singh and Singh (2003) Fo	r additional insight the user	may wa	nt to consult a statistician.	

	General UCL Statisti	cs for Full Data	Sets	
User Selected Options				
From File	Sediment.wst			
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
Sediment Benzo(a)anthracene				
General Statistics		1212		100
Number of Valid Observations		268	Number of Distinct Observations	103
Raw Statistics			Log-transformed Statistics	
Minimum		4.00E-04	Minimum of Log Data	-7.824
Maximum		12	Maximum of Log Data	2.485
Mean		0.149	Mean of log Data	-2.936
Median		0.07	SD of log Data	1.05
SD		0.894		
Coefficient of Variation		5.992		
Skewness		11.87		
Relevant UCL Statistics				
Normal Distribution Test			Lognormal Distribution Test	
Lilliefors Test Statistic		0.465	Lilliefors Test Statistic	0.127
Lilliefors Critical Value		0.0541	Lilliefors Critical Value	0.0541
Data not Normal at 5% Significan	ce Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution			Assuming Lognormal Distribution	
95% Student's-t UCL		0.239	95% H-UCL	0.106
95% UCLs (Adjusted for Skewn	ess)		95% Chebyshev (MVUE) UCL	0.124
95% Adjusted-CLT UCL (Chen-	1995)	0.281	97.5% Chebyshev (MVUE) UCL	0.137
95% Modified-t UCL (Johnson-1	1978)	0.246	99% Chebyshev (MVUE) UCL	0.164
Gamma Distribution Test			Data Distribution	
k star (bias corrected)		0.594	Data do not follow a Discernable Distribution (0.05)	
Theta Star		0.251		
MLE of Mean		0.149		
MLE of Standard Deviation		0.194		
nu star		318.4		
Approximate Chi Square Value (.	05)	278	Nonparametric Statistics	
Adjusted Level of Significance		0.0491	95% CLT UCL	0.239
Adjusted Chi Square Value		277.8	95% Jackknife UCL	0.239
P. 97			95% Standard Bootstrap UCL	0.237
Anderson-Darling Test Statistic		3.73E+28	95% Bootstrap-t UCL	1.409
Anderson-Darling 5% Critical Value	le	0.812	95% Hall's Bootstrap UCL	0.807
Kolmogorov-Smirnov Test Statisti	C	0.293	95% Percentile Bootstrap UCL	0.255
Kolmogorov-Smirnov 5% Critical	Value	0.0586	95% BCA Bootstrap UCL	0.292
Data not Gamma Distributed at 59	% Significance Level		95% Chebyshev(Mean, Sd) UCL	0.387
			97.5% Chebyshev(Mean, Sd) UCL	0.49
Assuming Gamma Distribution			99% Chebyshev(Mean, Sd) UCL	0.693
95% Approximate Gamma UCL		0.171		
95% Adjusted Gamma UCL		0.171		
Potential UCL to Use			Use 95% Chebyshev (Mean, Sd) UCL	0.387
Note: Suggestions regarding the	selection of a 95% UC	L are provided	to help the user to select the most appropriate 95% UCL.	
These recommendations are base	ed upon the results of	the simulation	studies summarized in Singh, Singh, and Iaci (2002)	
and Singh and Singh (2003). Fo	or additional insight, th	e user may wa	nt to consult a statistician.	

General UCL Statistics for Full Data Sets

User Selected Options	
From File	Sediment.wst
Full Precision	OFF
Confidence Coefficient	95%
Number of Bootstrap Operations	2000

Sediment Benzo(a)pyrene

General Statistics			
Number of Valid Observations	268	Number of Distinct Observations	95
Raw Statistics		Log-transformed Statistics	
Minimum	3.10E-04	Minimum of Log Data	-8.079
Maximum	10	Maximum of Log Data	2.303
Mean	0.144	Mean of log Data	-2.832
Median	0.074	SD of log Data	1.002
SD	0.75		
Coefficient of Variation	5.192		
Skewness	11.61		
Relevant UCL Statistics			
Normal Distribution Test		Lognormal Distribution Test	
Lilliefors Test Statistic	0.451	Lilliefors Test Statistic	0.126
Lilliefors Critical Value	0.0541	Lilliefors Critical Value	0.0541
Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution		Accuming Lognormal Distribution	
05% Student's tUC	0.22		0 1 1 1
95% LICLs (Adjusted for Skowness)	0.22	95% Chebyshey (MV/UE) UCI	0.111
95% Adjusted CLT LICL (Chap 1995)	0 255	97.5% Chebyshev (MVUE) UCL	0.120
95% Adjusted-CLT OCE (Chen-1995)	0.200	00% Chebyshev (MVUE) UCL	0.142
95% Modified-(OCL (Johnson-1978)	0.220	55% Chebysnev (MVOE) OCL	0.109
Gamma Distribution Test		Data Distribution	
k star (bias corrected)	0.672	Data do not follow a Discernable Distribution (0.05)	
Theta Star	0.215		
MLE of Mean	0.144		
MLE of Standard Deviation	0.176		
nu star	360		
Approximate Chi Square Value (.05)	317	Nonparametric Statistics	
Adjusted Level of Significance	0.0491	95% CLT UCL	0.22
Adjusted Chi Square Value	316.8	95% Jackknife UCL	0.22
		95% Standard Bootstrap UCL	0.221
Anderson-Darling Test Statistic	3.73E+28	95% Bootstrap-t UCL	0.596
Anderson-Darling 5% Critical Value	0.804	95% Hall's Bootstrap UCL	0.609
Kolmogorov-Smirnov Test Statistic	0.279	95% Percentile Bootstrap UCL	0.225
Kolmogorov-Smirnov 5% Critical Value	0.0583	95% BCA Bootstrap UCL	0.276
Data not Gamma Distributed at 5% Significance Level		95% Chebyshev(Mean, Sd) UCL	0.344
		97.5% Chebyshev(Mean, Sd) UCL	0.431
Assuming Gamma Distribution		99% Chebyshev(Mean, Sd) UCL	0.6
95% Approximate Gamma UCL	0.164		
95% Adjusted Gamma UCL	0.164		
Potential UCL to Use		Use 95% Chebyshev (Mean, Sd) UCL	0.344

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh and Singh (2003). For additional insight, the user may want to consult a statistician.

General UCL Statis	stics for Full Data	Sets	
User Selected Options			
From File Sediment.wst			
Full Precision OFF			
Confidence Coefficient 95%			
Number of Bootstrap Operations 2000			
Sediment Benzo(b)fluoranthene			
General Statistics			
Number of Valid Observations	268	Number of Distinct Observations	91
Raw Statistics		Log-transformed Statistics	
Minimum	3.50E-04	Minimum of Log Data	-7.958
Maximum	6.3	Maximum of Log Data	1.841
Mean	0.136	Mean of log Data	-2.628
Median	0.085	SD of log Data	0.939
SD	0.508		
Coefficient of Variation	3 723		
Skewness	11.19		
Relevant UCL Statistics			
Normal Distribution Test		Lognormal Distribution Test	
Lilliefors Test Statistic	0.404	Lillietors Test Statistic	0.155
Lilliefors Critical Value	0.0541	Lilliefors Critical Value	0.0541
Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	0.188	95% H-UCL	0.126
95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCL	0.145
95% Adjusted-CLT UCL (Chen-1995)	0.21	97.5% Chebyshev (MVUE) UCL	0.16
95% Modified-t UCL (Johnson-1978)	0.191	99% Chebyshev (MVUE) UCL	0.188
Gamma Distribution Test		Data Distribution	
k star (bias corrected)	0.909	Data do not follow a Discernable Distribution (0.05)	
Theta Star	0.15	23 8	
MLE of Mean	0.136		
MLE of Standard Deviation	0.143		
nu star	487.2		
Approximate Chi Square Value (.05)	437.1	Nonparametric Statistics	
Adjusted Level of Significance	0.0491	95% CLT UCL	0.187
Adjusted Chi Square Value	436.8	95% Jackknife UCI	0 188
		95% Standard Bootstrap UCI	0 188
Anderson-Darling Test Statistic	3 73E+28	95% Bootstrap-t UCI	0.45
Anderson-Darling 5% Critical Value	0.788	95% Hall's Bootstran UCI	0 439
Kolmogorov-Smirnov Test Statistic	0.243	95% Percentile Bootstrap UCI	0 194
Kolmogorov-Smirnov 5% Critical Value	0.0577	95% BCA Bootstran LICI	0.226
Data not Camma Distributed at 5% Significance Love	0.0077	95% Chebychey/(Mean Sd) LICI	0.220
Data not Gamma Distributed at 5% Significance Leve	ai.	97 / Chebyshev(Mean, Sd) UCL	0.272
Assuming Common Distribution		97.5% Chebyshev (Mean, Sd) UCL	0.33
	0.450	99% Chebysnev(iviean, Sd) UCL	0.445
95% Approximate Gamma UCL	0.152		
95% Adjusted Gamma UCL	0.152		
Potential UCL to Use		Use 95% Chebyshev (Mean, Sd) UCL	0.272
Note: Suggestions regarding the selection of a 95% L	ICI are provided	to help the user to select the most appropriate 95% LICI	9 1014
These recommendations are based upon the results of	of the simulation	studies summarized in Singh Singh and laci (2002)	
and Singh and Singh (2003) For additional insight	the user may wa	nt to consult a statistician	

General UCL S	Statistics for Full Data	Sets	
User Selected Options			
From File Sediment.wst			
Full Precision OFF			
Confidence Coefficient 95%			
Number of Bootstrap Operations 2000			
321 51			
Sediment Benzo(g,h,i)perylene			
General Statistics			
Number of Valid Observations	268	Number of Distinct Observations	86
Raw Statistics		Log-transformed Statistics	
Minimum	4.70E-04	Minimum of Log Data	-7.663
Maximum	9	Maximum of Log Data	2.197
Mean	0.13	Mean of log Data	-2.983
Median	0.07	SD of log Data	1.038
SD	0.714	ner vesendri hultmin 🛥 da Hentidose	
Coefficient of Variation	5,485		
Skewness	11.55		
Relevant UCL Statistics			
Normal Distribution Test		Lognormal Distribution Test	
Lilliefors Test Statistic	0.457	Lilliefors Test Statistic	0.136
Lilliefors Critical Value	0.0541	Lilliefors Critical Value	0.0541
Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	0.202	95% H-UCL	0.0995
95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCL	0.116
95% Adjusted-CLT UCL (Chen-1995)	0.235	97.5% Chebyshev (MVUE) UCL	0.129
95% Modified-t UCL (Johnson-1978)	0.207	99% Chebyshev (MVUE) UCL	0.154
Gamma Distribution Test		Data Distribution	
k star (bias corrected)	0.642	Data do not follow a Discernable Distribution (0.05)	
Theta Star	0.203		
MLE of Mean	0.13		
MLE of Standard Deviation	0.162		
nu star	344.3		
Approximate Chi Square Value (05)	302.3	Nonparametric Statistics	
Adjusted Level of Significance	0 0491	95% CLT UCI	0 202
Adjusted Chi Square Value	302.1	95% Jackknife UCI	0.202
		95% Standard Bootstran UCI	0 199
Anderson-Darling Test Statistic	3 73E+28	95% Bootstrap-t UCI	1 04
Anderson-Darling 5% Critical Value	0.807	95% Hall's Bootstran UCI	0 649
Kolmogorov-Smirnov Test Statistic	0.007	95% Percentile Bootstrap UCI	0.040
Kolmogorov-Smirnov 5% Critical Value	0.200	05% BCA Bootstran LICI	0.210
Data not Camma Distributed at 50/ Significance	0.0004 Lovel	05% Chabyshay/Maan Sd) UC	0.252
Data not Gamma Distributed at 5% Significance	Level	95% Chebyshev(Mean, Sd) UCL	0.32
Assuming Commo Distribution			0.403
	0.440	99% Chebysnev(iviean, Sd) UCL	0.564
95% Approximate Gamma UCL	0.148		
95% Adjusted Gamma UCL	0.148		
Potential UCL to Use		Use 95% Chebyshev (Mean, Sd) UCL	0.32
Note: Suggestions regarding the selection of a 0	5% LICL are provided	to help the user to select the most appropriate 05% []	C1
These recommendations are based upor the	ulto of the simulation	to help the user to select the most appropriate 95% U	OL.
and Singh and Singh (2002) East different int	ight the user simulation	studies summarized in Singh, Singh, and faci (2002)	
and Sindh and Sindh (2003). For additional Ins	ium, the user may wa		

General U	CL Statistics for Full Data	Sets		
User Selected Options				
From File Sediment.	wst			
Full Precision OFF				
Confidence Coefficient 95%	0			
Number of Bootstrap Operations 2000				
Sediment Benzo(k)fluoranthene				
General Statistics				
Number of Valid Observations	268	Number of Distinct Observations	97	
Raw Statistics		Log-transformed Statistics		
Minimum	2.10E-04	Minimum of Log Data	-8.468	
Maximum	2.5	Maximum of Log Data	0.916	
Mean	0.0844	Mean of log Data	-2.926	
Median	0.071	SD of log Data	0.983	
SD	0.17			
Coefficient of Variation	2.015			
Skewness	11.89			
Polovant LICL Statistics				
Normal Distribution Test		Lognormal Distribution Tost		
Normal Distribution Test	0.216	Lognormal Distribution Test	0 125	
Lilliefors Test Statistic	0.316		0.135	
Lilliefors Critical Value	0.0541	Lillefors Critical Value	0.0541	
Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level		
Assuming Normal Distribution		Assuming Lognormal Distribution		
95% Student's-t UCL	0.102	95% H-UCL	0.0987	
95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCL	0.114	
95% Adjusted-CLT UCL (Chen-1995)	0.11	97.5% Chebyshev (MVUE) UCL	0.126	
95% Modified-t UCL (Johnson-1978)	0.103	99% Chebyshev (MVUE) UCL	0.149	
Gamma Distribution Test		Data Distribution		
k star (bias corrected)	1.231	Data do not follow a Discernable Distribution (0.05)		
Theta Star	0.0685			
MLE of Mean	0.0844			
MLE of Standard Deviation	0.076			
nu star	659.7			
Approximate Chi Square Value (.05)	601.1	Nonparametric Statistics		
Adjusted Level of Significance	0 0491	95% CLT UCI	0 101	
Adjusted Chi Square Value	600.8	95% Jackknife UCI	0 102	
	000.0	95% Standard Bootstran LICI	0.102	
Anderson-Darling Test Statistic	5 724	95% Bootstrap t LICI	0.136	
Anderson-Darling 5% Critical Value	0.724	95% Hall's Bootstran LICI	0.195	
Kolmogorov-Smirnov Test Statistic	0.770	05% Percentile Bootstran LICI	0.103	
Kolmogorov Smirnov FeV Oritical Value	0.120	05% PCA Poststrap UCL	0.104	
Dete net Comme Distributed at 5% Citical Value	0.0572	95% BCA BOOISITAD UCL	0.113	
Data not Gamma Distributed at 5% Significar	nce Level	95% Chebysnev(Mean, Sd) UCL	0.13	
		97.5% Chebyshev(Mean, Sd) UCL	0.149	
Assuming Gamma Distribution		99% Chebyshev(Mean, Sd) UCL	0.188	
95% Approximate Gamma UCL	0.0926			
95% Adjusted Gamma UCL	0.0926			
Potential UCL to Use		Use 95% Chebyshev (Mean, Sd) UCL	0.13	
Note: Suggestions regarding the selection of	a 95% UCL are provided	to help the user to select the most appropriate 95% LICI		
These recommendations are based upon the	results of the simulation	studies summarized in Singh Singh and Jaci (2002)		
and Singh and Singh (2003). For additional	insight, the user may wa	nt to consult a statistician.		
Ge	neral UCL Statistics f	for Full Data	Sets	
--	------------------------	---------------	--	---------
User Selected Options				
From File Sec	diment.wst			
Full Precision OF	F			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
56C) 73				
Sediment Beryllium				
General Statistics		10		
Number of Valid Observations		19	Number of Distinct Observations	19
Raw Statistics			Log-transformed Statistics	
Minimum		0.07	Minimum of Log Data	-2.659
Maximum		2.6	Maximum of Log Data	0.956
Mean		1.329	Mean of log Data	-0.0365
Median		1.48	SD of log Data	1.005
SD		0.796		
Coefficient of Variation		0.599		
Skewness		-0.17		
Relevant UCL Statistics				
Normal Distribution Test			Lognormal Distribution Test	
Shapiro Wilk Test Statistic		0.935	Shapiro Wilk Test Statistic	0.831
Shapiro Wilk Critical Value		0.901	Shapiro Wilk Critical Value	0.901
Data appear Normal at 5% Significant	ce Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution			Assuming Lognormal Distribution	
95% Student's-t UCL		1.646	95% H-UCL	2.972
95% UCLs (Adjusted for Skewness)	ĺ		95% Chebyshev (MVUE) UCL	3.266
95% Adjusted-CLT UCL (Chen-1998	5)	1.622	97.5% Chebyshev (MVUE) UCL	4.012
95% Modified-t UCL (Johnson-1978)	1.645	99% Chebyshev (MVUE) UCL	5.48
Gamma Distribution Test			Data Distribution	
k star (bias corrected)		1.47	Data appear Normal at 5% Significance Level	
Theta Star		0.904		
MLE of Mean		1.329		
MLE of Standard Deviation		1.097		
nu star		55.86		
Approximate Chi Square Value (.05)		39.68	Nonparametric Statistics	
Adjusted Level of Significance		0.0369	95% CLT UCL	1.63
Adjusted Chi Square Value		38.49	95% Jackknife UCL	1.646
			95% Standard Bootstrap UCL	1.612
Anderson-Darling Test Statistic		0.966	95% Bootstrap-t UCL	1.65
Anderson-Darling 5% Critical Value		0.755	95% Hall's Bootstrap UCL	1.626
Kolmogorov-Smirnov Test Statistic		0.235	95% Percentile Bootstrap UCL	1.602
Kolmogorov-Smirnov 5% Critical Valu	e	0.202	95% BCA Bootstrap UCL	1.605
Data not Gamma Distributed at 5% Si	gnificance Level	19000	95% Chebyshev(Mean, Sd) UCL	2.126
			97.5% Chebyshev(Mean, Sd) UCL	2.471
Assuming Gamma Distribution			99% Chebyshev(Mean, Sd) UCL	3.147
95% Approximate Gamma UCL		1.871	X	
95% Adjusted Gamma UCL		1.929		
Potential UCL to Use			Use 95% Student's-t UCL	1.646
Note: Suggestions regarding the select	ction of a 95% UCL a	re provided	to help the user to select the most appropriate 95% UCL.	
These recommendations are based u	pon the results of the	simulation	studies summarized in Singh, Singh, and laci (2002)	
and Singh and Singh (2003) For ad	ditional insight the u	ser may wa	nt to consult a statistician	

	General UCL Statistics for	or Full Data	Sets	
User Selected Options				
From File	Sediment.wst			
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
Sediment bis(2-Ethylhexyl) phtha	late			
General Statistics				
Number of Valid Observations		10	Number of Distinct Observations	9
Raw Statistics			Log-transformed Statistics	
Minimum		0.07	Minimum of Log Data	-2.659
Maximum		0.97	Maximum of Log Data	-0.0305
Mean		0.334	Mean of log Data	-1.502
Median		0.24	SD of log Data	0.93
SD		0.335		
Coefficient of Variation		1.003		
Skewness		1.48		
Relevant UCL Statistics				
Normal Distribution Test		12-12-12-12-12	Lognormal Distribution Test	277272
Shapiro Wilk Test Statistic		0.737	Shapiro Wilk Test Statistic	0.91
Shapiro Wilk Critical Value		0.842	Shapiro Wilk Critical Value	0.842
Data not Normal at 5% Significar	nce Level		Data appear Lognormal at 5% Significance Level	
Assuming Normal Distribution			Assuming Lognormal Distribution	
95% Student's-t UCL		0.528	95% H-UCL	0.86
95% UCLs (Adjusted for Skewr	ness)		95% Chebyshev (MVUE) UCL	0.759
95% Adjusted-CLT UCL (Chen-	-1995)	0.561	97.5% Chebyshev (MVUE) UCL	0.947
95% Modified-t UCL (Johnson-	1978)	0.536	99% Chebyshev (MVUE) UCL	1.317
Gamma Distribution Test			Data Distribution	
k star (bias corrected)		1.032	Data appear Gamma Distributed at 5% Significance Level	
Theta Star		0.323		
MLE of Mean		0.334		
MLE of Standard Deviation		0.328		
nu star		20.64		
Approximate Chi Square Value (05)	11 33	Nonparametric Statistics	
Adjusted Level of Significance		0.0267		0 508
Adjusted Chi Square Value		10.15		0.500
Aujusted Chi Square value		10.15		0.520
				0.502
Anderson-Darling Test Statistic		0.6	95% BOOISTRAP-T UCL	0.868
Anderson-Darling 5% Critical Val	ue	0.741	95% Hall'S BOOTSTRAP UCL	1.683
Kolmogorov-Smirnov Test Statist	IC	0.206	95% Percentile Bootstrap UCL	0.517
Kolmogorov-Smirnov 5% Critical	Value	0.272	95% BCA Bootstrap UCL	0.561
Data appear Gamma Distributed	at 5% Significance Level		95% Chebyshev(Mean, Sd) UCL	0.795
			97.5% Chebyshev(Mean, Sd) UCL	0.994
Assuming Gamma Distribution			99% Chebyshev(Mean, Sd) UCL	1.386
95% Approximate Gamma UCI	_	0.608	And Advances of the second structure of the State of t	
95% Adjusted Gamma UCL		0.679		
Potential UCL to Use			Use 95% Approximate Gamma UCL	0.608

and Singh and Singh (2003). For additional insight, the user may want to consult a statistician.

General UCL Statistics for	r Full Data	Sets	
User Selected Options			
From File Sediment.wst			
Full Precision OFF			
Confidence Coefficient 95%			
Number of Bootstrap Operations 2000			
Sediment Butylbenzylphthalate			
General Statistics			
Number of Valid Observations	10	Number of Distinct Observations	9
Raw Statistics		Log-transformed Statistics	
Minimum	0.17	Minimum of Log Data	-1.772
Maximum	1.3	Maximum of Log Data	0.262
Mean	0.734	Mean of log Data	-0.468
Median	0.7	SD of log Data	0.641
SD	0.388		
Coefficient of Variation	0.528		
Skewness	0.104		
Relevant UCL Statistics			
Normal Distribution Test		Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.905	Shapiro Wilk Test Statistic	0.886
Shapiro Wilk Critical Value	0.842	Shapiro Wilk Critical Value	0.842
Data appear Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's t I Cl	0 959		1 202
95% LICLs (Adjusted for Skowness)	0.333	95% Chabyshay (MV/LIE) LICI	1 / 21
05% OCLS (Adjusted for Skewness)	0.04	95 % Chebyshev (MV/LE) UCL	1.431
95% Madified-t UCL (Johnson-1978)	0.94	97.5% Chebyshev (MVUE) UCL	2 305
	0.000		2.000
Gamma Distribution Test		Data Distribution	
k star (bias corrected)	2.376	Data appear Normal at 5% Significance Level	
Theta Star	0.309		
MLE of Mean	0.734		
MLE of Standard Deviation	0.476		
nu star	47.52		
Approximate Chi Square Value (.05)	32.7	Nonparametric Statistics	
Adjusted Level of Significance	0.0267	95% CLT UCL	0.936
Adjusted Chi Square Value	30.57	95% Jackknife UCL	0.959
		95% Standard Bootstrap UCL	0.93
Anderson-Darling Test Statistic	0.539	95% Bootstrap-t UCL	0.967
Anderson-Darling 5% Critical Value	0.731	95% Hall's Bootstrap UCL	0.91
Kolmogorov-Smirnov Test Statistic	0 228	95% Percentile Bootstrap UCI	0.925
Kolmogorov-Smirnov 5% Critical Value	0.268	95% BCA Bootstran LICI	0 933
Data annear Gamma Distributed at 5% Significance Lovel	0.200	95% Chebyshev/Mean_Sd) LICI	1 268
Bata appear Gamma Distributed at 570 Orginicance Level		97.5% Chebyshev(Mean, Sd) UCI	1.200
Assuming Commo Distribution		00% Chabyshev(Maan Sd) LCL	1.0
05% Approvimete Comme LCL	1 067	35 /0 Chebysnev(Iviean, Su) UCL	1.904
95% Approximate Gamma UCL	1.067		
95% Adjusted Gamma UCL	1.141		
Potential UCL to Use		Use 95% Student's-t UCL	0.959
Note: Suggestions regarding the selection of a 95% UCL and These recommendations are based upon the results of the	e provided	to help the user to select the most appropriate 95% UCL. studies summarized in Singh, Singh, and Jaci (2002)	

and Singh and Singh (2003). For additional insight, the user may want to consult a statistician.

G	eneral UCL Statistics for F	ull Data	Sets	
User Selected Options				
From File Se	ediment.wst			
Full Precision O	FF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
1652 53				
Sediment Cadmium				
General Statistics				
Number of Valid Observations		23	Number of Distinct Observations	19
Raw Statistics			Log-transformed Statistics	
Minimum		0.02	Minimum of Log Data	-3.912
Maximum		2	Maximum of Log Data	0.693
Mean		0.643	Mean of log Data	-0.927
Median		0.3	SD of log Data	1.096
SD		0.631		
Coefficient of Variation		0.982		
Skewness		1.263		
Relevant UCL Statistics				
Normal Distribution Test			Lognormal Distribution Test	
Shapiro Wilk Test Statistic		0.769	Shapiro Wilk Test Statistic	0.931
Shapiro Wilk Critical Value		0.914	Shapiro Wilk Critical Value	0.914
Data not Normal at 5% Significance	Level		Data appear Lognormal at 5% Significance Level	
Assuming Normal Distribution			Assuming Lognormal Distribution	
95% Student's-t UCL		0.869	95% H-UCL	1.342
95% UCLs (Adjusted for Skewness	5)	alla farina fa farina a	95% Chebyshev (MVUE) UCL	1.488
95% Adjusted-CLT UCL (Chen-19	95)	0.897	97.5% Chebyshev (MVUE) UCL	1.831
95% Modified-t UCL (Johnson-197	'8)	0.875	99% Chebyshev (MVUE) UCL	2.506
Gamma Distribution Test			Data Distribution	
k star (bias corrected)		1.044	Data Follow Appr. Gamma Distribution at 5% Significance L	.evel
Theta Star		0.616		
MLE of Mean		0.643		
MLE of Standard Deviation		0.629		
nu star		48.04		
Approximate Chi Square Value (.05)		33.13	Nonparametric Statistics	
Adjusted Level of Significance		0.0389	95% CLT UCL	0.86
Adjusted Chi Square Value		32.24	95% Jackknife UCL	0.869
			95% Standard Bootstrap UCL	0.853
Anderson-Darling Test Statistic		0.799	95% Bootstrap-t UCL	0.932
Anderson-Darling 5% Critical Value		0.766	95% Hall's Bootstrap UCL	0.851
Kolmogorov-Smirnov Test Statistic		0.179	95% Percentile Bootstrap UCL	0.873
Kolmogorov-Smirnov 5% Critical Val	lue	0.186	95% BCA Bootstrap UCL	0.905
Data follow Appr. Gamma Distributio	in at 5% Significance Leve		95% Chebyshev(Mean, Sd) UCL	1.217
			97.5% Chebyshev(Mean, Sd) UCL	1.465
Assuming Gamma Distribution			99% Chebyshev(Mean, Sd) UCL	1.953
95% Approximate Gamma UCL		0.932		
95% Adjusted Gamma UCL		0.958		
Potential UCL to Use			Use 95% Approximate Gamma UCL	0.932
Note: Suggestions regarding the sele	ection of a 95% UCL are n	rovided	to help the user to select the most appropriate 95% UCI	
These recommendations are based	upon the results of the sim	ulation	studies summarized in Singh, Singh, and Iaci (2002)	
and Singh and Singh (2003). For a	dditional insight, the user	may wa	nt to consult a statistician.	

	General UCL Statistics	for Full Data	Sets	
User Selected Options				
From File	Sediment.wst			
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
263 14				
Sediment Calcium				
General Statistics				12
Number of Valid Observations		19	Number of Distinct Observations	19
Raw Statistics			Log-transformed Statistics	
Minimum		240	Minimum of Log Data	5.481
Maximum		9760	Maximum of Log Data	9.186
Mean		3342	Mean of log Data	7.727
Median		3300	SD of log Data	1.065
SD		2447		
Coefficient of Variation		0.732		
Skewness		0.931		
Relevant UCL Statistics				
Normal Distribution Test			Lognormal Distribution Test	
Shapiro Wilk Test Statistic		0.905	Shapiro Wilk Test Statistic	0.861
Shapiro Wilk Critical Value		0.901	Shapiro Wilk Critical Value	0.901
Data appear Normal at 5% Signifi	cance Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution			Assuming Lognormal Distribution	
95% Student's-t UCL		4316	95% H-UCL	7880
95% UCLs (Adjusted for Skewn	ess)	1000000	95% Chebyshev (MVUE) UCL	8413
95% Adjusted-CLT UCL (Chen-	1995)	4394	97.5% Chebyshev (MVUE) UCL	10398
95% Modified-t UCL (Johnson-1	1978)	4336	99% Chebyshev (MVUE) UCL	14295
Gamma Distribution Test			Data Distribution	
k star (bias corrected)		1.242	Data appear Normal at 5% Significance Level	
Theta Star		2691		
MLE of Mean		3342		
MLE of Standard Deviation		2999		
nu star		47.19		
Approximate Chi Square Value (.0	05)	32.43	Nonparametric Statistics	
Adjusted Level of Significance		0.0369	95% CLT UCL	4266
Adjusted Chi Square Value		31.36	95% Jackknife UCL	4316
			95% Standard Bootstrap UCL	4230
Anderson-Darling Test Statistic		0.9	95% Bootstrap-t UCL	4558
Anderson-Darling 5% Critical Valu	a	0.759	95% Hall's Bootstrap UCL	4697
Kolmogorov-Smirnov Test Statisti	C	0.26	95% Percentile Bootstrap UCL	4274
Kolmogorov-Smirnov 5% Critical	Value	0.202	95% BCA Bootstrap UCL	4345
Data not Gamma Distributed at 5°	% Significance Level		95% Chebyshev(Mean, Sd) UCL	5790
			97.5% Chebyshev(Mean, Sd) UCL	6849
Assuming Gamma Distribution		02012012012010	99% Chebyshev(Mean, Sd) UCL	8929
95% Approximate Gamma UCL		4864		
95% Adjusted Gamma UCL		5030		
Potential UCL to Use			Use 95% Student's-t UCL	4316
Note: Suggestions regarding the	selection of a 95% UCI	are provided	to help the user to select the most appropriate 95% UCL	
These recommendations are base	ed upon the results of th	e simulation	studies summarized in Singh, Singh, and Jaci (2002)	
and Singh and Singh (2003). Fo	or additional insight, the	user may wa	nt to consult a statistician.	

~~	General UCL Statistics	for Full Data	Sets	
User Selected Options				
From File	Sediment.wst			
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
10 10 10 10 10 10 10 10 10 10 10 10 10 1				
Sediment Chromium				
General Statistics				312
Number of Valid Observations		19	Number of Distinct Observations	19
Raw Statistics			Log-transformed Statistics	
Minimum		0.62	Minimum of Log Data	-0.478
Maximum		99	Maximum of Log Data	4.595
Mean		48.46	Mean of log Data	3.267
Median		60.3	SD of log Data	1.534
SD		32.91		
Coefficient of Variation		0.679		
Skewness		-0.331		
Relevant UCL Statistics				
Normal Distribution Test			Lognormal Distribution Test	
Shapiro Wilk Test Statistic		0.881	Shapiro Wilk Test Statistic	0.77
Shapiro Wilk Critical Value		0.901	Shapiro Wilk Critical Value	0.901
Data not Normal at 5% Significan	ce Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution			Assuming Lognormal Distribution	
95% Student's-t UCL		61.55	95% H-UCL	295.3
95% UCLs (Adjusted for Skewn	ess)		95% Chebyshev (MVUE) UCL	213.8
95% Adjusted-CLT UCL (Chen-	1995)	60.26	97.5% Chebyshev (MVUE) UCL	273.5
95% Modified-t UCL (Johnson-	1978)	61.46	99% Chebyshev (MVUE) UCL	390.9
Gamma Distribution Test			Data Distribution	
k star (bias corrected)		0.833	Data do not follow a Discernable Distribution (0.05)	
Theta Star		58.21	8. 8	
MLE of Mean		48.46		
MLE of Standard Deviation		53.11		
nu star		31.64		
Approximate Chi Square Value (.)	05)	19.78	Nonparametric Statistics	
Adjusted Level of Significance		0.0369	95% CLT UCL	60.88
Adjusted Chi Square Value		18.97	95% Jackknife UCL	61.55
and a second the second s			95% Standard Bootstrap UCL	60.48
Anderson-Darling Test Statistic		1.786	95% Bootstrap-t UCL	60.33
Anderson-Darling 5% Critical Valu	ue	0.771	95% Hall's Bootstrap UCL	59.95
Kolmogorov-Smirnov Test Statist	ic	0.316	95% Percentile Bootstrap UCL	59.94
Kolmogorov-Smirnov 5% Critical	Value	0.205	95% BCA Bootstrap UCL	60.6
Data not Gamma Distributed at 5	% Significance Level		95% Chebyshev(Mean_Sd) UCI	81.37
	is eignineditee Lever		97.5% Chebyshev(Mean, Sd) UCI	95.61
Assuming Gamma Distribution			99% Chebyshev(Mean, Sd) UCI	123.6
95% Approximate Gamma UCL		77 40	eens enebyoner(moun, our ooe	120.0
95% Adjusted Gamma UCL	1	80.83		
Potential UCL to Use			Use 99% Chebyshev (Mean, Sd) UCL	123.6
Recommended UCL exceeds the	maximum observation		analysis and the second s	96
Note: Suggestions regarding the	selection of a 95% UCI	are provided	to help the user to select the most appropriate 95% UCI	
These recommendations are bas	ed upon the results of th	e simulation	studies summarized in Singh, Singh, and Iaci (2002)	
and Singh and Singh (2003). Fo	or additional insight, the	user may wa	nt to consult a statistician.	

