BASELINE ECOLOGICAL RISK ASSESSMENT FOR THE ESTUARY AT THE LCP CHEMICAL SITE IN BRUNSWICK, GEORGIA

Site Investigation/Analysis And Risk Characterization (Revision 4)

This Revision Prepared by:

Black & Veatch Special Projects Corp. 1120 Sanctuary Parkway, Suite 200 Alpharetta, GA 30009

For:

U.S. Environmental Protection Agency, Region 4 61 Forsyth St. S.W. Atlanta, Georgia 30303-8960

Previous Versions Prepared by:

CDR Environmental Specialists, Inc. 6001 N. Ocean Drive Suite 1103 Hollywood, FL 33019 Environmental Planning Specialists, Inc. Suite 350 900 Ashwood Parkway

Atlanta, GA 30338

For:

Honeywell International, Inc. 101 Columbia Road Morristown, NJ 07962-1139

April 2011

TABLE OF CONTENTS

<u>Se</u>	<u>Section</u> <u>Page</u>	
	EXECUTIVE SUMMARY	. S-1
1.	INTRODUCTION	1
2.	INDUSTRIAL HISTORY	3
3.	PROBLEM FORMULATION	5
	3.1 Environmental Setting	5
	3.2 Ecosystem Characteristics	7
	3.3 Ecosystem Potentially at Risk	11
	3.4 Chemicals of Ecological Concern	12
	3.4.1 Chemicals of Potential Concern in Sediment	13
	3.4.2 Chemicals of Potential Concern in Surface Water	14
	3.4.3 COPCs Summary	15
	3.5 Constituent Fate and Transport	15
	3.5.1 Fate and Transport in Surface Water and Sediment	
	3.5.2 Fate and Transport in Groundwater	
	3.6 Ecotoxicity of Chemicals of Potential Concern	17
	3.6.1 Lead and other Metals	
	3.6.2 Polychlorinated Biphenyls (PCBs)	
	3.6.3 Polycyclic Aromatic Hydrocarbons (PAHs)	20
	3.7 Complete and Potentially Complete Exposure Pathways and Receptors	21
	3.8 Assessment and Measurement Endpoints	22
4.	ECOLOGICAL EXPOSURE AND EFFECTS EVALUATION	25
	4.1 Temporal Trends in Concentrations Chemicals of Potential Concern in Surface	
	Sediment during 2000 – 2007	25
	4.2 Presence of Chemicals in Environmental Media	26
	4.2.1 Creek Surface Water	26
	4.2.2 Creek and Marsh Surface Sediment	27
	4.2.3 Biota	29
	4.3 Surface Water Toxicity Studies	34
	4.3.1 Mysids	34
	4.3.2 Sheepshead Minnows	34
	4.4 Annual Sediment Toxicity Tests with Amphipods	34
	4.4.1 Evaluation of 2006 Amphipod Toxicity Tests	36
	4.4.2 Probable Causes of 2006 Amphipod Toxicity	
	4.5 2006 Amphipod Apparent Effects Threshold Study	44

<u>Section</u>	<u>Page</u>
4.5.1 Protocols	44
4.5.2 Results	45
4.5.3 Reliability of Results	46
4.6 Sediment Effect Concentrations for Amphipods	47
4.7 Grass Shrimp Toxicity	50
4.7.1 Toxicity to Laboratory Cultured Grass Shrimp	50
4.7.2 Toxicity to Field-Collected Indigenous Grass Shrimp	51
4.8 Comparison of SECs to Literature-Based Effect Levels	52
4.9 Characteristics of Benthic Macroinvertebrate Community	53
4.9.1 Community Characteristics	53
4.9.2 Fiddler Crab Abundance	
4.10 Development of Hazard Quotients for Finfish	56
4.10.1 Modeling Studies	56
4.10.2 Field-Collected Finfish	57
4.10.3 Comparison of Modeled Finfish with Field-Collected Finfish	57
4.11 Development of Hazard Quotients for Wildlife	59
5. RISK CHARACTERIZATION	62
5.1 Benthic Estuarine Community (Assessment Endpoint 1)	62
5.2 Omnivorous Reptiles (Assessment Endpoint 2)	
5.3 Omnivorous Birds (Assessment Endpoint 3)	64
5.4 Piscivorous Birds (Assessment Endpoint 4)	65
5.5 Herbivorous Mammals (Assessment Endpoint 5)	65
5.6 Omnivorous Mammals (Assessment Endpoint 6)	65
5.7 Piscivorous Mammals (Assessment Endpoint 7)	66
5.8 Finfish (Assessment Endpoint 8)	66
6. UNCERTAINTY ANALYSIS	69
6.1 Uncertainties in the Baseline Ecological Risk Assessment	
6.1.1 Conceptual Model	69
6.1.2 Experimental Design and Interpretation	
6.1.3 Modeling Studies	
6.1.4 Other COPCs not Quantified	
6.2 Independent (Other) Investigations	
6.2.1 Relative Toxicity of Aroclor 1268	
6.2.2 Assessment Endpoints	
6.3 Uncertainty Conclusions	78

<u>Section</u> <u>Pa</u>				
_	MENT OF ECOLOGICALLY PROTECTIVE MEDIA TRATIONS80			
7.1 Sedin	nent to Biota Bioaccumulation Factors			
7.1.3	1 Fiddler Crab Bioaccumulation Factors			
7.1.2	2 Mummichog Bioaccumulation Factors 84			
7.1.3	Blue Crab Bioaccumulation Factors			
7.1.4	4 Finfish Bioaccumulation Factors			
7.1.5	5 Cordgrass Bioaccumulation Factors			
7.2 Prote	ctive Sediment Concentrations for Receptors at Risk			
7.2.2	1 Wildlife			
7.2.2	2 Finfish			
7.2.3	3 Benthic Invertebrates			
7.3 Reme	edial Goal Options for Terrestrial Wildlife and Aquatic Receptors			
7.3.3	1 RGOs for Wildlife90			
7.3.2	2 RGOs for Benthic Invertebrates			
7.4 Prote	ctive Surface Water Concentrations			
8. REFERENCI	E S			
LIST OF FIGURES				
<u>Figures</u>				
Figure 1-1	LCP Site Map			
Figure 3-1	Domains and selected features of estuary at LCP Site			
Figure 3-2	Historical conceptual site model (including exposure pathways) for chemicals of potential concern (COPCs) in the estuary at LCP Site.			
Figure 3-3	Locations of sampling stations for surface water of major creeks and associated biota in estuary at LCP Site			
Figure 3-4	Locations of sampling stations for surface sediment water of major creeks			
Figure 3-5	and associated biota in estuary at LCP Site Locations of sampling stations for surface sediment of marsh creeks and associated biota in estuary at LCP Site			
Figure 4-1	Concentrations of total organic carbon (TOC) and chemicals of potential concern (COPCs) in surface sediment at continuously monitored sentinel stations in major creeks of estuary at LCP Site (2000 – 2007 data)			

Figures (Continued)

Figure 4-2	Concentrations of total organic carbon (TOC) and chemicals of potential concern (COPCs) in surface sediment at continuously monitored sentine stations in marsh of estuary at LCP Site (2000 – 2007 data)			
Figure 4-3	Relationship between concentrations of total mercury and methylmercury in surface water of major creeks of estuary at LCP Site			
	(2000 - 2005 data)			
Figure 4-4	Relationship between concentrations of total mercury and			
	methylmercury in creek and marsh surface sediment of estuary at LCF			
F: 4 F	Site (2000, 2005 and 2007 data)			
Figure 4-5	Amphipod reproductive response – mercury exposure			
Figure 4-6	Amphipod reproductive response – Aroclor 1268			
Figure 4-7	Grass shrimp embryo development rate – mercury exposure			
Figure 4-8	Grass shrimp embryo development rate – Aroclor 1268 exposure			
Figure 7-1	LCP estuary sampling stations for fiddler crab polygons			
Figure 7-2	Fiddler crab mercury BAF			
Figure 7-3	Fiddler crab Aroclor 1268 BAF			
Figure 7-4	Fiddler crab Aroclor 1268 BSAF			
Figure 7-5	LCP estuary sampling stations for mummichog polygons			
Figure 7-6	Mummichog Aroclor 1268 BAF			
Figure 7-7	Mummichog mercury BAF			
Figure 7-8	Blue crab Aroclor 1268 BAF			
Figure 7-9	Blue crab mercury BAF			
Figure 7-10	Red drum Aroclor 1268 BAF			
Figure 7-11	Red drum mercury BAF			
Figure 7-12	Black drum Aroclor 1268 BAF			
Figure 7-13	Black drum mercury BAF			
Figure 7-14	Silver perch Aroclor 1268 BAF			
Figure 7-15	Silver perch mercury BAF			
Figure 7-16	Spotted seatrout Aroclor 1268 BAF			
Figure 7-17	Spotted seatrout mercury BAF			
Figure 7-18	Striped mullet Aroclor 1268 BAF			
Figure 7-19	Striped mullet mercury BAF			
Figure 7-20	Cordgrass Aroclor 1268 BAF			

LIST OF TABLES

Table 3-1	Basic experimental design for data generation and analysis in baseline ecological risk assessment (BERA) of estuary at LCP Site (2000 – 2007)
Table 3-2	Sampling stations and associated environmental media for surface water of major creeks of estuary at LCP Site during 2000 – 2007
Table 3-3	Sampling stations and associated environmental media for surface sediment of major creeks of estuary at LCP Site during 2000 – 2007
Table 3-4	Sampling stations and associated environmental media for surface sediment of marsh in estuary at LCP Site during 2000 – 2007
Table 4-1	General water quality characteristics of Purvis Creek in estuary at LCP Site (2000 – 2007 data) yearly averages
Table 4-2a	Concentrations of chemicals of potential concern (COPCs) in surface water in OU-1 LCP estuary (2000 – 2007 data) for exposure estimates
Table 4-2b	Chemicals of potential concern (COPCs) in surface water of major creeks in estuary at LCP Site (2000 – 2007 data) yearly averages
Table 4-3a	Concentrations of COPCs in sediment for major areas in estuary at LCP Site (2000 – 2006 data) for exposure estimation
Table 4-3b	General sediment quality characteristics and initial chemicals of potential concern (COPCs) in surface sediment for major areas and years in estuary at LCP Site (2000 – 2007 data)
Table 4-4	Linear coefficients of determination (r ²) for basic physical/chemical characteristics and initial chemicals of potential concern (COPCs) in surface sediment of major creeks and marsh in estuary at LCP Site (based on 2000 – 2007 data)
Table 4-5	Other metals (including some COPCs) in surface sediment for major areas and years in estuary at LCP Site (2004 – 2006 data)
Table 4-6a	Concentrations of chemicals of potential concern (COPCs) in cordgrass for major areas in estuary at LCP Site (2000 – 2006 data) for exposure estimates
Table 4-6b	Yearly average body burdens of chemicals of potential concern (COPCs) in cordgrass (<i>Spartina alterniflora</i>) for major areas in estuary at LCP Site (2005 data)
Table 4-7	Body burdens of chemicals of potential concern (COPCs) in eastern oysters (<i>Crassostrea virginica</i>) for major areas in estuary at LCP Site (2006 data)
Table 4-8a	Concentrations of chemicals of potential concern (COPCs) in fiddler crabs (Uca spp.) for major areas in estuary at LCP Site (2000 – 2007 data) for exposure estimates

Tables (Continued)

- Table 4-8b Body burdens of chemicals of potential concern (COPCs) in fiddler crabs (*Uca* spp.) for major areas and years in estuary at LCP Site (2000 2007 data)
- Table 4-9a Concentrations of chemicals of potential concern (COPCs) in blue crabs (Callinectes sapidus) for major areas and years in estuary at LCP Site for exposure estimates (2000 2007 data)
- Table 4-9b Yearly average body burdens of chemicals of potential concern (COPCs) in blue crabs (*Callinectes sapidus*) for major areas and years in estuary at LCP Site (2000 2007 data)
- Table 4-10a Concentrations of chemicals of potential concern (COPCs) in mummichogs (Fundulus heteroclitus) for major areas in estuary at LCP Site for exposure estimates (2000 2007 data)
- Table 4-10b Yearly average body burdens of chemicals of potential concern (COPCs) in mummichogs (*Fundulus heteroclitus*) for major areas and years in estuary at LCP Site (2000 2007 data)
- Table 4-11a Concentrations of chemicals of potential concern (COPCs) in large finfish for major areas in estuary at LCP Site for exposure estimates (2000 2007 data)
- Table 4-11b Body burdens of chemicals of potential concern (COPCs) in large finfish for major areas and years in estuary at LCP Site (2000 2007 data)
- Table 4-12 Statistical analysis of survival and growth of mysids (*Mysidopsis bahia*) exposed for 7 days to surface water of estuary at LCP Site (based on 2000 data)
- Table 4-13 Statistical analysis of survival and growth of sheepshead minnows (*Cyprinodon variegatus*) exposed for 7 days to surface water of estuary at LCP Site (based on 2000 data)
- Table 4-14 Results of sediment toxicity tests with amphipods (*Leptocheirus plumulosus*) exposed for 28 days to surface sediment of the LCP estuary (2000 2006 data)
- Table 4-15 Statistical analysis of survival, growth, and reproduction of amphipods (*Leptocheirus plumulosus*) exposed for 28 days to surface sediment of estuary at LCP Site (2006 data)
- Table 4-16 Relationships between survival of amphipods (*Leptocheirus plumulosus*) and chemical characteristics of surface sediment of estuary at LCP Site (2006 data)
- Table 4-17 Evaluation of 2006 Amphipod toxicity test results with concentrations of selected constituents
- Table 4-18 Equilibrium partitioning of selected metals in surface sediment of estuary at LCP Site (2006 data)

Tables (Continued)

- Table 4-19a Apparent effects thresholds (AETs) for chemicals of potential concern (COPCs) in surface sediment of estuary at LCP Site (2006 data)
- Table 4-19b Apparent effects thresholds (AETs) for selected metals in surface sediment of estuary at LCP Site (2006 data)
- Table 4-20 Sediment effect concentrations summary amphipods (*Leptocheirus plumulosus*)
- Table 4-21 Toxicity test results for grass shrimp (*Palaemonetes pugio*) for major areas of estuary at LCP Site (2002 2005 data)
- Table 4-22 Sediment effect concentrations summary grass shrimp
- Table 4-23 Grass shrimp toxicity embryo development rate compared to primary chemicals of potential concern (COPCs)
- Table 4-24 Reproduction and DNA strand damage of field-collected indigenous grass shrimp (*Palaemonetes pugio*) for major areas and years in estuary at LCP Site (2002 2007 data)
- Table 4-25 Selected community characteristics of benthic macroinvertebrates in surface sediment at LCP estuary (October 2000 data)
- Table 4-26 Exposure assumptions for finfish and wildlife evaluated in food-web exposure models for chemicals of potential concern (COPCs) in environmental media of estuary at LCP Site
- Table 4-27 Toxicity reference values (TRVs) for finfish and wildlife evaluated in foodweb exposure models for chemicals of potential concern (COPCs) in environmental media of estuary at LCP Site
- Table 4-28 Hazard quotients (HQs) for finfish based on exposure models (2000 2007 data)
- Table 4-29 Hazard quotients (HQs) for field-collected finfish exposed to methylmercury and Aroclor 1268 in environmental media of estuary at LCP Site (2000 2007 data)
- Table 4-30 Hazard quotients (HQs) for wildlife at LCP estuary based on exposure models (2000 2007 data)
- Table 7-1 Sampling stations comprising fiddle crab polygons
- Table 7-2 Fiddler crab BAF data
- Table 7-3 Sampling stations comprising mummichog polygons
- Table 7-4 Bioaccumulation factors for finfish area weighted method
- Table 7-5 Data for bioaccumulation factors for finfish
- Table 7-6 Bioaccumulation factors for biota
- Table 7-7 Key parameters for wildlife food chain models
- Table 7-8 Toxicity reference values for receptors

Average methylmercury contents in sediment and biota

Tables (Continued)

Table 7-9

Table 7-10	Determination of protective sediment concentrations for marsh rabbit – Aroclor 1268
Table 7-11	Determination of protective sediment concentrations for clapper rail – mercury
Table 7-12	Determination of protective sediment concentrations for raccoon – Aroclor 1268
Table 7-13	Determination of protective sediment concentrations for green heron – mercury
Table 7-14	Determination of protective sediment concentrations for river otter – mercury
Table 7-15	Determination of protective sediment concentrations for river otter – Aroclor 1268
Table 7-16	Summary of protective sediment concentrations for wildlife and fish based on a hazard quotient (1.0)
Table 7-17	Determination of protective sediment concentrations for higher trophic level finfish – mercury
Table 7-18	Determination of protective sediment concentrations for higher trophic level finfish – Aroclor 1268
Table 7-19	Determination of protective sediment concentrations for red drum – mercury
Table 7-20	Determination of protective sediment concentrations for red drum – Aroclor 1268
Table 7-21	Determination of protective sediment concentrations for black drum – mercury
Table 7-22	Determination of protective sediment concentrations for black drum – Aroclor 1268
Table 7-23	Determination of protective sediment concentrations for silver perch — mercury
Table 7-24	Determination of protective sediment concentrations for silver perch – Aroclor 1268
Table 7-25	Determination of protective sediment concentrations for spotted seatrout – mercury
Table 7-26	Determination of protective sediment concentrations for spotted seatrout – Aroclor 1268
Table 7-27	Determination of protective sediment concentrations for striped mullet – mercury
Table 7-28	Determination of protective sediment concentrations for striped mullet – Aroclor 1268

Tables (Continued)

- Table 7-29 COPCs protective of benthic Invertebrates
- Table 7-30 Sediment remedial goal options for sediment for protection of wildlife and finfish

LIST OF APPENDICES

Appendix

- A. GLOBAL POSITIONING SYSTEM COORDINATES FOR MAJOR SAMPLING STATIONS IN ESTUARY AT LCP SITE
- B. UPDATED REFINED ECOLOGICAL SCREENING FOR CHEMICALS OF POTENTIAL CONCERN IN ESTUARY AT LCP SITE
 - **B.1 Sediment**
 - **B.2 Surface Water**
- C. TOXICITY TEST REPORTS (On CD Only)
- D. DEVELOPMENT OF SEDIMENT EFFECT CONCENTRATIONS (On CD Only)
- E. LIFE HISTORIES OF SELECTED FOOD ITEMS EMPLOYED IN FINFISH AND WILDLIFE FOOD-WEB EXPOSURE MODELS FOR ESTUARY AT LCP SITE
 - E.1 Cordgrass
 - E.2 Fiddler Crabs
 - E.3 Blue Crab
 - E.4 Mummichog
 - E.5 Silver Perch
- F. RELATIONSHIPS BETWEEN BODY BURDENS OF TOTAL MERCURY AND METHYLMERCURY IN FOOD ITEMS EMPLOYED IN FISH AND WILDLIFE FOOD-WEB EXPOSURE MODELS FOR ESTUARY AT LCP SITE

Appendix (Continued)

- G. LIFE HISTORIES OF FINFISH AND WILDLIFE EVALUATED IN FOOD-WEB EXPOSURE MODELS FOR ESTUARY AT LCP SITE
 - G.1 Red Drum
 - G.2 Diamondback Terrapin
 - G.3 Red-Winged Blackbird
 - G.4 Clapper Rail
 - G.5 Green Heron
 - G.6 Marsh Rabbit
 - G.7 Raccoon
 - **G.8 River Otter**
- H. WORKSHEETS FOR FINFISH AND WILDLIFE FOOD-WEB EXPOSURE MODELS FOR ESTUARY AT LCP SITE
- I. SPECIAL SEDIMENT STUDIES FOR ESTUARY AT LCP SITE
 - I.1 Apparent Effects Threshold (AET) Study
 - I.2 Purvis Creek and Domain 4 Study
- J. INDEPENDENT (OTHER) ECOLOGICALINVESTIGATIONS OF ESTUARY AT LCP SITE
 - J.1 Reports
 - J.2 Scientific Papers
- K. SUPPORTING DATA FOR DEVELOPMENT OF BIOACCUMULATION FACTORS
 - K.1 Raw Data Mercury and Aroclor 1268 in Fiddler Crab and Sediment
 - K.2 Mummichog Data for Each Polygon
 - K.3 Bioaccumulation Factor for Blue Crab Data
 - K.4 Bioaccumulation Factor for Finfish
 - K.5 Bioaccumulation Factor for Cordgrass Data

LIST OF ACRONYMS, ABBREVIATIONS AND DEFINITIONS

AET apparent effects threshold

Ah aryl hydrocarbon ANOVA analysis of variance

ARCO Atlantic Richfield Company

AUF area-use factor
AVS acid volatile sulfide
BAF bioaccumulation factor

BERA baseline ecological risk assessment BSAF biota sediment accumulation factor

BW body weight Ca²⁺ calcium, ion

CF1, ..., CF4 concentrations in various food items of wildlife

CI confidence interval

cm centimeter

COPCs chemicals of potential concern

CS sediment concentration
CW water concentration
DNA deoxyribonucleic acid

°C degree Celsius

4,4'DDT 4,4' Dichlorodiphenyltrichloroethane

dry wt or dw dry weight

EC50 effective concentration

EEE estimated environmental exposure

EEV ecological effects value

EPA Environmental Protection Agency

ER-L effects range low
ER-M effects range medium
ERT Emergency Response Team
ESV ecological screening value

F filial

F₀, F₁, F₂ first, second, and third generations

FIR food ingestion rate FS feasibility study

ft foot

g/kg Grams per kilograms

GADNR Georgia Department of Natural Resources

Ha hectares

HQ hazard quotient

kg kilogram km kilometer kW kilowatt

LIST OF ACRONYMS, ABBREVIATIONS AND DEFINITIONS (Continued)

L liter

LC50 Lethal Concentration 50 LCP Linden Chemicals and Plastics

LD50 Lethal Dose 50

LOAEL lowest observed adverse effect level

LOE line of evidence

m meter
mm millimeters
μ micron
mg milligram
μg microgram

mg/kg or μg/g milligrams per kilograms μg/kg microgram per kilogram μg/L microgram per Liter μμσ/μL micromoles per liter μg/μL microgram per milliliter

mm millimeter

NEQ neurotoxic equivalent ng/L nanograms per liter ng/kg nanograms per kiloliter

NOAA National Oceanic and Atmospheric Administration

NOAEL no observed adverse effect level

NPDES National pollutant discharge elimination system

OU Operable Unit

P1, ..., P4 percentage of each food item in diet of wildlife

PAH polynuclear aromatic hydrocarbon

PEL probable effect levels
PCB polychlorinated biphenyl

PCDF polychlorinated dibenzofurans

PEL probable effect level

R² multiple coefficient of determination

r² coefficient of determination

REP Relative Potency

RGO Remedial Goal Options
RI Remedial Investigation

SAIC Science Applications International Corp.

SEC sediment effect concentration Σ SEM simultaneously extracted metal

SIR sediment ingestion rate

Site Linden Chemical and Plastic (LCP) Superfund Site

spp. more than one species

LIST OF ACRONYMS, ABBREVIATIONS AND DEFINITIONS (Continued)

SQuiRT screening quick reference table

TCDD 2, 3, 7, 8 tetrachlorodibenzo-p-dioxin

TEL threshold effects level

TEC toxicity equivalence concentrations

TEQ total toxic equivalents
State the State of Georgia

TIE toxicity identification evaluation

TOC total organic carbon TRV toxicity reference value

TUF time-use factor

95 UCL 95th upper confidence limit of the mean

VIF variance inflation factor

wet wt or ww wet weight

WHO World Health Organization

WIR water ingestion rate

wt weight x mean

EXECUTIVE SUMMARY

This document is the baseline ecological risk assessment (BERA) report for Operable Unit (OU) 1 of the Linden Chemical and Plastics (LCP) Superfund Site (Site), located in Brunswick, Georgia. Site owner Honeywell International, Inc. (Honeywell), formerly Allied Signal, Inc., submitted numerous versions of the BERA to the Environmental Protection Agency (EPA) for approval, starting in June 1997. EPA, the State of Georgia (the State) and the National Oceanic and Atmospheric Administration (NOAA) reviewed each draft and provided successive sets of comments and instructions to Honeywell. After a thorough review of the most recent submission in July 2009 by EPA, the State and NOAA, EPA disapproved the draft BERA for the reasons outlined in EPA's letter to Honeywell dated July 2, 2010.

This BERA report presents the results of the "Site Investigation/Analysis" Phase and "Risk Characterization" Phase (Steps 6 and 7) of the BERA conducted for the estuary at the LCP Site, located in Brunswick, Georgia. This document addresses the extensive amount of environmental information generated for the estuary at the LCP Site from 2000 through 2007 and includes a comprehensive evaluation of major potential sources of uncertainty pertaining to ecological conditions in the estuary at LCP Site.

General Issues

Major chemicals of potential concern (COPCs) addressed in the BERA are mercury (including methylmercury), Aroclor 1268, lead, and total polynuclear aromatic hydrocarbons (PAHs). These are the chemicals identified as COPCs in the initial documents developed for this BERA. However, other chemicals considered to be COPCs are also addressed in the risk assessment.

Ecological conditions in the LCP estuary were monitored by Honeywell on an annual basis from 2000 through 2007 (except for 2001). Data derived from each of these years are evaluated in the BERA using mean COPCs concentrations and the 95th upper confidence limit of the mean (95UCL) concentrations for major areas of the estuary and grand mean values for the whole estuary, as suggested by scientists from NOAA during an initial review of the BERA (Dillon, 2008). In addition, uncertainty in the results of the BERA is addressed partly through a discussion of results from other scientific studies

pertinent to the LCP estuary including investigations conducted prior to 1998-1999, when sediment remediation (removal) occurred in selected parts of the estuary.

Temporal Trends of Chemicals of Potential Concern in Surface Sediment during 2000 - 2007

There were no discernable trends in the concentrations of COPCs in surface sediment at continuously monitored sentinel stations in major creeks of the LCP estuary, with the possible exception of total mercury at the mouth of the Main Canal. In the case of sentinel marsh stations, the only possible COPC to exhibit attenuation was total mercury, in the Marsh Grid of Domain 1.

Surface Water Chemistry

The highest concentration of total mercury in surface water of major creeks in the LCP estuary was 188 nanograms per liter (ng/L) (in the Eastern Creek during 2000), which was less than the EPA chronic ambient water quality criterion of 940 ng/L. Methylmercury concentrations in surface water at the Site ranged from 0.15 to 10 ng/L and were usually greater than levels at reference locations (0.008 – 0.22 ng/L). Mean and maximum ratios of methylmercury/total mercury were, respectively, 3.05 and 10.1 percent. Aroclor 1268 was infrequently detected in creeks or at reference locations. Dissolved lead concentrations at the Site never exceeded criteria developed for that form of the metal.

Surface Sediment Chemistry

Concentrations of total mercury and Aroclor 1268 in surface sediment of the LCP estuary exceeded their site-specific sediment effect concentrations (SECs) (e.g., probable effect levels [PELs]) for aquatic invertebrates in most portions of the Eastern Creek, Main Canal, and Domain 1. Lead exceeded PEL concentrations in portions of Eastern Creek, and Domains 2 and 3, and Feasibility Study (FS) locations. The PELs for PAHs were exceeded in the Eastern Creek, Domain 3 and in portions of other areas. Mean and maximum ratios of methylmercury to total mercury in sediment were 0.08 and 11 percent, respectively.

Total mercury and Aroclor 1268 appeared to exhibit similar distribution patterns of elevated sediment concentrations throughout the Site (and possibly origin). A similar pattern was suggested for lead and total PAHs.

Of 21 additional metals that were also evaluated, screening-level ecological effects values (EEVs) for sediment were available for eight of the metals — antimony, arsenic, cadmium, chromium, copper, nickel, silver, and zinc. Of these eight metals, arsenic occurred at similar concentrations at both Site and reference locations. Of the remaining seven metals, chromium and nickel occasionally exceeded their respective EEVs at the Site.

All of the 21 metals were evaluated for aquatic hazard by all available and appropriate protocols. The metals were first screened for toxicity as discussed above. Following this screening, "whole" sediment toxicity tests were conducted that reflected the toxicity of the sediment mixtures. In addition, an estimate was made of the relative contribution to sediment toxicity of the COPCs and other factors that may have influenced the toxicity test results.

Body Burdens of Biota

Body burdens of COPCs in biota key to the functioning of the estuarine system at the LCP Site – cordgrass (*Spartina alterniflora*), Eastern oysters (*Crassostrea virginica*), grass shrimp (*Palaemonetes pugio*), fiddler crabs (*Uca* spp.), blue crabs (*Callinectes sapidus*), mummichogs (*Fundulus heteroclitus*), and various large finfish – were typically higher in the LCP estuary as compared to biota at reference locations.

Percentage of total mercury occurring as methylmercury in body burdens of biota was – cordgrass: ~10%, Eastern oysters: 70%, fiddler crabs: 68%, blue crabs: 100%, mummichogs: 92%, silver perch (*Bairdiella chrysoura*): 100%, red drum (*Sciaenops ocellatus*): 89%, black drum (*Pogonias cromis*): 91%, spotted seatrout (*Cynoscion nebulosus*): 100%, and striped mullet (*Mugil cephalus*): 37%.

Chronic Toxicity of Surface Water

Surface water from the LCP estuary was nontoxic to mysids (*Mysidopsis bahia*) and sheepshead minnows (*Cyprinodon variegatus*) as measured by survival and growth of both species.

Chronic Toxicity of Surface Sediment

Amphipods (*Leptocheirus plumulosus*) and grass shrimp (*Palaemonetes pugio*) were evaluated for chronic toxicity of surface sediment from the LCP estuary. The two types of tests generated similar results in terms of the number of tests of sediment from the LCP estuary that were characterized by toxicity significantly greater (from a statistical perspective) than toxicity for reference locations – 51% of 90 tests for amphipods and 46% of 71 tests for grass shrimp.

Using all valid toxicity test data, sediment effect concentrations were calculated separately for each of the assessment endpoints for amphipods and grass shrimp. The SECs included apparent effects thresholds (AETs), threshold effect levels (TELs), PELs, effects range low (ER-L), and effects range medium (ER-M). These SECs provided a range of values to assess potential toxicity. Measures of accuracy and reliability of the SECs were also performed for each endpoint and species.

For amphipods, survival was the most sensitive endpoint, followed by reproductive response. The amphipod TELs (based on all toxicity tests since 2000) for total mercury, Aroclor 1268, lead, and total PAHs in sediment were 4.9, 6.5, 45, and 0.8 milligrams per kilograms (mg/kg) dry weight (dw), respectively.

For grass shrimp, the most sensitive endpoint was embryo development. Calculated sediment TELs for this endpoint for total mercury, Aroclor 1268, lead, and total PAHs in sediment were 1.4, 3.2, 139, and 1.6 mg/kg (dw), respectively.

Probable causes of sediment toxicity were evaluated in 2006 by a comprehensive set of amphipod studies that included a site-specific toxicity identification evaluation (TIE), equilibrium partitioning study for metals, and an AET study. However, based on these evaluations, there was no discernable COPC exposure-response relationship of high predictive value. Detailed analysis of the toxicity test results indicate that other factors such as the COPC mixtures, total organic carbon, sulfide content, and sediment grain size confounded predictions of sediment toxicity to amphipods and grass shrimp.

Health of Indigenous Grass Shrimp

Health of indigenous grass shrimp (*Palaemonetes pugio*) in major areas of the LCP estuary was evaluated for hatching success of embryos of adult female shrimp and

deoxyribonucleic acid (DNA) strand damage of the embryos. Throughout the 2002-2007 monitoring period for grass shrimp, these measurement endpoints deviated statistically (and negatively) from control conditions in the Main Canal, the bank of the Main Canal, and the Eastern Creek. Relationships (logarithmic r² values) were defined in 2006 between body burdens of COPCs in adult shrimp and biological responses of embryonic shrimp.

Characteristics of Benthic Macroinvertebrate Community

A study of the benthic invertebrate community was based on sampling of macrobenthos in surface sediment at four stations in the LCP estuary and at two reference locations in 2000. The potentially negative major differences in vital statistics of the macrobenthos community between site and reference areas were a lesser number of taxa, individuals, and density of individuals at two of the four Site stations. Dominance by polychaetes was characteristic of all reference locations and site stations. In addition, there were no problematic "shifts" in feeding habits between Site vs. reference benthos. However, because benthic community data were not collected as part of the long-term contaminant monitoring program after 2000, any potential contaminant-related effects are unknown.

A preliminary study of the abundance of fiddler crabs (*U.* spp.) observed to inhabit the AB seep location (at a single sampling location), and characterized by high mean body burdens (in dry weight) of total mercury (1.00 mg/kg), Aroclor 1268 (2.54 mg/kg), and lead (8.78 mg/kg) observed in biota indigenous to the LCP estuary, found that they were present in numbers (200 young and adult crabs per square meter) that might be expected to occur in a relative pristine marsh. However, co-located surface water and sediment chemistry samples to assess potential exposures were not collected. In addition, because fiddler crab abundance data were not collected during the long-term monitoring program (2000 - 2007), any potential contaminant related effects to their abundance are unknown.

Development of Hazard Quotients for Finfish and Wildlife

Hazard quotients (HQs) were developed for higher trophic level fish based on food-web exposure models and from field-collected data. HQs were developed for red drum (*Sciaenops ocellatus*), silver perch (*Bairdiella chrysoura*), black drum (*Pogonias cromis*), spotted seatrout (*Cynoscion ocellatus*), and striped mullet (*Mugil cephalus*) based on

actual field-collected tissue data. Major results of these modeling and field studies are presented in the following section of this summary that pertains to risk characterization for finfishs (Assessment Endpoint 8).

HQs were also developed by modeling for wildlife representing various assessment endpoints — diamondback terrapin (*Malaclemys terrapin*) representing omnivorous reptiles, red-winged blackbird (*Agelaius phoeniceus*) and clapper rail (*Rallus longirostris*) for omnivorous birds, green heron (*Butorides striatus*) for piscivorous birds, marsh rabbit (*Sylvilagus palustris*) for herbivorous mammals, raccoon (*Procyon lotor*) for omnivorous mammals, and river otter (*Lutra canadensis*) representing piscivorous mammals. The HQs sometimes referenced in food-web exposure modeling are based on toxicity reference value (TRVs) predicated on lowest-observed-adverse-effect-levels (LOAELs) and no-observed-adverse-effect-levels (NOAELs) of COPCs for finfish and wildlife.

Major results of these modeling studies are presented in the following sections of this summary that pertain to Assessment Endpoints 2 through 7.

Risk Characterization for Assessment Endpoints

The BERA was primarily designed to address potential risk pertaining to the following eight fundamental assessment endpoints according to a "strength-of-evidence" approach.

Benthic Estuarine Community (Assessment Endpoint 1)

Three basic measurement endpoints were employed to evaluate the viability of the structure and function of the benthic estuarine community in the LCP estuary. These endpoints were: 1) comparisons of concentrations of COPCs in surface sediment with site-specific effects levels; 2) results of toxicity tests conducted with sensitive life stages of benthic biota exposed to surface sediment; and 3) evaluation of the indigenous benthic community. For this BERA, there is a wealth of sediment chemistry and sediment toxicity data available for many locations in the LCP marsh developed during eight years of field investigations. In contrast, the benthic community information is limited to a single study conducted in 2000 at four tidal creek stations in the LCP marsh.

Concentrations of total mercury and Aroclor 1268 in creek and marsh surface sediment exceeded their site-specific SECs in most segments of the Eastern Creek, the Main Canal, and Domain 1. Levels of lead in surface sediment exceeded the site-specific effects range low (ER-L) of 60 mg/kg (Table 4-20) in portions of Domain 2 and in Domain 3, including some FS Areas. Total PAHs occurred in excess of their site-specific survival ER-L of 1.5 mg/kg in the Eastern Creek, and in portions of Domains 2 and 3.

In a comprehensive chronic (28-day) toxicological study detailed in this document, survival, growth, and/or reproduction of amphipods (*Leptocheirus plumulosus*) exposed to surface sediment obtained throughout the LCP estuary were often significantly reduced relative to controls and some reference areas. This toxicity appeared to be caused by COPCs, and to a limited extent, from other metals. Toxic expression also appears to be substantially influenced by other factors including total organic carbon (TOC), sulfide, and grain size. This conclusion supports the findings of others (EPA, 2001; Dillon, 2006a) who have noted the toxicological importance of COPCs and other stressors in the LCP estuary.

Toxicity test results with lab-cultured grass shrimp (*Palaemonetes pugio*) evaluated with collocated COPCs sediment concentrations suggest that grass shrimp may be more sensitive than amphipods. For example, reproductive TELs for embryo development and hatching success from exposure to mercury in sediments ranged from 1.4 to 3.9 mg/kg, while the reproductive TEL for amphipods exposed to mercury was 4.9 mg/kg.

Hatching success and DNA strand damage of embryos produced from indigenous grass shrimp throughout their 2002-2007 study period deviated statistically (and adversely) from control conditions in the Main Canal, the bank of the Main Canal, and the Eastern Creek. Furthermore, in a preliminary unreplicated study of fiddler crabs characterized by relatively high body burdens of COPCs, abundance of crabs was similar to that reported over 30 years ago in the Duplin Estuary Marsh, Georgia (Wolf *et al.*, 1975). However, exposure to COPCs was not quantified in this study.

An evaluation of the indigenous benthic community in the LCP estuary suggested a hazard less than that predicted by laboratory-based studies. In a single field evaluation conducted in 2000, the potentially negative major differences in vital statistics of the macrobenthos community between Site and reference areas were a lesser number of

taxa, individuals, and density of individuals at two of the four Site stations. Dominance by polychaetes was characteristic of all Site and reference stations. Benthic community structure was not evaluated in subsequent field investigations.

These above-discussed lines of evidence (LOE) for collectively evaluating the viability of the structure and function of the benthic estuarine community in the LCP estuary indicate that the potential for risk associated with COPCs and non-COPCs is evident, especially in the southeastern part of the estuary (in particular, the Main Canal and Eastern Creek).

Omnivorous Reptiles (Assessment Endpoint 2)

The single LOE available for evaluating the viability of omnivorous reptilian species utilizing the LCP marsh consisted of HQs derived from food-web exposure models for diamondback terrapins (*Malaclemys terrapin*).

In the modeling study, all HQs derived for diamondback terrapins indigenous to the LCP estuary were substantially less than unity (1). Consequently, there is no potential risk to the viability of omnivorous reptiles utilizing the LCP estuary.

Omnivorous Birds (Assessment Endpoint 3)

There were two LOE generated to evaluate the viability of omnivorous avian species utilizing the LCP estuary. These LOE were: 1) HQs derived from food-web exposure models for red-winged blackbirds (*Agelaius phoeniciceus*); and 2) HQs derived from food-web exposure models for clapper rails (*Rallus longirostris*).

Red-winged blackbirds and clapper rails exposed to COPCs at the Site exhibited a basic similarity in that none generated HQs for inorganic mercury, Aroclor 1268, or lead that indicated a potential for risk. For methylmercury, there was a NOAEL HQ of 1.0 in Domain 1 for red-winged blackbirds. All of the LOAEL HQs were less than 1.0, suggesting no risk to red-winged blackbirds.

For clapper rails modeled for exposure to methylmercury, all Site LOAEL HQs were less than 1.0: however, NOAEL HQs were slightly greater than 1.0 (1.7 - 3.0) in Domain 1, Eastern Creek, and the Main Canal. The overall potential for risk to omnivorous birds in the LCP estuary is judged to be minimal.

Piscivorous Birds (Assessment Endpoint 4)

Only one LOE was available to evaluate the viability of piscivorous avian species utilizing the LCP estuary: HQs derived from food-web exposure models for green herons (Butorides striatus).

Green herons modeled for exposure to inorganic mercury, Aroclor 1268, and lead at the Site presented no potential for risk. However, all Site NOAEL HQs generated by the green heron modeled for exposure to methylmercury were in excess of unity (1), with NOAEL HQs (1.4 – 10.6) being most clearly distinguishable from reference HQ (0.6). LOAEL HQs for green herons modeled for methylmercury exposure at the Site were greater than 1.0 in Domain 1 (2.8), Eastern Creek (3.5), and the Main Canal (1.5). This suggests that potential risk to the viability of piscivorous avian species in the LCP estuary is moderate.

Herbivorous Mammals (Assessment Endpoint 5)

The single LOE available for evaluating the viability of herbivorous mammalian species utilizing the LCP marsh consisted of HQs derived from food-web exposure models for marsh rabbits (Sylvilagus palustris).

The modeling study for marsh rabbits generated a site-related NOAEL HQ for Aroclor 1268) of 3.0 in Domain 1. No LOAEL-based HQ for Aroclor 1268 was greater than unity (1). In addition, no risk potential was associated with mercury or lead.

Consequently, the potential for risk to the viability of herbivorous mammals utilizing the LCP estuary is judged to be minimal.

Omnivorous Mammals (Assessment Endpoint 6)

The only LOE generated for assessing the viability of omnivorous mammals utilizing the LCP estuary consisted of HQs derived from food-web exposure models for raccoons (*Procyon lotor*).

In the modeling study, all HQs for inorganic mercury, methylmercury, and lead derived for raccoons indigenous to the LCP estuary were less than unity (1). The NOAEL HQ for Aroclor 1268 of 2.6 was estimated for Domain 1 and an HQ of 1.1 for Domain 2. None of

the LOAEL HQs exceeded unity. Consequently, the potential for risk to the viability of omnivorous mammals utilizing the LCP estuary is judged to be minimal.

Piscivorous Mammals (Assessment Endpoint 7)

The sole LOE for evaluating the viability of piscivorous mammals utilizing the LCP estuary consisted of HQs derived from food-web exposure models for river otters (Lontra canadensis).

The modeling study for river otters generated site-related NOAEL HQ for Aroclor 1268 (based on a TRV for Aroclor 1254) that ranged from 0.1 to 3.9. No LOAEL-based HQ for Aroclor 1268 was greater than unity (1). In addition, no potential for risk was associated with mercury or lead.

The potential risk to the viability of piscivorous mammalian species utilizing the LCP estuary is judged to be minimal.

Finfish (Assessment Endpoint 8)

There were five basic measurement endpoints available for evaluating the viability of finfish utilizing the LCP estuary. These endpoints, most of which are characterized by similar strength of evidence, were: 1) comparisons of concentrations of COPCs in surface water to general literature-based effects levels; 2) results of toxicity tests conducted with early (and sensitive) life stages of aquatic biota exposed to COPCs in surface water; 3) HQs derived from food-web exposure models for upper trophic-level fish; 4) HQs derived from measured residues in field-collected finfish; and 5) evaluation of the benthic macroinvertebrate community (as a food source for juvenile and adult fishes).

The highest concentration of total mercury measured in surface water of the LCP estuary was 188 ng/L in the Eastern Creek during 2000, as compared to the EPA chronic ambient water quality criterion of 940 ng/L. The highest concentration of dissolved lead in water was 2.5 micrograms per liter (μ g/L) in the Main Canal during 2000, as contrasted to the EPA chronic criterion of 8.1 μ g/L. (No criteria have been developed specifically for Aroclor 1268.)

Laboratory toxicity tests designed to evaluate chronic toxicity of "whole" surface water from the LCP estuary to mysids (*Mysidopsis bahia*) and sheepshead minnows (*Coleonyx*

variegatus) generated similar results. Mean survival of mysids exposed to surface water from the Site and two reference locations ranged from 92.4 to 100%, which was greater than the minimum acceptable survival for control organisms (80%). Mean growth (weight) of mysids exposed to Site and reference waters was from 0.50 to 0.84 mg (dw), which exceeded the weight of control organisms (0.48 mg). Survival of sheepshead minnows exposed to the same surface water ranged from 80 to 100%, which was at least equal to the minimum acceptable survival for control organisms (80%). Mean growth (weight) of fish exposed to Site water was statistically similar to weight observed for at least one reference location.

Finfish bioaccumulation modeling generated a mean LOAEL-based HQ of 2.9 for methylmercury, which is considered to be over-predictive relative to field-collected finfish from the LCP estuary. However, LOAEL HQs exceeded 1 in silver perch (HQ=1.3) and spotted seatrout (HQ=1.9) collected from the field.

Based on three bioaccumulation model approaches to finfish for effects attributable to Aroclor 1268 in the LCP estuary, generated mean LOAEL-based HQs ranged from 0.5 to 1.4 (Table 4-28). The mean LOAEL HQ for field collected finfish was 1.1 for silver perch and black drum, 0.95 for and spotted seatrout, suggesting relatively comparable results with the modeled HQs. The mean HQ for striped mullet was 2.5. The HQs are all higher when the upper-bound tissue residue concentrations are used. Because the fish TRVs were largely based on reproductive and growth endpoints to assess potential chronic problems and or long-term decline in viability of fish populations, the LOAEL HQs suggest chronic risk. The absence of gross abnormalities in finfish collected from Purvis Creek during the empirical study and the absence of reported fish kills during years of intensive interest and monitoring at the LCP Site suggest that there are no acute toxicity concerns to finfish.

Evaluation of the benthic macroinvertebrate community in the LCP estuary did not identify a limitation of this source of food to fishes (refer to information presented for Assessment Endpoint 1), although toxicity to benthic organisms may limit food for fish in portions of the Main Canal, Eastern Creek, and Western Creek Complex.

The overall conclusion derived from the five above-discussed measurement endpoints is that there is no risk to finfish in the LCP estuary from direct exposure to COPCs in the

water column. The modeling and field data for finfish suggest that chronic risk to viability of finfish indigenous to the LCP estuary is of concern.

Ecologically Protective Media Concentrations

Ecological risks from hazardous substances released to the LCP estuary create a need to evaluate measures that would reduce the incidence of adverse growth and reproductive effects to benthic organisms, fish, and wildlife. The receptors at risk include:

- omnivorous and piscivorous birds from methylmercury;
- herbivorous, omnivorous, and piscivorous mammals from Aroclor 1268;
- fish from methylmercury and Aroclor 1268;
- benthic invertebrates from methylmercury, Aroclor 1268, lead, and PAHs.

The development of protective sediment concentrations is dependent on sediment to biota bioaccumulation factors (BAFs) which are measurements of COPCs in biota tissue divided by the sediment COPCs concentrations. The methodologies used for each receptor are described in detail in Section 7 of the report. The overall approach to derive BAFs for organisms in the LCP estuary focused on addressing the variability in sediment concentrations while maximizing the biota tissue data relative to habitat use areas for each of the receptors. The estimated BAFs were then used in the wildlife exposure models to back-calculate protective NOAEL and LOAEL sediment concentrations when the hazard quotients are set to 1.0.

Protective Sediment Concentrations for Wildlife Receptors

The most sensitive modeled receptors from exposure to mercury are piscivorous birds as represented by the green heron, with protective sediment concentrations ranging from about 0.5 to 2.8 mg/kg dw. The least sensitive receptors to mercury are omnivorous birds (clapper rail). Although the piscivorous river otter was not considered to be at risk from any specific exposure area (all HQs were less than 1), overall exposure to the entire Site (approximately 790 acres) results in protective sediment mercury concentrations between 1.7 and 4.2 mg/kg dw.

The most sensitive modeled receptor from exposure to Aroclor 1268 is the river otter with protective sediment concentrations ranging from 0.27 to 4.6 mg/kg dw. The least sensitive receptors to Aroclor 1268 are herbivorous mammals (e.g., marsh rabbit).

Protective Sediment Concentrations for Finfish

The protective mercury sediment concentrations for finfish generally ranged from about 1 to 3 mg/kg, with the exception of the striped mullet. Protective concentrations based on field-collected striped mullet tend to fall outside these general ranges because mercury residues were lower and Aroclor 1268 residues higher compared to the other four species of fish. The reason why mullet residues vary from the other species is currently unknown but may be related to different feeding strategies, feeding behaviors and in situ exposure scenarios. The other finfish have protective sediment concentrations for Aroclor 1268 ranging from about 1 to 8 mg/kg.

Protective Sediment Concentrations for Benthic Invertebrates

Due to the lack of any significant COPCs exposure-response relationships based on the results of over 200 sediment toxicity tests, the establishment of "safe" levels for benthic invertebrates is highly uncertain. It appears that the interactions between COPCs, organic carbon, sulfides, grain size, and other factors such as oxidization/reduction changes in sediment chemistry, collectively confounded the toxicity test results. Based on the amphipod and grass shrimp toxicity studies, the following COPCs concentration ranges protective of benthic invertebrates were determined in mg/kg (dw):

Mercury	1.4 - 3.2
Aroclor 1268	3.2 – 12.8
Total PAHs	0.8 - 1.5
Lead	41 – 60

Protective Surface Water Concentrations

Mercury and Aroclor 1268 in surface water of the LCP estuary occasionally exceed their respective State water quality standards and may pose a risk to aquatic life (Section 4.2.1). The risk to wildlife from the surface water pathway is minimal relative to prey and sediment ingestion. Although there may be seeps or contaminated groundwater upwelling into estuary component, there is no indication that State of Georgia water quality standards would not be protective of aquatic life.

1.0 INTRODUCTION

Honeywell, formerly AlliedSignal, Inc. is currently conducting a Remedial Investigation/Feasibility Study (RI/FS) for the LCP Superfund Site (Site) in Brunswick, Glynn County, Georgia (Figure 1-1). The RI/FS is being conducted pursuant to an Administrative Order by Consent, EPA Docket Number 95-17-C, dated July 6, 1995. Because the Site presented a variety of geographical features and contaminated media, the Site has been divided into three OUs: the estuary is designated OU1; the groundwater is designated OU2; and the uplands portion of the Site is OU3.

One integral part of the RI/FS, especially for OU1, is the BERA. Honeywell first submitted a draft BERA report for OU1¹ to the EPA in June 1997. EPA and the State of Georgia (State) reviewed the BERA, disapproved it in October 1997, and provided comments for Honeywell to address. After several successive iterations, Honeywell submitted its last revised BERA report to EPA on July 6, 2009. This revised report, which was also reviewed by EPA, the State and the NOAA, was also disapproved on July 2, 2010. At this time, EPA provided Honeywell with all final comments and included an EPA-revised BERA report, along with explanations of the modifications. Following an August 10, 2010 meeting with Honeywell and review of its August 18 and September 10, 2010 letters, EPA modified the BERA, where necessary and appropriate, to address Honeywell's concerns.

This BERA Report is EPA contractor Black & Veatch's finalized revision of the Honeywell's July 6, 2009 report. Completed in accordance with all EPA guidance, this BERA report has been reviewed and approved by EPA and the State. It incorporates very significant amounts of information provided by Honeywell. While the accuracy of the information provided by Honeywell is accepted for purposes of this BERA report, it has not been independently verified by either Black & Veatch or EPA. EPA therefore reserves the right to correct or amend any information provided by Honeywell if warranted by the discovery of new or different information.

The major COPCs addressed in the BERA are mercury (including methylmercury), Aroclor 1268, lead, and total PAHs. These are the chemicals identified as COPCs in the initial documents developed for the BERA. However, other chemicals that were later considered to be COPCs are also addressed in the risk assessment.

Two key and related elements of the BERA merit emphasis. First, ecological conditions in the LCP estuary were monitored by Honeywell on an annual basis from 2000 through 2007 (except for 2001). Data derived from each of these years are evaluated in the BERA.

Second, an historical perspective of ecological conditions in the LCP estuary is presented by a review of the results of numerous investigations conducted by independent (non-Honeywell) scientists, many of which were peer-reviewed and presented in the scientific literature. This review is presented in the "Uncertainty Section" of this document since some of these investigations were conducted prior to 1998-1999, when sediment remediation (removal) occurred in selected parts of the estuary, and are believed to reflect a "worst-case" baseline for the estuary.

The BERA consists of a main text, as well as associated figures and tables. A series of appendices are also presented that support the main body of the BERA. All environmental data pertaining to the estuary at the LCP Site are maintained in an electronic data base (Environmental Planning Specialists, 2007a). This data base contains data generated as early as 1970, as well as data generated during more recent environmental monitoring investigations.

¹This BERA supersedes an earlier BERA conducted in 2000 (CDR Environmental Specialists and GeoSyntec Consultants, 2001) for the estuary at the LCP Site. This new BERA addresses the extensive amount of environmental information generated for the estuary at the LCP Site since that time.

Initial components of the risk assessment process – in particular, "Problem Formulation" (Step 3; Honeywell International, 2001a) and "Study Design and Data Quality Objectives" (Step 4; Honeywell International, 2001b) – are referenced, but not presented in their entirety, in this document.

2.0 INDUSTRIAL HISTORY

Industrial activities began at the LCP Site in 1836, when a segment of the Brunswick-Altamaha Canal was constructed. This canal segment (approximately 1,220 meters or 4,000 feet) ran in a north-south direction along the interface between the upland and estuarine parts of the Site. The canal eventually extended about 19 kilometers (km) (12 miles) from Academy Creek (Brunswick Harbor) north to the Altamaha River. The canal opened in 1854, but operated only until 1855. Waste-disposal and soil-filling activities appear to have occurred along parts of the canal that traversed the Site (i.e., in the north and south disposal areas).

The Atlantic Refining Company, a predecessor of Atlantic Richfield Company (ARCO), used the Site as a petroleum refinery from 1919 through 1929. The refinery processed Gulf Coast and Mexican crude oil into finished products that included light asphalt, fuel oil, lubricating oil, gas oil, kerosene, and gasoline. The boiler at the refinery was fueled by coal until 1922, after which oil was employed.

Georgia Power purchased part of the Site from ARCO and operated an oil-fired power-generating facility from 1937 through 1950 that reached a generating capacity of 5,500 kilowatts (kW) in 1941 (GeoSyntec Consultants, 1996). The Dixie Paint and Varnish Company (which eventually became the Dixie O'Brien Corporation and, subsequently, a subsidiary of the O'Brien Corporation) purchased another part of the Site from ARCO in 1941, where it operated a paint and varnish manufacturing facility until 1955 (GeoSyntec Consultants, 1996).

Allied Chemical and Dye Company (the predecessor to AlliedSignal, which has now merged with Honeywell) purchased the Site in 1955, with the exception of a 1.2-hectares (ha) (2.9-acres) parcel still owned by Georgia Power (GeoSyntec Consultants, 1996). AlliedSignal constructed and operated a chlor-alkali facility at the Site, utilizing the Solvay (mercury-cell) process. Primary products of the chlor-alkali operation were chlorine gas, hydrogen gas, and sodium-hydroxide solution.

LCP Chemical-Georgia (which became a division of the now defunct Hanlin Group, Inc.) purchased all of AlliedSignal's part of the Site in 1979 and continued to operate the chlor-alkali facility until 1994, when operations were discontinued (GeoSyntec

Consultants, 1996). In May 1998, Allied Signal (Honeywell) purchased the LCP property from the estate in bankruptcy.

3.0 PROBLEM FORMULATION

Problem Formulation establishes the goals, extent, and focus of the BERA. An initial Problem Formulation document was developed in 2001 (Honeywell International, 2001a). This section describes the environmental setting, ecosystem characteristics, the ecosystem potentially at risk, identifies chemicals of potential ecological concern, and develops assessment and measurement endpoints that will be used to assess potential risks to ecological receptors.

3.1 Environmental Setting

The LCP Site is located immediately northwest of the City of Brunswick, in Glynn County, Georgia (Figure 1-1). The Site, which has an area of about 222 ha (550 acres), consists of approximately 28 ha (70 acres) of largely developed (industrialized) upland and 194 ha (480) acres of estuary. The Site was later expanded to include the area west of Purvis Creek to the Turtle River for a total of 320 ha (790 acres) in Operable Unit 1, the estuary at the LCP Site.

The estuary, situated west of the industrialized area, drains into Purvis Creek, which, in turn, discharges to the Turtle River. A ditch, termed the LCP Ditch or Main Canal, runs from the industrialized upland part of the Site to Purvis Creek. A secondary road parallels the ditch along its northern bank and, at one time, connected with a boardwalk (now in ruins) that crossed Purvis Creek and the most western marsh to the Turtle River. The Turtle River/Purvis Creek estuarine system is tidally influenced, with tidal range being about 2 to 3 m (7 to 10 foot [ft]) in the vicinity of the LCP Site.

The LCP Site is bordered by a County landfill and police firing range on the north, Ross Road on the east, and Brunswick Celluose, Inc., on the south side. The Brunswick Cellulose pulp operation discharges effluent to the Turtle River, as does the City of Brunswick Academy Creek Wastewater Treatment Plant (via Academy Creek), which is located south of the pulp company.

The surface geology at the LCP Site consists of sandy beach and dune deposits in the upland area and organic-rich silty clays in the tidal marsh (GeoSyntec Consultants, 1996). These surface sediments are about 15 meters (m) thick. Underlying the surface sediments is a layer of coarse sand, silty clay, and sandstone (deposited during the late

Miocene Epoch), which extends to a depth of approximately 55 m. These late Miocene sediments are underlain by a sequence of silt, clay, phosphatic sand, and limestone of the Hawthorn Group (an early Miocene formation) that extends to a depth of about 150 m.

Storm water runoff from the industrial part of the LCP Site, which historically discharged to the estuary, is now contained by storm water diversion structures. Potentiometric surface measurements indicate that shallow-aquifer groundwater (0-15 m in depth) discharges to the estuary (GeoSyntec Consultants, 1996).

OU1, the marsh at LCP, was divided into four domains for the purpose of characterization (Figure 3-1). Domain 1 is bounded by the uplands to the east, the Main Canal to the north, and Eastern creek to the west. The removal of contaminated sediments took place in the eastern portion of Domain 1 in 1998-1999. Domain 1 is salt marsh. Marsh grass has filled in the removal area. Domain 2 is bounded on the east by Domain 1, the south by uplands not part of the LCP property, and the west and north by Purvis Creek and the Main Canal. Domain 2 is salt marsh with tidal creeks. It contains the Western Creek Complex. Domain 3 is bounded to the south by the Main Canal, the east by the LCP uplands, and the west and north by Purvis Creek. It is a salt marsh with abundant small tidal creeks. Domain 4 is the area west of Purvis Creek to the Turtle River. Domain 4 is divided into an eastern and western portion by the flow divide between creek and river.

Purvis Creek is a saltwater, tidal water body that flows adjacent to the Site and into the Turtle River. Purvis Creek has a maximum width of 500 feet, a maximum depth of 11 feet, and is approximately two miles long. Large areas of salt marsh associated with Purvis Creek and tributaries to Purvis Creek are present in the western portion of the Site as well as throughout the immediate area. Tributaries of Purvis Creek wind throughout these marshes and form a complex and extensive hydrologic system. The salt marsh west of the Site is bisected by a narrow earthen causeway that extends from the Site to Purvis Creek. The causeway separates the northern marsh from the southern marsh and surface hydrologic communication occurs only indirectly through the tidal cycling of Purvis Creek.

The Main Canal carried effluent from the LCP outfall to a tributary of Purvis Creek. The Canal is situated along the southern margin of the causeway and ranges from 10 to 20 feet wide. Purvis Creek discharges to the Turtle River, which is located approximately one mile downstream of the Site. The Turtle River is tidally influenced and is considered salt water in the vicinity of the Site. It is a relatively large water body, approximately 2,000 feet wide at the Purvis Creek confluence with an average depth of approximately 10 feet. A 30-foot deep channel has been dredged in the Turtle River, up to a pulp and paper facility.

The habitat present appears to follow a fairly abrupt topographic contour along the western portion of the facility area of the Site. Although the elevation difference between "higher" and "lower" ground is only one and a half to two feet, it is perceptible in the hydrology and plant species composition. The salt marsh present in the western portion of the Site is vegetated primarily with marsh grass (*Spartina alterniflora*), with occasional patches of black needle rush (*Juncus roemerianus*), and is entirely flooded during high tide. The upland present in the eastern portion of the Site is subject to infrequent inundation and has a higher proportion of plant species that are adapted for less saturated conditions than those which dominate the wetland. The Site area serves as a commercial and recreational fisheries resource.

3.2 Ecosystem Characteristics

The Brunswick River estuary, like most estuaries in the southeastern United States, is a highly productive ecosystem that consists of both salt marsh and associated tidal creeks. High productivity is believed to be at least partially caused by the mixing of fresh water flowing in the upper part of the water column towards the sea and denser salt water flowing in the lower part of the water column towards the land (Odum, 1961). These counter-moving currents produce a "nutrient trap," which retains and recirculates nutrients within the estuary. Although salinity and other environmental variables are intermediate between the conditions occurring in fresh water and salt water, almost all aquatic life inhabiting the estuary is of marine origin.

The salt marsh in the Brunswick River estuary has five basic ecological zones (UGA, 1996): 1) a border zone; 2) high marsh; 3) low marsh; 4) marsh levees (or creek banks); and 5) tidal creeks. The border zone is covered by tidal water only during spring and storm tides. Consequently, the soil is relatively low in salt content, thereby permitting

the growth of a variety of plants. The border zone is also the habitat for the red-jointed fiddler crab (*Uca minax*), which is the largest of the fiddler crabs and is often found living well above the high-tide line at the edge of the transition zone.

The high marsh is covered by tidal water for only about an hour or less each day. However, sediment in the high marsh is high enough in salt content to support only salt-tolerant plants such as smooth cordgrass, which possess special glands on their leaves that excrete excess salt. However, because of the salty sediment, the cordgrass grows to only about 8 to 30 centimeters (cm) in height. The dominant fiddler crab in the high marsh is the sand fiddler (*Uca pugilator*), which, as its common name implies, tends to be found more in sandy sediment than in muddy substrates.

The low marsh is inundated by tides for several hours each day. The substrate of the low marsh is typically dark, anaerobic mud. Smooth cordgrass dominates plant life in this zone and provides substrate and nutritional support for a number of animals. The dominant fiddler crab in the low marsh is the mud fiddler (*Uca pugnax*), which feeds upon plant detritus and algae that cover the surface of the mud flats. The marsh periwinkle (*Littorina irrorata*) lives on the cordgrass stalks, moving up and down the stalks in response to changing tidal conditions and feeding on detritus and algae. The ribbed mussel (*Geukensia demissus*) anchors itself by threads to the base of the cordgrass, where it filters particulate matter from passing water. The mud snail (*Illynassa obsolete*) and colonies of the Eastern oyster (*Crassostrea virginica*) also inhabit the low marsh.

Marsh levees are characterized by the continuous movement of water across their surfaces during high tides. The movement of water in this narrow zone of the salt marsh precludes sediment from being anaerobic or having a high salt content. Marsh levees form when sediment particles carried by the tides are filtered out by marsh grasses adjacent to the tidal creeks. Steady supplies of nutrients are delivered to the marsh levees by tides. The constant supply of nutrients results in the formation of a narrow zone of high productivity known as "marsh edge" (Kneib 2003, Minello and Rozas, 2002). Consequently, smooth cordgrass, the only plant found on the levees, grows at a maximum rate to its greatest height (about 3 m) adjacent to tidal creeks. In the fall, cordgrass leaves turn from the color of green to a yellow-brown or golden color, giving Georgia's coastal islands the nickname "The Golden Isles." The leaves then die, break

into small pieces, and commence the decomposition process that results in detritus, which, in turn, forms an attachment Site for microscopic organisms such as bacteria, fungi, and algae.

Tidal creeks experience the full amplitude (about 3 m) of the semidiurnal tides that occur in the Brunswick River estuary. These creeks support a variety of water-column and benthic organisms. Water-column organisms include phytoplankton (which is less important than detritus as a basic food source in the estuary; Pomeroy and Wiegert, 1981), zooplankton (both holoplankton and meroplankton), and fishes characteristic of estuaries in the southeastern United States.

An endangered fish species - the shortnose sturgeon (*Acipenser brevirostrum*) - may pass through the estuary, but is not known to frequent the Turtle River or Purvis Creek. Benthic plants commonly found in the estuary include emergent smooth cordgrass (*Spartina alterniflora*)) and black needlerush (*Juncus roemerianus*), which, after death, are major sources of detritus. Some of the more common benthic animals are polychaete worms, periwinkles, Eastern oysters, amphipods, barnacles, mysids (*Mysidopsis bahia*), penaeid shrimp, grass shrimp (*Palaemonetes pugio*), fiddler crabs, and blue crabs (*Callinectes sapidus*).

Two fish indigenous to the estuary are the mummichog (*Fundulus heteroclitus*) and red drum or channel bass (*Sciaenops ocellatus*). The mummichog is one of the most stationary of all fish. Fish over 6 cm in length typically maintain a summer home range of 36-38 m along one bank of a tidal creek, although some fish may move as much as 375 m (Lotrich, 1975). Mummichogs forage for food primarily during daylight near the upper limit of the high-tide zone (Weisberg and Lotrich, 1980). The fish are omnivores, feeding on a variety of detritus, algae, zooplankton, and benthos (including fiddler crabs). The population density of larger (>4 cm in length) mummichogs during the summer may range as high as 6 individuals/m² (Kelso, 1979). The number of fish in the largest size class (>7 cm in length) peaks in August and declines dramatically by October due to movement to the mouths of tidal channels and mortality (Meredith and Lotrich, 1979).

Red drum normally do not move far from the estuary to which they recruited (Sea-Stats, 2000a). Indeed, a tagging study on Florida's west coast indicated that 50-85% of fish were captured within 11 kilometers km (6 nautical miles) of their original release Site.

Red drum, which can have a life span of 40 years, spawn in the fall near ocean passes and inlets. The newly spawned young then begin their journey into estuarine nursery areas, where they may remain for up to four years and reach a weight of about 6 kilograms (13 lbs). Red drum feed primarily in the early morning and late afternoon on benthic organisms. Diet of late juvenile and adult red drum includes crabs, shrimp, and other fishes.

Other fish in the Turtle/Brunswick River estuary are black drum (*Pogonias cromis*), sheepshead (*Archosargus probatocephalus*), silver perch (*Bairdiella chrysoura*), spotted seatrout (*Cynoscion nebulosus*), striped mullet (*Mugil cephalus*), Atlantic croaker (*Micropogonias undulatus*), Southern kingfish (*Menticirrhus americanus*), and spot (*Leiostomus xanthurus*).

Benthic aquatic life inhabiting the tidal creeks include the previously referenced fiddler crabs and Eastern oyster and, in addition, various polychaete worms, amphipods, barnacles, mysids, penaeid shrimp, grass shrimp (*Palaemonetes pugio*), and blue crabs (*Callinectes sapidus*). Grass shrimp and mummichogs (*Fundulus*) constitute the most important food supply for secondary consumers in the estuary. Grass shrimp are normally found at low tide near the water's edge and move within the tidal estuary. Penaeid shrimp - the pink shrimp (*Penaeus duorarum*), white shrimp (*Penaeus setiferus*), and brown shrimp (*Peromyscu aztecus*) - spawn in offshore waters, but young postlarval shrimp move during early spring and summer into the estuary. Shrimp reside in the estuary for two to three months before becoming young adults and migrating back to offshore waters. Of the three penaeid shrimp species, the brown shrimp normally migrates furthest offshore to spawn and, consequently, is the least reliable indicator of environmental conditions in the estuary.

Blue crabs inhabit the upper (landward) part of the estuary from the megalopal stage to adulthood. Mating of crabs then typically occurs during all but the coldest months of the year. After mating, male crabs usually remain in the upper estuary, while females migrate to higher salinity water in the lower estuary or ocean to ensure egg development. After eggs hatch, the crabs pass through a number of larval stages before reaching the megalopal stage, which then begins their shoreward movement to the estuarine nursery grounds. Blue crabs feed on a variety of plant and animal materials, both alive and dead. Blue crabs may live for as many as three years, but most die within

a year (Sea Science, 2000). Tagging studies have documented that female crabs can migrate 800 km (500 miles) in 100 days (Sea-Stats, 2000b).

Wildlife inhabiting the general vicinity of the LCP Site includes a variety of reptiles, birds, and mammals. The most common reptile in Atlantic coast salt marshes is the diamondback terrapin (*Malaclemys terrapin*). In addition, several species of threatened or endangered Atlantic sea turtles, the green turtle (*Chelonia mydas*), Kemp's ridley turtle (*Lepidochelys kempi*), hawksbill turtle (*Eretmochelys imbricata*), loggerhead turtle (*Caretta caretta*), and leatherback turtle (*Dermochelys coriacea*), may visit the Site.

Birds indigenous to the estuary include a variety of grebes, cormorants, herons and bitterns, ibises, geese, marsh ducks, mergansers, vultures, hawks, ospreys, falcons, rails (including the clapper rail [Rallus longirostris]), stilts, plovers, sandpipers, gulls and terns, pelicans, skimmers, kingfishers, and passeriform birds. The wood stork (Mycteria americana), an endangered species, has been observed foraging in tidal creeks of the salt marsh and breeding at several colonies in the vicinity of Brunswick. The upland bird fauna is likely to consist mostly of species adapted to abandoned industrial sites, but may also include various species of hawks foraging in the grassy areas of the upland (USDOI, 1995).

Mammals found in the estuary include various shrews, bats, raccoons (*Procyon lotor*), mink (*Mustela vison*), river otters (*Lutra canadensis*), marsh rice rats (*Oryzomys palustris*), and marsh rabbits (*Sylvilagus palustris*). The West Indian manatee (*Trichechus manatus*), an endangered species, and the Atlantic bottle-nosed dolphin (*Tursiops truncatus*), both of which are protected under the Marine Mammal Protection Act, occur in the Brunswick estuary and have been observed in Purvis Creek. West Indian manatees have been observed feeding on smooth cordgrass on the banks of the Turtle River, and a manatee has been seen near the LCP Site. Upland mammals are likely to include raccoons, various shrews and rodents, Eastern cottontails (*Sylvilagus floridanus*), opossums (*Didelphis marsupialis*), and nine-banded armadillos (*Dasypus novemcinctus*) (USDOI, 1995).

3.3 Ecosystem Potentially at Risk

Previous risk assessments conducted at the Site concluded that there were risks to ecological receptors inhabiting the estuary. A Conceptual Site Model (Figure 3-2)

provided a basis for evaluating contaminant migration pathways to ecological receptors. Elevated concentrations of mercury and polychlorinated biphenyls (PCBs) were detected in fish tissue samples from Turtle River, Gibson Creek, and Purvis Creek by the Georgia Department of Natural Resources (GADNR, 1995). An EPA Emergency Response Team (ERT) field study found mercury and PCB contamination in most abiotic and biotic samples (Sprenger, 1997). Mercury and PCBs were found in fiddler crabs, blue crabs, killifish, marsh periwinkles, marsh grass, diamondback terrapins, clapper rails, brown shrimp, grasshoppers, spot, and rats. The highest concentration of mercury (330 mg/kg) was found in a terrapin liver sample. The highest concentration of Aroclor 1268 (3,500 mg/kg) was found in a terrapin liver sample. Elevated levels of persistent organic pollutants were detected in bottlenose dolphins in the Turtle River/Brunswick Estuary (Pulster et al., 2009).

Early indications from sediment toxicity testing by ERT were that the contaminants at the Site were not acutely toxic to benthic invertebrates in 10-day tests conducted with brown shrimp (Penaeus vannamei), amphipods (Leptocheirus plumulosus), and Japanese medaka (Oryzias latipes) embryos (Sprenger, 1997). However, hydrophobic organic compounds like PCBs require time to accumulate in test organisms before they reach toxic levels. It is more likely that toxicity tests would show effects on growth or reproduction in longer-term tests than mortality in a 10- or 14-day test. For instance, hatching of medaka embryos was delayed in all test sediments relative to reference sediments (Sprenger 1997). Hence, the ecological risk assessment had its initial focus on risks to fish and wildlife through bioaccumulation into tissues of organisms or their potential to become exposed through ingestion of contaminated prey. The ecological risk assessment has focused on the prevalent and bioavailable chemicals among those chemicals identified as of potential concern at the Site. The most prevalent and bioavailable chemicals (mercury, Aroclor 1268, lead, and PAHs) were extensively monitored in abiotic media and biota. Multiple rounds of sediment toxicity testing have identified other chemical factors (e.g., organic carbon and sulfides) that affect bioavailability of these chemicals in sediment.

3.4 Chemicals of Ecological Concern

Since the preparation of the initial 2001 Problem Formulation document (Honeywell International, 2001a), Environmental Planning Specialists (2007b) and CDR Environmental Specialists and Environmental Planning Specialists (2009) identified

mercury, PCBs - specifically Aroclor 1268, PAHs, lead, and several other metals of concern at the LCP Site. This section updates the screening-level process to identify other COPCs that may contribute to ecological risks based on all data collected between 2000 and 2007. The surface water screening benchmarks were obtained from Region 4 and from State surface water standards. Sediment screening benchmarks were obtained from Region 4 and consensus sediment benchmarks (MacDonald et al. 2000). If the maximum concentration of chemicals exceeded its EEV, then the chemical was retained as a COPC to be evaluated further.

A description of the screening process and results are presented in Appendix B and are summarized below.

3.4.1 Chemicals of Potential Concern in Sediment

Based on the ecological screening for COPCs presented in Appendix B (Table B-1), mercury, Aroclor 1268, lead, and PAHs were identified as the primary COPCs and will be evaluated quantitatively in this assessment. Inorganic chemicals were analyzed from at least 242 sediment samples; however, only a few occasionally exceeded their screening EEVs. These, along with their maximum HQs, included: arsenic (HQ=3), chromium (HQ=3), copper (HQ=2), nickel (HQ=2), and zinc (HQ=1). These COPCs are not expected to be of significant concern since their maximum HQs are low and their frequencies above the screening EEVs were not widespread. Therefore, these metal COPCs will not be quantified in this risk assessment as bioaccumulators in the food web, but are evaluated for potential contribution to benthic organism risks.

Metals that exceeded reference concentrations by three- to five-fold, yet lacked EEVs (beryllium, cobalt, manganese, thallium, and vanadium) could also contribute to benthic organism risk. Therefore, COPCs qualitatively evaluated for potential risks to benthic organisms include arsenic, beryllium, cobalt, chromium, copper, lead, mercury, manganese, nickel, thallium, vanadium, and zinc.

A few pesticides were detected with dichlorodiphenyltrichloroethane (4,4'DDT) being most prevalent but only detected in four of 42 samples with a maximum HQ of 9 (Appendix B). Therefore, pesticides are not expected to substantially contribute to risk and are not quantified. Bis(2-ethylhexyl)phthalate was detected in 22 of 25 samples but infrequently above the EEV with a maximum HQ of 4. 3,4-methylphenol,

butylbenzylphthalate, and hexachlorobenzene were each detected once in 25 samples. These chemicals will not be quantified further, but will be discussed qualitatively in the uncertainty section.

Dioxins/furans were collected from three sediment samples in October 2000 at C-6, C-8, and C-15 in the LCP estuary. Two additional samples were collected from the Troup Creek and Crescent River reference stations. Using the mammalian toxicity equivalency factors for each of the dioxin/furan congeners (U.S. EPA, 2008a), the toxicity equivalence concentrations (TECs) at the LCP estuary stations ranged from 54 ng/kg to 1,878 ng/kg. At the two reference stations the dioxin TEC concentrations were less than 10 ng/kg. The EPA Region 4 sediment screening-level for dioxins is 2.5 ng/kg which are based on the most toxic form of dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin [TCDD]). The maximum concentration of TCDD in the reference samples was 1.7 ng/kg while the highest concentration of TCDD from the three estuary samples was 53.7 ng/kg at C-6. Therefore, dioxins/furans are of concern. However, no further sediment or biota samples were analyzed for dioxins/furans during the monitoring program. Therefore, potential risk cannot be adequately evaluated in this assessment based on the three sediment samples collected in 2000, but will be discussed further in the uncertainty section.

3.4.2 Chemicals of Potential Concern in Surface Water

The ecological screening for surface water (Appendix B) (Table 2) identified mercury as the COPC with the highest HQ of 20. Out of 11 unfiltered water samples, aluminum, copper, and iron were identified as COPCs with maximum HQs of 1, 2, and 4, respectively. Dissolved copper and iron had maximum HQs of 1 and 2, respectively. It appears unlikely that aluminum, copper, and iron will substantially contribute to ecological risks, and are therefore not quantified in this assessment. Mercury in the water column may pose a risk to aquatic organisms and is consequently retained for further evaluation. Aroclor 1268 was detected in 23 out of 75 water samples and is also retained as a COPC. Aroclor-1268 was detected at concentrations above the State standard for protection of marine life (0.03 μ g/L) at almost all Site locations where Aroclor-1268 was detected in surface water. Aroclor-1268 was less frequently detected in 2000 – 2004 due to elevated detection limits in those years (ranging between 0.5 and 1.2 μ g/L), thereby introducing considerable uncertainty regarding actual concentrations during that time period.

A few other chemicals were infrequently detected (e.g., methylnaphthalene and bis[2-ethylhexyl]phthalate) and are not considered to pose a substantial threat to aquatic receptors and are not evaluated further in this assessment.

3.4.3 COPC Summary

The primary COPCs in estuary sediments and in aquatic organism tissues to be evaluated quantitatively include mercury, methylmercury, Aroclor 1268, lead, and total PAHs. Primary surface water COPCs are mercury and Aroclor 1268. The principle routes of exposure are direct contact, ingestion of sediment, and food-web transfer through contaminated prey.

3.5 Constituent Fate and Transport

The fate and transport of chemicals in sediment and surface water will affect both the short- and long-term potential for ecological receptors to be exposed to constituents at the Site. Most of the chemicals detected at the Site are relatively insoluble and tend to be associated with suspended sediments in surface water or with bed sediments. COPCs such as mercury and Aroclor 1268 are highly persistent in the environment. Divalent metals bind strongly with sulfides in bed sediments. Organic compounds bind with organic carbon in sediments. The fate and transport of most of the constituents identified in Site samples is related most strongly to sediment transport.

3.5.1 Fate and Transport in Surface Water and Sediment

Chemicals in upland soils may have been transported to the estuary by surface runoff (including eroded soil). Another pathway for chemicals to be transported to the estuary was via the facility outfall ("LCP Ditch"), which received chemicals from the plant's wastewater treatment system and discharged them into Purvis Creek under a National Pollutant Discharge Elimination System (NPDES) permit (note that untreated wastewater was discharged directly through the outfall during the manufacturing operations preceding NPDES regulatory authority). At times, NPDES permit limits for COPCs were exceeded during the period of LCP Chemicals operations. Constituents dissolved in surface water or bound to suspended sediments can be transported by tidal cycles within the estuary and through the tidal creeks. Sediments in the tidal creeks can be transported back and forth within the creeks with the tides. Sediments in the creeks

can also be deposited in the marsh. Fate and transport processes can lead to widespread dispersal of contaminants within the estuary.

3.5.2 Fate and Transport in Groundwater

Groundwater in the upland area of the Site is shallow (1.5 to 3.3 m below ground surface [or 5 to 10.7 ft]). Chemicals associated with the various operations at the LCP Facility were in the past disposed of and/or released in both the subsurface and in surface spills on upland soils. The releases of chemicals in the upland area have impacted groundwater quality. Groundwater discharges to surface water have occurred in Purvis Creek and associated tidal channels and, to a lesser extent in surface sediment at near-shore locations in the estuary. Groundwater, originating in part from contaminated uplands of the LCP Site continues to discharge to the estuary. The points of greatest discharge are seeps which discharge to tidal creeks. An aerial infrared thermography survey conducted in 2009 identified a number of potential seeps. In the summer of 2010, sediment porewater (shallow groundwater) samples were collected from eight seeps in the LCP estuary. One seep sample (located near the M-AB station) contained substantially elevated concentrations of COPCs and appears to serve as an ongoing source of contamination to the estuary. Seepsi can serve as an ongoing source of contamination to the estuary in cases where groundwater originating from the seeps is contaminated by the Site. Contaminants at the Site are relatively immobile and are not readily transported in groundwater. However, the mercury associated with the caustic brine pool might be more mobile than mercury in other settings due to changes in the chemistry associated with waste materials that tend to enhance solubility. PCBs can become mobilized in groundwater through colloidal transport or through co-solvency with other waste organic compounds. Once contamination is deposited and is present within the sediments in the marsh, groundwater flows through the subsurface sediment thus transporting contamination as the groundwater migrates up into tidal creeks.

3.6 Ecotoxicity of Chemicals of Potential Concern

This section provides a brief description of the potential ecotoxicity of the major COPCs groups.

3.6.1 Lead and other Metals

Elevated levels of lead and other metals in contaminated sediments have been associated with impacts to benthic communities. Consensus based sediment screening benchmarks for evaluating sediment quality were published by MacDonald et al. (2000).

Region 4 uses several sources of sediment benchmarks for evaluating the potential risk to benthic communities of contaminant levels in sediments. The dominant source is MacDonald (1996). The sediment benchmarks are based on observed changes to benthic communities or toxicity observed in natural sediments that contained a mixture of constituents. The benchmarks represent probabilities that sediments with the same levels of contamination will be toxic. The magnitude of actual toxicity of sediments will depend on site-specific factors affecting the bioavailability of contaminants. Sitespecific metals speciation is affected by water quality parameters such as pH and hardness. Metals in surface water or sediment pore water can exist as free ions, inorganic complexes, or can precipitate as insoluble salts. Most metals do not bioaccumulate to a great degree. Predicting the bioconcentration of metals in an estuary is complex and depends on the organisms involved. Some organisms such as algae can bioaccumulate certain metals while fish generally do not because they can regulate trace metal levels in their bodies. Toxicity of metals in sediments to infaunal organisms is generally related to the toxicity of the metal dissolved in pore water. However, metals suspended in the water column can be a source of exposure to filterfeeding benthic organisms and epibenthic organisms.

Mercury

Ecologically relevant physical characteristics of elemental mercury are a density of 13.534 g/cm³ and a solubility in water of 0.056 mg Hg/L, while a methylated form of mercury (methylmercury chloride) is characterized by a density of 4.063 g/cm³ and water solubility of -1,016 mg Hg/L (Eisler, 1987a). Mercury is primarily a neurological poison, with methylmercury being the most hazardous mercury species because of its high stability, positive ionic properties that permit ready penetration of biological membranes, and high lipid solubility. Methylmercury is produced primarily by bacteria-mediated methylation of inorganic mercury under aerobic and anaerobic conditions, although anaerobic conditions are favored (Eisler, 1987a). Methylmercury is relatively insoluble in water, but tends to form water soluble compounds with thiol-containing proteins and amino acids. The mercury body burdens of all organisms near the apex of the ecological food web are in the form of methylmercury, which usually is acquired by biomagnification of methylmercury present in prey.

Ecotoxicity of mercury is characterized by at least three basic points (Eisler, 1987a). First, mercury is a mutagen, teratogen, and carcinogen that causes cytochemical,

histopathological, and embryocidal effects in biological organisms. Second, forms of mercury with relatively low toxicity (e. g., inorganic mercury) can be transformed by biological and other processes into forms with exceptionally high toxicity (e. g., methylmercury). Last, biomagnification of methylmercury through the ecological food web can lead to extremely high concentrations of the metal in apex predators.

In general, methylmercury is more toxic than inorganic mercury. Plants are typically resistant to the toxic effects of mercury. Young animals (including larvae of aquatic life) are more sensitive to mercury than older animals. Mercury commonly affects the reproductive capacity of birds and mammals. Bioaccumulation of methylmercury is rapid and depuration is slow (297 - 1,200 days for marine organisms to reduce their mercury body burden by one-half). Among the numerous symptoms of mercury poisoning in fishes is the inability to capture prey or avoid predators.

3.6.2 Polychlorinated Biphenyls (PCBs)

The dominant PCB at the LCP Site is Aroclor 1268, which has been less investigated than some of the other Aroclors (in particular, Aroclor 1254). However, Aroclor 1268 is characterized by various general properties that are common to all PCBs. All PCBs are extremely hydrophobic. Volatilization and sedimentation are the major processes that determine the fate of PCBs in aquatic systems (Eisler, 1986). Both processes remove PCBs from the water, but the amount of transferred chemicals is dependent on dissolved-particulate phase partitioning, which determines the relative sizes of the soluble pool available for volatilization and the particulate pool available for sedimentation.

All PCBs remaining in the aquatic environment are extremely stable compounds that are slow to degrade. All PCBs are more toxic (direct toxicity) to embryonic and juvenile organisms than to adult organisms. All PCBs are highly lipophilic and, as a consequence, have the potential to biomagnify in the ecological food web. Aroclor 1268 is one of only two Aroclors (the other being Aroclor 1270) to exist in its unaltered form as a solid, as contrasted to a viscous liquid (Aroclor 1254), mobile oil (Aroclors 1221, 1232, 1242, and 1248), or sticky resin (Aroclors 1260 and 1262). Aroclor 1268 is less soluble in water and, hence, less mobile than other Aroclors, because of the inverse relationship that exists between degree of chlorination of PCBs (68% for Aroclor 1268) and water solubility.

Toxicity of Aroclor 1268 to several types of aquatic life has been evaluated. A unicellular freshwater alga (*Chlorella pyrenoidosa*) exposed to 1 mg/L of Aroclor 1268 for 191 hr was characterized by a population growth that was 94% of control growth, as contrasted to 61% for Aroclor 1242 and 100% for Aroclor 1254 (Hawes et al., 1976). A freshwater copepod (*Daphnia magna*) exposed to Aroclor 1268 under static test conditions (Nebeker and Puglisi, 1974) exhibited a three-week Lethal Concentration (LC) 50 of 253 μ g/L and 50% reproductive impairment at 206 μ g/L. This was the least toxicity observed for eight evaluated Aroclors. (For example, Aroclor 1254 was characterized by an LC50 of 31 μ g/L and 50% reproductive impairment at 28 μ g/L.)

Toxicity of Aroclor 1268 to several species of domestic and wild birds has been assessed. Chickens exposed to 2 mg/kg Aroclor 1268 in the diet produced normal embryos, whereas chickens exposed to several other Aroclors (Aroclors 1232, 1242, 1248, and 1254) produced fewer, and often abnormal, embryos (Cecil et al., 1974). White leghorn hens exposed to 20 mg/kg Aroclor 1268 in the diet for nine weeks displayed no adverse effects on survival, body weight, food consumption, fertility, egg production, hatchability of eggs, egg weight, or thickness of egg shell (Lillie et al., 1974). However, many of these vital processes were deleteriously affected by other evaluated Aroclors, including Aroclor 1254. Lastly, several species of birds - Japanese quail, mallards, pheasants, and bobwhite quail (which ultimately proved to be the most sensitive species) - exposed to various Aroclors in food were least sensitive to Aroclor 1268 and most sensitive to the less chlorinated Aroclors (Heath et al., 1972).

Mammals evaluated for sensitivity to Aroclor 1268 are primarily rodents and rabbits. Rats orally exposed to a single dose of Aroclor 1268 were characterized by Lethal Dose (LD) 50 of 2.5 - 11.3 grams per kilogram (g/kg) (NAS, 1979), whereas Aroclor 1254 (Hudson et al., 1984) was substantially more toxic (LD50: 0.5-1.4 g/kg). In vitro fertilization of mice eggs was impaired at Aroclor 1268 concentrations as low as one μ g/mL, while impairment by Aroclor 1254 occurred as low as 0.1 μ g/mL (Kholkute et al., 1994). Both Aroclors caused an increased incidence of degenerative ova and abnormal embryonic development at concentrations as low as 1 μ g/mL. Finally, rabbits dermally exposed to a single dose of Aroclor 1268 were characterized by a LD50 of 10.9 grams per kilogram (g/kg) (EPA, 1980).

3.6.3 Polycyclic Aromatic Hydrocarbons (PAHs)

PAHs are ubiquitous in the environment. In general, PAHs exhibit high lipid solubility, although degree of solubility is, as in most other characteristics of PAHs, compoundspecific. Unsubstituted, low-molecular-weight PAHs exhibit substantial acute toxicity, but are noncarcinogenic (Eisler, 1987b). Low-molecular-weight PAHs contain two to three benzene rings (e. g., 2-methylnaphthalene, acenaphthene, acenaphthylene, anthracene, fluorene, naphthalene, and phenanthrene). Alternatively, high-molecularweight PAHs containing four-to-seven benzene rings are significantly less toxic, but many (e. g., benzo[a]anthracene, benzo[a]pyrene, and chrysene) are carcinogenic, mutagenic, or teratogenic to a wide variety of organisms, including fishes and other aquatic life, birds, and mammals. In addition to the ones already mentioned, highmolecular weight PAHs include benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(ghi)perylene, dibenzo(a,h)anthracene, fluoranthene, indeno(1,2,3-cd)pyrene, and pyrene. PAHs, despite their generally high lipid solubility, show little potential to biomagnify in the ecological food web, probably because most PAHs are rapidly metabolized by vertebrates and some invertebrates. (For example, the biological half life of benzo[a]pyrene in blood and livers of rats is initially on the order of 5 to 10 minutes.)

Most PAHs present in natural waters are associated with particulate matter, with only about one-third present in dissolved form (Eisler, 1987b). The most important degradation processes for PAHs in these waters are photooxidation, chemical oxidation, and biological transformation by bacteria and animals. PAHs may also become incorporated into bottom sediments, where their ultimate fate is believed to be biotransformation and biodegradation by benthic organisms. However, degradation of PAHs in sediments may occur very slowly in the absence of penetrating radiation and oxygen and may never occur in anoxic sediments. Photoactivation of PAHs in shallow waters can increase their toxicity to aquatic organisms.

Acute toxicity has been reported for aquatic life exposed to approximately a dozen PAHs (Eisler, 1987b). The 96-hr LC50s reported for marine organisms exposed to PAHs that are COPCs ranged from 320 μ g/L of naphthalene presented to grass shrimp vs. > 1,000 μ g/L of benzo[a]pyrene and, also, chrysene presented to sandworms. Sublethal toxicity of PAHs to aquatic organisms includes inhibition of photosynthesis in algae and

macrophytes exposed to various concentrations of anthracene, fluorene, naphthalene, phenanthrene, and pyrene.

Elevated levels of PAHs in sediments tend to be of most concern for the potential to affect benthic communities. PAHs tend not to accumulate to high levels in upper-trophic level aquatic organisms due to the ability of these to break down and eliminate these compounds. Among fish, only those such as flounder, which bury themselves within the sediments, have been found to accumulate detectable levels of PAHs. PAHs can accumulate in polychaetes and mussels. However, PAHs do not biomagnify up the food chain. Sediment screening levels have been reported for PAHs in sediments. PAHs bind to organic carbon in sediments, a mechanism that reduces their bioavailability and reduces the exposure to benthic organisms. The low-molecular-weight PAH compounds have a greater water solubility and tend to be more toxic to benthic communities than the high-molecular-weight PAH compounds.

3.7 Complete and Potentially Complete Exposure Pathways and Receptors

The primary origin of the COPCs - mostly mercury, PCBs (particularly Aroclor 1268), lead, and PAHs is from the industrialized part of the LCP Site. In the pre-regulatory period, wastewater was discharged directly to the estuary and, during both the pre-regulatory and regulatory periods, process wastes were disposed of in the upland part of the Site (GeoSyntec Consultants, 1996). These upland sources of COPCs served as a secondary source of COPCs to both groundwater and, via erosion and surface-water runoff, to surface water in the estuary. However, removal actions in the upland source areas are now complete and risk assessments for the Site's uplands are being conducted.

In the estuary, COPCs can be transferred between abiotic media by adsorption and sedimentation (surface water to sediment) and dissolved flux (sediment pore water to surface water). COPCs in water can be transferred to both water-column and benthic organisms (e.g., plankton, benthic invertebrates, and fishes) via direct contact and, secondarily, by direct or ancillary ingestion. Aquatic organisms can be directly exposed to contaminants dissolved in surface water and to contaminants bound to sediment particles suspended in the water column (Bosch et al. 2009).

COPCs in sediment can be transferred by the same routes to benthic organisms. In addition, all COPCs can be transferred among water-column organisms and benthic organisms by ingestion of prey. Most importantly, some COPCs (e. g., mercury and PCBs) have the potential, through food-chain transfer, to accumulate - i.e., biomagnify – at substantially higher concentrations in tissues of high-trophic-level aquatic organisms. Finally, indigenous estuarine wildlife may be exposed to COPCs. Wildlife exposure may involve all of the environmental pathways described above. Routes of wildlife exposure for all COPCs include direct contact with surface water and surface sediment, ingestion of water and sediment, and uptake from food. However, for mercury and PCBs, dietary intake as a result of biomagnification in the food web is the dominant wildlife exposure route. Wildlife exposed at the Site consists of dietary guilds such as herbivores, insectivores, piscivores, carnivores, and omnivores. Exposure to piscivores and carnivores is expected to be significant in OU1 because PCBs and mercury accumulate to high levels in the tissues of fish, especially in the larger finfish.

3.8 Assessment and Measurement Endpoints

Assessment endpoints are the ecological resources or receptors whose protection from adverse effects is the goal of risk management actions. Measurement endpoints are environmental parameters that can be measured through field and laboratory analysis, and provide a good indication of the condition of an assessment endpoint.

The initial Problem Formulation (Honeywell International, 2001a) and "Study Design and Data Quality Objectives" Phase (Honeywell International, 2001b) of the BERA provided the basis for developing the endpoints which are summarized below.

Assessment Endpoint 1 – Viability of the benthic estuarine community is evaluated by three measurement endpoints: 1) comparisons of concentrations of COPCs in surface sediment to site-specific effects levels; 2) results of toxicity tests conducted with sensitive life stages of benthic biota exposed to surface sediment; and 3) evaluation of the indigenous benthic community.

Assessment Endpoint 2 – Viability of omnivorous reptiles utilizing the estuary, as evaluated by hazard quotients (HQs) derived from food-web exposure models for diamondback terrapins (*Malaclemys terrapin*).

Assessment Endpoint 3 – Viability of omnivorous avian species utilizing the estuary, as evaluated by two basic measurement endpoints: 1) HQs derived from food-web exposure models for red-winged blackbirds (*Agelaius phoeniceus*); and 2) HQs derived from food-web exposure models for clapper rails (*Rallus longirostris*).

Assessment Endpoint 4 – Viability of piscivorous avian species utilizing the estuary, as evaluated by HQs derived from food-web exposure models for green herons (*Butorides striatus*).

Assessment Endpoint 5 – Viability of herbivorous mammalian species utilizing the marsh, as estimated by HQs derived from food-web exposure models for marsh rabbits (*Sylvilagus palustris*).

Assessment Endpoint 6 – Viability of omnivorous mammalian species utilizing the estuary, as estimated by HQs derived from food-web exposure models for raccoons (*Procyon lotor*).

Assessment Endpoint 7 – Viability of piscivorous mammalian species utilizing the estuary, as estimated by HQs derived from food-web exposure models for river otters (*Lutra canadensis*).

Assessment Endpoint 8 – Viability of finfish utilizing the estuarine system, as evaluated by five measurement endpoints: 1) comparisons of concentrations of COPCs in surface water to general literature-based effects levels; 2) results of toxicity tests conducted with early (and sensitive) life stages of aquatic biota exposed to COPCs in surface water; 3) tissue residue HQs derived from finfish bioaccumulation models; 4) tissue residue HQs derived from field-collected finfish; and 5) evaluation of the benthic community as a food source for juvenile and adult fish.

The above-identified assessment and measurement endpoints were evaluated by a sampling framework that distinguished between creek and marsh habitats of the estuary. The creek habitat consists of four major creeks – the Main Canal (or LCP Ditch), Eastern Creek (or North-South Tributary), Western Creek Complex, and Purvis Creek (Figure 3-1). The marsh habitat consists of four domains separated from each other by major hydrological features.

The basic experimental design for the BERA is reviewed in Table 3-1. Years during which various studies (measurements) were conducted are documented in the table, as well as in the figures and tables contained in this document. Surface sediment was considered to be sediment between 0 and 15 cm in depth. Body burdens of COPCs in biota were determined for "whole bodies" of organisms.

Locations of sampling stations in the LCP estuary for surface water and associated biota of the four major creeks are illustrated in Figure 3-3, with details of sampling efforts presented in Table 3-2. Similar information for surface sediment and biota in the four creeks is contained in Figure 3-4 and Table 3-3. Information for marsh in the four domains is presented in Figure 3-5 and Table 3-4. This figure and table also present information for Blythe Island, a marsh area that was evaluated to allow environmental information generated at the LCP Site to be interpreted in a broader geographic context. Reference locations for the investigation were primarily the Crescent River (located west of Sapelo Island) and Troup Creek (on the eastern side of the Brunswick Peninsula).

4.0 ECOLOGICAL EXPOSURE AND EFFECTS EVALUATION

This section of the document addresses temporal trends of COPCs in surface sediment of the estuary at the LCP Site during 2000 – 2007; the presence of chemicals in various environmental media of the LCP estuary; laboratory- and field-based chronic toxicity of environmental media; characteristics of the benthic macroinvertebrate community; and development of HQs for finfish and wildlife.

Environmental conditions are frequently presented for Blythe Island and areas near point-source discharges from non-LCP sources, which are not part of the LCP Site. These data are often included because they increase the sample size employed to generate various relationships between selected environmental variables and, together with reference data, provide a context for evaluating environmental conditions in the LCP estuary.

4.1 Temporal Trends in Concentrations of Chemicals of Potential Concern in Surface Sediment during 2000 – 2007

A temporal evaluation of COPCs concentrations during the period of 2000 – 2007 (after remediation of selected parts of the LCP estuary in 1998 and 1999) is of primary importance from the general perspective of evaluating ecological risk. This primary objective, in turn, is predicated on selection of the most contemporary ecological baseline generated during this eight-year time period consistent with maximizing the number of samples (or years) that constitute the baseline.

Attenuation of selected COPCs (all COPCs except total PAHs, which exhibited concentrations of extreme variability) in surface sediment at continuously monitored sentinel stations in major creeks of the LCP estuary did not appear to occur (Figure 4-1). In the case of sentinel marsh stations (Figure 4-2), the only possible COPCs to exhibit attenuation was total mercury, in the Marsh Grid of Domain 1. Aroclor 1268 did not show any trends in the Marsh Grid, as there were much higher levels in 2002 and 2005 than other years (Figure 4-2).

At the AB Seep Station, concentrations of all COPCs, except for occasional high "spikes" of lead and, to a lesser degree, total mercury, were relatively low. A high "spike" of lead also characterized the station near the old oil-processing Site in Domain 3.

Since attenuation of COPCs in sediment, water, or biota is not readily apparent over the last several years, this baseline risk assessment incorporates data generated throughout the entire 2000 – 2007 time period.

4.2 Presence of Chemicals in Environmental Media

Creek surface water, creek and marsh surface sediment, and associated biota in the estuary at the LCP Site are sequentially evaluated to provide estimates of COPCs concentrations in each media and each exposure area by using standard statistics for the major COPCs based on all data from 2000 through 2007, i.e., minimum, maximum, average, 95UCL. In addition, data are also presented as yearly average concentrations in each medium and exposure area. Non-detects were treated as half the detection limit. Tables in the "a" series provide summary statistics of individual data by exposure area for use in the risk assessment. "Grand means" that were identified in a-series tables were calculated by assigning weights to individual exposure area means based on the size of the exposure area. Tables in the "b" series show COPCs concentrations based on annual means (averages). PAHs were not included in a-series tables for biota because they were for the most part not detected in biota and therefore were not evaluated for exposure to wildlife via bioaccumulation.

4.2.1 Creek Surface Water

General water quality characteristics for Purvis Creek were relatively consistent for the duration of the field study (fall of all years) and were similar to characteristics observed at the reference locations (Table 4-1). Some notable differences include low salinities in 2004 and especially in 2007. Hypoxic conditions $(2.3 - 3.0 \text{ mg O}_2/\text{L})$ occurred in Purvis Creek in 2004, and elevated creek temperatures (>30 degree Celsius [$^{\circ}$ C]) in 2002.

The highest concentration of total mercury in surface water of major creeks at the Site (Table 4-2a) was 188 ng/L (in the Eastern Creek during 2000), which was less than the EPA recommended chronic water quality criterion of 940 ng/L. Concentrations of total mercury in all evaluated creeks at the Site often exceeded the State of Georgia water quality criterion 25 ng/L, but that ecological screening value (ESV) pertains to

marketability of fish as contrasted to health of marine biota. Table 4-2b shows yearly average concentrations at the major creek stations.

Methylmercury concentrations in water at the Site ranged from 0.15 to 2.2 ng/L and were usually greater than levels at reference locations (0.008 – 0.22 ng/L). The logarithmic relationship between total mercury and methylmercury concentrations in creek surface water was defined by a coefficient of determination (r^2) of 0.23 (Figure 4-3). (Values of r^2 indicate the amount of variation in one variable [in this case methylmercury] that can be explained in terms of variation in the other variable [i.e., total mercury]. Determination of statistical significance of non-linear r^2 values are problematic, especially for small sample sizes, and not addressed in this document.) Mean and maximum ratios of methylmercury/total mercury were, respectively, 3.05 and 10.1 percent.

Aroclor 1268 was detected in 47 percent of the creek samples and in 23 percent of the reference samples (Table 4-2a). The highest mean concentration (0.83 μ g/L) occurred in the Main Canal in 2005 (Table 4-2b). The State water quality criterion for total PCBs in coastal and marine estuarine waters is 0.03 μ g/L. Dissolved lead concentrations in creek samples never exceeded the State water quality standard of 8.1 μ g/L.

In summary, mercury and total PCBs (mostly Aroclor 1268) in surface water of the LCP estuary generally exceeded their respective State criteria for protection of aquatic life.

4.2.2 Creek and Marsh Surface Sediment

Table 4-3a provides summary statistics on the concentrations of mercury, Aroclor 1268 and lead in all sediment samples (2000 – 2007) collected in each exposure area. (Area A includes the Main Canal, Eastern Creek, and Domain 1). The lowest mean concentration of total mercury in surface sediment at the Site (0.63 mg/kg [dw], in Domain 4) was higher than the highest mean concentration at the Troup Creek reference location (0.08 mg/kg). The highest mean total mercury concentrations in surface sediment at the Site were found in Eastern Creek (20.28 mg/kg) and the Main Canal (7.40 mg/kg). Mean concentration of total mercury in creek sediment generally exceeded those found in marsh sediment. Similar relative concentrations are observed for Aroclor 1268 (Table 4-3a). The highest yearly mean total PAHs generally occurred in Domain 2 and in Eastern Creek (range of 0.35 to 14 mg/kg); whereas, the total PAHs in Troup Creek were usually

< 0.12 mg/kg (Table 4-3b). For lead, the highest mean lead concentration (90.7 mg/kg) was observed in Domain 3 (North Marsh). The next highest levels were observed in Domain 2 (40.9 mg/kg) and the adjacent Eastern Creek (35.7 mg/kg). Mean concentrations of lead in the remaining areas of the Site ranged between 17.4 mg/kg (Purvis Creek) and 29.0 mg/kg (Western Creek Complex). Mean lead concentration at the Troup Creek reference location was 17.6 mg/kg.

The overall Site mean for silt/clay content was 77.6 percent, compared to the Troup Creek/Crescent River mean of 58.2 (Table 4-3b). Total organic carbon in Site sediment (that included creek and marsh sediment) ranged from 0.1% to 14.9 % with a mean of 4.6%; whereas the range TOC of Troup Creek and Crescent River sediment ranged from 0.2% to 6.0% with a mean of 2.9%. Sediment TOC is important in the context of highly organic sediments often complexing with chemicals causing them to have limited bioavailability.

Based on 31 paired creek sediment samples and 27 paired marsh sediment samples, statistically significant linear r^2 values characterized the relationship between silt/clay content and TOC content of surface sediment of major creeks ($r^2 = 0.43$) and marsh ($r^2 = 0.41$) at the Site (Table 4-4). Total mercury and Aroclor 1268 appeared to exhibit similar patterns of distribution throughout the Site (and possibly origin) as evidenced by statistically significant r^2 values for both creeks ($r^2 = 0.13$) and marsh ($r^2 = 0.27$). A similar pattern was suggested for lead and total PAHs, with an r^2 value of 0.42 for both creek and marsh habitats.

The relationship between total mercury and methylmercury concentrations in surface sediment was defined by an r^2 value of 0.12 (Figure 4-4) where the data are highly skewed toward the origin. Mean and maximum ratios of methylmercury/total mercury were, respectively, 0.08 and 11 percent.

The coloration scheme in Table 4-3b provides an comparison of the yearly averages of concentrations of COPCs in surface sediment with initial site-specific effects benchmarks based solely on amphipod and grass shrimp toxicity test results (Tables 4-20 and 4-22). The TEL below which harmful effects are considered unlikely; and the probable effect level (PEL) above which harmful effects are considered likely. The significance of these initial effect levels will be evaluated in more detail in Section 4.6. At all areas in the Site,

mean concentrations of total mercury and Aroclor 1268 were greater than their respective conservative literature-based TELs of 0.13 mg/kg and 0.022 mg/kg, respectively. However, mercury and Aroclor 1268 did not exceed their site-specific TELs in Domains 3 and 4 or in Purvis Creek and Blythe Island. Lead exceeded benchmarks in the Eastern Creek, Domains 1, 2, and 3 (and the FS locations). In the case of total PAHs, its PEL was exceeded in Eastern Creek, Domain 2, Domain 3, and the FS locations. Both reference locations exhibited mean levels that were less than their TEL for all COPCs except Aroclor 1268 in surface sediment.

Table 4-5 provides summary data of other metals associated with selected sediment samples collected from 2004 through 2006. As discussed in Section 3.4.1, arsenic, chromium, copper, nickel, and zinc slightly exceeded their screening-level EEVs and may contribute some risk: however, quantifying such risks would likely be masked by the primary COPCs. Chromium and nickel were elevated at or above their conservative EEVs in approximately 50 percent and 30 percent of the samples listed in Table 4-5, respectively. Many of the arsenic samples were within background levels. Copper was elevated in about 10 percent of the samples and zinc in one percent of the samples.

4.2.3 Biota

Body burdens (residue) of COPCs in key biota of the estuarine ecosystem at the Site are addressed. Special attention is directed toward those biota that are later employed in food-web exposure models for upper-trophic level fish and wildlife (Section 4.6 of this document). In these cases, body burdens of selected COPCs that have the potential to biomagnify in the ecological food web (mercury, Aroclor 1268, and to a lesser degree, lead) are presented. Exposure (body burden) statistics are provided and the a-series tables for each Site area where data were available and then prorated according to size of the areas to identify estuary-wide (OU-1) Site means. Additional body burden information based on year-specific averages, are presented in the b-series tables.

4.2.3.1 Cordgrass

Cordgrass (*Spartina alterniflora*) was characterized by concentrations of total mercury that ranged from a mean of 0.02 mg/kg (dw) in the Purvis Creek area to a mean of 0.147 mg/kg (dw) in the Main Canal area vs. 0.005 mg/kg in the Troup Creek reference location (Table 4-6a). Methylmercury frequently could not be detected in cordgrass

and, when detected, averaged just 9.93 percent of concentration of total mercury (Appendix F).

Aroclor 1268 concentrations in cordgrass from the Site ranged from a mean of 0.096 to 0.261 mg/kg, in comparison to 0.0134 mg/kg at the reference location. The maximum concentration of 0.614 mg/kg occurred in Domain 1 at the AB Seep Location.

Lead concentrations in cordgrass from the Site ranged from a mean of 1.98 to 3.51 mg/kg (in Domain 3) vs. a mean of 1.6 mg/kg in the Troup Creek reference location. Lead often was not detected in cordgrass (Tables 4-6a and 4-6b).

4.2.3.2 Eastern Oysters

Eastern oysters (*Crassostrea virginica*) collected from the Site in 2006 contained mean body burdens of total mercury that ranged from 0.187 to 2.367 mg/kg (dw) vs. 0.089 to 0.097 mg/kg in oysters at the Troup Creek reference location (Table 4-7). About 70 percent of total mercury in oysters was reported to be in the form of methylmercury (NOAA, 1998). Mean body burdens of Aroclor 1268 in Site oysters ranged from 0.048 to 0.853 vs. 0.00783 to 0.00807 mg/kg at Troup Creek. For lead, Site oysters contained mean body burdens that varied from 0.357 to 1.167 mg/kg vs. 0.333 to 0.523 mg/kg at Troup Creek.

There were no statistically significant differences in concentrations of mercury or Aroclor 1268 in young-of-year (Year 0) vs. older (Year I – II) oysters, as determined by parametric paired "t" tests of differences in mean values for all sampling stations. However, lead concentrations were significantly greater in young oysters. This difference in lead concentrations may be the result of "dilution" of lead levels in young oysters by an increase in body mass as they grow (Kennedy *et al.*, 1996). Consequently, the mass of lead in both age groups of oysters could well be similar.

In addition to the 2006 data discussed above, oyster data were collected in 1997 and 2007. The Table below compares the 2006 and 2007 data. The concentrations of mercury were greater in 2007 than 2006 which may be reflective of relatively higher mercury sediment concentrations at these stations in 2007. Aroclor 1268 levels were also higher in 2007 at the NOAA-3 and NOAA-5 stations. The long-term trend in oyster

COPCs levels and the effects of these elevated concentrations to the reproductive health of oysters are unknown.

Comparison of 2006 and 2007 Oyster data in LCP estuary								
		Age Mercury		cury	Aroclor 1268		Lead	
Station	Location	Class	2006	2007	2006	2007	2006	2007
NOAA 4/25	Main Ditch @ E. Creek junction	YOY	0.773	1.433	0.230	0.223	0.767	0.603
		Year I- II	1.013		0.167		0.580	0.005
NOAA 5	Main Ditch (near mouth)	YOY	0.390	1.067	0.223	0.213	0.647	
		Year I-						0.600
		П	0.520		0.183		0.450	
		YOY	2.367		0.853		1.167	
NOAA 3	E. Creek - mid reach	Year I-		2.433		1.400		1.167
		II	1.733		0.630		0.743	
NOAA		YOY	0.187		0.048		0.633	
10/28	Purvis Creek - near mouth	Year I-		0.350		0.254		0.523
		П	0.187		0.063		0.357	
Troup		YOY	0.089		0.008		0.523	
Creek	Reference area	Year I-		0.127		<0.193		0.637
2. 30 K		П	0.097		0.008		0.333	

YOY - Young of Year

4.2.3.3 Fiddler Crabs

Fiddler crabs (Uca *spp.*) from the Site were characterized by concentrations of total mercury that ranged from a mean 0.13 mg/kg dw in Purvis Creek to 0.95 in Domain 1 relative to 0.04 mg/kg at the reference location (Table 4-8a). Methylmercury averaged about 68 percent of concentration of total mercury (Appendix F).

Aroclor 1268 concentrations in fiddler crabs from the Site ranged from a mean of 0.61 mg/kg dw in Domain 4 to 2.86 mg/kg in the Main Canal vs. 0.22 mg/kg at the Troup Creek reference location. The highest concentration of 17 mg/kg was collected in 2004 at Station 5-NOAAG.

Lead concentrations in fiddler crabs from the Site ranged from a mean of 0.5 to 7.93 mg/kg (in Domain 1) compared to 0.71 mg/kg at the reference location. However, lead often was not detected in fiddler crabs. There was no discernable trend in COPCs body burdens in fiddler crabs over time in any area (Table 4-8b).

4.2.3.4 Blue Crabs

Blue crabs (*Callinectes sapidus*) from both north and south Purvis Creek were characterized by concentrations of total mercury with a mean of 1.59 mg/kg (dw) vs. 0.15 mg/kg at Troup Creek (Table 4-9a). Methylmercury constituted about 100 percent of concentration of total mercury (Appendix F). Table 4-9b shows that the total mercury concentrations from blue crabs in North Purvis Creek was virtually the same as crabs collected from South Purvis Creek.

Aroclor 1268 concentrations in blue crabs from Purvis Creek had a mean of 1.61 mg/kg compared to 0.13 mg/kg at the reference location.

Lead concentrations in blue crabs from Purvis Creek had a mean of 0.82 mg/kg vs. 0.73 mg/kg at the reference location. Lead often was not detected in blue crabs.

4.2.3.5 Mummichogs

Mummichogs (*Fundulidae heteroclitus*) from the Site were characterized by concentrations of total mercury that ranged from a mean 0.2 (Domain 4) to 0.87 mg/kg (dw) (Area A) vs. 0.09 mg/kg at the reference location (Table 4-10a). The maximum individual-sample mummichog concentration of 9.1 mg/kg occurred in Eastern Creek which contributed to the mean value of 0.87 mg/kg in Area A (Table 4-10a). Methylmercury constituted about 92 percent of concentration of total mercury (Appendix F).

Aroclor 1268 concentrations in mummichogs from the Site ranged from a mean of 1.01 to 6.06 mg/kg vs. 0.15 mg/kg at the reference location. The highest mean concentration of 6.06 mg/kg occurred for the Eastern Creek. A mean value of 4.28 mg/kg occurred in the Main Canal (Table 4-10a).

Lead concentrations in mummichogs from the Site ranged from a mean of 0.43 in Domain 4 to 2.41 mg/kg in Domain 3 vs. 0.87 mg/kg at the Troup Creek reference location (Table 4-10a). There were no discernable body burden differences between years for the three COPCs (Table 4-10b).

4.2.3.6 Large Finfish

Silver perch (*Bairdiella chrysoura*), red drum (*Sciaenops ocellatus*), black drum (*Pogonias cromis*), spotted seatrout (*Cynoscion nebulosus*), and striped mullet (*Mugil cephalus*) captured in Purvis Creek displayed mean whole body burdens of total mercury that were elevated in comparison to levels in Troup Creek reference fishes (Table 4-11a). Comparative mean values of total mercury (mg/kg dw) in fishes from Purvis Creek vs. reference fishes from Troup Creek and the Crescent River are provided below, along with the percentage of total mercury that occurred in the form of methylmercury:

	Site Mean		%
	(mg/kg dw)	Reference Areas	Methylmercury
Silver perch	1.6	0.16 - 0.29	100
Red drum	1.14	0.18 - 0.30	89
Black drum	0.84	0.05 - 0.11	91
Spotted seatrout	2.27	0.11 - 0.34	100
Striped mullet	0.23	0.02 - 0.05	37

See Appendix F for the calculation of percent methylmercury content.

The same basic differences described above for mercury in finfish from Purvis Creek compared to reference fishes occurred for Aroclor 1268. Comparative mean values of Aroclor 1268 in fishes from Purvis Creek vs. reference fishes were:

	Site Mean (mg/kg dw)	Reference Areas
Silver perch	5.67	0.02 - 0.19
Red drum	1.43	0.02 - 0.10
Black drum	5.51	0.02 - 0.10
Spotted seatrout	4.92	0.02 - 0.16
Striped mullet	13.2	0.02 - 0.18

There were no clearly discernable patterns in lead body burdens of finfish from Purvis Creek relative to reference fishes. Lead frequently was not detected in the fishes and therefore no meaningful statistics for lead are presented in Table 4-11a.

A review of yearly averages presented in Table 4-11b suggest no discernable increase or decrease in finfish COPCs body burdens.

4.3 Surface Water Toxicity Studies

Mysids and sheepshead minnows were evaluated for chronic toxicity of surface water.

4.3.1 Mysids

Mean survival of mysids (*Mysidopsis bahia*) exposed in the laboratory for seven days to surface water collected from four sampling stations at the Site and two reference locations (Table 4-12) ranged from 92.4 to 100 percent, which was greater than the minimum acceptable survival for control organisms (80%). Mean growth (weight) of mysids exposed to Site and reference waters was from 0.41 to 0.84 mg (dw), which was greater than weight of control organisms (0.48 mg).

4.3.2 Sheepshead Minnows

Mean survival of sheepshead minnows (*Cyprinodon variegatus*) exposed for seven days to surface water obtained from the same four above-described sampling stations at the Site and two reference locations (Table 4-13) ranged from 80 to 100 percent, which was greater than the minimum acceptable survival for control organisms (80%). Mean growth (weight) of fish exposed to Site water near the old oil-processing Site (Station C-33) was statistically different from the control and the Crescent River reference station. Although mean survival at this same station was 80%, two of the four replicates exhibited survival less than 80%.

4.4 Annual Sediment Toxicity Tests with Amphipods

This section provides an overview of the laboratory-based evaluation of sediment toxicity conducted with amphipods followed by a detailed description of the annual toxicity test results, relationships to sediment chemistry, and probable causes.

Amphipod toxicity tests with *Leptocheirus plumulosus* were conducted each year during 2000 – 2006, with the exception of 2001. Measurement endpoints were survival, growth (weight), and reproductive response (calculated as one-half of the number of juveniles produced in a replicate divided by the number of surviving adult females). These annual tests followed method EPA/600/R-01/020. In general, sediment was collected from several of the same stations each monitoring year and analyzed for COPCs, other

metals, and occasionally for other parameters such as TOC. The toxicity test reports are presented in Appendix C.