	General LICL Statistics	for Full Data	Sete	
Liser Selected Ontions	General OCL Statistics	s for i un Date	1 Sets	
From File	Sediment wst			
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstran Operations	2000			
Number of Bootstrap Operations	2000			
Sediment Chrysene				
General Statistics				
Number of Valid Observations		268	Number of Distinct Observations	90
Raw Statistics			Log-transformed Statistics	
Minimum		5.20E-04	Minimum of Log Data	-7.562
Maximum		17	Maximum of Log Data	2.833
Mean		0.204	Mean of log Data	-2.835
Median		0.074	SD of log Data	1.018
SD		1.461		
Coefficient of Variation		7.16		
Skewness		11.47		
Relevant UCL Statistics				
Normal Distribution Test			Lognormal Distribution Test	
Lilliefors Test Statistic		0.483	Lilliefors Test Statistic	0.137
Lilliefors Critical Value		0.0541	Lilliefors Critical Value	0.0541
Data not Normal at 5% Significand	ze Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution			Assuming Lognormal Distribution	
95% Student's-t UCL		0.351	95% H-UCL	0.113
95% UCLs (Adjusted for Skewne	ess)		95% Chebyshev (MVUE) UCL	0.131
95% Adjusted-CLT UCL (Chen-	1995)	0.418	97.5% Chebyshev (MVUE) UCL	0.145
95% Modified-t UCL (Johnson-1	978)	0.362	99% Chebyshev (MVUE) UCL	0.173
Gamma Distribution Test			Data Distribution	
k star (bias corrected)		0.505	Data do not follow a Discernable Distribution (0.05)	
Theta Star		0.404		
MLE of Mean		0.204		
MLE of Standard Deviation		0.287		
nu star		270.8		
Approximate Chi Square Value (.0)5)	233.7	Nonparametric Statistics	
Adjusted Level of Significance		0.0491	95% CLT UCL	0.351
Adjusted Chi Square Value		233.5	95% Jackknife UCL	0.351
			95% Standard Bootstrap UCL	0.354
Anderson-Darling Test Statistic		3 73E+28	95% Bootstrap-t UCI	2 938
Anderson-Darling 5% Critical Valu	le	0.821	95% Hall's Bootstrap UCL	1.631
Kolmogorov-Smirnov Test Statistic	c	0 352	95% Percentile Bootstrap UCL	0.389
Kolmogorov-Smirnov 5% Critical	/alue	0.059	95% BCA Bootstrap UCI	0.455
Data not Gamma Distributed at 59	% Significance Level	0.000	95% Chebyshev(Mean_Sd) LICI	0.593
Bata not Gamma Distributed at 07	a organiodrice Eever		97 5% Chebyshev(Mean, Sd) UCI	0.761
Assuming Gamma Distribution			99% Chebyshev(Mean, Sd) LCL	1 002
95% Approvimate Camma LICL		0 226	to a chebyshev (mean, bu) boe	1.002
95% Adjusted Gamma UCL		0.230		
Potential UCL to Use			Use 95% Chebyshev (Mean, Sd) UCL	0.593
Nata Oursesting				
These recommondations regarding the s	election of a 95% UCL	are provided	to neip the user to select the most appropriate 95% UCL.	
and Circle and Circle (2000)	a upon the results of the	ne simulation	studies summarized in Singh, Singh, and Iaci (2002)	
and Singh and Singh (2003). Fo	r auditional insight, the	user may wa	ni to consult a statistician.	

General UCL S	Statistics for Full Data	Sets	
User Selected Options			
From File Sediment.wst			
Full Precision OFF			
Confidence Coefficient 95%			
Number of Bootstrap Operations 2000			
Sediment Cobalt			
General Statistics			
Number of Valid Observations	19	Number of Distinct Observations	17
Raw Statistics		Log-transformed Statistics	
Minimum	0.24	Minimum of Log Data	-1.427
Maximum	10	Maximum of Log Data	2.303
Mean	5.508	Mean of log Data	1.31
Median	6.3	SD of log Data	1.15
SD	3.36		
Coefficient of Variation	0.61		
Skewness	-0.452		
Relevant UCL Statistics			
Normal Distribution Test		Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.891	Shapiro Wilk Test Statistic	0.787
Shapiro Wilk Critical Value	0.901	Shapiro Wilk Critical Value	0.901
Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	6.845	95% H-UCL	15.47
95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCL	15.73
95% Adjusted-CLT UCL (Chen-1995)	6.691	97.5% Chebyshev (MVUE) UCL	19.59
95% Modified-t UCL (Johnson-1978)	6.832	99% Chebyshev (MVUE) UCL	27.17
Gamma Distribution Test		Data Distribution	
k star (bias corrected)	1.218	Data do not follow a Discernable Distribution (0.05)	
Theta Star	4.523		
MLE of Mean	5.508		
MLE of Standard Deviation	4.991		
nu star	46.28		
Approximate Chi Square Value (.05)	31.67	Nonparametric Statistics	
Adjusted Level of Significance	0.0369	95% CLT UCL	6.776
Adjusted Chi Square Value	30.62	95% Jackknife UCL	6.845
		95% Standard Bootstrap UCL	6.738
Anderson-Darling Test Statistic	1.475	95% Bootstrap-t UCL	6.806
Anderson-Darling 5% Critical Value	0.759	95% Hall's Bootstrap UCL	6.655
Kolmogorov-Smirnov Test Statistic	0.274	95% Percentile Bootstrap UCL	6.647
Kolmogorov-Smirnov 5% Critical Value	0.202	95% BCA Bootstrap UCL	6.666
Data not Gamma Distributed at 5% Significance I	_evel	95% Chebyshev(Mean, Sd) UCL	8.869
		97.5% Chebyshev(Mean, Sd) UCL	10.32
Assuming Gamma Distribution	11 <u></u>	99% Chebyshev(Mean, Sd) UCL	13.18
95% Approximate Gamma UCL	8.049		
95% Adjusted Gamma UCL	8.327		
Potential UCL to Use		Use 95% Chebyshev (Mean, Sd) UCL	8.869
Note: Suggestions regarding the selection of a 95	5% UCL are provided	to help the user to select the most appropriate 95% LICI	
These recommendations are based upon the reco	ults of the simulation	studies summarized in Singh Singh and laci (2002)	
and Singh and Singh (2003) For additional insi	aht the user may wa	nt to consult a statistician	

	General UCL Statistics	for Full Data	Sets	
User Selected Options				
From File	Sediment.wst			
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
23 N				
Sediment Copper				
General Statistics				
Number of Valid Observations		23	Number of Distinct Observations	18
Raw Statistics			Log-transformed Statistics	
Minimum		0.2	Minimum of Log Data	-1.609
Maximum		17.8	Maximum of Log Data	2.879
Mean		9.02	Mean of log Data	1.747
Median		11	SD of log Data	1.237
SD		6.048		
Coefficient of Variation		0.671		
Skewness		-0.158		
Relevant UCL Statistics				
Normal Distribution Test			Lognormal Distribution Test	
Shapiro Wilk Test Statistic		0.889	Shapiro Wilk Test Statistic	0.817
Shapiro Wilk Critical Value		0.914	Shapiro Wilk Critical Value	0.914
Data not Normal at 5% Significant	ce Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution			Assuming Lognormal Distribution	
95% Student's-t UCL		11.19	95% H-UCL	26.15
95% UCLs (Adjusted for Skewn	ess)		95% Chebyshev (MVUE) UCL	27.1
95% Adjusted-CLT UCL (Chen-	1995)	11.05	97.5% Chebyshev (MVUE) UCL	33.78
95% Modified-t UCL (Johnson-1	1978)	11.18	99% Chebyshev (MVUE) UCL	46.89
Gamma Distribution Test			Data Distribution	
k star (bias corrected)		1.111	Data do not follow a Discernable Distribution (0.05)	
Theta Star		8.116		
MLE of Mean		9.02		
MLE of Standard Deviation		8.556		
nu star		51.13		
Approximate Chi Square Value (.0	05)	35.71	Nonparametric Statistics	
Adjusted Level of Significance		0.0389	95% CLT UCL	11.09
Adjusted Chi Square Value		34.77	95% Jackknife UCL	11.19
90 03			95% Standard Bootstrap UCL	11.01
Anderson-Darling Test Statistic		1.312	95% Bootstrap-t UCL	11.2
Anderson-Darling 5% Critical Valu	le	0.765	95% Hall's Bootstrap UCL	10.97
Kolmogorov-Smirnov Test Statisti	c	0.266	95% Percentile Bootstrap UCL	11
Kolmogorov-Smirnov 5% Critical	Value	0.186	95% BCA Bootstrap UCL	10.95
Data not Gamma Distributed at 59	% Significance Level		95% Chebyshev(Mean, Sd) UCL	14.52
			97.5% Chebyshev(Mean, Sd) UCL	16.9
Assuming Gamma Distribution			99% Chebyshev(Mean, Sd) UCL	21.57
95% Approximate Gamma UCL		12.92		
95% Adjusted Gamma UCL		13.26		
Potential UCL to Use			Use 95% Chebyshev (Mean, Sd) UCL	14.52
Note: Suggestions regarding the s	selection of a 95% UCL	are provided	to help the user to select the most appropriate 95% UCL.	
and Singh and Singh (2003). Fo	ed upon the results of th or additional insight, the	e simulation user may wa	studies summarized in Singh, Singh, and Iaci (2002) nt to consult a statistician.	

General	UCL Statistics for Full Data	a Sets	
User Selected Options			
From File Sedimer	nt.wst		
Full Precision OFF			
Confidence Coefficient 95	5%		
Number of Bootstrap Operations 20	100		
Sediment Dibenzo(a,h)anthracene			
General Statistics			
Number of Valid Observations	268	Number of Distinct Observations	99
Raw Statistics		Log-transformed Statistics	
Minimum	2.00E-04	Minimum of Log Data	-8.517
Maximum	4.4	Maximum of Log Data	1.482
Mean	0.0892	Mean of log Data	-3.403
Median	0.056	SD of log Data	1.391
SD	0.32	ander of sector in a sector in the environment.	
Coefficient of Variation	3.58		
Skewness	11.39		
Relevant UCL Statistics			
Normal Distribution Test		Lognormal Distribution Test	
Lilliefors Test Statistic	0.39	Lilliefors Test Statistic	0 166
Lilliefors Critical Value	0.0541	Lilliefors Critical Value	0.0541
Data not Normal at 5% Significance Lovel	0.0341	Data not Lognermal at 5% Significance Lovel	0.0541
Data not Normal at 5 % Significance Lever		Data not Eugnormal at 5 % Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	0.121	95% H-UCL	0.108
95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCL	0.131
95% Adjusted-CLT UCL (Chen-1995)	0.136	97.5% Chebyshev (MVUE) UCL	0.15
95% Modified-t UCL (Johnson-1978)	0.124	99% Chebyshev (MVUE) UCL	0.188
Gamma Distribution Test		Data Distribution	
k star (bias corrected)	0.618	Data do not follow a Discernable Distribution (0.05)	
Theta Star	0.144	Data do horiolow a Discernable Distribution (0.00)	
MI E of Mean	0.0802		
MLE of Stendard Deviation	0.0032		
nu eter	0.113		
Approximate Chi Sauere Value (05)	331.4	Nonnerometric Statistics	
Adjusted Level of Cincificance (.05)	290.2		0.404
Adjusted Level of Significance	0.0491	95% CET UCL	0.121
Adjusted Chi Square Value	290	95% Jackknife UCL	0.121
	11 M 10 M	95% Standard Bootstrap UCL	0.122
Anderson-Darling Test Statistic	9.047	95% Bootstrap-t UCL	0.21
Anderson-Darling 5% Critical Value	0.809	95% Hall's Bootstrap UCL	0.263
Kolmogorov-Smirnov Test Statistic	0.158	95% Percentile Bootstrap UCL	0.126
Kolmogorov-Smirnov 5% Critical Value	0.0585	95% BCA Bootstrap UCL	0.14
Data not Gamma Distributed at 5% Signific	cance Level	95% Chebyshev(Mean, Sd) UCL	0.174
		97.5% Chebyshev(Mean, Sd) UCL	0.211
Assuming Gamma Distribution		99% Chebyshev(Mean, Sd) UCL	0.283
95% Approximate Gamma UCL	0.102		
95% Adjusted Gamma UCL	0.102		
Potential UCL to Use		Use 95% Chebyshev (Mean, Sd) UCL	0.174
Note: Suggestions reporting the salesting	of a 0.5% LICL are provided	to help the upper to calcot the most appropriate OE% LICI	
These recommendations are based upon	the results of the simulation	studios summarized in Singh Singh and losi (2002)	
and Circle and Circle (2000)		studies summarized in Singh, Singh, and fact (2002)	
and Singh and Singh (2003). For addition	nai insignt, the user may wa	int to consult a statistician.	

Ger	neral UCL Statistics f	or Full Data	Sets	
User Selected Options				
From File Sec	diment.wst			
Full Precision OFF	F			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
Sediment Dibenzofuran				
General Statistics				
Number of Valid Observations		42	Number of Distinct Observations	36
Raw Statistics			Log-transformed Statistics	
Minimum		1.50E-04	Minimum of Log Data	-8.805
Maximum		1.3	Maximum of Log Data	0.262
Mean		0.198	Mean of log Data	-5.488
Median		7.95E-04	SD of log Data	3.028
SD		0.391		
Coefficient of Variation		1.978		
Skewness		1.817		
Relevant LICL Statistics				
Normal Distribution Test			Lognormal Distribution Test	
Shapiro Wilk Test Statistic		0 551	Shaniro Wilk Test Statistic	0.674
Shapiro Wilk Critical Value		0.942	Shapiro Wilk Critical Value	0.074
Data not Normal at 5% Significance Le	evel	0.542	Data not Lognormal at 5% Significance Level	0.542
Assuming Normal Distribution			Assuming Lognormal Distribution	
95% Student's-t UCL		0.299	95% H-UCL	4.684
95% UCLs (Adjusted for Skewness)			95% Chebyshev (MVUE) UCL	1.018
95% Adjusted-CLT UCL (Chen-1995	5)	0.315	97.5% Chebyshev (MVUE) UCL	1.35
95% Modified-t UCL (Johnson-1978))	0.302	99% Chebyshev (MVUE) UCL	2.003
Gamma Distribution Test			Data Distribution	
k star (bias corrected)		0.194	Data do not follow a Discernable Distribution (0.05)	
Theta Star		1.021		
MLE of Mean		0.198		
MLE of Standard Deviation		0.449		
nu star		16.28		
Approximate Chi Square Value (.05)		8.157	Nonparametric Statistics	
Adjusted Level of Significance		0.0443	95% CLT UCL	0.297
Adjusted Chi Square Value		7.952	95% Jackknife UCL	0.299
			95% Standard Bootstrap UCL	0.294
Anderson-Darling Test Statistic		7.045	95% Bootstrap-t UCL	0.323
Anderson-Darling 5% Critical Value		0.909	95% Hall's Bootstrap UCL	0.307
Kolmogorov-Smirnov Test Statistic		0.393	95% Percentile Bootstrap UCL	0.3
Kolmogorov-Smirnov 5% Critical Value	e	0.151	95% BCA Bootstrap UCL	0.32
Data not Gamma Distributed at 5% Sig	gnificance Level		95% Chebyshev(Mean, Sd) UCL	0.461
			97.5% Chebyshev(Mean, Sd) UCL	0.575
Assuming Gamma Distribution		1054054460 Not 444	99% Chebyshev(Mean, Sd) UCL	0.799
95% Approximate Gamma UCL		0.395		
95% Adjusted Gamma UCL		0.405		
Potential UCL to Use			Use 99% Chebyshev (Mean, Sd) UCL	0.799
Note: Suggestions regarding the selec	ction of a 95% UCL a	re provided	to help the user to select the most appropriate 95% LICI	
These recommendations are based up	oon the results of the	simulation	studies summarized in Singh Singh and laci (2002)	
and Singh and Singh (2003) For ad	ditional insight the up	ser may wa	nt to consult a statistician	

G	eneral UCL Statistics for	or Full Data	Sets	
User Selected Options				
From File S	ediment.wst			
Full Precision O	FF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
	2000			
Sediment Endrin aldehyde				
General Statistics		1000		12,000
Number of Valid Observations		11	Number of Distinct Observations	10
Raw Statistics			Log-transformed Statistics	
Minimum		0.0023	Minimum of Log Data	-6.075
Maximum		0.024	Maximum of Log Data	-3.73
Mean		0.00836	Mean of log Data	-4.995
Median		0.005	SD of log Data	0.668
SD		0.0062		
Coefficient of Variation		0 742		
Skewness		1.761		
Relevant UCL Statistics				
Normal Distribution Test			Lognormal Distribution Test	
Shapiro Wilk Test Statistic		0.806	Shapiro Wilk Test Statistic	0.943
Shapiro Wilk Critical Value		0.000	Shapiro Wilk Critical Value	0.85
Data not Normal at 5% Significance	Level	0.00	Data appear Lognormal at 5% Significance Level	0.00
Assuming Normal Distribution			Assuming Lognormal Distribution	
95% Student's-t UCL		0.0118	95% H-UCL	0.0141
95% UCLs (Adjusted for Skewnes	s)		95% Chebyshev (MVUE) UCL	0.0158
95% Adjusted-CLT UCL (Chen-19	95)	0.0125	97.5% Chebyshev (MVUE) UCL	0.019
95% Modified-t UCL (Johnson-197	78)	0.0119	99% Chebyshev (MVUE) UCL	0.0254
Gamma Distribution Test			Data Distribution	
k star (bias corrected)		1.896	Data appear Gamma Distributed at 5% Significance Level	
Theta Star		0.00441		
MLE of Mean		0.00836		
MLE of Standard Deviation		0.00607		
nu star		41.72		
Approximate Chi Square Value (.05))	27.91	Nonparametric Statistics	
Adjusted Level of Significance		0.0278	95% CLT UCL	0.0114
Adjusted Chi Square Value		26.08	95% Jackknife UCL	0.0118
and a second sec			95% Standard Bootstrap UCL	0.0113
Anderson-Darling Test Statistic		0 503	95% Bootstrap-t UCL	0.014
Anderson-Darling 5% Critical Value		0.736	95% Hall's Bootstrap UCL	0.0234
Kolmogorov-Smirnov Test Statistic		0 249	95% Percentile Bootstrap UCL	0.0114
Kolmogorov-Smirnov 5% Critical Va	lue	0.258	95% BCA Bootstran UCI	0.0126
Data appear Gamma Distributed at !	5% Significance Level	0.200	95% Chebyshev(Mean, Sd) UCI	0.0165
Buta appear Summa Distributed at	576 Olgriniourioe Lever		97.5% Chebyshev/Mean, Sd) UCI	0.02
Assuming Commo Distribution			90% Chebyshev/Mean, Sd) LICI	0.02
95% Approvimate Commo LICI		0.0125	oo vo onebysnev (wean, ou) ooe	0.021
95% Adjusted Camma LICI		0.0123		
95% Adjusted Gamma OCL		0.0134		
Potential UCL to Use			Use 95% Approximate Gamma UCL	0.0125
Note: Suggestions regarding the sel	ection of a 95% UCL a	re provided	to help the user to select the most appropriate 95% UCL.	
and Singh and Singh (2003). For a	upon the results of the additional insight, the us	simulation ser may wa	studies summarized in Singh, Singh, and Iaci (2002) nt to consult a statistician.	
energen en same ander sense ander ander sense ander sense en son ander sense ander sense en son ander sense an	anarate and extendents and SUMOVAL MARKED SUBS			

	General LICL Statistic	e for Full Data	Sete	
Liser Selected Ontions	General OCL Statistic	S IOF I UII Date	1 Sets	
From File	Sediment wst			
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
Number of Boolstrap Operations	2000			
Sediment Fluoranthene				
General Statistics				
Number of Valid Observations		268	Number of Distinct Observations	95
Raw Statistics			Log-transformed Statistics	
Minimum		7.70E-04	Minimum of Log Data	-7.169
Maximum		4.9	Maximum of Log Data	1.589
Mean		0.118	Mean of log Data	-2.725
Median		0.081	SD of log Data	0.989
SD		0.362		
Coefficient of Variation		3.067		
Skewness		11.34		
Relevant UCL Statistics				
Normal Distribution Test		1127 1212	Lognormal Distribution Test	111111000000
Lilliefors Test Statistic		0.401	Lilliefors Test Statistic	0.18
Lilliefors Critical Value		0.0541	Lilliefors Critical Value	0.0541
Data not Normal at 5% Significant	ce Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution			Assuming Lognormal Distribution	
95% Student's-t UCL		0.154	95% H-UCL	0.122
95% UCLs (Adjusted for Skewn	ess)		95% Chebyshev (MVUE) UCL	0.141
95% Adjusted-CLT UCL (Chen-	1995)	0.171	97.5% Chebyshev (MVUE) UCL	0.155
95% Modified-t UCL (Johnson-1	978)	0.157	99% Chebyshev (MVUE) UCL	0.184
Gamma Distribution Test			Data Distribution	
k star (bias corrected)		0.977	Data do not follow a Discernable Distribution (0.05)	
Theta Star		0.121		
MLE of Mean		0.118		
MLE of Standard Deviation		0.119		
nu star		523.4		
Approximate Chi Square Value (.0	J5)	471.4	Nonparametric Statistics	
Adjusted Level of Significance		0.0491	95% CLT UCL	0.154
Adjusted Chi Square Value		471.1	95% Jackknife UCL	0.154
			95% Standard Bootstrap UCL	0.155
Anderson-Darling Test Statistic		3.73E+28	95% Bootstrap-t UCL	0.275
Anderson-Darling 5% Critical Valu	a	0.785	95% Hall's Bootstrap UCL	0.313
Kolmogorov-Smirnov Test Statisti	C	0.209	95% Percentile Bootstrap UCL	0.159
Kolmogorov-Smirnov 5% Critical	√alue	0.0575	95% BCA Bootstrap UCL	0.174
Data not Gamma Distributed at 59	% Significance Level		95% Chebyshev(Mean, Sd) UCL	0.214
			97.5% Chebyshev(Mean, Sd) UCL	0.256
Assuming Gamma Distribution		10 2010 10 000000	99% Chebyshev(Mean, Sd) UCL	0.338
95% Approximate Gamma UCL		0.131		
95% Adjusted Gamma UCL		0.131		
Potential UCL to Use			Use 95% Chebyshev (Mean, Sd) UCL	0.214
Note: Suggestions regarding the s	selection of a 95% UCL	are provided	to help the user to select the most appropriate 95% UCL.	
These recommendations are base	ed upon the results of t	he simulation	studies summarized in Singh, Singh, and Iaci (2002)	
and Singh and Singh (2003). Fo	r additional insight, the	e user may wa	nt to consult a statistician.	

	General UCL Statistic	s for Full Data	Sets	
User Selected Options				
From File	Sediment.wst			
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
Sediment Indeno(1,2,3-cd)pyrene	÷			
General Statistics				
Number of Valid Observations		268	Number of Distinct Observations	89
Raw Statistics			Log-transformed Statistics	
Minimum		2.80E-04	Minimum of Log Data	-8.181
Maximum		4.2	Maximum of Log Data	1.435
Mean		0.094	Mean of log Data	-3.026
Median		0.0675	SD of log Data	1.033
SD		0.311		
Coefficient of Variation		3.307		
Skewness		11.5		
Relevant UCL Statistics				
Normal Distribution Test		1110-11013-10034	Lognormal Distribution Test	111110-000-002
Lilliefors Test Statistic		0.387	Lilliefors Test Statistic	0.13
Lilliefors Critical Value		0.0541	Lilliefors Critical Value	0.0541
Data not Normal at 5% Significan	ce Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution			Assuming Lognormal Distribution	
95% Student's-t UCL		0.125	95% H-UCL	0.0947
95% UCLs (Adjusted for Skewr	iess)		95% Chebyshev (MVUE) UCL	0.11
95% Adjusted-CLT UCL (Chen-	-1995)	0.139	97.5% Chebyshev (MVUE) UCL	0.122
95% Modified-t UCL (Johnson-	1978)	0.128	99% Chebyshev (MVUE) UCL	0.146
Gamma Distribution Test			Data Distribution	
k star (bias corrected)		0.878	Data do not follow a Discernable Distribution (0.05)	
Theta Star		0.107		
MLE of Mean		0.094		
MLE of Standard Deviation		0.1		
nu star		470.7		
Approximate Chi Square Value (.	05)	421.4	Nonparametric Statistics	
Adjusted Level of Significance		0.0491	95% CLT UCL	0.125
Adjusted Chi Square Value		421.2	95% Jackknife UCL	0.125
			95% Standard Bootstrap UCL	0.124
Anderson-Darling Test Statistic		3.73E+28	95% Bootstrap-t UCL	0.254
Anderson-Darling 5% Critical Val	ue	0.79	95% Hall's Bootstrap UCL	0.29
Kolmogorov-Smirnov Test Statist	ic	0.167	95% Percentile Bootstrap UCL	0.129
Kolmogorov-Smirnov 5% Critical	Value	0.0577	95% BCA Bootstrap UCL	0.149
Data not Gamma Distributed at 5	% Significance Level		95% Chebyshev(Mean, Sd) UCL	0.177
			97.5% Chebyshev(Mean, Sd) UCL	0.212
Assuming Gamma Distribution		0.105	99% Chebyshev(Mean, Sd) UCL	0.283
95% Approximate Gamma UCL		0.105		
95% Adjusted Gamma UCL		0.105		
Potential UCL to Use			Use 95% Chebyshev (Mean, Sd) UCL	0.177
Note: Suggestions regarding the	selection of a 95% UCI	are provided	to help the user to select the most appropriate 95% UCL.	
These recommendations are bas	ed upon the results of t	the simulation	studies summarized in Singh, Singh, and laci (2002)	
and Singh and Singh (2003). Fo	or additional insight, the	e user may wa	nt to consult a statistician.	

	General UCL Statistics	for Full Data	Sets	
User Selected Options				
From File	Sediment.wst			
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
Continuent luce				
Sediment Iron				
General Statistics		1912		
Number of Valid Observations		19	Number of Distinct Observations	17
Raw Statistics			Log-transformed Statistics	
Minimum		230	Minimum of Log Data	5.438
Maximum		37000	Maximum of Log Data	10.52
Mean		18591	Mean of log Data	9.283
Median		23200	SD of log Data	1.468
SD		11765		
Coefficient of Variation		0.633		
Skewness		-0.503		
Relevant UCL Statistics				
Normal Distribution Test			Lognormal Distribution Test	
Shapiro Wilk Test Statistic		0.878	Shapiro Wilk Test Statistic	0.745
Shapiro Wilk Critical Value		0.901	Shapiro Wilk Critical Value	0.901
Data not Normal at 5% Significan	ce Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution			Assuming Lognormal Distribution	
95% Student's-t UCL		23271	95% H-UCL	100287
95% UCLs (Adjusted for Skewn	ess)		95% Chebyshev (MVUE) UCL	78034
95% Adjusted-CLT UCL (Chen-	1995)	22698	97.5% Chebyshev (MVUE) UCL	99461
95% Modified-t UCL (Johnson-1	1978)	23219	99% Chebyshev (MVUE) UCL	141550
Gamma Distribution Test			Data Distribution	
k star (bias corrected)		0.919	Data do not follow a Discernable Distribution (0.05)	
Theta Star		20234		
MLE of Mean		18591		
MLE of Standard Deviation		19395		
nu star		34.91		
Approximate Chi Square Value (.(05)	22.4	Nonparametric Statistics	
Adjusted Level of Significance		0 0369	95% CLT UCI	23031
Adjusted Chi Square Value		21.52	95% Jackknife UCL	23271
Level and a second better a second			95% Standard Bootstrap UCL	22909
Anderson-Darling Test Statistic		1 884	95% Bootstrap-t UCL	22949
Anderson-Darling 5% Critical Valu	le	0.768	95% Hall's Bootstrap UCL	22660
Kolmogorov-Smirnov Test Statisti	c	0.322	95% Percentile Bootstrap UCL	22858
Kolmogorov-Smirnov 5% Critical	Value	0 204	95% BCA Bootstrap UCI	22531
Data not Gamma Distributed at 5	% Significance Level	0.204	95% Chebyshev(Mean_Sd) UCI	30356
Bala not Gamma Distributed at o	is eigninedrice Lever		97.5% Chebyshev(Mean, Sd) UCI	35447
Assuming Gamma Distribution			99% Chebyshev/(Mean, Sd) LICI	45447
95% Approximate Gamma LICI		28082	con chebyshev (wear), cu you	
95% Adjusted Gamma UCL	i -	30161		
Potential UCL to Use			Use 95% Chebyshev (Mean, Sd) UCL	30356
Note: Suggestions regarding the	selection of a 95% UCL	are provided	to help the user to select the most appropriate 95% UCL.	
These recommendations are base	ed upon the results of the	e simulation	studies summarized in Singh, Singh, and Iaci (2002)	
and Singh and Singh (2003). Fo	or additional insight, the i	user may wa	nt to consult a statistician.	

	General UCL Statistic	cs for Full Data	Sets	
User Selected Options				
From File	Sediment.wst			
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
100 E				
Sediment Lead				
General Statistics				000
Number of Valid Observations		274	Number of Distinct Observations	112
Raw Statistics			Log-transformed Statistics	
Minimum		2.1	Minimum of Log Data	0.742
Maximum		765	Maximum of Log Data	6.64
Mean		28.42	Mean of log Data	3.039
Median		22.55	SD of log Data	0.641
SD		57.89		
Coefficient of Variation		2 037		
Skewness		10.7		
Relevant UCL Statistics				
Normal Distribution Test			Lognormal Distribution Test	
Lilliefors Test Statistic		0 371	Lilliefors Test Statistic	0 151
Lilliefors Critical Value		0.0535	Lilliefors Critical Value	0.0535
Data not Normal at 5% Significan	ce Level	0.0000	Data not Lognormal at 5% Significance Level	0.0000
Assuming Normal Distribution			Assuming Lognormal Distribution	
95% Student's-t UCL		34,19	95% H-UCL	27.57
95% UCLs (Adjusted for Skewn	iess)		95% Chebyshev (MVUE) UCL	30.35
95% Adjusted-CLT UCL (Chen-	-1995)	36.59	97.5% Chebyshev (MVUE) UCL	32.39
95% Modified-t UCL (Johnson-	1978)	34.57	99% Chebyshev (MVUE) UCL	36.42
Gamma Distribution Test			Data Distribution	
k star (bias corrected)		1.752	Data do not follow a Discernable Distribution (0.05)	
Theta Star		16.22		
MI E of Mean		28 42		
MLE of Standard Deviation		21 47		
nu star		960.2		
Approvimate Chi Square Value (1	05)	889.2	Nonnarametric Statistics	
Adjusted Level of Significance	50)	0.0401		34 17
Adjusted Chi Square Value		888 9	95% Jackknife LICI	34.17
Adjusted offi oquare value		000.0	95% Standard Bootstran LICI	34.05
Anderson-Darling Test Statistic		3 655+28	95% Bootstrap t LICI	47.37
Anderson Darling 5% Critical Val		0.760	95% Hall's Roststran LICI	47.37
Kalmagaray Smirnay Taat Statiat		0.709	95% Dereeptile Restation LICI	24 64
Kolmogorov-Smirnov Test Statist	lu Malua	0.230	95 % Percentile Bootstrap UCL	34.04
Rolmogorov-Smirnov 5% Critical		0.050	95% BCA Boolstrap UCL	37.07
Data not Gamma Distributed at 5	% Significance Level		95% Chebyshev(Mean, Sd) UCL	43.07
			97.5% Chebysnev(Mean, Sd) UCL	50.26
Assuming Gamma Distribution			99% Chebyshev(Mean, Sd) UCL	63.22
95% Approximate Gamma UCL	:	30.69		
95% Adjusted Gamma UCL		30.7		
Potential UCL to Use			Use 95% Chebyshev (Mean, Sd) UCL	43.67
Note: Suggestions regarding the	selection of a 95% LIC	l are provided	to help the user to select the most appropriate 95% LICI	
These recommendations are bas	ed upon the results of	the simulation	studies summarized in Singh Singh and Jaci (2002)	
and Singh and Singh (2003). Fo	or additional insight. th	e user may wa	nt to consult a statistician.	
Constant Andrew Constant and Co	en oversterrendersterren intersterrende State	mene-46/19/23 (#359/49 %) (#359/		

General UCL Statistic	cs for Full Data	I Sets	
User Selected Options			
From File Sediment.wst			
Full Precision OFF			
Confidence Coefficient 95%			
Number of Bootstrap Operations 2000			
Sediment Magnesium			
General Statistics	10		
Number of Valid Observations	19	Number of Distinct Observations	19
Raw Statistics		Log-transformed Statistics	
Minimum	390	Minimum of Log Data	5.966
Maximum	9210	Maximum of Log Data	9.128
Mean	5856	Mean of log Data	8.31
Median	7600	SD of log Data	1.084
SD	3408		
Coefficient of Variation	0.582		
Skewness	-0.76		
Relevant UCL Statistics			
Normal Distribution Test		Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0 776	Shapiro Wilk Test Statistic	0 731
Shapiro Wilk Critical Value	0 901	Shapiro Wilk Critical Value	0.901
Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	7211	95% H-UCL	14708
95% UCLs (Adjusted for Skewness)		95% Chebyshey (MVUE) UCL	15543
95% Adjusted-CLT UCL (Chen-1995)	6996	97.5% Chebyshev (MVUE) UCL	19243
95% Modified-t UCL (Johnson-1978)	7189	99% Chebyshev (MVUE) UCL	26512
Gamma Distribution Test		Data Distribution	
k star (bias corrected)	1.31	Data do not follow a Discernable Distribution (0.05)	
Theta Star	4469		
MI E of Mean	5856		
MLE of Standard Deviation	5116		
nu star	49 79		
Approximate Chi Square Value (05)	34 50	Nonnarametric Statistics	
Adjusted Level of Significance	0.0260		7140
Adjusted Chi Square Value	0.0309		7142
	55.40	95% Standard Rootstran LICI	7211
Anderson Darling Toot Statistic	2 2 2 0	95% Standard Bootstrap CCL	7095
Anderson-Darling Test Statistic	2.329	95% Boolstrap-t UCL	7023
Anderson-Daning 5% Critical Value	0.757	95% Hall's Bootstrap UCL	7050
Kolmogorov-Smirnov Test Statistic	0.334	95% Percentile Bootstrap UCL	7056
Kolmogorov-Smirnov 5% Critical Value	0.202	95% BCA Bootstrap UCL	6982
Data not Gamma Distributed at 5% Significance Level		95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	9264 10738
Assuming Gamma Distribution		99% Chebyshev(Mean, Sd) UCL	13635
95% Approximate Gamma UCL	8429		
95% Adjusted Gamma UCL	8708		
Potential UCL to Use		Use 95% Chebyshev (Mean, Sd) UCL	9264
Recommended UCL exceeds the maximum observation	n	 	
Note: Suggestions regarding the selection of a 05% LIC	are provided	to help the user to select the most appropriate 05% LICI	
These recommondations are based upon the results of	the simulation	to help the user to select the most appropriate 95% UCI	27
These recommendations are based upon the fesuits of	ule simulation	studies summanzeu in Singh, Singh, and raci (2002)	

and Singh and Singh (2003). For additional insight, the user may want to consult a statistician.