Table 4-14 summarizes the results of the annual sediment toxicity tests with *Leptocheirus plumulosus*. In 2000, the average control survival was only 71 percent which did not meet the test acceptability requirement of ≥ 80 percent. In 2002, reproductive response was statistically different than controls at all stations, including the reference areas. Five of the eight tests for the survival endpoint were also considered toxic.

The 2003 reproductive endpoint control did not meet the test acceptability requirement where there was no response in one of the control replicates. Survival and growth were statistically different than controls at all eight test stations. Survival at the Troup Creek reference area was also significantly different from the control (Table 4-14).

The amphipod toxicity test results from 2004 indicated that survival was the most sensitive endpoint and growth, the least sensitive. It is unclear why survival at the two reference stations were approximately 40 percent, their associated reproduction and growth did not suggest toxicity.

In 2005, the amphipod toxicity tests were expanded to 25 locations, plus the two reference stations (Table 4-14). The three test endpoints at both reference stations were significantly less than controls. Again, it is unclear what factors may contribute to the observed effect in these two areas. All test stations were toxic to the reproductive endpoint relative to the control (Table 4-14).

The 2006 annual toxicity test results indicate that the percent survival was better in this year than in the previous tears. This 2006 study is evaluated in more detail below than previous years because of its importance in the special set of studies to assess probable causes of sediment toxicity in the 2006 samples, and to detail the statistical protocols employed to interpret results of amphipod tests. An evaluation of potential exposure-response relationships from all years are quantified in Section 4.6.

4.4.1 Evaluation of 2006 Amphipod Toxicity Tests

This subsection evaluates the results of the survival, growth, and reproduction endpoints, and provides some overall conclusions from the 2006 tests.

Survival

Survival of amphipods (*Leptocheirus plumulosus*) exposed in 2006 to control sediment for the 28-day testing period (Table 4-15; Part A) averaged 95% (19 individuals / 20 individuals at start of test), which was greater than the 80% criterion for acceptability of test results. Survival of amphipods exposed to reference sediment collected from Crescent River and Troup Creek averaged, respectively, 88% and 72%. The Troup Creek sediment was statistically different from the control and the Crescent River.

Survival of amphipods exposed to surface sediment collected from 22 sampling stations at (or in the vicinity of) the Site was lowest at FS Areas 1 and 2. Survival at 15 of the 22 Site stations was statistically similar to survival at the Crescent River reference location. These 15 stations included four FS areas (Areas 3, 4, 5, and 6), the AB seep location, the station in the mouth of the Main Canal (C-5), one of two stations in the Eastern Creek (C-7; the mid-stretch station), the station in the mouth of the Western Creek Complex (C-15), all three stations in Purvis Creek (C-16, C-29, and C-36), station D in the northwest inlet of the Turtle River, and the three Blythe Island stations (C-103, C-104, and C-105).

Growth

Growth (mean weight) of amphipods employed in the test (at Day 0) was 0.140 mg (dw). Mean weight of control organisms at the end of the 28-day exposure period was 0.740 mg. The 60% lower confidence interval for the controls was 0.687 mg, and growth had occurred in all control replicates (Table 4-15; Part B) except in Area 2. Growth in the two reference stations was significantly different from the control. Those stations similar to the control that have both high survival and high average mass are Mouth of Main Canal (C-5), Eastern Creek Mid-stretch (C-7), Mouth of Western Creek complex (C-15), Blythe Island Northern Boundary (C-103), and FS Area 4. Amphipods from other stations that had growth greater than the reference stations could be explained by the relatively low survival at these stations, which may have resulted in greater resources for surviving organisms. Other areas that are similar to FS Area 2 (in terms of having both low survival

and low growth) are stations FS Area 1, Domain 4 Southeastern boundary (C-45), and marsh grid H7.

Reproduction

Reproductive response (mean response) of control amphipods at the end of the tests was 0.562 (Table 4-15; Part C; refer to Footnote "e" for definition of this unit of measurement); and the 60% lower confidence interval was 0.453. Four of the five replicates in the Troup Creek reference location did not show any reproductive response, which prevents reliable comparisons to Troup Creek data.

Cochran's Test (C) for homogeneity of variances of amphipod reproduction data indicated heteroscedasticity, and the nonparametric test subsequently performed on the data (Kruskal-Wallis Test) identified statistically significant differences among data. However, this test (and many other nonparametric tests) is incapable of identifying the specific sources (causes) of such "overall" differences. Consequently, the Site stations judged to have deleteriously impacted amphipod reproduction were those stations at which reproduction was substantially less than reproduction at the Crescent River reference location.

Use of the above-described criterion to determine reproductive success of amphipods identified deleterious impacts at the upstream station in the Eastern Creek (C-6), the mid-stretch station in Purvis Creek (C-29), the three stations in Domain 1 (the AB seep location and the two stations in the Marsh Grid; K7 and H7), the station at the southeastern boundary of Domain 4 (C-45), one of three stations at Blythe Island (C-103), and four FS areas (Areas 1, 2, 4, and 6). Conversely, five other stations were characterized by mean amphipod reproduction that was greater than reproduction observed at the Crescent River reference location.

2006 Amphipod Toxicity Test Conclusions

Based on a collective evaluation of three above-identified measurement endpoints, and largely governed by the reproduction endpoint, 12 of the 22 evaluated Site sediments affected amphipod reproduction in a harmful manner as being statistically different than the Crescent River reference. Ten (10) of these stations were located in areas where impacts from COPCs might be anticipated: upstream Eastern Creek (C-6), midstretch in Purvis Creek (C-29), the AB seep location, Stations K7 and H7 in the Marsh

Grid, the southeastern boundary of Domain 4 (C-45), and FS Areas 1, 2, 4, and 6. Alternatively, two of the 13 stations were located in an area where COPCs reproductive-related impacts might not be expected at Blythe Island (C-103 and C-104).

From the opposite perspective, seven of the 22 Site sediments that did not harm amphipods were from stations located in areas where COPCs reproductive-related impacts might be expected: the mouth of the Main Canal (C-5), mid-stretch of Eastern Creek (C-7), upstream and mouth of Purvis Creek (C-36 and C-16), an area near the old oil-processing Site in Domain 1 (C-33), and FS Areas 3 and 5.

4.4.2 Probable Causes of 2006 Amphipod Toxicity

Probable causes of toxicity of sediment to amphipods were evaluated by a detailed assessment of the above-presented survival data (as contrasted to statistical comparisons of Site sediments to reference sediments), a TIE conducted with a different cohort of amphipods exposed to subsamples of two (2) of the 22 samples of Site sediment employed in the above-discussed amphipod tests, and an equilibrium partitioning study of selected metals present in sediment samples employed in the above-discussed amphipod tests.

4.4.2.1 General Statistical Relationships between Amphipod Survival and Chemical Data

The role of COPCs in affecting survival of amphipods exposed to the above-identified 22 samples of sediment was evaluated with and without consideration of other metals or other factors present in sediment because of statistical reasons pertaining to variance inflation factors (VIFs).

Evaluation of Chemicals of Potential Concern and other Metals

Linear r^2 values for COPCs and various metals (also, silt/clay content) in surface sediment were compared to survival of amphipods (Table 4-16; Part A.3). The attempt to define a relationship between a chemical variable in sediment and the toxicological response of an organism by linear techniques can be problematic, in great part, because of differences in bioavailability of the chemical in sediment (e. g., Dillon, 2006a). Consequently, linear r^2 values may have more usefulness in suggesting the general "direction" of chemical-toxicological relationships (i.e., a positive or negative correlation between chemical concentration in sediment and toxicological response of organism) in

underlying "r" value. For cadmium, copper, and lead (Table 4-16), a negative statistical significant linear relationship is shown to exist. Cadmium is not considered a COPC (Section 3.4.1) and the elevated levels of copper and lead at FS-Areas 2 and 3 (relative to the other 20 samples) contributed to the statistical outcome (see Table 4-17).

Survival of amphipods (Table 4-16; Part A.4) could not be explained as a function of all 22 independent chemical variables considered collectively when evaluated by a parametric analysis of variance (ANOVA). Consequently, the associated squared multiple correlation coefficient (R²) is not statistically significant, despite its seemingly high value (Table 4-16; Part A.5)

Kruskal's test for index of importance (Table 4-16; Part A.6) evaluates the effect of each independent variable with the other variables held constant and does not address statistical significance. Although Kruskal's test also identified cadmium, copper, and lead as potential contributors to reduced amphipod survival, the concentrations of these chemicals were all lower than their respective threshold benchmarks except in FS Areas 2 and 3 (see Table 4-17).

Evaluation of Chemicals of Potential Concern Independent of Other Metals

This evaluation was performed, in addition to the above-presented evaluation, because results of multiple regression involving numerous independent variables can be substantially biased because of intercorrelations among the independent variables. This potential for bias is generally of concern if VIFs – which would bias unexplained (or error) variance on the high side, thereby decreasing the probability of detecting real effects on the dependent variable – are in excess of 100 (Snee, 1973). The largest VIF in the preceding assessment was an extremely high 14,330 (which occurred for cadmium and total PAHs), while all VIFs in the following evaluation were less than about 10.

In this evaluation, linear r^2 values for COPCs (i.e., total mercury, Aroclor 1268, lead, and total PAHs) in surface sediment vs. survival of amphipods are naturally the same as r^2 values presented in the preceding assessment, with only lead generating a statistically significant value (Table 4-16; Part B.3), which is due to the high lead concentrations in FS Areas 2 and 3.

Survival of amphipods is also tested as a function of concentrations of COPCs in the 22 sediment samples when evaluated by a parametric ANOVA (Table 4-16; Part B.4). However, only lead contributed to this statistical significance. The associated R², which pertains to "overall" explained variation, was also statistically significant (Table 4-16; Part B.5).

Kruskal's test for index of importance (Table 4-16; Part B.6) also identified lead as an important contributor to reduced amphipod survival in this 2006 study. Again, due to the high concentrations of lead in only two of the 24 samples (Table 4-17).

Table 4-17 shows the concentrations of the more important constituents that may contribute to the observed effect on survival and reproductive response of the amphipods. It appears that high sulfide content and TOC ameliorate the toxic effects at C-5, FS-Area 3, and at FS-Area 5. Low sulfide content, particularly at C-6, FS-Area 1, and FS-Area 6, appears to have contributed to the toxic responses. It is well known that sulfides tend to bind metals and can play a significant role in the bioavailability of metals (e.g., U.S. EPA, 2005). Higher levels of TOC are also well known to bind PAHs in sediments and limit their bioavailability (U.S. EPA, 2003).

Unfortunately, sulfide was not analyzed in most of the other sediment toxicity tests, including the AET tests described in Section 4.5, nor was sulfide included in the Kruskal's test for importance. Other factors potentially affecting the toxicity test results may include TOC, sediment pH, ammonia, grain size, bacteriological contamination, and algal toxins.

4.4.2.2 Toxicity Identification Evaluation and Pore Water Analysis

The TIE study was conducted with subsamples of two samples of surface sediment (sediment from Stations C-6 and C-7 in the Eastern Creek) that were characterized by relatively high concentrations of COPCs and, in one case (C-6), relatively high toxicity when chronically tested with amphipods (Table 4-15). However, when the two subsamples of sediment were tested for toxicity in acute (10-day tests) with amphipods (*Leptocheirus plumulosus*), they were essentially nontoxic (mean survival of organisms = 88.0 – 93.0% and mean reburial responses = 86.0–92.0%). Under these conditions (absence of toxicity of bulk sediment), TIEs are normally terminated.

However, in this TIE, pore water from the sediments was also analyzed for chemical characteristics. These analytical results were then compared to State of Georgia chronic water quality criteria (refer to following embedded table). The detected metals in pore water suggest a potential route of exposure to biota. Many other metals were not detected in pore water, suggesting that, except possibly at concentrations below their detection limits, they are bound to sediment and are biologically unavailable via pore water.

Concentration of chemicals in pore water of sediment					
	as compared to State of Georgia water quality criteria				
Chemical (µg/L)	Pore Water C-6 Bulk sediment characteristics (mg/kg dw) – total mercury: 9.9; Aroclor 1268: 26; lead: 35; total PAHs: 0.44; sulfide: 380	Pore Water C-7 Bulk sediment characteristics (mg/kg dw) – total mercury: 3.0; Aroclor 1268: 13; lead: 27; total PAHs: 0.49; sulfide: 367	Georgia Water Quality Criterion (μg/L)		
Total mercury	<0.20	<0.20	0.025 (for food-web) 0.94 * (excludes food- web uptake)		
Aroclor 1268	1.0	0.65	0.03 (total PCBs)		
Lead	<1.0	<1.0	8.1		
Total PAHs	0.175 (total for 7 detected PAHs) and <0.011 (for each of 17 nondetected PAHs)	<0.022 (for each of 24 PAHs)			
Aluminum	<250	<250			
Antimony	<2.5	2.8			
Arsenic (total)	19	14	36 (total As)		
Barium	31	<1.0			
Beryllium	<1.0	<1.0			
Cadmium	<1.0	<1.0	8.8		
Calcium	330,000	340,000			
Chromium	<1.0	<1.0	50 (Cr ⁺⁶)		
Cobalt	<1.0	<1.0			
Copper	4.2	4.0	3.1		
Iron	<100	<100			
Magnesium	1,000,000	1,000,000			
Manganese	9,000	12,000			
Nickel	<2.0	<2.0	8.2		
Potassium	270,000	300,000			
Selenium	<0.56	<0.56	71 (excludes food-web uptake)		

Concentration of chemicals in pore water of sediment as compared to State of Georgia water quality criteria				
	Pore Water C-6	Pore Water C-7		
Chemical (µg/L)	Bulk sediment characteristics (mg/kg dw) – total mercury: 9.9; Aroclor 1268: 26; lead: 35; total PAHs: 0.44; sulfide: 380	Bulk sediment characteristics (mg/kg dw) – total mercury: 3.0; Aroclor 1268: 13; lead: 27; total PAHs: 0.49; sulfide: 367	Georgia Water Quality Criterion (μg/L)	
Silver	<0.50	<0.50		
Sodium	8,200,000	8,300,000		
Thallium	<0.50	<0.50		
Vanadium	<020	<20		
Zinc	<20	90	81	

Note: Concentrations of most metals and associated water quality criteria pertain to dissolved metals.

These TIE results suggest that Aroclor 1268, copper, and zinc in pore water emanating from the two sediment samples may represent a potential hazard to benthic biota. Although this analysis suggests that pore water may contribute to chronic amphipod toxicity, data from these two samples (C-6 and C-7) is statistically insufficient to apply to the estuary. In addition, the actual magnitude or extent of pore water toxicity is unknown because no pore water toxicity tests were conducted.

4.4.2.3 Equilibrium Partitioning of Selected Metals

Protocols employed in the equilibrium partitioning study are presented, followed by results of the study and a discussion of the reliability of results.

Protocols

The equilibrium partitioning study addressed the collective relationships of six metals (cadmium, copper, lead, nickel, silver, and zinc) simultaneously extracted with weak hydrochloric acid from surface sediment (\sum SEM) and the acid volatile sulfide (AVS) content of the sediment. The study was performed with all samples of sediment tested for chronic toxicity to amphipods (Table 4-17), with the objective of providing an additional LOE, to be interpreted in the context of other studies, regarding potential contributors to sediment toxicity.

^{* -} EPA National recommended criterion.

One criterion for evaluating if the six metals collectively contributed to direct toxicity of amphipods (or any benthic biota) is based on the ratio of $\sum SEM$) / AVS. If this ratio ≤ 1 , it can generally be assumed that toxicity from these metals is unlikely to occur. However, if the ratio >1, the opposite conclusion can only tentatively be drawn since factors other than sulfide (e. g., organic materials, carbonates) can also bind these metals to sediment, causing them to be biologically unavailable.

Another criterion for assessing the toxicological potential of the six metals relates to the difference between Σ SEM and AVS. If Σ SEM is \leq 5 μ mol/g of AVS, the absence of direct toxicity is supported (Science Applications International Corp. (SAIC), 2003). A difference of > 5 μ mol/g allows only a tentative conclusion of toxicity for the reason stated above (SAIC, 2003). The rationale for use of this "difference" criterion is that the "ratio" method tends to misrepresent available concentrations of Σ SEM at low AVS levels (SAIC, 2003).

Results

Use of the "ratio" method (Table 4-18) suggests that the combination of the six metals in sediment from five stations - C-6, C-16, K7, H7, and FS Area 6 - were influenced by low sulfide content and were likely sufficiently bioavailable to contribute to the toxic responses to amphipods. Indeed, sediment from four of these five stations (all but C-16) was judged to be toxic in the chronic amphipod toxicity tests. (Table 4-15; Part C). At FS-Area 4, the concentration of Aroclor 1268 of 5.8 mg/kg was toxic in the presence of low TOC and low concentrations of mercury and lead (Table 4-17). Higher concentrations in Table 4-17 of Aroclor 1268 that were non-toxic (C-5 and FS-Area 5) appear to be associated by high sulfide content and TOC. Hence, a value of between 3 and 6 mg/kg is an initial professional judgment assumption for an effects range in Table 4-17. Similarly, for samples where mercury appears to be the source of toxicity, the range of mercury in toxic samples is 1.82 mg/kg at H-7, 2.03 mg/kg at FS Area 6, and 2.36 mg/kg at Station K-7. Stations having mercury above about 2 mg/kg that were non-toxic can be explained by the presence of high levels of sulfides, such as at stations FS Area 3 and FS Area 4, or C-7. Therefore, in absence of ameliorating factors, such as high TOC or sulfides, an initial effects range for mercury based only on this study would be about 2-5 mg/kg. Furthermore, the data in Table 4-18 is consistent with Table 4-17 in that toxicity should be interpreted in terms of sulfides, especially with the fact that lead was likely a cause for toxicity at FS-Area 2 but not at FS-Area 3.

Reliability of SSEM/AVS Approach

The following bullets list several factors that confound interpretation of the Σ SEM/AVS approach for identifying causes of sediment toxicity:

- The approach collectively addresses just the six above-identified metals, as recommended by the U. S. EPA (2005). However, other studies (e. g., Patton and Crecelius, 2001) have additionally included mercury in the evaluation and numerous references are made in the scientific literature to "divalent metals." If additional metals can justifiability be included as ∑SEMs, there is an increased probability of identifying toxicity.
- The approach considers only AVS as an agent capable of binding metals to sediment, thereby increasing the probability of identifying overall toxicity.
- The ∑SEM/AVS approach does not account for antagonistic, additive, or synergistic effects of other sediment contaminants acting in combination with the metal mixtures.
- The approach is based on a theory that toxicity of metals to benthos is controlled primarily by concentrations of metals in pore water of sediment, as contrasted to an empirical approach in which benthos are exposed to contaminants in whole sediment, thereby accounting for all direct routes of contaminant exposure.
- The ∑SEM/AVS approach is "calibrated" on results of acute toxicity tests with benthos. Consequently, there is an uncertain relationship regarding the chronic amphipod toxicity tests conducted during this investigation, which often identified sediment toxicity.

4.5 2006 Amphipod Apparent Effects Threshold Study

Protocols employed in the site-specific AET study are presented, followed by results of the study, a discussion of the reliability of the results, and an assessment of the relative contribution of evaluated chemicals to sediment toxicity.

4.5.1 Protocols

This specific study conducted in 2006 was based on chronic (28-day) toxicity tests derived for amphipods (*Leptocheirus plumulosus*) exposed to a total of 150 samples of surface sediment collected from three areas of the LCP Site – the Main Canal, Eastern

Creek, and Western Creek Complex. These 150 sediment samples were analyzed for concentrations of COPCs and, as recommended by Region 4 of the EPA (Thoms, 2006b), the ∑SEM/AVS metals (cadmium, copper, lead, nickel, and zinc). This separate amphipod toxicity study followed the same EPA method mentioned in Section 4.4 above except that only one replicate (one set of 20 organisms) was used instead of five replicates as used in the other annual studies.

The AET protocol provides one measurement endpoint that identifies the sediment concentration above which a particular adverse biological effect (e.g., survival rate, embryo development rate) is always toxic relative to appropriate reference conditions (Cubbage, et. al, 1997). To determine if toxicological responses of amphipods were statistically significant, the responses of amphipods exposed to Site sediment were compared to responses of control organisms. Control organisms, which were evaluated with 10 replicates of 20 organisms each, generated the following statistics: (1) mean survival = 97.5% with a lower limit of the 60% confidence interval (CI) at 96.4%; (2) mean growth (i.e. weight) = 0.444 mg (dw) with a lower 60% CI of 0.418 mg; and (3) mean reproductive response (i.e., one half the number of observed juveniles ÷ number of females) = 1.836 with a lower 60% CI of 1.55.

Values for growth and reproduction of amphipods exposed to each sample of Site sediment were compared to the lower limit of the 60% CI for the mean values for control sediment, after correction for the random component associated with single values (Steel and Torrie, 1980), to determine if statistically significant toxicity characterized Site sediment. A 60% CI was selected for use because it encompassed the majority (~2/3 or 1 standard error) of control data and was a more conservative approach for determining AETs than would be the case if, for example, a 95 or 99% CI were employed (i.e., a fewer number of toxic sediment samples would have been identified with use of the wider CIs). The lower limit of the 60% CI for survival of amphipods exposed to control sediment was unusually high (93.6%). Consequently, survival of organisms exposed to Site sediment was considered poor if it was ≤85%.

4.5.2 Results

The 2006 site-specific AETs derived for COPCs in sediment are 19 mg/kg (dw) for total mercury, 28 mg/kg for Aroclor 1268, 37 mg/kg for lead, and 2.534 mg/kg for total PAHs (Table 4-19a).

Sediment AETs derived for the other analyzed metals are (concentrations in sediment): 0.295 mg/kg (dw) for cadmium, 18.4 mg/kg for copper, 22.1 mg/kg for nickel, 0.272 mg/kg for silver, and 90.5 mg/kg for zinc (Table 4-19b).

4.5.3 Reliability of Results

The AET approach for specifying concentrations of chemicals in sediment at which toxicological effects on benthos are identified is an empirically based approach in that it accounts for all direct routes of contaminant exposure by benthos. Additional advantages of the AET approach are (Jones *et al.*, 1997):

- all types of chemicals and biological effects can be evaluated;
- · combined effects of all chemicals are considered;
- non-contradictory evidence of biological effects is generated because toxic effects always occur above the AET; and
- the potential for toxicological hazard is evaluated on a site-specific basis.

Disadvantages to the AET approach are (Jones et al., 1997):

- likely to be under-protective when biological effects occur at chemical concentrations below the AET.
- the inability to isolate single chemical effects from combined chemical effects;
- the need for a large data base (sample size); and
- the site-specific characteristics.

This study was predicated upon a relatively large data base (150 samples of sediment) and intended to be site-specific in character. Accordingly, isolation of effects associated with a single chemical, acting in the absence of other chemicals, was not an objective.

A review of Table 4-19a indicates that for each COPCs, over 80 percent of the samples less than their respective AETs for reproduction and survival were toxic. This suggests that other chemical and physical factors in the sediment such as other chemicals, sulfide content, TOC, grain size, sediment pH, and sediment oxidization-reduction potential, may be affecting bioavailability and contributing to toxic expression. The 150 AET samples were not analyzed for sulfides, TOC, or grain size.

The AET results do not provide a reliable means to assess the numerous toxic responses below the AET levels. Given the high number of toxicity tests performed, it would be expected that an exposure-response relationship (sediment concentration related to the measured toxic effect) could be obtained for at least one of the COPCs. This is explored in the next section.

4.6 Sediment Effect Concentrations for Amphipods

In this section, all available amphipod (*Leptocheirus plumulosus*) toxicity test results are evaluated relative to the concentrations of COPCs in the sediment, in an effort to obtain exposure-response relationships and to derive SECs, in addition to the 2006 AET study described in the previous section.

The test results were used to develop several SECs for prediction of toxicity to the amphipod. These SECs consist of the following:

- Effects Range-Low (ER-L): 10th percentile of the sediment concentration distribution for the effects data (Long and Morgan, 1990).
- Effects Range-Median (ER-M): Median of the sediment concentration distribution for the effects data (Long and Morgan, 1990).
- Threshold Effect Level (TEL): The geometric mean of the 15th percentile of the concentration distribution for the no-effects data (MacDonald et al., 1996).
- Probable Effects Level (PEL): Geometric mean of the ER-M and the 85th percentile of the concentration distribution for the no-effects data (MacDonald et al., 1996).
- Apparent Effects Threshold (AET): The sediment concentration above which a
 particular adverse biological effect (e.g., survival rate, embryo development rate)
 is always toxic relative to appropriate reference conditions (Cubbage, et. al,
 1997).

The effects data set for each COPC is defined as those stations at which the biological effect is observed (statistically different from controls) and the associated COPCs concentration is greater than or equal to twice the mean concentration of the no-effect stations. It is desirable for both the effects and no-effects distributions to include at least 20 data entries (MacDonald et al., 1996).

A major distinction between the various SECs is the manner in which effects and noeffects data are used. As shown by the definitions above, the ER-L and ER-M values are based only on the effects data set; whereas, the TEL and PEL values are based on both the effects and no-effects data. The AETs are based only on the no-effects data.

The ER-L and TEL represent a lower level below which adverse effects are not expected.

The ER-M and PEL represent levels above which effects are likely to occur, and the AET represents the threshold where adverse effects would always be expected.

All of the amphipod toxicity test endpoint results (i.e., survival, reproductive response, and growth weight) were paired with the COPCs concentrations in the test sediment samples. Table 4-14 shows the results of the amphipod toxicity tests and they indicate that 85 percent of the sediment samples were toxic to the reproductive endpoint and that amphipod growth was least sensitive with 55 percent of the samples considered toxic. Next, the data were sorted by those samples that were considered toxic (significantly different from the controls at p=0.05). Then, the effects data sets were then generated and the SECs calculated per their definitions above. Appendix D provides the calculation of SECs for each COPCs for each effect endpoint.

In order to assess the accuracy with which the various sets of SECs predict the presence or absence of toxic effects to amphipods, the following performance criteria were also calculated:

- False Positives (Type I Error): The percentage of stations predicted to have effects (based on exceedance of a SEC) that actually had no observed effects.
- False Negatives (Type II Error): The percentage of stations predicted to have no effects (based on exceedance of a SEC) that actually had observed effects.
- Overall Accuracy: The percentage of all samples that were correctly predicted to have effects or not to have effects based on the SEC.

The SEC calculations in Appendix D also provide the associated error types and accuracies.

The SECs for each endpoint are summarized in Table 4-20 and Appendix D provides the detail. A reliability rank was calculated to adjust for the accuracy based on a few samples in the effects data set relative to numerous samples in the effects data set. The higher the rank, the more reliable the results are. Based on the SEC concentrations and reliability rank, the data in Table 4-20 indicate that the survival endpoint is more sensitive than the reproductive response endpoint.

Organic carbon normalized SECs for Aroclor 1268 and PAHs demonstrated low reliability relative to total Aroclor 1268 and total PAHs, in large part due to the lower number of samples in the effects data set. The reliability of the lead SECs is also low due to the low number of samples in the effects data set (\leq 10 samples out of 240).

It can be concluded that no one of the SEC methodologies accurately describes or predicts threshold concentrations of toxicity in the sediments. The data further confirms that various factors may be influencing the tests such as multiple contaminant effects, redox conditions, sulfides, TOC, sediment pH, grain size, pathogens in the test chambers, lack of replicates in some samples, or other chemical and physical factors.

Figures 4-5 and 4-6 show the exposure-response relationship for reproductive responses of amphipod exposure to total mercury and Aroclor 1268, respectively. The figures also show their respective TELs for the reproductive endpoint (4.9 mg/kg for total mercury and 6.5 mg/kg for Aroclor 1268). The TELs were selected for comparative purposes based on their relatively greater accuracies. Due to the highly variable toxic responses, the approximate sediment concentration where 20 percent of the samples are toxic (excluding toxic reference samples) is also shown. For example, the concentration of mercury that results in 20 percent of the samples being toxic is approximately 1.5 mg/kg, which is substantially lower than the TEL.

Based on the exposure-response relationships and the relatively poor SEC accuracies, the ability to predict sediment concentrations that result in adverse effects to *Leptocheirus plumulosus* is highly limited. It appears that the levels of mercury and Aroclor 1268 are likely major contributors to amphipod toxicity (refer to Table 4-3b), particularly in Domain 1, Eastern Creek, and the Main Canal. Lead and total PAHs also contribute to toxicity; however, their predictability is much less than mercury and Aroclor 1268.

4.7 Grass Shrimp Toxicity

4.7.1 Toxicity to Laboratory Cultured Grass Shrimp

The two month chronic test to the grass shrimp (*Palaemonetes pugio*) was based on the protocols outlined in Lee et al., (2000) using three replicates for each sediment station. Measurement endpoints included embryo development rate, embryo hatching rate, ovary maturation rate, survival, and DNA strand damage in embryos. In general, sediment was collected from several of the same stations each monitoring year (2000, 2002, 2003, 2004, 2005). Toxicity test reports from all the years are presented in Appendix C.

Table 4-21 shows the results of the tests. The data indicate that toxic effects to reproductive and survival endpoints ranged from 26 to 69 percent of all tests. Embryo hatching was least sensitive with 26 percent of the samples considered toxic. The embryo development rate endpoint was most sensitive.

Based on the SEC concentrations and reliability rank, the data in Table 4-22 indicate that the embryo development endpoint is more sensitive and reliable than the other endpoints.

Organic carbon normalized SECs for Aroclor 1268 and PAHs demonstrated comparable reliability relative to total Aroclor 1268 and total PAHs. The reliability of the lead SECs is very low due to only one sample in the effects data set (out of 77 samples).

The data indicate that overall reliability of the tests is low. Similar to the amphipod tests, this also suggests a variety of factors may be influencing the grass shrimp tests such as multiple contaminant effects, other stressors such as pathogens in the test chambers, redox conditions, sulfides, TOC, grain size, or other chemical and physical factors.

The mercury and Aroclor 1268 SECs for grass shrimp are slightly lower than for amphipods, suggesting that grass shrimp are more sensitive to these COPCs levels in the sediment.

To visualize the potential exposure-response relationship for grass shrimp, the reproductive endpoint results for embryo development rates are compared to the concentrations of mercury and Aroclor 1268 in the sediment and presented in Figures 4-7 and 4-8, respectively. These figures also show their respective TELs for embryo development rate: 1.4 mg/kg for total mercury and 3.2 mg/kg for Aroclor 1268, and the approximate sediment concentration where 20 percent of the samples are toxic (excluding toxic reference samples). No discernable exposure-response relationships for these two COPCs were obtained. Exposure-response relationships for the other COPCs (total PAHs and lead) have similar distributions with even less reliability. Therefore, the power to predict sediment concentrations that result in adverse effects to grass shrimp is highly limited.

Table 4-23 compares the concentrations of the primary COPCs to the embryo development endpoint. The data indicate that mercury and Aroclor 1268 likely contribute to most of the effects, although there were several stations that displayed toxic effects but did not have elevated concentrations of COPCs. For example, embryo development toxicity was observed in reference tests: at Troup Creek in 2000 and 2005; and at the Crescent River station in 2003. This again suggests other stress factors or variables associated with the tests contributed to the observed effects.

4.7.2 Toxicity to Field-Collected Indigenous Grass Shrimp

The same chronic toxicity tests were conducted on grass shrimp (*Palaemonetes pugio*) indigenous to the LCP estuary and Blythe Island during 2002 – 2007 (Table 4-24), except using only two measurement endpoints – hatching success of embryos of adult female shrimp, and DNA strand damage of the embryos. Throughout this 2002-2007 time period, the only cases in which these measurement endpoints deviated statistically (and adversely) from reference conditions (Skidaway River sediment) were in the Main Canal, the bank of the Main Canal, and the Eastern Creek.

In 2006, concentrations of COPCs in surface sediment and adult shrimp were measured (Table 4-24), thereby permitting identification of BAFs and, also, relationships between body burdens of COPCs in shrimp and associated biological responses. For total mercury, a logarithmic r^2 of 0.5955 for sediment and shrimp levels was associated with a mean BAF of x0.11.

In the case of Aroclor 1268, an r² of 0.3584 for sediment and shrimp levels was related to a mean BAF of x0.050. Lead generated an r² of 0.346 for sediment and shrimp levels and a mean BAF of x0.0075.

4.8 **Comparison of SECs to Literature-Based Effect Levels**

The embedded table below compares the site-specific SECs for reproductive responses to literature-based effect levels. Except for mercury and Aroclor 1268, the SECs appear reasonable when compared to the other toxicological benchmarks. However, the mercury and Aroclor 1268 TEL/PEL range is comparable to the Dillon (2006a) benchmarks which were threshold concentrations identified from "scatterplots" developed for the amphipod and grass shrimp bioassays conducted between 2000 and 2004. Thus, the values are more analogous to TELs than to PELs. The mercury and Aroclor EEVs and screening quick reference table ("SQuiRT") benchmarks include potential food chain effects to consumers of benthic organisms. Although the literature-based Aroclor benchmarks are primarily based on studies with Aroclor 1254, invertebrates generally do not possess the Ah receptor that would otherwise tend to influence greater toxicity of Aroclor 1254 relative to Aroclor 1268 as observed in many vertebrates.

Toxicological benchmarks derived for benthos exposed to chemicals of potential concern (COPCs in Sediment								
(mg/kg, dw)								
	Generio	Benchmarks	Site-Specific Benchmarks					
COPCs	EEVs (Region 4, EPA)	NOAA "SQuiRT" TEL / PEL Marine Values	"Scatterplot" Interpretation (Dillon, 2006a; n = 22)	Amphipod SECs ^a TEL / PEL	Grass Shrimp SECs ^b TEL / PEL			
Total mercury	0.13	0.13 / 0.696	~1-5	4.2 / 15.4	1.4 – 4.8			
Aroclor 1268	0.022 (based on other PCBs)	based on 0.022 / 0.189 (for other PCBs)		6.2 / 20.3	3.2 - 12.8			
Lead	30.2	30.2 / 112	~ 40 - 50	41 / 88	139 – 189			
Total PAHs	1.684	1.684 / 16.77	~1-2	0.8 / 2.1	1.6 – 4.8			
Note: TEL = Threshold Effect Level; PEL = Probable Effect Level; EEV = Ecological Effects Value; SECs = sediment								

Effect Concentrations

b - based on most sensitive endpoint (embryo development) a – based on most sensitive endpoint (survival)

For total PAHs, the TEL/PEL SECs are not substantially different from the other generic and the Dillon benchmarks. The amphipod SEC for lead is comparable to the literature effect benchmarks. The grass shrimp SEC for lead had poor reliability due to the very low number of effects data used to calculate the lead SEC.

It is noteworthy that SECs could not be calculated for any of the five ∑SEM/AVS metals (cadmium, copper, nickel, silver, and zinc) due to the lack of a defined effects data set. This suggests that these particular metals do not significantly affect overall sediment toxicity in the estuary, but may occasionally contribute to localized effects.

Another alternative look to see if other metals may have substantially contributed to amphipod toxicity in the 2006 tests is presented in Appendix I, Table 1, where various sediment metal concentrations are presented along with their respective effect concentrations. In this analysis, cadmium, silver, and zinc are not considered to contribute any risk; whereas, lead, nickel, and copper appear to contribute some risks but none of their concentrations were above their respective literature-based PELs. Most of the risk appears to be driven by mercury and Aroclor 1268 (Appendix I, Table 1). Therefore, the site-specific SEC approach indicates that the major COPCs are likely the cause of sediment toxicity; whereas,, the other metals, appear to play a limited role in causing direct toxicity to benthos.

4.9 Characteristics of Benthic Macroinvertebrate Community

Community characteristics of macrobenthos are described, followed by a preliminary evaluation of abundance of fiddler crabs in the LCP estuary. The above-presented evaluation of grass shrimp is also a measurement of the impact of COPCs on the benthic macroinvertebrate community.

4.9.1 Community Characteristics

This study of the benthic invertebrate community was based on a one-time sampling of macrobenthos in surface sediment (0 - $^{\sim}15$ cm in depth) at four stations at the Site and at two reference locations (Crescent River and Troup Creek) in 2000. Three replicate samples were collected at each station. Table 4-25 summarizes the data. There was wide variation in the substrate type (from <10% to 90% silt and clay) and for TOC content (from 0.33% to 6.5%) across the six stations. This alone likely affects the taxonomic composition between stations. There also was considerable variation in the

density of organisms in the replicate samples as evidenced by the large mean standard deviation for diversity.

Potentially negative major differences in the macrobenthos community between Site and reference areas (Table 4-25) were a lesser number of taxa, individuals, and density of individuals at two of the four Site stations (C-5 and C-33). Polychaetes were the dominant group at all sites; however, oligochaetes were substantially less in the reference samples compared to Site samples. Given the relatively high variability of substrate type, TOC, and density among replicates, it cannot be ascertained if any "shifts" in the benthic community between stations have actually occurred from this one study.

Since benthic community data were not collected during the long-term monitoring program (2002 – 2007), any potential contaminant-related effects are unknown.

Other studies that assessed potential impacts to the LCP estuary included Wall et al., (2001) that evaluated the health of cordgrass microbes (fungal biomass) and grass shrimp; and the Newell et al., (2000) study that assessed the relationship between fungal biomass and contaminants in the LCP estuary. These are briefly described in Appendix J

4.9.2 Fiddler Crab Abundance

This section provides some background of the crab abundance preliminary study, protocols used, and the results.

Background

The objective of this study was to determine if the numerous fiddler crabs (*U.* spp.) observed to inhabit the M-AB seep location (Figure 3-5) were present in numbers that might be expected to occur in a relative pristine marsh despite being characterized by the highest mean body burdens of total mercury (1.00 mg/kg dw), Aroclor 1268 (2.54 mg/kg), and lead (8.78 mg/kg) observed in biota indigenous to the LCP Site (Table 4-8b).

The pristine marsh constituting the baseline for this study was the Duplin Estuary Marsh, located on Sapelo Island, Georgia. Populations of fiddler crabs (mud fiddlers, *Uca pugnax*) in that marsh were estimated for several types of habitats (Wolf *et al.*, 1975).

The greatest mean number of crabs, 196 individuals / m² of substrate, was reported in a habitat characterized by medium-sized *Spartina* (0.5 -1.49 m in height), while 176 and 94 individuals / m² were observed, respectively, in short *Spartina* (<0.5 m tall) and on essentially barren substrate (absence of vegetation). The habitat at the M-AB seep location was a combination of short *Spartina* and barren substrate.

Protocols

At the M-AB seep location, fiddler crabs were collected and counted as described below. A 1-m² sampling frame with high sides constructed of metal was inserted several centimeters into the marsh to prevent crabs from escaping during and between sampling efforts. It was initially intended to excavate sediment within the sampling frame down to 1 m in depth, as was done in the Sapelo Island investigation. However, this plan was modified when a tough webbed plastic membrane (installed during removal activities at the Site) was encountered about 40 cm below the marsh surface and when it became apparent that numerous crabs could be collected by excavating just part of the upper 30 cm of sediment or by capturing them as they emerged at the surface of the marsh.

Results

Two hundred (200) fiddler crabs, ranging in size from about 2 to 20 millimeters (mm) in carapace width, were ultimately collected from the sampling frame, at which time the study was terminated. This number of crabs is marginally greater than the maximum number of crabs (196 individuals) encountered during the Sapelo Island investigation, and many more crabs are likely to have been collected if a complete 1 m² of marsh sediment had been sampled. This large number of fiddler crabs, which consisted of about 75% small (young) crabs, indicates that the AB seep location may be characterized by a normal standing crop of crabs. However, the webbed plastic membrane encountered at the sampling station may have affected fiddler crab exposure to contaminated sediment and/or surface water. Uncertainties of this preliminary study were:

• the study did not address the ability of these particular crabs to reproduce;

- the use of only a single sampling location (although it was situated in the center of the area where fiddler crabs generally displayed the highest body burdens of COPCs);
- the comparison of standing crops of several species of fiddler crabs in this study (mostly sand fiddlers, *Uca pugilator*) to the single species (mud fiddlers, *Uca pugnax*) in a study of the Duplin Estuary Marsh, Georgia by Wolf *et al.* (1975); and,
- the lack of co-located surface water and sediment chemistry to assess potential exposures.

4.10 Development of Hazard Quotients for Finfish

Hazard quotients (HQs) for upper trophic-level finfish based on modeling studies are initially presented, followed by HQs for field-collected finfish.

4.10.1 Modeling Studies

Methylmercury Model

To model higher trophic level finfish exposure to methylmercury, the bioaccumulation model developed by Evans and Engel (1994) for the red drum was modified for use in this BERA. Details of this model and input parameters are provided in Appendix H - Finfish Worksheet. The results of the model are provided in Table 4-28. The mean LOAEL-based HQ was 2.9, indicating a potential for aquatic hazard (Table 4-28). The estimated environmental exposure (EEE) generating this HQ was 0.87 mg/kg ww of methylmercury (3.48 mg/kg dw) in whole bodies of red drum. Service loss for red drum and other finfish associated with this level of mercury residue has been estimated to be 20% (Dillon, 2006b).

The mean LOAEL-based methylmercury HQ for red drum from the Troup Creek reference location was 0.4. Since this value was ≤ than unity (1), both the suitability of Troup Creek for reference purposes and ability to discriminate between reference and "treatment" conditions was documented.

Aroclor 1268 Model

To model higher trophic level finfish exposure to Aroclor 1268, the bioaccumulation model developed by Gobas (1993) for Great Lake salmonids was modified for use in this BERA. Details of the model and the input parameters are described in Appendix H –

Finfish Worksheet. Three variations of the model are provided to account for different assumptions in the estimation of certain input parameters. Results of the three variations of the Aroclor 1268 bioaccumulation model are provided in Table 4-28. Approaches 1 and 2 generated similar mean NOAEL-based HQs of 2.3 and 2.1, respectively for finfish exposed to Aroclor 1268 in the LCP estuary, (both of which have been related to a service loss of 10% (Dillon, 2006b). Approach 3 resulted in HQs about twice as high (NOAEL HQs approximately 5) as the other two approaches (Table 4-28). The associated mean EEE for Approach 3 was 1.767 mg/kg ww (7.07 mg/kg dw).

4.10.2 Field-Collected Finfish

Finfish captured in Purvis Creek and analyzed for body burdens of mercury and Aroclor 1268 (Tables 4-11a,b) were assessed for potential hazards (Table 4-29). In this assessment, mean and 95UCL LOAEL-based HQs for exposure to methylmercury in the LCP estuary exceeded unity (1) in the case of the silver perch (*Bairdiella chrysoura*) and spotted seatrout (*Cynoscion nebulosus*). These HQs ranged from 1.33 to 2.21 (Table 4-29).

For Aroclor 1268 in field-collected finfish, 95UCL LOAEL-based HQs greater than unity occurred for the silver perch (1.36); black drum, *Pogonias cromis* (1.24); spotted seatrout (1.14); and striped mullet, *Mugil cephalus* (4.04). Mean HQs for these finfish were slightly lower.

None of the above-indicated cases of potential hazard were confounded by hazard also being identified at reference locations. The use of a NOAEL TRV derived for other Aroclors to represent the toxicity of Aroclor 1268 is a source of uncertainty that may over-predict the hazard. The TRVs for finfish were derived from a conservative growth endpoint for Aroclor 1268.

4.10.3 Comparison of Modeled Finfish with Field-Collected Finfish

The relationships between mean EEEs generated by the bioaccumulation models relative to the field-collected tissue residues are presented in the following embedded table, and the following points emerge from the information presented in the data table:

Modeled Estimated Environmental Exposure (EEE) generated by the bioaccumulation models for higher trophic level fish compared to residues observed in 5 species of fish collected in the LCP estuary and Troup Creek reference location

COPCs	Location	Mean Modeled EEE ^a mg/kg dw	Mean Residues in Field-Collected Finfish (mg/kg dw) (Table 4-29)				
COPCS			Spotted	Silver	Red	Black	Striped
			Seatrout	Perch	Drum	Drum	Mullet
Methylmercury	Troup Creek	0.44	0.34	0.20	0.10	0.10	0.02
	LCP estuary	3.48	2.27	1.60	1.01	0.76	0.09
A 1268	Troup Creek	0.31 - 0.34	0.16	0.19	0.10	0.10	0.18
	LCP estuary	2.86 - 7.07	4.92	5.67	1.43	5.51	13.2

a - From Table 4-28 originally modeled in wet weight and converted to dry weight assuming 75% fish moisture content.

- Predicted or modeled tissue concentrations are not too different from residues observed in most field-collected finfish with the mercury model over-predicting by a modest amount.
- Both the mercury and the PCB models over-predict residues in fish from the reference area. This is probably driven by the preponderance of analytical results frequently below detection limits from that location.
- Both the mercury and the PCB models appear better at predicting concentrations in seatrout.
- The mercury and PCB models grossly over- and under-predict, respectively, residues in field-collected striped mullet. It appears these models, which were designed for higher trophic level fish, are not appropriate for estimating mullet bioaccumulation.
- About twice as high Aroclor 1268 tissue concentration is predicted when Approach 3 is used relative to Approaches 1 or 2. This appears to be the related to estimates of aqueous dissolved PCB concentrations.

The finfish collected from Purvis Creek during the field study did not exhibit gross abnormalities, and fish kills have not been reported in the LCP estuary during many years of intensive interest and monitoring at the LCP Site. However, based on the HQs, reproductive impairment appears to be occurring in the LCP estuary, but the actual extent of such impairment is unknown.

4.11 Development of Hazard Quotients for Wildlife

HQs based on food-web exposure models were developed for seven representative species of wildlife – diamondback terrapin (*Malaclemys terrapin*), red-winged blackbird (*Agelaius phoeniceus*), clapper rail (*Rallus longirostris*), green heron (*Butorides striatus*), marsh rabbit (*Sylvilagus palustris*), raccoon (*Procyon lotor*), and river otter (*Lontra canadensis*) – that might frequent the LCP Site.

The basic equation used to calculate HQs (employed most directly for wildlife) was:

$$HQ = {[(CF1 \times P1) + (... \times ...) + (CF4 \times P4)] [FIR] + [CS] [SIR] + [CW] [WIR]} {AUF} {TUF} / BW$$

TRV

with CF1, ..., CF4 = concentrations of COPCs in various food items of wildlife (mg/kg, dw); P1, ..., P4 = percentage of each food item in diet of wildlife (total for all food items = 100%); FIR = food ingestion rate (kg dw/day); CS = concentration of COPCs in sediment (mg/kg, dw); SIR = sediment ingestion rate (kg dw/day); CW = concentration of COPCs in water (mg/L); WIR = water ingestion rate (L/day); AUF = area-use factor; TUF = time-use factor; BW = body weight of wildlife (kg ww); and TRV = toxicity reference value (mg/kg BW/day).

Exposure assumptions on which food-web models are based are presented in Table 4-26, and TRVs are presented in Table 4-27. Life histories of selected species employed as food items in modeling studies are reviewed in Appendix E, and life histories of red drum and wildlife are contained in Appendix G. Work sheets employed in the modeling efforts are presented in Appendix H. COPCs exposure concentrations for each area were based on the mean and 95UCL concentrations presented in the a-series tables described in Section 4.2.

All HQs for diamondback terrapins exposed to three COPCs (methylmercury, Aroclor 1268, and lead) at various parts of the LCP Site were substantially less than unity in all cases, denoting the absence of potential risk (Table 4-30). Although the terrapins had some of the highest levels in COPCs in liver tissue samples, this did not translate to any apparent reproductive effects.

Birds (red-winged blackbirds, clapper rails, and green herons) exposed to COPCs at the Site exhibited a basic similarity, in that none generated HQs for inorganic mercury, Aroclor 1268, or lead that indicated a potential for risk. For methylmercury, red-winged blackbirds were characterized by one Site NOAEL and LOAEL HQs of 1.0 and 0.33, respectively in the Domain 1 exposure area. For clapper rails modeled for exposure to methylmercury, Site NOAEL HQs (1.74 - 2.96) could be discriminated from the associated reference HQ (0.16). LOAEL HQs for the clapper rail were all less than 1. All Site NOAEL HQs generated by the green heron modeled for exposure to methylmercury were in excess of 1 (1.39 - 10.6) being most clearly distinguishable from reference HQ (0.61). Comparative LOAEL HQs for green herons modeled for methylmercury exposure at the Site and reference area ranged from 0.46 at Blythe Island to 3.53 in the Eastern Creek area (Table 4-30).

In the case of mammals, potential risk occurred for marsh rabbits exposed to Aroclor 1268 in Area A (inclusive of Domain 1, Main Canal, and Eastern Creek) with a NOAEL HQ of 3.31. All of the LOAEL HQs for the marsh rabbit were less than 1. Similarly, LOAEL HQs for raccoons were less than 1 and the NOAEL HQ in Area A was 3.53. For the river otters, none of the COPCs exceeded a HQ of 1, suggesting no risk in specific areas. This is primarily due to the large area use factor for the otters of 729 acres as a feeding range. The highest NOAEL HQ for Aroclor 1268 was 3.94 in Domain 4. These HQs were also based on Aroclor 1254, which is considered more toxic to mammals than Aroclor 1268 (Section 6.2.1 of this document).

The wildlife species most sensitive to Aroclor 1268 was the river otter (*Lontra canadensis*). The species judged to be most sensitive to mercury was the green heron (*Butorides striatus*). The green heron was also considered the most sensitive to lead, particularly in Domain 3; however the maximum lead HQ was 0.95.

Food-web modeling and associated HQs for wildlife can vary dramatically as a function of:

- Assumptions used to estimate environmental exposure to chemicals (e. g., Table 4-26);
- Aggregation of data to represent exposure concentrations of chemicals in environmental media (i.e., food items, sediment, and water); and
- Selection of TRVs (e. g., Table 4-27).

Probably the greatest level of uncertainty in the modeling study for mammals is the TRV that is based on Aroclor 1254. This Aroclor is generally accepted to be more toxic to mammals through the Ah receptor pathway than Aroclor 1268 (Section 6.2.1). However, it is unknown what the level of non-Ah toxic effects from Aroclor 1268 may be.

5.0 RISK CHARACTERIZATION

This risk estimation for the LCP estuary addresses each of the eight previously identified assessment endpoints by a "strength-of-evidence" approach, in which different measurement endpoints or lines of evidence may be accorded different levels of ecological significance depending on the types and quality of the data. The importance of different measurement endpoints is judged to be least in the case of generic, laboratory-based and/or theoretical studies and greatest for site-specific, empirical studies.

This risk characterization is based solely on studies conducted for the LCP estuary by Honeywell during 2000 - 2007 and reported in Section 4 of this document. Studies of the LCP estuary conducted by other investigators are reviewed in Appendix J of this document since they contribute substantially to a full and reliable understanding of potential risk in the estuary. The uncertainty of the results of both sets of studies is addressed in Section 6 of this document.

5.1 Benthic Estuarine Community (Assessment Endpoint 1)

Three basic measurement endpoints were employed to evaluate the viability of the structure and function of the benthic estuarine community in the LCP estuary. These endpoints were: 1) comparisons of concentrations of COPCs in surface sediment with site-specific effects levels; 2) results of toxicity tests conducted with sensitive life stages of benthic biota exposed to surface sediment; and 3) evaluation of the indigenous benthic community. For this BERA, there is a plethora of sediment chemistry and sediment toxicity data available for many locations in the LCP marsh during eight years of field investigations. In contrast, the benthic community information is limited to a single study conducted in 2000 at four tidal creek stations in the LCP marsh.

Concentrations of total mercury and Aroclor 1268 in creek and marsh surface sediment exceeded their site-specific SECs in most segments of the Eastern Creek, the Main Canal, and Domain 1. Levels of lead in surface sediment exceeded the overall site-specific survival ER-L of 60 mg/kg (Table 4-20) in portions of Domain 2 and in Domain 3, including some FS Areas. Total PAHs occurred in excess of their site-specific survival ER-L of 1.5 mg/kg in the Eastern Creek, and in portions of Domains 2 and 3.

In a comprehensive chronic (28-day) toxicological study detailed in this document, survival, growth, and/or reproduction of amphipods (*Leptocheirus plumulosus*) exposed to surface sediment obtained throughout the LCP estuary were often significantly reduced relative to controls and some reference areas (e.g., Table 4-14). This toxicity appeared to be caused by COPCs, and to a limited extent, other metals. Toxic expression also appears to be substantially influenced by other factors including TOC, sulfide, grain size, and other factors. This conclusion supports the findings of others (EPA, 2001; Dillon, 2006a) who have noted the toxicological importance of COPCs and other stressors in the LCP estuary.

Toxicity test results with lab-cultured grass shrimp (*Palaemonetes pugio*) evaluated with collocated COPCs sediment concentrations suggest that grass shrimp may be more sensitive than amphipods. For example, reproductive TELs for embryo development and hatching success from exposure to mercury in sediments ranged from 1.4 to 3.9 mg/kg; whereas, the reproductive TEL for amphipods exposed to mercury was 4.9 mg/kg (Tables 4-20 and 4-22).

Hatching success and DNA strand damage of embryos produced from indigenous grass shrimp throughout the 2002-2007 time period deviated statistically (and adversely) from control conditions in the Main Canal, the bank of the Main Canal, and the Eastern Creek (Table 4-24). Finally, in a preliminary unreplicated study of fiddler crabs characterized by relatively high body burdens of COPCs abundance of crabs was similar to that reported over 30 years ago in the Duplin Estuary Marsh, Georgia (Wolf *et al.*, 1975).

A single field evaluation of the indigenous benthic community in the LCP estuary was conducted in 2000 (Table 4-25). Potential differences of the macrobenthos community between Site and reference areas were a lesser number of taxa, individuals, and density of individuals at two of the four Site stations. However, substantial variability was observed between substrate types, TOC, and number of organisms per replicate (Section 4.9.1). Since benthic community data were not collected during the long-term monitoring program (2002 – 2007), potential contaminant-related effects associated with benthic community structure are unknown.

Based on the primary LOE (sediment chemistry and toxicity tests) the viability of the structure and function of the benthic estuarine community in the LCP estuary is at risk from COPCs, especially in the southeastern part of the estuary (in particular, the Main Canal and Eastern Creek).

5.2 Omnivorous Reptiles (Assessment Endpoint 2)

The single measurement endpoint available for evaluating the viability of omnivorous reptilian species utilizing the LCP marsh consisted of HQs derived from food-web exposure models for diamondback terrapins (*Malaclemys terrapin*).

In the modeling study (Table 4-30), all HQs derived for diamondback terrapins indigenous to the LCP estuary were substantially less than unity (1). Consequently, there is no potential risk to the viability of omnivorous reptiles utilizing the LCP estuary.

5.3 Omnivorous Birds (Assessment Endpoint 3)

There were two measurement endpoints generated to evaluate the viability of omnivorous avian species utilizing the LCP estuary. These LOE were: 1) HQs derived from food-web exposure models for red-winged blackbirds (*Agelaius phoeniciceus*); and 2) HQs derived from food-web exposure models for clapper rails (*Rallus longirostris*).

Red-winged blackbirds and clapper rails exposed to COPCs at the Site exhibited a basic similarity in that none generated HQs for inorganic mercury, Aroclor 1268, or lead that indicated a potential for risk (Table 4-30). For methylmercury, red-winged blackbirds were characterized by a NOAEL HQ of 1.00 in Domain 1. All of the LOAEL HQs were less than 1.0, suggesting no risk to red-winged blackbirds.

For clapper rails modeled for exposure to methylmercury, all Site LOAEL HQs were less than 1.0; however, NOAEL HQs were slightly greater than 1.0 (1.74 - 2.96) in Domain 1, Eastern Creek, and the Main Canal. The overall potential for adverse risk to omnivorous birds in the LCP estuary is judged to be minimal.

5.4 Piscivorous Birds (Assessment Endpoint 4)

Only one measurement endpoint was available to evaluate the viability of piscivorous avian species utilizing the LCP estuary: HQs derived from food-web exposure models for green herons (Butorides striatus).

Green herons modeled for exposure to inorganic mercury, Aroclor 1268, and lead at the Site presented no potential for risk (Table 4-30). However, all Site NOAEL HQs generated by the green heron modeled for exposure to methylmercury were in excess of unity (1), with NOAEL HQs (1.39-10.6) being distinguishable from the reference HQ (0.61). LOAEL HQs for green herons modeled for methylmercury exposure at the Site were greater than 1.0 in Domain 1 (2.77), Eastern Creek (3.53), and the Main Canal (1.48).

The above-referenced methylmercury HQs suggest that potential adverse risk to the viability of piscivorous avian species in the LCP estuary is moderate.

5.5 Herbivorous Mammals (Assessment Endpoint 5)

The single measurement endpoint available for evaluating the viability of herbivorous mammalian species utilizing the LCP marsh consisted of HQs derived from food-web exposure models for marsh rabbits (Sylvilagus palustris).

The modeling study for marsh rabbits generated a site-related NOAEL HQ for Aroclor 1268 of 3.01 in Domain 1 (Table 4-30). No LOAEL-based HQ for Aroclor 1268 was greater than unity (1). In addition, no risk potential was associated with mercury or lead.

Consequently, risk to the viability of herbivorous mammals utilizing the LCP estuary is judged to be minimal.

5.6 Omnivorous Mammals (Assessment Endpoint 6)

The only measurement endpoint generated for assessing the viability of omnivorous mammals utilizing the LCP estuary consisted of HQs derived from food-web exposure models for raccoons (*Procyon lotor*).

In the modeling study (Table 4-30), all HQs for inorganic mercury, methylmercury, and lead derived for raccoons indigenous to the LCP estuary were less than unity (1). NOAEL

HQs for Aroclor 1268 of 2.61 and 1.11 were estimated for Domain 1 and Domain 2, respectively. None of the LOAEL HQs exceeded unity. Consequently, risk to the viability of omnivorous mammals utilizing the LCP estuary is judged to be minimal.

5.7 Piscivorous Mammals (Assessment Endpoint 7)

The sole measurement endpoint for evaluating the viability of piscivorous mammals utilizing the LCP estuary consisted of HQs derived from food-web exposure models for river otters (Lontra canadensis).

The modeling study for river otters generated site-related NOAEL HQs for Aroclor 1268 (based on a TRV for Aroclor 1254) that ranged from 0.01 to 3.94 (Table 4-30). No LOAEL-based HQ for Aroclor 1268 was greater than unity (1). In addition, no potential for risk was associated with mercury or lead.

The potential for adverse risk to the viability of piscivorous mammalian species utilizing the LCP estuary is judged to be minimal.

5.8 Finfish (Assessment Endpoint 8)

There were five basic measurement endpoints available for evaluating the viability of finfish utilizing the LCP estuary. These endpoints were:

- comparisons of concentrations of COPCs in surface water to general literaturebased effects levels;
- results of toxicity tests conducted with early (and sensitive) life stages of aquatic biota exposed to surface water;
- HQs derived from food-web exposure models for upper trophic-level fish;
- HQs derived from measured residues in field-collected finfish; and
- evaluation of the benthic macroinvertebrate community (as a food source for juvenile and adult fishes).

The highest concentration of total mercury measured in surface water of the LCP estuary was 188 ng/L in the Eastern Creek during 2000 (Table 4-2b), as compared to the EPA chronic ambient water quality criterion of 940 ng/L. The highest detected concentration of dissolved lead in water was 1.9 μ g/L at the mouth of Purvis Creek

during 2000, as contrasted to the EPA chronic criterion of 8.1 μ g/L. (No criteria have been developed specifically for Aroclor 1268.)

Laboratory toxicity tests designed to evaluate chronic toxicity of "whole" surface water from the LCP estuary to mysids (*Mysidopsis bahia*) and sheepshead minnows (*Coleonyx variegatus*) generated similar results (Tables 4-12 and 4-13). Mean survival of mysids exposed to surface water from the Site and two reference locations ranged from 92.4 to 100%, which was greater than the minimum acceptable survival for control organisms (80%). Mean growth (weight) of mysids exposed to Site and reference water was from 0.50 to 0.84 mg (dw), which exceeded the weight of control organisms (0.48 mg). Survival of sheepshead minnows exposed to the same surface water ranged from 80 to 100%, which was at least equal to the minimum acceptable survival for control organisms (80%). Mean growth (weight) of fish exposed to Site water was statistically similar to weight observed for at least one reference location.

Finfish methylmercury bioaccumulation modeling generated a mean LOAEL-based HQ of 2.9 for methylmercury (Table 4-28) which is over-predictive relative to field collected finfish from the LCP estuary (Table 4-29). However, LOAEL HQs exceeded 1 in silver perch (HQ=1.3) and spotted seatrout (HQ=1.9) collected from the field.

Based on three modeled approaches to finfish for effects attributable to Aroclor 1268 in the LCP estuary, generated mean LOAEL-based HQs ranged from 0.5 to 1.4 (Table 4-28). The mean LOAEL HQ for field collected finfish was 1.1 for silver perch and black drum, and 0.95 for spotted seatrout, suggesting relatively comparable results with the modeled HQs. The mean HQ for striped mullet was 2.5. The HQs are all higher when the 95UCL exposure concentration is used.

Since the fish TRVs were largely based on reproductive and growth endpoints to assess potential chronic problems and/or long-term decline in viability of fish populations, the LOAEL HQs suggest chronic risk. The absence of gross abnormalities in finfish collected from Purvis Creek during the empirical study and the absence of reported fish kills during many years of intensive interest and monitoring at the LCP Site suggest that there are no acute toxicity concerns to finfish.

Evaluation of the benthic macroinvertebrate community in the LCP estuary did not identify a limitation of this source of food to finfish (refer to information presented for Assessment Endpoint 1), although toxicity to benthic organisms may limit food for fish in portions of the Main Canal, Eastern Creek, and Western Creek.

The overall conclusion derived from the five above-discussed measurement endpoints is that there is no potential for risk to finfish in the LCP estuary from direct exposure to COPCs in water. The modeling and field data for finfish suggest that chronic risk to viability of finfish indigenous to the LCP estuary is of concern.

6.0 UNCERTAINTY ANALYSIS

A discussion of the major potential sources of uncertainty in the BERA provides a means to further evaluate ecological conditions and risks in the LCP estuary. This includes the extent to which results of the BERA may be consistent with results of other independent investigations of the estuary. These issues are addressed in the following subsections, followed by overall conclusions pertaining to uncertainty associated with both sources of information related to ecological conditions in the estuary.

6.1 Uncertainties in the Baseline Ecological Risk Assessment

Uncertainty associated with the formal BERA pertains to the conceptual model for the assessment, as well as the experimental design and interpretation of the assessment, including the modeling studies.

6.1.1 Conceptual Model

The conceptual model for the BERA is not likely to contribute any substantial uncertainty that would tend to over-estimate or under-estimate exposure pathways and risks. The LCP estuary has been the subject of numerous investigations. COPCs are well known, as are exposure pathways, and biota at potential risk. The eight assessment endpoints comprehensively addressed the various taxonomic and trophic categories of biota that are indigenous to the estuary. Measurement endpoints LOE employed to evaluate the assessment endpoints included, whenever possible, a combination of field, laboratory, and modeling studies.

The conceptual model for the BERA, which is the product of numerous detailed discussions among many private and government scientists, is based on environmental data collected over the 2000 – 2007 time period. The approach employed to present these data in a coherent format included the development of area-specific values for environmental variables during this period, followed by grand mean values for the whole estuary (Dillon, 2008).

6.1.2 Experimental Design and Interpretation

Implementation of the experimental design of the BERA introduced a number of mostly unavoidable uncertainties. The most basic uncertainty is the extent to which sampling data, which were generated by authoritative (not random) sampling over the 2000 –

2007 time period, are representative of (not biased indicators of) environmental conditions in the LCP estuary.

Integration of environmental data over the 2000 – 2007 time period introduces some temporal uncertainty as to whether the combined data are always representative of the most contemporary environmental baseline. Similarly, the selection of only one year of data vs. several monitoring years may not adequately define the contemporary baseline.

The number of environmental samples collected during the BERA is a source of uncertainty as it affects the statistical precision of resulting data. Other sources of uncertainty, as discussed in detail in Section 4 of this document, include interpretation of the equilibrium-partitioning, AETs, SEC calculations, benthic macroinvertebrate, and fiddler-crab abundance studies.

6.1.3 Modeling Studies

The preponderance of uncertainty in this BERA is associated with results of food-web modeling studies, as best evidenced by the different approaches taken in the wildlife modeling detailed in this document and that employed by Thoms (2006a). Within each approach, important uncertainties pertain to selection of various exposure-related statistics (in particular, composition of the diet of fish and wildlife, as well as AUFs) and, additionally, selection of LOAEL and NOAEL TRVs.

Three TRV-related uncertainties are of particular importance. First, TRVs used for avian exposure to methylmercury were based on values for growth effects to captive great egrets (LOAEL and NOAEL TRVs of, respectively, 0.06 and 0.02 mg/kg BW/day; Spalding et al., 2000) and are relatively comparable to the Heinz (1979) paper (LOAEL of 0.051 mg/kgBW/day) which was based on a three-generation reproductive study of mallard ducks; and also comparable to the LOAEL and NOAEL TRVs of, respectively, 0.078 and 0.013 mg/kg BW/day based on U.S. EPA (1995). Slightly different risks would occur depending on the selected TRV. For example, using the methylmercury LOAEL TRV of 0.06 mg/kgBW/day results in a HQ of 2.77 in Domain 1 for piscivorous birds (Table 4-30); whereas, with a TRV of 0.078 mg/kgBW/day, the HQ would be 2.13.

Second, TRVs utilized for exposure of reptiles and mammals to Aroclor 1268 are surrogate values that actually pertain to Aroclor 1254, which is generally more toxic than Aroclor 1268 (refer to Appendix J, Section J.2.1).

A "hidden" uncertainty in wildlife food-web exposure models was the need to sometimes employ prey species collected at nearby but different areas when prey did not occur in the targeted area. Also, the diet of a wildlife species in a particular area was sometimes altered from its hypothetical diet if one (or more) of its food items could not be obtained in the targeted area. Furthermore, AUFs less than unity (1) were employed for just the raccoon (based on its primarily upland habitat preference) and river otter (based in its large territory in comparison to all areas in the Site).

Some of the major uncertainties associated with the upper trophic level finfish bioaccumulation modeling studies included:

- sensitivities in the numerous model input parameters;
- use of different estimates of aqueous dissolved PCB (Aroclor 1268) concentrations;
- a tendency to over-predict tissue concentrations, particularly from reference areas, which is somewhat attributable to non-detected data (especially in the water column);
- assumptions of dry weight to wet weight conversions, that assume fixed percentages of tissue solids in each prey item and in the finfish;
- the application of single model outputs to several different species of finfish; and
- the difficulty of chronic effects interpretation to finfish (reproduction and growth) relative to actual impacts on the long-term viability of fish communities and populations in the LCP estuary.

6.1.4 Other COPCs Not Quantified

As mentioned in Section 3.4, and Section 4.4, a few metals slightly and infrequently exceeded screening-level EEVs (e.g., chromium, copper, and nickel). When elevated above their EEVs, these metals may contribute additional risks to benthic organisms, especially in sediment with low sulfide content. In addition, it appears that other parameters have substantially affected the sediment toxicity test results and may

include pathogens, TOC, substrate type, sediment pH, and redox condition. Several of these parameters were either measured occasionally or not measured at all.

Other chemicals that are generally associated with chlor-alkali facilities include pesticides such as hexachlorobenzene, 4,4' Dichlorodiphenyltrichloroethane (DDTs), and chlordanes and on occasion laboratories erroneously identify PCBs as other chlorinated compounds (e.g., Bosch et al, 2009). Although these chemicals were infrequently detected in the estuary sediments, they were not quantified because they were indirectly assessed through the risk assessment of polychlorinated biphenyls, namely Aroclor 1268.

Dioxins and furans were identified as COPCs in sediment based on 3 samples from the LCP estuary collected in 2000. All 3 samples exceeded the screening-level EEV. However, no further data were collected. The Toxicological Profile for PCBs (Table 4-6, pg. 465, and Section 5.1, pg. 467) states that "During production, Aroclor mixtures were contaminated by small amounts of polychlorinated dibenzofurans (PCDFs) as impurities," (ATSDR, 2000). In addition, Aleiandro et al., (2006) states that some of the Clapper Rail effects observed may be attributable to "organochlorides other than PCBs (e.g. dioxins)." Kannan et al., (1998a,b) also associate dioxin-like compounds to the Site. These papers suggest dioxins/furans may be associated with the Aroclors at LCP. The magnitude of the TEC-dioxin concentrations particularly in Eastern Creek suggests colocated contamination with Aroclor 1268. In the absence of TEC-dioxin data in sediment elsewhere in the estuary or in biota samples, the potential contribution of TEC dioxins to existing risk is unknown.

6.2 Independent (Other) Investigations

The other investigations of the estuary (Appendix J) addressed the relative toxicity of Aroclor 1268 and five of the eight assessment endpoints that constituted the basis of this BERA. Although differences between this BERA and other independent investigations do not necessarily imply uncertainty, they may provide additional lines of evidence that relate to the assessment endpoints. Each of the independent studies has its own unique uncertainties and direct comparisons may either add support to, or conflict with the BERA data.

6.2.1 Relative Toxicity of Aroclor 1268

The following embedded table (2008b) reviews dioxin-like toxicity of Aroclor 1268 as compared to Aroclor 1254, an Aroclor on which PCB TRVs presented in this document for fishes and mammals are based:

Relative Potency (REP) of Aroclor 1268 vs. Aroclor 1254 for fish, birds, and mammals based on dioxin-like total toxic equivalents (TEQs) (U. S. Environmental Protection Agency – Region 4, 2008; from Burkhard and Lukasewycz, 2008)

Aroclor 1254			Aroclor 1268			Relative Potency (REP) of Aroclor 1268 vs. Aroclor 1254		
Fishes	Birds	Mammals	Fishes	Birds	Mammals	Fishes	Birds	Mammals
4.18E-07	2.00E-05	7.87E-06	3.14E-07	2.5E-06	4.89E-07	0.75	0.125	0.06

The relative potency (REP) factors referenced above indicate that Aroclor 1268 is substantially less toxic to biota than Aroclor 1254. However, dioxin-like toxicity is only a measure of the extent to which dioxin-like congeners (non-ortho and mono-ortho coplanar PCBs) bind with and disrupt the aryl hydrocarbon (Ah) receptor in cells of organisms, resulting in toxicological responses that include dermal toxicity, immunotoxicity, carcinogenicity, and adverse effects on endocrine, development, and reproduction functions.

Modes of toxicity other than that affecting the Ah receptor include effects on calcium, ion (Ca²⁺) homeostasis and subsequent neurotoxic effects caused by congeners such as di-*ortho* non-coplanar PCBs, which have the potential to be evaluated by a Neurotoxic Equivalent (NEQ) scheme being developed by Simon *et al.* (2007). These authors noted that the congeners present in Aroclor 1268, in addition to possessing a low Ah receptor binding affinity, have a limited ability to interfere with Ca²⁺— dependent intracellular signaling pathways. The authors also stated that reduced PCB toxicity to fishes, birds, and mammals has been observed at the extremes of mean mixtures of chlorination (i.e., lowly and highly chlorinated Aroclors). They specifically concluded that Aroclor 1268 is approximately 22 times less toxic than Aroclor 1254 in terms of NEQs.

Several uncertainties characterize the degree to which Aroclor 1268 is less toxic than Aroclor 1254 to biota. Chlorinated naphthalenes have been identified in PCBs (Ruzo *et al.*, 1976) and can affect the Ah receptor. However, the World Health Organization (WHO) has not established TEQ factors for these chemicals. Also, the relative potency of

the two Aroclors after weathering in the environment is uncertain. In particular, the octa-, nona- and deca-PCB congeners in Aroclor 1268 are especially resistant to weathering. Some of these congeners, in particular di-*ortho* congeners, have relatively little affinity for the Ah receptor, but may have non-dioxin-like toxicity (Sajwan *et al.* 2008).

6.2.2 Assessment Endpoints

The investigations reviewed in Appendix J are of particular importance in evaluating the uncertainty inherent in assessment endpoints based on limited (often single) and theoretical LOE; in particular, food-web exposure models for wildlife. In some cases, these investigations evaluated ecological conditions in the LCP estuary prior to the 1998 - 1999 remediation of parts of the estuary and, consequently, are likely to represent "worst-case" conditions with regard to the present environmental baseline.

6.2.2.1 Benthic Estuarine Community (Assessment Endpoint 1)

Acute toxicity tests (Sprenger *et al.*, 1997) were conducted before the 1998-1999 remediation of the LCP estuary with brown shrimp (*Penaeus vannamei*) and amphipods (*Leptocheirus plumulosus*) acutely exposed (for 10 days) to sediment from the most contaminated part of the Site. These tests did not identify statistically significant harmful effects on either organism. In another set of acute toxicity tests conducted before the estuarine remediation (Horne *et al.*, 1999), amphipods (*Leptocheirus plumulosus*) exposed for 14 days to sediment from the same part of the Site exhibited no statistically significant adverse effects. In the final pre-remediation acute toxicity study, Winger *et al.* (1993) reported that another species of amphipod (*Hyalella azteca*) exposed for 10 days to sediment from various locations throughout the Site exhibited no statistically significant mortality, but displayed reduced feeding rates. In the same study, amphipods exposed to pore water from the sediment displayed statistically significant mortality, as well as reduced feeding rates; and low median effective concentration (EC50) values appeared to characterize bacteria (*Photobacterium phosphoreum*) exposed to pore water from the sediment.

The indigenous benthic community in the LCP estuary has been studied in several investigations, with results often suggesting a hazard less than that predicted by laboratory-based studies. In studies conducted before the 1998-1999 estuarine remediation, Wall *et al.* (2001) concluded that, despite high levels of contamination,

there were few effects on microbes (primarily fungal standing crop), cordgrass (*Spartina alterniflora*), or grass shrimp (*Palaemonetes pugio*). Newell *et al.* (2000) also noted the resistance of fungi and cordgrass to potentially toxic pollutants. Horne *et al.* (1999) reported that the density of individual macrobenthos species showed no consistent patterns in response to pollutants, but noted contamination-related shifts of macrobenthos at higher taxonomic levels and a shift in feeding habits of the benthos. (However, these two shifts were not observed in a similar study detailed in Section 4.5.1 of this document).

6.2.2.2 Omnivorous Reptiles (Assessment Endpoint 2)

In a study conducted in 1995 (Sprenger *et al.*, 1997), eggs taken from three female diamondback terrapins obtained in the LCP estuary were characterized by apparently elevated mean concentrations of mercury and Aroclor 1268. Although eggs from one of the females did not hatch; eggs from the other females, which contained higher concentrations of mercury (in one case) and Aroclor 1268 (in both cases), did hatch. Consequently, elevated concentrations of mercury and Aroclor 1268 in terrapin eggs (even levels that existed in 1995) cannot be implicated as causing failed reproduction in terrapins. Also, histopathological examinations of terrapins did not indicate any degeneration or abnormality known to be associated with COPCs.

In a study not referenced in Appendix J (Cobb and Wood, 1997), the eggs of loggerhead sea turtles (*Caratta caratta*) from South Carolina were evaluated for body burdens of several higher-chlorinated homolog groups characteristic of Aroclor 1268 (octa- and deca- homologues). The presence of these homolog groups was significantly correlated ($P \le 0.05$) with length of resulting embryos. However, the authors reported the relationships to be highly uncertain.

The results of these independent investigations support the results of the BERA that there is no potential risk to the viability of omnivorous reptiles

6.2.2.3 Omnivorous Birds (Assessment Endpoint 3)

Livers of clapper rails collected in 1995 from the southern part of the LCP estuary (Sprenger *et al.*, 1997) contained a mean mercury concentration of 3.84 mg/kg (ww), as compared to the following liver-based concentrations that have been reported to cause mortality in omnivorous birds: 126.5 mg/kg for red-winged blackbirds, and 54.5 mg/kg

for grackles. In addition, histopathological examinations did not indicate specific toxicity or specific uniform degeneration of tissues of clapper rails. In particular, myelin sheath and axonal degeneration, characteristic of mercury toxicity, were not observed except in one case, which was reported to be a possible artifact. Also, liver necrosis and fatty change, typical of PCB toxicity, were not noted.

The above-referenced mean mercury concentration of 3.84 mg/kg in livers of clapper rails can also be compared to the mercury values (3 to 13.7 mg/kg) reported by Barr (1986) to decrease hatchability of eggs of the common loon (*Gavia immer*).

Finally, in a study of the mineral chemistry of bones of clapper rails (Aleiandro *et al.*, 2006), exposure to contaminants in the LCP marsh did not affect the length or weight of leg bones of clapper rails evaluated in 2000. However, bone maturation was accelerated as evidenced by a high calcium/phosphorous ratio and lower carbonate and acid-phosphate content of the bones. The authors noted the difficulty in determining the specific toxicant(s) that caused these effects although they specifically referenced Aroclor 1268, organochlorides other than PCBs (e. g., dioxins), and heavy metals including mercury.

The results of these independent investigations do not contradict the judgment reached in the BERA that potential risk to omnivorous avian species is minimal.

6.2.2.4 Piscivorous Birds (Assessment Endpoint 4)

The independent studies are of particular importance in addressing this assessment endpoint since only a single LOE – food-web exposure models for the green heron (*Butorides striatus*) – was employed in the BERA to evaluate the potential risk to piscivorous birds. It is important to note that a food-web exposure model for the green heron, which is a wading bird, was initially employed (EPA, 2001) to establish a preliminary remedial sediment goal for mercury in the LCP estuary of 4 mg/kg. This sediment goal was then lowered to 1 mg/kg to provide protection for the federally-endangered wood stork (*Mycteria americana*).

However, a survey of wading birds (PTI and CDR Environmental Specialists, 1998), which was conducted in 1996, indicated that most wading birds that utilized the LCP estuary were found at the extreme northern boundary of the estuary (including tributaries of

the Turtle River), far distant from the center of the LCP estuary. In a survey of wood storks (*Mazama americana*) inhabiting inland and coastal areas of Georgia during 1997 – 1999, Gariboldi *et al.* (2001) reported that the highest observed reproductive success (mean number of wood stork fledglings per nest) occurred in the St. Simons colony and that storks typically forage for food within 10 to 15 km of their colony. (The St. Simons colony is located at least 20 km from the LCP Site.)

The results of these independent investigations support the conclusion reached in the BERA of a moderate ecological risk to piscivorous avian species in the LCP estuary.

6.2.2.5 Piscivorous Mammals (Assessment Endpoint #7)

Preliminary data from NOAA have indicated that PCBs have been detected in bottlenose dolphins (*Tursiops truncatus*) from the Turtle/Brunswick River Estuary at high concentrations (geometric mean of 401 µg/g lipid) relative to dolphins sampled from Beaufort, North Carolina (31.7 µg/g lipid) or from Charleston, South Carolina (42.1 µg/g lipid)(Sanger et al. 2008). In addition, the same research suggested that the PCB congener profiles from the Turtle/Brunswick Estuary were indicative of an Aroclor 1268 signature, with a high prevalence of octa- and nonachlorobiphenyls. Further research is being conducted by NOAA to determine how the elevated levels of these PCBs may affect dolphin health (Schwacke, 2010). An important source of uncertainty associated with this assessment endpoint is how well the river otter exposure model that represents a top-level piscivorous mammal could be extrapolated to dolphins and whether the TRV (based on Aroclor 1254 effects to mink) could reasonably be applied to dolphins. Based on PCB toxicity equivalency, the octa- and nonachlorobiphenyls are generally less toxic; however, specific effects to marine mammals are largely unknown. Consequently, risks to piscivorous marine mammals cannot be estimated at this time.

6.2.2.6 Finfish (Assessment Endpoint 8)

An acute laboratory toxicity study was conducted (Sprenger *et al.*, 1997) in which embryos of Japanese medaka (*Oryzias latipes*) were exposed to sediment obtained from the most contaminated areas of the LCP estuary during 1995 (before the 1998-1999 remediation). These embryos were reported to have developed lesions known to be associated with dioxins, furans, PCBs, and, possibly, mercury.

In a laboratory study that addressed the effects of contaminated food on fish (Matta et al., 2001), three generations of mummichogs (Fundulidae heteroclitus) evaluated for 13 possible effects attributable to Aroclor 1268 exhibited, from a statistical perspective, only an increase in growth by the second (F_1) generation. In the case of fish assessed for 13 possible effects associated with mercury-contaminated food, the only statistically significant effects were increased mortality of F₀ fish (just males), increased weight of F₁ fish, altered sex ratios of F₁ fish, and reduced fertilization success of F₁ fish. No statistically significant effects occurred in the F_2 generation. Of the 26 possible effects evaluated in the three generations of fish, only three (3) effects, all associated with mercury-contaminated food (mortality of male F₀ fish, as well as altered sex ratios and reduced fertilization success of F₁ fish), appear to have possible ecological significance. These effects (and all mercury-related effects) were associated with a "worst-case" (lowest) MATC in bodies of F₀ fish of 1.2 mg/kg (dw) mercury. The highest mean and 95UCL body burdens of total mercury measured in mummichogs from the LCP estuary over the 2000-2007 time period was 0.71 and 2.03 mg/kg, respectively (in the Eastern Creek - Table 4-10a).

The results of these independent investigations are basically consistent with the judgment reached in the BERA that potential risk to the viability of finfish indigenous to the LCP estuary is of concern. Although the study by Matta *et al.* (2001) provides information that directly addresses the impact of contaminated food on lower-trophic-level fish (i.e., mummichogs), the biomagnification of mercury and Aroclor-1268 in upper-trophic-level finfish from the LCP estuary and potential associated effects has not been studied to confirm the model predictions. Field fish may respond differently if burdened with both Aroclors and mercury (and other COPCs) over the long term. Such long-term exposure may result in sufficient stress to induce negative effects on reproductive fitness.

6.3 Uncertainty Conclusions

The convergence of risk estimates generated by the BERA and the independent investigations provides a basis for concluding that the evaluation of ecological conditions in the LCP estuary is not characterized by gross uncertainty and is basically reliable. This is to be expected since the ecology of the estuary has been investigated over a period of at least 15 years by numerous organizations and scientists. The importance of the independent investigations is especially noteworthy in those cases

where evaluation of an assessment endpoint would otherwise have been based on a single LOE involving food-web exposure modeling.

The ultimate judgments of the risk posed by COPCs to the vitality of the benthic estuarine community, wildlife, and finfish are broad and qualitative – ranging from no risk to moderate risk for modeled receptors, and from zero percent to 100 percent survival of benthic organisms. Since there is a broad range of risk to various ecological receptors, this necessitates an evaluation of sediment and surface water concentrations that should be protective of benthic invertebrates, fish, and wildlife that inhabit the LCP estuary.

7.0 DEVELOPMENT OF ECOLOGICALLY PROTECTIVE MEDIA CONCENTRATIONS

This section provides a link between risk assessment and risk management and includes the development of a range of COPCs concentrations that are protective of ecological receptors. The ecological risks from hazardous substances released to the LCP estuary, as assessed in the previous sections, create a need to evaluate measures that would reduce the incidence of adverse growth and reproductive effects to benthic organisms, fish, and wildlife.

In this section, the food chain bioaccumulation models and the TRVs were used to "back-calculate" the COPCs sediment concentrations considered protective for each receptor of concern (i.e., those receptors where a hazard quotient exceeded 1 [from Tables 4-29 and 4-30]). This back calculation necessitates the need to establish the relationship between field-collected biota and sediment (i.e., BAFs), which is described in detail below. The NOAEL and LOAEL HQs are also used in the back calculation to provide a range of concentrations protective of each receptor. Finally, a "rule of 5" approach is discussed that enables one to look across the results for all receptors of concern to identify sediment remedial goal options (RGOs).

7.1 Sediment to Biota Bioaccumulation Factors

The development of protective sediment concentrations and RGOs is relatively complex and usually requires the use of sediment to BAFs. This section presents the methodology for deriving BAFs and their eventual use in developing RGOs for those receptors considered at risk (i.e., those receptors that had $HQs \ge 1$, refer to Sections 4.10.2 and 4.11):

- fish from methylmercury and Aroclor 1268;
- omnivorous and piscivorous birds from methylmercury;
- herbivorous, omnivorous, and piscivorous mammals from Aroclor 1268;
- benthic invertebrates from methylmercury, Aroclor 1268, lead, and PAHs;

Since lead did not contribute to risk in wildlife or fish, calculation of lead BAFs is unnecessary.

A bioaccumulation factor is an operationally defined relationship between the concentration in the biota and the concentration in the sediment. It is assumed that the concentration in biota can be expressed as a function of the sediment concentration.

Concentration in biota C_{biota} = Function of the sediment concentration $f(C_{sed})$

A linear function results in a simple ratio:

$$BAF = C_{bioto}/C_{sed}$$

This ratio is commonly used where average biota concentrations are divided by the average sediment concentrations. Non-linear BAFs can also be developed based on site-specific relationships between the biota and sediment data.

For organic chemicals that strongly partition to organic carbon (OC) and tissue lipids such as PCBs, a biota sediment accumulation factor (BSAF) may provide a better measure of chemical bioaccumulation to sediment-dwelling organisms depending on Site conditions and data quality.

The BSAF is only used to assess Aroclor-1268 and is provided by the following ratio:

BSAF =
$$C_{biota}$$
 ÷ %Lipid / C_{sed} ÷ % OC

Plots of the concentration in biota versus the concentration measured in sediments are typically used to assess bioaccumulation. These plots require measurements of biota over a gradient of contamination in sediments. Methods of treating the data and estimating a BAF are discussed by Burkhard (2006).

Graphing data in this manner and fitting a standard curve assumes perfect knowledge of the sediment concentrations to which biota were exposed. Unfortunately, this is seldom possible. Biota are often collected in the field over transects or within an area to obtain sufficient mass. Biota can be mobile and move in and out of sample transects. Also, sediment concentrations can vary substantially over the sampling transect or within the

area to which biota are exposed and complicated by factors affecting bioavailability (e.g., TOC and sulfides).

Long-term monitoring at the LCP estuary has revealed a high degree of variability in sediment concentrations measured at the same locations over multiple years, with no discernable temporal trends. The variability can confound estimates of the bioaccumulation factor by causing scatter in the bioaccumulation plots. Scatter arises when a single sediment sample is taken to represent the concentration in sediment to which a biota sample was exposed. Biota collected at a hotspot might not have been exposed entirely to the hot spot, if the hot spot is small relative to the foraging area of the organism. Hot spots can also cause scatter in the bioaccumulation plots. Furthermore, the scatter in bioaccumulation plots can be caused by mobile biota; however, the high degree of variability in the sediment concentrations may mask this effect.

The approach to derive bioaccumulation factors of organisms in the LCP estuary focuses on addressing the variability in sediment concentrations while attempting to maximize the biota tissue data relative to habitat use areas for each of the receptors. This was done by averaging sufficient sediment chemistry data for stations near biota sampling stations. Spatial polygons were selected throughout the estuary based on professional judgment to maximize relevant exposure data in various habitat areas of the estuary. At least 10 polygons were needed to provide adequate statistical data to develop BAFs and to ensure reasonable coverage of the estuary. For mummichogs there were some years where intensive sampling of creeks resulted in sufficient sediment data for yearly estimates. Sediment near most fiddler crab stations were sampled less densely and therefore it was necessary to average sediment concentration over all years in order to obtain enough data to estimate the sediment concentrations that the fiddler crabs would be exposed to. Because most of the sampling stations were non-random and biased toward pre-selected areas, these exposure areas or "polygons" with higher data density tend to skew overall exposure concentrations. To account for spatial and temporal influences on exposure within a polygon, all individuals at a sample station were averaged to "normalize" the spatial and temporal effects between stations within a polygon. This spatial and temporal averaging provides a more useful evaluation of exposure within a polygon relative to combining all data irrespective of these factors.

The BAF curve fits were selected based on the highest reasonable r^2 value. Most of the best BAF curve fits were based on the power distribution, more so than the linear or logarithmic distribution.

7.1.1 Fiddler Crab Bioaccumulation Factors

The data for mercury and Aroclor-1268 bioaccumulation in fiddler crabs were evaluated in several ways to maximize exposure relevance and reduce the scatter in the bioaccumulation plots. Fiddler crabs were collected annually in all sampling years. There was insufficient sediment data in the vicinity of fiddler crab collection stations in most years to obtain an estimate of the exposure concentration by averaging stations within a fixed radius, averaging data within customized polygons taking into account spatial features in data, or by separately evaluating marsh and creek stations. Therefore, data for fiddler crabs and sediments from all years were grouped together and averaged within polygons that represented sample collection areas. Sometimes the polygons included multiple fiddler crab sampling stations. Multiple biota sampling stations within a polygon were averaged. Larger polygons containing multiple biological sampling stations were used when spatial variation in biota and sediment concentrations was minimal, as was observed as distance from secondary sources increased. Creek sediment and marsh sediments were also combined to more fully assess exposure.

Ten polygons were used to average fiddler crab data and are shown in Figure 7-1. In areas where clusters of sampling stations were spatially separated from other sampling locations, e.g., Blythe Island and reference stations, the size and shape of the polygons was irrelevant as long as all samples in the cluster were included in the polygon. Some sample points were used in more than one average when polygons overlapped. The fiddler crab and sediment sampling stations within each polygon are listed in Table 7-1. Although data were collected at the M-AB seep area, this station was not included in the analysis because of extremely variable sediment mercury concentrations (e.g., in 2003 sediment mercury was 0.03 mg/kg and 29 mg/kg in 2005) relative to other years and other stations within the polygon. In addition, exposure to the water pathway appears to dominate at this seep relative to sediments and the polygon only represents a very small area adjacent to the upland.

All concentration data were obtained from the baseline Ecological Risk Assessment Database dated October 5, 2009 obtained from Honeywell. Appendix K includes a data CD with a file entitled "Fiddler Crab BAFs" and provides all of the relevant database information for calculating the BAFs. Table 7-2 provides the arithmetic mean concentrations for total mercury and Aroclor 1268 in wholebody fiddler crab tissue and sediment (in mg/kg dry weight) for each polygon. In addition, percent tissue lipids in biota and percent TOC in sediments are provided to evaluate the BSAF results relative to the BAF results.

Figures 7-2 through 7-4 show the fiddler crab BAFs for mercury and Aroclor 1268 and the BSAF curve for Aroclor 1268. The graphs show that the BSAF approach (with an r^2 value of 0.326) does not appear to be a good predictor of Aroclor 1268 bioaccumulation relative to the BAF ($r^2 = 0.917$). This is primarily due to the lack of lipid data from some of the monitoring events, which precluded the use of BSAFs for data from those events. Therefore, the BSAF approach is not adopted; whereas, the fiddler crab BAF correlations are considered usable for estimating sediment/tissue relationships.

7.1.2 Mummichog Bioaccumulation Factors

The development of polygons for mummichogs was very similar to the methods described above for fiddler crabs. Thirteen exposure polygons were selected to maximize exposure relevance with respect to available mummichog tissue and colocated or nearby sediment data. The relative home ranges were considered and the Creek and marsh sediment stations were combined in some areas to more fully assess exposure. Figure 7-5 shows the locations and data points used for each polygon and Table 7-3 lists the sediment and mummichog sampling stations within each polygon. These data were spatially and temporally averaged to assess BAFs to the mummichog. All of the relevant data used to calculate BAFs for these polygons are provided in the file "Mummichog BAFs" on the attached CD in Appendix K.

Figures 7-6 and 7-7 show the BAF curve plots for Aroclor 1268 and mercury, respectively. Two of the more Aroclor 1268-contaminated polygons (C-6 and C-9) tend to bend the curves downward to the right; however, this is somewhat counter-balanced by some of the less contaminated polygons and contributes to overall r^2 of 0.812 for Aroclor 1268 and 0.884 for mercury, respectively.

Although the BSAF approach was also applied to the mummichogs, the curves and correlation coefficients were poor relative to the BAFs and consequently not shown. In summary, the mummichog BAFs are considered usable for estimating sediment/tissue relationships for these fish.

7.1.3 Blue Crab Bioaccumulation Factors

The development of polygons for the blue crab is much more problematic than with fiddler crabs or mummichogs in that there were only a few stations from which to plot data. Therefore, two approaches were evaluated. The first "yearly average approach" plots the yearly sediment and blue crab tissue averages from all of stations (including reference stations) resulting in 16 data pairs for Aroclor 1268 and 20 data pairs for mercury. The second "grand mean approach" calculates grand mean sediment concentrations for mercury and Aroclor 1268 from all Purvis Creek stations sampled between 2000-2007 (71 samples – see Table 4-3a). Grand mean blue crab tissue concentrations for mercury and Aroclor 1268 in all Purvis Creek samples are also calculated (91 samples – see Table 4-9a). A single BAF is calculated for mercury and Aroclor 1268 based on these grand means. Below is a summary of the results of the grand mean approach.

Media	n	Grand Mean Hg (mg/kg dw)	Hg BAF	Grand Mean A- 1268 (mg/kg dw)	Aroclor 1268 BAF	
Blue crab tissue	91	1.59	1.30	1.61	0.43	
Sediment	71	1.22	1.50	3.78		

Figures 7-8 and 7-9 show the BAF plots for the "yearly average approach" which generated r² values of 0.674 and 0.606 for Aroclor 1268 and mercury, respectively. Included in these figures is a linear line representing the grand mean BAFs extending throughout the range of concentrations used to calculate the yearly average BAFs. Although both approaches produce similar curves, the grand mean BAFs were selected to be more representative of blue crab exposure in Purvis Creek, relative to the yearly average approach that included more reference area data. All of the sediment and blue crab tissue data are provided in Appendix K.

7.1.4 Finfish Bioaccumulation Factors

Two approaches were considered for the development of field-collected finfish BAFs. The first "area-weighted approach" was based on the following assumptions:

- that the fish are highly mobile and that they may visit various portions of the affected estuary (creek tributaries),
- that fish do not feed in the marsh interior during high tides,
- that the source of all Aroclor 1268 and mercury in finfish is from Site sediment (regardless of exposure route),
- assume that exposure is based on an area-weighted average for each major creek in the LCP estuary.

The sediment concentrations in the affected area were developed by averaging the concentrations in each of the major creeks and multiplying by the percent of the total creek area. For example, Purvis Creek represents 87 percent of the exposure habitat. Table 7-4 shows the area-weighted sediment concentrations of the LCP estuary that is assumed to be the source of contaminants acquired in finfish that were collected in the LCP estuary (from Purvis Creek).

The finfish BAFs are calculated by dividing the measured tissue concentrations in each fish species by the area-weighted sediment concentration and are also presented in Table 7-4.

The second "yearly average approach" calculated mean sediment and tissue concentrations from Purvis Creek, Troup Creek, and the Crescent River, resulting in 8 to 11 data pairs for Aroclor 1268 and mercury, depending on fish species. Table 7-5 summarizes the data used to develop the BAF curve plots. Supporting finfish tissue data are provided on the data CD in Appendix K with a file entitled "Finfish Tissue Data". Figures 7-10 through 7-19 show the resulting curves and r² values for each fish. The r² values are relatively good, ranging between 0.721 and 0.913.

Both of these approaches have their inherent uncertainties. The area-weighted approach results in lower BAFs because approximately 60 percent of the sediment concentration comes from only 13 percent of the total exposure area. In addition, the

average sediment concentrations particularly in the Main Canal and Eastern Creek are driven by a few highly contaminated samples. The BAF curves derived from the yearly average approach result in higher BAFs because one-third to one-half of the finfish data pairs are from the reference area, rather than from the affected areas of the LCP estuary where exposure is most relevant. Because of these uncertainties, both approaches will be used to provide a range of protective sediment concentrations to finfish.

7.1.5 Cordgrass Bioaccumulation Factors

Sediment to cordgrass BAFs are used to estimate Aroclor 1268 exposures to herbivorous mammals as represented by the marsh rabbit. Mercury BAFs are not developed as mercury did not result in any risk to the rabbit. Figure 7-20 shows the Aroclor 1268 BAF and the data are provided in Appendix K. The best r^2 value that could be obtained was 0.085 which was deemed unusable. Instead, a mean BAF derived from 35 data pairs was calculated to be 0.022 (Figure 7-20).

7.2 Protective Sediment Concentrations for Receptors at Risk

This section presents estimates of the concentrations in sediment that are considered protective of ecological receptors of concern (Section 7.1) that use the LCP estuary and are based on the NOAEL and LOAEL toxicological reference values.

7.2.1 Wildlife

For the food-web assessment endpoints, the protective sediment concentrations or RGOs are calculated as follows:

$$RGO = \{[IR * (C_{sed} * BAF * f_{food}) + (IR_{sed} * C_{sed})] / BW\} \div TRV$$

Where: RGO = remedial goal option

TRV = toxicity reference value

BW = body weight of receptor

IR = Ingestion rate of COPCs

 f_{food} = dietary food fraction of each prey item

BAF = bioaccumulation factor(s) of each prey item

IR_{sed} = Ingestion rate of COPCs from sediment

 C_{sed} = concentration in sediment

Table 7-6 summarizes the bioaccumulation factors as derived above. The second set of fish BAFs in this table are based on the area-weighted method. Table 7-7 provides the food chain model intake parameters and Table 7-8 lists the TRVs. Table 7-9 is the percent of methylmercury in each receptor and originates from Appendix F.

Tables 7-10 through 7-15 show the calculated sediment concentrations that would result in various hazard quotients for the modeled wildlife receptors. When a hazard quotient of 1 is obtained, the table row is highlighted in yellow and the resulting sediment concentration is considered protective.

Table 7-16 provides an overall summary of the protective sediment concentrations for each receptor. The most sensitive modeled wildlife from exposure to mercury are piscivorous birds as represented by the green heron, with protective sediment concentrations ranging from about 0.44 to 2.7 mg/kg dw. The least sensitive receptors to mercury are omnivorous birds (clapper rail). Although the piscivorous river otter was not considered to be at risk from any specific exposure area (all HQs were less than 1), overall exposure to the entire Site (approximately 790 acres) results in protective sediment mercury concentrations between 1.7 and 4.2 mg/kg dw.

With respect to wildlife exposure to Aroclor 1268, the river otter was most sensitive with protective sediment concentrations ranging from 0.27 to 4.6 mg/kg dw. The least sensitive wildlife receptors to Aroclor 1268 are herbivorous mammals (e.g., marsh rabbit).

7.2.2 Finfish

Table 7-16 provides a summary of finfish HQs based on modeled EEEs and on residues observed in field-collected fish. Tables 7-17 (mercury) and 7-18 (Aroclor 1268) provide detailed calculation results and identify the protective sediment concentrations based on the models. Based on the mercury model, protective sediment concentrations are lower than those of field-collected finfish, which is consistent with the general overprediction of mercury residues as discussed in Section 4.10.3. The finfish model for

Aroclor 1268 predicted protective sediment concentrations ranging from 1.5 to 10 mg/kg and is relatively comparable to the field-collected finfish results.

Tables 7-19 through 7-28 provide detailed calculation results for HQs based on mercury and Aroclor 1268 residues in field-collected fish. Protective mercury and Aroclor 1268 sediment concentrations based on field-collected fish generally ranged from about 1 to 3 mg/kg and from about 1 to 8 mg/kg, respectively. Protective concentrations based on field-collected striped mullet tend to fall outside these general ranges because mercury residues were lower and Aroclor 1268 residues higher compared to the other four species of fish. The reason why mullet residues vary from the other species is currently unknown but may be related to different feeding strategies, feeding behaviors and in situ exposure scenarios.

7.2.3 Benthic Invertebrates

Due to the lack of significant COPCs exposure-response relationships based on the results of over 200 sediment toxicity tests (Figures 4-5 through 4-8), the establishment of "safe" levels for benthic organisms is highly uncertain. It appears that the interactions between COPCs, organic carbon, sulfides, grain size, and other factors such as oxidization/ reduction changes in sediment chemistry, collectively confound the toxicity test results. Based on the amphipod and grass shrimp SECs (Tables 4-20 and 4-22, respectively), and in consideration of their low accuracy and predictability of adverse effects, conservatism is used to develop a range of COPCs sediment concentrations protective of invertebrates. These protective levels are weighted to the most sensitive endpoint TELs even though up to approximately 30 percent of the Site samples below the TEL still demonstrated toxicity (see Figures 4-5 through 4-8). The most sensitive endpoint for grass shrimp was embryo development rate; whereas the most sensitive endpoint for amphipods was survival. The protective sediment COPCs ranges are presented in Table 7-29. The higher end of the range is based either on the PEL or the ER-L, whichever was lowest.

Given the chemical mixtures in sediment and the confounding factors mentioned above, it is concluded that concentrations between 1.4 and 3.2 mg/kg of mercury; 3.2 to 12.8 mg/kg of Aroclor 1268; 0.8 to 1.5 mg/kg of total PAHs; and 41 to 60 mg/kg lead should be protective of benthic invertebrates.

7.3 Remedial Goal Options for Wildlife and Aquatic Receptors

7.3.1 RGOs for Wildlife

To help facilitate the selection of sediment RGOs that would be protective of the assessment endpoints, a "rule of 5" approach is used (Charters and Greenburg, 2004). This approach is based on dividing the broad range between the NOAEL and LOAEL concentrations (as presented in Table 7-16) into five intervals based on a logarithmic progression as follows:

```
x1 = NOAEL * a

x2 = NOAEL * a^2

x3 = NOAEL * a^3 = geometric mean between NOAEL and LOAEL

x4 = NOAEL * a^4

x5 = NOAEL * a^5

Where: a = exp[(In LOAEL - In NOAEL) / 6]
```

Table 7-30 and also imbedded with the text below, provides the results of the "rule of five" approach for sediment. Ideally, the mid-point between the NOAEL and LOAEL concentrations would be a starting point as a potential cleanup value. However, a higher or lower concentration is usually selected depending on the weight of evidence and uncertainties associated with the receptor groups exposed to each medium and a variety of risk management factors such as criteria used to evaluate remedial alternatives and the potential for remedial actions themselves to cause adverse ecological impacts. For this risk assessment, the selected RGOs to protect wildlife are recommended for application to each of the specific exposure areas or domains. The selected RGOs for finfish are recommended as area-wide averages as defined in Table 7-4 (i.e., the Main Canal, Eastern Creek, the Western Creek complex and Purvis Creek combined).

For wildlife exposed to mercury, piscivorous birds and mammals are the most affected receptors. Sediment mercury concentrations from the midpoint within the "rule of 5" for piscivorous birds (e.g., herons and wood storks) are considered protective. For exposure to Aroclor 1268, piscivorous mammals are considered most sensitive. The RGO

range was identified at the LOAEL and above because of the uncertainty of the less toxic effects of Aroclor 1268 relative to Aroclor 1254 from which the TRV was based (refer to Section 6.2.1 and Appendix J.2.1). Although Aroclor 1268 alone is less toxic than Aroclor 1254, it is unknown what the combined toxic effect of Aroclor 1268 with mercury and other chemical stressors would be to piscivorous mammals.

The two approaches used to estimate protective sediment concentrations in field-collected finfish (i.e., using the BAF curves and the area-weighted BAFs) resulted in a reasonable range of protective sediment concentrations between the NOAEL and LOAEL for mercury (RGO between 1 and 3 mg/kg). For Aroclor 1268, the RGO was selected near the LOAEL due to the uncertainty associated with the growth endpoint TRV relative to reproductive endpoints. Striped mullet appears to be sensitive to Aroclor 1268 and the selected RGO may not be fully protective of this species.

Sediment Remedial Goal Options for Protection of Wildlife and Finfish LCP Chemical, Brunswick, GA								
COPCs Receptor Group	NOAEL	Rule of 5 Range					LOAEL	Selected RGO Range
Mercury mg/kg								
Omnivorous Birds	2.2	3.2	4.7	7	10	15	22	
Piscivorous Birds	0.44	0.6	0.8	1.1	1.5	2.0	2.7	1 - 3
Piscivorous Mammals	1.7	2.0	2.4	2.8	3.3	3.9	4.2	
Aroclor 1268 mg/kg	3							
Herbivorous Mammals	8	12	17	25	37	55	80	
Omnivorous Mammals	4.3	6	10	14	21	32	47	5 - 10
Piscivorous Mammals	0.27	0.4	0.7	1.1	1.8	2.9	4.6	
Mercury mg/kg								
Red Drum	0.73	1.0	1.3	1.7	2.2	3.0	3.95	
Black Drum	0.85	1.1	1.5	2.0	2.6	3.5	4.65	
Silver Perch	0.43	0.6	8.0	1	1.4	1.9	2.55	1 - 3
Spotted Seatrout	0.42	0.5	0.7	0.9	1.1	1.4	1.85	
Striped Mullet	11	14	17	21	26	32	39	
Aroclor 1268 mg/kg								
Red Drum	2.5	3.7	5.6	8.3	12.4	18.4	27.6	
Black Drum	0.55	0.8	1.3	2	3	4.6	7.1	
Silver Perch	0.58	0.9	1.3	2	3.1	4.6	7	3 - 6
Spotted Seatrout	0.67	1	1.5	2.3	3.5	5.3	8	
Striped Mullet	0.39	0.5	0.8	1.1	1.5	2.1	3	
Finfish RGOs are based on residues in field-collected finfish.								

7.3.2 RGOs for Benthic Invertebrates

Benthic invertebrates in the LCP estuary provide important ecological structure and function. Based on the discussion in Section 7.2.3, the recommended RGOs (in mg/kg dw) are:

•	Mercury	1.4 - 3.2	(2.1)
•	Aroclor 1268	3.2 – 12.8	(6.4)
•	Total PAHs	0.8 - 1.5	(1.1)
•	Lead	41 – 60	(50)

The values in parentheses represent the geometric mean on the range.

As mentioned previously, the development of protective levels and RGOs for benthic invertebrates is highly uncertain with poor accuracies. Consequently only conservative assumptions were used to estimate protective levels.

Final implementation or modification of the wildlife and/or finfish RGOs to reduce ecological risks will be dependent on the feasibility study of remedial alternatives.

Of primary concern to the LCP estuary is the reduction of long-term chronic risks to fish populations and consumers of fish. Because mercury and Aroclor 1268 tend to biomagnify up the food chain, predictions of protective sediment concentrations necessitate conservatism. The TRVs applied to methylmercury and Aroclor 1268 (which is largely based on other more toxic forms of aroclors) are conservative. These TRVs, along with other conservative assumptions used in this risk assessment, are expected to minimize the high uncertainties of biotransformation (in the case of methylmercury) and biomagnification to the highest sensitive trophic levels that may utilize the LCP estuary.

Continued long-term monitoring of fish tissues should provide trends related to risk-reduction activities. Sediment toxicity tests may continue every few years as they could demonstrate trends in toxic effects; however, such tests should be accompanied by a full suite of sediment chemistry that includes other chemical/physical parameters (e.g., sulfides, TOC, paste pH, oxidation/reduction potential, grain size) to assist in better

interpretative value. Although benthic community monitoring has not been performed on a regular basis, it could, if properly designed and well executed, provide another line of evidence for community recovery.

7.4 Protective Surface Water Concentrations

Mercury and Aroclor 1268 in surface water of the LCP estuary occasionally exceed their respective State water quality standards and may pose a risk to aquatic life (Section 4.2.1). The risk to wildlife from the surface water pathway is minimal relative to prey and sediment ingestion (Section 4.11). Although there may be seeps or contaminated groundwater upwelling into the estuary, there is no indication that State of Georgia water quality standards would not be protective of aquatic life. Therefore, it is unnecessary to establish an RGO for surface water that would be more protective than the State standards.

8.0 REFERENCES

- Agency for Toxic Substances and Disease Registry (ATSDR) 2000. Toxicological profile for polychlorinated biphenyls (PCBs). U.S. Department of Health and Human Services, Public Health Service, Atlanta, GA.
- Aleiandro, B. RN, Romanek, C. S., Alvarez-Lloret, P., and Gaines, K. F. 2006. Effect of *in ova* exposure to PCBs and Hg on clapper rail bone mineral chemistry from a contaminated salt marsh in coastal Georgia. *Environ. Sci. Technol.* 40: 4936-4942.
- Allen, J., and Littleford, R. 1955. Observations on the feeding habits and growth of immature diamondback terrapins. *Herpetologica* II: 77-80.
- Aulerich, R., and Ringer, R. 1977. Current status of PCB toxicity to mink, and effect on their reproduction. Arch. *Environ. Contam. Toxicol.* 6: 279-292.
- Azar, A. H., Trochimowicz, H. J., and Maxwell, M. E. 1973. Review of lead studies in animals carried out at Haskell Laboratory: Two-year feeding study and response to hemorrhage study. <u>In</u>: Environmental Health Aspects of Lead. Proceedings of International Symposium (D. Barth *et al.*, eds). Commission European Communities: 199-210.
- Barr, J. F. 1986. Population dynamics of the common loon (*Gavia immer*) associated with mercury-contaminated waters in northwestern Ontario. Occasional Paper 56. Canadian Wildlife Service. Ottawa, ON.
- Beyer, W., Connor, E., and Gerould, S. 1994. Estimates of soil ingestion by wildlife. *J. Wildl. Manage.* 58 (2): 375-382.
- Bloom, N. S. 1989. Determination of pictogram levels of methylmercury by aqueous phase ethylation, followed by cryogenic gas chromatography. *Can. J. Fish. Aquat. Sci.* 46.

- Bosch, C., Olivares, A., Faria, M., Navas, J.M., del Olmo, I., Grimalt, J.O., Piña, B., and Barata, C. 2009. Identification of water soluble and particle bound compounds causing sublethal toxic effects. A field study on sediments affected by a chlor-alkali industry. *Aquatic Toxicol.* 94: 16–27.
- Burkhard, L.P. 2006. Estimation of biota sediment accumulation factor (BSAF) from paired observations of chemical concentrations in biota and sediment. Cincinnati (OH): US Environmental Protection Agency, Ecological Risk Assessment Support Center. EPA/600/R-06/047
- Burkhard, L. P., and Lukasewycz, M. T. 2008. Toxicity equivalency values for polychlorinated biphenyl mixtures. *Environ. Toxicol. Chem.* 27(3): 529-534.
- Case, N. A., and Hewitt, O. H. 1964. Nesting and productivity of the red-winged blackbird in relation to habitat. <u>In</u> The living bird. Second annual meeting of the Cornell Laboratory of Ornithology. Cornell Univ. Press. Ithica, NY. Pp 7-20.
- CDR Environmental Specialists and GeoSyntec Consultants. 2001. Baseline ecological risk assessment for the estuary at the LCP Chemical Site in Brunswick, Georgia site investigation/analysis and risk characterization. Naples, FL. Volumes I and II.
- CDR Environmental Specialists and Environmental Planning Specialists. 2009. Baseline ecological risk assessment for the upland at the LCP Chemical Site in Brunswick, Georgia. February, 2009. Hollywood, FL.
- Cecil, H. C., Bitman, J., Lillie R. J., and Fries, G. F. 1974. Embryotoxic and teratogenic effects in unhatched fertile eggs from hens fed polychlorinated biphenyls (PCBs). *Bull. Environ. Contam.* 11: 489-495.
- Charters, D. W., and Greenburg, M. S. 2004. A novel weight of evidence approach to derive a site specific cleanup goal. Poster presented at 25th annual meeting of the North Eastern Society of Environmental Toxicology and Chemistry.

- Cobb, G. P., and Wood, P. D. 1997. PCB concentrations in eggs and chorioallantoic membranes of loggerhead sea turtles (*Caratta caratta*) from the Cape Romain National Wildlife Refuge. *Chemosphere* 34(3): 539-549.
- Cubbage, J., Batts, D., and Breidenbach, S. 1997. Creation and Analysis of Freshwater Sediment Quality Values in Washington State. Environmental Investigations and Laboratory Services Program, Washington Department of Ecology, Pub. No. 97-323a, July 1997.
- Dansereau, M., Lariviere, N., Du Tremblay, D., and Belanger, D. 1999. Reproductive performance of two generations of female semi-domesticated mink fed diets containing organic mercury contaminated freshwater fish. *Arch. Environ. Contam. Toxicol.* 36: 221-226.
- Dillon, T. 2006a. CRC analysis: exposure-response relationships in LCP data (00-04). Memorandum to S. Jones, RPM, and M. Kamilow, Honeywell International. NOAA. Atlanta, GA. 22 pp.
- Dillon, T. 2006b. Mercury and PCB fish food web models, TRVs, HQs, and residue-based service loss estimates for the LCP Superfund Site. February 28, 2006. Memorandum. National Oceanic and Atmospheric Administration. Atlanta, GA. 17 pp.
- Dillon, T. 2008. NOAA review of 2008 LCP saltmarsh BERA. Technical memorandum to S, Jones, Region 4, U. S. Environmental Protection Agency. 17 pp.
- Eden, F., Benton, W., Bursian, S., and Morgan, G. Effects of dietary lead on reproductive performance in Japanese quail, *Coturnix coturnix japonica*. Toxicol. Appl. Pharmacol. 38: 307-314. 1976
- Eisler, R. 1986. Polychlorinated biphenyl hazards to fish, wildlife, and invertebrates: a synoptic review. Report No. 85 (1.7). U. S. Fish and Wildlife Service. Laurel, MD. 72 pp.

- Eisler, R. 1987a. Mercury hazards to fish, wildlife, and invertebrates: a synoptic review. Report No. 10. U. S. Fish and Wildlife Service. Laurel, MD. 90 pp.
- Eisler, R. 1987b. Polycyclic aromatic hydrocarbon hazards to fish, wildlife, and invertebrates: a synoptic review. Report No. 11. U. S. Fish and Wildlife Service. Laurel, MD. 81 pp.
- Environmental Planning Specialists. 2007a. Electronic data base for environmental data generated at LCP Chemical Site in Brunswick, Georgia, Atlanta, GA.
- Environmental Planning Specialists. 2007b. Evaluation of metals distribution in surface sediments; LCP Chemicals Site, Brunswick, GA. Memorandum to NRD Trustees. 8 pp. Georgia, Atlanta, GA.
- Evans, D., and Engel, D. 1994. Mercury bioaccumulation in finfish and shellfish from Lavaca Bay, Texas: descriptive models and annotated bibliography. NOAA Technical Memorandum. NMFS-SEFSC-348. Southeast Fisheries Science Center. Beaufort, NC.
- Georgia Department of Natural Resources (GADNR) 1995. Results of analyses of seafood from the Turtle River, Brunswick River, and several tributaries.
- GeoSyntec Consultants. 1996. Work plan for remedial investigation and feasibility study at LCP Chemicals Site, Brunswick, Georgia: uplands soil and groundwater. Revision 1. Atlanta, GA.
- Gariboldi, J. C., Bryan, Jr., A. L., and Jagoe, C. H. 2001. Annual and regional variation in mercury concentrations in wood stork nestlings. *Environ. Toxicol. Chem.* 20 (7): 1551-1556.
- Gibbons, J. W., Lovich, J. E., Tucker, A. D., FitzSimmons, N. N., and Greene, J. L. 2001. Demographic and ecological factors affecting conservation and management of the diamondback terrapin (*Malaclemys terrapin*) in South Carolina. *Chelonian Conserv. Biol.* 2001 4 (1): 66-74.

- Gibbs, J. P., and Melvin, S. M. 1992. American bittern, *Botaurus lentiginosus*. <u>In</u>: Migratory nongame birds of management concern in the northeast. U. S. Fish Wild. Ser. Newton Corner, MA. 400 pp.
- Heath, J.C., Abdelmageed, Y., Braden, T.D., Nichols, A.C., and Steffy, D.A. 2009. The effects of chronic mercuric chloride ingestion in female Sprague-Dawley rats on fertilization and reproduction. *Food Chem. Toxicol.* 47: 1600-1605.
- Heath, R. G, Spann, J. W., Hill, E. F., and Kreitzer, J. F. 1972. Comparative dietary toxicities of pesticides to birds. U. S. Fish Wild. Ser. Report 152. 57 pp.
- Heinz, G. 1979 (and earlier related papers). methylmercury: reproductive and behavioral effects on three generations of mallard ducks. *J. Wildl. Manage.* 43 (2): 394-401.
- Hill, E. F., and Schaffner, C. S. 1976. Sexual maturity and productivity of Japanese quail fed graded concentrations of mercuric chloride. *Poult. Sci.* 55: 1449-1459.
- Honeywell International. 2001a. Problem formulation for baseline ecological risk assessment for the estuary at the LCP Chemical Site in Brunswick, Georgia including preliminary screening-level issues. December 2001. Morristown, NJ. 24 pp and 1 appendix.
- Honeywell International. 2001b. Study plan and data quality objectives for baseline ecological risk assessment for the estuary at the LCP Chemical Site in Brunswick, Georgia. December 2001. Morristown, NJ. 10 pp.
- Horne, M., Finley, N., and Sprenger, M. 1999. Polychlorinated biphenyl- and mercury-associated alterations on benthic invertebrate community structure in a contaminated salt marsh in southeast Georgia. *Arch. Environ. Contam. Toxicol.* 37: 317-325
- Hudson, R. H., Tucker, R. K., and Haegele, M. A. 1984. Handbook of toxicity of pesticides to wildlife. 2nd edition. U. S. Fish Wildl. Ser. Publ. 153. 90 pp.