General UCL Statistics for F	ull Data	Sets	
User Selected Options			
From File Sediment.wst			
Full Precision OFF			
Confidence Coefficient 95%			
Number of Bootstrap Operations 2000			
Sediment Manganese			
General Statistics	1000	809 Ya 1422800 (Yi 15770) 149	75163
Number of Valid Observations	19	Number of Distinct Observations	19
Raw Statistics		Log-transformed Statistics	
Minimum	5.1	Minimum of Log Data	1.629
Maximum	1000	Maximum of Log Data	6.908
Mean	306.7	Mean of log Data	5.003
Median	282	SD of log Data	1.573
SD	283.5		
Coefficient of Variation	0.924		
Skewness	1.138		
Relevant UCL Statistics			
Normal Distribution Test		Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.857	Shapiro Wilk Test Statistic	0.862
Shapiro Wilk Critical Value	0.901	Shapiro Wilk Critical Value	0.901
Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	419.5	95% H-UCL	1885
95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCL	1302
95% Adjusted-CLT UCL (Chen-1995)	431.9	97.5% Chebyshev (MVUE) UCL	1670
95% Modified-t UCL (Johnson-1978)	422.4	99% Chebyshev (MVUE) UCL	2392
Gamma Distribution Test		Data Distribution	
k star (bias corrected)	0.724	Data Follow Appr. Gamma Distribution at 5% Significance Lev	vel
Theta Star	423.7		
MLE of Mean	306.7		
MLE of Standard Deviation	360.5		
nu star	27.51		
Approximate Chi Square Value (.05)	16.55	Nonparametric Statistics	M21420320 1100
Adjusted Level of Significance	0.0369	95% CLT UCL	413.7
Adjusted Chi Square Value	15.81	95% Jackknife UCL	419.5
	0 700	95% Standard Bootstrap UCL	411
Anderson-Darling Test Statistic	0.766	95% Bootstrap-t UCL	449.6
Anderson-Darling 5% Critical Value	0.776	95% Hall's Bootstrap UCL	450.1
Kolmogorov-Smirnov Test Statistic	0.221		420.2
Roimogorov-Smirnov 5% Critical Value	0.206	95% BCA Bootstrap UCL	429.3
Data follow Appr. Gamma Distribution at 5% Significance Leve		95% Chebyshev(Mean, 5d) UCL	590.5 712.0
Assuming Commo Distribution		97.5% Chebyshev(Mean, Sd) UCL	052.0
Assuming Gamma Distribution	E10	33% Gliebysnev(wean, 5d) UCL	900.9
95% Adjusted Gamma UCL	533.9		
Potential LICE to Lise		Lies 95% Approvimate Gamma LICL	510
		Use 95 % Approximate Gamma UGL	510
Note: Suggestions regarding the selection of a 95% UCL are p	rovided	to help the user to select the most appropriate 95% UCL.	
and Singh and Singh (2003). For additional insight, the user i	nay wa	nt to consult a statistician.	

	General UCL Statistics	for Full Data	Sets	
User Selected Options				
From File	Sediment.wst			
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
Sediment Mercury				
General Statistics		044		045
Number of Valid Observations		311	Number of Distinct Observations	215
Raw Statistics			Log-transformed Statistics	
Minimum		0.02	Minimum of Log Data	-3.912
Maximum		62.9	Maximum of Log Data	4.142
Mean		2.167	Mean of log Data	-0.295
Median		0.69	SD of log Data	1.339
SD		5.859		
Coefficient of Variation		2.704		
Skewness		6.745		
Relevant UCL Statistics				
Normal Distribution Test			Lognormal Distribution Test	
Lilliefors Test Statistic		0.357	Lilliefors Test Statistic	0.0817
Lilliefors Critical Value		0.0502	Lilliefors Critical Value	0.0502
Data not Normal at 5% Significanc	e Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution			Assuming Lognormal Distribution	
95% Student's-t UCL		2.715	95% H-UCL	2.194
95% UCLs (Adjusted for Skewne	ess)		95% Chebyshev (MVUE) UCL	2.634
95% Adjusted-CLT UCL (Chen-1	1995)	2.849	97.5% Chebyshev (MVUE) UCL	2.987
95% Modified-t UCL (Johnson-1	978)	2.736	99% Chebyshev (MVUE) UCL	3.682
Gamma Distribution Test			Data Distribution	
k star (bias corrected)		0.578	Data do not follow a Discernable Distribution (0.05)	
Theta Star		3.751		
MLE of Mean		2.167		
MLE of Standard Deviation		2.851		
nu star		359.4		
Approximate Chi Square Value (.0	15)	316.5	Nonparametric Statistics	
Adjusted Level of Significance	y	0.0492	95% CLT UCL	2,714
Adjusted Chi Square Value		316.3	95% Jackknife UCL	2.715
			95% Standard Bootstrap UCI	2 703
Anderson-Darling Test Statistic		18 39	95% Bootstrap-t UCI	2 944
Anderson-Darling 5% Critical Valu	ie.	0.814	95% Hall's Bootstran UCI	2 938
Kolmogorov-Smirnov Test Statistic		0.196	95% Percentile Bootstran LICI	2 726
Kolmogorov-Smirnov 5% Critical	, /alue	0.054	95% BCA Bootstran LICI	2 881
Data not Camma Distributed at 5%	A Significance Lovel	0.004	95% Chebyshey/Maan, Sd) LICI	2.001
Data not Gamma Distributed at 57	o orginiticance Level		97.5% Chebyshev/Mean Sd/UCL	4 242
Accuming Common Distribution			00% Chabyshev(Mean, Sd) UCL	4.242
05% Approximate Comme LICL		2 464	35 /0 Chebyshev(mean, Su) UCL	0.475
95% Approximate Gamma UCL 95% Adjusted Gamma UCL		2.461 2.462		
Potential UCL to Use			Use 95% Chebyshev (Mean, Sd) UCL	3.615
Note: Suggestions regarding the s	election of a 95% UCL	are provided	to help the user to select the most appropriate 95% UCL.	
These recommendations are base and Singh and Singh (2003) For	d upon the results of the	e simulation	studies summarized in Singh, Singh, and Iaci (2002) nt to consult a statistician	

	General UCL Statistic	cs for Full Data	Sets	
User Selected Options				
From File	Sediment.wst			
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
Sediment Methyl mercury				
General Statistics		1212		
Number of Valid Observations		56	Number of Distinct Observations	51
Raw Statistics			Log-transformed Statistics	
Minimum		1.07E-04	Minimum of Log Data	-9.143
Maximum		0.0437	Maximum of Log Data	-3.13
Mean		0.00834	Mean of log Data	-5.33
Median		0.00729	SD of log Data	1.272
SD		0.00781		
Coefficient of Variation		0.936		
Skewness		2.24		
Relevant UCL Statistics				
Normal Distribution Test			Lognormal Distribution Test	
Lilliefors Test Statistic		0.165	Lilliefors Test Statistic	0.166
Lilliefors Critical Value		0.118	Lilliefors Critical Value	0.118
Data not Normal at 5% Significan	ce Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution			Assuming Lognormal Distribution	
95% Student's-t UCL		0.0101	95% H-UCL	0.0175
95% UCLs (Adjusted for Skewn	ess)		95% Chebyshev (MVUE) UCL	0.0206
95% Adjusted-CLT UCL (Chen-	1995)	0.0104	97.5% Chebyshev (MVUE) UCL	0.0249
95% Modified-t UCL (Johnson-	1978)	0.0101	99% Chebyshev (MVUE) UCL	0.0333
Gamma Distribution Test			Data Distribution	
k star (bias corrected)		1.01	Data Follow Appr. Gamma Distribution at 5% Signi	ficance Level
Theta Star		0.00825		1915)
MLE of Mean		0.00834		
MLE of Standard Deviation		0.0083		
nu star		113.2		
Approximate Chi Square Value (.)	05)	89.6	Nonparametric Statistics	
Adjusted Level of Significance	,	0 0457	95% CLT UCI	0 0101
Adjusted Chi Square Value		89.05	95% Jackknife UCI	0 0101
			95% Standard Bootstrap UCI	0.0101
Anderson-Darling Test Statistic		1 106	95% Bootstran-t UCI	0.0105
Anderson-Darling 5% Critical Value	ie	0 778	95% Hall's Bootstran UCI	0.0111
Kolmogorov-Smirnov Test Statisti	c.	0.12	95% Percentile Bootstrap UCI	0.0101
Kolmogorov-Smirnov 5% Critical	value	0 122	95% BCA Bootstrap UCI	0.0105
Data follow Appr. Gamma Distribu	ution at 5% Significanc	e l evel	95% Chebyshev(Mean, Sd) UCI	0.0129
Bata follow reps. Callina Biotion	norrat o // orgrinioario		97 5% Chebyshev(Mean, Sd) UCI	0.0120
Assuming Gamma Distribution			99% Chebyshev(Mean, Sd) LICI	0.0143
95% Approvimate Camma LICL		0.0105	33% Chebysnev(Mean, Sd) UCL	0.0107
95% Adjusted Gamma UCL		0.0106		
Potential UCL to Use			Use 95% Approximate Gamma UCL	0.0105
Note: Suggestions regarding the	selection of a 95% UC	L are provided	to help the user to select the most appropriate 95%	UCL.
These recommendations are base	ed upon the results of	the simulation	studies summarized in Singh, Singh, and laci (2002)
and Singh and Singh (2003). Fo	or additional insight, the	e user may wa	nt to consult a statistician.	<u>\$2</u>

General UCL Sta	atistics for Full Data	Sets	
User Selected Options			
From File Sediment.wst			
Full Precision OFF			
Confidence Coefficient 95%			
Number of Bootstrap Operations 2000			
Sediment Naphthalene			
General Statistics			
Number of Valid Observations	268	Number of Distinct Observations	89
Raw Statistics		Log-transformed Statistics	
Minimum	3.40E-04	Minimum of Log Data	-7.987
Maximum	0.63	Maximum of Log Data	-0.462
Mean	0.0587	Mean of log Data	-3.576
Median	0.0545	SD of log Data	1.441
SD	0.0628	Service and Latin 🛥 da Herrichea	
Coefficient of Variation	1.07		
Skewness	3.428		
Relevant LICL Statistics			
Normal Distribution Test		Lognormal Distribution Test	
Lilliofere Test Chatistic	0 176	Luliafara Taat Statiatia	0.100
Lilliefors Critical Value	0.170	Lilliefors Test Statistic	0.198
Lillierors Critical Value	0.0541	Lilliefors Critical Value	0.0541
Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	0.065	95% H-UCL	0.0989
95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCL	0.121
95% Adjusted-CLT UCL (Chen-1995)	0.0658	97.5% Chebyshev (MVUE) UCL	0.139
95% Modified-t UCL (Johnson-1978)	0.0651	99% Chebyshev (MVUE) UCL	0.175
Gamma Distribution Test		Data Distribution	
k star (bias corrected)	0.795	Data do not follow a Discernable Distribution (0.05)	
Theta Star	0.0738		
MLE of Mean	0.0587		
MLE of Standard Deviation	0.0658		
nu star	426.3		
Approximate Chi Square Value (.05)	379.4	Nonparametric Statistics	
Adjusted Level of Significance	0.0491	95% CLT UCL	0.065
Adjusted Chi Square Value	379.2	95% Jackknife UCL	0.065
and the second		95% Standard Bootstrap UCL	0.0651
Anderson-Darling Test Statistic	8,406	95% Bootstrap-t UCL	0.0659
Anderson-Darling 5% Critical Value	0.794	95% Hall's Bootstrap UCL	0.0668
Kolmogorov-Smirnov Test Statistic	0 16	95% Percentile Bootstrap UCL	0.0651
Kolmogorov-Smirnov 5% Critical Value	0.0579	95% BCA Bootstrap UCL	0.0662
Data not Gamma Distributed at 5% Significance Le	vel	95% Chebyshev(Mean, Sd) UCI	0.0754
		97 5% Chebyshev(Mean, Sd) UCI	0.0826
Assuming Gamma Distribution		99% Chebyshev(Mean_Sd) LICI	0.0020
95% Approvimate Gamma LICI	0.0650	con chebyshev(weah, ou) ooe	0.0000
95% Adjusted Gamma UCL	0.066		
Potential UCL to Use		Use 95% Chebyshev (Mean, Sd) UCL	0.0754
200 AL 200 20 Herd Honor take 123 40 rou-week			
Note: Suggestions regarding the selection of a 95%	6 UCL are provided	to help the user to select the most appropriate 95% UC	CL.
These recommendations are based upon the result	ts of the simulation	studies summarized in Singh, Singh, and laci (2002)	
and Singh and Singh (2003). For additional insigh	nt, the user may wa	nt to consult a statistician.	

	General UCL Statistics	for Full Data	Sets	
User Selected Options				
From File	Sediment.wst			
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
1657 25				
Sediment Nickel				
General Statistics		0.0		
Number of Valid Observations		23	Number of Distinct Observations	21
Raw Statistics			Log-transformed Statistics	
Minimum		0.4	Minimum of Log Data	-0.916
Maximum		21.1	Maximum of Log Data	3.049
Mean		9.038	Mean of log Data	1.701
Median		10.8	SD of log Data	1.234
SD		6.755		
Coefficient of Variation		0.747		
Skewness		0.2		
Relevant UCL Statistics				
Normal Distribution Test			Lognormal Distribution Test	
Shapiro Wilk Test Statistic		0.914	Shapiro Wilk Test Statistic	0.865
Shapiro Wilk Critical Value		0.914	Shapiro Wilk Critical Value	0.914
Data appear Normal at 5% Signif	icance Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution			Assuming Lognormal Distribution	
95% Student's-t UCL		11.46	95% H-UCL	24.84
95% UCLs (Adjusted for Skewr	iess)		95% Chebyshev (MVUE) UCL	25.78
95% Adjusted-CLT UCL (Chen-	-1995)	11.42	97.5% Chebyshev (MVUE) UCL	32.12
95% Modified-t UCL (Johnson-	1978)	11.47	99% Chebyshev (MVUE) UCL	44.58
Gamma Distribution Test			Data Distribution	
k star (bias corrected)		1.018	Data appear Normal at 5% Significance Level	
Theta Star		8.88		
MLE of Mean		9.038		
MLE of Standard Deviation		8.959		
nu star		46.82		
Approximate Chi Square Value (.	05)	32.12	Nonparametric Statistics	
Adjusted Level of Significance		0.0389	95% CLT UCL	11.36
Adjusted Chi Square Value		31.23	95% Jackknife UCL	11.46
			95% Standard Bootstrap UCL	11.29
Anderson-Darling Test Statistic		0.976	95% Bootstrap-t UCL	11.4
Anderson-Darling 5% Critical Val	ue	0.767	95% Hall's Bootstrap UCL	11.36
Kolmogorov-Smirnov Test Statist	ic	0.216	95% Percentile Bootstrap UCL	11.29
Kolmogorov-Smirnov 5% Critical	Value	0.186	95% BCA Bootstrap UCL	11.35
Data not Gamma Distributed at 5	% Significance Level		95% Chebyshev(Mean, Sd) UCL	15.18
	······································		97.5% Chebyshev(Mean, Sd) UCL	17.83
Assuming Gamma Distribution			99% Chebyshev(Mean, Sd) UCI	23.05
95% Approximate Gamma UCI		13 18		20.00
95% Adjusted Gamma UCL		13.55		
Potential UCL to Use			Use 95% Student's-t UCL	11.46
Note: Suggestions regarding the These recommendations are bas and Singh and Singh (2003). Fo	selection of a 95% UCL ed upon the results of the or additional insight, the	are provided e simulation user may wa	to help the user to select the most appropriate 95% UCL. studies summarized in Singh, Singh, and Iaci (2002) nt to consult a statistician.	

	General UCL Statistic	s for Full Data	Sets	
User Selected Options				
From File	Sediment.wst			
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
Sediment Phenanthrene				
General Statistics				
Number of Valid Observations		268	Number of Distinct Observations	84
Raw Statistics			Log-transformed Statistics	
Minimum		5.20E-04	Minimum of Log Data	-7.562
Maximum		0.25	Maximum of Log Data	-1.386
Mean		0.0577	Mean of log Data	-3.418
Median		0.054	SD of log Data	1.235
SD		0.0489		
Coefficient of Variation		0.849		
Skewness		0.647		
Relevant UCL Statistics				
Normal Distribution Test			Lognormal Distribution Test	
Lilliefors Test Statistic		0.207	Lilliefors Test Statistic	0.185
Lilliefors Critical Value		0.0541	Lilliefors Critical Value	0.0541
Data not Normal at 5% Significand	se Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution			Assuming Lognormal Distribution	
95% Student's-t UCL		0.0626	95% H-UCL	0.0839
95% UCLs (Adjusted for Skewne	ess)		95% Chebyshev (MVUE) UCL	0.1
95% Adjusted-CLT UCL (Chen-	1995)	0.0627	97.5% Chebyshev (MVUE) UCL	0.113
95% Modified-t UCL (Johnson-1	978)	0.0626	99% Chebyshev (MVUE) UCL	0.139
Gamma Distribution Test			Data Distribution	
k star (bias corrected)		1.011	Data do not follow a Discernable Distribution (0.05)	
Theta Star		0.057		
MLE of Mean		0.0577		
MLE of Standard Deviation		0.0574		
nu star		542		
Approximate Chi Square Value (.0)5)	489	Nonparametric Statistics	
Adjusted Level of Significance		0.0491	95% CLT UCL	0.0626
Adjusted Chi Square Value		488.7	95% Jackknife UCL	0.0626
			95% Standard Bootstrap UCL	0.0625
Anderson-Darling Test Statistic		7.686	95% Bootstrap-t UCL	0.0627
Anderson-Darling 5% Critical Valu	ie	0.783	95% Hall's Bootstrap UCL	0.0627
Kolmogorov-Smirnov Test Statistic	C	0.153	95% Percentile Bootstrap UCL	0.0627
Kolmogorov-Smirnov 5% Critical \	/alue	0.0574	95% BCA Bootstrap UCL	0.0626
Data not Gamma Distributed at 5%	% Significance Level		95% Chebyshev(Mean, Sd) UCL	0.0707
			97.5% Chebyshev(Mean, Sd) UCL	0.0763
Assuming Gamma Distribution			99% Chebyshev(Mean, Sd) UCL	0.0874
95% Approximate Gamma UCL		0.0639		
95% Adjusted Gamma UCL		0.064		
Potential UCL to Use			Use 95% Chebyshev (Mean, Sd) UCL	0.0707
Note: Suggestions regarding the s	election of a 95% UCI	are provided	to help the user to select the most appropriate 95% UCI	
These recommendations are base	ed upon the results of t	he simulation	studies summarized in Singh, Singh, and Iaci (2002)	
and Singh and Singh (2003). Fo	r additional insight, the	user may wa	nt to consult a statistician.	

General UCL Statistics	for Full Data	Sets	
User Selected Options			
From File Sediment.wst			
Full Precision OFF			
Confidence Coefficient 95%			
Number of Bootstrap Operations 2000			
Sediment Potassium			
General Statistics			1944) 1944
Number of Valid Observations	19	Number of Distinct Observations	17
Raw Statistics		Log-transformed Statistics	
Minimum	120	Minimum of Log Data	4.787
Maximum	5000	Maximum of Log Data	8.517
Mean	3117	Mean of log Data	7.568
Median	4040	SD of log Data	1.276
SD	1942		
Coefficient of Variation	0.623		
Skewness	-0.729		
Relevant UCL Statistics			
Normal Distribution Test		Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.771	Shapiro Wilk Test Statistic	0.725
Shapiro Wilk Critical Value	0.901	Shapiro Wilk Critical Value	0.901
Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	3890	95% H-UCL	10861
95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCL	10098
95% Adjusted-CLT UCL (Chen-1995)	3771	97.5% Chebyshev (MVUE) UCL	12703
95% Modified-t UCL (Johnson-1978)	3878	99% Chebyshev (MVUE) UCL	17822
Gamma Distribution Test		Data Distribution	
k star (bias corrected)	1.036	Data do not follow a Discernable Distribution (0.05)	
Theta Star	3009	an a	
MLE of Mean	3117		
MLE of Standard Deviation	3063		
nu star	39 37		
Approximate Chi Square Value (05)	25.99	Nonnarametric Statistics	
Adjusted Level of Significance	0.0369	95% CLT LICI	3850
Adjusted Chi Square Value	25.04	95% Jackknife LICI	3890
	20.01	95% Standard Bootstran LICI	3822
Anderson-Darling Test Statistic	2 458	95% Bootstrap-t LICI	3783
Anderson-Darling 5% Critical Value	0.765	95% Hall's Rootstran LICI	3703
Kolmogorov Smirnov Tost Statistia	0.705	05% Percentile Reststran LICI	3901
Kolmogorov-Smirnov Test Statistic	0.341	95% Percentile Bootstrap UCL	2774
Rolmogorov-Smirnov 5% Chucal value	0.203	95% BCA Boolstrap UCL	5771
Data not Gamma Distributed at 5% Significance Level		95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	5900
Assuming Gamma Distribution		99% Chebyshev(Mean, Sd) UCL	7551
95% Approximate Gamma UCL	4721		
95% Adjusted Gamma UCL	4900		
Potential UCL to Use		Use 95% Chebyshev (Mean, Sd) UCL	5060
Recommended UCL exceeds the maximum observation			
Note: Suggestions regarding the selection of a 95% UCL	are provided	to help the user to select the most appropriate 95% UCL	
These recommendations are based upon the results of th	e simulation	studies summarized in Singh. Singh. and laci (2002)	
and Singh and Singh (2002) For additional insight the		at to assess the statistician	

Singh and Singh (2003). For additional insight, the user may want to consult a statistician.

	General UCL Statistic	s for Full Data	Sets	
User Selected Options				
From File	Sediment.wst			
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
5450 88				
Sediment Pyrene				
General Statistics		121212		210
Number of Valid Observations		268	Number of Distinct Observations	94
Raw Statistics			Log-transformed Statistics	
Minimum		0.0014	Minimum of Log Data	-6.571
Maximum		21	Maximum of Log Data	3.045
Mean		0.212	Mean of log Data	-2.732
Median		0.08	SD of log Data	1.046
SD		1.444		
Coefficient of Variation		6.808		
Skewness		12.83		
Relevant UCL Statistics				
Normal Distribution Test			Lognormal Distribution Test	
Lilliefors Test Statistic		0.466	Lilliefors Test Statistic	0.157
Lilliefors Critical Value		0.0541	Lilliefors Critical Value	0.0541
Data not Normal at 5% Significan	ce Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution			Assuming Lognormal Distribution	
95% Student's-t UCL		0.358	95% H-UCL	0.129
95% UCLs (Adjusted for Skewn	iess)		95% Chebyshev (MVUE) UCL	0.151
95% Adjusted-CLT UCL (Chen-	·1995)	0.431	97.5% Chebyshev (MVUE) UCL	0.167
95% Modified-t UCL (Johnson-1	1978)	0.369	99% Chebyshev (MVUE) UCL	0.2
Gamma Distribution Test			Data Distribution	
k star (bias corrected)		0.529	Data do not follow a Discernable Distribution (0.05)	
Theta Star		0.401		
MLE of Mean		0.212		
MLE of Standard Deviation		0.292		
nu star		283.4		
Approximate Chi Square Value (.	05)	245.4	Nonparametric Statistics	
Adjusted Level of Significance		0.0491	95% CLT UCL	0.357
Adjusted Chi Square Value		245.2	95% Jackknife UCL	0.358
54 97			95% Standard Bootstrap UCL	0.355
Anderson-Darling Test Statistic		3.73E+28	95% Bootstrap-t UCL	1.69
Anderson-Darling 5% Critical Value	ue	0.818	95% Hall's Bootstrap UCL	1.17
Kolmogorov-Smirnov Test Statisti	ic	0.342	95% Percentile Bootstrap UCL	0.373
Kolmogorov-Smirnov 5% Critical	Value	0.0589	95% BCA Bootstrap UCL	0.483
Data not Gamma Distributed at 5	% Significance Level		95% Chebyshev(Mean, Sd) UCL	0.597
			97.5% Chebyshev(Mean, Sd) UCL	0.763
Assuming Gamma Distribution			99% Chebyshev(Mean, Sd) UCL	1.09
95% Approximate Gamma UCL		0.245		
95% Adjusted Gamma UCL		0.245		
Potential UCL to Use			Use 95% Chebyshev (Mean, Sd) UCL	0.597
Note: Suggestions regarding the	selection of a 95% UC	L are provided	to help the user to select the most appropriate 95% UCI	
These recommendations are base	ed upon the results of t	the simulation	studies summarized in Singh, Singh, and Jaci (2002)	
and Singh and Singh (2003). Fo	or additional insight, the	e user may wa	nt to consult a statistician.	

	General UCL Statistics for	r Full Data	Sets	
User Selected Options				
From File	Sediment.wst			
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
Sediment Selenium				
General Statistics				52
Number of Valid Observations		19	Number of Distinct Observations	16
Raw Statistics			Log-transformed Statistics	
Minimum		0.3	Minimum of Log Data	-1.204
Maximum		4	Maximum of Log Data	1.386
Mean		2.049	Mean of log Data	0.467
Median		1.5	SD of log Data	0.807
SD		1.264		
Coefficient of Variation		0.617		
Skewness		0.168		
Relevant UCL Statistics				
Normal Distribution Test			Lognormal Distribution Test	
Shapiro Wilk Test Statistic		0.904	Shapiro Wilk Test Statistic	0.893
Shapiro Wilk Critical Value		0.901	Shapiro Wilk Critical Value	0.901
Data appear Normal at 5% Signific	ance Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution			Assuming Lognormal Distribution	
95% Student's-t UCL		2.552	95% H-UCL	3.454
95% UCLs (Adjusted for Skewne	ess)	121122212	95% Chebyshev (MVUE) UCL	4.049
95% Adjusted-CLT UCL (Chen-1	1995)	2.538	97.5% Chebyshev (MVUE) UCL	4.866
95% Modified-t UCL (Johnson-1	978)	2.554	99% Chebyshev (MVUE) UCL	6.47
Gamma Distribution Test			Data Distribution	
k star (bias corrected)		1.846	Data appear Normal at 5% Significance Level	
Theta Star		1.11		
MLE of Mean		2.049		
MLE of Standard Deviation		1.508		
nu star		70.15		
Approximate Chi Square Value (.0	15)	51.87	Nonparametric Statistics	
Adjusted Level of Significance		0.0369	95% CLT UCL	2.526
Adjusted Chi Square Value		50.5	95% Jackknife UCL	2.552
5X 07			95% Standard Bootstrap UCL	2.514
Anderson-Darling Test Statistic		0.611	95% Bootstrap-t UCL	2.573
Anderson-Darling 5% Critical Valu	e	0.751	95% Hall's Bootstrap UCL	2.53
Kolmogorov-Smirnov Test Statistic	3	0.175	95% Percentile Bootstrap UCL	2.563
Kolmogorov-Smirnov 5% Critical \	/alue	0.201	95% BCA Bootstrap UCL	2.522
Data appear Gamma Distributed a	it 5% Significance Level		95% Chebyshev(Mean, Sd) UCL	3.313
			97.5% Chebyshev(Mean, Sd) UCL	3.859
Assuming Gamma Distribution			99% Chebyshev(Mean, Sd) UCL	4.934
95% Approximate Gamma UCL		2.771		
95% Adjusted Gamma UCL		2.846		
Potential UCL to Use			Use 95% Student's-t UCL	2.552
Note: Suggestions regarding the s	election of a 95% UCL are	e provided	to help the user to select the most appropriate 95% UCL.	
These recommendations are base	d upon the results of the s	imulation	studies summarized in Singh, Singh, and laci (2002)	
and Singh and Singh (2003). Fo	r additional insight, the use	er may wa	nt to consult a statistician.	

	General UCL Statistics for	Full Data	Sets	
User Selected Options				
From File	Sediment.wst			
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
Sediment Silver				
General Statistics		-		32
Number of Valid Observations		23	Number of Distinct Observations	19
Raw Statistics			Log-transformed Statistics	
Minimum		0.007	Minimum of Log Data	-4.962
Maximum		4	Maximum of Log Data	1.386
Mean		1.421	Mean of log Data	-0.301
Median		1	SD of log Data	1.498
SD		1.305		
Coefficient of Variation		0.918		
Skewness		0.823		
Relevant UCL Statistics				
Normal Distribution Test			Lognormal Distribution Test	
Shapiro Wilk Test Statistic		0.856	Shaniro Wilk Test Statistic	0 874
Shapiro Wilk Critical Value		0.000	Shapiro Wilk Critical Value	0.014
Data not Normal at 5% Significan		0.314	Deta pet Lognarmal at 5% Significance Loval	0.514
Data not Normal at 5% Significan			Data not Lognormal at 5% Significance Lever	
Assuming Normal Distribution			Assuming Lognormal Distribution	
95% Student's-t UCL		1.889	95% H-UCL	6.406
95% UCLs (Adjusted for Skewn	iess)		95% Chebyshev (MVUE) UCL	5.514
95% Adjusted-CLT UCL (Chen-	-1995)	1.919	97.5% Chebyshev (MVUE) UCL	7.003
95% Modified-t UCL (Johnson-	1978)	1.896	99% Chebyshev (MVUE) UCL	9.928
Gamma Distribution Test			Data Distribution	
k star (bias corrected)		0.808	Data appear Gamma Distributed at 5% Significance Level	
Theta Star		1.758		
MLE of Mean		1.421		
MLE of Standard Deviation		1.581		
nu star		37,18		
Approximate Chi Square Value (05)	24.22	Nonparametric Statistics	
Adjusted Level of Significance		0 0389	95% CLT UCI	1 869
Adjusted Chi Square Value		23 46	95% Jackknife UCI	1 889
			95% Standard Bootstrap UCI	1.86
Anderson-Darling Test Statistic		0 382	95% Bootstran-t LICI	1.95
Anderson-Darling 5% Critical Val		0.775	95% Hall's Bootstrap LICI	1 887
Kolmogorov-Smirnov Test Statist	ic	0.178	95% Percentile Bootstrap LICI	1.866
Kolmogorov Smirnov F% Critical	Value	0.120	95% BCA Bootstrap UCI	1.000
Rollinogorov-Sillinov 5% Childa	ot EV/ Significance Loval	0.100	05% Chabyahay/Maan Sd) LICI	2,609
Data appear Gamma Distributed	at 5% Significance Lever		95% Chebyshev(Mean, Sd) UCL	2.000
Assuming Common Distribution			97.5% Chebyshev(Mean, Sd) UCL	3.121
Assuming Gamma Distribution		0.400	99% Chebysnev(iviean, 5d) UCL	4.129
95% Approximate Gamma UCL	5.4	2.182		
95% Adjusted Gamma UCL		2.252		
Potential UCL to Use			Use 95% Approximate Gamma UCL	2.182
Note: Suggestions regarding the These recommendations are bas and Singh and Singh (2003). Fo	selection of a 95% UCL are ed upon the results of the s or additional insight, the use	e provided imulation er may wa	to help the user to select the most appropriate 95% UCL. studies summarized in Singh, Singh, and Iaci (2002) nt to consult a statistician.	

	General UCL Statistics for	Full Data	Sets	
User Selected Options				
From File	Sediment.wst			
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
Sediment Sodium				
General Statistics				
Number of Valid Observations		19	Number of Distinct Observations	18
Raw Statistics			Log-transformed Statistics	
Minimum		2600	Minimum of Log Data	7.863
Maximum		33000	Maximum of Log Data	10.4
Mean		16520	Mean of log Data	9.449
Median		17600	SD of log Data	0.855
SD		9585		0.000
Coefficient of Variation		0.58		
Skewness		-0.177		
Relevant UCL Statistics				
Normal Distribution Test			Lognormal Distribution Test	
Shapiro Wilk Test Statistic		0.931	Shapiro Wilk Test Statistic	0.836
Shapiro Wilk Critical Value		0.901	Shapiro Wilk Critical Value	0.901
Data appear Normal at 5% Signific	cance Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution			Assuming Lognormal Distribution	
95% Student's-t UCL		20333	95% H-UCL	29774
95% UCLs (Adjusted for Skewn	ess)		95% Chebyshev (MVUE) UCL	34503
95% Adjusted-CLT UCL (Chen-	1995)	20042	97.5% Chebyshev (MVUE) UCL	41707
95% Modified-t UCL (Johnson-1	978)	20318	99% Chebyshev (MVUE) UCL	55859
Gamma Distribution Test			Data Distribution	
Gamma Distribution Test		1 760	Data Distribution	
Thete Star		0275	Data appear Normal at 5% Significance Level	
		9375		
		10520		
MLE of Standard Deviation		12445		
nu star		66.96		
Approximate Chi Square Value (.u	15)	49.13	Nonparametric Statistics	00107
Adjusted Level of Significance		0.0369	95% CLT UCL	20137
Adjusted Chi Square Value		47.79	95% Jackknife UCL	20333
			95% Standard Bootstrap UCL	20104
Anderson-Darling Test Statistic		1.008	95% Bootstrap-t UCL	20313
Anderson-Darling 5% Critical Valu	le	0.752	95% Hall's Bootstrap UCL	20027
Kolmogorov-Smirnov Test Statistic	0	0.198	95% Percentile Bootstrap UCL	20263
Kolmogorov-Smirnov 5% Critical \	/alue	0.201	95% BCA Bootstrap UCL	20089
Data follow Appr. Gamma Distribu	ition at 5% Significance Lev	rel	95% Chebyshev(Mean, Sd) UCL	26105
			97.5% Chebyshev(Mean, Sd) UCL	30253
Assuming Gamma Distribution			99% Chebyshev(Mean, Sd) UCL	38400
95% Approximate Gamma UCL		22516		
95% Adjusted Gamma UCL		23145		
Potential UCL to Use			Use 95% Student's-t UCL	20333
Note: Suggestions regarding the s	election of a 95% UCL are	provided	to help the user to select the most appropriate 95% UCL.	
These recommendations are base	ed upon the results of the si	mulation	studies summarized in Singh, Singh, and laci (2002)	
and Singh and Singh (2003). Fo	r additional insight, the use	r may wa	nt to consult a statistician.	