- Huston, M. 2001. Recommended toxicity reference values (TRVs) for the LCP Brunswick Site. U. S. EPA, Environmental Response Team. Edison, NJ.
- Jones, D. S., Suter II, G. W., and Hull, R. N. 1997. Toxicological benchmarks for screening contaminants of potential concern for effects on sediment-associated biota. November 1997. ES/ER/TM-95/R4. U. S. Department of Energy. Washington DC. 30 pp.
- Kannan, K., Imagawa, T., Blankenship, A.L., and Giesy, J.P. 1998a. Isomer specific analysis and toxic evaluation of polychlorinated naphthalenes in soil, sediment, and biota collected near the site of a former chlor-alkali plant. *Environ. Sci. Technol.* 32:2507–2514.
- Kannan, K., Nakata, H., Stafford, R., Masson, G.R., Tanabe, S., and Giesy, J.P. 1998b. Bioaccumulation and toxic potential of extremely hydrophobic polychlorinated biphenyl congeners in biota collected at a Superfund Site contaminated with Aroclor 1268. *Environ. Sci. Technol.* 32:1214–122
- Kelso, W. E. 1979. Predation on soft-shell clams, *Mya arenaria*, by the common mummichog, *Fundulus heteroditus*. *Estuaries* 2(4): 249-254.
- Kennedy, V. S., Newell, R. I. E., and Eble, A. F. 1996. The Eastern oyster: *Crassostrea virginica*. Maryland Sea Grant Book. College Park, MD. 734 pp. 1996.
- Kholkute, S D., Rodriguez, J., and Dukelow, W. R. 1994. Effects of polychlorinated biphenyls (PCBs) on in vitro fertilization in the mouse. *Reprod. Toxicol.* 8(1): 69-73.
- Kneib, R. T. 2003. Bioenergetic and landscape considerations for scaling expectations of nekton production from intertidal marshes. *Mar. Ecol. Progress Series* 264: 279–296.

- Lee, R., Kim, G.B., Maruya, K.A., Steinert, S.A., and Oshim, Y. 2000. DNA strand breaks (comet assay) and embryo development effects in grass shrimp (*Palaemonetes pugio*) embryos after exposure to genotoxicants. *Marine Environ. Res.* 50: 553-557.
- Lillie, R., Cecil, H., Bitman, J., and Fries, G. 1974. Differences in response of caged white leghorn layers to various polychlorinated biphenyls (PCBs) in the diet. *Poultry Sci.* 53: 726732.
- Long, E. R., and Morgan, L. G. 1990. The potential for biological effects of sediment-sorbed contaminants tested in the National Status and Trends Program. NOAA Tech. Memorandum NOS OMA 52. NOAA. Seattle, WA. 175 pp.
- Lotrich, V. A. 1975. Summer home range and movements of *Fundulus heteroclitus* (Pisces: Cyprinodontidae) in a tidal creek. *Ecology* 56:191-198.
- MacDonald, D.D., Ingersoll, C.G., and Berger, T.A. 2000. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. *Arch. Environ. Contam. Toxicol.* 39:20-31.
- MacDonald, D.D., Carr, R.S., Calder, F.D., Long, E.R., and Ingersoll, C.G. 1996. Development and evaluation of sediment quality guidelines for Florida coastal waters. *Ecotoxicology* 5: 253-278.
- Matta, M. B., Linse, J., Cairncross, C., Francendese, L., and Kocan, R. M. 2001. Reproductive and transgenerational effects of methylmercury or Aroclor 1268 on *Fundulus heteroclitus*. *Environ*. *Toxicol*. *Chem*. 20 (2): 327-335.
- Meredith, W. H., and Lotrich, V. A. 1979. Production dynamics of a tidal creek population of *Fundulus heteroclitus* (Linnaeus). *Estuar. Coastal Mar. Sci.* 8(2): 99-118.
- Minello, Thomas J. and Rozas, Lawrence P. 2002. Nekton in Gulf Coast wetlands: Fine-scale distributions, landscape patterns, and restoration implications. *Ecol. App.* 12:441-455.

- Nagy, K. 1987. Field metabolic rate and food requirement scaling in mammals and birds. *Ecol. Monog.* 57 (2): 111-128.
- National Academy of Sciences (NAS). 1979. Polychlorinated biphenyls. Rep. Comm. Assess. PCBs in Environ., Environ. Stud. Bd., Commission Natural Resources, Natural Resources Council, Nat. Acad. Sci., Washington DC. 182 pp.
- National Oceanic and Atmospheric Administration (NOAA) and U. S. Environmental Protection Agency (Region 4). 1998. LCP Chemical Site monitoring study data report. Final draft. Seattle, WA. 127 pp.
- Nebeker, A. V., and Puglisi, F. A. 1974. Effect of polychlorinated biphenyls (PCBs) on survival and reproduction of Daphnia, Gammarus, and Tanytarsus. *Trans. Amer. Fish. Soc.* 4:722-728.
- Newell, S., V. Wall, and Maruya, A. 2000. Fungal biomass in saltmarsh grass blades at two contaminated sites. *Arch. Environ. Contam. Toxicol.* 38 (3): 268-273.
- Odum, E. P. 1961. Fundamentals of Ecology. W. B. Saunders Co. Philadelphia, PA. 546p.
- Orians, G. H. 1961. The ecology of blackbirds (*Agelaius*) social systems. *Ecol. Monog.* 31 (3): 285-312.
- Pattee, O. H. 1984. Eggshell thickness and reproduction in Eastern kestrels exposed to chronic dietary lead. *Arch. Environ. Contam. Toxicol.* 13: 213-218.
- Patton, G. W., and Crecelius, E. A. 2001. Simultaneously extracted metals/acid-volatile sulfide and total metals in surface sediment from the Hanford Reach of the Columbia River and the lower Snake River. January 2001. PNNL-13417. U. S. Department of Energy. Richland, WA. 34 pp.
- Peters, L.J. 1983. Mercury accumulation in the American slligator, Alligator mississippiensis. University of Florida. M.S. Thesis.

- Pomeroy, L. R., and Wiegert, R. G. (eds). 1981. The ecology of a salt marsh. Springer-Verlag. New York, NY.
- PTI and CDR Environmental Specialists. 1998. Ecological risk assessment of the marsh area of the LCP Chemical Site in Brunswick, Georgia. Volumes I and II. Naples, Florida.
- Pulster, E.L., Smalling, K.L., Zolman, E., Schwacke, L., and K.A. Maruya. 2009. Persistent organochlorine pollutants and toxaphene congener profiles in bottlenose dolphins (*Tursiops truncatus*) frequenting the Turtle/Brunswick River Estuary, Georgia, USA. *Environ. Toxicol. Chem.* 28(7): 1390–1399.
- Reiser, M.H. and Temple, S.A. 1981. Effects of chronic lead ingestion on birds of prey." In: Recent Advances in the Study of Raptor Diseases. Pages 21-25, J.E. Cooper and A.G. Greenwood (eds.). Chiron Publications Ltd., West Yorkshire, England.
- Ruzo, L., Jones, D., Safe, S., and Hutzinger, O. 1976. Metabolism of chlorinated naphthalenes. *J. Ag. Food Chem.* 24(3): 581-583.
- Sajwan, K. S., Kurunthachalam, S. K., Weber-Goeke, M. A., Weber-Snapp, S., Gibson, C. and Loganathan, B. G. 2008. Extremely hydrophobic Aroclor 1268 and residues of polybrominated diphenly esters (PBDEs) in marsh sediment collected from Superfund Site in Brunswick, Georgia. *Mar. Pollut. Bull.* 56: 1353-1376.
- Sanger, D., Blair, A., DiDonato, G., Washburn, T., Jones, S., Chapman, R., Bergquist, D., Riekerk, G., Wirth, E., Stewart, J., White, D., Vandiver, L., White, S. and Whitall, D. 2008. Support for integrated ecosystem assessments of NOAA's National Estuarine Research Reserves System (NERRS), Volume I: The impacts of coastal development on the ecology and human wellbeing of tidal creek ecosystems of the US southeast. NOAA Technical Memorandum NOS NCCOS 82. 76 pp.

- Schwacke, L. 2010. Off the charts: Polychlorinated biphenyl levels in coastal dolphins and insights into human exposure. Presentation at the Annual Meeting of the American Association for the Advancement of Science, February 19, 2010, San Diego, CA.
- Science Applications International Corp. (SAIC). 2003. Guide for planning and conducting sediment pore water toxicity identification evaluations (TIE) to determine causes of acute toxicity at Navy aquatic sites. Newport, RI. 6 sections.
- Sea Science. 2000. Blue crabs. South Carolina Department of Natural Resources. Columbia, SC. 8 pp.
- Sea-Stats. 2000a. Red drum: marine musicians. Florida Marine Research Institute. Tallahassee, FL. 4 pp.
- Sea-Stats. 2000b. Blue crab: a summary of information and statistics on the marine organisms common in Florida waters. Sea-Stats No. 4. Florida Marine Research Institute. Tallahassee, FL. 11 pp.
- Simon, T., Britt, J. K., and James, R. C. 2007. Development of a neurotoxic equivalence scheme of relative potency for assessing the risk of PCB mixtures. *Regulat. Toxicol. Pharmacol.* 48 (2):148-170.
- Snee, R. D. 1973. Some aspects of nonorthogonal data analysis. Part I. Developing prediction equations. *J. Quality Tech.* 5: 67-79.
- Spalding, M. G., Frederick, P. C., McGill, H. C., Bouton, S. N. and McDowell, L. R. 2000. Methylmercury accumulation in tissues and its effects on growth and appetite in captive great egrets. *J. Wild. Dis.* 36(3): 411-422.
- Sprenger, M., Finley, N., and Huston, M. 1997. Ecological assessment ecological risk evaluation of the salt marsh and adjacent areas at the LCP Superfund Site, Brunswick, Georgia. Final report. Vol. 1 and 2. April, 1997. U. S. EPA, Edison, NJ.

- Steel, R. G., and Torrie, J. H. 1980. Principles and procedures of statistics a biometrical approach. McGraw-Hill Book Company, New York, NY. 633 pp.
- Thoms, S. 2006a. Technical memorandum LCP food-chain analysis to derive protective levels of exposure. August 7, 2006. Region 4, EPA. Atlanta, GA. 17 pp.
- Thoms, S. 2006b. Email sent to S. Jones, Region 4, EPA, on October 2006.
- University of Georgia (UGA). 1996. Salt marsh profile. Univ. Georgia Museum of Natural History. Athens, GA.
- University of Guelph. 2000. The birds of the Great Lakes green-backed heron (*Butorides striatus*). Internet.
- University of Michigan. 1999. Biology of mammals. Internet. Several sections.
- U. S. Department of Interior (USDOI). 1995. Preliminary natural resources survey for LCP Chemical Site. Washington, DC. 15 pp.
- U. S. Environmental Protection Agency. 1980. Ambient water quality criteria for polychlorinated biphenyls. EPA 440/5-80-068. 211 pp.
- U. S. Environmental Protection Agency. 1993. Wildlife exposure factors handbook. Vol. 1. U. S. EPA, Office of Research and Development. Washington, D. C. 4 sections.
- U. S. Environmental Protection Agency. 1995. Great Lakes Water Quality Initiative Criteria Documents for the protection of wildlife DDT, mercury, 2,3,7,8-TCDD, PCBs. EPA-820-B-95-008. Office of Water. Four chapters.
- U. S. Environmental Protection Agency. 2001. Development and recommendations of preliminary ecological remedial sediment goals at the LCP Chemical Site; Brunswick, GA – Technical note. Environmental Response Team. Edison, NJ. 22 pp.

- U. S. Environmental Protection Agency. 2003. Procedures for the derivation of equilibrium partitioning sediment benchmarks (ESBs) for the protection of benthic organisms: PAH mixtures. EPA-600-R-02-013. Office of Research and Development, Washington, DC.
- U. S. Environmental Protection Agency. 2005. Procedures for the derivation of equilibrium partitioning sediment benchmarks (ESBs) for the protection of benthic organisms: metal mixtures (cadmium, copper, lead, nickel, silver, and zinc). EPA-600-R-02-011. Office of Research and Development. Washington, DC. 7 sections.
- U. S. Environmental Protection Agency. 2008a. Framework for application of the toxicity equivalence methodology for polychlorinated dioxins, furans, and biphenyls in ecological risk assessment. EPA 100/R-08/004. Office of the Science Advisor, Risk Assessment Forum, Washington DC. June 2008.
- U. S. Environmental Protection Agency Region 4. 2008b. Baseline ecological risk assessment for the estuary at the LCP Chemical Site, Brunswick, Georgia. Document sent from S. Jones (Region 4) to M. Kamilow (Honeywell). 11 pp.
- U. S. Geological Service. Undated. Biological and ecotoxicological characteristics of terrestrial vertebrates residing in estuaries clapper rail. Internet. 7 pp.
- Wall, V., Alberts, J., Moore, D., Newell, S., Pattanayek, M., and Pennings, S. 2001. The effect of mercury and PCBs on organisms from lower trophic levels of a Georgia marsh. *Arch. Environ. Contam. Toxicol.* 40: 10-17.
- Weisberg, S. B., and Lotrich, V. A. 1980. Food limitation of the mummichog *Fundulus heteroclitus* in a Delaware saltmarsh. *Amer. Zool.* 20(4): 880.
- Wolf, P. L., Shanholtzer, S. F., and Reimold, R. J. 1975. Population estimates for Uca pugnax (Smith, 1870) on the Duplin Estuary Marsh, Georgia, U. S. A (Decopoda, Brachyura, Ocypodidae). *Crustaceana* 29 (1): 79-91.

- Winger, P., Lasier, P., and Geitner, H. 1993. Toxicity of sediments and pore water from Brunswick Estuary, Georgia. *Contam. Tox.* 371-376.
- Yawetz, A., Sidis, and Gasith, A. 1983. Metabolism of parathion and brain cholinesterase inhibition in Aroclor 1254-treated and untreated Caspian terrapin (*Mauremys caspica rivulata*, Emydidae, Chelonia) in comparison with two species of wild birds. *Comp. Biochem. Physiol.* 75C: 377-382.
- Zembal, R., Hoffman, S. M., and Bradley, J. R. 1998. Light-footed clapper rail management and population assessment. 1997. California Depart. Fish & Game. Sacramento, CA. 23 pp.

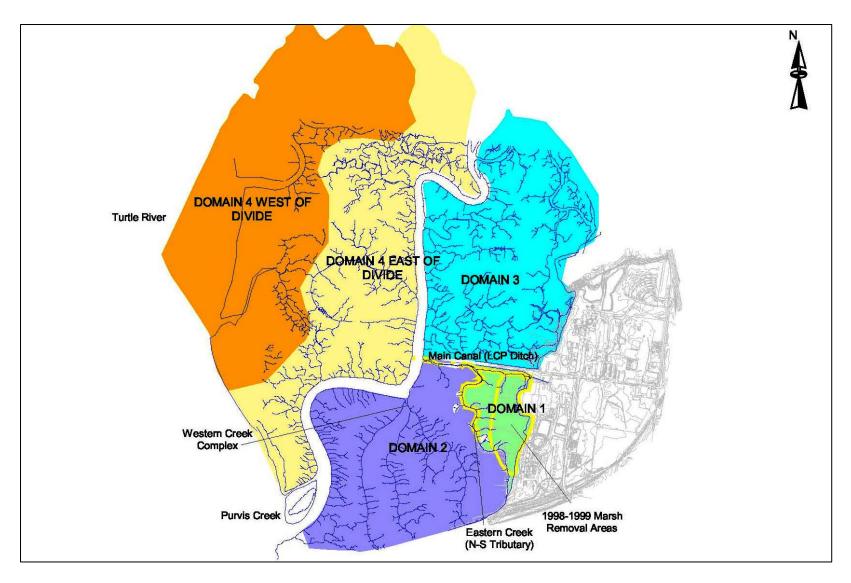


Figure 3-1_ Domains and selected features of estuary at LCP Site.

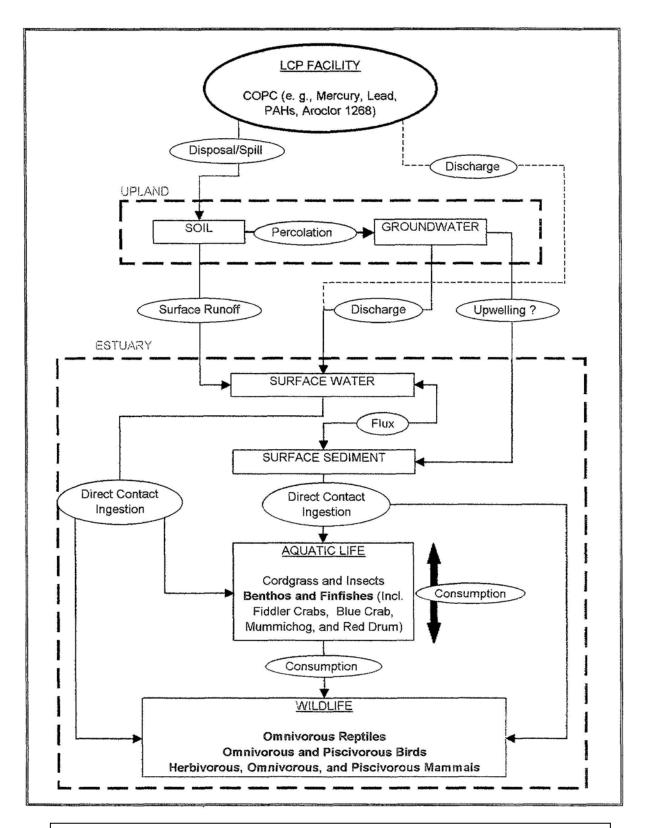


Figure 3-2. Historical conceptual site model (including exposure pathways) for chemicals of potential concern (COPC) in the estuary at LCP Site.

Aquatic life and wildlife identified by regular print will be directly evaluated for their relationship to assessment endpoints, which are reflected in bold print.

Figure 3-3. Locations of sampling stations for surface water of major creeks and associated biota in estuary at LCP Site.

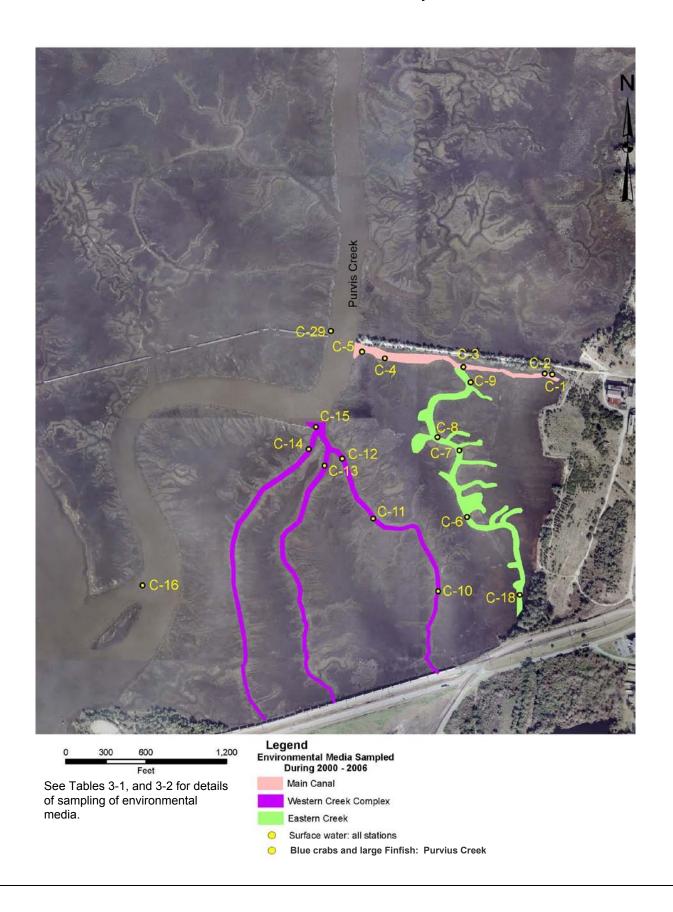


Figure 3-4. Locations of sampling stations for surface sediment water of major creeks and associated biota in estuary at LCP Site.

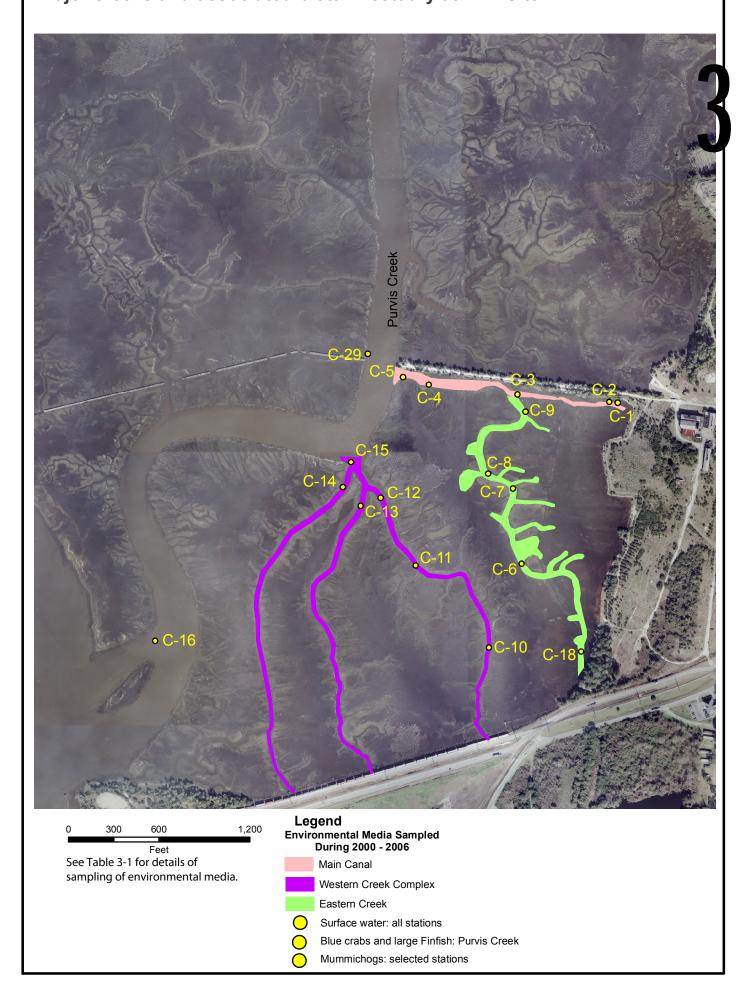
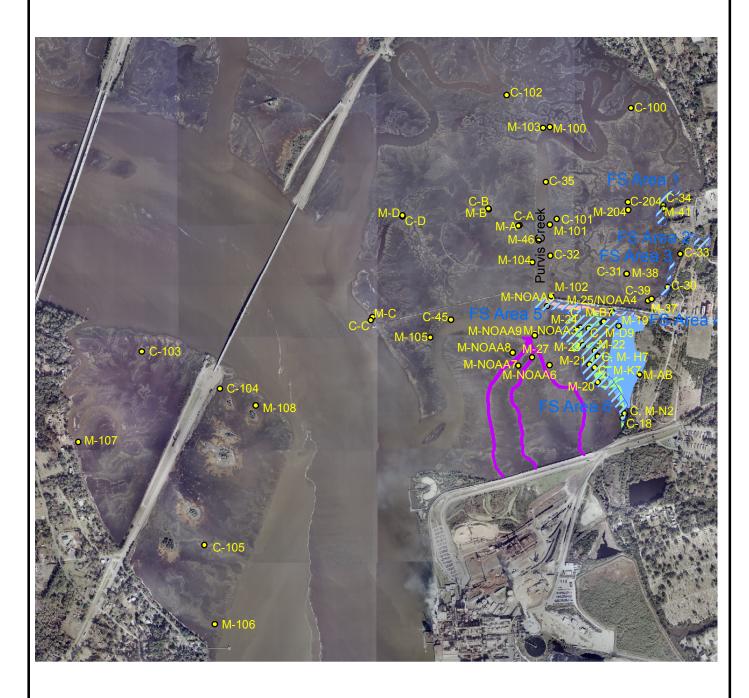



Figure 3-5_Locations of sampling stations for surface sediment of marsh creeks and associated biota in estuary at LCP Site.

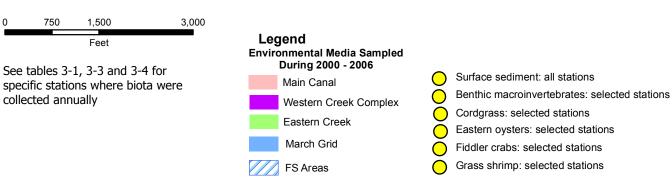
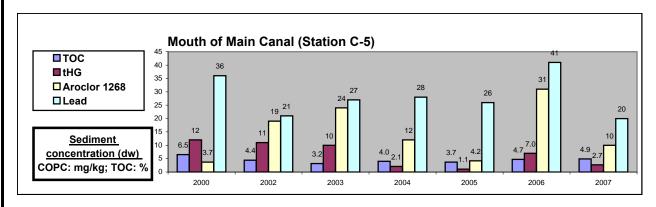
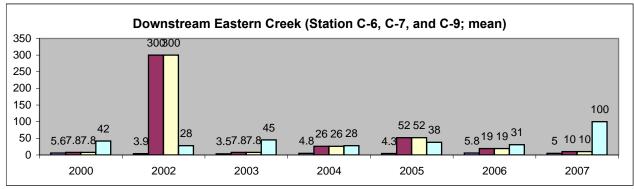
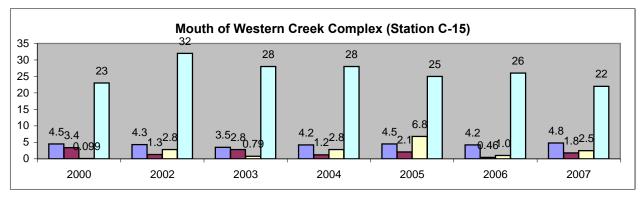





Figure 4-1_Concentrations of total organic carbon (TOC) and chemicals of potential concern (COPCs) in surface sediment at continuously monitored sentinel stations in major creeks of estuary at LCP Site (2000 - 2007 data)

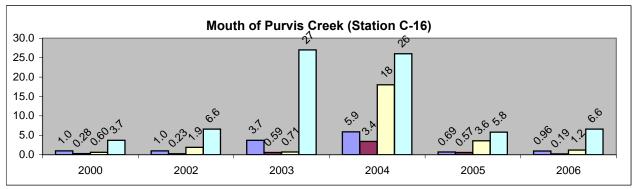
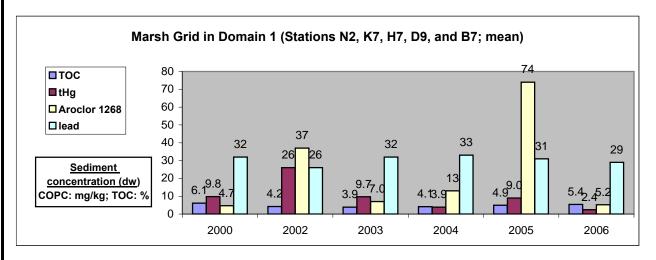
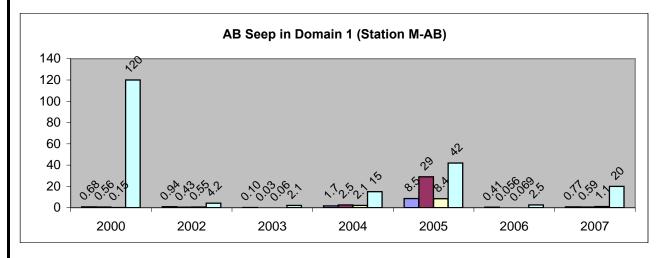




Figure 4-2_Concentrations of total organic carbon (TOC) and chemicals of potential concern (COPCs) in surface sediment at continuously monitored sentinel stations in marsh of estuary at LCP Site (2000 - 2007 data)

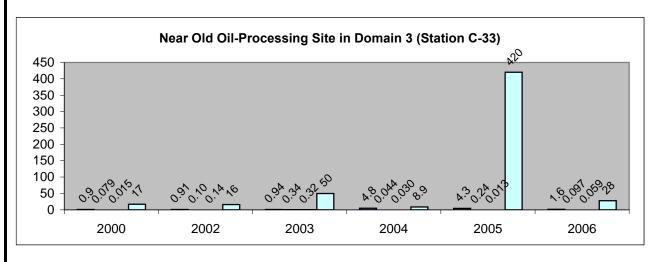
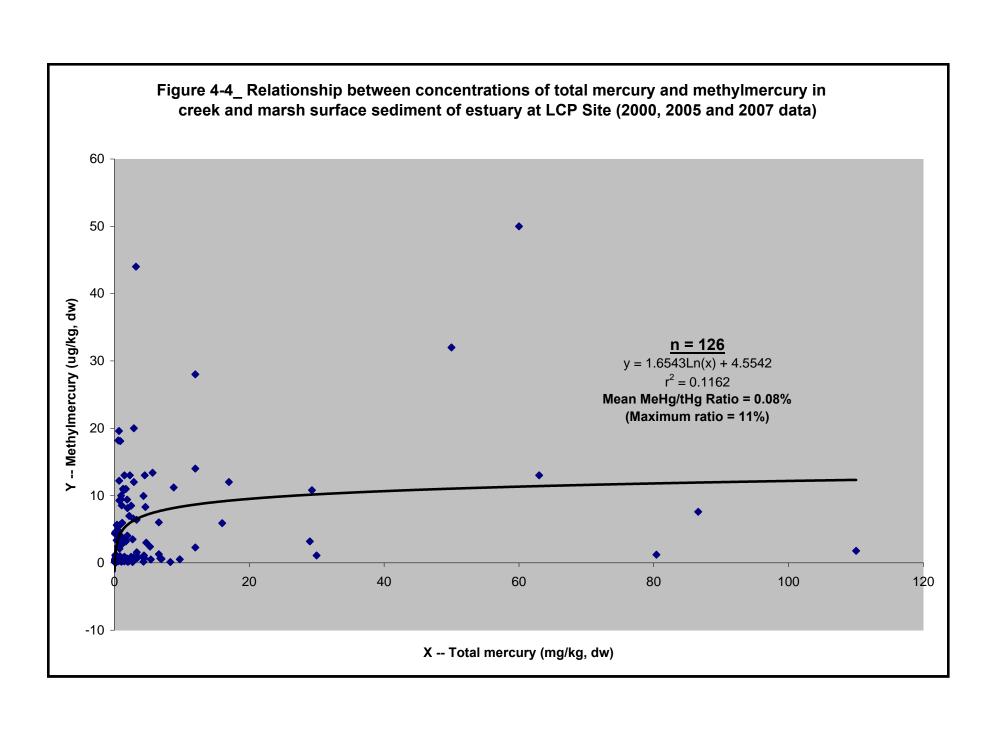
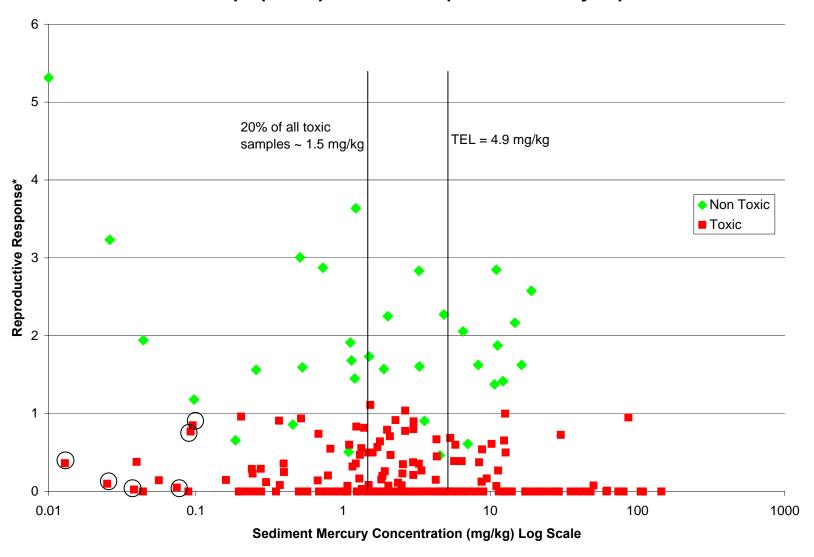
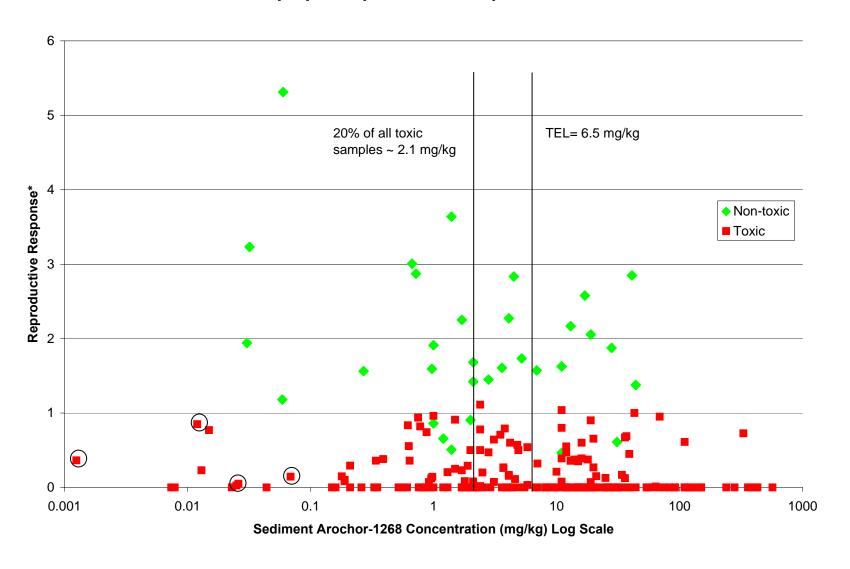


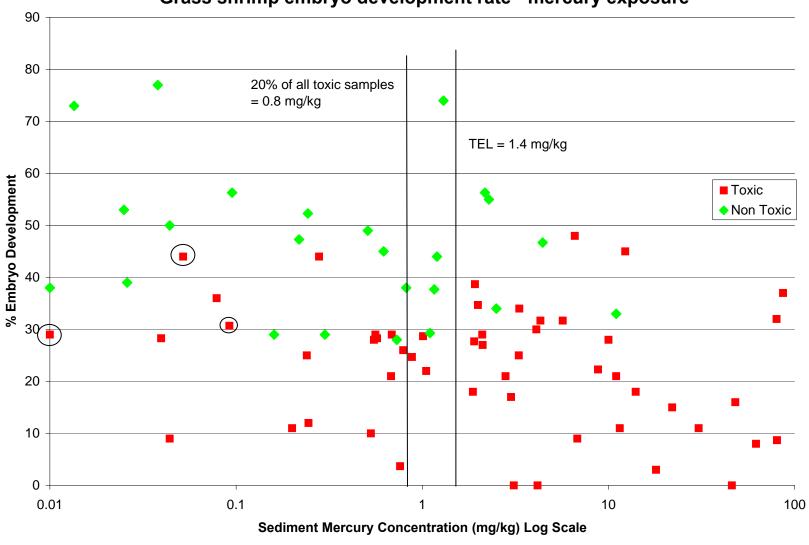
Figure 4-3_ Relationship between concentrations of total mercury and methylmercury in surface water of major creeks of estuary at LCP Site (2000 - 2005 data) 12 10 8 n = 26Y -- Methylmercury (ng/L) y = 0.6977Ln(x) - 0.9448 $r^2 = 0.2272$ Mean MeHg/tHg Ratio = 3.05% (Maximum Ratio = 10.1%) 2 20 40 60 80 100 120 140 160 180 200 -2 X --Total mercury (ng/L)


Figure 4-5
Amphipod reproductive response - mercury exposure

^{*} Reproductive response is calculated as 1/2 the number of juveniles produced divided by the number of surviving adult females.

** The circles represent toxic reference stations.


Figure 4-6
Amphipod reproductive response - Aroclor 1268

^{*} Reproductive response is calculated as 1/2 the number of juveniles produced divided by the number of surviving adult females.

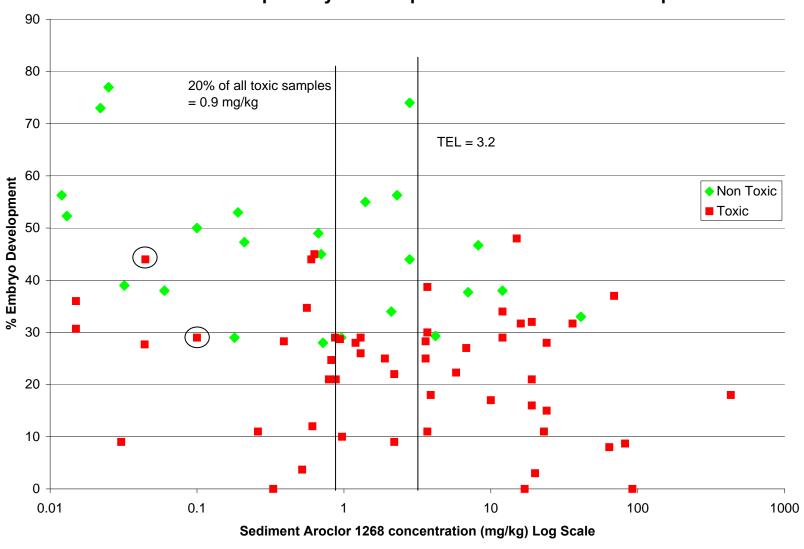

** The circles represent toxic reference stations.

Figure 4-7
Grass shrimp embryo development rate - mercury exposure

^{*} The circles represent toxic reference stations.

Figure 4-8
Grass shrimp embryo development rate - Aroclor 1268 exposure

^{*} The circles represent toxic reference stations.

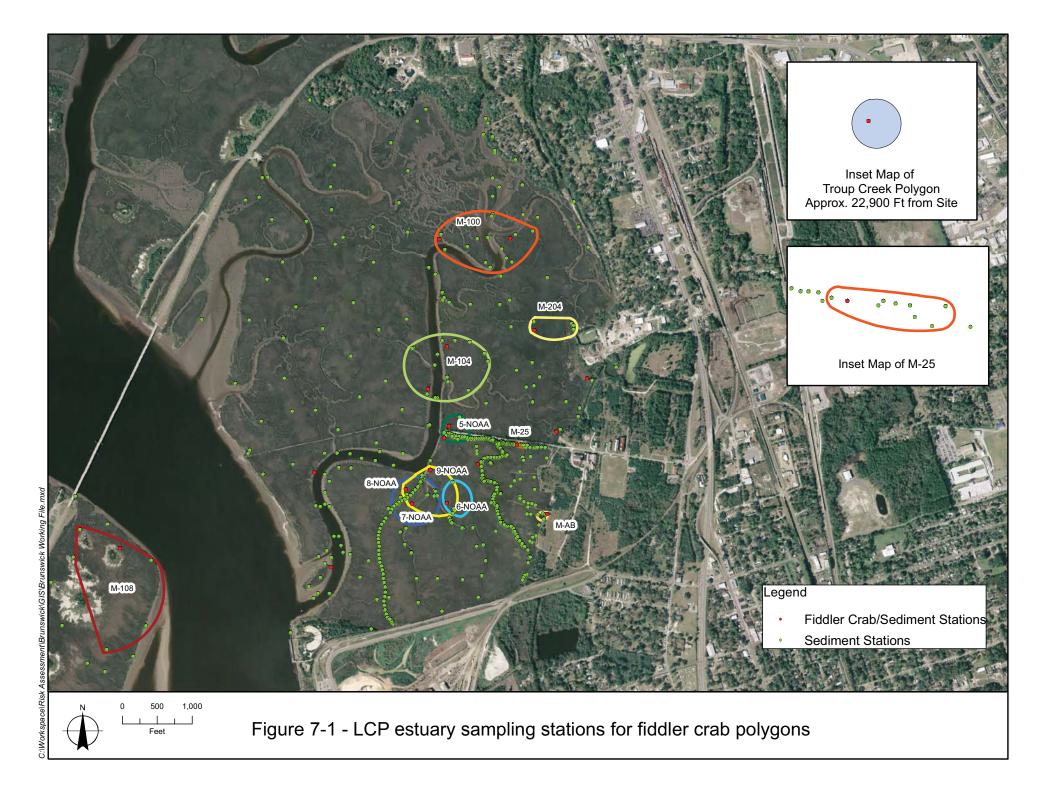


Figure 7-2
Fiddler crab mercury BAF

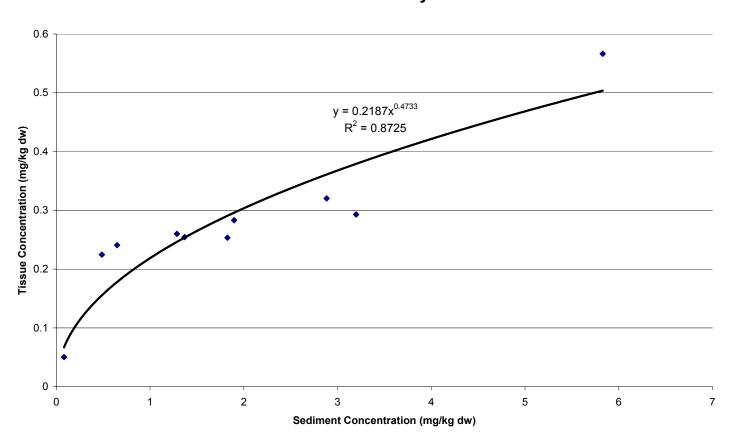


Figure 7-3
Fiddler crab Aroclor 1268 BAF

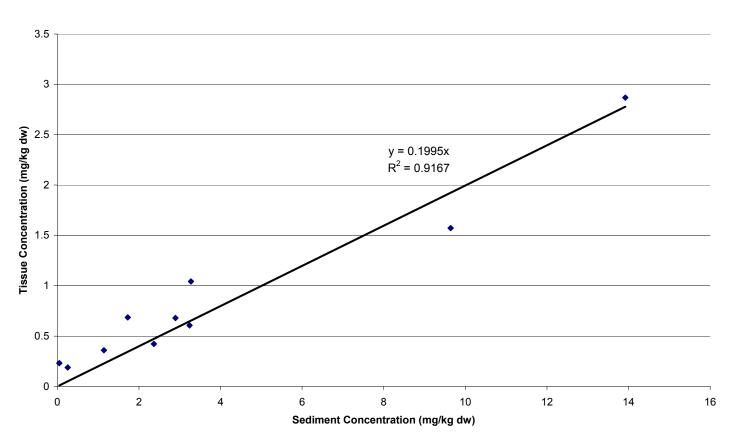
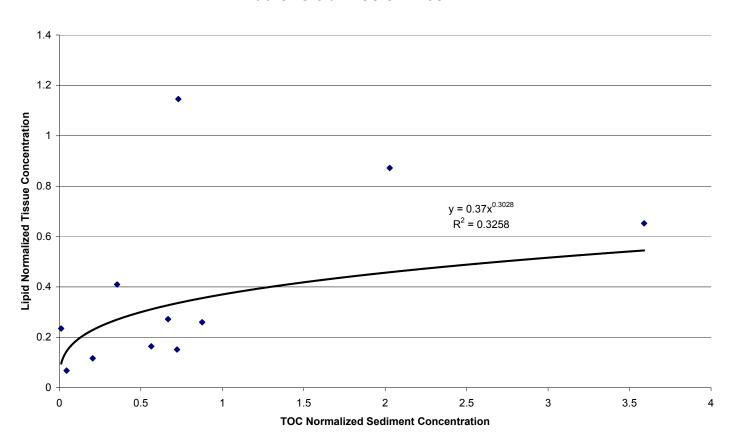



Figure 7-4
Fiddler crab Aroclor 1268 BAF

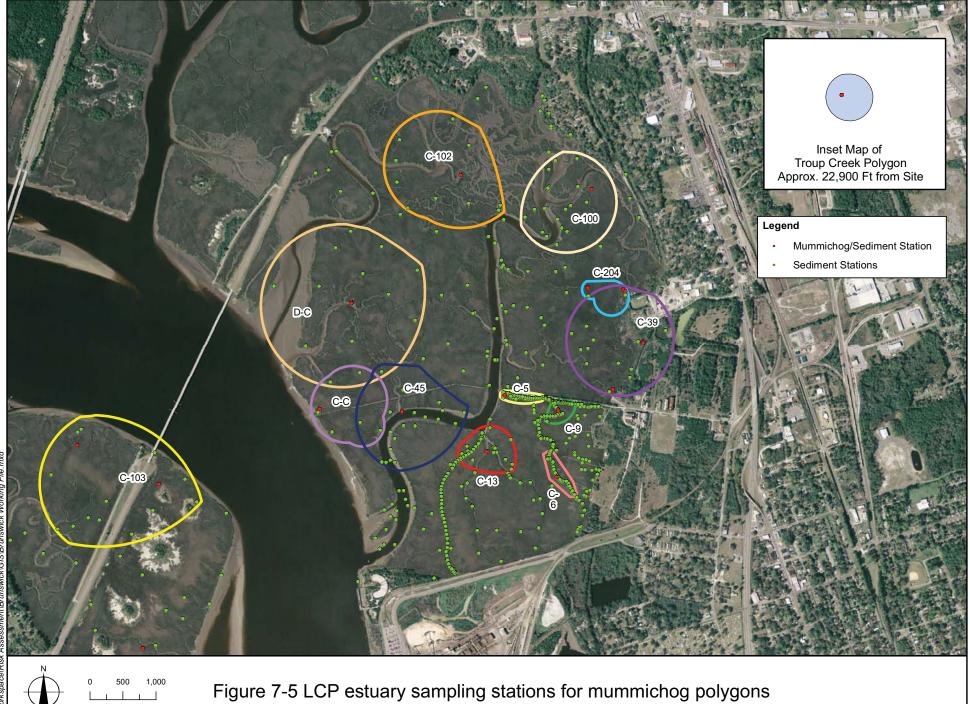
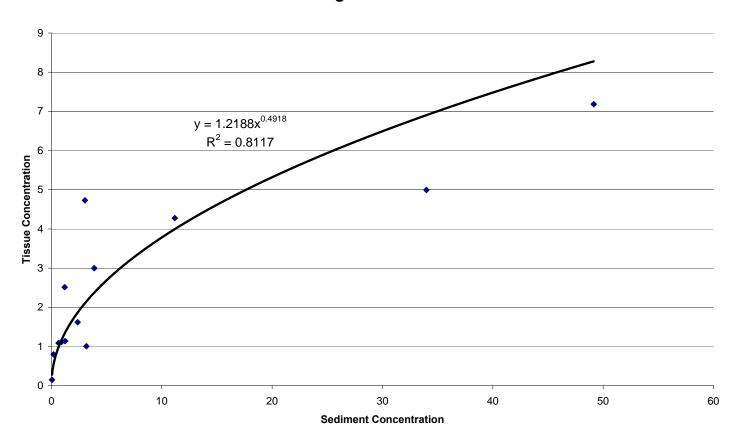



Figure 7-6
Mummichog Aroclor 1268 BAF

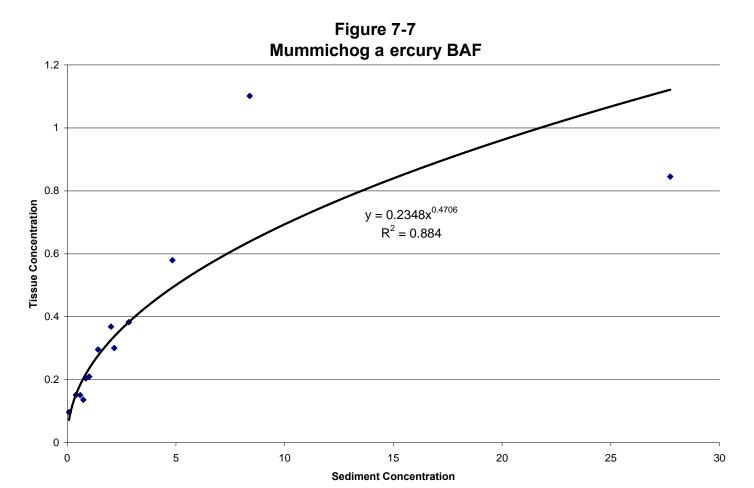


Figure 7-8
Blue Wab Aroclor 1268 BAF

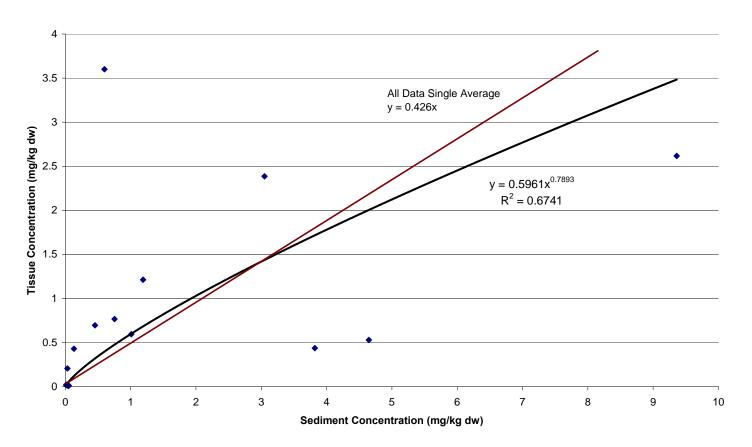


Figure 7-9
Blue Crab a ercury BAF

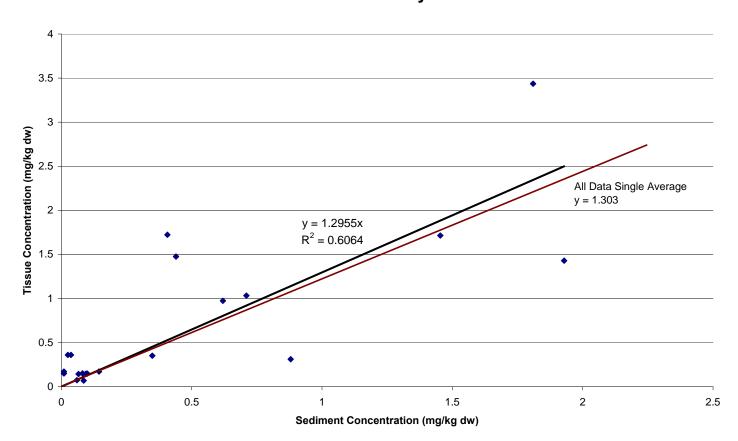


Figure 7-10
Red Xrum Aroclor 1268 BAF

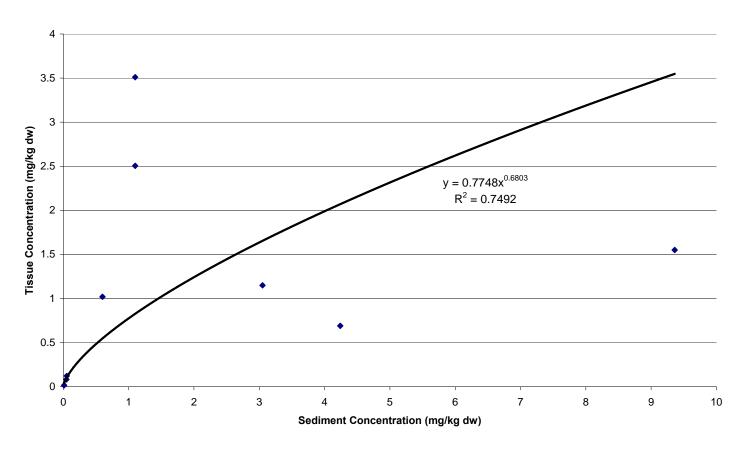


Figure 7-11
Red Xrum a ercury BAF

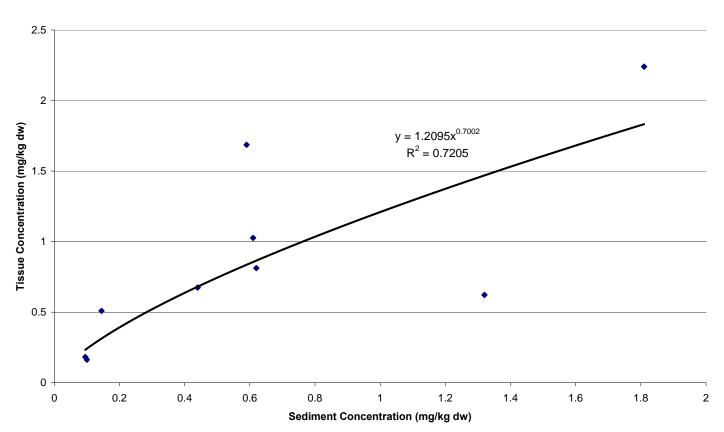


Figure 7-12 Black Xrum Aroclor 1268 BAF

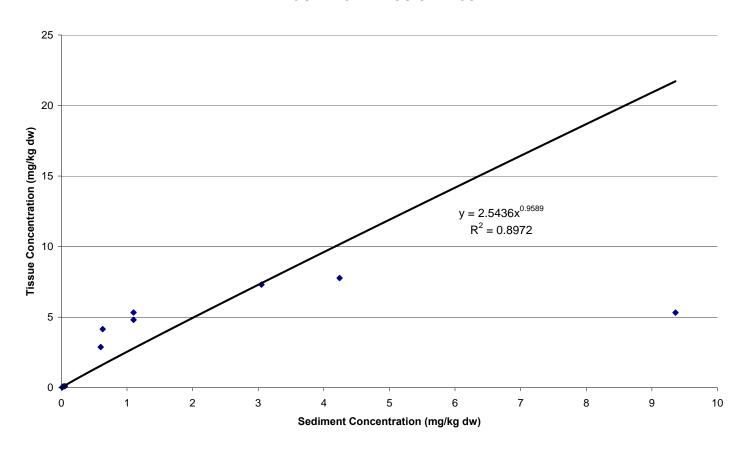


Figure 7-13
Black Xrum a ercury BAF

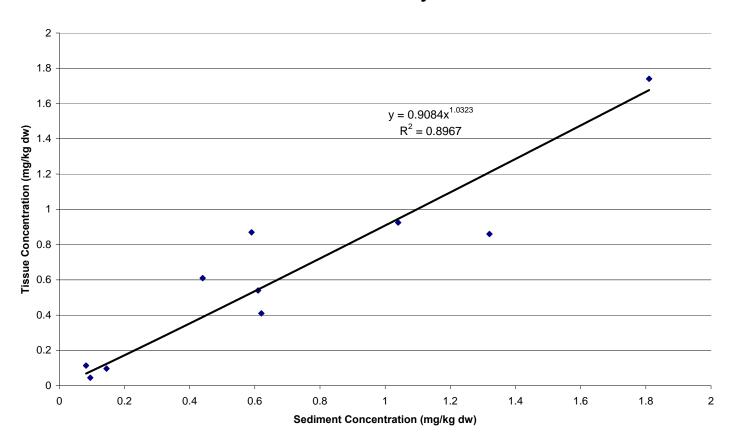


Figure 7-14
Silver derch Aroclor 1268 BAF

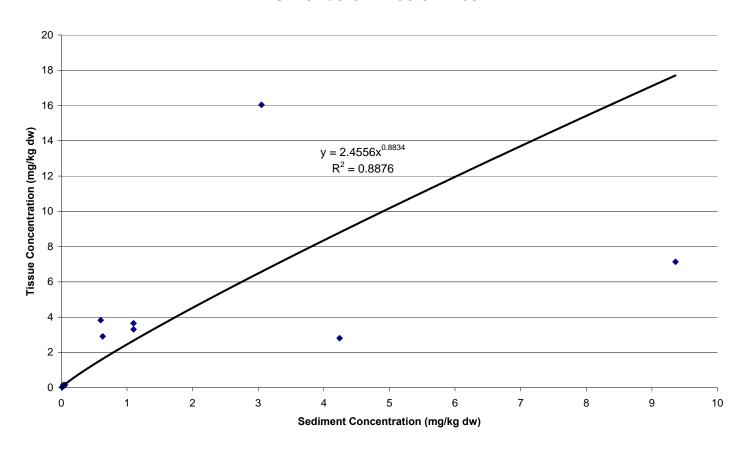


Figure 7-15
Silver derch a ercury BAF

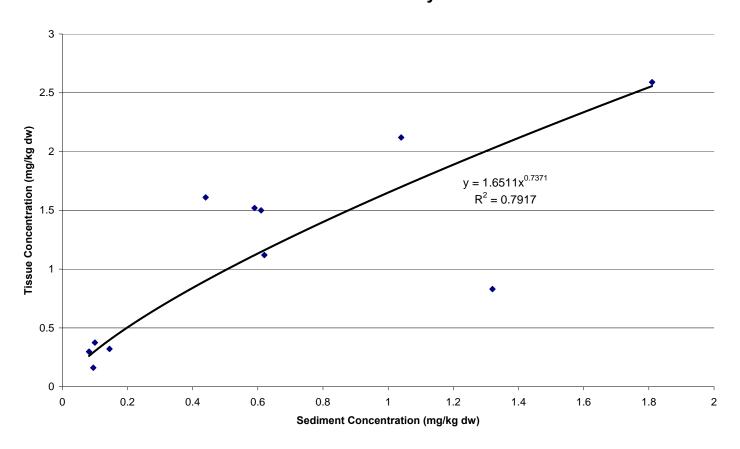


Figure 7-16
Spotted geatrout Aroclor 1268 BAF

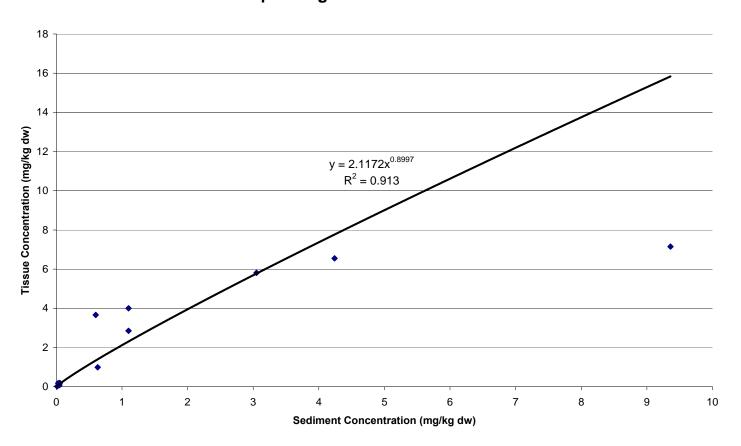


Figure 7-17
Spotted geatrout a ercury BAF

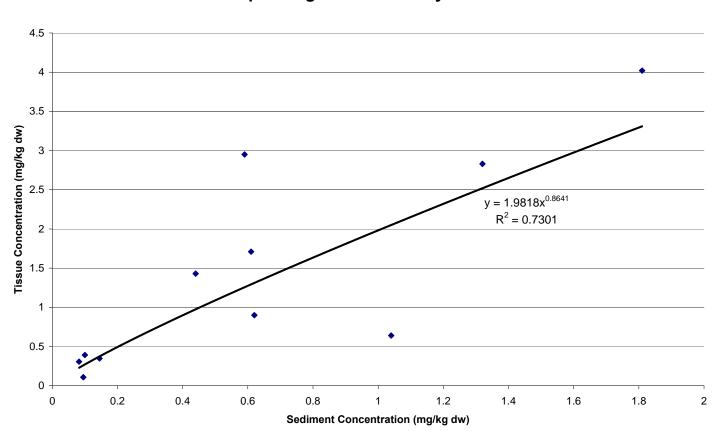


Figure 7-18
Striped a ullet Aroclor 1268 BAF

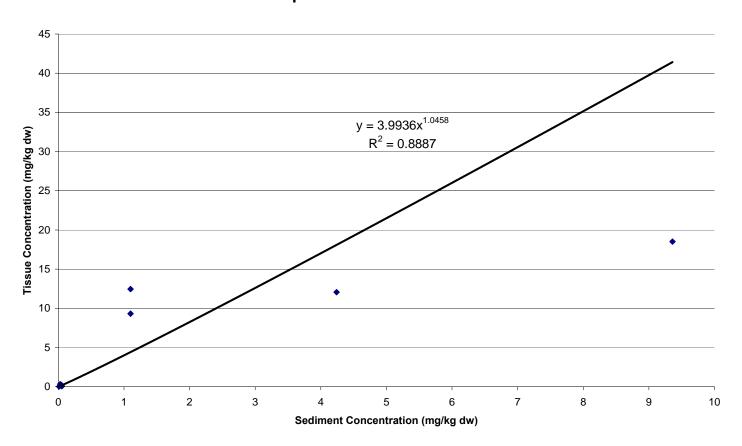
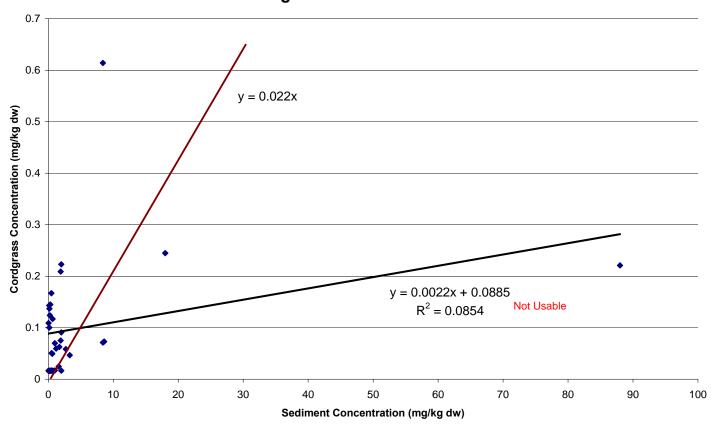