	General UCL Statistics for	Full Data	Sets	
User Selected Options				
From File	Sediment.wst			
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
Sediment Sulfide				
General Statistics				05
Number of Valid Observations		30	Number of Distinct Observations	25
Raw Statistics			Log-transformed Statistics	
Minimum		0.4	Minimum of Log Data	-0.916
Maximum		1300	Maximum of Log Data	7.17
Mean		164.1	Mean of log Data	4.355
Median		105	SD of log Data	1.533
SD		244.7		
Coefficient of Variation		1.491		
Skewness		3.838		
Relevant UCL Statistics				
Normal Distribution Test			Lognormal Distribution Test	
Shapiro Wilk Test Statistic		0.549	Shapiro Wilk Test Statistic	0.865
Shapiro Wilk Critical Value		0.927	Shapiro Wilk Critical Value	0.927
Data not Normal at 5% Significan	ce Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution			Assuming Lognormal Distribution	
95% Student's-t UCL		240	95% H-UCL	629.3
95% UCLs (Adjusted for Skewr	iess)		95% Chebyshev (MVUE) UCL	594.4
95% Adjusted-CLT UCL (Chen-	-1995)	271.1	97.5% Chebyshev (MVUE) UCL	750.6
95% Modified-t UCL (Johnson-	1978)	245.2	99% Chebyshev (MVUE) UCL	1058
Gamma Distribution Test			Data Distribution	
k star (bias corrected)		0.739	Data do not follow a Discernable Distribution (0.05)	
Theta Star		222		
MLE of Mean		164.1		
MLE of Standard Deviation		190.9		
nu star		44.35		
Approximate Chi Square Value (.	05)	30.07	Nonparametric Statistics	
Adjusted Level of Significance		0.041	95% CLT UCL	237.6
Adjusted Chi Square Value		29.39	95% Jackknife UCL	240
20° 07			95% Standard Bootstrap UCL	236.6
Anderson-Darling Test Statistic		0.847	95% Bootstrap-t UCL	361.8
Anderson-Darling 5% Critical Val	ue	0.785	95% Hall's Bootstrap UCL	555.4
Kolmogorov-Smirnov Test Statist	ic	0.175	95% Percentile Bootstrap UCL	244.9
Kolmogorov-Smirnov 5% Critical	Value	0.166	95% BCA Bootstrap UCL	294.9
Data not Gamma Distributed at 5	% Significance Level		95% Chebyshev(Mean, Sd) UCL	358.9
			97.5% Chebyshev(Mean, Sd) UCL	443.2
Assuming Gamma Distribution			99% Chebyshev(Mean, Sd) UCL	608.7
95% Approximate Gamma UCL	5.	242		
95% Adjusted Gamma UCL		247.6		
Potential UCL to Use			Use 95% Chebyshev (Mean, Sd) UCL	358.9
Note: Suggestions regarding the	selection of a 95% UCL are j	orovided	to help the user to select the most appropriate 95% UCL.	
These recommendations are bas	ed upon the results of the sir	nulation	studies summarized in Singh, Singh, and laci (2002)	
and Singh and Singh (2003). Fo	or additional insight, the user	may wa	nt to consult a statistician.	

	General UCL Statistics	for Full Data	Sets	
User Selected Options				
From File	Sediment.wst			
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
0 360 M				
Sediment Thallium				
General Statistics				
Number of Valid Observations		19	Number of Distinct Observations	16
Raw Statistics			Log-transformed Statistics	
Minimum		0.02	Minimum of Log Data	-3.912
Maximum		5.82	Maximum of Log Data	1.761
Mean		2.181	Mean of log Data	0.244
Median		2.5	SD of log Data	1.424
SD		1.598		
Coefficient of Variation		0.733		
Skewness		0.411		
Relevant UCL Statistics				
Normal Distribution Test			Lognormal Distribution Test	
Shapiro Wilk Test Statistic		0.932	Shapiro Wilk Test Statistic	0.812
Shapiro Wilk Critical Value		0.901	Shapiro Wilk Critical Value	0.901
Data appear Normal at 5% Signif	icance Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution			Assuming Lognormal Distribution	
95% Student's-t UCL		2.816	95% H-UCL	10.51
95% UCLs (Adjusted for Skewr	iess)		95% Chebyshev (MVUE) UCL	8.564
95% Adjusted-CLT UCL (Chen-	-1995)	2.82	97.5% Chebyshev (MVUE) UCL	10.89
95% Modified-t UCL (Johnson-	1978)	2.822	99% Chebyshev (MVUE) UCL	15.44
Gamma Distribution Test			Data Distribution	
k star (bias corrected)		0.936	Data appear Normal at 5% Significance Level	
Theta Star		2.331		
MLE of Mean		2.181		
MLE of Standard Deviation		2.254		
nu star		35.55		
Approximate Chi Square Value (.	05)	22.91	Nonparametric Statistics	
Adjusted Level of Significance		0.0369	95% CLT UCL	2.783
Adjusted Chi Square Value		22.02	95% Jackknife UCL	2.816
			95% Standard Bootstrap UCL	2.758
Anderson-Darling Test Statistic		0.832	95% Bootstrap-t UCL	2.843
Anderson-Darling 5% Critical Val	ue	0.768	95% Hall's Bootstrap UCL	2.804
Kolmogorov-Smirnov Test Statist	ic	0.206	95% Percentile Bootstrap UCL	2.792
Kolmogorov-Smirnov 5% Critical	Value	0.204	95% BCA Bootstrap UCL	2.809
Data not Gamma Distributed at 5	% Significance Level		95% Chebyshev(Mean, Sd) UCL	3.778
			97.5% Chebyshev(Mean, Sd) UCL	4.469
Assuming Gamma Distribution			99% Chebyshev(Mean, Sd) UCL	5.827
95% Approximate Gamma UCL		3.384		
95% Adjusted Gamma UCL		3.52		
Potential UCL to Use			Use 95% Student's-t UCL	2.816
Note: Suggestions regarding the These recommendations are bas and Singh and Singh (2003). Fo	selection of a 95% UCL ed upon the results of th or additional insight, the	are provided e simulation user may wa	to help the user to select the most appropriate 95% UCL. studies summarized in Singh, Singh, and Iaci (2002) nt to consult a statistician.	

	General UCL Statistics f	or Full Data	Sets	
User Selected Options				
From File	Sediment.wst			
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
1652 20				
Sediment Vanadium				
General Statistics				
Number of Valid Observations		19	Number of Distinct Observations	18
Raw Statistics			Log-transformed Statistics	
Minimum		0.98	Minimum of Log Data	-0.0202
Maximum		100	Maximum of Log Data	4.605
Mean		54.87	Mean of log Data	3.473
Median		70	SD of log Data	1.421
SD		34.48		
Coefficient of Variation		0.628		
Skewness		-0.596		
Relevant UCL Statistics				
Normal Distribution Test		1011100	Lognormal Distribution Test	2012/07/2020/1211020
Shapiro Wilk Test Statistic		0.851	Shapiro Wilk Test Statistic	0.744
Shapiro Wilk Critical Value		0.901	Shapiro Wilk Critical Value	0.901
Data not Normal at 5% Significan	ce Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution			Assuming Lognormal Distribution	
95% Student's-t UCL		68.58	95% H-UCL	263.6
95% UCLs (Adjusted for Skewn	iess)		95% Chebyshev (MVUE) UCL	215.3
95% Adjusted-CLT UCL (Chen-	-1995)	66.72	97.5% Chebyshev (MVUE) UCL	273.6
95% Modified-t UCL (Johnson-	1978)	68.4	99% Chebyshev (MVUE) UCL	388.1
Gamma Distribution Test			Data Distribution	
k star (bias corrected)		0.942	Data do not follow a Discernable Distribution (0.05)	
Theta Star		58.25		
MLE of Mean		54.87		
MLE of Standard Deviation		56.53		
nu star		35.79		
Approximate Chi Square Value (.	05)	23.1	Nonparametric Statistics	
Adjusted Level of Significance		0.0369	95% CLT UCL	67.88
Adjusted Chi Square Value		22.21	95% Jackknife UCL	68.58
			95% Standard Bootstrap UCL	67.5
Anderson-Darling Test Statistic		2.01	95% Bootstrap-t UCL	67.11
Anderson-Darling 5% Critical Val	ue	0.767	95% Hall's Bootstrap UCL	65.84
Kolmogorov-Smirnov Test Statist	ic	0.328	95% Percentile Bootstrap UCL	67.01
Kolmogorov-Smirnov 5% Critical	Value	0.204	95% BCA Bootstrap UCL	66.59
Data not Gamma Distributed at 5	% Significance Level		95% Chebyshev(Mean, Sd) UCL	89.35
			97.5% Chebyshev(Mean, Sd) UCL	104.3
Assuming Gamma Distribution			99% Chebyshev(Mean, Sd) UCL	133.6
95% Approximate Gamma UCL	-2	85		
95% Adjusted Gamma UCL		88.41		
Potential UCL to Use			Use 95% Chebyshev (Mean, Sd) UCL	89.35
Note: Suggestions regarding the	selection of a 95% UCL a	re provided	to help the user to select the most appropriate 95% UCL.	
These recommendations are bas	ed upon the results of the	simulation	studies summarized in Singh, Singh, and laci (2002)	
and Singh and Singh (2003). For	or additional insight, the u	ser may wa	nt to consult a statistician.	

<u></u>	General LICL Statistics	for Full Data	Sete	
I Iser Selected Ontions	General OCL Statistics	s for i un Data		
From File	Sedimentwet			
Full Provision	OFF			
Confidence Coofficient	05%			
Number of Beststern Orecetions	30/0			
Number of Bootstrap Operations	2000			
Sediment Zinc				
General Statistics				
Number of Valid Observations		23	Number of Distinct Observations	22
Raw Statistics			Log-transformed Statistics	
Minimum		1.8	Minimum of Log Data	0.588
Maximum		93	Maximum of Log Data	4 533
Mean		49 77	Mean of log Data	3 4 3 7
Median		64	SD of log Data	1 279
		32.36	SD of log Data	1.275
Coefficient of Variation		0.65		
Coefficient of Variation		0.05		
Skewness		-0.501		
Relevant UCL Statistics				
Normal Distribution Test			Lognormal Distribution Test	
Shapiro Wilk Test Statistic		0.874	Shapiro Wilk Test Statistic	0.778
Shapiro Wilk Critical Value		0.914	Shapiro Wilk Critical Value	0.914
Data not Normal at 5% Significan	ce Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution			Accuming Lognormal Distribution	
05% Student's t UC		61.25		156
95% Student S-LOCE		01.55		157 7
95% OCLS (Adjusted for Skewin	(ess)	60.44	95% Chebyshev (MVUE) UCL	107.7
95% Adjusted-CLT OCL (Chen-	1995)	00.41		197.2
95% Modified-t UCL (Johnson-	1978)	61.28	99% Chebysnev (MVUE) UCL	274.9
Gamma Distribution Test			Data Distribution	
k star (bias corrected)		1.075	Data do not follow a Discernable Distribution (0.05)	
Theta Star		46.3		
MLE of Mean		49.77		
MLE of Standard Deviation		48		
nu star		49.44		
Approximate Chi Square Value (.)	05)	34.3	Nonparametric Statistics	
Adjusted Level of Significance		0 0389	95% CLT UCI	60 86
Adjusted Chi Square Value		33 38	95% Jackknife UCI	61 35
			95% Standard Bootstrap UCI	60.87
Anderson-Darling Test Statistic		1 613	95% Bootstran-t UCI	60.64
Anderson-Darling 5% Critical Value	(IA)	0 766	95% Hall's Bootstran LICI	60.39
Kolmogorov-Smirnov Test Statist	ic ic	0.75	95% Percentile Bootstran LICI	60.62
Kolmogorov-Smirnov 5% Critical	Value	0.275	95% BCA Bootstran LICI	60.8
Data not Gamma Distributed at 5	% Significance Lovel	0.100	95% Chebyshey/Mean, Sd) LICI	70.19
Data not Gamina Distributed at 5	/0 Significance Level		07.5% Chebyshev(Mean, Sd) UCL	79.10
Assuming Commo Distribution			00% Chebyshev(Mean, Sd) UCL	116.0
Assuming Gamma Distribution		74 74	35% Chebysnev(iviean, 50) UCL	110.9
95% Approximate Gamma UCL		/1./4		
95% Adjusted Gamma UCL		13.1		
Potential UCL to Use			Use 95% Chebyshev (Mean, Sd) UCL	79.18
Note: Suggestions regarding the	selection of a 95% UCI	are provided	to help the user to select the most appropriate 95% UCI	
These recommendations are bas	ed upon the results of th	e simulation	studies summarized in Singh, Singh, and Iaci (2002)	
and Singh and Singh (2003). Fo	or additional insight, the	user may wa	nt to consult a statistician.	
A STATE AND A STAT				

General UCL Statistics for	ull Data Sets	
User Selected Options		
From File C:\Documents and Settin	pit60500\Desktop\ProUCL\Sheep	shead\Sheepshead Data.wst
Full Precision OFF		
Confidence Coefficient 95%		
Number of Bootstrap Operations 2000		
Sheepshead Aroclor-1268		
General Statistics		
Number of Valid Observations	8 Number of Distinct Observa	ations 8
Raw Statistics	Log-transformed Statistics	
Minimum	0.16 Minimum of Log Data	-1.833
Maximum	0.858 Maximum of Log Data	-0.153
Mean	0.432 Mean of log Data	-1.047
Median	0.289 SD of log Data	0.689
SD	0.296	
Coefficient of Variation	0.684	
Skewness	0.724	
Warning: There are only 8 Values in this data Note: It should be noted that even though bootstrap method the resulting calculations may not be reliable enough to draw	nay be performed on this data set onclusions	c.
The literature suggests to use bootstrap methods on data se	having more than 10-15 observation	ons.
Relevant UCL Statistics		
Normal Distribution Test	Lognormal Distribution Test	t
Shapiro Wilk Test Statistic	0.817 Shapiro Wilk Test Statistic	0.879
Shapiro Wilk Critical Value	0.818 Shapiro Wilk Critical Value	0.818
Data not Normal at 5% Significance Level	Data appear Lognormal at	5% Significance Level
Assuming Normal Distribution	Assuming Lognormal Distri	bution
95% Student's-t UCI	0.63 95% H-UCI	0.902
95% UCLs (Adjusted for Skewness)	95% Chebyshev (MVUE)	UCI 0.894
95% Adjusted-CLT UCL (Chen-1995)	0.633 97.5% Chebyshev (MVUE)	UCI 1.095
95% Modified-t UCL (Johnson-1978)	0.635 99% Chebyshev (MVUE)	UCL 1.489
Gamma Distribution Test	Data Distribution	
k star (bias corrected)	1 681 Data appear Gamma Distril	outed at 5% Significance Level
Theta Star	0 257	
MI E of Mean	0.432	
MI E of Standard Deviation	0 334	
nu star	26.89	
Approximate Chi Square Value (.05)	16.07 Nonparametric Statistics	
Adjusted Level of Significance	.0195 95% CLT UCL	0.604
Adjusted Chi Square Value	13.99 95% Jackknife UCL	0.63
	95% Standard Bootstrap	UCL 0.593
Anderson-Darling Test Statistic	0.553 95% Bootstrap-t UCL	0.714
Anderson-Darling 5% Critical Value	0.723 95% Hall's Bootstrap UCI	0.581
Kolmogorov-Smirnov Test Statistic	0 215 95% Percentile Bootstran	UCI 0.591
Kolmogorov-Smirnov 5% Critical Value	0 297 95% BCA Bootstran UCI	0.611
Data appear Gamma Distributed at 5% Significance Level	95% Chebyshev(Mean_Sd)	0.888
Bata appear Gamma Distributed at 676 olgrinioarioe Lever	97.5% Chebyshev(Mean, S	id) UCL 1.085
Assuming Gamma Distribution	99% Chebyshev(Mean Sd)	UCL 1.472
95% Approximate Gamma UCI	0 724	
95% Adjusted Gamma UCL	0.831	
Potential UCL to Use	Use 95% Approximate Gan	nma UCL 0.724
Note: Suggestions regarding the colorities of a 05% LICI	revided to help the weet to as less th	he most eppropriate QE% LICI
INOTE: Suggestions regarding the selection of a 95% UCL are	ovided to help the user to select the	ne most appropriate 95% UCL.
I nese recommendations are based upon the results of the s	ulation studies summarized in Sing	gn, Singn, and laci (2002)
and Singh and Singh (2003). For additional insight, the us	nay want to consult a statistician.	

G	eneral UCL Statistics for Full Da	ta Sets	
User Selected Options			
From File C	:\Documents and Settings\pit605	500\Desktop\ProUCL\Sheepshead\Sheepshead Data.wst	
Full Precision C)FF		
Confidence Coefficient	95%		
Number of Bootstrap Operations	2000		
Channel Conner			
Sheepshead Copper			
General Statistics			
Number of Valid Observations	7	Number of Distinct Observations	7
Raw Statistics		Log-transformed Statistics	
Minimum	3.12	Minimum of Log Data	1.138
Maximum	4.84	Maximum of Log Data	1.577
Mean	3.927	Mean of log Data	1.356
Median	3.92	SD of log Data	0.166
SD	0.645	-	
Coefficient of Variation	0.164		
Skewness	0.0687		
Warning: A sample size of 'n' = 7 ma It is suggested to collect at least 8 to	ay not adequate enough to comp o 10 observations using these sta	ute meaningful and reliable test statistics and estimates! atistical methods!	
Warning: There are only 7 Values ir Note: It should be noted that even the the resulting calculations may not be	n this data hough bootstrap methods may b e reliable enough to draw conclus	e performed on this data set, sions	
The literature suggests to use boots	trap methods on data sets having	g more than 10-15 observations.	
Relevant UCL Statistics			
Normal Distribution Test		Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.956	Shapiro Wilk Test Statistic	0.951
Shapiro Wilk Critical Value	0.803	Shapiro Wilk Critical Value	0.803
Data appear Normal at 5% Significa	nce Level	Data appear Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	4.401	95% H-UCL	4.49
95% UCLs (Adjusted for Skewnes	s)	95% Chebyshev (MVUE) UCL	5.003
95% Adjusted-CLT UCL (Chen-19	95) 4.335	97.5% Chebyshev (MVUE) UCL	5.469
95% Modified-t UCL (Johnson-197	78) 4.402	99% Chebyshev (MVUE) UCL	6.383
Gamma Distribution Test		Data Distribution	
k star (bias corrected)	24 53	Data appear Normal at 5% Significance Level	
Theta Star	0.16		
MI E of Mean	3 927		
MLE of Standard Deviation	0 793		
nu star	343.4		
Approximate Chi Square Value (05)) 301.4	Nonparametric Statistics	
Adjusted Level of Significance	0.0158	95% CLT UCL	4.328
Adjusted Chi Square Value	289.5	95% Jackknife UCL	4,401
	200.0	95% Standard Bootstrap UCL	4.307
Anderson-Darling Test Statistic	0 228	95% Bootstrap-t UCL	4.407
Anderson-Darling 5% Critical Value	0 707	95% Hall's Bootstrap UCL	4.342
Kolmogorov-Smirnov Test Statistic	0 172	95% Percentile Bootstrap UCI	4.311
Kolmogorov-Smirnov 5% Critical Val	lue 0.311	95% BCA Bootstrap UCL	4.313
Data appear Gamma Distributed at	5% Significance Level	95% Chebyshev(Mean_Sd) UCI	4 991
appear our nu biotriouted at a	ene englimeentee Level	97.5% Chebyshev(Mean, Sd) UCI	5 451
Assuming Gamma Distribution		99% Chebyshev(Mean, Sd) UCI	6 355
95% Approximate Gamma LICI	1 171		0.000
95% Adjusted Gamma UCL	4.658		
Potential UCL to Use		Use 95% Student's-t UCL	4.401
Note: Suggestions regarding the col-	ection of a 95% LICL are provide	d to help the user to select the most appropriate 95% LICL	
These recommendations are based and Singh and Singh (2003). For a	upon the results of the simulation additional insight, the user may w	n studies summarized in Singh, Singh, and Iaci (2002) rant to consult a statistician.	

General UCL Statistics f	for Full Data Sets	
User Selected Options		
From File C:\Documents and Setti	ings\pit60500\Desktop\ProUCL\Sheepshead\Sheepshead Data.wst	
Full Precision OFF		
Confidence Coefficient 95%		
Number of Bootstrap Operations 2000		
Sheepshead Mercury		
Consul Statistics		
Number of Valid Observations	8 Number of Distinct Observations	8
Raw Statistics	Log-transformed Statistics	
Minimum	0.263 Minimum of Log Data	-1.337
Maximum	0.448 Maximum of Log Data	-0.803
Mean	0.334 Mean of log Data	-1.11
Median	0.33 SD of log Data	0.167
SD	0.0578	
Coefficient of Variation	0.173	
Skewness	0.946	
Warning: There are only 8 Values in this data		
Note: It should be noted that even though bootstrap metho the resulting calculations may not be reliable enough to dra	as may be performed on this data set, aw conclusions	
The literature suggests to use bootstrap methods on data s	sets having more than 10-15 observations.	
Relevant UCL Statistics		
Normal Distribution Test	Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.937 Shapiro Wilk Test Statistic	0.965
Shapiro Wilk Critical Value	0.818 Shapiro Wilk Critical Value	0.818
Data appear Normal at 5% Significance Level	Data appear Lognormal at 5% Significance Level	
Assuming Normal Distribution	Assuming Lognormal Distribution	
95% Student's-t UCL	0.372 95% H-UCL	0.377
95% UCLs (Adjusted for Skewness)	95% Chebyshev (MVUE) UCL	0.42
95% Adjusted-CLT UCL (Chen-1995)	0.375 97.5% Chebyshev (MVUE) UCL	0.457
95% Modified-t UCL (Johnson-1978)	0.374 99% Chebyshev (MVUE) UCL	0.53
Gamma Distribution Test	Data Distribution	
k star (bias corrected)	25.21 Data appear Normal at 5% Significance Level	
Theta Star	0.0132	
MLE of Mean	0.334	
MLE of Standard Deviation	0.0665	
nu star	403.4	
Approximate Chi Square Value (.05)	357.8 Nonparametric Statistics	
Adjusted Level of Significance	0.0195 95% CLT UCL	0.367
Adjusted Chi Square Value	346.9 95% Jackknife UCL	0.372
an tag 🗸 ang a pang ang ang ang ang ang ang ang ang ang	95% Standard Bootstrap UCL	0.365
Anderson-Darling Test Statistic	0.223 95% Bootstrap-t UCL	0.384
Anderson-Darling 5% Critical Value	0.715 95% Hall's Bootstrap UCL	0.4
Kolmogorov-Smirnov Test Statistic	0.146 95% Percentile Bootstrap UCL	0.366
Kolmogorov-Smirnov 5% Critical Value	0.294 95% BCA Bootstrap UCL	0.371
Data appear Gamma Distributed at 5% Significance Level	95% Chebyshev(Mean, Sd) UCL	0.423
	97.5% Chebyshev(Mean, Sd) UCL	0.461
Assuming Gamma Distribution	99% Chebyshev(Mean, Sd) UCL	0.537
95% Approximate Gamma UCI	0.376	
95% Adjusted Gamma UCL	0.388	
Potential UCL to Use	Use 95% Student's-t UCL	0.372
Note: Suggestions recording the substitut of a OFW LICE	the provided to help the uper to colort the most encountries (COV UP)	
INOTE: Suggestions regarding the selection of a 95% UCL a	re provided to help the user to select the most appropriate 95% UCL.	
These recommendations are based upon the results of the	simulation studies summarized in Singh, Singh, and Iaci (2002)	
and Singh and Singh (2003). For additional insight, the us	ser may want to consult a statistician.	

General UCL Statistics	or Full Data Sets			
User Selected Options				
From File C:\Documents and Sett	ngs\pit60500\Desktop\ProUCL\Sheepshead\Sheepshead Dat	a.wst		
Full Precision OFF				
Confidence Coefficient 95%				
Number of Bootstrap Operations 2000				
Sheepshead Zinc				
Or manual Chattantian				
Number of Valid Observations	7 Number of Distinct Observations	7		
Raw Statistics	Log-transformed Statistics			
Minimum	5 Minimum of Log Data	1.609		
Maximum	9.24 Maximum of Log Data	2.224		
Mean	6.871 Mean of log Data	1.909		
Median	6.38 SD of log Data	0.206		
SD Opefficient of Veription	1,442			
Coefficient of Variation	0.21			
Skewiless	0.045			
Warning: A sample size of 'n' = 7 may not adequate enoug	h to compute meaningful and reliable test statistics and estim	ates!		
It is suggested to collect at least 8 to 10 observations using	these statistical methods!			
If possible compute and collect Data Quality Objectives (D	2O) based sample size and analytical results.			
Warning: There are only 7 Values in this data	do may be performed on this data act			
the resulting calculations may not be reliable enough to dra	w conclusions			
The literature suggests to use bootstrap methods on data	ets having more than 10-15 observations.			
Relevant UCL Statistics				
Normal Distribution Test	Lognormal Distribution Test			
Shapiro Wilk Test Statistic	0.948 Shapiro Wilk Test Statistic	0.969		
Shapiro Wilk Critical Value	0.803 Shapiro Wilk Critical Value	0.803		
Data appear Normal at 5% Significance Level	Data appear Lognormal at 5% Significance Level			
Assuming Normal Distribution	Assuming Lognormal Distribution			
95% Student's-t UCL	7.93 95% H-UCL	8.154		
95% UCLs (Adjusted for Skewness)	95% Chebyshev (MVUE) UCL	9.203		
95% Adjusted-CLT UCL (Chen-1995)	7.91 97.5% Chebyshev (MVUE) UCL	10.21		
95% Modified-t UCL (Johnson-1978)	7.953 99% Chebyshev (MVUE) UCL	12.2		
Gamma Distribution Test	Data Distribution			
k star (bias corrected)	15.75 Data appear Normal at 5% Significance Level			
Theta Star	0.436			
MLE of Mean	6.871			
MLE of Standard Deviation	1.732			
nu star	220.5			
Approximate Chi Square Value (.05)	187.1 Nonparametric Statistics	7 700		
Adjusted Level of Significance	0.0158 95% CLT UCL	7.768		
Aujusteu Oni Square value	177.0 95% Jackknite UCL 05% Standard Postatron LICI	7.93		
Anderson-Darling Test Statistic	0.253 95% Bootstrap t UCL	2.71		
Anderson-Darling 5% Critical Value	0.200 95% Hall's Rootstran LICI	0.022		
Kolmogorov-Smirnov Test Statistic	0.197 95% Percentile Bootstran LICI	7 713		
Kolmogorov-Smirnov 5% Critical Value	0.311 95% BCA Bootstran UCI	7 887		
Data appear Gamma Distributed at 5% Significance Level	95% Chebyshev(Mean, Sd) UCI	9.247		
PP	97.5% Chebyshev(Mean, Sd) UCL	10.27		
Assuming Gamma Distribution	99% Chebyshev(Mean, Sd) UCL	12.29		
95% Approximate Gamma UCL	8.097			
95% Adjusted Gamma UCL	8.521			
Potential UCL to Use	Use 95% Student's-t UCL	7.93		
Note: Suggestions regarding the selection of a 95% UCL a	re provided to help the user to select the most appropriate 95	% UCL.		
These recommendations are based upon the results of the	simulation studies summarized in Singh, Singh, and Iaci (200)2)		
and Singh and Singh (2003). For additional insight, the u	ser may want to consult a statistician.			
	General UCL Statistics for	or Full Da	ta Sets	
--	-------------------------------	------------	---	--------
User Selected Options				
From File	SouFlounder.wst			
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
Southern Flounder Aroclor-1268				
General Statistics				
Number of Valid Observations		11	Number of Distinct Observations	6
Raw Statistics			Log-transformed Statistics	
Minimum		0.026	Minimum of Log Data	-3.65
Maximum		0.408	Maximum of Log Data	-0.896
Mean		0.143	Mean of log Data	-2.136
Median		0.1	SD of log Data	0.674
SD		0.0998		
Coefficient of Variation		0.696		
Skewness		2.042		
Relevant UCL Statistics				
Normal Distribution Test		0 740	Lognormal Distribution Test	0.050
Shapiro Wilk Test Statistic		0.748	Shapiro Wilk Test Statistic	0.853
Shapiro Wilk Critical Value		0.85	Shapiro Wilk Critical Value	0.85
Data not Normal at 5% Significan			Data appear Lognormal at 5% Significance Level	
Assuming Normal Distribution			Assuming Lognormal Distribution	
95% Student's-t UC		0 198	95% H-LICI	0 249
95% LICLs (Adjusted for Skewr		0.190	95% Chebyshev (MV/LE) LICI	0.278
95% Adjusted-CLT UCL (Chen	-1995)	0 213	97 5% Chebyshev (MVUE) UCI	0.335
95% Modified-t UCL (Johnson-	1978)	0.210	99% Chebyshev (MVUE) UCI	0.448
		0.201		0.110
Gamma Distribution Test			Data Distribution	
k star (bias corrected)		2.053	Data appear Lognormal at 5% Significance Level	
Theta Star		0.0698		
MLE of Mean		0.143		
MLE of Standard Deviation		0.1		
nu star		45.18		
Approximate Chi Square Value (.	05)	30.76	Nonparametric Statistics	
Adjusted Level of Significance		0.0278	95% CLT UCL	0.193
Adjusted Chi Square Value		28.83	95% Jackknife UCL	0.198
ANT IS REAL HART MADE TO DETAILS ADDRESS			95% Standard Bootstrap UCL	0.19
Anderson-Darling Test Statistic		0.876	95% Bootstrap-t UCL	0.239
Anderson-Darling 5% Critical Val	ue	0.735	95% Hall's Bootstrap UCL	0.422
Kolmogorov-Smirnov Test Statist		0.275	95% Percentile Bootstrap UCL	0.193
Kolmogorov-Smirnov 5% Critical	Value	0.257	95% BCA Bootstrap UCL	0.206
Data not Gamma Distributed at 5	% Significance Level		95% Chebyshev(Mean, Sd) UCL	0.275
Assuming Commo Distribution			97.5% Chebyshev(Mean, Sd) UCL	0.331
Assuming Gamma Distribution		0 211	99% Chebysnev(Mean, Sd) UCL	0.445
95% Adjusted Camma LICI	-	0.211		
55% Adjusted Gamma OCE		0.225		
Potential UCL to Use			Use 95% H-UCI	0 249
				0.240
ProUCL computes and outputs H	-statistic based UCLs for h	istorical	reasons only.	
H-statistic often results in unstabl	e (both high and low) value	es of UCI	L95 as shown in examples in the Technical Guide.	
It is therefore recommended to av	void the use of H-statistic b	ased 95	% UCLs.	
Use of nonparametric methods a	re preferred to compute UC	CL95 for	skewed data sets which do not follow a gamma distribution.	
(21)	a: 12		-	
Note: Suggestions regarding the	selection of a 95% UCL ar	e provide	ed to help the user to select the most appropriate 95% UCL.	
These recommendations are bas	ed upon the results of the	simulatio	n studies summarized in Singh, Singh, and laci (2002)	
and Singh and Singh (2003). Fo	or additional insight, the us	er may w	vant to consult a statistician.	

General UCL Statistics	for Full Data Sets	
User Selected Options		
From File C:\Documents and Se	tings\pit60500\Desktop\ProUCL\Southern Flounder\	Southern Flounder Data.wst
Full Precision OFF		
Confidence Coefficient 95%		
Number of Bootstrap Operations 2000		
Southern Flounder Copper		
General Statistics		
Number of Valid Observations	9 Number of Distinct Observations	6
Raw Statistics	Log-transformed Statistics	
Minimum	2.52 Minimum of Log Data	0.924
Maximum	3.45 Maximum of Log Data	1.238
Mean	2.911 Mean of log Data	1.063
Median	2.76 SD of log Data	0.115
SD	0.338	
Coefficient of Variation	0.116	
Skewness	0.413	
Warning: There are only 9 Values in this data Note: It should be noted that even though bootstrap met the resulting calculations may not be reliable enough to d	nods may be performed on this data set, raw conclusions	
The literature suggests to use bootstrap methods on data	sets having more than 10-15 observations.	
Palavant LICI. Statistics		
Normal Distribution Test	Lognormal Distribution Tost	
Chaniza Wilk Test Statistic	0.974 Charica Wilk Test Statistic	0.077
Shapiro Wilk Cetter Malue	0.074 Shapiro Wilk Test Statistic	0.877
Data appear Namel at 5% Significance Loval	0.629 Shapiro Wilk Childar Value	0.629
Data appear Normal at 5% Significance Level	Data appear Lognormal at 5% Significan	ce Level
Assuming Normal Distribution	Assuming Lognormal Distribution	
95% Student's-t UCL	3.121 95% H-UCL	3.138
95% UCLs (Adjusted for Skewness)	95% Chebyshev (MVUE) UCL	3.397
95% Adjusted-CLT UCL (Chen-1995)	3.113 97.5% Chebyshev (MVUE) UCL	3.607
95% Modified-t UCL (Johnson-1978)	3.123 99% Chebyshev (MVUE) UCL	4.02
Gamma Distribution Test	Data Distribution	
k star (bias corrected)	56.63 Data appear Normal at 5% Significance	Level
Theta Star	0.0514	
MLE of Mean	2.911	
MLE of Standard Deviation	0.387	
nu star	1019	
Approximate Chi Square Value (.05)	946.2 Nonparametric Statistics	
Adjusted Level of Significance	0.0231 95% CLT UCL	3.097
Adjusted Chi Square Value	931.2 95% Jackknife UCL	3.121
	95% Standard Bootstrap UCL	3.085
Anderson-Darling Test Statistic	0.646 95% Bootstrap-t UCI	3 14
Anderson-Darling 5% Critical Value	0.72 95% Hall's Bootstran LICI	3.065
Kolmogorov-Smirnov Test Statistic	0.247 95% Percentile Bootstran LICI	3.003
Kolmogorov-Smirnov 5% Critical Value	0.279 95% BCA Bootstrap LICL	2.1
Data appear Camma Distributed at 50/ Significance Law	0.278 00% Don Donstrap OOL	2.102
Data appear Gamma Distributed at 5% Significance Leve	a 95% Chebysnev(iviean, Sd) UCL	3.403
	97.5% Chebyshev(Mean, Sd) UCL	3.615
Assuming Gamma Distribution	99% Chebysnev(Mean, Sd) UCL	4.033
95% Approximate Gamma UCL 95% Adjusted Gamma UCL	3.136 3.186	
Potential UCL to Use	Use 95% Student's-t UCL	3.121
Note: Suggestions regarding the selection of a 95% UCL	are provided to help the user to select the most appr	opriate 95% UCL.