Figure 7-19
Striped a ullet a ercury BAF

Figure 7-20 Cordgrass Aroclor 1268 BAF

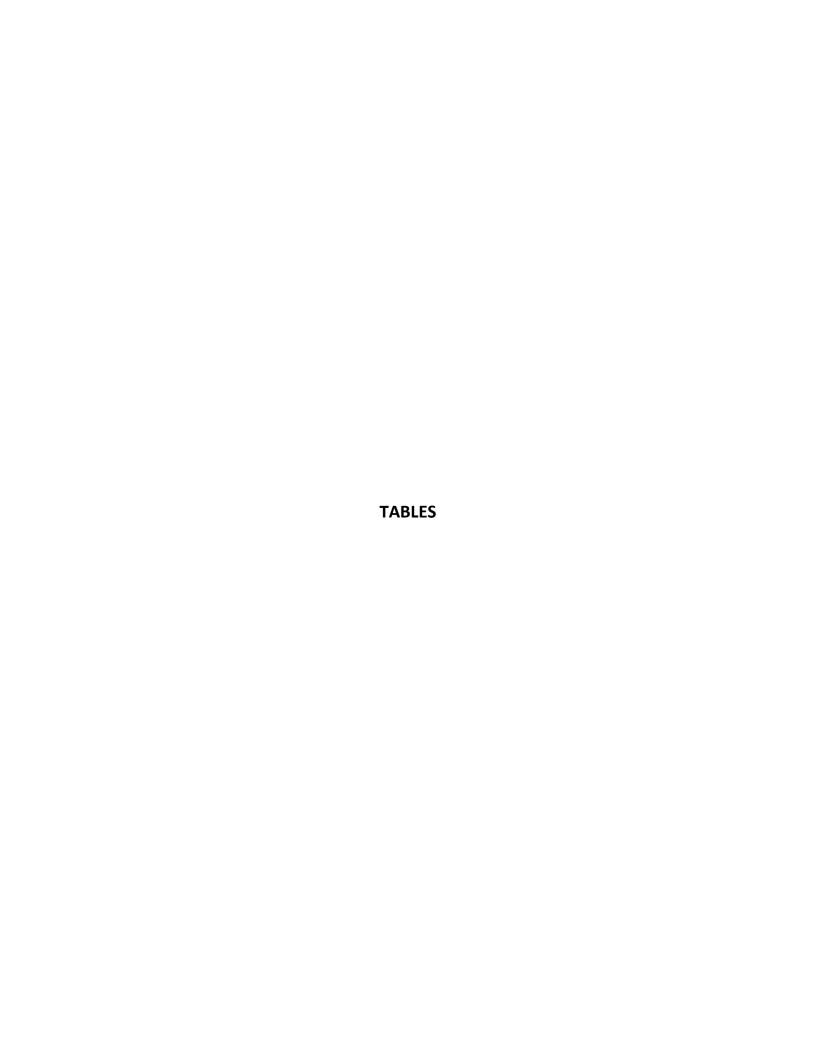


Table 3-1_Basic experimental design for data generation and analysis in baseline ecological risk assessment (BERA) of estuary at LCP Site (2000 - 2007)

Study	Year(s)	Analytica	Typical detection	
(measurement)	of study	method	limit	Other details (for each sampling station)
		<u>s</u>	urface Water Cher	nistry
General water quality characteristics	2000 - 2007	Hydrolab		Temperature, salinity, specific conductance, turbidity, pH, and dissolved oxygen evaluated
Total mercury	2000 - 2007	1631E	0.07 ng/L	Evaluated by "clean-hands" technique
Methylmercury	2000 - 2005	Bloom, 1989	0.02 ng/L	Evaluated by "clean-hands" technique
Aroclor 1268	2000 - 2007	8082	0.001 ug/L	
Lead	2000 - 2007	200.8	0.002 ug/L	
		<u> </u>	Surface Water Tox	<u>icity</u>
Mysids	2000	1007		7-day test designed to evaluate chronic effects; 8 replicates per sampling station; evaluation of survival and growth of mysids exposed to water in laboratory
Sheepshead minnows	2000	1004		7-day test designed to evaluate chronic effects; 4 replicates per sampling station; evaluation of survival and growth of fish exposed to water in laboratory
		<u>Sur</u>	face Sediment Che	emistry b
Grain-size distribution	2000-2007	ASTM D-422	1% passing sieve	
Total organic carbon	2000-2007	ASTM D4129-82M	0.02% (dry wt)	
Total mercury	2000-2007	1631E	0.001 mg/kg (dry wt)	<u></u>
Methylmercury	2000, 2005, and 2007	Bloom, 1989	0.008 µg/kg (dry wt)	
Aroclor 1268	2000-2007	8082	0.003 mg/kg (dry wt)	
Lead	2000-2007	6020	0.02 mg/kg (dry wt)	
Total PAHs	2000-2007	8270C	0.001 mg/kg (dry wt)	18 different PAHs evaluated
Secondary metals	2004 - 2006	6010B/6020	<1 mg/kg (dry wt)	21 different metals evaluated
Simultaneously ex- tracted metals (SEM	2006	6010B-SEM	1 mg/kg (dry wt)	6 different metals (Cd, Cu, Pb, Ni, Ag, and Zn) evaluated
Acid-volatile sulfide (AVS)	2006	EPA (1991)	0.5 mg/kg (dry wt)	
(AVO)		e	rface Sadiment To	b
		<u>5u</u>	rface Sediment To	<u>oxicity</u>
Amphipods	2000 - 2006	EPA/600/R-01/020		Main Amphipod Study: 28-day chronic test; 5 replicates per sampling station; evaluation of survival, growth, and reproduction of amphipods exposed to sediment in laboratory
	2006	EPA/600/R-01/020		Apparent Effects Threshold (AET) Study: As above except only 1 replication per sampling station
	2006			Equilibrium Partitioning Study: evaluation of SEM/AVS ratio in the context of 2006 amphipod toxicity
	2006	Metals: usually 6020A; Arolors: 8082; Total	Various	<u>Toxicity Identification Evaluation (TIE)</u> Analytical methods pertain to pore-water analyses
Grass shrimp	2000 - 2005	Special Lee laboratory test		Evaluation of survival, reproduction (three different measurements and DNA strand damage (Comet test) of shrimp exposed for 2 months in the laboratory to estuarine sediment
	2002 - 2007	Special Lee field test		Direct evaluation of reproduction and DNA strand damage (Comet test) of embryos of gravid female shrimp collected in field

Table 3-1_Continued

Study	Year	Analytical	Typical detection	
(measurement)	of study	method ^a	limit	Other details (for each sampling station)
		Benthic (Community Surfa	b nce Sediment
Benthic macro- invertebrates	2000	Relative numerical abundance		Evaluation of number of taxa, taxonomic groups, and individuals; density of individuals; diversity and equitability indices
	Biota	Collected for Ev	aluation of Chemic	cal Body Burdens (Residue)
Insects	2000			1 replicate (11 g) of combined grasshoppers, butterflies, and moths (from southwestern corner of Domain 3)
Cordgrass	2005			1 replicate (>100 g) per sampling station collected above 15 cm from ground
Eastern oysters	2006			3 replicates of about 100 composited young-of-year (Year 0) oysters and 20 composited older (Years I and II) oysters
Fiddler crabs	2000-2007			2 - 7 replicates of about 8 - 50 composited crabs (mostly males) replicate weight = about 7 - 63 g
Grass shrimp	2000-2007			3 replicates of individual gravid female shrimp plus about 50 composited male and female shrimp shrimp for body burden analysis (performed only in 2006)
Blue crabs	2000-2007			6 - 7 replicates of individual male crabs; crab length (point-to-point on carapace) = about 70 - 240 mm (32 - 375 g)
Mummichogs	2000-2007			1 to 4 replicates of 1 - 40 composited fish (about 35 - 110 mm in length); replicate weight = 5 - 100 g
Silver perch	2000-2007			8 replicates of individual silver perch; fish length (total length) = 113 - 207 mm (15 - 122 g)
Red drum	2000-2007			1 - 8 replicates of individual red drum; fish length (total length) = 320 - 475 mm (431 - 1,083 g)
Black drum	2000-2007			8 replicates of individual black drum; fish length (total length) = 155 - 320 mm (52 - 541 g)
Spotted seatrout	2000-2007			8 replicates of individual spotted seatrout; fish length (total length) = $210 - 450 \text{ mm}$ ($100 - 852 \text{ g}$)
Striped mullet	2004 - 2007			2 - 8 replicates of individual striped mullet; fish length (total length) = 200 - $340\ mm$ (106 - $568\ g)$
			sidue) Analyses Pe	
		<u>(Whol</u>	e Bodies Typically	Analyzed)
Total mercury	2000 - 2007	1631E	0.0001 mg/kg (wet wt)	
Methylmercury	2000, 2005, and 200	, ,	0.0004 mg/kg (wet wt)	
Aroclor 1268	2000 - 2007	8082	0.0006 mg/kg (wet wt)	
Lead	2000 - 2007	6020	0.001 mg/kg (wet wt)	
Lipids	2000 - 2007	NOAA NOS ORCA 7	1 0.05% (wet wt)	Evaluated in just blue crabs and large finfishes (not reported).

^aAnalytical methods are U. S. EPA methods unless otherwise indicated.

^bSurface sediment is defined as between 0 and 15 cm in depth.

Table 3-2_Sampling stations and associated environmental media for surface water of major creeks of estuary at LCP Site during 2000 - 2007 $^{\rm a}$

Environmental											
media	2000	2002	2003	2004	2005	2006	2007				
		<u>Ma</u>	in Canal								
Surface water (for chemistry and/or toxicity testing in 2000)	C-1 to C- 5				C-1 to C- 5	C-5	C-5				
Mummichogs (for body burden analysis)		C-5	C-5	C-5	C-5	C-5	C-5				
<u>Eastern Creek</u>											
Surface water (for chemistry and/or toxicity testing in 2000)	C-6 to C-9				C-6 to C-9	C-9	C-9				
Mummichogs (for body burden analysis)	C-6, C-9										
		Western (Creek Compl	<u>ex</u>							
Surface water (for chemistry)	C-10 to C-15				C-10 to C-15	C-15	C-15				
Mummichogs (for body burden analysis)	C-13	C-13	C-13	C-13	C-13						
		<u>Pur</u>	vis Creek								
Surface water (for chemistry and/or toxicity testing in 2000)	C-16, C-29, C-36										
Blue crabs (for body burden analysis)			North ar	nd South Purv	vis Creek						
Large finfishes (for body burden analysis)				Purvis Cre	ek						

 $^{^{\}rm a}$ These creek locations are illustrated in Figure 3-3. Coordinates of the locations are presented in Appendix A.

Table 3-3_ Sampling stations and associated environmental media for surface sediment of major creeks of estuary at LCP Site during 2000 - 2007 $^{\rm a,\ b}$

Environmental media	2000	2002	2003	2004	2005	2006	2007
		<u>Mair</u>	n Canal				
Surface sediment (for chemistry and/or toxicity testing)	C-1 to C- 5	C-1 to C- 5	C-1 to C- 5	C-1 to C- 5	C-5	C-5	C-5
Benthic macroinvertebrates (for community study)	C-5						
Grass shrimp (for toxicity testing and/or body burden analysis)		C-5	C-5	C-5	C-5	C-5	C-5
• ,		<u>Easte</u>	rn Creek				
Surface sediment (for chemistry and/or toxicity testing) Benthic	C-6 to C-9	C-6 to C-9	C-6 to C-9	C-6 to C-9	C-6, C-7, C-9	C-6, C-7, C-9	C-6, C-9
macroinvertebrates (for community study)	C-7						
Grass shrimp (for toxicity testing and/or body burden analysis)					C-6	C-6	C-6
		Western C	reek Complex				
Surface sediment (for chemistry and/or toxicity testing)	C-10 to C-15	C-13, C-15	C-13, C-15	C-13, C-15	C-10, C-12 to C-15	C-15	C-15
Grass shrimp (for toxicity testing and/or body burden analysis)					C-15	C-15	C-15
		Purvi	c s Creek				
Surface sediment (for chemistry and/or toxicity testing)	C-16, C-29, C-36, M-44, M-28/NOAA10	C-16,	C-16, M-28/NOAA10	C-16, M-28/NOAA10	C-16, C-29, C-36, M-44, M-28/NOAA10	C-16, C-29, C-36, M·I 28/NOAA10	M-28/NOAA10
Benthic macroinvertebrates (for community study)	C-16						
Cordgrass (for body burden analysis)	M-28/NOAA10						
Eastern oysters (for body burden analysis)						M-28/NOAA10	
Fiddler crabs (for body burden analysis)	M-28/NOAA10	M-28/NOAA10	M-28/NOAA10	M-28/NOAA10		M-28/NOAA10	M-28/NOAA1

^aThese creek locations are illustrated in Figure 3-4. Coordinates of the locations are presented in Appendix A.

b In addition to these sampling stations for surface sediment in major creeks, 50 sediment samples were collected in 2006 from the Main Canal, Eastern Creek, and Western Creek Complex (a total of 150 samples; refer to Appendix G) to derive apparent effects thresholds (AETs) for chemicals of potential concern (COPC).

^CLocations identified as marsh stations (M-44 and M-28/NOAA10) reflect conditions in Purvis Creek.

Table 3-4_Sampling stations and associated environmental media for surface sediment of marsh in estuary at LCP Site during 2000 - 2007 $^{\rm a,\ b}$

Environmental media	2000	2002	2003	2004	2005	2006	2007
			Domain 1	_			
Surface sediment (for chemistry and/or toxicity testing)	C-18, C-B7, C-D9, C-H7, C-K7, C-N2, M-25/NOAA4, M-19, M-AB, M-B7, M-D9, M-H7, M-K7, M-N2	C-B7, C-D9, C-H7,C-K7, C-N2, M-25/NOAA4, M-AB	C-B7, C-D9, C-H7, C-K7, C-N2, M-25/NOAA4, M-AB	C-B7, C-D9, C-H7, C-K7, C-N2, M-25/NOAA4, M-AB	M-25/NOAA4, M-B7, M-D9, M-H7, M-K7, M-N2, M-AB	M-25/NOAA4, M-B7, M-D9, M-H7, M-K7, M-N2, M-AB	M-25/NOAA4, M-AB
Cordgrass (for body burden analysis)	M-25/NOAA4, M-19				M-25/NOAA4, N AB	1.	
Eastern oysters (for body burden analysis)						M-25/NOAA4	
Grass shrimp (for toxicity testing and/or body burden analysis)		M-25/NOAA4	M-25/NOAA4	M-25/NOAA4	M-25/NOAA4	M-25/NOAA4	M-25/NOAA4
Fiddler crabs (for body burden analysis and/or population estimate)	M-25/NOAA4, M-AB	M-25/NOAA4, M-AB	M-25/NOAA4, M-AB	M-25/NOAA4, M-AB	M-25/NOAA4, M-AB	M-25/NOAA4, M-AB	M-25/NOAA4, M-AB
			Domain 2	<u>.</u>			
Surface sediment (for chemistry and/or toxicity testing)	M-20 to M-24, M-27	M-21, M-23, M-27	M-21, M-23, M-27	M-21, M-23, M-27, M-NOAA3, M-NOAA5, M-NOAA6, M-NOAA7, M-NOAA8, M-NOAA9	M-20, M-22, M-24, M-NOAA3, M-NOAA5, M-NOAA6, M-NOAA7, M-NOAA8, M-NOAA9	M-NOAA3, M-NOAA5, M-NOAA6, M-NOAA7, M-NOAA8, M-NOAA9	M-NOAA3, M-NOAA5, M-NOAA6, M-NOAA7, M-NOAA8, M-NOAA9
Cordgrass (for body burden analysis)	M-22, M- 27				M-NOAA3, M-NOAA5, M-NOAA6, M-NOAA7, M-NOAA8, M-NOAA9		
Eastern oysters (for body burden analysis)						M-NOAA3, M-NOAA5, M-NOAA6, M-NOAA7, M-NOAA9	
Fiddler crabs (for body burden analysis)				M-NOAA3, M-NOAA5, M-NOAA6, M-NOAA7, M-NOAA8, M-NOAA9	M-NOAA3, M-NOAA5, M-NOAA6, M-NOAA7, M-NOAA8, M-NOAA9	M-NOAA3, M-NOAA5, M-NOAA8	M-NOAA3, M-NOAA5, M-NOAA8

Table 3-4_Continued

Environmental media	2000	2002	2003	2004	2005	2006	2007
			<u>Domain</u> :	<u>3</u>			
Surface sediment (for chemistry and/or toxicity testing)	C-30 to C-35, M-26, M-37 to M-43	C-33	C-33	C-33, C-100, C-101, M-100, M-101, M-102		C-30,C-33, C-34, C-39, C-100, M-37, M-41, M-100, M-204	C-33, C-34, C-39, M-37
Benthic macroinvertebrates (for community study)	C-33						
Cordgrass (for body burden analysis)	M-26, M-40, M-42				M-37, M-100, M-101, M-102, M-204		
Grass shrimp (for toxicity testing and/or body burden analysis)					C-100	C-100	
Fiddler crabs (for body burden analysis)				M-100, M-101, M-102	M-37, M-100, M-101, M-102, M-204	M-37, M-100, M-204	M-37
Mummichogs (for body burden analysis)	C-33	C-33	C-33	C-33, C-100	C-33, C-39, C-100, C-204	C-33, C-34, C-39, C-100	C-33, C-34, C-39,
			Domain 4	c			
Surface sediment (for chemistry and/or toxicity testing)	C-45, M-46	C-45, C-A, C-B, C-C, C-D, M-46, M-A, M-B, M-C, M-D	C-45, C-A, C-B, C-C, C-D, M-46, M-A, M-B, M-C, M-D	C-45, C-A, C-B, C-C, C-D, C-102, M-46, M-A, M-B, M-C, M-D, M-103, M-104, M-105	C-45, C-C, C-D, C-102, M-103, M-104, M-105	C-45, C-C, C-D, C-102, M-103, M-104	
Cordgrass (for body burden analysis)	M-46				M-103, M-104		
Grass shrimp (for toxicity testing and/or body burden analysis)					C-D	C-D	
Fiddler crabs (for body burden analysis)				M-103, M-104, M-105	M-103, M-104	M-103, M-104	
Mummichogs (for body burden analysis)		C-45, C-C	C-45, C-C	C-45, C-C, C-102	C-45, C-C, C-D, C-102	C-C, C-D	

Table 3-4_Continued

Environmental media	2000	2002	2003	2004	2005	2006	2007
media	2000	2002			2003	2000	2007
			Blythe Isl				
Surface sediment (for chemistry and/or toxicity testing)				C-103, C-104, C-105, M-106, M-107, M-108	C-103, C-104, C-105, M-106, M-107, M-108	C-103, C-104, C-105, M-106, M-107, M-108	
Cordgrass (for body burden analysis)					M-106, M-107, M-108		
Grass shrimp (for toxicity testing and/or body burden analysis)					C-103, C-104, C-105	C-103, C-104, C-105	
Fiddler crabs (for body burden analysis)				M-106, M-107, M-108	M-106, M-107, M-108	M-106, M-107, M-108	
Mummichogs (for body burden analysis)				C-103, C-104	C-103, C-104, C-105	C-103, C-104, C-105	
		Feasi	bility Study (F	S) Locations			
Surface sediment (for chemistry and/or toxicity testing)					Areas C-1 to C- 5, Area M-6	Areas C-1 to C 5, Area M-6	- Areas C-1 to C- 5, Area M-6
		Disch	arges from L	ocal Sources			
Surface sediment (for chemistry and/or toxicity testing)					C-200 to C-203, M-200 to M-203		
Cordgrass (for body burden analysis)					M-200 to M-203		
Grass shrimp (for toxicity testing and/or body burden analysis)							Areas C-2 to C- 5, Area M-6
Fiddler crabs (for body burden analysis)					M-200 to M-203		
Mummichogs (for body burden analysis)					C-200 to C-203		

^aThese marsh locations, with the exception of those for other local sources (Glynn County Landfill, Brunswick Cellulose, Georgia Power Company, and Academy Creek Wastewater Treatment Plant) and the FS locations, are illustrated in Figure 3-5. Coordinates of the locations are presented in Appendix A.

^bMarsh locations identified by the "C" prefix, unlike those identified by the "M" prefix, exhibited drainage from creek water at time of sampling.

^cAn additional 50 sediment samples were collected from Domain 4 to determine differences in concentrations of chemicals of potential concern (COPC) between eastern and western parts of the domain (refer to Appendix I).

Table 4-1_ General water quality characteristics of Purvis Creek in estuary at LCP Site (2000 - 2007 data)^a - yearly averages

Year	Temperature (°C)	Salinity (ppt)	Specific conductance (mS/cm)	Turbidity (NTU)	pH (pH units)	Dissolved oxygen (mg/L)				
	,		,		, ,	() /				
			Purvis Creek (Stat	1011 C-36)						
2000	22.1	29.3	42.4			5.8				
2002	31.2	29.8	46.4		6.9	4.2				
2003	24.6	21.0	33.3		7.1	6.1				
2004	24.2	11.5	19.4	2.0	6.6	2.4				
2005 2006	20.1 22.8	24.7 31.6	27.3 48.4	3.2 14.1	7.4 7.3	6.9 4.4				
2007	25.8	1.2	19.3	>10	7.3 7.4	4.4				
					7.4					
Mean	: 24.40	21.30	33.79	>9.10		4.91				
		Mid-streto	ch of Purvis Creek (Station C-29)						
2000	22.4	29.3	45.5			6.4				
2002	31.0	30.0	47.2		7.0	4.5				
2003	24.8	21.0	33.7		7.0	6.9				
2004	24.3	11.6	19.6		7.0	2.8				
2005	19.9	25.7	28.0	7.8	7.4	6.6				
2006	23.0	31.6	48.0	25.5	7.6	4.2				
2007	25.7	1.2	19.3	10	7.3	5.0				
Mean	: 24.44	21.49	34.47	>14.43		5.20				
	Mouth of Purvis Creek (Station C-16)									
2000	22.4	25	33.3			7.2				
2002	30.8	30.3	47.6		7.0	4.1				
2003	25.2	22.0	34.2		7.2	7.4				
2004	24.2	11.9	20.1		7.1	3.0				
2005	20.1	27.6	30.4	8.6	7.5	6.8				
2006	22.8	31.6	48.4	21.3	7.6	4.2				
2007	25.7	1.2	19.4	>10	7.4	3.5				
Mean	: 24.46	21.37	33.34	>13.30		5.17				
		Ī	roup Creek (Refere	nce)						
2000	19.1	16.8	27.4		7.5	6.7				
2002	30.2	25.0	39.6		7.0	4.6				
2003	22.9	10.0	18.4		6.6	6.5				
2004	23.4	2.8	5.1		7.4	4.1				
2005	19.4	15.5	17.3	24.1	7.1	6.6				
2006	22.7	25.3	39.6	83.0	7.8	4.2				
2007	23.35	0.91	15.6	>10	7.2	3.6				
Mean	: 23.01	13.76	23.29	>39.03		5.19				
		Cr	escent River (Refer	ence)						
2000	18.5	34.3	52.0		7.5	5.5				
2002	30.0	30.6	48.1		7.1	3.2				
2003	23.0	25.0	39.5		6.9	6.2				
2004	23.9	17.0	27.7		7.0	4.2				
2005	19.3	24.1	27.0	64.4	7.0	6.8				
2006	19.8	32.6	49.8	16.6	7.7	6.0				
Mean	: 22.42	27.27	40.68	40.50		5.32				

^aCreek surface water was typically collected during ebb tide.

Table 4-2a_Concentrations of chemicals of potential concern (COPCs) in surface water in OU-1 LCP estuary (2000 - 2007 data) for exposure estimates

			OU-1 Stations ^a			
	Total Mercury (ng/L)	Dissolved Mercury (ng/L)	Methyl Mercury (ng/L)	Total Lead (ug/L)	Dissolved Lead (ug/L)	Aroclor-1268 (ug/L)
Count	33	15	20	30	15	30
Min	8.08	0.1	0.15	0.22	0.01	0.01
Max	188	5	2.23	2.50	2.50	1.0
Mean	43.68	3.15	0.70	1.33	0.49	0.30 (0.26) ^c
Std Dev	43.88	1.68	0.55	0.95	0.95	0.28
Coeff Var.	1.00	0.54	0.79	0.72	1.95	0.92
95 UCL	57.24	3.8	0.96	1.60	0.87	0.38
	Approx. Gamma	95% Bootstrap	Approx. Gamma	95% Bootstrap	95% Bootstrap	95% Bootstrap
Non-Detects	0	3	0	14	0	16

Reference Stations b

	Total Mercury (ng/L)	Dissolved Mercury (ng/L)	Methyl Mercury (ng/L)	Total Lead (ug/L)	Dissolved Lead (ug/L)	Aroclor-1268 (ug/L)
Count	13	5	10	11	5	13
Min	0.7	0.01	0.01	0.21	0.01	0.0005
Max	78	2.5	0.22	25.0	2.50	1.45
Mean	7.9	1.01	0.05	5.66	1.01	0.422 (0.0018) ^c
Std Dev	21.1	1.36	0.06	9.61	1.36	0.38
Coeff Var.	2.7	1.35	1.16	1.7	1.35	0.90
95 UCL	17.43	1.13	0.10	10.08	1.8	0.6
	Standard Bootstrap	Students	Approx Gamma	95% Bootstrap	95% Bootstrap	95% Bootstrap
Non-Detects	0	2	3	8	2	10

a - Includes stations C-5 mouth of Main Canal

C-9 mouth of Eastern Creek

C-15 mouth of Western Creek Complex

C-16 mouth of Purvis Creek

C-29 mid Purvis Creek

C-36 upper Purvis Creek

b - Includes Troup Creek and Cresent River

c - mean of detected values used in exposure calculations.

Table 4-2b_Chemicals of potential concern (COPCs) in surface water of major creeks in estuary at LCP Site (2000 - 2007 data)^{a, b} - yearly averages

	Mercu	ry (ng/L)	Methy	Imercury	Aroclor 1268	Lea	d (μg/L)
Year	Total ^c	Dissolved	(ng/L)	% of total mercury	Total (µg/L) ^{d,e}	Total	Dissolved ^f
		<u> </u>	Mouth of Mair	n Canal (C-5)			
2000	59	0.1			0.50	<u>2.5</u>	<u>2.5</u>
2002							
2003							
2004	 71		0.50	0.92	0.02		
2005 2006	71 37	4.4	0.59	0.83	0.83 0.082	0.393	0.046
2007	120	4.2			0.79	1.0	0.026
		M	outh of Easte	rn Creek (C-9)			
2000	188		0.94	0.49	0.19	<u>2.5</u>	
2002						<u>=</u>	
2003							
2004							
2005 2006	13 160	5.0	0.22	1.7	0.18	0.449	0.027
2007	43	3.4			0.44	0.449	0.027
		Mouth o	of Western Cr	eek Complex (C	-15)		
2000	12		0.22	1.8	<u>0.50</u>	<u>2.5</u>	
2002					<u>0.00</u>	<u>2.0</u>	
2003							
2004							
2005	36		0.89	2.5	0.000	0.444	0.005
2006 2007	15 49	3.8 2.9			0.026 0.22	0.441 1.1	0.025 0.021
		Unn	or Purvis Cro	ek (Station C-36)			
2000	00	·			="	2.5	0.50
2000 2002	99 11	<u>0.1</u> 	10 0.28	10 2.6	<u>0.50</u> <u>0.50</u>	<u>2.5</u> 25	<u>0.50</u>
2003	48		1.2	2.5	<u>0.36</u> 0.25	2 <u>5</u> 2.5	
2004	49		2.2	4.5	0.60	0.60	
2005	8.4		0.35	4.2	<u>0.010</u>	0.58	
2006	12	4.6			0.021	0.363	0.014
2007	23	3.2			0.024	0.41	0.018
		Mid-stre	tch of Purvis	Creek (Station C	:-29)		
2000	24		0.38	1.6	<u>0.50</u>	<u>2.5</u>	
2002	8.1		0.15	1.9	0.50	<u>25</u>	
2003	44		1.0	2.3	<u>0.25</u>	<u>2.5</u>	
2004 2005	46 9.8		1.6 0.36	3.5 3.7	<u>0.60</u> <u>0.010</u>	<u>0.60</u> 0.22	
2006	9.8 17	3.7	0.36	3. <i>1</i>	0.010 0.044	0.22	0.019
2007	29	4.7			0.031	0.57	0.019

Table 4-2b_Continued

	Mercu	ry (ng/L)	Methy	Imercury	Aroclor 1268	Lead	d (µg/L)
Year	Total ^c	Dissolved	(ng/L)	% of total mercury	Total d,e (μg/L)	Total	Dissolved ^f
		Mouth	n of Purvis Cr	eek (Station C-16			
2000 2002 2003 2004 2005 2006 2007	16 11 33 21 9.6 25 50	0.1 3.4 3.6	0.20 0.18 0.61 1.6 0.25	1.2 1.6 1.8 7.6 2.6	0.50 0.50 1.0 0.60 0.010 0.029 0.037	1.8 <u>25</u> <u>2.5</u> <u>0.60</u> 0.56 0.561 1.2	1.9 0.022 0.15
2000 2002 2003 2004 2005 2006 2007	3.3 1.1 2.1 4.6 4.7 1.8 78	0.1 1.0 1.3	7.00p Creek 0.036 0.050 0.012 0.22 0.088	1.1 4.5 4.8 1.9	0.50 0.50 0.25 0.60 0.50 0.0012 0.0024	2.5 25 2.5 0.60 0.213 0.43	2.5 0.010 0.025
		<u>C</u>	rescent Rive	r (Reference)			
2000 2002 2003 2004 2005 2006	1.7 1.2 1.2 1.6 1.2 0.70	0.1 0.60	0.012 0.043 0.012 0.047 0.008	3.6 2.9 	0.33 <u>0.50</u> <u>0.25</u> <u>0.60</u> <u>1.4</u> <u>0.0005</u>	2.5 25 2.5 0.60 	2.5 0.010

^aCreek surface water was typically collected during ebb tide.

b Concentrations of COPC identified by <u>underlining</u> were non-detected values that were assigned a value of 1/2 of detection limit.

^CThe U. S. EPA chronic ambient water quality criterion for mercury (total mercury) is 940 ng/L. (This value does not account for food-web uptake by biota.) The State of Georgia chronic ecological screening value (ESV) is 25 ng/L (based on marketability of fishes).

The State of Georgia water quality standard for total PCBs in coastal and marine estuarine waters is 0.03 µg/L.

^eThere are no U. S. EPA or Region 4 toxicological benchmarks for Aroclor 1268.

 $^{^{\}mbox{f}}_{\mbox{The State of Georgia water quality standard for lead (dissolved lead) is 8.1 <math display="inline">\mu\mbox{g/L}.$

Table 4-3a_Concentrations of COPCs in sediment for major areas in estuary at LCP Site (2000 - 2006 data) for exposure estimation

All concentrations in mg/kg dw

	Dom	ain 1			Main Canal		Blythe Island					
	Mercury	Aroclor-1268	Lead	Mercury	Aroclor-1268	Lead	Mercury	Aroclor-1268	Lead			
Count	63	63	37	111	111	86	48	48	48			
Min	0.01	0.053	2.1	0.196	0.25	3.9	0.01	0.028	2.6			
Max	62	300	210	55	570	69.9	1.99	0.67	38			
Mean	4.85	11.45	31	7.40	27.64	26.1	0.30	0.20	16.5			
Std Dev	10.69	39.83	32.5	8.951	70.67	11.18	0.37	0.166	7.27			
CoVariation	2.205	3.478	1.046	1.21	2.556	0.429	1.232	0.829	0.441			
95 UCL	11.51	23.43	40.7	8.72	41.71	28.1	0.39	0.25	18.3			
UCL Statistic	H-UCL	H-UCL	95% Bootstrap	Approx gamma	H-UCL	Students-t	95% Bootstrap	Approx gamma	Students-t			
Non-Detects	1	1	0	0	0	0	2	1/	0			

	Doma	ain 2			Eastern Creek	(Tro	Troup Creek Reference					
	Mercury	Aroclor-1268	Lead	Mercury	Aroclor-1268	Lead	Mercury	Aroclor-1268	Lead				
Count	71	71	71	116	114	90	14	14	14				
Min	0.18	0.0465	11	0.0437	0.0074	5.74	0.026	0.015	8				
Max	62.9	65	765	145	460	238	0.197	0.165	27.1				
Mean	3.85	3.75	40.9	20.28	49.57	35.7	0.08	0.05	17.6				
Std Dev	9.247	8.784	108.8	29.43	98.8	30.95	0.0438	0.0416	5.838				
CoVariation	2.4	2.324	2.663	1.451	1.993	0.867	0.533	0.819	0.331				
95 UCL	5.84	5.05	63.0	25.04	65.28	41.5	0.10	0.08	20.4				
UCL Statistic	95% Bootstrap	H-UCL	95% Bootstrap	95% Bootstrap	95% Bootstrap	95% Bootstrap	Students-t	H-UCL	Students-t				
Non-Detects	0	2	0	0	1	0	0	9	0				

	Doma	in 3		West	ern Creek Con	nplex		Area A	
	Mercury	Aroclor-1268	Lead	Mercury	Aroclor-1268	Lead	Mercury	Aroclor-1268	Lead
Count	90	90	90	101	101	101	290	288	213
Min	0.044	0.013	8.9	0.043	0.0079	13	0.01	0.0074	2.1
Max	8.37	9	1590	16.3	25	51.8	145	570	238
Mean	1.88	1.67	90.7	2.75	3.18	29.0	12	32.78	31
Std Dev	1.747	1.949	234.9	3.288	4.02	6.802	21.13	79.51	25.5
CoVariation	0.928	1.17	2.589	1.194	1.266	0.235	1.761	2.426	0.823
95 UCL	2.23	2.04	133	3.31	3.84	30.1	14.05	40.14	34.1
UCL Statistic	Approx gamma	Approx gamma	95% Bootstrap	95% Bootstrap	Approx gamma	Students-t	95% Bootstrap	95% Bootstrap	95% Bootstrap
Non-Detects	0	1	0	0	2	0	1	2	0

	Domain 4 Mercury Aroclor-1268 Lead				Purvis Creek		Estuary Area Weighted Grand Mean and UCL							
	Mercury	Aroclor-1268	Lead	Mercury	Aroclor-1268	Lead		Mercury	Aroclor-1268	Lead				
Count	99	99	99	71	71	71	Mean	1.70	2.49	38.6				
Min	0.03	0.0445	8.8	0.00711	0.007	2.03	95UCL	2.56	3.42	52.0				
Max	4.62	8.8	52.7	6.83	28	34.6								
Mean	0.63	1.14	21.7	1.22	3.78	17.4								
Std Dev	0.756	1.323	7.338	1.283	5.479	10.96								
CoVariation	0.856	1.161	0.339	1.056	1.451	0.629								
95 UCL	1.07	1.36	22.9	1.53	5.07	23.1								
UCL Statistic	H-UCL	95% Bootstrap	Students-t	Approx gamma	Approx gamma	95 Chebyshev								
Non-Detects	0	11	0	0	5	0								

CoVariation - Coefficient of Variation

Area A = Main Canal, Eastern Creek, and Domain 1

Concentrations of COPC greater than site-specific most sensitive threshold effects levels (TELs) but less than probable effects levels (PELs). (Table 4-3b and Sections 4.6, 4.7) are indicated by **yellow** background; and concentrations greater than PELs are identified by **red** background.

Table 4-3b_General sediment quality characteristics and initial chemicals of potential concern (COPCs in surface sediment for major areas and years in estuary at LCP Site (2000 - 2007 data)^{a, b, c - yearly averages}

	Size of areas in LCP Estuary		Silt ar	nd clay	Total orga	anic carbon	Total m	ercury	Aroclo	r 1268	Le	ad	Total I	PAHs
	(total area		Conc.	Sample	Conc.	Sample	Conc. (mg/kg,	Sample	Conc. (mg/kg,	Sample	Conc. (mg/kg,	Sample	Conc. (mg/kg,	Sample
Major area	of 789.26 acres)	Year	% (dw)	size (n)	% (dw)	size (n)	dw)	size (n)	dw)	size (n)	dw)	size (n)	dw)	size (n)
Domain 1	20.28 acres	2000	76.1	14	5.1	14	11	14	3.4	13	35	14	1.3	13
marsh)	(2.6%)	2002	61.5	7	3.3	7	20	7	32	7	21	7	0.40	7
		2003	74.4	7	3.5	7	7.2	7	5.5	7	26	7	<u>1.7</u>	7
		2004	62.5	7	3.4	7	3.3	7	10	7	27	7	<u>2.2</u>	7
		2005	71.9	7	5.8	7	12	7	66	7	38	7	<u>0.89</u>	7
		2006	60.0	7	4.4	7	1.8	7	3.9	7	24	7	0.29	7
		2007	20.1	2	1.6	2	0.44	2	0.58	2	12	2	0.49	2
Main Canal	1.54 acres	2000	60.0	5	3.4	5	4.5	5	5.8	5	23	5	<u>0.95</u>	5
creek)	(0.2%)	2002	50.4	5	2.4	5	4.8	5	14	5	17	5	<u>0.84</u>	5
		2003	65.6	5	2.6	5	6.7	5	10	5	23	5	0.82	5
		2004	60.3	5	4.1	5	3.9	5	12	5	23	5	<u>2.5</u>	5
		2005	87.7	1	3.7	1	1.1	1	4.2	1	26	1	<u>1.1</u>	1
		2006	70.8	1	4.7	1	7.0 (9.2*)	1 (50)	31 (51*)	1 (50)	41* (28)	1 (50)	2.2* (.98)	1 (50)
		2007	85.7	1	4.9	1	2.7	1	10	1	20	1	0.60	1
Eastern Creek	4.42 acres	2000	96.0	4	5.7	4	37	4	<u>6.4</u>	4	47	4	3.0	4
	(0.6%)	2002	73.1	4	3.5	4	20	4	230	4	23	4	1.5	4
		2003	83.3	4	3.7	4	34	4	14	4	43	4	3.5	4
		2004	80.0	4	4.3	4	10	4	22	4	27	4	4.8	4
		2005	75.6	3	4.3	3	57	3	52	3	38	3	2.7	3
		2006	67.9	3	5.8	3	5.0 (21*)	3 (50)	18 (54*)	3 (50)	31 (34*)	3 (50)	0.84 (1.6*)	3 (50)
		2007	79.9	2	5.0	2	4.8	2	10	2	110	2	4.4	2
Vestern	2.15 acres	2000	97.7	6	5.5	6	5.5	6	0.70	6	26	6	0.23	6
Creek	(0.3%)	2002	97.5	2	4.6	2	1.4	2	2.4	2	32	2	0.098	2
Complex	, ,	2003	89.9	2	3.6	2	1.6	2	1.0	2	26	2	2.0	2
•		2004	92.6	2	4.4	2	1.4	2	2.6	2	27	2	0.23	2
		2005	87.4	5	4.0	5	1.6	5	4.5	5	28	5	1.0	5
		2006	92.1	1	4.2	1	0.46 (3.5*)	1 (50)	1.0 (3.9*)	1 (50)	26 (33*)	1 (50)	0.43 (0.91*)	1 (50)
		2007	91.2	1	4.8	1	1.8	1	2.5	1	22	1	0.32	1
Domain 2	130.12 acres	2000	91.0	6	4.0	6	22	6	2.5	6	32	6	0.35	6
marsh)	(16.5%)	2002	95.4	3	5.1	3	9.0	3	27	3	25	3	0.50	3
	•	2003	95.0	3	4.2	3	13	3	10	3	31	3	1.4	3
		2004	81.7	9	5.3	9	1.4	9	2.5	9	27	9	0.41	9
		2005	77.3	9	6.1	9	2.3	9	6.2	9	87	9	9.6	9
		2006	67.0	6	5.8	6	1.1	6	3.7	6	29	6	0.21	6
				-		6		6		-		-		6

Table 4-3b_Continued

	Size of areas in LCP Site		Silt on	nd clay	Total orga	nio oorbon	Total me	orougu.	Aroclor	- 1060	Lo	ad	Total F	۵۸ ۵۵
	(total area		Conc.	Sample	Conc.	Sample	Conc.	Sample	Conc.	Sample	Conc.	Sample	Conc.	Sample
	(total area		Conc.	Jampie	Conc.	Gample	(mg/kg,	Gample	(mg/kg,	Jampie	(mg/kg,	Cample	(mg/kg,	Gample
Major area	of 789.26 acres)	Year	% (dw)	size (n)	% (dw)	size (n)	dw)	size (n)	dw)	size (n)	dw)	size (n)	dw)	size (n)
Domain 3	156.21 acres	2000	76.6	14	5.2	14	1.5	14	0.53	14	110	14	<u>2.6</u>	14
(marsh)	(19.8%)	2002	12.3	1	0.91	1	0.10	1	0.14	1	16	1	0.12	1
		2003	9.0	1	0.94	1	0.34	1	0.32	1	50	1	0.67	1
		2004	75.8	6	4.6	6	0.97	6	1.5	6	17	6	0.37	6
		2005	74.4	11	5.2	15	2.8	15	3.3	15	74	15	<u>2.2</u>	15
		2006	58.7	9	5.4	9	2.5	9	2.4	9	75	9	0.49	9
		2007	68.5	4	7.9	4	3.9	4	2.4	4	490	4	<u>9.50</u>	4
Domain 4	417.24 acres	2000	97.5	2	4.6	2	0.42	2	0.12	2	19	2	0.16	2
(marsh)	(52.9%)	2002	81.1	10	4.7	10	0.80	10	1.8	10	15	10	0.29	10
()	(/	2003	89.6	10	3.6	10	1.3	10	0.72	10	22	10	0.66	10
		2004	95.0	14	5.1	14	0.63	14	1.5	14	19	14	0.95	14
		2005	81.7	7	6.3	7	0.99 (1.3*)	7 (25)	1.6 (1.7*)	7 (25)	28* (28*)	7 (25)	2.2* (0.67)	7 (25)
		2006	74.4	6	5.8	6	0.77	6	0.64	6	26	6	2.0	6
North Purvis	31.27 acres	2000	66.7	3	4.6	3	1.4	3	0.75	3	22	3	0.41	3
Creek	(4.0%)	2002												0
		2003												0
		2004												0
		2005	86.5	3	4.6	3	1.4 (2.0*)	3 (25)	2.6 (4.9*)	3 (25)	27* (21)	3 (25)	0.95* (0.72)	3 (25)
		2006	82.6	2	5.0	2	0.89	2	1.2	2	28	2	0.54	2
South Purvis	26.03 acres	2000	54.5	2	3.0	2	0.40	2	0.46	2	13	2	0.13	2
Creek	(3.3%)	2002	51.4	2	2.4	2	0.62	2	3.0	2	16	2	0.30	2
	. ,	2003	63.4	2	3.7	2	0.44	2	0.60	2	18	2	0.20	2
		2004	57.4	2	3.4	2	1.8	2	9.4	2	16	2	0.12	2
		2005	48.7	2	2.7	2	0.76* (0.71)	2 (25)	2.8 (3.9*)	2 (25)	16* (12)	2 (25)	0.61 (0.93*)	2 (25)
		2006	49.4	2	3.5	2	0.35	2	1.0	2	18	2	1.4	2
		2007	82.2	1	5.8	1	0.59	1	1.1	1	20	1	0.20	1
		2007	02.2	ļ	5.6	1	บ.อฮ	ı	1.1	ļ	20	Į.	0.20	- 1

Table 4-3b_Continued

	Size of areas in LCP Site		Silt an	id clay	Total orga	nic carbon	Total m	oercury	Aroclo	r 1268	ا	ead	Total	PAHs
	(total area		Conc.	Sample	Conc.	Sample	Conc. (mg/kg,	Sample	Conc. (mg/kg,	Sample	Conc. (mg/kg,	Sample	Conc. (mg/kg,	Sample
Major area	of 789.26 acres)	Year	% (dw)	size (n)	% (dw)	size (n)	dw)	size (n)	dw)	size (n)	dw)	size (n)	dw)	size (n)
Blythe		2004	66.3	6	5.0	6	0.28	6	0.36	6	17	6	0.089	6
Island		2005	83.7	6	5.5	6	0.84	6	0.38	6	24	6	0.80	6
		2006	67.0	6	5.2	6	0.38	6	0.23	6	21	6	0.18	6
Feasibility		2005	49.4	5	4.5	6	2.8	6	4.8	6	280	6	<u>11</u>	6
Study (FS)		2006	52.0	6	5.1	6	2.3	6	3.9	6	96	6	1.0	6
Locations		2007	43.5	5	4.8	6	2.3	6	3.0	6	59	6		0
Point Source Discharges from Non-LCP Source		2005	62.70	3	6.6	8	1.1	8	1.6	8	48	8	1.28	8
Troup Creek		2000	71.5	2	3.4	2	0.26	2	0.038	2	18	2	0.84	2
(reference)		2002	81.0	2	3.4	2	0.066	2	0.048	2	19	2	0.060	2
		2003	66.8	2	2.8	2	0.060	2	<u>0.13</u>	2	15	2	0.080	2
		2004	69.8	2	2.9	2	0.037	2	0.034	2	10	2	0.060	2
		2005	76.2	2	4.4	2	0.15	2	0.045	2	20	2	<u>0.12</u>	2
		2006 2007	51.6 82.3	2	4.0 4.2	2 2	0.082 0.10	2	0.028 0.047	2	22 19	2	0.040 0.039	2 2
Crescent		2000	21.1	2	0.30	2	0.0054	2	0.022	2	4.0	2	0.31	2
River		2002	87.6	2	3.6	2	0.028	2	<u>0.11</u>	2	14	2	0.060	2
(reference)		2003	47.3	2	1.4	2	0.024	2	<u>0.11</u>	2	9.8	2	0.079	2
		2004	3.9	1 0	0.2 2.7	1	0.010	1	0.060	1	2.2	1	0.060	1
		2005 2006	46.2	2	2. <i>7</i> 1.4	2 2	0.062 0.031	2 2	<u>0.00050</u> 0.0018	2 2	12 12	2 2	<u>0.128</u> <u>0.032</u>	2 2
		2000	40.2	2	1.4	4	0.031	4	0.0016	2	12	۷	<u>U.U3Z</u>	2

Table 4-3b_Continued

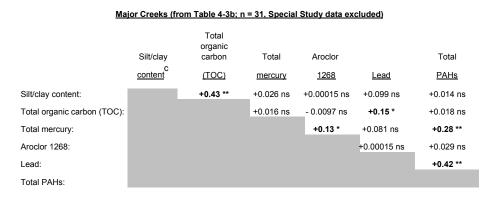
^CConcentrations of COPC greater than or equal to the most sensitive site specific threshold effect level (TEL) but less than the site-specific probable effect levels (PELs) or effects range low (ER-L) based on toxicity test results are indicated by **yellow** background; and concentrations greater than site-specific PELs or ER-Ls are identified by **red** background.

	<u>Literature TEL</u> (mg/kg, dw) ¹	Literature PEL (mg/kg, dw) ²	Site-specific TEL (mg/kg, dw)	Site-specific PEL or ER-L (mg/kg, dw)
●Total mercury:	0.13	0.7	1.4 ³	3.2 ^{3a}
• Aroclor 1268:	0.022 (derived for other PCBs)	0.189 (Total PCBs)	3.2 ³	12.8 ^{3b}
• Lead:	30.24	112	41 ⁴	60 ^{4a}
Total PAHs:	1.684	6.68	0.8 4	1.5 ^{4a}

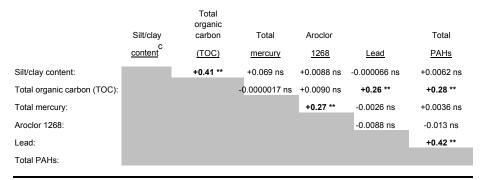
TEL - Threshold Effect Level

^aMinor creeks (creeks other than Main Canal, Eastern Creek, Western Creek Complex, North Purvis Creek, and South Purvis Creek) are considered part of the marsh in Domains 1, 2, 3, and 4 of LCP estuary. For North Purvis Creek and South Purvis Creek, creek and associated "marsh" stations are combined.

bNon-detected concentrations of COPC (primarily PAHs) identified by <u>underlining</u> consisted of at least one non-detected value that was assigned a value of 1/2 of detection limit.


¹ EPA Region 4 Sediment Screening Levels

² McDonald et al., 1996


³ Most sensitive endpoint - embryo development of grass shrimp (See Table 4-22) a - based on ER-L; b - based on PEL

⁴ Most sensitive endpoint - survival of amphipods (See Table 4-20) a - based on ER-L

Table 4-4_Linear coefficients of determination (r²) for basic physical/chemical characteristics and initial chemicals of potential concern (COPCs) in surface sediment of major creeks and marsh in estuary at LCP Site (2000 - 2007 data)^{a,b}

Marsh (from Table 4-3b; n = 27, Special Study data excluded)

^aSurface sediment is from 0 - 15 cm in depth.

^bLinear coefficients of determination (2) are statistically nonsigificant (based on "t" tests) when associated with the symbol "ns." Statistical significance at P criterion = 0.05 and 0.01 is indicated, respectively, by the symbols *" and "**." The 2 values are preceded by a positive or negative sign to indicate the "direction" of the underlying "r" values.

 $^{^{\}text{C}}\text{Silt/clay}$ was considered to be particles less than 75µ in size.

Table 4-5_Other metals (including some COPCs) in surface sediment for major areas and years in estuary at LCP Site (2004 - 2006 data)

						М	etals	(mg/kg	, dw)	ı, b												
Sampling station		Ming	HITUTT ACT	mony Are	anic Bai			drium Calc	Jun Chr	omium Cot	o ^{olik} co	ppet HOT	, Mac	nesium Naf	ganese wi	ckel od	gesium Se	Jenium Silv	e ^s 50 ⁸	un The	January Van	ladium Linc
							Dom	ain 1 (N	(larsh													
K7 in Marsh Grid	2004 2005 2006 Mean :	33,000 45,000 25,000 34,000	2.7 0.5 0.07 1.1	12 11 11	33 45 28 35	1.6 1.8 1.6 1.7	0.25 0.5 0.14 0.30	2,300 3,100 3,700 3,000	50 92 62 68	7.1 7.1 6.3 6.8	13 17 12 14	28,000 24,000 23,000 25,000	6,200 7,700 8,000 7,300	320 190 330 280	14 19 12 15	3,700 4,400 4,000 4,000	0.5 0.5 0.82 0.61	0.5 0.5 0.13 0.38	11,000 14,000 22,000 16,000	2.5 0.5 0.23 1.1	65 95 73 78	65 80 72 72
H7 in Marsh Grid																						
	2004 2005 2006 Mean:	36,000 46,000 22,000 35,000	1.0 0.5 0.06 0.52	14 12 9.9 12	36 47 24 36	1.9 1.8 1.4 1.7	0.25 0.5 0 0.29	2,400 9,800 3,600 5,300	57 76 56 63	7.6 9.6 5.2 7.5	12 17 11	33,000 29,000 21,000 28,000	7,600 9,200 7,800 8,200	300 280 260 280	16 20 11	4,800 4,600 3,600 4,300	0.5 0.5 0.70 0.57	0.5 0.5 0.12 0.37	15,000 15,000 24,000 18,000	1.2 <u>0.5</u> 0.20 0.63	77 89 66 77	63 89 64 72
AB Seep	2004 2005 2006	8,000 940	1.0 0.11	4.9 0.84	17 6.3	0.54	0.25 0.01	770 460	14 1.9	2.6 0.24	3.5 0.470	7,600 1,000	1,700 1,300	45 11	4.8 0.59	960 400	0.5 0.16	0.5 0.0035	3,600 8,700	0.5 0.01	22	22 2.7
	Mean:	4,500	0.56	2.9	12	0.31	0.13	620	8.0	1.4	2.0	4,300	1,500	28	2.7	680	0.33	0.25	6,200	0.26	12	12
							Main	Canal (Creek)	1												
Mouth (C-5)	2004 2005 2006	30,000 49,000 23,000	2.5 0.5 0.02	13 14 10	35 51 28	1.6 1.9 1.3	0.25 0.5 0.23	6,100 15,000 8,600	68 82 57	7.5 10 6.6	12 16 11	28,000 36,000 25,000	7,700 9,800 8,600	510 640 450	16 22 13	4,100 4,300 4,000	0.5 0.5 0.39	0.5 0.5 0.13	16,000 12,000 28,000	2.0 5.3 0.26	75 92 53	84 86 70
	Mean:	34,000	1.0	12	38	1.6	0.33	9,900	69	8.0	13	30,000	8,700	530	17	4,100	0.46	0.38	19,000	2.5	73.3	80
							Eas	tern C	<u>reek</u>													
Upstream (C-6)	2004 2005 2006	19,000 42,000 16,000	1.0 0.5 0.06	7.5 13 12	34 41 23	1.1 1.7 1.3	0.25 0.5 0.22	8,400 2,800 5,700	50 120 50	6.1 10 6.2	11 27 13	19,000 32,000 22,000	3,700 7,200 8,200	260 380 330	11 21 11	2,100 3,700 3,800	0.5 0.5 0.59	0.5 0.73 0.14	9,400 12,000 29,000	3.4 4.6 0.22	44 86 56	59 89 72
	Mean:	26,000	0.52	11	33	1.4	0.32	5,600	73	7.4	17	24,000	6,400	320	14	3,200	0.53	0.46	17,000	2.7	62	73
Mid-stretch (C-7)	2004 2005 2006 Mean:	34,000 49,000 21,000 35,000	2.5 0.5 0.06 1.0	9.3 16 11 12	34 47 26 36	1.6 1.8 1.4 1.6	0.25 0.69 0.19 0.38	3,100 3,600 7,200 4,600	100 63 50 71	8.0 9.2 6.4 7.9	18 20 12	28,000 37,000 23,000 29,000	7,900 7,300 8,600 7,900	410 360 400 390	16 21 12 16	4,400 4,000 4,000 4,100	0.5 0.5 0.62 0.54	0.5 0.83 0.12 0.48	20,000 12,000 25,000 19,000	2.5 3.8 0.26 2.2	79 85 58 74	86 72 73
		,						Comple				-,	,			,			.,		-	
Mouth (C-15)	2004 2005 2006	36,000 44,000 24,000	2.5 0.5 0.03	14 14 11	40 44 31	1.8 1.8 1.5	0.25 0.5 0.21	7,300 6,800 12,000	94 110 55	8.8 8.8 7.6	15 15 12	33,000 35,000 25,000	9,200 8,700 10,000	780 840 730	18 20 14	5,000 4,500 4,600	1.0 0.5 0.18	0.5 0.86 0.12	20,000 20,000 35,000	3.6 <u>0.5</u> 0.28	87 86 57	96 80 76
	Mean:	35,000	1.0	13	38	1.7	0.32	8,700	86	8.4	14	31,000	9,300	780	17	4,700	0.56	0.49	25,000	1.5	77	84

Table 4-5_Continued

								Met	als (m	ng/kg,	dw) ^{a,}	b										
Sampling station		Allif	hirum Anti	mony Are	anic Bai	ium Ber	Alling Ca	drium Car	cht	cornium Cor	os Salt	ippet Itos	, wac	nesium Mar	ganese Hi r	kej ⁶ og	assium Self	anium Sil	yer soo	Jun Tha	Jar Jar	ladium Linc
							Dom	ain 3 (N	(larsh	_												
Near old oil-processing site (C-33)	2004 2005 2006	970 5,000 2,500	1.0 0.5 0.02	0.5 0.5 0.89	3.0 11 9	0.20 0.16 0.18	0.25 0.15 0.12	360 1,400 1,100	2.1 9.8 5.4	0.50 1.4 0.63	1.0 5.4 4.8	330 2,900 1,600	200 730 940	5.5 40 14	2.0 2.4 1.8	<u>50</u> 320 260	0.5 0.5 0.14	0.5 0.5 0.02	950 1,400 4,400	0.5 0.5 0.05	1.8 9.1 5.0	4.9 32 27
	Mean:	2,800	0.51	0.63	7.7	0.18	0.17	950	5.8	0.84	3.7	1,600	620	20	2.1	210	0.38	0.34	2,200	0.35	5.3	21
Northern domain (C-100)	2004 2005 2006	27,000 	<u>1.0</u> 	8.1 	27 	1.3	0.52	2,300 	130 	5.9 	13 	23,000	5,800 	340	13 	3,300	<u>0.5</u> 	<u>0.5</u> 	12,000	1.9	58 	71
	Mean:	27,000	1.0	8.1	27	1.3	0.52	2,300	130	5.9	13	23,000	5,800	340	13	3,300	0.50	0.50	12,000	1.9	58	71
Mid-western domain (C-101)	2004 2005 2006	26,000 	<u>1.0</u> 	10 	24	1.2	0.51 	1,700 	38	5.6	10 	24,000 	4,700 	220	11 	3,000	<u>0.5</u> 	<u>0.5</u> 	9,700	2.3	55 	50
	Mean:	26,000	1.0	10	24	1.2	0.51	1,700	38	5.6	10	24,000	4,700	220	11	3,000	0.50	0.50	9,700	2.3	55	50
							Dom	ain 4 (N	(larsh													
Northern domain (C-102)	2004 2005 2006 Mean :	21,000 21,000	2.5 2.5	7.2 7.2	21 21	1.0	0.25 0.25	2,300 2,300	53 53	4.5 4.5	8.8 8.8	19,000 19,000	4,700 4,700	230	10 10	2,700 2,700	0.5 0.50	0.5 0.50	10,000 10,000	1.3	48 48	55 55
Northwestern Inlet from Turtle River	2004	32,000	<u>1.0</u>	17	30	1.5	<u>0.25</u>	2,200	51	8.2	14	32,000	6,200	220	15	3,800	<u>0.5</u>	<u>0.5</u>	13,000	<u>2.5</u>	77	58
(C-D)	2005 2006 Mean :	56,000 17,000 35,000	0.5 0.07 0.52	14 11 14	52 19 34	2.1 1.2 1.6	0.95 0.24 0.48	3,300 3,800 3,100	84 87 74	11 5.6 8.3	21 11 15	40,000 23,000 32,000		300 210 240	25 11 17	5,000 3,600 4,100	0.5 1.1 0.70	0.62 0.17 0.43	16,000 28,000 19,000	4.4 0.23 2.4	120 53 83	90 61 70
Northeastern stretch of "U" creek (C-A)	2004 2005 2006	21,000	<u>1.0</u>	8.1	21	1.0	0.25	2,500	56	4.9	8.4	19,000	4,800	240	10	2,800	<u>1.0</u>	<u>0.50</u>	9,900	<u>1.0</u>	50	50
	Mean:	21,000	1.0	8.1	21	1.0	0.25	2,500	56	4.9	8.4	19,000	4,800	240	10	2,800	1.0	0.50	9,900	1.0	50	50
Southeastern boundary (C-45)	2004 2005 2006 Mean:	24,000 43,000 19,000 29,000	2.5 0.5 0.10 1.0	11 15 14 13	24 47 25 32	1.2 1.8 1.5	0.25 0.5 0.22 0.32	2,500 22,000 6,600 10,400	52 71 57 60	5.3 9.6 7.4 7.4	7.4 16 12	23,000 32,000 26,000 27,000	9,800 8,400	360 530 630 510	10 20 13	3,300 4,400 4,300 4,000	0.5 0.5 0.16 0.39	0.5 0.5 0.15 0.38	11,000 13,000 28,000 17,000	1.0 0.5 0.25 0.58	55 83 70 69	46 89 72 69

Metals (mg/kg, dw)^{a, b}

Sampling station		Allur	Acti	Imony Are	seriic Bai	jun Be	Cs.	drium cak	Jun Ch	COT	Salt.	ppet HOT	, Mag	nesium Mar	ganese Hi f	ikel Pot	gesjuri Sel	erium si	ie eog	Jun Tha	Janur Var	nadium Line
							<u>Pu</u>	rvis Cr	<u>eek</u>													
Upstream (C-36)	2004 2005 2006	43,000 26,000	0.5 0.08	16 11	44 31	1.8 1.5	0.5 0.28	12,000 9,600	83 60	8.7 7.2	18 13	34,000 27,000	9,100 10,000	 440 420	20 14	4,100 4,800	4.3 0.18	0.5 0.16	17,000 35,000	0.5 0.28	80 60	90 79
	Mean:	34,000	0.29	14	38	1.7	0.39	10,800	72	8.0	16	30,000	9,600	430	17	4,400	2.2	0.33	26,000	0.39	70	85
Mid-stretch (C-29)	2004 2005 2006 Mean:	50,000 18,000 34,000	0.5 0.06 0.28	14 12 13	48 26 37	1.9 1.4 1.7	0.89 0.24 0.57	8,400 16,000 12,200	88 50 69	10 7.0 8.5	16 12 14	38,000 24,000 31,000	9,100 10,000 9,600	580 480 530	22 13 18	4,800 4,300 4,600	0.5 0.71 0.61	0.75 0.12 0.44	18,000 27,000 22,000	4.4 0.24 2.3	100 56 78	90 79 85
Mouth (C-16)	2004 2005 2006 Mean:	9,300 5,700 7,500	0.5 0.02 0.26	3.1 2.9 3.0	10 9.8 9.9	0.40 0.41 0.41	0.5 0.06	1,900 2,400 2,200	26 14 20	2.1 2.0 2.1	3.3 3.2 3.3	7,400 6,400 6,900	1,800 2,200 2.000	120 130 120	4.2 3.8 4.0	890 1,000	0.5 0.14 0.32	0.5 0.02 0.26	4,100 7,200 5,600	0.5 0.08 0.29	 18 16	17 18 18
	Weatt.	7,500	0.26	3.0	9.9		0.28	Island			3.3	6,900	2,000	120	4.0	940	0.32	0.26	5,600	0.29	17	18
Northern boundary (C-103)	2004 2005 2006 Mean:	7,000 47,000 28,000 27,000	1.0 0.5 0.07	1.3 14 19	29 43 31 34	0.20 1.7 1.6 1.2	0.25 0.30 0.19 0.25	2,200 3,100 5,300 3,500	15 80 68 54	1.2 8.8 7.8 5.9	2.6 14 12 10	5,700 35,000 25,000 22,000	3,300 7,100 8,800 6,400	66 230 220 170	2.0 20 16	1,000 4,200 4,400 3,200	0.5 0.5 0.42 0.47	0.5 0.5 0.13 0.38	9,700 14,000 27,000 17,000	0.5 0.5 0.31 0.44	17 89 75 60	14 68 77 53
Northeastern boundary (C-104)	2004 2005 2006 Mean:	28,000 55,000 15,000 33,000	1.0 0.5 0.12 0.54	10 15 11	28 49 16 31	1.4 1.9 1.0	0.25 0.50 0.13 0.29	2,300 2,700 1,900 2,300	68 62 35	6.2 10 5.2 7.1	10 16 7.5	26,000 36,000 21,000 28,000		250 320 240 270	13 22 9.6	3,400 4,500 2,300 3,400	0.5 0.5 0.30 0.43	0.5 0.5 0.08 0.36	12,000 13,000 15,000 13,000	0.5 0.5 0.17 0.39	69 87 46 67	62 70 43 58
Southern location (C-105)	2004 2005 2006 Mean:	18,000 49,000 23,000 30,000	1.0 0.5 0.05 0.52	7 12 9.4 9.5	20 480 23 170	0.96 1.9 1.2 1.4	0.25 0.50 0.17 0.31	1,900 11,000 4,100 5,700	42 79 44 55	4.7 9.7 5.8 6.7	6.4 15 8.2 9.9	17,000 34,000 22,000 24,000	4,100 9,300 5,800 6,400	190 450 260 300	8.4 21 11	2,300 4,700 3,000 3,300	0.5 0.5 0.72 0.57	0.5 0.5 0.08 0.36	8,300 13,000 18,000 13,000	1.2 <u>0.5</u> 0.25 0.65	43 95 52 63	41 87 51

								Meta	als (m	g/kg, d	dw) ^{a, l})										
Sampling station		Alumi	Arti	mony Are	anic Ba	jum be	CS Minus	drium car	ch'	CORNIUM		ppet Itol	, Mac	resium Nat	ganese Hi	'ke' Pot	assium Sel	erium si	wer god	Jun Tha	Jilium Var	nadium tinc
								Study (F			<u>s</u>											
Area 1 (Creek)	2004 2005 2006 Mean:	25,000 14,000 19,000	0.5 0.02 0.26	8.9 6.1 7.5	33 18 26	1.1 0.94 1.0	0.5 0.15 0.33	16,000 2,500 9,200	41 27 34	6.0 3.5 4.8	9.1 6.6 7.9	22,000 15,000 18,000	3,600 3,100 3,400	150 120 140	10 6.6 8.3	2,000 1,800 1,900	0.5 0.30 0.40	0.5 0.06 0.28	4,700 6,800 5,800	0.5 0.14 0.32	46 25 36	75 30 53
Area 2 (Creek)	2004 2005 2006 Mean:	22,000 16,000	0.5 0.13	4.1 6.8 5.5	52 51 52	1.0 0.93 1.0	0.79 0.75 0.77	5,500 9,000 7,200	31 27 29	4.1 4.3 4.2	26 25 26	14,000 14,000 14,000	2,900 3,400 3,200	97 110	 11 10	1,400 1,300 1,350	0.5 0.84 0.67	0.20 0.5 0.12 0.31	5,800 7,200 6,500	4.0 0.20 2.1	 42 38 40	130 130 130
Area 3 (Creek)	2004 2005 2006 Mean :	33,000 28,000	0.5 0.04 0.27	8.3 9.0 8.7	61 96 79	1.2 1.8 1.5	0.40 0.40 0.40	1,800 4,900 3,400	31 82 57	4.0 6.8 5.4	42 21 32	15,000 29,000 22,000	2,800 6,300 4,600	99 310 200	12 15 13.5	1,800 3,200 2,500	0.5 0.20 0.35	0.5 0.17 0.34	2,100 20,000 11,000	0.5 0.33	 43 64 54	51 110 81
Area 4 (Creek)	2004 2005 2006 Mean :		0.5 0.02 0.26	7.5 5.2 6.35	30 17 24	1.1 0.73 0.92	0.22 0.08 0.15	4,900 3,400 4,200	 48 28 38	6.1 3.5 4.8	9.5 6.1 7.8	18,000 12,000 15,000	5,300 4,200 4,800	240 160 200	12 6.9 9.5	2,700 2,000 2,400	0.5 0.27 0.39	0.5 0.05 0.28	7,800 13,000 10,000	0.5 0.14 0.32	56 32 44	54 36 45
Area 5 (Creek)	2004 2005 2006 Mean :		0.5 0.05 0.28	12 11 12	50 28 39	1.9 1.4 1.7	0.5 0.21 0.36	13,000 11,000 12,000	84 67 76	9.6 7.0 8.3	16 12 14	33,000 25,000 29,000	9,200 8,400 8,800	550 430 490	21 13 17	4,800 4,000 4,400	0.5 0.38 0.44	0.66 0.13 0.40	15,000 25,000 20,000	0.5 0.27 0.39	92 58 75	93 73 83
Area 6 (Marsh)	2004 2005 2006 Mean:		0.5 0.06 0.28	11 12 12	46 29 38	1.6 1.5 1.6	0.37 0.18 0.28	4,000 4,700 4,400	99 80 90	8.8 6.3 7.6	18 12 15	30,000 24,000 27,000	8,600 8,800 8,700	280 360 320	21 12 16.5	4,900 4,400 4,600	0.5 0.15 0.33	0.5 0.13 0.32	18,000 28,000 23,000	5.8 0.24 3.0	100 70 85	87 75 81
		,						e Loca	tions			,,,,,,	.,			,			.,			
Glynn County Landfill (C-200)	2004 2005 2006	42,000 	0.5	18	42 	1.8	0.5 	2,300 	64	9.5 	19	 44,000 	6,400 	310 	19 	3,900 	0.5	0.5	8,400 	0.5	73 	92
Georgia-Pacific Pulp and	Mean: 2004		0.50	18	42	1.8	0.50	2,300		9.5	19	44,000	6,400	310	19	3,900	0.5	0.5	8,400	0.5	73	92
Paper Company (C-201)	2005 2006 Mean:	34,000 34,000	0.5 0.50	10 10	35 35	1.3	<u>0.5</u> 0.50	9,300 9,300	46 46	6.7 6.7	10 10	24,000 24,000	6,600 6,600	500 500	15 15	3,600 3,600	0.5 0.5	<u>0.5</u> 0.5	12,000 12,000	0.5 0.5	60 60	50 50
Georgia Power Company (C-202)	2004 2005 2006	32,000 	0.5 	8.6	30	1.2	0.30	2,300 	48 	5.9	13	23,000 	5,200 	180	14 	3,000 	0.5	0.5	9,700 	0.5 	56 	52
	Mean:	32,000	0.50	8.6	30	1.2	0.30	2,300	48	5.9	13	23,000	5,200	180	14	3,000	0.5	0.5	9,700	0.5	56	52
Academy Creek Wastewater Treatment Plant (C-203)	2004 2005 2006	51,000 	0.5	16 	59 	1.9	0.5	4,000 	120 	10 	27 	41,000 	8,600 	660	24	4,700 	0.5	1.0	16,000 	0.5 	88 	120
	Mean:	51,000	0.50	16	59	1.9	0.50	4,000	120	10	27	41,000	8,600	660	24	4,700	0.5	1.0	16,000	0.5	88	120

	Metals (mg/kg, dw)																					
Sampling station		Allif	ninum Ani	Ars	anic Bai	inu Be	Allinu Cs	driium Cal	jurn ch	orium Cop	gi ^t	oppet HOS	Nac	nesium Mar	ganese Hi f	kej 6 _{Q2}	assium Sel	enium sil	ie eog	Jum Thal	Jilium Van	ladium Zinc
						<u> </u>	Refere	nce Lo	cation	<u>1S</u>												
Crescent River	2004 2005 2006	2,700 25,000 3,900	1.0 0.5 0.02	1.3 12 3.6	6.5 27 6.4	0.20 0.98 0.30	0.25 0.5 0.04	190 2,000 800	4.7 34 6.6	0.50 5.1 1.2	1.0 8.4 2.5	2,300 21,000 5,400	430 4,500 1,500	32 180 43	<u>2.0</u> 10 1.9	230 2,700 860	0.5 0.5 0.28	0.5 0.5 0.012	610 11,000 5,500	0.5 0.5 0.06	5.8 46 10	4.8 38 11
	Mean:	10,000	0.51	5.6	13	0.49	0.26	1,000	15	2.3	4.0	9,600	2,100	85	4.6	1,300	0.43	0.34	5,700	0.35	21	18
Troup Creek	2004 2005 2006 Mean:	14,000 36,000 18,000 23,000	1.0 0.5 0.02 0.51	5.3 8.7 9.0 7.7	15 37 20 24	0.70 1.40 1.10 1.1	0.25 0.5 0.14 0.30	2,300 3,800 3,400 3,200	20 43 27 30	3.3 7.2 5.0 5.2	5.3 14 8 9.2	14,000 25,000 23,000 21,000	2,800 5,600 5,000 4,500	190 460 470 370	6.0 14 8	1,400 3,000 2,400 2,300	0.5 0.5 1.4 0.80	0.5 0.60 0.07 0.39	3,400 9,700 12,000 8,400	1.4 <u>0.5</u> 0.20 0.70	28 59 42 43	29 56 46 44

^aConcentrations of metals identified by <u>underlining</u> were non-detected values that were assigned a value of 1/2 of detection limit.

^bMetals for which screening-level ecological effects value (EEV) have been established by Region 4, U. S. EPA, are identified by bold print are concentrations of metals that exceed applicable EEVs (antimony: 12 mg/kg; arsenic: 7.24 mg/kg; cadmium: 1 mg/kg; chromium: 52.3 mg/kg; copper: 18.7 mg/kg; nickel: 15.9 mg/kg; silver: 2 mg/kg; and zinc: 124 mg/kg).

Table 4-6a_Concentrations of chemicals of potential concern (COPCs) in cordgrass for major areas in estuary at LCP Site (2000 - 2006 data) for exposure estimates

All concentrations in mg/kg dw

Non-Detects

		Methyl	Domain 1 Inorganic				Methyl	Domain 4 Inorganic		
Count	Total Mercury 7	Mercury ^(a)	Mercury ^(b)	Aroclor-1268	Lead 4	Total Mercury 9	Mercury ^(a)	Mercury ^(b)	Aroclor-1268	Lead
Count Min	0.022	0.002	0.02	4 0.054	•		0.001		6	6 0.38
		0.002	0.02	0.054	1.99 2.90	0.014	0.001	0.013	0.016	
Max	0.453					0.050		0.045	0.185	3.60
Avg	0.097	0.010	0.09	0.261	2.50	0.028	0.003	0.025	0.096	1.98
Std Dev	0.158			0.244	0.40	0.010			0.067	1.385
Coefficent of Variation	1.635			0.935	0.159	0.342			0.698	0.698
95 UCL	0.21	0.02	0.19	0.55	2.88	0.034	0.003	0.031	0.151	3.12
UCL Statistic	95% Bootstrap			95% Students	95% Bootstrap	95% Students			95% Students	95% Students
Non-Detects	0			2	0	0			3	2
		Methyl	Domain 2 Inorganic				Methyl	Main Canal Inorganic		
	Total Mercury	Mercury ^(a)	Mercury ^(b)	Aroclor-1268	Lead	Total Mercury	Mercury ^(a)	Mercury ^(b)	Aroclor-1268	Lead
Count	24			15	15	7			4	4
Min	0.015	0.001	0.014	0.017	0.38	0.079	0.008	0.071	0.068	2.612
Max	0.210	0.021	0.189	0.360	4.80	0.290	0.029	0.261	0.221	4.300
Avg	0.049	0.005	0.044	0.152	1.95	0.147	0.015	0.132	0.143	3.328
Std Dev	0.052			0.100	1.51	0.095			0.079	0.709
Coefficent of Variation	1.068			0.655	0.773	0.644			0.553	0.213
95 UCL	0.09	0.01	0.08	0.20	2.74	0.759	0.075	0.684	0.236	4.163
UCL Statistic	95% Bootstrap			95% Students	95% Bootstrap	95% Bootstrap			95% Students	95% Students
Non-Detects	0			4	6	0			0	0
		Methyl	Domain 3 Inorganic				Methyl	Purvis Creek Inorganic		
	Total Mercury	Mercury ^(a)	Mercury ^(b)	Aroclor-1268	Lead	Total Mercury	Mercury ^(a)	Mercury ^(b)	Aroclor-1268	Lead
Count	18			12	12	7			4	4
Min	0.017	0.002	0.015	0.025	0.38	0.02	0.002	0.01	0.02	0.38
Max	0.067	0.007	0.060	0.215	10.0	0.03	0.003	0.03	0.19	3.1
Avg	0.038	0.004	0.034	0.091	3.51	0.02	0.002	0.019	0.11	2.02
Std Dev	0.014			0.051	3.09	0.005			0.08	1.23
Coefficent of Variation	0.37			0.560	0.88	0.23			0.69	0.61
95 UCL	0.04	0.004	0.04	0.122	5.12	0.02	0.002	0.022	0.22	3.07
UCL Statistic	95% Students			Approx Gamma	95% Students	95% Students			95% Bootstrap	95% Bootstrap
	_			_	_					

0

4

Table 4-6a._ Continued

		Blythe Isla	ınd					Area A		
		Methyl	Inorganic				Methyl	Inorganic		
	Total Mercury	Mercury ^(a)	Mercury ^(b)	Aroclor-1268	Lead	Total Mercury	Mercury ^(a)	Mercury ^(b)	Aroclor-1268	Lead
Count	3			3	3	21			11	12
Min	0.013	0.001	0.011	0.016	0.39	0.002	0.0002	0.002	0.02	0.38
Max	0.030	0.003	0.027	0.051	1.83	0.45	0.04	0.41	0.61	4.30
Avg	0.023	0.002	0.021	0.028	1.08	0.08	0.008	0.074	0.18	2.47
Std Dev	0.009			0.020	0.72	0.12			0.16	0.96
Coefficent of Variation	0.401			0.717	0.668	1.42			0.88	0.39
95 UCL	0.030	0.003	0.027	0.039	1.56	0.15	0.014	0.131	0.31	2.97
UCL Statistic	95% Bootstrap			95% Bootstrap	95% Bootstrap	Approx Gamma			Approx Gamma	95% Students
Non-Detects	0			2	1	0			0	0

		Troup Creek Ro	eference		Estuary Area Weighted Grand Mean and UCL							
		Methyl	Inorganic				Methyl	Inorganic				
	Total Mercury	Mercury ^(a)	Mercury ^(b)	Aroclor-1268	Lead	Total Mercury	Mercury ^(a)	Mercury ^(b)	Aroclor-1268	Lead		
Count	7			3	4	0.035	0.003	0.032	0.110	2.30		
Min	0.002	0.0002	0.002	0.016	0.38	0.049	0.005	0.044	0.168	3.42		
Max	0.007	0.001	0.01	0.225	2.30							
Avg	0.005	0.0005	0.004	0.134	1.60							
Std Dev	0.002			0.107	0.86							
Coefficent of Variation	0.456			0.802	0.54							
95 UCL	0.006	0.001	0.006	0.203	2.15							
UCL Statistic	95% Students			95% Bootstrap	95% Bootstrap							
Non-Detects	0			3	1							

Notes:

Total Mercury was extracted from the database.

a = Methyl Mercury is the total mercury value multiplied by a factor of 0.0993.

b = Inorganic Mercury is the total mercury value minus the methyl mercury value. This is the remaining amount of mercury available for exposure.

Table 4-6b_Yearly Uverage body burdens of chemicals of potential concern (COPCs) in cordgrass (*Spartina alterniflora*) for major areas in estuary at LCP Site (2005 data)^{a, b}

	Size of area		Mercury			
	(percent of	Total	Methyln	nercury		
	evaluated site	mercury		% of total	Aroclor 1268	Lead
Major area	of 723.85 acres)	(ug/kg, dw)	(ug/kg, dw)	mercury	(mg/kg, dw)	(mg/kg, dw)
Domain 1	20.28 acres (2.8%)					
Mid-stretch (M-25/NOAA 4)	,	102	<u>0.85</u> 8.1	 1.8	0.220	2.61
Seep location (M-AB)		450	0.1	1.0	0.600	1.99
Domain 2	130.12 acres (18.0%)					
Mid-stretch (NOAA 3)		41.2	1.85	7.7	0.071	<u>0.39</u>
Mouth (NOAA 5)		44.2	<u>0.47</u>		0.240	<u>0.38</u>
Eastern branch (NOAA6)		24.0	<u>0.86</u>		0.060	<u>0.38</u>
Central branch (NOAA 7		28.0	6.85	24.5	<u>0.016</u>	0.39
Mouth (NOAA 8)		20.6	<u>0.86</u>		0.048	
Northeast of mouth (NOAA 9)		22.3	<u>0.47</u>		0.048	
Domain 3	156.21 acres (21.6%)					
Northern boundary (M-100)	(21.070)	40.3	3.73	9.3	0.071	1.09
Mid-western boundary (M-101)		54.2	5.85	10.8	0.074	1.77
Central location (M-204)		29.2	2.14	7.3	0.057	0.38
Southwestern corner (M-102)		41.1	1.39	3.4	0.075	2.40
Southeastern corner (M-37)		46.9	6.40	13.6	0.090	<u>0.46</u>
Domain 4	417.24 acres					
Northeastern corner (M-103)	(57.6%)	49.7	1.34	2.7	0.100	1.74
, ,		24.3	3.07	12.6	0.061	0.38
Mid-eastern boundary (M-104)		24.3	3.07	12.0	0.001	<u>0.36</u>
Crescent River		3.92	0.47		<u>0.016</u>	0.94
(reference)						
Troup Creek (reference)		7.08	0.47		0.016	0.38
		Mean Me	eHg/tHg ratio:	9.93%		

^aEach sample of cordgrass consisted of >100 g of grass obtained above 15 cm from ground.

^bBody burdens of cordgrass identified by <u>underlining</u> were non-detected values that were assigned a value of 1/2 of detection limit.

Table 4-7_ Body burdens of chemicals of potential concern (COPCs) in eastern oysters (*Crassostrea virginica*) for major areas in estuary at LCP Site (2006 data)

Sampling station	F	Replicate	a e	Mean	Statistical
(Estimated oyster age)	1	2	3	(x)	comparisons

Total Mercury (mg/kg, dry wt)^C

	Reference Location Troup Creek													
Troup Creek		<u></u>												
Young-of-year (Year 0)	0.11	0.082	0.076	0.089	No statistically significant difference (P = 0.05);									
Year I - II	0.10	0.099	0.093	0.097	Parametric "t" _(cal.) = 0.75 vs. "t" _(tab.) = 2.78									
			Main Canal		, , , , ,									
Mid-stretch (NOAA 4/M-25)			<u>IVIAIII CAIIAI</u>											
Young-of-year (Year 0)	0.84	0.86	0.62	0.773	No statistically significant difference (P = 0.05);									
Year I - II	0.96	1.1	0.98	1.013	Parametric "t"(cal.) = 2.71 vs. "t"(tab.) = 2.78									
Mouth (NOAA 5)														
Young-of-year (Year 0)	0.39	0.35	0.43	0.390	No statistically significant difference (P = 0.05);									
Year I - II	0.44	0.54	0.58	0.520	Parametric "t"(cal.) = 2.73 vs. "t"(tab.) = 2.78									
			Eastern Cree	k										
Mid-stretch (NOAA 3)				_										
Young-of-year (Year 0)	2.1	2.6	2.4	2.367	No statistically significant difference (P = 0.05);									
Year I - II	1.0	2.1	2.1	1.733	Parametric "t"(cal.) = 1.61 vs. "t"(tab.) = 2.78									
		Wes	stern Creek Co	mplex										
Eastern Branch (NOAA 6)														
Young-of-year (Year 0)	1.6	1.6	1.5	1.567	No statistically significant difference (P = 0.05);									
Year I - II	1.3	1.6	1.5	1.467	Parametric "t"(cal.) = 1.06 vs. "t"(tab.) = 2.78									
Central Branch (NOAA 7)														
Young-of-year (Year 0)	0.85	0.74	0.72	0.770	No statistically significant difference (P = 0.05);									
Year I - II	0.89	0.87	0.98	0.913	Parametric "t"(cal.) = 2.72 vs. "t"(tab.) = 2.78									
Northeast of Mouth (NOAA 9)														
Young-of-year (Year 0)	0.51	0.48	0.53	0.507	Statistically significant difference (P = 0.05);									
Year I - II	0.70	0.60	0.73	0.677	Parametric "t"(cal.) = 4.06 vs. "t"(tab.) = 2.78									
			Purvis Creel	<u>k</u>										
Mouth (NOAA 10/M-28)														
Young-of-year (Year 0)	0.18	0.17	0.21	0.187	No statistically significant difference (P = 0.05);									
Year I - II	0.19	0.21	0.16	0.187	Parametric "t" _(cal.) = <0.01 vs. "t" _(tab.) = 2.78									

Parametric Paired "t" Test of Differences in Mean

d
Mercury Content of Year 0 vs. Year I - II Oysters

Mean (x) values: Year 0 = 0.831 mg/kg; Year I - II = 0.826 mg/kg

"t"(cal.) = 0.05 ns vs. $t_{(tab.)}$ = 2.36 for 7 df and P = 0.05

Correlation coefficient (r) = 0.96

Table 4-7_Continued

Sampling station	F	Replicate	a e	Mean	Statistical
(Estimated oyster age)	1	2	3	(x)	comparisons b
	<u>,</u>	Aroclor	1268 (mg	/kg, dry wt)	
		R	teference Lo	cation	
Troup Creek		_			
Young-of-year (Year 0)	0.019	0.0028	0.0024	0.00807	No statistically significant difference (P = 0.05);
Year I - II	0.0029	0.011	0.0096	0.00783	Parametric "t"(cal.) = 0.04 vs. "t"(tab.) = 2.78
			Main Can	<u>al</u>	
Mid-stretch (NOAA 4/M-25) Young-of-year (Year 0)	0.19	0.26	0.24	0.230	No statistically significant difference (P = 0.05);
3 , , , ,					, , ,
Year I - II	0.13	0.18	0.19	0.167	Parametric "t"(cal.) = 2.27 vs. "t"(tab.) = 2.78
Mouth (NOAA 5)	0.00	0.05	0.40	0.000	No statistically significant difference (D = 0.05)
Young-of-year (Year 0)	0.23	0.25	0.19	0.223	No statistically significant difference (P = 0.05);
Year I - II	0.14	0.23	0.18	0.183	Parametric "t"(cal.) = 1.27 vs. "t"(tab.) = 2.78
			Eastern Cr	<u>eek</u>	
Mid-stretch (NOAA 3)					
Young-of-year (Year 0)	0.97	0.87	0.72	0.853	No statistically significant difference (P = 0.05);
Year I - II	0.62	0.56	0.71	0.630	Parametric "t" _(cal.) = 2.64 vs. "t" _(tab.) = 2.78
		Wes	stern Creek (Complex	
Eastern Branch (NOAA 6)					
Young-of-year (Year 0)	0.061	0.096	0.068	0.075	No statistically significant difference (P = 0.05);
Year I - II	0.069	0.040	0.059	0.056	Parametric "t" _(cal.) = 1.39 vs. "t" _(tab.) = 2.78
Central Branch (NOAA 7)					
Young-of-year (Year 0)	0.071	0.072	0.071	0.071	Statistically significant difference (P = 0.01);
Year I - II	0.047	0.054	0.055	0.052	Parametric "t" _(cal.) = 7.62 vs. "t" _(tab.) = 2.78
Northeast of Mouth (NOAA 9)					
Young-of-year (Year 0)	0.13	0.26	0.11	0.167	No statistically significant difference (P = 0.05);
Year I - II	0.077	0.062	0.096	0.078	Parametric "t" _(cal.) = 1.84 vs. "t" _(tab.) = 2.78
			Purvis Cre	<u>ek</u>	
Mouth (NOAA 10/M-28)					
Young-of-year (Year 0)	0.039	0.060	0.046	0.048	No statistically significant difference (P = 0.05);
Year I - II	0.071	0.076	0.043	0.063	Parametric "t"(cal.) = 1.25 vs. "t"(tab.) = 2.78

<u>Parametric Paired "t" Test of Differences in Mean</u> d <u>Aroclor 1268 Content of Year 0 vs. Year I - II Oysters</u>

Mean (x) values: Year 0 = 0.209 mg/kg; Year I - II = 0.155 mg/kg

"t"(cal.) = 2.05 ns vs. $t_{(tab.)}$ = 2.36 for 7 df and P = 0.05

Correlation coefficient (r) = 0.99

comparisons b lo statistically significant difference (P = 0.05); earametric "t"(cal.) = 2.33 vs. "t"(tab.) = 2.78 statistically significant difference (P = 0.05); earametric "t"(cal.) = 3.63 vs. "t"(tab.) = 2.78 statistically significant difference (P = 0.05); earametric "t"(cal.) = 3.12 vs. "t"(tab.) = 2.78 statistically significant difference (P = 0.05); earametric "t"(cal.) = 3.12 vs. "t"(tab.) = 2.78
Parametric "t"(cal.) = 2.33 vs. "t"(tab.) = 2.78 Statistically significant difference (P = 0.05); Parametric "t"(cal.) = 3.63 vs. "t"(tab.) = 2.78 Statistically significant difference (P = 0.05); Parametric "t"(cal.) = 3.12 vs. "t"(tab.) = 2.78 Statistically significant difference (P = 0.05);
Parametric "t"(cal.) = 2.33 vs. "t"(tab.) = 2.78 Statistically significant difference (P = 0.05); Parametric "t"(cal.) = 3.63 vs. "t"(tab.) = 2.78 Statistically significant difference (P = 0.05); Parametric "t"(cal.) = 3.12 vs. "t"(tab.) = 2.78 Statistically significant difference (P = 0.05);
Parametric "t"(cal.) = 2.33 vs. "t"(tab.) = 2.78 Statistically significant difference (P = 0.05); Parametric "t"(cal.) = 3.63 vs. "t"(tab.) = 2.78 Statistically significant difference (P = 0.05); Parametric "t"(cal.) = 3.12 vs. "t"(tab.) = 2.78 Statistically significant difference (P = 0.05);
Parametric "t"(cal.) = 2.33 vs. "t"(tab.) = 2.78 Statistically significant difference (P = 0.05); Parametric "t"(cal.) = 3.63 vs. "t"(tab.) = 2.78 Statistically significant difference (P = 0.05); Parametric "t"(cal.) = 3.12 vs. "t"(tab.) = 2.78 Statistically significant difference (P = 0.05);
statistically significant difference (P = 0.05); Parametric "t"(cal.) = 3.63 vs. "t"(tab.) = 2.78 Statistically significant difference (P = 0.05); Parametric "t"(cal.) = 3.12 vs. "t"(tab.) = 2.78 Statistically significant difference (P = 0.05);
varametric "t"(cal.) = 3.63 vs. "t"(tab.) = 2.78 statistically significant difference (P = 0.05); varametric "t"(cal.) = 3.12 vs. "t"(tab.) = 2.78 statistically significant difference (P = 0.05);
varametric "t"(cal.) = 3.63 vs. "t"(tab.) = 2.78 statistically significant difference (P = 0.05); varametric "t"(cal.) = 3.12 vs. "t"(tab.) = 2.78 statistically significant difference (P = 0.05);
varametric "t"(cal.) = 3.63 vs. "t"(tab.) = 2.78 statistically significant difference (P = 0.05); varametric "t"(cal.) = 3.12 vs. "t"(tab.) = 2.78 statistically significant difference (P = 0.05);
statistically significant difference (P = 0.05); varametric "t"(cal.) = 3.12 vs. "t"(tab.) = 2.78 statistically significant difference (P = 0.05);
Parametric "t"(cal.) = 3.12 vs. "t"(tab.) = 2.78
Parametric "t"(cal.) = 3.12 vs. "t"(tab.) = 2.78
statistically significant difference (P = 0.05);
Parametric "t"(cal.) = 4.48 vs. "t"(tab.) = 2.78
drametrio (car.) - 4.40 vs. (tab.) - 2.70
lo statistically significant difference (P = 0.0
Parametric "t" _(cal.) = 0.75 vs. "t" _(tab.) = 2.78
arametric (cal.) = 0.73 vs. (tab.) = 2.70
statistically significant difference (P = 0.01);
Parametric "t" _(cal.) = 5.60 vs. "t" _(tab.) = 2.78
arametric (cal.) = 3.00 vs. (tab.) = 2.70
lo statistically significant difference (P = 0.09
, ,
Parametric "t"(cal.) = 1.25 vs. "t"(tab.) = 2.78
lo statistically significant difference(P = 0.05

Parametric Paired "t" Test of Differences in Mean d Lead Content of Year 0 vs. Year I - II Oysters

Mean (x) values: Year 0 = 0.780 mg/kg; Year I - II = 0.560 mg/kg

"t"(cal.) = 6.26 ** vs.
$$t_{(tab.)}$$
 = 3.50 for 7 df and P = 0.01

Correlation coefficient (r) = 0.89

^aEach replicate of oysters consisted of about 100 composited young-of-year (Year 0) oysters and 20 composited older (Years I and II) oysters.

^bAll individual "t" tests are two-tailed tests with P criterion = 0.05

^cTotal mercury concentrations are estimated to consist of about 70% methylmercury (NOAA, 1998).

^dPaired "t" tests are two-tailed tests with the symbol "ns" indicating no statistically significant difference at P criterion = 0.05, and the symbol "**" indicating a significant difference at P criterion = 0.01.

Table 4-8a_Concentrations of chemicals of potential concern (COPCs) in fiddler crabs (*Uca* spp.) for major areas in estuary at LCP site (2000 - 2007 data) for exposure estimates

All concentrations in mg/kg dw

		Domain 1						Domain 4		
		Methyl	Inorganic				Methyl	Inorganic		
	Total Mercury	Mercury ^(a)	Mercury ^(b)	Aroclor-1268	Lead	Total Mercury	Mercury ^(a)	Mercury ^(b)	Aroclor-1268	Lead
Count	61			54	54	44			44	44
Min	0.18	0.12	0.06	0.65	0.37	0.09	0.06	0.03	0.16	0.23
Max	1.8	1.22	0.58	6	52	0.41	0.28	0.13	1.66	0.89
Avg	0.95	0.65	0.30	2.22	7.93	0.22	0.15	0.07	0.61	0.53
Std Dev	0.31			1.15	13.09	0.09			0.38	0.14
Coefficent of Variation	0.323			0.52	1.65	0.397			0.62	0.27
95 UCL	1.02	0.69	0.33	2.49	10.85	0.24	0.16	0.08	0.71	0.57
UCL Statistic	95% Students			Approx Gamma	95% Bootstrap	Approx Gamma			95% Bootstrap	95% Students
Non-Detects	0			0	13	0			16	11

		Domain 2					M	ain Canal		
		Methyl	Inorganic				Methyl	Inorganic		
	Total Mercury	Mercury ^(a)	Mercury ^(b)	Aroclor-1268	Lead	Total Mercury	Mercury ^(a)	Mercury ^(b)	Aroclor-1268	Lead
Count	109			109	106	43			39	39
Min	0.07	0.05	0.02	0.17	0.12	0.26	0.18	0.08	1.1	0.37
Max	0.85	0.58	0.27	17	1.4	1.01	0.69	0.32	7.39	4.2
Avg	0.28	0.19	0.09	1.06	0.52	0.57	0.39	0.18	2.86	1.45
Std Dev	0.15			1.8	0.22	0.15			1.43	1.03
Coefficent of Variation	0.54			1.7	0.42	0.27			0.501	0.71
95 UCL	0.31	0.21	0.10	1.15	0.56	0.61	0.41	0.20	3.26	1.77
UCL Statistic	95% Students			95% H-UCL	95% Students	95% Students			95% Students	95% Students
Non-Detects	0			28	37	0			0	6

		Domain 3				Purvis Creek						
		Methyl	Inorganic				Methyl	Inorganic				
	Total Mercury	Mercury ^(a)	Mercury ^(b)	Aroclor-1268	Lead	Total Mercury	Mercury ^(a)	Mercury ^(b)	Aroclor-1268	Lead		
Count	84			84	73	42			35	35		
Min	0.15	0.10	0.05	0.17	0.31	0.02	0.01	0.01	0.18	0.12		
Max	0.49	0.33	0.16	2.93	19.48	0.21	0.14	0.07	2.7	2.3		
Avg	0.27	0.18	0.09	0.81	2.11	0.13	0.09	0.04	0.73	0.92		
Std Dev	0.09			0.63	4.41	0.05			0.63	0.52		
Coefficent of Variation	0.34			0.77	2.09	0.37			0.87	0.57		
95 UCL	0.29	0.20	0.09	0.93	3.34	0.14	0.10	0.04	0.98	1.07		
UCL Statistic	95% Students			Approx Gamma	95% Students	95% Bootstrap			95% Bootstrap	95% Students		
Non-Detects	0			21	17	0			11	2		

Table 4-8a_Continued

Blythe Island

Area A (Main Canal + Domain 1)

		•	Inorganic				Methyl	Inorganic		
	Total Mercury	Mercury ^(a)	Mercury ^(b)	Aroclor-1268	Lead	Total Mercury	Mercury ^(a)	Mercury ^(b)	Aroclor-1268	Lead
Count	63			63	57	104			93	93
Min	0.059	0.04	0.02	0.104	0.26	0.18	0.12	0.06	0.64	0.37
Max	0.48	0.33	0.15	0.76	1.01	1.8	1.22	0.58	7.39	52
Avg	0.19	0.13	0.06	0.22	0.504	0.79	0.54	0.25	2.49	5.21
Std Dev	0.086			0.12	0.17	0.32			1.31	10.47
Coefficent of Variation	0.443			0.55	0.33	0.404			0.53	2.008
95 UCL	0.21	0.14	0.07	0.24	0.54	0.84	0.57	0.27	2.75	7.58
UCL Statistic	95% Students			95% Students	95% Students	95% Students			95% H-UCL	95% Bootstrap
Non-Detects	0			21	14	0			0	19

Troup Creek Reference

		Methyl	Inorganic		
	Total Mercury	Mercury ^(a)	Mercury ^(b)	Aroclor-1268	Lead
Count	48			41	41
Min	0.002	0.001	0.001	0.003	0.12
Max	0.13	0.09	0.04	1.8	2.3
Avg	0.04	0.027	0.01	0.22	0.71
Std Dev	0.03			0.37	0.43
Coefficent of Variation	0.68			1.71	0.604
95 UCL	0.05	0.03	0.02	0.38	0.84
UCL Statistic	95% Bootstrap			95% Bootstrap	Approx Gamma
Non-Detects	1			28	13

Estuary Area Weighted Grand Mean and UCL

		Methyl	Inorganic		
	Total Mercury	Mercury ^(a)	Mercury ^(b)	Aroclor-1268	Lead
Mean	0.25	0.17	0.08	0.77	1.06
95UCL	0.27	0.18	0.09	0.89	1.4

Includes Mercury and Inorganic mercury samples extracted from the database.

a = Methyl Mercury is the total mercury value multiplied by a factor of 0.68.

b = Inorganic Mercury is the total mercury value minus the methyl mercury value. This is the remaining amount of mercury available for exposure.

Table 4-8b_Body burdens of chemicals of potential concern (COPCs) in fiddler crabs (Uca spp.) for major areas and years in estuary at LCP Site (2000 - 2007 data)^{a, b}

	Size of area							
	(percent of		Total merc	cury	Aroclor 1	268	Lead	
	total site	•	Body burden	Sample	Body burden	Sample	Body burden	Sample
Major area	of 789.26 acres)	Year	(mg/kg, dw)	size (n)	(mg/kg, dw)	size (n)	(mg/kg, dw)	size (n)
Domain 1	20.28 acres	2000	1.1	14	3.0	7	22	7
(marsh)	(2.6%)	2002	0.95	7	2.8	7	1.8	7
AB Seep		2003	0.82	7	2.1	7	33	7
Station		2004	1.1	10	1.1	10	1.4	10
		2005 2006	1.0 1.1	13 7	1.8 2.4	13 7	<u>0.38</u> 0.87	13 7
		2007	0.96	3	4.6	3	2.0	3
		Total		61		54		54
Main Canal	1.54 acres	2000	0.74	8	2.0	4	1.9	4
	(0.2%)	2002	0.67	4	0.67	4 7	2.8	4
		2003 2004	0.41 0.50	7 7	1.8 3.4	7	1.6 1.1	7 7
		2005	0.39	7	2.7	7	<u>0.61</u>	7
		2006	0.50	7	2.9	7	0.69	7
		2007	0.42	3	1.3	3	1.5	3
		Total		43		39		39
Eastern Creek	4.42 acres (0.6%)	2000 2002		0 0		0 0		0 0
	(0.070)	2002		0		0		0
		2004	0.42	1	0.24	1	0.38	1
		2005	0.19	1	1.6	1	0.38	1
		2006	0.36	1	0.62	1	0.41	1
		2007	0.45	1	0.54	1	0.86	1
Western	2.15 acres	Total		4 0		4 0		4 0
Creek	(0.3%)	2000 2002		0		0		0
Complex	(0.070)	2003		0		0		Ö
Complex		2004	0.34	42	0.50	42	0.57	42
		2005	0.19	38	0.90	38	<u>0.38</u>	35
		2006	0.26	20	0.46	20	0.50	20
		2007 Total	0.15	9 109	0.50	9 109	0.57	9 106
Domain 2	130.12 acres	2000		0		0		0
(marsh) ^d	(16.5%)	2002		0		0		0
		2003		0		0		0
		2004	0.34	42	<u>0.50</u>	42	0.57	42
		2005 2006	0.19 0.26	38 20	0.90 0.46	38 20	<u>0.38</u> 0.50	35 20
		2007	0.15	9	0.50	9	0.57	9
		Total		109		109		106
Domain 3	156.21 acres	2000		0		0		0
(marsh)	(19.8%)	2002 2003		0 0		0 0		0 0
		2003	0.33	21	<u>0.26</u>	21	0.45	21
		2005	0.22	35	1.1	35	0.44	31
		2006	0.26	18	0.46	18	0.50	18
		2007 Total	0.26	3 77	1.5	3 77	1.60	3 73
Domain 4	417.24 acres	2000		0		0		0
(marsh)	(52.9%)	2002		0		0		0
		2003		0		0	0.04	0
		2004 2005	0.24 0.17	21 11	<u>0.42</u> 0.94	21 11	0.61 <u>0.38</u>	21 11
		2005	0.17	12	0.71	12	0.54	12
		Total		44		44		44

Table 4-8b_Continued

	Size of area			С				
	(percent of		Total merc	cury	Aroclor 1	268	Lead	
Major area	total site of 789.26 acres)	Year	Body burden (mg/kg, dw)	Sample size (n)	Body burden (mg/kg, dw)	Sample size (n)	Body burden (mg/kg, dw)	Sample size (n)
North Purvis Creek	31.27 acres (4.0%)	2000 2002 2003 2004 2005 2006 2007 Total			npled in North Pu pproximate those		Mean values of (Purvis Creek.	COPC are
South Purvis Creek	26.03 acres (3.3%)	2000 2002 2003 2004 2005 2006 2007 Total	0.16 0.13 0.18 0.13 0.13 0.16	7 7 7 7 0 4 3 35	0.55 0.1 <u>0.44</u> <u>0.28</u> 0.3 0.74	7 7 7 7 0 4 3 35	1.0 1.5 0.56 <u>0.30</u> 0.91 1.5	7 7 7 7 0 4 3 35
Troup Creek (reference)		2000 2002 2003 2004 2005 2006 2007 Total	0.031 0.027 0.034 0.029 0.064 0.10 0.057	14 5 5 7 7 7 3 48	0.15 0.18 0.99 0.27 0.024 0.018 0.0042	14 5 5 7 7 7 3	0.96 1.4 0.41 0.49 0.38 0.66 0.77	7 5 5 7 7 7 3 41
Crescent River (reference)		2000 2002 2003 2004 2005 2006 Total	0.018 0.046 	7 0 0 0 7 0 14	0.17 0.032 	7 0 0 0 7 0 14	1.3 0.38 	7 0 0 0 7 0 14

^aEach sample of fiddler crabs consisted of from two to seven replicates, with each replicate consisting of about 8-50 (mostly male) crabs.

b Body burdens of fiddler crabs identified by <u>underlining</u> consisted of at least one non-detected value that was assigned a value of 1/2 of detection limit.

 $^{^{}m C}$ Body burden of methylmercury in fiddler crabs consisted of about 68% of total mercury (Appendix F).

^dWestern Creek Complex is in Domain 2, and data generated for the creek were also employed for the domain.

Table 4-9a_Concentrations of chemicals of potential concern (COPCs) in blue crabs (*Callinectes sapidus*) for major areas and years in estuary at LCP Site for exposure estimation (2000 - 2007 data)

All Concentrations in mg/kg dw

Purvis Creek

	Total Mercury	Methyl Mercury ^(a)	Inorganic Mercury ^(b)	Aroclor-1268	Lead
Count	91		==	91	91
Min	0.07	0.07	0	0.12	0.12
Max	6.3	6.3	0	7.9	4
Avg	1.59	1.59	0	1.61	0.82
Std Dev	1.08			1.47	0.87
Coefficent of Variation	0.68			0.91	1.07
95 UCL	1.78	1.78	0	1.88	1.21
UCL Statistic	Approx Gamma			Approx Gamma	95% Chebyshev
Non-Detects	0			1	40

Troup Creek

	Total Mercury	Methyl Mercury ^(a)	Inorganic Mercury ^(b)	Aroclor-1268	Lead
Count	49			49	49
Min	0.01	0.01	0	0.002	0.13
Max	0.49	0.49	0	2	14.3
Avg	0.15	0.15	0	0.13	0.73
Std Dev	0.11			0.29	2.08
Coefficent of Variation	0.73			2.22	2.85
95 UCL	0.19	0.19	0	0.30	4.21
UCL Statistic	Approx Gamma			95% Bootstrap	95% Bootstrap
Non-Detects	2			38	31

Notes:

Total Mercury was extracted from the database.

a = Methyl Mercury is the total mercury value multiplied by a factor of 1.0.

b = Inorganic Mercury is the total mercury value minus the methyl mercury value. There is no inorganic mercury remaining in the blue crab.

Table 4-9b_Yearly Uverage body burdens of chemicals of potential concern (COPCs) in blue crabs (*Callinectes sapidus*) for major areas and years in estuary at LCP Site (2000 - 2007 data) a, b

	Size of area							
	(percent of		Total mer	cury	Aroclor 12	268		Lead
	evaluated site	-	Body burden	Sample	Body burden	Sample	Body burden	Sample
Major area	of 57.30 acres)	Year	(mg/kg, dw)	size (n)	(mg/kg, dw)	size (n)	(mg/kg, dw)	size (n)
North Purvis	31.27 acres	2000	1.7	7	0.77	7	<u>0.71</u>	7
Creek	(54.6%)	2002	1.0	7	1.9	7	2.3	7
		2003	1.6	7	2.8	7	<u>0.15</u>	7
		2004	1.2	7	<u>1.2</u>	7	<u>0.28</u>	7
		2005	1.4	7	0.53	7	<u>0.38</u>	7
		2006	1.0	7	1.2	7	0.49	7
		2007 ^c	1.7	7	1.0	7	0.44	7
		Total		49		49		49
South Purvis	26.03 acres	2000	1.7	7	0.70	7	<u>1.1</u>	7
Creek	(45.4%)	2002	0.97	7	2.4	7	2.7	7
		2003	1.5	7	<u>3.6</u>	7	<u>0.12</u>	7
		2004	1.7	7	<u>1.3</u>	7	<u>0.24</u>	7
		2005	1.0	7	0.44	7	<u>0.96</u>	7
		2006	1.1	7	0.59	7	0.47	7
		Total		42		42		42
Troup Creek		2000	0.069	7	0.15	7	<u>0.75</u>	7
(reference)		2002	0.14	7	0.09	7	1.2	7
		2003	0.073	7	0.43	7	0.12	7
		2004	0.17	7	0.17	6	<u>0.17</u>	6
		2005	0.18	7	0.02	8	0.38	8
		2006	0.15	7	0.02	7	0.20	7
		2007	0.15	7	0.0048	7	0.20	7
		Total		49		49		49
Crescent		2000	0.08	7	<u>0.21</u>	7	<u>1.1</u>	7
River		2002		0		0		0
(reference)		2003		0		0		0
		2004		0		0		0
		2005	0.18	7	<u>0.03</u>	7	<u>0.80</u>	7
		2006		0		0		0
		Total		14		14		14

^aEach sample of blue crabs consisted of from six to seven replicates, with each replicate consisting of a single male crab.

^bBody burdens of blue crabs identified by <u>underlining</u> consisted of at least one non-detected value that was assigned a value of 1/2 of detection limit.

^c2007 blue crab collections were not in north or south Purvis Creek but rather at a single location at the mouth of the Main Canal.

Table 4-10a_Concentrations of chemicals of potential concern (COPCs) in mummichogs (Fundulus heteroclitus) for major areas in estuary at LCP Site for exposure estimates (2000 - 2007 data)

All concentrations in mg/kg dw

	Easte	rn Creek (N	S tributary)			Domain 4							
		Methyl	Inorganic				Methyl	Inorganic					
	Total Mercury	Mercury ^(a)	Mercury ^(b)	Aroclor-1268	Lead	Total Mercury	Mercury ^(a)	Mercury ^(b)	Aroclor-1268	Lead			
Count	43			43	41	10			10	9			
Min	0.34	0.31	0.03	0.95	0.12	0.15	0.14	0.02	0.21	0.12			
Max	9.1	8.19	0.91	20.25	2.4	0.31	0.28	0.03	1.5	1.1			
Avg	0.71	0.64	0.07	6.06	0.68	0.2	0.18	0.02	1.01	0.43			
Std Dev	1.31			4.28	0.61	0.05			0.37	0.28			
Coefficent of Variation	1.35			0.71	0.903	0.27			0.37	0.64			
95 UCL	2.03	1.83	0.20	7.27	0.863	0.24	0.22	0.024	1.22	0.65			
UCL Statistic	95% Bootstrap			Approx Gamma	95% Bootstrap	95% Students			95% Students	Approx Gamma			
Non-Detects	0			0	10	0			0	3			

	Wes	stern Creek	Complex			Main Canal						
		Methyl	Inorganic				Methyl	Inorganic				
	Total Mercury	Mercury ^(a)	Mercury ^(b)	Aroclor-1268	Lead	Total Mercury	Mercury ^(a)	Mercury ^(b)	Aroclor-1268	Lead		
Count	15			15	15	16			16	16		
Min	0.13	0.12	0.01	0.37	0.12	0.21	0.19	0.02	2.44	0.22		
Max	0.56	0.50	0.06	3.3	2.4	2.1	1.89	0.21	9.1	1		
Avg	0.29	0.26	0.03	1.62	0.93	0.58	0.52	0.058	4.28	0.46		
Std Dev	0.11			0.91	0.74	0.45			1.7	0.19		
Coefficent of Variation	0.39			0.56	0.79	0.78			0.39	0.43		
95 UCL	0.35	0.32	0.04	2.13	1.26	0.78	0.70	0.078	5.06	0.55		
UCL Statistic	95% Students			Approx Gamma	95% Students	Approx Gamma			Approx Gamma	95% Students		
Non-Detects	0			0	7	0			0	5		

		Domain	3					Area A		
		Methyl	Inorganic				Methyl	Inorganic		
	Total Mercury	Mercury ^(a)	Mercury ^(b)	Aroclor-1268	Lead	Total Mercury	Mercury ^(a)	Mercury ^(b)	Aroclor-1268	Lead
Count	50	-		50	48	74			74	72
Min	0.1	0.09	0.01	0.43	0.12	0.13	0.12	0.01	0.37	0.12
Max	0.69	0.62	0.069	8.25	70	9.1	8.19	0.91	20.25	2.4
Avg	0.36	0.32	0.04	2.87	2.41	0.87	0.78	0.087	5.58	0.62
Std Dev	0.12			1.69	10.01	1.15			3.83	0.54
Coefficent of Variation	0.33			0.59	4.15	1.33			0.69	0.87
95 UCL	0.39	0.35	0.04	3.29	30.7	1.56	1.40	0.156	6.42	0.76
UCL Statistic	95% Students			Approx Gamma	95% Bootstrap	95% Bootstrap			Approx Gamma	95% Bootstrap
Non-Detects	0			0	12	0			0	15

Table 4-10a_Continued

Troup Creek Reference (N St Simons)

		Methyl	Inorganic		
	Total Mercury	Mercury ^(a)	Mercury ^(b)	Aroclor-1268	Lead
Count	22			22	19
Min	0.03	0.03	0.003	0.02	0.12
Max	0.18	0.16	0.02	0.47	5.9
Avg	0.09	0.08	0.01	0.15	0.87
Std Dev	0.04			0.15	1.33
Coefficent of Variation	0.44			1	1.53
95 UCL	0.11	0.10	0.01	0.22	1.43
UCL Statistic	95% Students			Approx Gamma	Approx Gamma
Non-Detects	0			15	5

OU-1 Area Weighted Grand Site Mean and UCL

		Methyl	Inorganic			
	Total Mercury	Mercury ^(a)	Mercury ^(b)	Aroclor-1268	Lead	
Mean	0.25	0.23	0.02	1.57	0.88	
95 UCL	0.32	0.29	0.03	1.88	6.66	

Notes:

Mercury and inorganic mercury was extracted from the database.

b = Inorganic Mercury is the total mercury value minus the methyl mercury value. This is the remaining amount of mercury available for exposure.

Area A = Main canal, Eastern Creek, and Western Creek Complex

a = Methyl Mercury is the total mercury value multiplied by a factor of 0.90.