General UCL Statistics	for Full Da	ita Sets	
User Selected Options			
From File C:\Documents and Sett	ings\pit60	500\Desktop\ProUCL\Southern Flounder\Southern Flounder L	Jata.wst
Full Precision OFF			
Confidence Coefficient 95%			
Number of Bootstrap Operations 2000			
Southern Flounder Mercury			
General Statistics			
Number of Valid Observations	11	Number of Distinct Observations	10
Raw Statistics		Log-transformed Statistics	
Minimum	0.198	Minimum of Log Data	-1.618
Maximum	0.315	Maximum of Log Data	-1.155
Mean	0.238	Mean of log Data	-1.443
Median	0.23	SD of log Data	0.134
SD	0.0335		
Coefficient of Variation	0.141		
Skewness	1.242		
Relevant UCL Statistics			
Normal Distribution Test		Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.908	Shapiro Wilk Test Statistic	0.942
Shapiro Wilk Critical Value	0.85	Shapiro Wilk Critical Value	0.85
Data appear Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	0.257	95% H-UCL	0.257
95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCL	0.28
95% Adjusted-CLT UCL (Chen-1995)	0.259	97.5% Chebyshev (MVUE) UCL	0.298
95% Modified-t UCL (Johnson-1978)	0.257	99% Chebyshev (MVUE) UCL	0.334
Gamma Distribution Test		Data Distribution	
k star (bias corrected)	43.53	Data appear Normal at 5% Significance Level	
Theta Star	0.00547		
MLE of Mean	0.238		
MLE of Standard Deviation	0.0361		
nu star	957.8		
Approximate Chi Square Value (.05)	886.9	Nonparametric Statistics	
Adjusted Level of Significance	0.0278	95% CLT UCL	0.255
Adjusted Chi Square Value	875 8	95% Jackknife UCI	0 257
and Annalised Annalised Annalised		95% Standard Bootstrap UCI	0 254
Anderson-Darling Test Statistic	0.332	95% Bootstrap-t UCL	0.264
Anderson-Darling 5% Critical Value	0 728	95% Hall's Bootstran UCI	0.283
Kolmogorov-Smirnov Test Statistic	0.120	95% Percentile Bootstran LICI	0.255
Kolmogorov-Smirnov 5% Critical Value	0.10	05% BCA Bootetran LICI	0.255
Data appear Camma Distributed at 50/ Significance Level	0.200	05% Chebyshey (Mean Sd) UC	0.239
Data appear Gamma Distributed at 5% Significance Level		07 EV Chabyshev/Maan Cd/ UCL	0.202
Assuming Commo Distribution		97.5% Chebyshev(Mean, Sd) UCL	0.301
Assuming Gamma Distribution	0 0 5 7	99% Chebysnev(Mean, Sd) UCL	0.339
95% Approximate Gamma UCL 95% Adjusted Gamma UCI	0.257		
	0.201		
Potential UCL to Use		Use 95% Student's-t UCL	0.257
Note: Suggestions regarding the selection of a 95% UCL a	are provide	ed to help the user to select the most appropriate 95% UCL.	
These recommendations are based upon the results of the	e simulatio	n studies summarized in Singh, Singh, and laci (2002)	
and Singh and Singh (2003). For additional insight, the u	iser may v	vant to consult a statistician.	

General UCL Statistics for	or Full Data Sets	
User Selected Options		
From File C:\Documents and Settin	ngs\pit60500\Desktop\ProUCL\Southern Flounder\Southern Flounder	er Data.wst
Full Precision OFF		
Confidence Coefficient 95%		
Number of Bootstrap Operations 2000		
Southern Flounder Zinc		
General Statistics		
Number of Valid Observations	9 Number of Distinct Observations	8
Raw Statistics	Log-transformed Statistics	
Minimum	5.88 Minimum of Log Data	1.772
Maximum	8.64 Maximum of Log Data	2.156
Mean	7.198 Mean of log Data	1.964
Median	6.93 SD of log Data	0.148
SD	1.069	
Coefficient of Variation	0.148	
Skewness	0.222	
(b) Manual (1990) Control (1990)		
Warning: There are only 9 Values in this data		
Note: It should be noted that even though bootstrap metho	ds may be performed on this data set,	
the resulting calculations may not be reliable enough to dra	w conclusions	
The literature suggests to use bootstrap methods on data s	ets having more than 10-15 observations.	
Relevant UCL Statistics		
Normal Distribution Test	Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.899 Shapiro Wilk Test Statistic	0.905
Shapiro Wilk Critical Value	0.829 Shapiro Wilk Critical Value	0.829
Data appear Normal at 5% Significance Level	Data appear Lognormal at 5% Significance Level	
Assuming Normal Distribution	Assuming Lognormal Distribution	
95% Student's-t LICI	7 86 95% H-LICI	7 944
95% LICLs (Adjusted for Skewness)	95% Chebysbey (MV/UE) LICI	8 740
95% Adjusted-CLT LICL (Chen-1995)	7 812 97 5% Chebyshev (MVUE) UCI	9.42
95% Modified-t UCL (Johnson-1978)	7.865 99% Chebyshev (MVUE) UCL	10.74
Common Distribution Toot		
Gamma Distribution Test	24.22 Data appear Nermal at 5% Significance Level	
Thete Char	0.01	
I neta Star	7.108	
MLE of Standard Doviation	1.190	
	617.7	
Approximate Chi Sauare Value (05)	561 Nonnorometric Statistics	
Adjusted Level of Significance		7 794
Adjusted Level of Significance	540.6 05% lookknife LICI	7.04
Adjusted Chi Square Value	549.0 95% Jackknile UCL 95% Standard Poststran LICI	7.00
Anderson Darling Tast Statistic	95% Standard Boolstrap UCL	7.700
Anderson-Darling Test Statistic	0.44 95% Boolstrap-LOCL	7.003
Anderson-Darling 5% Critical Value	0.721 95% Hall's Bootstrap UCL	7.099
Kolmogorov-Smirnov Test Statistic	0.214 95% Percentile Bootstrap UCL	7.758
Rolmogorov-Smirnov 5% Critical value	0.279 95% BCA Bootstrap UCL	7.784
Data appear Gamma Distributed at 5% Significance Level	95% Chebyshev(Mean, Sd) UCL	8.751
Assuming Commo Distribution	97.5% Chebyshev(Mean, Sd) UCL	9.423
	59% Chebysnev(Mean, Sd) UCL	10.74
95% Adjusted Gamma UCL	2.925 8.080	
95% Adjusted Gamma OCE	0.009	
Potential UCL to Use	Use 95% Student's-t UCL	7.86
Note: Suggestions regarding the selection of a 95% UCL ar	re provided to help the user to select the most appropriate 95% UCI	
These recommendations are based upon the results of the	simulation studies summarized in Singh, Singh, and Iaci (2002)	
and Singh and Singh (2003). For additional insight, the us	ser may want to consult a statistician.	

General UCL Statist	tics for Full Da	ta Sets	
User Selected Options			
From File C:\Documents and S	Settings\pit605	500\Desktop\ProUCL\Southern Kingfish\Southern Kingfis	sh Data.wst
Full Precision OFF			
Confidence Coefficient 95%			
Number of Bootstrap Operations 2000			
Southern Kingfish Aroclor-1268			
General Statistics			
Number of Valid Observations	12	Number of Distinct Observations	12
Raw Statistics		Log-transformed Statistics	
Minimum	0.1	Minimum of Log Data	-2.303
Maximum	1.344	Maximum of Log Data	0.296
Mean	0.506	Mean of log Data	-1.02
Median	0.39	SD of log Data	0.901
SD	0.404		
Coefficient of Variation	0 798		
Skewness	0.813		
Balavant LICL Statistics			
Relevant UCL Statistics			
Normal Distribution Test		Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.884	Shapiro Wilk Test Statistic	0.922
Shapiro Wilk Critical Value	0.859	Shapiro Wilk Critical Value	0.859
Data appear Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	0.716	95% H-UCL	1.137
95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCL	1.14
95% Adjusted-CLT UCL (Chen-1995)	0.728	97.5% Chebyshev (MVUE) UCL	1.409
95% Modified-t UCL (Johnson-1978)	0.72	99% Chebyshev (MVUE) UCL	1.937
Gamma Distribution Test		Data Distribution	
k star (bias corrected)	1 268	Data appear Normal at 5% Significance Level	
Theta Star	0 300	Data appear Normal at 0% organicance Level	
MIE of Moon	0.555		
MLE of Mean	0.506		
INLE of Standard Deviation	0.45		
nu star	30.43		
Approximate Chi Square Value (.05)	18.83	Nonparametric Statistics	
Adjusted Level of Significance	0.029	95% CLT UCL	0.698
Adjusted Chi Square Value	17.45	95% Jackknife UCL	0.716
		95% Standard Bootstrap UCL	0.692
Anderson-Darling Test Statistic	0.455	95% Bootstrap-t UCL	0.756
Anderson-Darling 5% Critical Value	0.745	95% Hall's Bootstrap UCL	0.711
Kolmogorov-Smirnov Test Statistic	0.188	95% Percentile Bootstrap UCL	0.703
Kolmogorov-Smirnov 5% Critical Value	0.249	95% BCA Bootstrap UCL	0.715
Data appear Gamma Distributed at 5% Significance Le	evel	95% Chebyshev(Mean, Sd) UCL	1.015
		97.5% Chebyshev(Mean, Sd) UCL	1.235
Assuming Gamma Distribution		99% Chebyshev(Mean, Sd) UCL	1.667
95% Approximate Gamma UCL	0.818	······································	
95% Adjusted Gamma UCL	0.883		
Potential UCL to Use		Use 95% Student's-t UCL	0.716
Note: Suggestions reporting the selection of - 05% 11		d to help the upper to polect the most support to 0500 U	0
These recommendations are been during the	CL are provide	e to neip the user to select the most appropriate 95% U	OL.
i nese recommendations are based upon the results of	i ine simulatio	n studies summarized in Singh, Singh, and Iaci (2002)	
and Singh and Singh (2003). For additional insight, t	ne user may w	ant to consult a statistician.	

Ge	neral UCL Statistics for Full Da	ta Sets	
User Selected Options			
From File C:\I	Documents and Settings\pit605	500\Desktop\ProUCL\Southern Kingfish\Southern K	ingfish Data.wst
Full Precision OF	F		
Confidence Coefficient	95%		
Number of Bootstrap Operations	2000		
Southern Kingfish Copper			
General Statistics			
Number of Valid Observations	8	Number of Distinct Observations	8
Raw Statistics		Log-transformed Statistics	
Minimum	2.125	Minimum of Log Data	0.754
Maximum	5.25	Maximum of Log Data	1.658
Mean	3.477	Mean of log Data	1.205
Median	3.53	SD of log Data	0.311
SD	1.049		
Coefficient of Variation	0.302		
Skewness	0.299		
Warning: There are only 8 Values in t	this data		
Note: It should be noted that even the	ough bootstrap methods may b	e performed on this data set,	
the resulting calculations may not be r	eliable enough to draw conclus	SIONS	
The literature suggests to use bootstra	ap methods on data sets having	g more than 10-15 observations.	
Relevant UCL Statistics			
Normal Distribution Test		Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.962	Shapiro Wilk Test Statistic	0.959
Shapiro Wilk Critical Value	0.818	Shapiro Wilk Critical Value	0.818
Data appear Normal at 5% Significand	ce Level	Data appear Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	4.18	95% H-UCL	4.466
95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCL	5.153
95% Adjusted-CLT UCL (Chen-1998	5) 4.129	97.5% Chebyshev (MVUE) UCL	5.877
95% Modified-t UCL (Johnson-1978) 4.186	99% Chebyshev (MVUE) UCL	7.3
Gamma Distribution Test		Data Distribution	
k star (bias corrected)	7.759	Data appear Normal at 5% Significance Level	
Theta Star	0.448		
MLE of Mean	3.477		
MLE of Standard Deviation	1.248		
nu star	124.1		
Approximate Chi Square Value (.05)	99.41	Nonparametric Statistics	
Adjusted Level of Significance	0.0195	95% CLT UCL	4.087
Adjusted Chi Square Value	93.81	95% Jackknife UCL	4.18
		95% Standard Bootstrap UCL	4.061
Anderson-Darling Test Statistic	0.223	95% Bootstrap-t UCL	4.249
Anderson-Darling 5% Critical Value	0.715	95% Hall's Bootstrap UCL	4.146
Kolmogorov-Smirnov Test Statistic	0.173	95% Percentile Bootstrap UCL	4.082
Kolmogorov-Smirnov 5% Critical Valu	e 0.294	95% BCA Bootstrap UCL	4.065
Data appear Gamma Distributed at 5%	% Significance Level	95% Chebyshev(Mean, Sd) UCL	5.094
		97.5% Chebyshev(Mean, Sd) UCL	5.794
Assuming Gamma Distribution		99% Chebyshev(Mean, Sd) UCL	7.168
95% Approximate Gamma UCL	4.342		
95% Adjusted Gamma UCL	4.601		
Potential UCL to Use		Use 95% Student's-t UCL	4.18
Note: Suggestions regarding the selec	ction of a 95% UCL are provide	d to help the user to select the most appropriate 95	5% UCL.
These recommendations are based up	pon the results of the simulatio	n studies summarized in Singh, Singh, and Iaci (200	02)
and Singh and Singh (2003). For ad	ditional insight, the user may w	ant to consult a statistician.	

General UCL Statistics for	or Full Da	ta Sets	
User Selected Options			
From File C:\Documents and Settir	ngs\pit60	500\Desktop\ProUCL\Southern Kingfish\Southern Kingfish Da	ata.wst
Full Precision OFF			
Confidence Coefficient 95%			
Number of Bootstrap Operations 2000			
Southern Kingfish Mercury			
General Statistics			
Number of Valid Observations	12	Number of Distinct Observations	12
Raw Statistics		Log-transformed Statistics	
Minimum	0.189	Minimum of Log Data	-1.664
Maximum	1.13	Maximum of Log Data	0.122
Mean	0.487	Mean of log Data	-0.86
Median	0.415	SD of log Data	0.541
SD	0.292	nov 20 zavan bortu – Goro Hakawini	
Coefficient of Variation	0.599		
Skewness	1.402		
Relevant UCL Statistics			
Normal Distribution Test		Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.837	Shapiro Wilk Test Statistic	0.959
Shapiro Wilk Critical Value	0.859	Shapiro Wilk Critical Value	0.859
Data not Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	0.639	95% H-UCL	0.701
95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCL	0.821
95% Adjusted-CLT UCL (Chen-1995)	0.662	97.5% Chebyshev (MVUE) UCL	0.968
95% Modified-t UCL (Johnson-1978)	0.644	99% Chebyshev (MVUE) UCL	1.255
Gamma Distribution Test		Data Distribution	
k star (bias corrected)	2.826	Data appear Gamma Distributed at 5% Significance Level	
Theta Star	0.173		
MI E of Mean	0 487		
MLE of Standard Deviation	0.29		
nu star	67.82		
Approximate Chi Square Value (05)	49.86	Nonparametric Statistics	
Adjusted Level of Significance	0.029	95% CLT UCI	0.626
Adjusted Chi Square Value	47 52	95% Jackknife UCI	0.639
		95% Standard Bootstran UCI	0.62
Anderson-Darling Test Statistic	0 395	95% Bootstrap-t UCI	0 751
Anderson-Darling 5% Critical Value	0.737	95% Hall's Bootstrap UCL	1 435
Kolmogorov-Smirnov Test Statistic	0 188	95% Percentile Bootstrap UCI	0.631
Kolmogorov-Smirnov 5% Critical Value	0 247	95% BCA Bootstrap UCI	0.657
Data appear Gamma Distributed at 5% Significance Level	0.211	95% Chebyshev(Mean_Sd) UCI	0.855
		97.5% Chebyshev(Mean, Sd) UCI	1 014
Assuming Gamma Distribution		99% Chebyshev(Mean, Sd) UCI	1.326
95% Approximate Gamma LICI	0.663	er i enebyener (mean, eay obe	1.020
95% Adjusted Gamma UCL	0.696		
Potential UCL to Use		Use 95% Approximate Gamma UCL	0.663
Note: Suggestions regarding the selection of a 95% UCL ar	e provide	ed to help the user to select the most appropriate 95% UCI	
These recommendations are based upon the results of the	simulatio	n studies summarized in Singh. Singh. and laci (2002)	
and Singh and Singh (2003). For additional insight, the us	ser may v	vant to consult a statistician.	

General UCL Statistics for	or Full Data Sets	
User Selected Options		
From File C:\Documents and Settin	ngs\pit60500\Desktop\ProUCL\Southern Kingfish\Southern Kingfish D	ata.wst
Full Precision OFF		
Confidence Coefficient 95%		
Number of Bootstrap Operations 2000		
Southern Kingfish Zinc		
General Statistics		
Number of Valid Observations	8 Number of Distinct Observations	8
Raw Statistics	Log-transformed Statistics	
Minimum	5.5 Minimum of Log Data	1.705
Maximum	9.89 Maximum of Log Data	2.292
Mean	7.081 Mean of log Data	1.942
Median	6.97 SD of log Data	0.186
SD	1.386	
Coefficient of Variation	0.196	
Skewness	1.16	
Warning: There are only 8 Values in this data Note: It should be noted that even though bootstrap metho the resulting calculations may not be reliable enough to dra	ds may be performed on this data set, w conclusions	
The literature suggests to use bootstrap methods on data s	ets having more than 10-15 observations.	
Relevant UCL Statistics		
Normal Distribution Test	Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.901 Shapiro Wilk Test Statistic	0.94
Shapiro Wilk Critical Value	0.818 Shapiro Wilk Critical Value	0.818
Data appear Normal at 5% Significance Level	Data appear Lognormal at 5% Significance Level	
Assuming Normal Distribution	Assuming Lognormal Distribution	
95% Student's-t UCL	8.01 95% H-UCL	8.12
95% UCLs (Adjusted for Skewness)	95% Chebyshev (MVUE) UCL	9.105
95% Adjusted-CLT UCL (Chen-1995)	8.102 97.5% Chebyshev (MVUE) UCL	9.983
95% Modified-t UCL (Johnson-1978)	8.043 99% Chebyshev (MVUE) UCL	11.71
Gamma Distribution Test	Data Distribution	
k star (bias corrected)	20.24 Data appear Normal at 5% Significance Level	
Theta Star	0.35	
MLE of Mean	7.081	
MLE of Standard Deviation	1.574	
nu star	323.9	
Approximate Chi Square Value (.05)	283.2 Nonparametric Statistics	
Adjusted Level of Significance	0.0195 95% CLT UCL	7.887
Adjusted Chi Square Value	273.6 95% Jackknife UCL	8.01
26. 12	95% Standard Bootstrap UCL	7.851
Anderson-Darling Test Statistic	0.331 95% Bootstrap-t UCL	8.344
Anderson-Darling 5% Critical Value	0.716 95% Hall's Bootstrap UCL	8.56
Kolmogorov-Smirnov Test Statistic	0.175 95% Percentile Bootstrap UCL	7.849
Kolmogorov-Smirnov 5% Critical Value	0.294 95% BCA Bootstrap UCL	8.023
Data appear Gamma Distributed at 5% Significance Level	95% Chebyshev(Mean, Sd) UCL	9.218
	97.5% Chebyshev(Mean, Sd) UCL	10.14
Assuming Gamma Distribution	99% Chebyshev(Mean, Sd) UCL	11.96
95% Approximate Gamma UCL	8.099	
95% Adjusted Gamma UCL	8.385	
Potential UCL to Use	Use 95% Student's-t UCL	8.01
Note: Suggestions regarding the selection of a 95% UCL ar These recommendations are based upon the results of the	e provided to help the user to select the most appropriate 95% UCL.	
and Singh and Singh (2003). For additional insight, the us	ser may want to consult a statistician.	

General LICL Statistics fr	or Full Data Sets	
General OCL Statistics in	or Full Data Sets	
From File Spot.wst		
Full Precision OFF		
Confidence Coefficient 95%		
Number of Bootstrap Operations 2000		
Or at Annalas 1000		
Spot Arocior-1208		
Conoral Statistics		
Number of Valid Observations	0 Number of Distinct Observations	0
	9 Number of Distinct Observations	9
Raw Statistics	log-transformed Statistics	
Minimum	0.1 Minimum of Log Data	-2 303
Maximum	3 072 Maximum of Log Data	1 1 2 2
Maan	1.2 Maan of log Data	0.256
	1.2 Mean of log Data	-0.250
		1.168
	0.943	
Coefficient of Variation	0.786	
Skewness	0.892	
Monitory These and solv O Values in this date		
Note: It should be noted that even though beststren metho	do may be performed on this data act	
Inote. It should be noted that even though bootstrap method	us may be performed on this data set,	
the resulting calculations may not be reliable enough to drav	w conclusions	
The literature suggests to use beststrep methods on data a	ate having more than 10.15 cheen ations	
	ets having more than 10-10 observations.	
Relevant LICL Statistics		
Normal Distribution Test	Lognormal Distribution Test	
Shanira Wilk Tast Statistic	0.022 Shanira Wilk Toot Statistia	0.954
Shapiro Wilk Critical Value	0.920 Shapiro Wilk Critical Value	0.004
Deta appear Normal at 5% Significance Level	0.629 Shapiro Wilk Childar Value	0.629
	Data appear Lognormal at 5% Significance Level	
Assuming Normal Distribution	Assuming Lognormal Distribution	
95% Student's-t LICI	1 785 95% H-UCI	7 319
95% LICLs (Adjusted for Skewness)	95% Chebyshev (MV/LIE) LICI	3 008
05% Adjusted CLT LICL (Chap 1995)	1 917 07 5% Chebyshev (MV/UE) UC	4 004
95% Modified-t LICL (Johnson-1978)	1.8 90% Chebyshev (MVUE) UCL	7 126
		7.120
Gamma Distribution Test	Data Distribution	
k star (bias corrected)	0.928 Data appear Normal at 5% Significance Level	
Theta Star	1 20/	
M E of Moon	1.2	
MLE of Standard Deviation	1.2	
	16.7	
Approximate Chi Square Value (05)	9.46 Nonnoromotrio Statistico	
Adjusted Level of Significance		4 747
Adjusted Level of Significance		1.717
Adjusted Chi Square Value	7.258 95% Jackknife UCL	1.785
	95% Standard Bootstrap UCL	1.686
Anderson-Darling Test Statistic	0.411 95% Bootstrap-t UCL	2.024
Anderson-Darling 5% Critical Value	0.738 95% Hall's Bootstrap UCL	2.586
Kolmogorov-Smirnov Test Statistic	0.191 95% Percentile Bootstrap UCL	1.699
Kolmogorov-Smirnov 5% Critical Value	0.285 95% BCA Bootstrap UCL	1.766
Data appear Gamma Distributed at 5% Significance Level	95% Chebyshev(Mean, Sd) UCL	2.571
	97.5% Chebyshev(Mean, Sd) UCL	3.164
Assuming Gamma Distribution	99% Chebyshev(Mean, Sd) UCL	4.328
95% Approximate Gamma UCL	2.37	
95% Adjusted Gamma UCL	2.762	
Potential UCL to Use	Use 95% Student's-t UCL	1.785
ner in Henricken verbinden verbinden (1997) februar (1997)	son accent conversions on a construction of the construction of th	NU (941903/1965
Note: Suggestions regarding the selection of a 95% UCL ar	e provided to help the user to select the most appropriate 95% UCL.	
These recommendations are based upon the results of the	simulation studies summarized in Singh, Singh, and laci (2002)	
and Singh and Singh (2003). For additional insight, the us	ser may want to consult a statistician.	

General UCL Statistics for	or Full Data Sets	
User Selected Options		
From File Spot.wst		
Full Precision OFF		
Confidence Coefficient 95%		
Number of Bootstrap Operations 2000		
Spot Copper		
O an anal Chadiatian		
General Statistics	9 Number of Distinct Observations	8
	9 Number of Distinct Observations	0
Raw Statistics	Log-transformed Statistics	
Minimum	2.775 Minimum of Log Data	1.021
Maximum	5.25 Maximum of Log Data	1.658
Mean	3.839 Mean of log Data	1.321
Median	3.84 SD of log Data	0.233
SD	0.896	
Coefficient of Variation	0.233	
Skewness	0.341	
Warning: There are only 9 Values in this data		
Note: It should be noted that even though bootstrap method	ds may be performed on this data set.	
the resulting calculations may not be reliable enough to dray	w conclusions	
,		
The literature suggests to use bootstrap methods on data se	ets having more than 10-15 observations.	
Relevant UCL Statistics		
Normal Distribution Test	Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.921 Shapiro Wilk Test Statistic	0.926
Shapiro Wilk Critical Value	0.829 Shapiro Wilk Critical Value	0.829
Data appear Normal at 5% Significance Level	Data appear Lognormal at 5% Significance Level	
Assuming Normal Distribution	Assuming Lognormal Distribution	
95% Student's t LICI	4 305 95% H-LICI	4 519
95% LICLs (Adjusted for Skewness)	95% Chebyshev (MV/LIE) LICI	5 144
95% Adjusted-CLT LICL (Chen-1995)	4 367 97 5% Chebyshev (MVUE) UCI	5 709
95% Modified-t UCL (Johnson-1978)	4.401 99% Chebyshev (MVUE) UCL	6.819
× 2		
Gamma Distribution Test	Data Distribution	
k star (bias corrected)	13.98 Data appear Normal at 5% Significance Level	
Theta Star	0.275	
MLE of Mean	3.839	
MLE of Standard Deviation	1.027	
nu star	251.6	
Approximate Chi Square Value (.05)	215.9 Nonparametric Statistics	
Adjusted Level of Significance	0.0231 95% CLT UCL	4.331
Adjusted Chi Square Value	208.9 95% Jackknife UCL	4.395
	95% Standard Bootstrap UCL	4.302
Anderson-Darling Test Statistic		4.449
Anderson-Darling 5% Critical Value	0.721 95% Hall's Bootstrap UCL	4.291
Kolmogorov-Smirnov Lest Statistic	0.100 95% Percentile Bootstrap UCL	4.31
Kolmogorov-Smirnov 5% Critical Value	0.279 95% BCA Bootstrap UCL	4.323
Data appear Gamma Distributed at 5% Significance Level	95% Chebyshev(Mean, Sd) UCL	5.141
Accuming Commo Distribution	97.5% Unepysnev(Mean, Sd) UUL	5.705
Assuming Gamma Distribution	39% Grebysnev(Wean, Sd) UGL	0.012
95% Adjusted Gamma UCL	4.475	
Potential UCL to Lise	Lise 05% Students + LO	1 305
	Use 35 /0 Student's-t UGL	4.585
Note: Suggestions regarding the selection of a 95% UCL ar	e provided to help the user to select the most appropriate 95% UCL.	
These recommendations are based upon the results of the	simulation studies summarized in Singh, Singh, and laci (2002)	
and Singh and Singh (2003). For additional insight, the us	er may want to consult a statistician.	

Luer Salected Options Softwart Full Products of Prof Value Selection OPF Configure Con	Conoral LICI. Statistics for	- Full Data Sata	
Under James and Dipulots Spot.vist Part Preserve Confidence Coefficient 95% Number of Bootstrap Operations 2000 Spot Mercury General Statistics Number of Distinct Observations 9 Rew Statistics Confidence Coefficient 95% Number of Valid Observations 9 Rew Statistics Coefficient 90 Number of Ualid Observations 9 Rew Statistics Coefficient 90 Nammu 0.0465 Minimum of Log Data - 1.783 Nammu 0.016 Maximum of Log Data - 2.357 Nammu 0.010 Man 0.020 Jata - 2.357 Nammu 0.0100 Man 0.0100 Man 0.020 Jata - 2.357 Nammu 0.0100 Man 0.0100 Man 0.020 Jata - 0.020	General OCL Statistics in	or Full Data Sets	
rrom nime spot wat trill Practaion 2000 Confidence Southant 95% Number of Sociating Operations 2000 Spot Mercury General Statistics Number of Valid Observations 9 Number of Distinct Observations 9 Raw Statistics Number of Valid Observations 9 Number of Distinct Observations 9 Raw Statistics Number of Valid Observations 9 Number of Distinct Observations 9 Raw Statistics Number of Valid Observations 9 Number of Valid Observations 0 Spot 0 Coefficient of Variation 0.0455 Minimum of Log Data -1.753 Maximum 0.156 Maximum of Log Data -1.753 National Number of Valid Observations 0 Spot 0 Coefficient of Variation 0.0368 Skewness 0.391 Warning: There are only 9 Values in this data Note: 11 should be noted that even though bootstrap methods may be performed on this data set, the resulting calculations may not be reliable enough to draw conclusions The Ilterature suggests to use bootstrap methods on data sets having more than 10-15 observations. Relevant UCL Statistics Normal Distribution Test Shapio Wik Test Statistic 0.072 Shapio Wik Test Statistic 0.074 Shapio Wik Test Statistic 0.074 Shapio Wik Test Statistic 0.0124 95% LHoUCL 0.0138 95% Conted Value 0.223 Shapio VikV Publical Value 0.023 95% Conted Value 0.0124 95% Chebysher (MVLE) UCL 0.0138 95% Modifiest UCL (Adjusted for Skewness) 95% Chebysher (MVLE) UCL 0.0138 95% Modifiest UCL 0.0124 95% Chebysher (MVLE) UCL 0.0124 95% Modifiest UCL 0.0124 95% Chebysher (MVLE) UCL 0.0124 95% Modifiest UCL 0.0124 95% Chebysher (MVLE) UCL 0.0124 95% Chebysher (MVLE) UCL 0.012 Advarson-Daring Test Statistic 0.0124 95% Chebysher (MVLE) UCL 0.012 Advarson-Daring Test Statistic 0.0124 95% Chebysher (MVLE) UCL 0.012 Advarson-Daring Test Statistic 0.0124 95% Chebysher (MVLE) UCL 0.012 121 Advarson-Daring Test Statistic 0.0138 95% Chebysher (MVLE) UCL 0.012 122 123 Advarson daring Vac			
rul Prezision DFF Confidence Coefficient 95% Number of Bootstrap Operations 2000 Spot Mercury General Statistics Number of Valid Observations 9 Number of Distinct Observations 9 Rev Statistics Minimum 0.0465 Minimum of Log Data -3.066 Minimum 0.0465 Minimum of Log Data -3.068 Minimum 0.0465 Minimum of Log Data -3.068 Minimum 0.0465 Minimum of Log Data -3.068 Minimum 0.0465 Minimum of Log Data -3.068 Sevenes 0.0371 Coefficient of Variation 0.388 Sevenes 0.391 Warning: There are only 9 Values in this data Note: It should be noted that even though bootstrap methods may be performed on this data set, the resulting calculations may not be reliable enough to draw conclusions The literature suggests to use bootstrap methods on data sets having more than 10-15 observations. Relevant UCL Statistics Normal Ostinbulon Test Shapiro Wik Critical Value 0.927 Shapiro Wik Test Statistic 0.974 Shapiro Wik Critical Value 0.927 Shapiro Wik Test Statistic 0.974 Shapiro Wik Critical Value 0.228 Shapiro Wik Test Statistic 0.974 Shapiro Wik Critical Value 0.229 Data appear Normal at 5% Significance Level Data appear Logonomal Distribution 95% Student's UCL (Othen-1955) 0.124 95% H-UCL 0.138 95% Adjusted for Stewness) 95% Cheryshev (MVUE) UCL 0.232 Gamma Distribution Test Data Distribution 95% Student's UCL (Othen-1978) 0.124 95% Scheryshev (MVUE) UCL 0.232 Gamma Distribution Test Data Distribution MiL & of Stander Deviation 0.013 95% Adjusted CI Square Value (05) 7.572 (Vangaarmethic Statistic 0.174 95% Student's UCL (Denon-1978) 0.124 95% Scheryshev (MVUE) UCL 0.232 Gamma Distribution Test Data Distribution 95% Scheryshev (MAUE) UCL 0.0138 95% Scheryshev (MAUE) UCL 0.0138 95% Scheryshev (MAUE) UCL 0.138 95% Scheryshev (MAUE) UCL 0.138 95% Scherysheve (MAUE) UCL 0.138 95% Scherysheve (MAUE) UCL 0.132 Gamma Distribution Test Data Distribution 95% Scherysheve (MAUE) UCL 0.132 Gamma Distribution Test Data Distribution 95% Scherysheve (MAUE) UCL 0.132 Gamma Distribution Test Data Distribution	From File Spot.wst		
Contense Coefficient 99% Number of Doststrap Operations 2000 Spot Mercury General Statistics Number of Valid Observations 9 Number of Distinct Observations 9 Rev Statistics Number of Valid Observations 9 Number of Distinct Observations 9 Rev Statistics Number of Valid Observations 9 Number of Distinct Observations 9 Rev Statistics Number of Valid Observations 9 Number of Distinct Observations 9 Number of Distinct Observations 9 Rev Statistics Number of Valid Observations 9 Number of Distinct Observations 0.386 Seveness 0.0391 Warning: There are only 9 Values in this data Normal Observations The Iterature suggests to use bootstrap methods and use that not 10-15 observations. Relevant UCL Statistics Normal Distribution Test Normal Distribution Test Normal Distribution 0.0229 Shapiro With Critical Value 0.029 Subtartist UCL Observation 0.0433 Set Multidee UCL Observation 0.0433 Set Multidee UCL Observation 0.0433 Set Notificat Observatio UCL 0.0120 0.124 Set Notificat O	Full Precision OFF		
Number of Boolstrap Operations 2000 Spot Mercury General Statistics Number of Valid Observations 9 Number of Distinct Observations 9 Rew Statistics Minimum 0 4046 Minimum of Log Data3.006 Minimum 0 0.0465 Minimum of Log Data3.036 Spot 0 0.0371 Coefficient of Variation 0.368 Skewness 0.391 Warning: There are only 9 Values in this data Note: It should be noted that even though bootstrap methods may be performed on this data set, the resulting calculations may not be reliable enough to draw conclusions The literature suggests to use bootstrap methods on data sets having more than 10-15 observations. Relevant UCL Statistics Normal Distribution Test Shapro Will rest Statistic 0.972 Shapro Wilk Critical Value 0.829 Shapro Wilk Critical Value 0.138 S95. Modified-t UCL (Johnson-1976) 0.124 995 Chebysher (MVUE) UCL 0.158 S95. Modified-t UCL (Johnson-19776) 0.124 995 Chebysher (MVUE) UCL 0.121 Aderson-Darling Test Statistic 0.0174 S95. Scheptsher (MVUE) UCL 0.121 Aderson-Darling Test Statistic 0.0124 S95. Chebysher (MVUE) UCL 0.121 Aderson-Darling Test Statistic 0.0174 S95. Scheptsher (MVUE) UCL 0.121 Aderson-Darling Test Statistic 0.0174 S95. Scheptsher (MVUE) UCL 0.121 Aderson-Darling Test Statistic 0.0174 S95. Scheptsher (MUE) UCL 0.121 Aderson-Darling Test Statistic 0.0174 S95. Scheptsher (MUE) UCL 0.121 Aderson-Darling Test Statistic 0.0174 S95. Scheptsher (MUE) UCL 0.122 Aderson-Darling Test Statistic 0.0174 S95. Scheptsher (MUE) UCL 0.122 Aderson-Da	Confidence Coefficient 95%		
Spot Mercury General Statistics Ansher of Valid Observations 9 Number of Distinct Observations 9 Rev Statistics 10-4787 Minimum of Log Data 3-306 Maximum 0.0468 Minimum of Log Data 3-307 Median 0.0495 Minimum of Log Data 3-308 Maximum 0.0468 Minimum of Log Data 3-308 Maximum 0.0468 Minimum of Log Data 3-308 Maximum 0.0468 Minimum of Log Data 3-308 Maximum 0.0495 Sto of log Data 3.388 Stewness 0.391 Warning: There are only 9 Values in this data Note: It should be noted that even though bootstrap methods may be performed on this data set. The reare only 9 Values in this data Note: It should be noted that even though bootstrap methods may be performed on this data set. The reare are only 9 Values in this data Note: It should be noted that even though bootstrap methods may be performed on this data set. The reare are only 9 Values in this data Note: It should be noted that even though bootstrap methods may be performed on this data set. The reare are only 9 Values in this data Note: It should be noted that even though bootstrap methods may be performed on this data set. The reare are only 9 Values in this data Note: It should be noted that even though bootstrap methods may be performed on this data set. The reare only 9 Values in this data Normal Distribution Test Normal Distribution Test Normal Distribution Assuming Lognormal Distribution Stata appear Normal Distribution Stata appear Normal Distribution Stata oppear Normal Distribu	Number of Bootstrap Operations 2000		
Spot Mercury General Statistics Number of Valid Observations Paw Statistics Number of Distinct Observations Paw Statistics Minimum 0.0465 Minimum of Log Data 3.006 Minimum 0.00625 So of log Data 3.006 Minimum 0.00625 So of log Data 3.006 So 0.0371 Coefficient of Valiation 0.0368 So 0.0371 Coefficient of Valiation 0.0371 Coefficient of Valiation 0.0371 Coefficient of Valiation 0.0371 Coefficient of Valiation 0.022 So 0.022 So 0.022 So 0.000 Coefficient of Valiation 0.022 So 0.0000 Coefficient of Valiation 0.022 So 0.000 Coefficient of Valiation 0.023			
Sevences and a sevence of the sevenc	Spot Mercury		
General Statistics 9 Number of Distinct Observations 9 Rev Statistics Log-transformed Statistics -0.06 Maximum 0.106 Maximum of Log Data -3.06 Maximum 0.101 Mean of Log Data -2.357 Meain 0.0025 Sto of Log Data -2.357 Meain 0.0025 Sto of Log Data -2.357 Coefficient of Variation 0.368 -2.357 Statistics 0.0371 -2.357 Coefficient of Variation 0.368 -2.357 Warning: There are only 9 Values in this data -2.357 Interestitic calculations may not be reliable enough to draw conclusions - The ilterature suggests to use bootstrap methods on data sets having more than 10-15 observations. - Relevant UCL Statistics 0.974 Shapiro With Critical Value 0.829 Shapiro With Critical Value 0.829 Data appear Normal Listibution Test - 0.321 Shapiro With Critical Value 0.124 95% Chebyshev (MVUE) UCL 0.136 Systudent's ULL (chen-r1995) 0.123 97.55 Chebyshev (MVUE) UCL 0.138 Systudent's ULL (chen-r1995) 0.124			
Number of Valid Observations9Number of Distinct Observations9Rew Statistics	General Statistics		
Rev Statistics Log-transformed Statistics Animum of Log Data 3.006 Maximum of Log Data 2.357 Mean 0.101 Mean of log Data 2.357 Mean 0.0271 Coefficient of Variation 0.0285 SD of log Data 0.0371 Coefficient of Variation 0.386 Skewness 0.391 The statistica data set, the resulting calculations may not be reliable enough to draw conclusions The literature suggests to use bootstrap methods may be performed on this data set, the resulting calculations may not be reliable enough to draw conclusions The literature suggests to use bootstrap methods may be performed on this data set, the resulting calculations may not be reliable enough to draw conclusions The literature suggests to use bootstrap methods on data sets having more than 10-15 observations. Relevant UCL Statistics 0.972 Shapiro Wilk Critical Value 0.829 Shapiro Wilk Critical Value 0	Number of Valid Observations	9 Number of Distinct Observations	9
Rew Statistics Log-transformed Statistics 4,000 Data 4,000 Data 4,7793 Meximum 0,0495 Minimum 0,109 Data 4,2357 Median 0,0225 SD 0 10g Data 0,386 SD 0,0371 4,793 Median 0,0225 SD 10g Data 0,386 SD 0,0371 4,793 Meximum 0,0495 SD 10g Data 0,386 Skewness 0,391 4,793 Meximum 0,0495 SD 100 Data 4,025 SD			
Minimum 0.0495 Minimum of Log Data 3.006 Maximum 0.106 Maximum of Log Data 2.357 Mean 0.011 Mean of log Data 2.357 Median 0.0025 SD of log Data 0.386 SD 0.0371 Coefficient of Variation 0.386 Skewness 0.391 Warning: There are only 9 Values in this data Note: It should be noted that even though bootstrap methods may be performed on this data set, the resulting calculations may not be reliable enough to draw conclusions The literature suggests to use bootstrap methods on data sets having more than 10-15 observations. Relevant UCL Statistics Normal Distribution Test Shapiro Wik Test Statistic 0.972 Shapino Wik Test Statistic 0.974 Shapiro Wik Test Statistic 0.972 Shapino Wik Test Statistic 0.974 Shapiro Wik Test Statistic 0.972 Shapino Wik Test Statistic 0.974 Shapiro Wik Test Statistic 0.972 Shapino Wik Test Statistic 0.974 Shapiro Wik Test Statistic 0.972 Shapino Wik Test Statistic 0.974 Shapiro Wik Test Statistic 0.972 Shapino Wik Test Statistic 0.974 Shapiro Wik Test Statistic 0.972 Shapino Wik Test Statistic 0.974 Shapiro Wik Test Statistic 0.972 Shapino Wik Test Statistic 0.974 Shapiro Wik Test Statistic 0.974 Shapiro Wik Test Statistic 0.975 Shapiro Wik Test Statistic 0.975 Shapiro Wik Test Statistic 0.975 Shapiro Wik Test Statistic 0.172 Shapiro Wik Test Statistic 0.178 Shapiro Wik Test Statistic 0.174 Shapiro Mic Test Statist	Raw Statistics	Log-transformed Statistics	
Maximum 0.166 Maximum of Log Data 1.793 Median 0.022 SD of log Data 2.357 Median 0.022 SD of log Data 0.386 SD 0.0371 Coefficient of Variation 0.388 Skewness 0.391 Warning: There are only 9 Values in this data Note: It should be noted that even though bootstrap methods may be performed on this data set, the resulting calculations may not be reliable enough to draw conclusions The literature suggests to use bootstrap methods on data sets having more than 10-15 observations. Relevant UCL Statistics Normal Distribution Test Shapiro Wik Test Statistic 0.972 Shapino Wik Test Statistic 0.974 Shapiro Wik Total Value 0.829 Shapiro Wik Test Statistic 0.974 Shapiro Wik Total Value 0.829 Data appear Normal Distribution Test Shapiro Wik Total Value 0.829 Data appear Lognormal Distribution S% Student+UCL OL 0.124 95% H-UCL Data appear Lognormal Distribution S% Student+UCL Chene 1995) 0.123 97.5% Chebyshev (MVUE) UCL 0.159 B5% Adjusted CLT UCL (Chen 1995) 0.124 99% Chebyshev (MVUE) UCL 0.232 Gamma Distribution Test 0.1124 99% Chebyshev (MVUE) UCL 0.232 Gamma Distribution Test 0.1124 99% Chebyshev (MVUE) UCL 0.232 Gamma Distribution Test 0.1124 99% Chebyshev (MVUE) UCL 0.232 Gamma Distribution Test 0.124 99% Chebyshev (MVUE) UCL 0.232 Gamma Distribution Test 0.016 MLE of Maan 0.101 MLE of Significance UCS) 75.72 Nonparametric Statistics Adjusted Chi Significance 0.0231 95% Chebyshev (MUE) UCL 0.124 Advisor Of Significance 0.0231 95% Chebyshev (MuE) 0.012 Anderson-Darling 7% Critical Value 0.722 95% Hall's Bootstrap UCL 0.125 Anderson-Darling 7% Critical Value 0.722 95% Standard Bootstrap UCL 0.126 Anderson-Darling 7% Critical Value 0.729 95% Standard Bootstrap UCL 0.126 Anderson-Darling 7% Critical Value 0.729 95% Standard Boo	Minimum	0.0495 Minimum of Log Data	-3.006
Mean 0.101 Mean of log Data 2.357 Median 0.0252 SD of log Data 0.386 SD 0.0371 0.386 Schwness 0.391 0.386 Warning: There are only 9 Values in this data	Maximum	0.166 Maximum of Log Data	-1.793
Median 0.0925 SD of log Data 0.386 SD 0.0371 Coefficient of Variation 0.368 Skewness 0.391 Skewness 0.391 Warning: There are only 9 Values in this data Note: It should be noted that even though bootstrap methods may be performed on this data set, the resulting calculations may not be reliable enough to draw conclusions Image: Concent on the reliable enough to draw conclusions The literature suggests to use bootstrap methods on data sets having more than 10-15 observations. 0.974 Relevant UCL Statistics 0.972 Shapiro Wilk Test Statistic 0.974 Nomal Distribution Test Lognormal Distribution Test 0.829 Shapiro Wilk Test Statistic 0.972 Shapiro Wilk Critical Value 0.829 Data appear Normal Distribution Assuming Lognormal Distribution 0.829 S% Ubcl. Adjusted Crit Ucl. 0.124 95% Chebyshev (MVUE) Ucl. 0.188 05% Work Adjusted Crit Ucl. (chen-1905) 0.123 97.5% Chebyshev (MVUE) Ucl. 0.183 05% Modified t UCL (obnen-01978) 0.124 99% Chebyshev (MVUE) Ucl. 0.121 05% Modified t UCL (obnen-1978) 0.124 99% Chebyshev (MUUE) UCL. 0.181 05% Modified t UCL (obnen-01978) 0.124 99% Cheb	Mean	0.101 Mean of log Data	-2.357
SD 0.0371 Coefficient O Variation 0.368 Skewness 0.391 Warning: There are only 9 Values in this data Note: It should be noted that even though bootstrap methods may be performed on this data set, the resulting calculations may not be reliable enough to draw conclusions The literature suggests to use bootstrap methods on data sets having more than 10-15 observations. Relevant UCL Statistics Normal Distribution Test Shapiro Wik Test Statistic 0.972 Normal Distribution Test 0.972 Shapiro Wik Critical Value 0.829 Data appear Lognormal at 5% Significance Level Data appear Lognormal Distribution 0.136 85% Student's-t UCL 0.124 95% Chebyshev (MVUE) UCL 0.138 95% Koldent's-t UCL (Chen-1995) 0.123 95% Chebyshev (MVUE) UCL 0.138 95% Koldent's UCL (Chen-1995) 0.124 95% Chebyshev (MVUE) UCL 0.232 Gamma Distribution Test Data Distribution 0.232 K star (Dias corrected) 5.417 Data appear Normal at 5% Significance Level 0.232 Gamma Distribution Test Data Distribution 0.121 Aguiset Chi Square Value (0.5) 7.72 Nonparametric Statistics 0.121	Median	0.0925 SD of log Data	0.386
Coefficient of Variation 0.368 Skewness 0.391 Warning: There are only 9 Values in this data Note: It should be noted that even though bootstrap methods may be performed on this data set, the resulting calculations may not be reliable enough to draw conclusions The literature suggests to use bootstrap methods on data sets having more than 10-15 observations. Relevant UCL Statistics Normal Distribution Test Shapiro Wilk Test Statistic 0.972 Shapiro Wilk Test Statistic 0.974 Shapiro Wilk Test Statistic 0.972 Shapiro Wilk Critical Value 0.829 Shapiro Wilk Critical Value 0.72 Shapiro Wilk Cr	SD	0.0371	
Skewness 0.391 Warning: There are only 9 Values in this data Note: It should be noted that even though boolstrap methods may be performed on this data set, the resulting calculations may not be reliable enough to draw conclusions The literature suggests to use bootstrap methods on data sets having more than 10-15 observations. Relevant UCL Statistics Normal Distribution Test Lognormal Distribution Test 0.374 Shapiro Wik Torical Value 0.829 Shapiro Wik Torical Value 0.829 Data appear Normal Distribution Assuming Lognormal Distribution 0.374 Assuming Normal Distribution Assuming Lognormal Distribution 0.389 95% Student-st UCL 0.124 95% H-UCL 0.136 95% Student-st UCL (chen-1995) 0.123 97.5% Chebyshev (MVUE) UCL 0.138 95% Modified-UCL (Johnson-1978) 0.124 99% Chebyshev (MVUE) UCL 0.138 95% Modified-UCL (Johnson-1978) 0.124 95% Chebyshev (MVUE) UCL 0.121 Qamma Distribution Test Data Distribution 0.323 K atar (Dias Corrected) 5.417 Data appear Normal at 5% Significance Level MLE of Standard Deviation 0.0431 95% Charle Value 0.121 Adjusted Level of Significance 0.231 95% Charle Value 0.122 Adjusted Level of Significance 0.214 95%	Coefficient of Variation	0.368	
Warning: There are only 9 Values in this data Note: It should be noted that even though boolstrap methods may be performed on this data set, the resulting calculations may not be reliable enough to draw conclusions The literature suggests to use bootstrap methods on data sets having more than 10-15 observations. Relevant UCL. Statistics Lognormal Distribution Test Normal Distribution Test Lognormal Distribution Test Shapiro Wilk Test Statistic 0.872 Shapiro Wilk Test Statistic 0.874 Shapiro Wilk Test Statistic 0.874 Shapiro Wilk Test Statistic 0.829 Data appear Normal at 5% Significance Level Data appear Lognormal at 5% Significance Level Assuming Normal Distribution Assuming Lognormal Distribution State CLG, Adjusted for Skewness) 95% Chebyshev (MVUE) UCL 0.136 95% Modified-t UCL (Johnson-1978) 0.124 99% Chebyshev (MVUE) UCL 0.232 Gamma Distribution Test Data Distribution Lstar (Dias corrected) 5.417 MLE of Standard Deviation 0.0433 95% Student'st UCL 0.121 Adjusted Chi Square Value (0.5) 7.57.2 Nonparametric Statistics 0.122 Adjusted Level of Significance 0.124 95% Standard Dout <t< td=""><td>Skewness</td><td>0.391</td><td></td></t<>	Skewness	0.391	
Warning: There are only 9 Values in this data Note: It should be noted that even though bootstrap methods may be performed on this data set, the resulting calculations may not be reliable enough to draw conclusions The literature suggests to use bootstrap methods on data sets having more than 10-15 observations. Relevant UCL Statistics Normal Distribution Test Shapiro Wik Test Statistics Normal Distribution Test Shapiro Wik Totical Value 0.972 Shapiro Wik Totical Value 0.929 Data appear Normal at 5% Significance Level Data appear Normal Distribution Assuming Normal Distribution Assuming Lognormal Distribution 0.136 95% Student's UCL 0.138 95% Adjusted for Skewness) 95% Chebyshev (MVUE) UCL 0.183 95% Adjusted for Skewness) 0.124 95% Chebyshev (MVUE) UCL 0.183 95% Adjusted-CLT UCL (Chen-1995) 0.123 97.5% Chebyshev (MVUE) UCL 0.232 Camma Distribution NE of Student's UCL 0.161 95% Student's UCL 0.161 95% Chebyshev (MVUE) UCL 0.232 Camma Distribution 1.24 95% Chebyshev (MVUE) UCL 0.232 Camma Distribution 1.24 1.24 1.24 1.24 1.25			
Warning: There are only 9 Values in this data Note: It should be noted that even though bootstrap methods may be performed on this data set, the resulting calculations may not be reliable enough to draw conclusions The literature suggests to use bootstrap methods on data sets having more than 10-15 observations. Relevant UCL Statistics Normal Distribution Test Shapiro Wilk Critical Value 0.292 Shapiro Wilk Critical Value 0.395 Student's-t UCL 0.138 25% UCLs (Adjusted for Skewness) 95% Chebyshev (MVUE) UCL 0.168 25% Modified-UCL (Chen-1995) 0.123 97.5% Chebyshev (MVUE) UCL 0.168 25% Modified-UCL (Chen-1995) 0.124 99% Chebyshev (MVUE) UCL 0.232 Gamma Distribution star 0.018 MLE of Standard Deviation 0.0433 anu star 0.016 MLE of Mean 0.010 MLE of Standard Deviation 0.0433 anu star 97.5 Adjusted Level 7.12 Adjusted Chi Square Value 0.50 7.22 Nonparametric Statistics Adjusted Levi of Significance 0.023 95% Shadard Bootstrap UCL 0.12 Adjusted Chi Square Value 0.52 95% Hall's Bootstrap UCL 0.12 Adjusted Chi Square Value 0.52 95% Shadard Bootstrap UCL 0.12 Adjusted Chi Square Value 0.72 95% Hall's Bootstrap UCL 0.12 Adjusted Chi Square Value 0.023 95% Chebyshev(Mean, Sd) UCL 0.12 Adjusted ShapinGrance 0.031 95% Chebyshev(Mean, Sd) UCL 0.12 Adjusted Gamma UCL 0.13 Potential UCL to Use Use 95% Student's-t UCL 0.124 Assuming Gamma Distributed at 5% Significance Level 0.13 95% Adjusted Gamma UCL 0.137 Potential UCL to Use Use 95% Student's-t UCL 0.124 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studes summarized in Singh, and laci (2022) and Singh Adjusted Gamma UCL 0.134 Note: Suggestions regarding the selecti			
Note: Is should be holed that even though bootshap methods may be performed on this data set, the resulting calculations may not be reliable enough to draw conclusions The literature suggests to use bootstrap methods on data sets having more than 10-15 observations. Relevant UCL Statistics Normal Distribution Test Shapiro Wilk Test Statistic 0.972 Shapiro Wilk Test Statistic 0.974 Shapiro Wilk Critical Value 0.829 Data appear Normal at 5% Significance Level 0.829 Data appear Normal at 5% Significance Level 0.136 95% UCL (Adjusted for Skewness) 95% Chebyshev (MVUE) UCL 0.138 95% Mudified-t UCL (Chen-1995) 0.123 95% Adjusted-CLT UCL (Chen-1995) 0.123 97.5% Chebyshev (MVUE) UCL 0.138 95% Modified-t UCL (Johnson-1978) 0.124 97.5% Chebyshev (MVUE) UCL 0.232 Gamma Distribution Test 0.144 NuE of Standard Deviation 0.0433 nu star 0.0186 MLE of Standard Deviation 0.0433 nu star 97.5 Approximate Chi Square Value (05) 75.72 Nonparametric Statistics Adjusted Level of Significance Level 0.121 Adjusted Chi Square Value 0.124 95% Stondard Deviation 0.013 Adjusted Chi Square Value 0.124 95% Stondard Deviation 0.012 Adjusted Chi Square Value 0.124 95% Stondard Deviation 0.122 Anderson-Darling Test Statistic 0.174 95% Abotstrap UCL 0.125 Anderson-Darling Test Statistic 0.174 95% Chebyshev(Mean, Sd) UCL 0.126 Xolmogorov-Smirnov Test Statistic 0.138 95% Chebyshev(Mean, Sd) UCL 0.122 Data appear Gamma Distributed at 5% Significance Level 95% Chebyshev(Mean, Sd) UCL 0.122 195% Adjusted Gamma UCL 0.137 Potential UCL to Use Use 95% Student's t UCL 0.124 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized	Warning: There are only 9 Values in this data	de men he we forme d'an Mir data ant	
The literature suggests to use bootstrap methods on data sets having more than 10-15 observations. Relevant UCL Statistics Lognormal Distribution Test 0.974 Shapiro Wilk Critical Value 0.829 Shapiro Wilk Critical Value 0.829 Data appear Normal at 5% Significance Level Data appear Lognormal Distribution 0.829 Assuming Normal 5% Significance Level Data appear Lognormal Distribution 0.136 95% Student's+ UCL 0.124 95% Chebyshev (MVUE) UCL 0.136 95% Volt2s (Adjusted for Skewness) 95% Chebyshev (MVUE) UCL 0.138 95% Modified-LUCL (Johnson-1978) 0.124 95% Chebyshev (MVUE) UCL 0.138 95% Modified-LUCL (Johnson-1978) 0.124 99% Chebyshev (MVUE) UCL 0.232 Gamma Distribution Test Data Distribution 0.333 0.33 0.33 K star (bias corrected) 5.417 Data appear Normal at 5% Significance Level Theta Star 0.0186 MLE of Standard Deviation 0.0433 0.33 0.124 95% Standard Boostrap UCL 0.121 Adjusted Level of Significance 0.714 95% Standard Boostrap UCL 0.121 0.122 Anderson-Daring Test Statistic 0.174 95% Standard Boostrap UCL	Note: It should be noted that even though bootstrap metho	as may be performed on this data set,	
The literature suggests to use bootstrap methods on data sets having more than 10-15 observations. Relevant UCL Statistics Cognormal Distribution Test 0.974 Shapiro Vilk Critical Value 0.829 Shapiro Vilk Critical Value 0.829 Data appear Normal at 5% Significance Level Data appear Lognormal Distribution 0.829 Assuming Normal Distribution Assuming Lognormal Distribution 0.3629 95% Student's-t UCL 0.124 95% (-Chebyshev (MVUE) UCL 0.136 95% Modical Value 0.123 97.5% Chebyshev (MVUE) UCL 0.138 95% Modified-UCL (Johnson-1978) 0.124 99% Chebyshev (MVUE) UCL 0.232 Gamma Distribution Test Data Distribution 0.383 K star (bias corrected) 5.417 Data appear Normal at 5% Significance Level 0.433 Theta Star 0.0186 0.0136 0.124 95% Chebyshev (MVUE) UCL 0.121 Adjusted Chi Square Value (05) 75.72 Nonparametric Statistics 0.121 49% Chebyshev (MVLE) 0.121 Adjusted Level of Significance 0.0186 0.124 95% Student's UCL 0.122 Approximate Chi Square Value 71.68 95% JackKnife UCL 0.121 0.124 </td <td>the resulting calculations may not be reliable enough to draw</td> <td>w conclusions</td> <td></td>	the resulting calculations may not be reliable enough to draw	w conclusions	
Relevant UCL Statistics Relevant UCL Statistics O,974 Shapiro Wilk Test Statistic O,974 Shapiro Wilk Test Statistic O,974 Shapiro Wilk Certical Value O,829 Shapiro Wilk Critical Value O,829 Shapiro Wilk Critical Value O,874 Significance Level Assuming Normal Distribution Assuming Lognormal at 5% Significance Level O 124 95% Huber Volution O 124 95% Chebyshev (MVUE) UCL O 138 95% Modified+ UCL (Chen-1995) O 124 95% Chebyshev (MVUE) UCL O 133 95% Modified+ UCL (Johnson-1978) O 124 95% Chebyshev (MVUE) UCL O 133 95% Indender Deviation Start (bias corrected) 5417 Data appear Normal at 5% Significance Level Theta Star O 108 MLE of Standard Deviation O 0433 nu star 97.5 Reproximate Chi Square Value (.05) 75.7 Noparametric Statistics O 124 95% Standard Bootstrap UCL O 124 95% Standard Bootstrap UCL O 124 Adjusted Level of Significance O 124 95% Standard Bootstrap UCL O 122 Shard Bootstrap UCL	The literature suggests to use bootstrap methods on data s	ets having more than 10-15 observations	
Relevant UCL Statistics Lognormal Distribution Test 0.974 Normal Distribution Test Statistic 0.972 Shapiro Wilk Critical Value 0.829 Data appear Normal at 5% Significance Level Data appear Lognormal Distribution 0.829 Assuming Normal Distribution Assuming Lognormal Distribution 0.136 95% Student's-t UCL 0.124 95% Hobyshev (MVUE) UCL 0.138 95% Modified-U UCL (Chen-1995) 0.123 97.5% Chebyshev (MVUE) UCL 0.232 Gamma Distribution Test Data Distribution 0.232 Kast (bias corrected) 5.417 Data appear Normal at 5% Significance Level 0.232 Gamma Distribution Test Data Distribution 0.232 0.232 Gamma Distribution Test Data Distribution 0.232 0.232 MLE of Mean 0.101 0.124 99% Chebyshev (MVUE) UCL 0.232 MLE of Mean 0.101 0.124 99% Chebyshev (MVUE) UCL 0.232 MLE of Standard Deviation 0.433 0.433 0.124 0.121 Approximate Chi Square Value (.05) 7.72 Nonparametric Statistics 0.121 Adjusted Level of Significance 0.	The incluture suggests to use bootstrap methods on data si	cis having more than to to observations.	
Normal Distribution TestLognormal Distribution TestShapiro Wilk Test Statistic0.972Shapiro Wilk Test Statistic0.974Shapiro Wilk Critical Value0.829Data appear Lognormal at 5% Significance Level0.829Data appear Normal DistributionAssuming Lognormal Distribution0.13695% Student's-t UCL0.12495% H-UCL0.13895% Otcles (Adjusted for Skewness)95% Chebyshev (MVUE) UCL0.13895% Modified-t UCL (Johnson-1978)0.12397.5% Chebyshev (MVUE) UCL0.232Garman Distribution TestData Distribution0.232Kastar (Dias corrected)5.417Data Distribution0.232Kastar (Dias corrected)0.101MILE of Skantar0.121MLE of Standard Deviation0.043395% Statistics0.121Adjusted Level of Significance0.023195% Statistics0.121Adjusted Level of Significance0.023195% Statistics0.124Adjusted Chi Square Value0.12695% Statistics0.121Anderson-Darling Test Statistic0.17495% Bootstrap-UCL0.122Anderson-Darling Test Statistic0.13695% Chebyshev(Mean, Sd) UCL0.122Lata appear Statistic0.13695% Stochestrap-UCL0.122Anderson-Darling Test Statistic0.13695% Stochestrap-UCL0.122Anderson-Darling Test Statistic0.13695% Scotstrap-UCL0.122Statistic Adjusted Chi Square Value0.2895% Scotstrap-UCL0.122Anderson-Darling Stribution	Relevant UCL Statistics		
Shapiro Wilk Test Statistic 0.972 Shapiro Wilk Critical Value 0.829 Shapiro Wilk Critical Value 0.829 Shapiro Wilk Critical Value 0.829 Data appear Normal at 5% Significance Level Data appear Lognormal at 5% Significance Level 0.829 Assuming Normal Distribution Assuming Lognormal Distribution 0.124 95% Student's-LUCL 0.124 95% H-UCL 0.136 95% Adjusted for Skewness) 95% Chebyshev (MVUE) UCL 0.133 95% Modified+ UCL (Johnson-1978) 0.124 99% Chebyshev (MVUE) UCL 0.232 Gamma Distribution Test Data Distribution 0.232 K star (bias corrected) 5.417 Data appear Normal at 5% Significance Level 0.124 MLE of Mean 0.101 MLE of Standard Deviation 0.433 Nu star 0.75.7 Nonparametric Statistics 0.124 Adjusted Level of Significance 0.021 95% Standard Bootstrap UCL 0.121 Adjusted Chi Square Value (.05) 75.72 Nonparametric Statistics 0.124 Adjusted Chi Square Value 0.174 95% Bootstrap UCL 0.124 Adjusted Chi Square Value 0.122 95% Mandard Bootstrap UCL 0.124 Adjusted Chi Statistic 0.136 95% Percentile Bootstrap UCL 0.122	Normal Distribution Test	Lognormal Distribution Test	
Shapiro Wilk Critical Value 0.829 Shapiro Wilk Critical Value 0.829 Data appear Normal at 5% Significance Level Data appear Lognormal at 5% Significance Level 0.124 Assuming Normal Distribution Assuming Lognormal Distribution 0.124 95% Kudent's-t UCL 0.124 95% (H-UCL 0.136 95% Adjusted-CLT UCL (Chen-1995) 0.123 97.5% Chebyshev (MVUE) UCL 0.138 95% Modified-t UCL (Johnson-1978) 0.124 99% Chebyshev (MVUE) UCL 0.232 Gamma Distribution Test Data Distribution 0.232 K star (bias corrected) 5.417 Data appear Normal at 5% Significance Level Theta Star MLE of Standard Deviation 0.0433 nu star 97.5 Adjusted Level of Significance 0.124 95% Chebyshev (IVUE) 0.121 Adjusted Level of Significance 0.043 nu star 97.5 Approximate Chi Square Value (05) 75.72 Nonparametric Statistics 0.124 95% Chebyshev JUCL 0.121 0.124 95% Standard Bootstrap UCL 0.121 Adjusted Level of Significance 0.722 95% Standard Bootstrap UCL 0.124 Agivesd Level of Significance 0.722 95% Chebyshev (Mean, Sd) UCL 0.122 Anderson-Darling Test Statistic 0.136	Shapiro Wilk Test Statistic	0.972 Shapiro Wilk Test Statistic	0.974
Data appear Normal at 5% Significance Level Data appear Lognormal at 5% Significance Level Assuming Normal Distribution Assuming Lognormal Distribution 95% Student's-t UCL 0.124 95% H-UCL 0.136 95% OUCLs (Adjusted for Skewness) 95% Chebyshev (MVUE) UCL 0.183 95% Adjusted-CLT UCL (Chen-1995) 0.123 97.5% Chebyshev (MVUE) UCL 0.232 Gamma Distribution Test Data Distribution 0.232 K star (bias corrected) 5.417 Data appear Normal at 5% Significance Level 0.232 Gamma Distribution Test Data Distribution 0.233 NLE of Mean 0.101 0.0433 MLE of Standard Deviation 0.0433 0.124 adjusted Chi Significance 0.0231 95% Adjusted Level of Significance 0.121 Adjusted Chi Significance 0.0231 95% Botstrap-1 UCL 0.121 Adjusted Chi Significance 0.124 95% Botstrap-1 UCL 0.124 Anderson-Darling Test Statistic 0.174 95% Botstrap-1 UCL 0.124 Anderson-Darling Test Statistic 0.174 95% Botstrap UCL 0.126 Kolmogorov-Smirnov Sy Critical Value 0.28 95% Chebyshev(Mean, Sd) UCL 0.122 Data appear Gamma Distributed at 5% Significance Level 95% Chebyshev(Mean, Sd) UCL 0.122	Shapiro Wilk Critical Value	0.829 Shapiro Wilk Critical Value	0.829
Assuming Normal Distribution Assuming Lognormal Distribution 95% Student's-t UCL 0.124 95% H-UCL 0.136 95% UCLs (Adjusted for Skewness) 95% Chebyshev (MVUE) UCL 0.183 95% Adjusted-CLT UCL (Chen-1995) 0.123 97.5% Chebyshev (MVUE) UCL 0.232 Gamma Distribution Test Data Distribution 0.232 K star (bias corrected) 5.417 Data appear Normal at 5% Significance Level 0.232 MLE of Mean 0.101 MLE of Standard Deviation 0.0433 nu star 97.5 Approximate Chi Square Value (.05) 75.72 Nonparametric Statistics Adjusted Level of Significance 0.021 95% Standard Bootstrap UCL 0.121 Adjusted Chi Square Value 71.68 95% Bootstrap-UCL 0.121 Anderson-Darling Test Statistic 0.174 95% Bootstrap UCL 0.122 Anderson-Darling Test Statistic 0.136 95% Schebyshev (Mean, Sd) UCL 0.122 Data appear Gamma Distribution 95% Schebyshev (Mean, Sd) UCL 0.122 0.122 Data appear Gamma Distribution 95% Schebyshev (Mean, Sd) UCL 0.122 95% Adjusted Chi Square Value 0.224 95% Adjusted Gamma	Data appear Normal at 5% Significance Level	Data appear Lognormal at 5% Significance Level	
Assuming Normal Distribution Assuming Lognoral Distribution 95% Student's-t UCL 0.124 95% H-UCL 0.136 95% OLLs (Adjusted for Skewness) 95% Chebyshev (MVUE) UCL 0.183 95% Modified-t UCL (Johnson-1978) 0.124 99% Chebyshev (MVUE) UCL 0.232 Gamma Distribution Test Data Distribution 0.232 K star (bias corrected) 5.417 Data appear Normal at 5% Significance Level 1 Theta Star 0.0186 1 1 1 MLE of Standard Deviation 0.0433 1 1 1 nu star 97.5 Nonparametric Statistics 0.121 4 4 4 1			
95% Student's-t UCL 0.124 95% H-UCL 0.136 95% UCLs (Adjusted for Skewness) 95% Chebyshev (MVUE) UCL 0.158 95% Adjusted-CLT UCL (Chen-1995) 0.123 97.5% Chebyshev (MVUE) UCL 0.183 95% Modified-t UCL (Johnson-1978) 0.124 99% Chebyshev (MVUE) UCL 0.232 Gamma Distribution Test Data Distribution 0.136 k star (bias corrected) 5.417 Data appear Normal at 5% Significance Level 1 Theta Star 0.0186 MLE of Mean 0.101 MLE of Standard Deviation 0.0433 nu star 97.5 Approximate Chi Square Value (.05) 75.72 Nopmarametric Statistics 0.124 4justed Level of Significance 0.0231 95% Standard Bootstrap UCL 0.121 Adjusted Chi Square Value 0.174 95% Standard Bootstrap UCL 0.122 Anderson-Darling Test Statistic 0.174 0.018 95% Bootstrap-UCL 0.122 Anderson-Darling Sto Critical Value 0.28 0.128 95% BCA Bootstrap UCL 0.122 Kolmogorov-Smirnov Test Statistic 0.18 0.130 95% Chebyshev(Mean, Sd) UCL 0.122 Data appear Gamma Distribution 95% Student's-t UCL 0.122	Assuming Normal Distribution	Assuming Lognormal Distribution	
95% UCLs (Adjusted for Skewness) 95% Chebyshev (MVUE) UCL 0.158 95% Adjusted-CLT UCL (Chen-1995) 0.123 97.5% Chebyshev (MVUE) UCL 0.183 95% Modified-t UCL (Johnson-1978) 0.124 99% Chebyshev (MVUE) UCL 0.232 Gamma Distribution Test Data Distribution 0.232 Kstar (bias corrected) 5.417 Data appear Normal at 5% Significance Level 0.232 Theta Star 0.0186 0.013 0.0433 0.0433 nu star 97.5 Nonparametric Statistics 0.121 Adjusted Chi Square Value (.05) 75.72 Nonparametric Statistics 0.122 Adjusted Chi Square Value 0.121 95% Standard Bootstrap UCL 0.121 Adjusted Chi Square Value 0.174 95% Dotstrapt UCL 0.122 Anderson-Darling Test Statistic 0.174 95% Standard Bootstrap UCL 0.122 Anderson-Darling 5% Critical Value 0.222 95% Hall's Bootstrap UCL 0.122 Kolmogorov-Smirnov Test Statistic 0.136 95% Decemptie Bootstrap UCL 0.122 Kolmogorov-Smirnov 5% Critical Value 0.28 95% Chebyshev(Mean, Sd) UCL 0.122 Data appear Gamma Distrib	95% Student's-t UCL	0.124 95% H-UCL	0.136
95% Adjusted-CLT UCL (Chen-1995) 0.123 97.5% Chebyshev (MVUE) UCL 0.183 95% Modified-t UCL (Johnson-1978) 0.124 99% Chebyshev (MVUE) UCL 0.232 Gamma Distribution Test Data Distribution 0.232 K star (bias corrected) 5.417 Data appear Normal at 5% Significance Level 0.232 Theta Star 0.0186 0.101 0.101 0.101 MLE of Mean 0.101 0.433 0.75 0.75 Approximate Chi Square Value (.05) 75.72 Nonparametric Statistics 0.121 Adjusted Level of Significance 0.0231 95% Standard Bootstrap UCL 0.121 Adjusted Level of Significance 0.174 95% Standard Bootstrap UCL 0.124 Adjusted Level of Significance 0.231 95% Bootstrap UCL 0.125 Anderson-Darling Test Statistic 0.174 95% Bootstrap UCL 0.126 Kolmogorov-Smirnov Test Statistic 0.136 95% Porcentile Bootstrap UCL 0.122 Data appear Gamma Distribution 95% Chebyshev(Mean, Sd) UCL 0.122 Data appear Gamma Distribution 95% Chebyshev(Mean, Sd) UCL 0.122 Data appear Gamma Distribution 95% Chebyshev(Mean, Sd) UCL 0.124 95% Adjusted Gamma UCL 0.137 0.124 Potential UCL	95% UCLs (Adjusted for Skewness)	95% Chebyshev (MVUE) UCL	0.158
95% Modified-t UCL (Johnson-1978) 0.124 99% Chebyshev (MVUE) UCL 0.232 Gamma Distribution Test Data Distribution k star (bias corrected) 5.417 Data appear Normal at 5% Significance Level Theta Star 0.0186 0.101 MLE of Mean 0.101 MLE of Standard Deviation 0.0433 0.0433 0.121 nu star 97.5 Approximate Chi Square Value (.05) 75.72 Nonparametric Statistics Adjusted Level of Significance 0.0231 95% CLT UCL 0.121 Adjusted Level of Significance 0.0231 95% Standard Bootstrap UCL 0.124 Adjusted Level of Significance 0.174 95% Standard Bootstrap UCL 0.125 Anderson-Darling Test Statistic 0.174 95% Bootstrap+ UCL 0.126 Kolmogorov-Smirnov Test Statistic 0.136 95% PSC Abootstrap UCL 0.122 Data appear Gamma Distribution 95% Chebyshev(Mean, Sd) UCL 0.122 Data appear Gamma Distribution 99% Chebyshev(Mean, Sd) UCL 0.221 95% Adjusted Gamma UCL 0.137 95% Student's-t UCL 0.124 95% Adjusted Gamma UCL 0.137 95% Student's-t UCL 0.124 95% Adjusted Gamma UCL 0.137 95% Student's-t UCL 0.124	95% Adjusted-CLT UCL (Chen-1995)	0.123 97.5% Chebyshev (MVUE) UCL	0.183
Gamma Distribution TestData Distributionk star (bias corrected)5.417Data appear Normal at 5% Significance LevelTheta Star0.0186MLE of Mean0.101MLE of Standard Deviation0.0433nu star97.5Approximate Chi Square Value (.05)75.72Noproximate Chi Square Value (.05)75.72Adjusted Level of Significance0.023195% CLT UCL0.121Adjusted Level of Significance0.12495% Standard Bootstrap UCL0.125Anderson-Darling Test Statistic0.17495% Bootstrap-t UCL0.126Kolmogorov-Smirnov Test Statistic0.17495% BCA Bootstrap UCL0.122Data appear Gamma Distribution95% Chebyshev(Mean, Sd) UCL0.122Data appear Gamma Distribution95% Chebyshev(Mean, Sd) UCL0.127Potential UCL to Use0.137Vise 95% Student's-t UCL0.124Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.1.124These recommendations are based upon the results of the simulator, studies summarized in Singh, Singh, and Iaci (2002)1.24Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.1.24These recommendations are based upon the results of the simulator.1.51These recommendations are based upon the results of the simulator.1.51These recommendations are based upon the results of the simulator.1.51These recommendations are based upon t	95% Modified-t UCL (Johnson-1978)	0.124 99% Chebyshev (MVUE) UCL	0.232
Gamma Distribution Data supear Normal at 5% Significance Level Theta Star 0.0186 MLE of Mean 0.101 MLE of Standard Deviation 0.0433 nu star 97.5 Approximate Chi Square Value (.05) 75.72 Noproximate Chi Square Value 0.121 Adjusted Level of Significance 0.0231 95% CLT UCL 0.121 Adjusted Level of Significance 0.0231 95% Standard Bootstrap UCL 0.12 Anderson-Darling Test Statistic 0.174 95% Standard Bootstrap UCL 0.126 Kolmogorov-Smirnov Test Statistic 0.136 95% Chebyshev(Mean, Sd) UCL 0.122 Data appear Gamma Distributed at 5% Significance Level 95% Chebyshev(Mean, Sd) UCL 0.122 Data appear Gamma Distributed at 5% Significance Level 95% Chebyshev(Mean, Sd) UCL 0.178 95% Approximate Gamma UCL 0.137 95% Chebyshev(Mean, Sd) UCL 0.124 95% Approximate Gamma UCL 0.137 95% Chebyshev(Mean, Sd) UCL 0.124 95% Approximate Gamma UCL 0.137 95% Chebyshev(Mean, Sd) UCL 0.124 95% Approximate Gamma UCL 0.137<	Commo Distribution Tost	Data Distrikution	
A Star (blas corrected) 0.417 Data appear Normal at 5% Significance Level MLE of Mean 0.101 MLE of Standard Deviation 0.0433 nu star 97.5 Approximate Chi Square Value (.05) 75.72 Nonparametric Statistics Adjusted Level of Significance 0.0231 95% CLT UCL 0.121 Adjusted Chi Square Value 71.68 95% Standard Bootstrap UCL 0.124 95% Standard Bootstrap UCL 0.125 Anderson-Darling Test Statistic 0.174 95% Bootstrap UCL 0.126 Kolmogorov-Smirnov Test Statistic 0.136 95% Percentile Bootstrap UCL 0.122 Kolmogorov-Smirnov 5% Critical Value 0.28 95% BCA Bootstrap UCL 0.122 Kolmogorov-Smirnov 5% Critical Value 0.28 95% BCA Bootstrap UCL 0.122 Data appear Gamma Distributed at 5% Significance Level 95% Chebyshev(Mean, Sd) UCL 0.178 95% Approximate Gamma UCL 0.13 95% Chebyshev(Mean, Sd) UCL 0.124 95% Approximate Gamma UCL 0.13 95% Student*s-t UCL 0.124 95% Adjusted Gamma UCL 0.137 95% Student*s-t UCL 0.124 Note: S	(samma Distribution Test	5 447 Data annear Narmal at 5% Significance Lavel	
Ineta Star 0.0186 MLE of Mean 0.101 MLE of Standard Deviation 0.0433 nu star 97.5 Approximate Chi Square Value (.05) 75.72 Noproximate Chi Square Value 0.0231 Adjusted Level of Significance 0.0231 95% CLT UCL 0.121 Adjusted Chi Square Value 71.68 95% Standard Bootstrap UCL 0.12 Anderson-Darling Test Statistic 0.174 95% Standard Bootstrap UCL 0.126 Anderson-Darling 5% Critical Value 0.722 95% Percentile Bootstrap UCL 0.126 Kolmogorov-Smirnov Test Statistic 0.13 95% Chebyshev(Mean, Sd) UCL 0.122 Data appear Gamma Distributed at 5% Significance Level 95% Chebyshev(Mean, Sd) UCL 0.178 95% Approximate Gamma UCL 0.13 95% Chebyshev(Mean, Sd) UCL 0.124 95% Adjusted Gamma UCL 0.137 95% Student's-t UCL 0.124 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Sing	K star (bias corrected)	5.417 Data appear Normal at 5% Significance Level	
MLE of Mean 0.101 MLE of Standard Deviation 0.0433 nu star 97.5 Approximate Chi Square Value (.05) 75.72 Nonparametric Statistics Adjusted Level of Significance 0.0231 95% CLT UCL 0.121 Adjusted Chi Square Value 71.68 95% Jackknife UCL 0.124 95% Standard Bootstrap UCL 0.12 Anderson-Darling Test Statistic 0.174 95% Bootstrap-UCL 0.126 Anderson-Darling 5% Critical Value 0.722 95% Hall's Bootstrap UCL 0.126 Kolmogorov-Smirnov Test Statistic 0.136 95% Percentile Bootstrap UCL 0.122 Data appear Gamma Distributed at 5% Significance Level 95% Chebyshev(Mean, Sd) UCL 0.122 95% Approximate Gamma UCL 0.13 97.5% Chebyshev(Mean, Sd) UCL 0.124 95% Adjusted Gamma UCL 0.137 0.137 0.124 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. 1.144 These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh, Singh, and laci (2002) and Singh and Sion (2003). For additional insight, the user may wa	I neta Star	0.0186	
MLE of Standard Deviation 97.5 Approximate Chi Square Value (.05) 75.72 Nonparametric Statistics Adjusted Level of Significance 0.0231 95% CLT UCL 0.121 Adjusted Chi Square Value 71.68 95% Jackknife UCL 0.124 95% Standard Bootstrap UCL 0.12 Anderson-Darling Test Statistic 0.174 95% Bootstrap-t UCL 0.125 Anderson-Darling 5% Critical Value 0.722 95% Hall's Bootstrap UCL 0.126 Kolmogorov-Smirnov Test Statistic 0.136 95% Percentile Bootstrap UCL 0.122 Data appear Gamma Distributed at 5% Significance Level 95% Chebyshev(Mean, Sd) UCL 0.155 97.5% Chebyshev(Mean, Sd) UCL 0.178 99% Adjusted Gamma UCL 0.13 95% Adjusted Gamma UCL 0.13 95% Adjusted Gamma UCL 0.13 95% Adjusted Gamma UCL 0.13 95% Student's-t UCL 0.124 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, and laci (2002) and Singh and Singh (2003). For additional insight, the user may want to consult a statistician.	MLE of Mean	0.101	
Approximate Chi Square Value (.05) 75.72 Nonparametric Statistics Adjusted Level of Significance 0.0231 95% CLT UCL 0.121 Adjusted Chi Square Value 71.68 95% Jackknife UCL 0.124 95% Standard Bootstrap UCL 0.124 Anderson-Darling Test Statistic 0.174 95% Bootstrap-t UCL 0.125 Anderson-Darling 5% Critical Value 0.722 95% Hall's Bootstrap UCL 0.126 Kolmogorov-Smirnov Test Statistic 0.13 95% Chebyshev(Mean, Sd) UCL 0.122 Data appear Gamma Distributed at 5% Significance Level 95% Chebyshev(Mean, Sd) UCL 0.178 95% Adjusted Gamma UCL 0.13 95% Student's-t UCL 0.124 95% Adjusted Gamma UCL 0.13 0.137 0.131 Potential UCL to Use Use 95% Student's-t UCL 0.124 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh and Singh (2003). For additional insight, the user may want to consult a statistician.	MLE of Standard Deviation	0.0433	
Approximate Chi Square Value (J05) 75.72 Nonparametric Statistics Adjusted Level of Significance 0.0231 95% CLT UCL 0.121 Adjusted Chi Square Value 71.68 95% Jackknife UCL 0.124 95% Standard Bootstrap UCL 0.125 Anderson-Darling Test Statistic 0.174 95% Bootstrap-t UCL 0.125 Anderson-Darling 5% Critical Value 0.722 95% Hall's Bootstrap UCL 0.126 Kolmogorov-Smirnov Test Statistic 0.136 95% Percentile Bootstrap UCL 0.122 Kolmogorov-Smirnov 5% Critical Value 0.28 95% BCA Bootstrap UCL 0.122 Data appear Gamma Distributed at 5% Significance Level 95% Chebyshev(Mean, Sd) UCL 0.155 97.5% Chebyshev(Mean, Sd) UCL 0.178 Assuming Gamma Distribution 99% Chebyshev(Mean, Sd) UCL 0.124 0.224 95% Adjusted Gamma UCL 0.137 Potential UCL to Use Use 95% Student's-t UCL 0.124 0.124 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh and Singh (2003). For additional insight, the user may want to consult a statistician. </td <td>nu star</td> <td>97.5 75.70 N</td> <td></td>	nu star	97.5 75.70 N	
Adjusted Level of Significance 0.0231 95% CLT UCL 0.121 Adjusted Chi Square Value 71.68 95% Jackknife UCL 0.124 95% Standard Bootstrap UCL 0.12 Anderson-Darling Test Statistic 0.174 95% Bootstrap-t UCL 0.125 Anderson-Darling 5% Critical Value 0.722 95% Hall's Bootstrap UCL 0.126 Kolmogorov-Smirnov Test Statistic 0.13 95% BCA Bootstrap UCL 0.122 Kolmogorov-Smirnov 5% Critical Value 0.28 95% BCA Bootstrap UCL 0.122 Data appear Gamma Distributed at 5% Significance Level 95% Chebyshev(Mean, Sd) UCL 0.178 95% Approximate Gamma UCL 0.13 99% Chebyshev(Mean, Sd) UCL 0.124 95% Adjusted Gamma UCL 0.137 0.137 0.124 Potential UCL to Use Use 95% Student's-t UCL 0.124 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh (2003). For additional insight, the user may want to consult a statistician.	Approximate Chi Square Value (.05)		0.404
Adjusted Chi Square Value 71.68 95% Jackkinfe UCL 0.124 95% Standard Bootstrap UCL 0.12 Anderson-Darling Test Statistic 0.174 95% Bootstrap+t UCL 0.125 Anderson-Darling 5% Critical Value 0.722 95% Hall's Bootstrap UCL 0.126 Kolmogorov-Smirnov Test Statistic 0.136 95% Percentile Bootstrap UCL 0.12 Kolmogorov-Smirnov 5% Critical Value 0.28 95% BCA Bootstrap UCL 0.12 Data appear Gamma Distributed at 5% Significance Level 95% Chebyshev(Mean, Sd) UCL 0.155 97.5% Chebyshev(Mean, Sd) UCL 0.178 95% Adjusted Gamma UCL 0.13 99% Chebyshev(Mean, Sd) UCL 0.224 95% Adjusted Gamma UCL 0.137 0.137 0.124 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh and Singh (2003). For additional insight, the user may want to consult a statistician. 0.124	Adjusted Level of Significance	0.0231 95% CLT UCL	0.121
95% Standard Bootstrap UCL 0.12 Anderson-Darling Test Statistic 0.174 95% Bootstrap-t UCL 0.125 Anderson-Darling 5% Critical Value 0.722 95% Hall's Bootstrap UCL 0.126 Kolmogorov-Smirnov Test Statistic 0.136 95% Percentile Bootstrap UCL 0.122 Kolmogorov-Smirnov 5% Critical Value 0.28 95% BCA Bootstrap UCL 0.122 Data appear Gamma Distributed at 5% Significance Level 95% Chebyshev(Mean, Sd) UCL 0.155 97.5% Chebyshev(Mean, Sd) UCL 0.178 Assuming Gamma Distribution 99% Chebyshev(Mean, Sd) UCL 0.124 95% Approximate Gamma UCL 0.13 95% Student's-t UCL 0.124 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh and Singh (2003). For additional insight, the user may want to consult a statistician. Singh, and Iaci (2002)	Adjusted Chi Square Value	71.68 95% Jackknife UCL	0.124
Anderson-Darling Test Statistic 0.174 95% Bootstrap-t UCL 0.125 Anderson-Darling 5% Critical Value 0.722 95% Hall's Bootstrap UCL 0.126 Kolmogorov-Smirnov Test Statistic 0.136 95% Percentile Bootstrap UCL 0.12 Kolmogorov-Smirnov 5% Critical Value 0.28 95% BCA Bootstrap UCL 0.122 Data appear Gamma Distributed at 5% Significance Level 95% Chebyshev(Mean, Sd) UCL 0.155 97.5% Chebyshev(Mean, Sd) UCL 0.178 Assuming Gamma Distribution 99% Chebyshev(Mean, Sd) UCL 0.224 95% Approximate Gamma UCL 0.13 95% Student's-t UCL 0.124 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh and Singh (2003). For additional insight, the user may want to consult a statistician. Singh, and Iaci (2002)		95% Standard Bootstrap UCL	0.12
Anderson-Darling 5% Critical Value 0.722 95% Hall's Bootstrap UCL 0.126 Kolmogorov-Smirnov Test Statistic 0.136 95% Percentile Bootstrap UCL 0.12 Kolmogorov-Smirnov 5% Critical Value 0.28 95% BCA Bootstrap UCL 0.122 Data appear Gamma Distributed at 5% Significance Level 95% Chebyshev(Mean, Sd) UCL 0.155 97.5% Chebyshev(Mean, Sd) UCL 0.178 Assuming Gamma Distribution 99% Chebyshev(Mean, Sd) UCL 0.224 95% Approximate Gamma UCL 0.13 95% Student's-t UCL 0.124 Potential UCL to Use Use 95% Student's-t UCL 0.124 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh (2003). For additional insight, the user may want to consult a statistician. Statistician.	Anderson-Darling Test Statistic	0.174 95% Bootstrap-t UCL	0.125
Kolmogorov-Smirnov Test Statistic 0.136 95% Percentile Bootstrap UCL 0.12 Kolmogorov-Smirnov 5% Critical Value 0.28 95% BCA Bootstrap UCL 0.122 Data appear Gamma Distributed at 5% Significance Level 95% Chebyshev(Mean, Sd) UCL 0.155 97.5% Chebyshev(Mean, Sd) UCL 0.178 Assuming Gamma Distribution 99% Chebyshev(Mean, Sd) UCL 0.224 95% Approximate Gamma UCL 0.13 99% Chebyshev(Mean, Sd) UCL 0.224 95% Adjusted Gamma UCL 0.13 0.137 0.124 Potential UCL to Use Use 95% Student's-t UCL 0.124 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh and Singh (2003). For additional insight, the user may want to consult a statistician.	Anderson-Darling 5% Critical Value	0.722 95% Hall's Bootstrap UCL	0.126
Kolmogorov-Smirnov 5% Critical Value 0.28 95% BCA Bootstrap UCL 0.122 Data appear Gamma Distributed at 5% Significance Level 95% Chebyshev(Mean, Sd) UCL 0.155 97.5% Chebyshev(Mean, Sd) UCL 0.178 Assuming Gamma Distribution 99% Chebyshev(Mean, Sd) UCL 0.178 95% Approximate Gamma UCL 0.13 0.137 Potential UCL to Use Use 95% Student's-t UCL 0.124 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh (2003). For additional insight, the user may want to consult a statistician.	Kolmogorov-Smirnov Test Statistic	0.136 95% Percentile Bootstrap UCL	0.12
Data appear Gamma Distributed at 5% Significance Level 95% Chebyshev(Mean, Sd) UCL 0.155 97.5% Chebyshev(Mean, Sd) UCL 0.178 Assuming Gamma Distribution 99% Chebyshev(Mean, Sd) UCL 0.224 95% Approximate Gamma UCL 0.13 0.137 Potential UCL to Use Use 95% Student's-t UCL 0.124 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh (2003). For additional insight, the user may want to consult a statistician. 0.155	Kolmogorov-Smirnov 5% Critical Value	0.28 95% BCA Bootstrap UCL	0.122
97.5% Chebyshev(Mean, Sd) UCL 0.178 Assuming Gamma Distribution 99% Chebyshev(Mean, Sd) UCL 0.224 95% Approximate Gamma UCL 0.13 95% Adjusted Gamma UCL 0.137 Potential UCL to Use Use 95% Student's-t UCL 0.124 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh (2003). For additional insight, the user may want to consult a statistician.	Data appear Gamma Distributed at 5% Significance Level	95% Chebyshev(Mean, Sd) UCL	0.155
Assuming Gamma Distribution 99% Chebyshev(Mean, Sd) UCL 0.224 95% Approximate Gamma UCL 0.13 95% Adjusted Gamma UCL 0.137 Potential UCL to Use Use 95% Student's-t UCL 0.124 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. 0.124 These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh (2003). For additional insight, the user may want to consult a statistician.		97.5% Chebyshev(Mean, Sd) UCL	0.178
95% Approximate Gamma UCL 0.13 95% Adjusted Gamma UCL 0.137 Potential UCL to Use Use 95% Student's-t UCL 0.124 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. 0.124 These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh (2003). For additional insight, the user may want to consult a statistician.	Assuming Gamma Distribution	99% Chebyshev(Mean, Sd) UCL	0.224
95% Adjusted Gamma UCL 0.137 Potential UCL to Use Use 95% Student's-t UCL 0.124 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh (2003). For additional insight, the user may want to consult a statistician.	95% Approximate Gamma UCL	0.13	
Potential UCL to Use Use 95% Student's-t UCL 0.124 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh and Singh (2003). For additional insight, the user may want to consult a statistician.	95% Adjusted Gamma UCL	0.137	
Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh and Singh (2003). For additional insight, the user may want to consult a statistician.	Potential UCL to Use	Use 95% Student's-t UCL	0.124
These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh and Singh (2003). For additional insight, the user may want to consult a statistician.			
and Singh and Singh (2003). For additional insight, the user may want to consult a statistician.	These recommendations as based uncertain the selection of a 95% UCL ar	e provided to help the user to select the most appropriate 95% UCL.	
	and Singh and Singh (2003). For additional insight, the us	simulation studies summanzed in Singh, Singh, and fact (2002) ser may want to consult a statistician.	

General LICL Statistics fr	or Full Data Sets	
User Selected Ontions		
From File Spat wst		
Full Precision OFF		
Confidence Coefficient 95%		
Number of Bootstran Operations 2000		
unt commun		
Spot Zinc		
General Statistics		
Number of Valid Observations	9 Number of Distinct Observations	9
Raw Statistics	Log-transformed Statistics	
Minimum	4.8 Minimum of Log Data	1.569
Maximum	8.88 Maximum of Log Data	2.184
Mean	6.433 Mean of log Data	1.837
Median	5.76 SD of log Data	0.234
SD	1.547	
Coefficient of Variation	0.241	
Skewness	0.596	
Warning: There are only 9 Values in this data		
Note: It should be noted that even though bootstran metho	ds may be performed on this data set	
the resulting calculations may not be reliable enough to draw	w conclusions	
and resulting calculations may not be reliable chough to that		
The literature suggests to use bootstrap methods on data se	ets having more than 10-15 observations.	
Polovant LICL Statistics		
Nermal Distribution Test	Lognormal Distribution Test	
Shanira Wilk Test Statistic	0.996 Shapira Wilk Test Statistic	0.002
Shapiro Wilk Critical Value	0.829 Shapiro Wilk Critical Value	0.902
Data appear Normal at 5% Significance Level	Data appear Lognormal at 5% Significance Level	0.023
Assuming Normal Distribution	Assuming Lognormal Distribution	
95% Student's-t UCL	7.392 95% H-UCL	7.572
95% UCLs (Adjusted for Skewness)	95% Chebyshev (MVUE) UCL	8.622
95% Adjusted-CLT UCL (Chen-1995)	7.391 97.5% Chebyshev (MVUE) UCL	9.571
95% Modified-t UCL (Johnson-1978)	7.409 99% Chebyshev (MVUE) UCL	11.43
Gamma Distribution Test	Data Distribution	
k star (bias corrected)	13.64 Data appear Normal at 5% Significance Level	
Theta Star	0.472	
MLE of Mean	6.433	
MLE of Standard Deviation	1.742	
nu star	245.5	
Approximate Chi Square Value (.05)	210.3 Nonparametric Statistics	
Adjusted Level of Significance	0.0231 95% CLT UCL	7.282
Adjusted Chi Square Value	203.4 95% Jackknife UCL	7.392
ano 52	95% Standard Bootstrap UCL	7.239
Anderson-Darling Test Statistic	0.46 95% Bootstrap-t UCL	7.619
Anderson-Darling 5% Critical Value	0.721 95% Hall's Bootstrap UCL	7.28
Kolmogorov-Smirnov Test Statistic	0.217 95% Percentile Bootstrap UCL	7.271
Kolmogorov-Smirnov 5% Critical Value	0.279 95% BCA Bootstrap UCL	7.341
Data appear Gamma Distributed at 5% Significance Level	95% Chebyshev(Mean, Sd) UCL	8.681
	97.5% Chebyshev(Mean, Sd) UCL	9.654
Assuming Gamma Distribution	99% Chebyshev(Mean, Sd) UCL	11.56
95% Approximate Gamma UCL	7.513	
95% Adjusted Gamma UCL	7.767	
Potential UCL to Use	Use 95% Student's-t UCL	7.392
Note: Suggestions regarding the selection of a 95% LICL ar	e provided to help the user to select the most appropriate 05% LICL	
These recommendations are based upon the results of the	simulation studies summarized in Singh Singh and laci (2002)	
and Singh and Singh (2003). For additional insight, the us	ser may want to consult a statistician.	

General UCL Stati	istics for Full Da	ta Sets	
User Selected Options			
From File C:\Documents and	d Settings\pit605	500\Desktop\ProUCL\Spotted Seatrout\Spotted Seatrout Da	ta.wst
Full Precision OFF			
Confidence Coefficient 95%			
Number of Bootstrap Operations 2000			
Spotted Seatrout Aroclor-1268			
General Statistics			
Number of Valid Observations	31	Number of Distinct Observations	27
Raw Statistics		Log-transformed Statistics	
Minimum	0.089	Minimum of Log Data	-2.419
Maximum	1.2	Maximum of Log Data	0.182
Mean	0.445	Mean of log Data	-1.058
Median	0.38	SD of log Data	0.745
SD	0.306		
Coefficient of Variation	0.688		
Skewness	0.923		
Relevant UCL Statistics			
Normal Distribution Test		Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.899	Shapiro Wilk Test Statistic	0.952
Shapiro Wilk Critical Value	0.929	Shapiro Wilk Critical Value	0.929
Data not Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	0.538	95% H-UCL	0.613
95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCL	0.742
95% Adjusted-CLT UCL (Chen-1995)	0 545	97.5% Chebyshev (MVUE) UCI	0.867
95% Modified-t UCL (Johnson-1978)	0.539	99% Chebyshev (MVUE) UCL	1.112
Gamma Distribution Test		Data Distribution	
k star (bias corrected)	1 982	Data appear Gamma Distributed at 5% Significance Level	
Theta Star	0.224	Data appear Gamma Distributed at 5% Orginicance Lever	
MI E of Mean	0.224		
MIE of Standard Deviation	0.445		
nu star	122.0		
Approximate Chi Square Value (05)	08.26	Nonnarametric Statistics	
Adjusted Level of Significance	0.0413		0 535
Adjusted Chi Square Value	97 04	95% Jackknife LICI	0.538
	57.04	95% Standard Bootstran LICI	0.520
Anderson-Darling Test Statistic	0.41	95% Bootstrap-t LICI	0.558
Anderson-Darling 5% Critical Value	0.758	95% Hall's Bootstran LICI	0.547
Kolmogorov-Smirnov Test Statistic	0.130	05% Percentile Bootstrap LICI	0.535
Kolmogorov-Smirnov 5% Critical Value	0.145	95% BCA Bootstrap LICL	0.530
Data appear Gamma Distributed at 5% Significance	l evel	95% Chebyshev(Mean, Sd) LICI	0.684
Bata appear Ganina Distributed at 5% orginicance i	Level	97.5% Chebyshev(Mean, Sd) UCL	0.788
Assuming Gamma Distribution		99% Chebyshev(Mean, Sd) UCL	0.700
95% Approximate Gamma LICI	0.556	33 % Chebyshev(Mean, Su) DOL	0.331
95% Adjusted Gamma UCL	0.563		
Potential UCL to Use		Use 95% Approximate Gamma UCL	0.556
Note: Suggestions regarding the selection of a 05% I	ICI are provide	d to bein the user to select the most appropriate 0.5% U.C.	
These recommendations are based upon the results	of the simulation	n studies summarized in Singh Singh and laci (2002)	
and Singh and Singh (2003) For additional insight	the user may w	ant to consult a statistician	
and ongh and ongh (2005). For additional insight,	une user may w	ant to consult a statistician.	

General UCL Statistics	for Full Da	ta Sets	
User Selected Options			
From File C:\Documents and Sett	ings\pit60:	buolDesktoplProUCL/Spotted Seatrout/Spotted Seatrout Da	ta.wst
Full Precision OFF			
Confidence Coefficient 95%			
Number of Bootstrap Operations 2000			
Spotted Seatrout Copper			
General Statistics			
Number of Valid Observations	10	Number of Distinct Observations	9
Raw Statistics		Log-transformed Statistics	
Minimum	2.2	Minimum of Log Data	0.788
Maximum	5.32	Maximum of Log Data	1.671
Mean	3.259	Mean of log Data	1.146
Median	3.06	SD of log Data	0.274
SD	0.959		
Coefficient of Variation	0.294		
Skewness	1.209		
Relevant LICL Statistics			
Normal Distribution Test		Lognormal Distribution Test	
Chaning Wills Test Chatistia	0.007	Chaning Wills Test Statistic	0.020
Shapiro Wilk Critical Value	0.007	Shapiro Wilk Critical Value	0.939
Shapiro Wilk Chiical Value	0.042	Shapiro wilk Childar value	0.042
Data appear Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	3.815	95% H-UCL	3.904
95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCL	4.491
95% Adjusted-CLT UCL (Chen-1995)	3.882	97.5% Chebyshev (MVUE) UCL	5.026
95% Modified-t UCL (Johnson-1978)	3.835	99% Chebyshev (MVUE) UCL	6.077
Gamma Distribution Test		Data Distribution	
k star (bias corrected)	10.11	Data appear Normal at 5% Significance Level	
Theta Star	0.322		
MLE of Mean	3.259		
MLE of Standard Deviation	1.025		
nu star	202.2		
Approximate Chi Square Value (.05)	170.3	Nonparametric Statistics	
Adjusted Level of Significance	0.0267	95% CLT UCL	3.758
Adjusted Chi Square Value	165.2	95% Jackknife UCL	3.815
		95% Standard Bootstrap UCL	3,736
Anderson-Darling Test Statistic	0.381	95% Bootstrap-t UCL	4,203
Anderson-Darling 5% Critical Value	0 725	95% Hall's Bootstrap UCI	6 961
Kolmogorov-Smirnov Test Statistic	0.723	95% Percentile Bootstran LICI	3 743
Kolmogorov-Smirnov 5% Critical Value	0.23	05% BCA Bootstrap LICI	3 951
Nonnogorov-Grimmov 576 Gridled at 59/ Circuffeegees Level	0.200	05% Chabyshaw/Maan Sd) LCL	J.001
Data appear Gamma Distributed at 5% Significance Level		93% Chebyshev(Mean, Sd) UCL	4.381
Assessing Course Distribution		97.5% Unepysnev(Mean, Sa) UUL	5.154
Assuming Gamma Distribution	2 2 2	99% Unebysnev(Mean, Sd) UCL	6.277
95% Approximate Gamma UCL 95% Adjusted Gamma UCL	3.87 3.989		
Potential UCL to Use		Use 95% Student's-t UCL	3.815
Note: Suggestions regarding the selection of a 95% UCL a These recommendations are based upon the results of the	are provide e simulatio	ed to help the user to select the most appropriate 95% UCL. n studies summarized in Singh, Singh, and laci (2002)	

and Singh and Singh (2003). For additional insight, the user may want to consult a statistician.

General UCL Statistics	s for Full Da	ita Sets	
User Selected Options			
From File C:\Documents and Se	ttings\pit60	500\Desktop\ProUCL\Spotted Seatrout\Spotted Seatrout Da	ata.wst
Full Precision OFF			
Confidence Coefficient 95%			
Number of Bootstrap Operations 2000			
(24.) 173			
Spotted Seatrout Mercury			
General Statistics			
Number of Valid Observations	31	Number of Distinct Observations	31
Raw Statistics	2.022	Log-transformed Statistics	101 10010
Minimum	0.12	Minimum of Log Data	-2.124
Maximum	0.941	Maximum of Log Data	-0.0608
Mean	0.439	Mean of log Data	-0.913
Median	0.408	SD of log Data	0.441
SD	0.185		
Coefficient of Variation	0.421		
Skewness	0.773		
Relevant UCL Statistics			
Normal Distribution Test		Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.952	Shapiro Wilk Test Statistic	0.977
Shapiro Wilk Critical Value	0.929	Shapiro Wilk Critical Value	0.929
Data appear Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	0.495	95% H-UCL	0.515
95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCL	0.599
95% Adjusted-CLT UCL (Chen-1995)	0 498	97.5% Chebyshev (MV/UE) UCI	0.667
95% Modified-t UCL (Johnson-1978)	0.496	99% Chebyshev (MVUE) UCL	0.801
Gamma Distribution Test		Data Distribution	
k star (bias corrected)	5.263	Data appear Normal at 5% Significance Level	
Theta Star	0.0834	Data appear froma, at ere eigennoanee zere.	
MI E of Mean	0 439		
MLE of Standard Deviation	0.100		
nu star	326.3		
Approximate Chi Square Value (05)	295 5	Nonnarametric Statistics	
Adjusted Level of Significance	0.0412		0.402
Adjusted Chi Square Value	202 2	95% Jackkoife LICI	0.495
Adjusted On Oquare Value	200.0	05% Standard Pastatron LICI	0.401
Andorson Darling Toot Statistic	0.246	95% Standard Bootstrap OCL	0.491
Anderson Darling 5% Critical Value	0.240	05% Hall's Poststran LICI	0.497
Kalmannerson-Danning 5% Childel Value	0.747	05% Descentile Destates LO	0.00
	0.0894	95% Percentile Bootstrap UCL	0.490
Normogorov-Smirnov 5% Critical Value	0.158	95% DCA BOOISTRAD UCL	0.498
Data appear Gamma Distributed at 5% Significance Leve	el	95% Chebyshev(Mean, Sd) UCL	0.583
		97.5% Chebyshev(Mean, Sd) UCL	0.646
Assuming Gamma Distribution		99% Chebyshev(Mean, Sd) UCL	0.769
95% Approximate Gamma UCL	0.501		
95% Adjusted Gamma UCL	0.505		
Potential UCL to Use		Use 95% Student's-t UCL	0.495
Note: Suggestions regarding the selection of a 95% UCL	. are provide	ed to help the user to select the most appropriate 95% UCL	
These recommendations are based upon the results of the	he simulatio	n studies summarized in Singh, Singh, and laci (2002)	
and Singh and Singh (2003). For additional insight, the	user may v	vant to consult a statistician.	

General UCL Statis	tics for Full Da	ta Sets	
User Selected Options			
From File C:\Documents and :	Settings\pit605	500\Desktop\ProUCL\Spotted Seatrout\Spotted Seatrout	Data.wst
Full Precision OFF			
Confidence Coefficient 95%			
Number of Bootstrap Operations 2000			
Spotted Seatrout Zinc			
General Statistics	87.75	ene la selecterational contrat	827.43
Number of Valid Observations	10	Number of Distinct Observations	10
Raw Statistics		Log-transformed Statistics	
Minimum	4.68	Minimum of Log Data	1.543
Maximum	9.5	Maximum of Log Data	2.251
Mean	6.1	Mean of log Data	1.787
Median	5.9	SD of log Data	0.209
SD	1.406		
Coefficient of Variation	0.231		
Skewness	1.683		
Relevant UCL Statistics			
Normal Distribution Test		Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.85	Shapiro Wilk Test Statistic	0.918
Shapiro Wilk Critical Value	0.842	Shapiro Wilk Critical Value	0.842
Data appear Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	6.915	95% H-UCL	6.962
95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCL	7.85
95% Adjusted-CLT UCL (Chen-1995)	7.084	97.5% Chebyshev (MVUE) UCL	8.61
95% Modified-t UCL (Johnson-1978)	6.955	99% Chebyshev (MVUE) UCL	10.1
Gamma Distribution Test		Data Distribution	
k star (bias corrected)	16.98	Data appear Normal at 5% Significance Level	
Theta Star	0.359	na con la contra de la contra de la contra de la contra contra de la contra	
MLE of Mean	6.1		
MLE of Standard Deviation	1.48		
nu star	339.6		
Approximate Chi Square Value (.05)	297.9	Nonparametric Statistics	
Adjusted Level of Significance	0.0267	95% CLT UCL	6.832
Adjusted Chi Square Value	291.1	95% Jackknife UCL	6.915
5.8 0.0		95% Standard Bootstrap UCL	6.806
Anderson-Darling Test Statistic	0.391	95% Bootstrap-t UCL	7.385
Anderson-Darling 5% Critical Value	0.725	95% Hall's Bootstrap UCL	10.44
Kolmogorov-Smirnov Test Statistic	0.157	95% Percentile Bootstrap UCL	6.85
Kolmogorov-Smirnov 5% Critical Value	0.266	95% BCA Bootstrap UCL	7.038
Data appear Gamma Distributed at 5% Significance Le	evel	95% Chebyshev(Mean, Sd) UCL	8.039
		97.5% Chebyshev(Mean, Sd) UCL	8.877
Assuming Gamma Distribution		99% Chebyshev(Mean, Sd) UCL	10.53
95% Approximate Gamma UCL	6.954		
95% Adjusted Gamma UCL	7.116		
Potential UCL to Use		Use 95% Student's-t UCL	6.915
Note: Suggestions regarding the selection of a 95% L	CL are provide	d to help the user to select the most appropriate 95% I I	CI
These recommendations are based upon the results of	of the simulatio	n studies summarized in Sinch, Sinch, and Iaci (2002)	OL.
and Singh and Singh (2003) For additional insight +	he user may w	ant to consult a statistician	
and onigh and onigh (2003). Tor additional insight, t	ne user may w	ant to consult a statistician.	

General UCL S	tatistics for Full Da	ta Sets	
User Selected Options			
From File C:\Documents a	and Settings\pit605	500\Desktop\ProUCL\Striped Mullet\Striped Mullet Data.wst	
Full Precision OFF			
Confidence Coefficient 95%			
Number of Bootstrap Operations 2000			
9417 inda			
Striped Mullet Aroclor-1268			
General Statistics			
Number of Valid Observations	26	Number of Distinct Observations	23
Raw Statistics		Log-transformed Statistics	
Minimum	0.027	Minimum of Log Data	-3.612
Maximum	10.5	Maximum of Log Data	2.351
Mean	1.907	Mean of log Data	0.147
Median	1.7	SD of log Data	1.185
SD	2.064		
Coefficient of Variation	1.082		
Skewness	3.081		
Relevant UCL Statistics			
Normal Distribution Test		Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.689	Shapiro Wilk Test Statistic	0.914
Shapiro Wilk Critical Value	0.92	Shapiro Wilk Critical Value	0.92
Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	2.599	95% H-UCL	4.493
95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCL	4.915
95% Adjusted-CLT UCL (Chen-1995)	2.834	97.5% Chebyshev (MVUE) UCL	6.072
95% Modified-t UCL (Johnson-1978)	2.639	99% Chebyshev (MVUE) UCL	8.346
Gamma Distribution Test		Data Distribution	
k star (bias corrected)	1.034	Data appear Gamma Distributed at 5% Significance Level	
Theta Star	1.844		
MI E of Mean	1 907		
MLE of Standard Deviation	1 875		
nu star	53 79		
Approximate Chi Square Value (05)	37.94	Nonparametric Statistics	
Adjusted Level of Significance	0.0398	95% CLT UCI	2 573
Adjusted Chi Square Value	37.06	95% Jackknife UCI	2 599
	01.00	95% Standard Bootstran LICI	2 549
Anderson-Darling Test Statistic	0 405	95% Bootstrap-t LICI	3 154
Anderson-Darling 5% Critical Value	0.77	95% Hall's Bootstran LICI	5 635
Kolmogorov-Smirnov Test Statistic	0.117	95% Percentile Bootstran LICI	2 593
Kolmogorov-Smirnov 5% Critical Value	0.176	95% BCA Bootstrap UCI	2.000
Data appear Camma Distributed at 5% Significant	0.170	95% Chebyshey (Mean Sd) LICI	2.091
Data appear Gamma Distributed at 5 % Significant		07.5% Chebyshev/Mean, Sd) UCL	3.071
Assuming Commo Distribution		97.5% Chebyshev(Mean, Sd) UCL	4.433
Assuming Gamma Distribution	0.704	55% Grebysnev(wean, 5d) UCL	5.934
95% Adjusted Gamma UCL	2.768		
	200		0.70.
Potential UCL to Use		Use 95% Approximate Gamma UCL	2.704
Note: Suggestions regarding the selection of a 95	% UCL are provide	d to help the user to select the most appropriate 95% UCL.	
I nese recommendations are based upon the resu	lits of the simulatio	n studies summarized in Singh, Singh, and Iaci (2002)	
and Singh and Singh (2003). For additional insig	ght, the user may w	ant to consult a statistician.	

General UCL Statistics for	or Full Data Sets	
User Selected Options		
From File C:\Documents and Settir	ngs\pit60500\Desktop\ProUCL\Striped Mullet\Striped Mullet Data.wst	
Full Precision OFF		
Confidence Coefficient 95%		
Number of Bootstrap Operations 2000		
Striped Mullet Copper		
Conorol Statistics		
Number of Valid Observations	9 Number of Distinct Observations	9
Raw Statistics	Log-transformed Statistics	
Minimum	2.34 Minimum of Log Data	0.85
Maximum	4.34 Maximum of Log Data	1.468
Mean	3.323 Mean of log Data	1.185
Median	3.52 SD of log Data	0.193
SD	0.623	
Coefficient of Variation	0.188	
Skewness	0.00581	
Warning: There are only 9 Values in this data Note: It should be noted that even though bootstrap metho the resulting calculations may not be reliable enough to dra	nds may be performed on this data set, aw conclusions	
The literature suggests to use bootstrap methods on data s	sets having more than 10-15 observations	
Relevant UCL Statistics		
Shapiro Wilk Test Statistic	0.966 Shapiro Wilk Test Statistic	0.959
Shapiro Wilk Critical Value	0.829 Shapiro Wilk Critical Value	0.829
Data appear Normal at 5% Significance Level	Data appear Lognormal at 5% Significance Level	
Assuming Normal Distribution	Assuming Lognormal Distribution	
95% Student's-t UCL	3.709 95% H-UCL	3.791
95% UCLs (Adjusted for Skewness)	95% Chebyshev (MVUE) UCL	4.256
95% Adjusted-CLT UCL (Chen-1995)	3.665 97.5% Chebyshev (MVUE) UCL	4.66
95% Modified-t UCL (Johnson-1978)	3.71 99% Chebyshev (MVUE) UCL	5.452
Gamma Distribution Test	Data Distribution	
k star (bias corrected)	20.81 Data appear Normal at 5% Significance Level	
Theta Star	0.16	
MLE of Mean	3.323	
MLE of Standard Deviation	0.728	
nu star	374.6	
Approximate Chi Square Value (.05)	330.8 Nonparametric Statistics	
Adjusted Level of Significance	0.0231 95% CLT UCL	3.665
Adjusted Chi Square Value	322.1 95% Jackknife UCL	3.709
	95% Standard Bootstrap UCL	3.648
Anderson-Darling Test Statistic	0.284 95% Bootstrap-t UCL	3.715
Anderson-Darling 5% Critical Value	0.721 95% Hall's Bootstrap UCI	3.675
Kolmogorov-Smirnov Test Statistic	0.205 95% Percentile Bootstrap UCL	3.639
Kolmogorov-Smirnov 5% Critical Value	0.279 95% BCA Bootstrap UCI	3.632
Data appear Gamma Distributed at 5% Significance Level	95% Chebyshev(Mean_Sd) UCI	4 229
	97.5% Chebyshev(Mean, Sd) UC	4 621
Assuming Gamma Distribution	99% Chebyshev(Mean, Sd) UCI	5 39
95% Approximate Gamma LICI	3 764	0.00
95% Adjusted Gamma UCL	3.866	
Potential UCL to Use	Use 95% Student's-t UCL	3.709
Note: Suggestions regarding the selection of a 05% LICL as	re provided to help the user to select the most appropriate $0.50/11/01$	
Those recommondations are beend upon the results of the	re provided to help the user to select the most appropriate 95% UCL.	
and Singh and Singh (2003). For additional insight, the us	ser may want to consult a statistician.	

General UCL Statistic	s for Full Da	ta Sets	
User Selected Options			
From File C:\Documents and Se	ettings\pit60	500\Desktop\ProUCL\Striped Mullet\Striped Mullet Data.w	rst
Full Precision OFF			
Confidence Coefficient 95%			
Number of Bootstrap Operations 2000			
Striped Mullet Mercury			
General Statistics			
Number of Valid Observations	26	Number of Distinct Observations	25
	20		20
Raw Statistics		Log-transformed Statistics	
Minimum	0.0111	Minimum of Log Data	-4.501
Maximum	0.0775	Maximum of Log Data	-2.557
Mean	0.0361	Mean of log Data	-3.447
Median	0.03	SD of log Data	0.525
SD	0.0178		
Coefficient of Variation	0.493		
Skewness	0.639		
Relevant LICL Statistics			
Normal Distribution Test		Lognormal Distribution Test	
Shaniro Wilk Test Statistic	0 941	Shaniro Wilk Test Statistic	0.966
Shapiro Wilk Critical Value	0.011	Shapiro Wilk Critical Value	0.000
Data appear Normal at 5% Significance Level	0.02	Data appear Lognormal at 5% Significance Level	0.02
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	0.042	95% H-UCL	0.045
95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCL	0.0534
95% Adjusted-CLT UCL (Chen-1995)	0.0423	97.5% Chebyshev (MVUE) UCL	0.0607
95% Modified-t UCL (Johnson-1978)	0.0421	99% Chebyshev (MVUE) UCL	0.0752
Gamma Distribution Test		Data Distribution	
k star (bias corrected)	3.718	Data appear Normal at 5% Significance Level	
Theta Star	0.0097		
MLE of Mean	0.0361		
MLE of Standard Deviation	0.0187		
nu star	193.3		
Approximate Chi Square Value (.05)	162.1	Nonparametric Statistics	
Adjusted Level of Significance	0.0398	95% CLT UCL	0.0418
Adjusted Chi Square Value	160.3	95% Jackknife UCL	0.042
52 BI		95% Standard Bootstrap UCL	0.0419
Anderson-Darling Test Statistic	0.285	95% Bootstrap-t UCL	0.0424
Anderson-Darling 5% Critical Value	0.748	95% Hall's Bootstrap UCL	0.0426
Kolmogorov-Smirnov Test Statistic	0.121	95% Percentile Bootstrap UCL	0.0419
Kolmogorov-Smirnov 5% Critical Value	0.172	95% BCA Bootstrap UCL	0.0427
Data appear Gamma Distributed at 5% Significance Lev	vel	95% Chebyshev(Mean, Sd) UCL	0.0513
		97.5% Chebyshev(Mean, Sd) UCL	0.0579
Assuming Gamma Distribution		99% Chebyshev(Mean, Sd) UCL	0.0708
95% Approximate Gamma UCL	0.043		
95% Adjusted Gamma UCL	0.0435		
Potential UCL to Use		Use 95% Student's-t UCL	0.042
Note: Suggestions regarding the selection of a 95% UC	L are provide	ed to help the user to select the most appropriate 95% UC	ïĽ.
These recommendations are based upon the results of the	the simulatio	n studies summarized in Singh. Singh. and laci (2002)	
and Singh and Singh (2003). For additional insight, the	e user may v	/ant to consult a statistician.	

General UCL Statistics for	Full Data Sets		
User Selected Options			
From File C:\Documents and Settin	s\pit60500\Des	<pre>ktop\ProUCL\Striped Mullet\Striped Mullet</pre>	Data.wst
Full Precision OFF			
Confidence Coefficient 95%			
Number of Bootstrap Operations 2000			
Striped Mullet Zinc			
Conoral Statistics			
Number of Valid Observations	9 Numbe	r of Distinct Observations	9
Raw Statistics	Log-tra	nsformed Statistics	
Minimum	8.1 Minimu	m of Log Data	2.092
Maximum	12.16 Maximu	ım of Log Data	2.498
Mean	10.36 Mean c	f log Data	2.33
Median	10.44 SD of lo	og Data	0.131
SD	1.31		
Coefficient of Variation	0.126		
Skewness	-0.402		
Warning: There are only 9 Values in this data Note: It should be noted that even though bootstrap metho	s may be perfor	med on this data set,	
the resulting calculations may not be reliable enough to dra	conclusions		
The literature suggests to use bootstrap methods on data s	ts having more t	han 10-15 observations.	
Relevant UCL Statistics			
Normal Distribution Test	Lognor	mal Distribution Test	
Shapiro Wilk Test Statistic	0.978 Shapiro	Wilk Test Statistic	0.964
Shapiro Wilk Critical Value	0.829 Shapiro	Wilk Critical Value	0.829
Data appear Normal at 5% Significance Level	Data ap	ppear Lognormal at 5% Significance Level	
Assuming Normal Distribution	Assumi	ng Lognormal Distribution	
95% Student's-t UCL	11.17 95%	H-UCL	11.29
95% UCLs (Adjusted for Skewness)	95%	Chebyshev (MVUE) UCL	12.33
95% Adjusted-CLT UCL (Chen-1995)	11.01 97.5%	Chebyshev (MVUE) UCL	13.18
95% Modified-t UCL (Johnson-1978)	11.16 99%	Chebyshev (MVUE) UCL	14.85
Gamma Distribution Test	Data D	stribution	
k star (bias corrected)	45.15 Data ap	pear Normal at 5% Significance Level	
Theta Star	0.229		
MLE of Mean	10.36		
MLE of Standard Deviation	1.541		
nu star	812.7		
Approximate Chi Square Value (.05)	747.5 Nonpar	ametric Statistics	1000 2020
Adjusted Level of Significance	0.0231 95%	CLT UCL	11.08
Adjusted Chi Square Value	734.3 95%	Jackknife UCL	11.17
	95%	Standard Bootstrap UCL	11.02
Anderson-Darling Test Statistic	0.187 95%	Bootstrap-t UCL	11.13
Anderson-Darling 5% Critical Value	0.72 95%	Hall's Bootstrap UCL	11.02
Kolmogorov-Smirnov Test Statistic	0.145 95%	-ercentile Bootstrap UCL	11.05
Kolmogorov-Smirnov 5% Critical Value	0.279 95%	BCA Bootstrap UCL	11
Data appear Gamma Distributed at 5% Significance Level	95% Cl 97.5%	iebyshev(Mean, Sd) UCL Chebyshev(Mean, Sd) UCL	12.26 13.08
Assuming Gamma Distribution	99% CI	າebyshev(Mean, Sd) UCL	14.7
95% Approximate Gamma UCL	11.26	and the second of the second second	
95% Adjusted Gamma UCL	11.46		
Potential UCL to Use	Use 95	% Student's-t UCL	11.17
Note: Suggestions regarding the selection of a 95% UCL ar These recommendations are based upon the results of the	provided to hel imulation studie	ρ the user to select the most appropriate 9 s summarized in Singh, Singh, and Iaci (20	5% UCL.)02)

General UCL Statistics	o for Full Data Sets	
User Selected Options		
From File WhiteShrimp.wst		
Full Precision OFF		
Confidence Coefficient 95%		
Number of Bootstrap Operations 2000		
White Shrimp Aroclor-1268		
General Statistics		
Number of Valid Observations	9 Number of Distinct Observations	5
Raw Statistics	Log-transformed Statistics	
Minimum	0.1 Minimum of Log Data	-2.303
Maximum	0.682 Maximum of Log Data	-0.383
Mean	0.221 Mean of log Data	-1.82
Median	0.1 SD of log Data	0.766
SD	0.214	
Coefficient of Variation	0.969	
Skewness	1.719	
Warning: There are only 9 Values in this data		
Note: It should be noted that even though bootstrap methods	nods may be performed on this data set,	
the resulting calculations may not be reliable enough to d	raw conclusions	
The literature suggests to use bootstrap methods on data	a sets having more than 10-15 observations.	
Relevant UCL Statistics		
Normal Distribution Test	Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0 656 Shapiro Wilk Test Statistic	0 691
Shapiro Wilk Critical Value	0.829 Shapiro Wilk Critical Value	0.829
Data not Normal at 5% Significance Level	Data not Lognormal at 5% Significance Level	0.020
Assuming Normal Distribution	Assuming Lognormal Distribution	
95% Student's-t LICI		0 457
95% LICLs (Adjusted for Skewness)	95% Chebyshev (MV/LIE) LICI	0.448
95% Adjusted-CLT LICL (Chen-1995)	0.382 97.5% Chebyshev (MVUE) UCI	0.551
95% Modified-t UCL (Johnson-1978)	0.361 99% Chebyshev (MVUE) UCL	0.754
Gamma Distribution Test	Data Distribution	
k star (bias corrected)	1 242 Data do not follow a Discernable Distribution (0.05)	
Theta Star	0 178	
MI E of Mean	0.221	
MI E of Standard Deviation	0.198	
	22.36	
Approximate Chi Square Value (05)	12.61 Nonparametric Statistics	
Adjusted Level of Significance	0.0231 95% CLT UCI	0 339
Adjusted Chi Square Value	11.09 95% Jackknife LICI	0 354
Augusted on oquare value	95% Standard Bootstran LICI	0.333
Anderson-Darling Test Statistic	1 468 95% Bootstran-t UCI	0.000
Anderson-Darling 5% Critical Value	0.732 95% Hall's Bootstran LICI	1 084
Kolmogorov-Smirnov Test Statistic	0.394 95% Percentile Bootstrap UCI	0 341
Kolmogorov-Smirnov 5% Critical Value	0.283 95% BCA Bootstrap UCL	0.365
Data not Gamma Distributed at 5% Significance Level	95% Chebyshev/Mean Sd) UCI	0.500
Data not Gamma Distributed at 570 Significance Level	97 5% Chebyshev(Mean Sd) UCI	0.555
Assuming Gamma Distribution	99% Chebyshev(Mean, Sd) UCL	0.007
95% Approximate Gamma LICI	0 392	0.002
95% Adjusted Gamma UCL	0.446	
Potential UCL to Use	Use 95% Chebyshey (Mean Sd) UCI	0.533
		0.000
Note: Suggestions regarding the selection of a 95% UCL	are provided to help the user to select the most appropriate 95% U	CL.
These recommendations are based upon the results of th	e simulation studies summarized in Singh, Singh, and laci (2002)	
and Singh and Singh (2003) For additional insight the	user may want to consult a statistician	

1999 - 1990 - 10 - 1990 - 10	General UCL Statistics	or Full Da	ta Sets	
User Selected Options				
From File	C:\Documents and Setti	ngs\pit605	500\Desktop\ProUCL\White Shrimp\White Shrimp Data.wst	
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
1991 - 1915 - 1915				
1000-000 17000 Deci203 - 100				
White Shrimp Copper				
177 AURIT				
General Statistics				
Number of Valid Observations		9	Number of Distinct Observations	9
Raw Statistics			Log-transformed Statistics	
Minimum		7.48	Minimum of Log Data	2.012
Maximum		22	Maximum of Log Data	3.091
Mean		10.53	Mean of log Data	2.298
Median		9.68	SD of log Data	0.325
SD		4.462		
Coefficient of Variation		0.424		
Skewness		2.601		
Warning: There are only 9 Value	s in this data			
Note: It should be noted that eve	n though bootstrap metho	ods may b	e performed on this data set,	
the resulting calculations may not	t be reliable enough to dra	aw conclus	sions	
	333			
The literature suggests to use boo	otstrap methods on data	sets havin	g more than 10-15 observations.	
			 Construction References and Construction Construction Construction 	
Relevant UCL Statistics				
Normal Distribution Test			Lognormal Distribution Test	
Shapiro Wilk Test Statistic		0 634	Shapiro Wilk Test Statistic	0 753
Shapiro Wilk Critical Value		0.829	Shapiro Wilk Critical Value	0.829
Data not Normal at 5% Significan	ice Level	0.020	Data not Lognormal at 5% Significance Level	0.020
Assuming Normal Distribution			Assuming Lognormal Distribution	
95% Student's-t UCI		13.3	95% H-UCI	13 27
95% UCLs (Adjusted for Skewn	less)		95% Chebyshev (MV/UE) UCI	15 39
95% Adjusted-CLT UCL (Chen-	-1995)	14 35	97.5% Chebyshev (MVUE) UC	17 54
95% Modified-t UCL (Johnson-	1978)	13.51	99% Chebyshev (MV/LE) LCL	21.75
	1010)	10.01		21.70
Gamma Distribution Test			Data Distribution	
k star (bias corrected)		6 151	Data do not follow a Discernable Distribution (0.05)	
Theta Star		1 712	Bata de fier fellow à Biscernable Bistributori (0.00)	
MLE of Mean		10.53		
MLE of Standard Deviation		4 246		
nu star		110 7		
Approvimate Chi Square Value (1	05)	87 42	Nonparametric Statistics	
Adjusted Level of Significance	,	0 0231	95% CLT LICI	12 98
Adjusted Chi Square Value		92.07	95% Jackknife LICI	12.30
Guster On Square Value		03.07	05% Standard Bootstran LICI	12.8/
Anderson-Darling Test Statistic		1 001	95% Bootstran-t LICI	17.8
Anderson-Darling 5% Critical Val	110	0 722	95% Hall's Bootetran LICI	22.46
Kolmogorov-Smirnov Toot Statiati	ic	0.722	05% Percentile Bootstran LICI	13 24
Kolmogorov-Smirnov 5% Critical	Value	0.339	95% BCA Bootetran LICI	14.46
Data not Gamma Distributed at 5	% Significance Lovel	0.219	95% Chebyshey/Mean Sd) UC	17.40
Data not Gamma Distributed at 5	% Significance Level		97 5% Chebyshev(Mean, Sd) UCL	17.01
Accuming Commo Distribution			97.5% Chebyshev(Mean, Su) UCL	19.02
05% Approvimente Comme UCL		10.00	55% Grebysnev(wean, 50) UCL	20.00
95% Approximate Gamma UCL		13.33		
95% Adjusted Gamma UCL		14.03		
			Lies OFW Students & UCI	10.0
			USE 95% Student S-T UCL	13.3
			or 95% woalfied-t UCL	13.51

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh and Singh (2003). For additional insight, the user may want to consult a statistician.

	and participation sub-to Mits and	THES DECEMBER 1		
10712 (027) (0) (1) (027)(1) (1)	General UCL Statistics	for Full Da	ta Sets	
User Selected Options				
From File	C:\Documents and Set	tings\pit605	500\Desktop\ProUCL\White Shrimp\White Shrimp Data.wst	
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
0.41/ 63				
White Shrimp Mercury				
6. SEC				
General Statistics				
Number of Valid Observations		9	Number of Distinct Observations	9
Raw Statistics			on-transformed Statistics	
Minimum		0.0374	Minimum of Log Data	-3 286
Maximum		0.0374	Maximum of Log Data	-2.076
Maan		0.120	Maximum of Edg Data	2.070
Medien		0.0903	SD of log Data	-2.49
in the dian		0.100	SD of log Data	0.400
		0.0345		
Coefficient of Variation		0.382		
Skewness		-0.755		
Warning: There are only 9 Values	s in this data			
Note: It should be noted that ever	n though bootstrap meth	ods may b	e performed on this data set,	
the resulting calculations may not	be reliable enough to dr	raw conclus	sions	
The literature suggests to use boo	otstrap methods on data	sets havin	g more than 10-15 observations.	
Relevant UCL Statistics				
Normal Distribution Test			Lognormal Distribution Test	
Shapiro Wilk Test Statistic		0.809	Shapiro Wilk Test Statistic	0.78
Shapiro Wilk Critical Value		0.829	Shapiro Wilk Critical Value	0.829
Data not Normal at 5% Significant	ce Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution			Assuming Lognormal Distribution	
95% Student's-t LICI		0 112	95% H-LICI	0 133
95% LICLs (Adjusted for Skewing	acc)	0.112	95% Chebyshey (MV/LE) LICI	0.154
95% Adjusted-CLTUCL (Chen-	1005)	0 106	97.5% Chebyshev (MVUE) UCL	0.181
95% Modified t LICL (Johnson 1	079)	0.100	90% Chabyshev (MV/LE) LICI	0.101
95% Woulled-LOCE (Johnson-T	970)	0.111	55% Chebyshev (MVOE) OCL	0.235
Commo Distribution Tost			Data Distribution	
Gamma Distribution Test		4 000	Data Distribution	
K star (blas corrected)		4.089	Data do not follow a Discernable Distribution (0.05)	
I neta Star		0.0221		
MLE of Mean		0.0903		
MLE of Standard Deviation		0.0447		
nu star		73.61		
Approximate Chi Square Value (.0	05)	54.85	Nonparametric Statistics	
Adjusted Level of Significance		0.0231	95% CLT UCL	0.109
Adjusted Chi Square Value		51.45	95% Jackknife UCL	0.112
1 ¹²			95% Standard Bootstrap UCL	0.108
Anderson-Darling Test Statistic		1.029	95% Bootstrap-t UCL	0.108
Anderson-Darling 5% Critical Value	le	0.723	95% Hall's Bootstrap UCL	0.105
Kolmogorov-Smirnov Test Statistic	C	0.35	95% Percentile Bootstrap UCL	0.107
Kolmogorov-Smirnov 5% Critical	/alue	0.28	95% BCA Bootstrap UCL	0.106
Data not Gamma Distributed at 5%	% Significance Level		95% Chebyshev(Mean, Sd) UCL	0.14
			97.5% Chebyshev(Mean, Sd) UCI	0.162
Assuming Gamma Distribution			99% Chebyshev(Mean, Sd) UCI	0.205
95% Approximate Gamma LICL		0 121		0.200
95% Adjusted Gamma LICI		0.121		
		0.129		
Potential LICI to Liss			Lice 05% Student's t LICI	0 112
			ose 55% Modified t LICL	0.112
			or 55 % Woalled-LOGE	0.111

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh and Singh (2003). For additional insight, the user may want to consult a statistician.

General UCL Statistics f	or Full Da	ta Sets	
User Selected Options			
From File C:\Documents and Settin	ngs\pit60	500\Desktop\ProUCL\White Shrimp\White Shrimp Dat	a.wst
Full Precision OFF			
Confidence Coefficient 95%			
Number of Bootstrap Operations 2000			
White Shrimp Zinc			
General Statistics			
Number of Valid Observations	9	Number of Distinct Observations	6
Raw Statistics		Log-transformed Statistics	
Minimum	11.44	Minimum of Log Data	2.437
Maximum	12.1	Maximum of Log Data	2.493
Mean	11.81	Mean of log Data	2.469
Median	11.88	SD of log Data	0.0217
SD	0.255		
Coefficient of Variation	0.0216		
Skewness	-0.444		
Warning: There are only 9 Values in this data Note: It should be noted that even though bootstrap metho	ods may b	e performed on this data set,	
the resulting calculations may not be reliable enough to dra	w conclu	sions	
The literature suggests to use bootstrap methods on data s	ets havin	g more than 10-15 observations.	
Relevant UCL Statistics			
Normal Distribution Test		Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.898	Shapiro Wilk Test Statistic	0.896
Shapiro Wilk Critical Value	0.829	Shapiro Wilk Critical Value	0.829
Data appear Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	11.97	95% H-UCL	N/A
95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCL	12.18
95% Adjusted-CLT UCL (Chen-1995)	11.93	97.5% Chebyshev (MVUE) UCL	12.34
95% Modified-t UCL (Johnson-1978)	11.96	99% Chebyshev (MVUE) UCL	12.66
Gamma Distribution Test		Data Distribution	
k star (bias corrected)	1598	Data appear Normal at 5% Significance Level	
Theta Star	0.00739		
MLE of Mean	11.81		
MLE of Standard Deviation	0.295		
nu star	28765		
Approximate Chi Square Value (.05)	28372	Nonparametric Statistics	
Adjusted Level of Significance	0.0231	95% CLT UCL	11.95
Adjusted Chi Square Value	28289	95% Jackknife UCL	11.97
		95% Standard Bootstrap UCL	11.94
Anderson-Darling Test Statistic	0.419	95% Bootstrap-t UCL	11.95
Anderson-Darling 5% Critical Value	0.72	95% Hall's Bootstrap UCL	11.92
Kolmogorov-Smirnov Test Statistic	0.182	95% Percentile Bootstrap UCL	11.94
Kolmogorov-Smirnov 5% Critical Value	0.279	95% BCA Bootstrap UCL	11.93
Data appear Gamma Distributed at 5% Significance Level		95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	12.18 12.34
Assuming Gamma Distribution		99% Chebyshev(Mean, Sd) UCI	12.65
95% Approximate Gamma LICI	11 07	ter a shosyone (mean, ou) ooe	12.00
95% Adjusted Gamma UCL	12.01		
Potential UCL to Use		Use 95% Student's-t UCL	11.97
Note: Suggestions regarding the selection of a 95% UCL a These recommendations are based upon the results of the	re provide simulatio	ed to help the user to select the most appropriate 95% n studies summarized in Singh, Singh, and Iaci (2002) UCL.

APPENDIX B

DEVELOPMENT OF RME AND CTE VALUES FOR HYPOTHETICAL HIGH QUANTITY FISH CONSUMERS

APPENDIX B

DEVELOPMENT OF RME AND CTE VALUES FOR HYPOTHETICAL HIGH QUANTITY FISH CONSUMERS

In 1999 the Agency for Toxic Substaces and Disease Registry (ATSDR) and the Glenn County Health Department (GCHD) conducted a survey that collected information on seafood consumption by Glenn County residents (DHHS 1999). Because the ATSDR/GCHD seafood survey (DHHS, 1999) included two Glynn County residents who identified themselves as "subsistence" fishers, this risk assessment included an evaluation of hypothetical high quantity consumers of fish. Fish ingestion rates for this receptor scenario were derived using a Monte Carlo simulation based on data from several different sources, including locally relevant information from the ATSDR/GCHD study. This Appendix describes the derivation of these values.

The ATSDR/GCHD study produced information on the frequency of consumption of local fish and game from a target group of 211 individuals. The target group in Brunswick was limited to individuals who lived in Glynn County for at least two consecutive years, had consumed or caught fish from the Turtle River or its tributaries in Glynn County, and had not been employed in an industry associated with occupational mercury exposure (DHHS, 1999). The frequency of consuming fish or game was assessed using both an interviewer-administered questionnaire and a dietary diary. 36% of the target population reported consuming seafood (both locally caught and purchased) less than once per week, 38% reported consumption about once per week, 18% reported consumption more than once per week, and 8% did not provide consumption frequency information.

For the Monte Carlo simulation, RiskAmp software¹ was used to generate a random selection of meal frequencies from the ATSDR/GCHD data based on Poisson distributions with lambda (i.e., expected) values of 2 meals/month, 4 meals per month and 7 meals per month (corresponding to the three groupings listed above). The proportions of survey respondants associated with each of these groupings (i.e., 38%, 41%, and 21%)² were used to weight the selection of meal frequency distributions.

Because the ATSDR/GCHD study only provided information on the frequency of seafood consumption by the local population, additional information on the portion size of fish consumed by individuals was also needed. The arithmetic mean and standard deviation of fish meal sizes, in units of grams, for children, adolescents, and adults were obtained from the U.S. Department of Agriculture's Continuing Survey of Food Intake by

¹ RiskAmp is a commercially available Monte Carlo "add in" program for Microsoft Excel.

² The missing fish consumption rate information for 8% of the survey responders was assumed to be equally distributed among the other rate classes.

Individuals (CSFII) 1994-1996, 1998 (USDA, 2000). Using RiskAmp, lognormal distributions were fit to the age-specific fish meal size values obtained from the CSFII.

Using RiskAmp, values from the meal frequency distributions and values from the meal size distributions were multiplied to obtain a monthly fish ingestion rate distribution. These values were divided by 30.46 (the average number of days in a month) to yield distributions of daily fish ingestion rates, in units of grams/day, for children, adolescents, and adults. The 50th and 90th percentiles of these distributions were then adjusted by weighting factors for seasonal fish availability obtained from the Marine Recreational Fisheries Statistics Survey (MRFSS) data described in Section 4.5. The final daily fish ingestion rate for a given age group was assumed to be the average of the fish ingestion rates in these MRFSS intervals. For adults, adolescents and children, the RME and CTE fish ingestion rate values were assumed to be the 90th and 50th percentiles, respectively, of the resulting distributions. These values are presented in Table B-1. This table also provides the input distributions and weighting factors required for the Monte Carlo simulation.

Table B-1. Derivation of Ingestion Rates for High Quantity Fish Consumers

Meal Sizes (grams) ⁽¹⁾				
Age	Arithmetic Mean	Standard Deviation		
0-6 years (Child)	54.5 g	42.7 g		
7-16 years (Adolescent)	94.9 g	78.8 g		
17-30 years (Adult)	134.6 g	111.9 g		

⁽¹⁾ Data obtained from the USDA's Continuing Survey of Food Intake by Individuals 1994-1995, 1998 (USDA, 2000).

Meal Frequency ⁽²⁾				
Survey Response	<1/week	~ 1/week	>1/week	
Poisson Parameter ⁽³⁾	2	4	7	
Weighting Factor	38%	41%	21%	

⁽²⁾ Data obtained from ATSDR/GCHD seafood survey (DHHS, 1999).

⁽³⁾ Value corresponds to the approximate number of meals per month based on ATSDR/GCHD survey responses.

Fish Availability Weighting Factor (unitless) ⁽⁴⁾		
January – February	0.1	
March – April – May	0.52	
June – July – August	1	
September – October	0.76	
November – December	0.6	

⁽⁴⁾ Data for 2001-2005 harvest for Georgia obtained from the Marine Recreational Fisheries Statistics Survey online database (NMFS, 2007).

High Quantity Fish Ingestion Rates (grams/day)					
Age	RME (90 th %tile)	CTE (50 th %tile)			
0-6 years (Child)	10	3			
7-16 years (Adolescent)	18	11			
17-30 years (Adult)	27	13			