Table 4-10b_Yearly average body burdens of chemicals of potential concern (COPCs) in mummichogs (*Fundulus heteroclitus*) for major areas and years in estuary at LCP Site (2000 - 2007 data)^{a, b}

	Size of area							
	(percent of		Total merc	cury ^c	Aroclor 1	268	Lea	ad
	evaluated site of 711.68	-	Body burden	Sample	Body burden	Sample	Body burden	Sample
Major area	acres)	Year	(mg/kg, dw)	size (n)	(mg/kg, dw)	size (n)	(mg/kg, dw)	size (n)
Main Canal	1.54 acres	2000		0		0		0
	(0.2%)	2002	1.0	4	3.7	4	0.62	4
		2003	0.54	2	7.4	2	0.57	2
		2004	0.91	1	2.8	1	0.12	1
		2005	0.36	3	3.0	3	0.69	3
		2006	0.26	3	3.8	3	0.41	3
		2007	0.50	3	5.2	3	0.29	3
		Total		16		16		16
Eastern Creek	4.42 acres	2000	0.60	6	1.8	6	1.1	6
	(0.6%)	2002	2.2	7	8.3	7	1.7	7
		2003	0.60	6	5.8	6	0.40	6
		2004	1.0	6	3.5	6	<u>0.19</u>	6
		2005	0.54	6	6.8	6	0.38	4
		2006	0.70	6	7.0	6	0.43	6
		2007	0.85	6	9.1	6	0.25	6
		Total		43		43		41
Western	2.15 acres	2000	0.33	3	0.82	3	1.5	3
Creek	(0.3%)	2002	0.43	3	2.8	3	1.8	3
Complex ^d		2003	0.17	3	1.3	3	0.79	3
·		2004	0.36	3	<u>1.6</u>	3	<u>0.12</u>	3
		2005	0.21	3	1.6	3	<u>0.48</u>	3
		2006		0		0		0
		Total		15		15		15
Domain 2	130.12 acres	2000	0.33	3	0.82	3	1.5	3
(marsh) ^d	(18.3%)	2002	0.43	3	2.8	3	1.8	3
		2003	0.17	3	1.3	3	0.79	3
		2004	0.36	3	<u>1.6</u>	3	0.12	3
		2005	0.21	3	1.6	3	0.48	3
		2006		0		0		0
		Total		15		15		15
Domain 3	156.21 acres	2000	0.37	3	0.79	3	26	3
(marsh)	(21.9%)	2002	0.34	3	2.2	3	2.0	3
		2003	0.39	3	1.6	3	1.3	3
		2004	0.37	6	2.1	6	<u>0.54</u>	6
		2005	0.40	14	3.5	14	0.53	12
		2006	0.27	12	2.2	12	1.0	12
		2007	0.41	9	2.8	9	0.7	9
		Total		50		50		48
Domain 4	417.24 acres	2000		0		0		0
(marsh)	(58.6%)	2002	0.22	1	1.3	1	1.6	1
		2003	0.14	3	1.1	3	0.48	3
		2004	0.21	3	<u>0.97</u>	3	<u>0.33</u>	3
		2005	0.21	3	1.2	3	<u>0.36</u>	2
		2006		0	0.78	0	0.50	0
		Total		10		10		9

Table 4-10b_Continued

	Size of area							
	(percent of		Total merc	cury ^c	Aroclor 1	268	Lea	ad
Major area	evaluated site of 711.68 acres)	Year	Body burden (mg/kg, dw)	Sample size (n)	Body burden (mg/kg, dw)	Sample size (n)	Body burden (mg/kg, dw)	Sample size (n)
Troup Creek		2000	0.031	3	<u>0.15</u>	3	<u>2.8</u>	3
(reference)		2002	0.12	4	<u>0.11</u>	4	<u>1.3</u>	4
		2003	0.077	3	<u>0.45</u>	3	0.54	3
		2004	0.15	3	0.24	3	<u>0.12</u>	3
		2005	0.14	3	0.04	3		0
		2006	0.056	3	0.053	3	0.19	3
		2007	0.097	3	0.070	3	0.18	3
		Total		22		22		19
Crescent		2000	0.018	12	_	12	0.87	12
River		2002		0		0		0
reference)		2003		0		0		0
		2004		0		0		0
		2005	0.066	16	0.025	16	0.29	16
		2006		0		0		0
		Total		28		28		28

^aEach sample of mummichogs consisted of from one to four replicates, with each replicate consisting of 1-40 fish.

^bBody burdens of mummichogs identified by underlining consisted of at least one non-detected value that was assigned a value of 1/2 of detection limit.

^cBody burdens of methylmercury in mummichogs consisted of about 92% of total mercury (Appendix D).

^dWestern Creek Complex is in Domain 2, and mummichog data collected from the creek complex were also used in Domain 2.

Table 4-11a_Concentrations of chemicals of potential concern (COPCs) in large finfish for major areas in estuary at LCP Site for exposure estimates (2000 - 2007 data)

All concentrations in mg/kg dw

	Black D	Drum - Purv	is Creek	Black D	Drum - Trou	p Creek	Black D	Drum - Cres	cent River
		Methyl			Methyl	-	Total	Methyl	
	Total Mercury	Mercury ^(a)	Aroclor-1268	Total Mercury	Mercury ^(a)	Aroclor-1268	Mercury	Mercury ^(a)	Aroclor-1268
Count	50		50	16		16	8		8
Min	0.31	0.28	1.1	0.04	0.04	0.01	0.034	0.03	0.017
Max	3.28	2.98	18	0.18	0.16	0.20	0.07	0.06	0.017
Mean	0.84	0.76	5.51	0.11	0.10	0.10	0.045	0.04	0.017
Std Dev	0.543		3.567	0.035		0.042	0.015		NA
Coeff Var.	0.644		0.647	0.332		0.428	0.336		NA
95 UCL	0.96	0.87	6.45	0.12	0.11	0.12	0.055	0.05	NA
	H-UCL		Approx Gamma	Student's-t		Student's-t	Student's-t		NA
Non-Detects	0		0	0		1	0		8

	Red D	rum - Purvis Methyl	s Creek	Red D	rum - Trou Methyl	p Creek	Red D	rum - Creso Methyl	ent River
	Total Mercury	Mercury ^(a)	Aroclor-1268	Total Mercury	Mercury (a)	Aroclor-1268	Mercury	Mercury ^(a)	Aroclor-1268
Count	39		39	13		13	1		1
Min	0.18	0.16	0.16	0.08	0.07	0.04	0.18	0.16	0.016
Max	3.5	3.12	8.76	0.87	0.77	0.26	0.18	0.16	0.016
Mean	1.14	1.01	1.43	0.30	0.27	0.10	0.18	0.16	0.02
Std Dev	0.833		1.532	0.250		0.067	NA	NA	NA
Coeff Var.	0.728		1.071	0.845		0.683	NA	NA	NA
95 UCL	1.41	1.25	1.87	0.45	0.40	0.13	NA	NA	NA
	Approx Gamma		% Bootstrap	Approx Gamma		Approx Gamma	NA	NA	NA
Non-Detects	0		1	0		0	0		0

	Silver P	erch - Purv Methyl	is Creek	Silver F	Perch - Trou Methyl	ıp Creek	Silver Total	Perch - Cre	sent River
	Total Mercury	Mercury ^(a)	Aroclor-1268	Total Mercury	Mercury ^(a)	Aroclor-1268	Mercury	Mercury ^(a)	Aroclor-1268
Count	55		56	32		31	8		8
Min	0.18	0.18	0.09	0.11	0.11	0.07	0.13	0.13	0.016
Max	4.7	4.7	22	0.6	0.6	0.65	0.19	0.19	0.051
Mean	1.6	1.6	5.67	0.29	0.29	0.19	0.16	0.16	0.024
Std Dev	0.997		5.601	0.130		0.130	0.027		0.015
Coeff Var.	0.622		0.988	0.455		0.689	0.169		0.612
95 UCL	1.85	1.85	7.05	0.33	0.33	0.23	0.18	0.18	0.033
	Approx Gamma		Approx Gamma	Approx Gamma		Approx Gamma	Student's-t		% Bootstrap
Non-Detects	0		0	0		7	0		6

Table 4-11a_Continued

	Spotted S	eatrout - Pu Methyl	ırvis Creek	Spotted S	Seatrout - Ti Methyl	roup Creek	Spotted S Total	Seatrout - C Methyl	resent River
	Total Mercury	Mercury ^(a)	Aroclor-1268	Total Mercury	Mercury (a)	Aroclor-1268	Mercury	Mercury ^(a)	Aroclor-1268
Count	49		49	21		21	8		8
Min	0.38	0.38	0.79	0.19	0.19	0.02	0.078	0.078	0.016
Max	5.3	5.3	19.38	0.53	0.53	0.47	0.156	0.156	0.016
Mean	2.27	2.27	4.92	0.34	0.34	0.16	0.108	0.11	0.016
Std Dev	1.352		3.844	0.096		0.109	0.033		NA
Coeff Var.	0.595		0.781	0.280		0.683	0.306		NA
95 UCL	2.65	2.65	5.91	0.38	0.38	0.21	0.13	0.13	NA
	Approx Gamma		Approx Gamma	Student's-t		Approx Gamma	Student's-t		NA
Non-Detects	0		0	0		0	0		8

	Striped I	Mullet - Pur Methyl	vis Creek	Striped	Mullet - Tro Methyl	up Creek	Striped Total	Mullet - Cre Methyl	esent River
	Total Mercury	Mercury ^(a)	Aroclor-1268	Total Mercury	Mercury ^(a)	Aroclor-1268	Mercury	Mercury ^(a)	Aroclor-1268
Count	27		27	13		13	4		4
Min	0.10	0.04	0.04	0.01	0.004	0.01	0.015	0.006	0.016
Max	0.84	0.31	47.05	0.17	0.06	0.44	0.033	0.012	0.016
Mean	0.23	0.09	13.2	0.05	0.02	0.18	0.021	0.008	0.016
Std Dev	0.137		9.338	0.045		0.147	0.008		NA
Coeff Var.	0.596		0.707	0.895		0.810	0.399		NA
95 UCL	0.27	0.10	21.03	0.08	0.03	0.25	0.031	0.011	NA
	Approx Gamma		Chebyshev	Approx Gamma		Student's-t	Student's-t		NA
Non-Detects	0		0	0		3	0		4

⁽a) - Percentage of Total Mercury in the form of Methyl Mercury: Black Drum - 91 %

Red Drum - 89 %

Silver Perch - 100 %

Spotted Seatrout - 100 %

Striped Mullet - 37 %

Table 4-11b_ Body burdens of chemicals of potential concern (COPCs) in large finfish for major areas and years in estuary at LCP Site (2000 - 2007 data) $^{\rm a,\ b}$

	Size of area							
	(percent of		Total mer	cury	Aroclor 1	268	Lead	b
	evaluated site	_	Body burden	Sample	Body burden	Sample	Body burden	Sample
Major area	of 57.30 acres)	Year	(mg/kg, dw)	size (n)	(mg/kg, dw)	size (n)	(mg/kg, dw)	size (n)
			Silver Perch	(Bairdiella	chrysoura)			
Purvis	57.30 acres	2000	2.1	7	2.9	8	0.78	8
Creek	(100%)	2002	1.1	8	16	8	<u>1.2</u>	8
		2003	1.6	8	3.8	8	<u>0.12</u>	8
		2004	1.3	8	<u>3.6</u>	8	<u>0.14</u>	8
		2005	0.84	8	2.8	8	<u>0.36</u>	8
		2006	1.6	8	3.7	8	0.089	8
		2007 Total	1.5	8 55	3.3	8 56	0.10	8 56
Troup Creek		2000	0.15	8	0.33	8	<u>1.1</u>	8
(reference)		2002	0.15	0	<u>0.33</u>	0	<u>1.1</u>	0
(101010100)		2002		0		0		0
		2004		0		0		0
		2005	0.34	8	0.15	7	0.38	8
		2006	0.42	8	0.15	8	0.20	8
		2007	0.37	8	0.12	8	0.088	8
		Total		32		31		32
Crescent		2000		0		0		0
River		2002		0		0		0
(reference)		2003		0		0		0
		2004	0.47	0		0		0
		2005	0.17	8	<u>0.03</u>	8	<u>0.37</u>	8
		2006 Total		0 8		0 8		0 8
								o
			Red Drum (Sciaenops	ocellatus)			
Purvis	57.30 acres	2000		0		0		0
Creek	(100%)	2002	0.81	8	1.2	8	<u>0.50</u>	8
		2003	0.67	8	1.0	8	<u>0.12</u>	8
		2004	1.1	8	<u>0.92</u>	8	<u>0.16</u>	8
		2005	0.64	8	0.71	8	<u>0.39</u>	8
		2006	1.0	3	3.5	3	0.17	3
		2007	1.7	4	2.6	4	0.063	4
		Total		39		39		39
Troup Creek (reference)		2000 2002		0 0		0 0		0 0
(reference)		2002		0		0		0
		2003		0		0		0
		2005	0.52	5	0.12	5	0.38	5
		2006		0		0	<u>0.00</u> 	0
		2007	0.16	8	0.080	8	0.078	8
		Total		13		13		13
Crescent		2000		0		0		0
River		2002		0		0		0
(reference)		2003		0		0		0
		2004	0.00	0		0		0
		2005	0.22	1	<u>0.018</u>	1	<u>0.38</u>	1
		2006 Total		0 1		0 1		0 1

Table 4-11b_Continued

	Size of area							
	(percent of		Total mer	cury	Aroclor 1	268	Lead	i
	evaluated site	-	Body burden	Sample	Body burden	Sample	Body burden	Sample
Major area	of 57.30 acres)	Year	(mg/kg, dw)	size (n)	(mg/kg, dw)	size (n)	(mg/kg, dw)	size (n)
			Black Drur	n (<i>Pogonia</i>	s cromis)			
Purvis	57.30 acres	2000	0.92	2	4.2	2	0.90	2
Creek	(100%)	2002	0.41	8	7.3	8	1.0	8
		2003	0.61	8	2.9	8	0.21	8
		2004	0.92	8	<u>3.1</u>	8	0.12	8
		2005	0.88	8	7.8	8	0.38	7
		2006	0.54	8	4.8	8	0.41	8
		2007	0.87	8	5.3	8	0.32	8
		Total		50		50		49
Troup Creek		2000		0		0		0
(reference)		2002		0		0		0
		2003		0		0		0
		2004		0		0		0
		2005	0.11	8	<u>0.11</u>	8	<u>0.38</u>	8
		2006	0.12	8	0.091	8	0.31	8
		2007 Total		0 16		0 16		0 16
Crescent		2000 2002		0		0		0
River		2002		0		0 0		0
(reference)		2003		0 0		0		0 0
		2004	0.06	8	0.016	8	<u>0.38</u>	8
		2005	0.00	0	0.010	0	0.36	0
		Total		8		8		8
		Sp	otted Seatrou	ıt (<i>Cynosc</i>	ion nebulosus	1		
Purvis	57.30 acres	<u>Sp</u> 2000	0.64	1	0.99	1	<u>0.90</u>	1
	57.30 acres (100%)	2000 2002		1 8	0.99 5.8	1 8	0.94	8
Purvis Creek		2000 2002 2003	0.64 0.90 1.4	1 8 8	0.99 5.8 3.7	1	0.94 0.12	8 8
		2000 2002 2003 2004	0.64 0.90 1.4 2.0	1 8 8 8	0.99 5.8 3.7 3.7	1 8 8 8	0.94 0.12 0.14	8 8 8
		2000 2002 2003 2004 2005	0.64 0.90 1.4 2.0 2.8	1 8 8 8 8	0.99 5.8 3.7 3.7 6.5	1 8 8 8 8	0.94 0.12 0.14 0.36	8 8 8
		2000 2002 2003 2004 2005 2006	0.64 0.90 1.4 2.0 2.8 1.7	1 8 8 8 8	0.99 5.8 3.7 3.7 6.5 2.8	1 8 8 8 8	0.94 0.12 0.14 0.36 0.069	8 8 8 8
		2000 2002 2003 2004 2005 2006 2007	0.64 0.90 1.4 2.0 2.8	1 8 8 8 8 8	0.99 5.8 3.7 3.7 6.5	1 8 8 8 8 8	0.94 0.12 0.14 0.36	8 8 8 8
Creek		2000 2002 2003 2004 2005 2006 2007 Total	0.64 0.90 1.4 2.0 2.8 1.7	1 8 8 8 8 8 8	0.99 5.8 3.7 3.7 6.5 2.8	1 8 8 8 8 8 8 8	0.94 0.12 0.14 0.36 0.069	8 8 8 8 8 49
Creek Troup Creek		2000 2002 2003 2004 2005 2006 2007 Total	0.64 0.90 1.4 2.0 2.8 1.7	1 8 8 8 8 8 8 8 8 49	0.99 5.8 3.7 3.7 6.5 2.8 4.0	1 8 8 8 8 8 8 8 8 8	0.94 0.12 0.14 0.36 0.069	8 8 8 8 8 8 49
Creek Troup Creek		2000 2002 2003 2004 2005 2006 2007 Total 2000 2002	0.64 0.90 1.4 2.0 2.8 1.7 3.0	1 8 8 8 8 8 8 8 49	0.99 5.8 3.7 3.7 6.5 2.8 4.0	1 8 8 8 8 8 8 8 8 49	0.94 0.12 0.14 0.36 0.069 0.049	8 8 8 8 8 49
		2000 2002 2003 2004 2005 2006 2007 Total 2000 2002 2003	0.64 0.90 1.4 2.0 2.8 1.7 3.0	1 8 8 8 8 8 8 8 49	0.99 5.8 3.7 3.7 6.5 2.8 4.0	1 8 8 8 8 8 8 8 8 49	0.94 0.12 0.14 0.36 0.069 0.049	8 8 8 8 8 8 49
Creek Troup Creek		2000 2002 2003 2004 2005 2006 2007 Total 2000 2002 2003 2004	0.64 0.90 1.4 2.0 2.8 1.7 3.0	1 8 8 8 8 8 8 8 49	0.99 5.8 3.7 3.7 6.5 2.8 4.0	1 8 8 8 8 8 8 8 49	0.94 0.12 0.14 0.36 0.069 0.049	8 8 8 8 8 49 0 0
Creek Troup Creek		2000 2002 2003 2004 2005 2006 2007 Total 2000 2002 2003 2004 2005	0.64 0.90 1.4 2.0 2.8 1.7 3.0	1 8 8 8 8 8 8 8 49	0.99 5.8 3.7 3.7 6.5 2.8 4.0	1 8 8 8 8 8 8 8 49	0.94 0.12 0.14 0.36 0.069 0.049	8 8 8 8 8 49 0 0 0 0
Creek Troup Creek		2000 2002 2003 2004 2005 2006 2007 Total 2000 2002 2003 2004 2005 2006	0.64 0.90 1.4 2.0 2.8 1.7 3.0	1 8 8 8 8 8 8 49	0.99 5.8 3.7 3.7 6.5 2.8 4.0	1 8 8 8 8 8 8 8 49	0.94 0.12 0.14 0.36 0.069 0.049	8 8 8 8 8 49 0 0 0 0 8 8
Creek Troup Creek		2000 2002 2003 2004 2005 2006 2007 Total 2000 2002 2003 2004 2005	0.64 0.90 1.4 2.0 2.8 1.7 3.0	1 8 8 8 8 8 8 8 49	0.99 5.8 3.7 3.7 6.5 2.8 4.0	1 8 8 8 8 8 8 8 49	0.94 0.12 0.14 0.36 0.069 0.049	8 8 8 8 8 49 0 0 0 0
Creek Troup Creek		2000 2002 2003 2004 2005 2006 2007 Total 2000 2002 2003 2004 2005 2006 2007	0.64 0.90 1.4 2.0 2.8 1.7 3.0	1 8 8 8 8 8 8 8 49	0.99 5.8 3.7 3.7 6.5 2.8 4.0	1 8 8 8 8 8 8 8 49	0.94 0.12 0.14 0.36 0.069 0.049	8 8 8 8 8 8 49 0 0 0 0 8 8 5 21
Creek Troup Creek (reference)		2000 2002 2003 2004 2005 2006 2007 Total 2000 2002 2003 2004 2005 2006 2007 Total	0.64 0.90 1.4 2.0 2.8 1.7 3.0	1 8 8 8 8 8 8 49 0 0 0 0 8 8 8 5 21	0.99 5.8 3.7 3.7 6.5 2.8 4.0	1 8 8 8 8 8 8 49 0 0 0 0 0 8 8 8 5 21	0.94 0.12 0.14 0.36 0.069 0.049	8 8 8 8 8 8 49 0 0 0 0 0 8 8 8
Creek Troup Creek (reference)		2000 2002 2003 2004 2005 2006 2007 Total 2000 2002 2003 2004 2005 2006 2007 Total	0.64 0.90 1.4 2.0 2.8 1.7 3.0	1 8 8 8 8 8 8 8 49 0 0 0 0 0 8 8 5 2 1	0.99 5.8 3.7 3.7 6.5 2.8 4.0	1 8 8 8 8 8 8 8 49 0 0 0 0 0 8 8 8 5 2 1	0.94 0.12 0.14 0.36 0.069 0.049	8 8 8 8 8 8 49 0 0 0 0 0 8 8 5 21
Creek Troup Creek (reference) Crescent River		2000 2002 2003 2004 2005 2006 2007 Total 2000 2002 2003 2004 2005 2006 2007 Total 2000 2002	0.64 0.90 1.4 2.0 2.8 1.7 3.0	1 8 8 8 8 8 8 8 49 0 0 0 0 0 8 8 8 5 2 1	0.99 5.8 3.7 3.7 6.5 2.8 4.0	1 8 8 8 8 8 8 8 49 0 0 0 0 0 8 8 5 21	0.94 0.12 0.14 0.36 0.069 0.049	8 8 8 8 8 8 49 0 0 0 0 0 8 8 5 21
Creek Troup Creek (reference) Crescent River		2000 2002 2003 2004 2005 2006 2007 Total 2000 2002 2003 2004 2005 2006 2007 Total 2000 2002 2000 2002 2003	0.64 0.90 1.4 2.0 2.8 1.7 3.0	1 8 8 8 8 8 8 49 0 0 0 0 0 8 8 5 21	0.99 5.8 3.7 3.7 6.5 2.8 4.0	1 8 8 8 8 8 8 8 8 8 49 0 0 0 0 8 8 8 5 21 0 0 0 0 0	0.94 0.12 0.14 0.36 0.069 0.049	8 8 8 8 8 8 49 0 0 0 0 0 8 8 5 21
Creek Troup Creek (reference) Crescent River		2000 2002 2003 2004 2005 2006 2007 Total 2000 2002 2003 2004 2005 2006 2007 Total 2000 2002 2003 2004 2000 2002 2003	0.64 0.90 1.4 2.0 2.8 1.7 3.0	1 8 8 8 8 8 8 49 0 0 0 0 0 8 8 5 21	0.99 5.8 3.7 3.7 6.5 2.8 4.0 0.19 0.18 0.080	1 8 8 8 8 8 8 8 8 8 49 0 0 0 0 0 8 8 8 5 21 0 0 0 0 0 0	0.94 0.12 0.14 0.36 0.069 0.049	8 8 8 8 8 49 0 0 0 0 0 8 8 5 21

Table 4-11b_Continued

	Size of area (percent of		Total mer	cury	Aroclor 12	268	Lead			
Major area	evaluated site of 57.30 acres)	Year	Body burden (mg/kg, dw)	Sample size (n)	Body burden (mg/kg, dw)	Sample size (n)	Body burden (mg/kg, dw)	Sample size (n)		
			Striped Mu	llet (<i>Mugil</i>	cephalus)					
Purvis	57.30 acres	2000		0		0		0		
Creek	(100%)	2002		0		0		0		
		2003		0		0		0		
		2004	0.27	8	10	8	0.50	8		
		2005	0.23	8	12	8	0.38	8		
		2006	0.085	8	9.3	8	0.47	8		
		2007	0.16	3	12	3	0.84	3		
		Total		27		27		27		
Troup Creek		2000		0		0		0		
(reference)		2002		0		0		0		
		2003		0		0		0		
		2004		0		0		0		
		2005	0.10	6	<u>0.019</u>	6	0.38	6		
		2006	0.026	5	0.32	5	0.60	5		
		2007	0.019	2	0.22	2	0.18	2		
		Total		13		13		13		
Crescent		2000		0		0		0		
River		2002		0		0		0		
(reference)		2003		0		0		0		
		2004		0		0		0		
		2005	0.021	4	<u>0.016</u>	4	0.38	4		
		2006		0		0		0		
		Total		4		4		4		

^aEach sample of finfish consisted of from one to eight replicates, with each replicate consisting of a single fish.

^bBody burdens of finfish identified by <u>underlining</u> consisted of at least one non-detected value that was assigned a value of 1/2 of detection limit.

Table 4-12_Statistical analysis of survival and growth of mysids (Mysidopsis bahia) exposed for 7 days to surface water in estuary at LCP Site (2000 data)⁸

				Replica	ate r				Mean	Variance				
Water source (S)	1	2	3	4	5	6	7	8	(x)	(s2)				
	Control													
Control	5 (0.39)	5 (0.32)	5 (0.57)	4 (0.45)	5 (0.41)	5 (0.33)	5 (0.52)	5 (0.85)	4.88 (0.48)	0.12 (0.029)				
			Referer	nce Loc	ations									
Crescent River	5 (0.46)	5 (0.54)	5 (0.69)	5 (0.79)	5 (0.52)	5 (0.84)	5 (0.54)	5 (0.46)	5.00 (0.60)	0 (0.023)				
Troup Creek			5 (0.61)						5.00 (0.56)	0 (0.017)				
			Ma	ain Cana	<u>ıl</u>									
Mouth (C-5)	5 (0.47)	4 (0.90)	5 (0.66)	5 (0.85)	5 (0.47)	4 (1.02)	5 (0.51)	4 (0.73)	4.62 (0.70)	0.27 (0.044)				
			<u>Pur</u>	vis Cre	<u>ek</u>									
Mouth (C-16)	5 (0.65)	4 (1.90)	5 (0.70)	4 (0.49)	5 (1.36)	5 (0.45)	5 (0.35)	5 (0.45)	4.75 (0.79)	0.21 (0.303)				
			Eas	tern Cre	ek									
Mid-stretch (C-7)	4 (0.58)	5 (0.59)				5 (1.29)	5 (1.06)	5 (0.78)	4.88 (0.84)	0.12 (0.078)				
			<u>D</u>	omain 3	<u>.</u>									
Near old oil-processing site (C-33)	5 (0.57)	5 (0.76)	5 (0.75)	5 (0.42)	5 (0.33)	5 (0.44)	5 (0.40)	5 (0.36)	5.00 (0.50)	0 (0.029)				

No further statistical analysis required

- 1. Mean survival of mysids exposed to all water sources was from 92.4 to 100%, which was greater than minimum acceptable survival for control organisms (80%).
- 2. Mean growth (weight) of mysids exposed to water from the site and reference locations was from 0.50 to 0.84 mg, which was greater than weight of control organisms (0.48 mg).

October 11 (Days 1 and 2 of test), October 13 (Days 3, 4, and 5 of test), and October 16 (Days 6 and 7 of test), 2000.

^aSurface water employed in mysid toxicity test was collected directly into sampling containers on

^bEach replicate (r) consisted of 5 mysids at start of test (i. e., 5 mysids at end of test = 100% survival).

^cLaboratory control water consisted of deionized water to which commercial sea salts were added.

Table 4-13_Statistical analysis of survival and growth of sheepshead minnows (Cyprinodon variegatus) exposed for 7 days to surface water of estuary at LCP Site (based on 2000 data)^a

1. Number of surviving fish (mean weight; mg, dw) Replicate -- r Mean Variance Water source (S) (x) (s2)Control $\mathsf{Control}^\mathsf{C}$ 10 (1.22) 10 (1.01) 10 (1.14) 10.00 (1.13) 0 (0.008) 10 (1.16) Reference Locations Crescent River 0.25 (0.056) 10 (1.17) 10 (1.57) 10 (1.22) 9 (1.01) 9.75 (1.24) Troup Creek 8 (0.76) 9 (1.36) 9 (0.54) 8 (0.50) 8.50 (0.79) 0.34 (0.158) **Main Canal** Main Canal (C-5) 10 (1.51) 10 (0.99) 10 (1.33) 10.00 (1.27) 0 (0.047) 10 (1.24) **Eastern Creek** Eastern Creek (C-7) 9 (0.90) 10 (1.59) 8 (0.76) 9 (1.10) 9.00 (1.09) 0.67 (0.132) Purvis Creek Mouth (C-16) 10 (1.00) 10 (1.00) 9 (0.95) 8 (0.68) 9.25 (0.91) 0.92 (0.024) Domain 3 Near old oil-processing site (C-33) 9 (0.40) 7 (0.50) 10 (0.68) 6 (0.48) 8.00 (0.52) 3.35 (0.014)

Cochran's (C) test for homogeneity of variances of fish weight
 No further statistical analysis required for fish survival since mean survival of fis exposed to all water sources was from 80 to 100%, which was at least equal to minimum acceptable survival for control organisms (80%)

$$\begin{split} &C_{(cal.)} = s^2(max.) \, / \, s^2(total) \\ &C_{(cal.)} = 0.158 \, / \, 0.439 = 0.36 \, \, ns, \\ &as \, compared \, to \, \, C_{(tab.)} = 0.48 \\ &for \, k = 7 \, and \, v = 3 \end{split}$$

3. Parametric one-way analysis of variance (ANOVA) followed by Tukey's (w) test of fish weight^e

Source of variation in weight	Degrees of freedom (df)	Sum of squares (S		S) <u>F_(cal.)</u>			
Water source (S)	s - 1 = 6	1.77	0.30	5.00 **,			
Error (R)	s(r-1) = 21	<u>1.31</u>	0.06				
Total (T)	sr - 1 = 27	3.08			as compared F _(tab.) = 3.81 6 numerator denominator	for P = 0.01, df, and 21	
Water source (S):	Station 33	Troup Creek	Station 16	Station 7 Con	trol Crescent	River Station	5
Mean (x) weight (mg, dry wt):	0.52	0.79	0.91	1.09	1.13	1.24	1.27

 $W_{(P = 0.05)} = q \text{ (square root of error MS / r)}$ = 4.60 (square root of 0.06 / 4) = 0.55

^aSurface water employed in fish toxicity test was collected directly into sampling containers on October 11 (Days 1 and 2 of test), October 13 (Days 3, 4, and 5 of test), and October 16 (Days 6 and 7of test), 2000.

^bEach replicate (r) consisted of 10 fish at start of test (i. e., 10 fish at end of test = 100% survival).

^cLaboratory control water consisted of deionized water to which commercial sea salts were added.

^dCochran's (C) test, when applied to fish weight data indicated homogeneity of variances (as indicated by the symbol "ns"). Consequently, further statistical analyses were conducted with original (untransformed) data by parametric protocols.

^eA parametric ANOVA applied to fish weight data documented the presence of statistically significant differences in weight (as indicated by the symbol "**" for F [cal.]). Tukey's (w) test indicates that a major source of these differences is the relatively low weight of fish exposed to water from Station 33, although weight for that station is statistically similar to weight for Troup Creek (a reference location) and Station 16. In Tukey's test, weight data underscored by the same horizontal line are not significantly different (i. e., x1 - x2 < w value of 0.55), whereas data not underscored by the same horizontal line are significantly different (x1 - x2 > w value of 0.55).

Table 4-14_Results of sediment toxicity tests with amphipods (Leptocheirus plumulosus) exposed for 28 days to surface sediment of the LCP estuary (2000 - 2006 data)

		1. Annual Toxicity Tests			
				Average	Survivor's
			Reproductive	Survival	Average
Location	Year	Domain	Response	Rate	Weight
Control		Control	NA	71	NA
TC-C		Troup Creek Reference	NA	29	NA
MG-B7(C)		Domain 1	NA	31	NA
MG-D9(C)	2000	Domain 1	NA	39	NA
MG-H7(C)		Domain 1	NA	15	NA
MG-K7(C)		Domain 1	NA	0	NA
MG-N2(C)		Domain 1	NA	49	NA
Control		Control	1.16	86	0.79
TC-C		Troup Creek Reference	0.025	80	0.63
CR-C		Crescent River Reference	0.1	53	0.47
C-15		Western Creek Complex	0.47	77	0.70
C-45		Domain 4	0.29	71	0.60
C-5	2002	Main Canal	0.07	54	0.42
C-6		Eastern Creek	0	48	0.51
C-7		Eastern Creek	0	56	0.43
D-C		Domain 4	0	63	0.61
MG-H7(C)		Domain 1	0.01	80	0.46
MG-K7(C)		Domain 1	0	68	0.46
Control		Control	0.058	86	0.312
TC-C		Troup Creek Reference	0.078	69	0.354
CR-C		Crescent River Reference	0.048	76	0.366
C-15		Western Creek Complex	0.024	61	0.168
C-45		Domain 4	0.088	50	0.102
C-5	2003	Main Canal	0.148	37	0.102
C-6	2000	Eastern Creek	0.21	35	0.076
C-7		Eastern Creek	0.21	1	0.02
D-C		Domain 4	0.052	62	0.168
		Domain 1	0.052	30	0.108
MG-H7(C)		Domain 1	0.19	54	0.094
MG-K7(C) Control		Control	3.20	86	0.134
TC-C			3.23	42	
		Troup Creek Reference			0.362
CR-C		Crescent River Reference	5.31	40	0.178
C-33		Domain 3	1.94	42	0.35
M-AB		Domain 1 Removal Area	0.079	15	0.302
C-101		Domain 3	1.59	25	0.308
C-105		Blythe Island	0	0	0
C-5		Main Canal	0.469	63	0.40
MG-H7(C)		Domain 1	0.55	24	0.50
MG-K7(C)	2004	Domain 1	0.211	41	0.286
A-C	2001	Domain 4	0.205	33	0.406
C-100		Domain 3	1.605	76	0.294
C-102		Domain 4	2.873	47	0.398
C-104		Blythe Island	3.006	66	0.316
C-15		Western Creek Complex	1.45	3	0.250
C-45		Domain 4	0.12	23	0.264
C-7		Eastern Creek	0	15	0.452
D-C		Domain 4	0.741	58	0.234
C-103		Blythe Island	0.148	72	0.230
C-6		Eastern Creek	2.848	37	0.384

Table 4-14_Continued

			5	Average	Survivor's
Location	Year	Domain	Reproductive Response	Survival Rate	Average Weight
Control	real	Control	2.21	82	0.360
TC-C		Troup Creek Reference	0.77	34	0.300
CR-C		Crescent River Reference	0.85	36	0.282
C-5		Main Canal	0.6	62	0.39
C-36		North Purvis Creek	0.26	65	0.408
C-29		North Purvis Creek	0	0	0.400
C-16		South Purvis Creek	0	7	0.45
C-6		Eastern Creek	0.95	42	0.39
C-7		Eastern Creek	0	0	0
C-15		Western Creek Complex	0	0	0
MG-K7(M)		Domain 1	0.39	45	0.532
MG-H7(M)		Domain 1	0.67	29	0.512
C-33		Domain 3	0.23	32	0.29
D-C		Domain 4	0	3	0.14
C-45	2005	Domain 4	0	12	0.34
C-103		Blythe Island	Ö	14	0.26
C-104		Blythe Island	0	4	0.25
C-105		Blythe Island	0.38	36	0.302
C-200		Domain 3	0	23	0.326
C-201		South Turtle River	0	0	0
C-202		North Turtle River	Ö	19	0.528
C-203		South Turtle River	0	16	0.438
FS-AREA1		Domain 3	0	2	0.1
FS-AREA2		Domain 3	0	0	0
FS-AREA3		Domain 3	0	0	0
FS-AREA4		Main Canal	0.32	26	0.208
FS-AREA5		Main Canal	0	6	0.55
FS-AREA6		Domain 2	0.54	39	0.334
Control		Control	0.562	85	0.74
TC-C		Troup Creek Reference	0.05	72	0.402
CR-C		Crescent River Reference	0.364	88	0.322
C-103		Blythe Island	0.082	80	0.58
C-104		Blythe Island	0.292	80	0.358
C-105		Blythe Island	0.358	82	0.488
C-15		Western Creek Complex	0.86	79	0.62
C-16		South Purvis Creek	0.656	87	0.378
C-29		North Purvis Creek	0.142	84	0.382
C-33		Domain 3	1.18	70	0.756
C-36		North Purvis Creek	0.508	84	0.426
C-45		Domain 4	0	60	0.34
C-5	2006	Main Canal	0.61	87	0.712
C-6		Eastern Creek	0.126	67	0.592
C-7		Eastern Creek	0.356	91	0.556
D-C		Domain 4	0.36	87	0.534
FS-AREA1		Domain 3	0.072	41	0.322
FS-AREA2		Domain 3	0	1	0.1
FS-AREA3		Domain 3	0.906	87	0.43
FS-AREA4		Main Canal	0.032	85	0.65
FS-AREA5		Main Canal	0.464	88	0.426
FS-AREA6		Domain 2	0.074	78	0.352
M-AB		Domain 1 Removal Area	0.144	81	0.318
MG-H7(M)		Domain 1	0.154	66	0.458
MG-K7(M)		Domain 1	0.112	74	0.744

Table 4-14_Continued

2. Apparent Effects Threshold (AET) Tests

		ī			
Control	2006	Control	1.55	95	0.42
SDEC-AET-1	2006	Eastern Creek	0	55	0.31
SDEC-AET-10	2006	Eastern Creek	0	0	0.00
SDEC-AET-11	2006	Eastern Creek	0	20	0.25
SDEC-AET-12	2006	Eastern Creek	0	70	0.33
SDEC-AET-13	2006	Eastern Creek	0.269	75	0.41
SDEC-AET-14	2006	Eastern Creek	0	80	0.44
SDEC-AET-15	2006	Eastern Creek	0	70	0.45
SDEC-AET-16	2006	Eastern Creek	0	0	0.00
SDEC-AET-17	2006	Eastern Creek	0	50	0.32
SDEC-AET-18	2006	Eastern Creek	0	75	0.34
SDEC-AET-19	2006	Eastern Creek	0	75	0.35
SDEC-AET-19 SDEC-AET-2	2006	Eastern Creek	0	50	0.29
SDEC-AET-20	2006	Eastern Creek	0.389	80	0.29
SDEC-AET-20 SDEC-AET-21	2006			25	0.50
		Eastern Creek	0		
SDEC-AET-22	2006	Eastern Creek	0	30	0.18
SDEC-AET-23	2006	Eastern Creek	0	55 	0.61
SDEC-AET-24	2006	Eastern Creek	0.35	85	0.44
SDEC-AET-25	2006	Eastern Creek	1.38	80	0.29
SDEC-AET-26	2006	Eastern Creek	0	85	0.37
SDEC-AET-27	2006	Eastern Creek	0	85	0.41
SDEC-AET-28	2006	Eastern Creek	0	0	0.00
SDEC-AET-29	2006	Eastern Creek	0	0	0.00
SDEC-AET-3	2006	Eastern Creek	2.58	100	0.46
SDEC-AET-30	2006	Eastern Creek	0	50	0.45
SDEC-AET-31	2006	Eastern Creek	0.125	75	0.35
SDEC-AET-32	2006	Eastern Creek	0.727	85	0.35
SDEC-AET-33	2006	Eastern Creek	0	55	0.64
SDEC-AET-34	2006	Eastern Creek	0.0769	70	0.33
SDEC-AET-35	2006	Eastern Creek	0	80	0.56
SDEC-AET-36	2006	Eastern Creek	0.45	60	0.37
SDEC-AET-37	2006	Eastern Creek	0	80	0.59
SDEC-AET-38	2006	Eastern Creek	0	40	0.40
SDEC-AET-39	2006	Eastern Creek	0	75	0.61
SDEC-AET-4	2006	Eastern Creek	2.06	90	0.55
SDEC-AET-40	2006	Eastern Creek	0	50	0.69
SDEC-AET-41	2006	Eastern Creek	0	20	0.48
SDEC-AET-42	2006	Eastern Creek	1.88	90	0.53
SDEC-AET-42 SDEC-AET-43	2006	Eastern Creek	0	10	0.35
SDEC-AET-43 SDEC-AET-44	2006	Eastern Creek	1	100	0.33
SDEC-AET-44 SDEC-AET-45	2006		0	35	0.48
		Eastern Creek			
SDEC-AET-46	2006	Eastern Creek	1.56	90	0.43
SDEC-AET-47	2006	Eastern Creek	0	10	0.15
SDEC-AET-48	2006	Eastern Creek	0	10	0.20
SDEC-AET-49	2006	Eastern Creek	0	0	0.00
SDEC-AET-5	2006	Eastern Creek	0	65	0.71
SDEC-AET-50	2006	Eastern Creek	0.2308	80	0.33
SDEC-AET-6	2006	Eastern Creek	0	60	0.47
SDEC-AET-7	2006	Eastern Creek	0	0	0.00
SDEC-AET-8	2006	Eastern Creek	0	75	0.30
SDEC-AET-9	2006	Eastern Creek	0	65	0.19

Table 4-14_Continued

SDMC-AET-1	2006	Main Canal	0.269	85	0.39
SDMC-AET-10	2006	Main Canal	0.167	75	0.34
SDMC-AET-11	2006	Main Canal	0	80	0.31
SDMC-AET-12	2006	Main Canal	0	65	0.68
SDMC-AET-13	2006	Main Canal	0	80	0.34
SDMC-AET-14	2006	Main Canal	0	15	0.30
SDMC-AET-15	2006	Main Canal	0	75	0.41
SDMC-AET-16	2006	Main Canal	0.9	85	0.56
SDMC-AET-17	2006	Main Canal	0.375	55	0.55
SDMC-AET-18	2006	Main Canal	0	60	0.48
SDMC-AET-19	2006	Main Canal	0	50	0.39
SDMC-AET-2	2006	Main Canal	0	80	0.44
SDMC-AET-20	2006	Main Canal	0	55	0.27
SDMC-AET-21	2006	Main Canal	0.375	80	0.51
SDMC-AET-22	2006	Main Canal	0.611	80	0.24
SDMC-AET-23	2006	Main Canal	0	35	0.49
SDMC-AET-24	2006	Main Canal	0	15	0.27
SDMC-AET-25	2006	Main Canal	0	65	0.37
SDMC-AET-26	2006	Main Canal	0	55	0.39
SDMC-AET-27	2006	Main Canal	0.167	75	0.57
SDMC-AET-28	2006	Main Canal	0.654	95	0.44
SDMC-AET-29	2006	Main Canal	0.034	50	0.33
SDMC-AET-3	2006	Main Canal	0	65	0.39
SDMC-AET-30	2006	Main Canal	0	70	0.39
SDMC-AET-31	2006	Main Canal	0	55	0.44
SDMC-AET-31	2006			75	0.43
		Main Canal	0.6		
SDMC-AET-33	2006	Main Canal	0	45	0.19
SDMC-AET-34	2006	Main Canal	0	5	0.20
SDMC-AET-35	2006	Main Canal	1.625	85	0.45
SDMC-AET-36	2006	Main Canal	0	25	0.66
SDMC-AET-37	2006	Main Canal	0	65	0.31
SDMC-AET-38	2006	Main Canal	0.15	70	0.38
SDMC-AET-39	2006	Main Canal	0.688	75	0.33
SDMC-AET-4	2006	Main Canal	0	65	0.25
SDMC-AET-40	2006	Main Canal	0	5	0.30
SDMC-AET-41	2006	Main Canal	0	35	0.51
SDMC-AET-42	2006	Main Canal	0	60	0.34
SDMC-AET-43	2006	Main Canal	0	5	0.30
SDMC-AET-44	2006	Main Canal	0	15	0.53
SDMC-AET-45	2006	Main Canal	0	50	0.40
SDMC-AET-46	2006	Main Canal	0	55	0.57
SDMC-AET-47	2006	Main Canal	0	0	0.00
SDMC-AET-48	2006	Main Canal	0	0	0.00
SDMC-AET-49	2006	Main Canal	0.25	75	0.43
SDMC-AET-5	2006	Main Canal	0	15	0.33
SDMC-AET-50	2006	Main Canal	0.909	100	0.53
SDMC-AET-6	2006	Main Canal	0	35	0.44
SDMC-AET-7	2006	Main Canal	0	35	0.33
SDMC-AET-8	2006	Main Canal	8.0	80	0.43
SDMC-AET-9	2006	Main Canal	1.04	100	0.58
·					

Table 4-14_Continued

		_			
SDWC-AET-1	2006	Western Creek Complex	0.833	100	0.40
SDWC-AET-10	2006	Western Creek Complex	3.64	90	0.57
SDWC-AET-11	2006	Western Creek Complex	0.938	100	0.68
SDWC-AET-12	2006	Western Creek Complex	0.5	70	0.45
SDWC-AET-13	2006	Western Creek Complex	0	85	0.49
SDWC-AET-14	2006	Western Creek Complex	1.733	90	0.44
SDWC-AET-15	2006	Western Creek Complex	0.2	80	0.41
SDWC-AET-16	2006	Western Creek Complex	0	75	0.31
SDWC-AET-17	2006	Western Creek Complex	0	65	0.41
SDWC-AET-18	2006	Western Creek Complex	1.682	100	0.73
SDWC-AET-19	2006	Western Creek Complex	0.083	80	0.43
SDWC-AET-2	2006	Western Creek Complex	0.556	65	0.75
SDWC-AET-20	2006	Western Creek Complex	1.111	85	0.46
SDWC-AET-21	2006	Western Creek Complex	0.571	80	0.39
SDWC-AET-22	2006	Western Creek Complex	1.571	95	0.51
SDWC-AET-23	2006	Western Creek Complex	0.792	100	0.65
SDWC-AET-24	2006	Western Creek Complex	2.833	100	0.43
SDWC-AET-25	2006	Western Creek Complex	0.643	90	0.57
SDWC-AET-26	2006	Western Creek Complex	2.25	75	0.80
SDWC-AET-27	2006	Western Creek Complex	0	75	0.55
SDWC-AET-28	2006	Western Creek Complex	0.708	95	0.35
SDWC-AET-29	2006	Western Creek Complex	0.5	85	0.31
SDWC-AET-3	2006	Western Creek Complex	0.818	85	0.38
SDWC-AET-30	2006	Western Creek Complex	0.010	0	0.00
SDWC-AET-31	2006	Western Creek Complex	0.778	100	0.48
SDWC-AET-31	2006	Western Creek Complex	1.91	100	0.49
SDWC-AET-33	2006	Western Creek Complex	0	30	0.35
SDWC-AET-33	2006	Western Creek Complex	0	25	0.33
SDWC-AET-35	2006	Western Creek Complex	0.5	85	0.41
SDWC-AET-35	2006	Western Creek Complex	0.917	80	0.49
SDWC-AET-30	2006	Western Creek Complex	0.917	75	0.42
SDWC-AET-37 SDWC-AET-38	2006	Western Creek Complex Western Creek Complex	0	90	0.42
SDWC-AET-38	2006	Western Creek Complex Western Creek Complex	0	30	0.41
SDWC-AET-39 SDWC-AET-4	2006	- T	2.27	100	0.13
		Western Creek Complex			
SDWC-AET-40	2006	Western Creek Complex	0	50	0.30
SDWC-AET-41	2006	Western Creek Complex	1.42	90	0.62
SDWC-AET-42	2006	Western Creek Complex	0	10	0.15
SDWC-AET-43	2006	Western Creek Complex	2.17	85	0.35
SDWC-AET-44	2006	Western Creek Complex	0	55	0.35
SDWC-AET-45	2006	Western Creek Complex	0	40	0.46
SDWC-AET-46	2006	Western Creek Complex	0	45	0.36
SDWC-AET-47	2006	Western Creek Complex	0	5	0.20
SDWC-AET-48	2006	Western Creek Complex	0	85	0.56
SDWC-AET-49	2006	Western Creek Complex	0.962	85	0.44
SDWC-AET-5	2006	Western Creek Complex	0	50	0.51
SDWC-AET-50	2006	Western Creek Complex	1.625	95	0.39
SDWC-AET-6	2006	Western Creek Complex	0	80	0.24
SDWC-AET-7	2006	Western Creek Complex	0	55	0.33
SDWC-AET-8	2006	Western Creek Complex	0	5	0.20
SDWC-AET-9	2006	Western Creek Complex	0	60	0.29
Percentage of sa	amples	considered toxic	85%	80%	55%

NA - Not Analyzed

Red color indicates toxicity where there the test endpoint was statistically different than the controls (i.e., less than than the lower limit of the 60% confidence interval for the mean response of the controls, or or if survival was $\leq 85\%D$

Shaded cells indicate associated controls did not meet acceptability criteria.

Table 4-15_Statistical analysis of survival, growth, and reproduction of amphipods (*Leptocheirus plumulosus*) exposed for 28 days to surface sediment of estuary at LCP Site (2006 data)^a

A. SURVIVAL OF AMPHIPODS

1. Raw data (number of survivors) b

Sediment source (S)	Replicate (r) 1	Replicate (r) 2	Replicate (r) 3	Replicate (r) 4	Replicate (r) 5	(x)	(s2)
		Cont	rol				
Control	18	19	20	20	18	19.0	1.0
Control	.0	.0		20			
		Reference L	ocations				
Crescent River	19	13	18	19	19	17.6	6.8
Troup Creek	8	17	16	14	17	14.4	14.3
		M-: 0					
		Main C					
Mouth (C-5)	13	18	20	16	20	17.4	8.8
		Eastern	Creek				
Upstream (C-6)	8	15	14	18	12	13.4	13.8
Mid-stretch (C-7)	16	20	19	16	20	18.2	4.2
, ,							
	<u>We</u>	stern Creek Comp	olex (In Domain 2)	<u>l</u>			
Mouth (C-15)	16	15	14	15	19	15.8	3.7
		Dumie (Sua ale				
		<u>Purvis C</u>	<u> reek</u>				
Upstream (C-36)	19	18	16	17	14	16.8	3.7
Mid-stretch (C-29)	18	16	17	17	16	16.8	0.7
Mouth (C-16)	16	14	17	20	20	17.4	6.8
		Domein 4	(Manah)				
		Domain 1		40	4.0		
AB Seep Area Marsh Grid (MG)	9	18	20	18	16	16.2	18.2
<u>Marsh Grid (MG)</u> K7 (M)	16	12	14	14	15	14.2	2.2
H7 (M)	11	14	15	10	16	13.2	6.7
()	••						U. .
		Domain 3					
Near old oil-processing site (C-33)	18	18	11	9	14	14.0	16.6
		Domain 4	(Marsh)				
Northwestern inlet from Turtle River (D)	20	19	12	18	18	17.4	9.8
Southeastern boundary (C-45)	11	16	13	10	10	12.0	6.5
		Blythe Islan	d (Marsh)				
Northern boundary (C-103)	19	18	9	15	19	16.0	18.0
Northeastern boundary (C-104)	14	14	19	18	15	16.0	5.5
Southern location (C-105)	14	16	18	18	16	16.4	2.8
		Feasibility-Study	(FS) Locations				
Area 1 (Creek)	8	6	9	9	10	8.4	2.3
Area 2 (Creek)	0	0	0	0	1	0.2	0.2
Area 3 (Creek)	16	19	18	19	15	17.4	3.3
Area 4 (Creek)	17	14	18	17	19	17.0	3.5
Area 5 (Creek)	19	16	16	18	19	17.6	2.3
Area 6 (Marsh)	16	18	12	18	14	15.6	6.8

$\underline{\text{2. Cochran's Test (C) for homogeneity of variances of amphipod survival}}^{\text{c}}$

 $C_{(cal.)}$ = 18.2/168.50 = 0.11 ns, as compared to $C_{(tab.)}$ = 0.16 for P criterion = 0.05, k = 25, and v = 4

3. Parametric one-way analysis of variance (ANOVA) followed by <u>Tukey's (w) Test of amphipod survival</u>

Source of variation in survival: Sediment source (S): Error (R): Total (T):		Degrees of $\frac{\text{freedom (df)}}{\text{s - 1}} = 24$ $\frac{\text{s (r - 1)}}{\text{sr - 1}} = 124$			Sum of squares (SS) 1,793.09 673.60 2,466.69			Mean square (MS) 74.71 6.74			! .		(cal.)		as compared to $F_{(tab.)} = 2.01 \text{ for P criterion} = 0.01,$ 24 numerator df, and 100						= 0.01,					
:																							or df	anu	100	
Sediment source (S):	<u>A2</u>	<u>A1</u>	<u>45</u>	<u>H7</u>	<u>6</u>	33	<u>K7</u>	<u>TC</u>	<u>A6</u>	<u>15</u>	<u>103</u>	<u>104</u>	<u>AB</u>	<u>105</u>	<u>36</u>	<u>29</u>	<u>A4</u>	<u>5</u>	<u>16</u>	<u>D</u>	<u>A3</u>	<u>A5</u>	<u>CR</u>	<u>7</u>	Cont.	
Mean (x) survival:	0.2	8.4	12.0	13.2	13.4	14.0	14.2	14.4	15.6	15.8	16.0	16.0	16.2	16.4	16.8	16.8	17.0	17.4	17.4	17.4	17.4	17.6	17.6	18.2	19.0	

B. GROWTH (WEIGHT) OF AMPHIPODS

1. Raw data (mean weight of survivors; mg, dw)

						Mean	Variance
Sediment source (S)	Replicate (r) 1	Replicate (r) 2	Replicate (r) 3	Replicate (r) 4	Replicate (r) 5	(x)	(s ²)
		Cont	rol				
Control	0.67	0.69	0.60	0.97	0.77	0.740	0.020
		Reference L	ocations.				
Crescent River	0.39	0.18	0.24	0.32	0.48	0.322	0.014
Troup Creek	0.27	0.51	0.31	0.46	0.46	0.402	0.011
Troup creek	0.21			0.40	0.40	0.102	0.011
		Main C					
Mouth (C-5)	0.59	0.71	0.85	0.76	0.65	0.712	0.010
		Eastern	<u>Creek</u>				
Upstream (C-6)	0.67	0.41	0.55	0.71	0.62	0.592	0.014
Mid-stretch (C-7)	0.60	0.57	0.49	0.61	0.51	0.556	0.003
			olex (In Domain 2)	_			
Mouth (C-15)	0.69	0.69	0.39	0.71	0.62	0.620	0.018
		Purvis (Creek				
Upstream (C-36)	0.41	0.41	0.46	0.48	0.37	0.426	0.002
Mid-stretch (C-29)	0.55	0.21	0.30	0.54	0.31	0.382	0.024
Mouth (C-16)	0.43	0.29	0.51	0.36	0.30	0.378	0.009
		Domain 1	(Marsh)				
AB Seep Area	0.37	0.45	0.29	0.27	0.21	0.318	0.009
Marsh Grid (MG)	0.57	0.40	0.23	0.27	0.21	0.510	0.003
K7 (M)	0.86	0.76	0.82	0.89	0.39	0.744	0.042
H7 (M)	0.35	0.38	0.53	0.52	0.51	0.458	0.007
		Domain 3	(March)				
No. 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.04	•		0.00	0.50	0.750	0.000
Near old oil-processing site (C-33)	0.81	0.86	0.71	0.88	0.52	0.756	0.022
		Domain 4	(Marsh)				
Northwestern inlet from Turtle River (D)	0.54	0.54	0.55	0.57	0.47	0.534	0.001
Southeastern boundary (C-45)	0.37	0.33	0.24	0.34	0.42	0.340	0.004
		Blythe Islan	ı (Marsh)				
Northern boundary (C-103)	0.46	0.69	0.72	0.65	0.38	0.580	0.023
Northeastern boundary (C-104)	0.34	0.43	0.34	0.43	0.25	0.358	0.006
Southern location (C-105)	0.58	0.59	0.52	0.34	0.41	0.488	0.012
					2		
		Feasibility-Study					
Area 1 (Creek)	0.32	0.28	0.29	0.39	0.33	0.322	0.002
Area 2 (Creek)	0	0	0	0	0.50	0.100	0.050
Area 3 (Creek)	0.57	0.54	0.34	0.44	0.26	0.430	0.017
Area 4 (Creek) Area 5 (Creek)	0.84 0.38	0.62 0.48	0.25 0.52	0.74 0.40	0.80 0.35	0.650 0.426	0.057 0.005
Area 6 (Marsh)	0.36	0.46	0.52	0.40	0.35	0.426	0.005
AICA U (IVIAI SII)	0.24	0.50	0.00	0.42	0.71	0.002	0.000

2. Cochran's Test (C) for homogeneity of variances of amphipod weight

 $C_{(cal.)}$ = 0.057/0.387 = 0.15 ns, as compared to $C_{(tab.)}$ = 0.16 for P criterion = 0.05, k = 25, and v = 4

3. Parametric one-way analysis of variance (ANOVA) followed by Tukey's (w) Test of amphipod weight d

Source of variation in weight:	Degrees of freedom (df)			Sum of squares (SS)				Mean square (MS) F _{(cal}				(cal	.)	_											
Sediment source (S):		s	- 1 =	24	1		3	3.267	7		0.136				.07 `										
Error (R):		s (r	- 1)	= 10	00		1	.544	1		0.015														
Total (T):	sr - 1 = 124			4.811											as compared to $F_{(tab.)} = 2.01$ for F 24 numerator df, a denominator df				or P crite If, and 1		= 0.01,				
Sediment source (S):	A2	<u>AB</u>	<u>CR</u>	<u>A1</u>	<u>45</u>	<u>A6</u>	104	<u>16</u>	<u>29</u>	<u>TC</u>	36	<u>A5</u>	<u>A3</u>	<u>H7</u>	105	D	<u>7</u>	103	<u>6</u>	<u>15</u>	<u>A4</u>	<u>5</u>	Cont.	<u>K7</u>	33
Mean (x) weight:	0.100 0.318 0.322 0.322		0.352	0.352 0.358 0.378 0.382			0.426 0.426 0.430 0.488 0.534 0.556			0.580	0.592	0.620	0.650	0.712	0.740	0.744	0.756								
																				_					

Mean Variance

^{= 5.34 (}square root of 0.015 / 5)

^{= 0.131}

C. REPRODUCTIVE RESPONSE OF OF AMPHIPODS

1. Raw data (reproductive response) e, f

Replicate (r) Replicate (Mean	Variance	
Control 0.50	Sediment source (S)	Replicate (r) 1	Replicate (r) 2	Replicate (r) 3	Replicate (r) 4	Replicate (r) 5	(x)	(s ²)	
Control 0.50			Cont	rol					
Crescent River Troup Creek 0.47 0.44 0.41 0.23 0.27 0.384 0.011 Mouth (C-5) 0.17 0.57 0.86 0.20 1.25 0.810 0.209 Eastern Creek Upstream (C-6) 0.17 0 0 0.46 0 0.126 0.040 Mid-stretch (C-7) 0.35 0.64 2.29 0.75 0.27 0.860 0.678 Purvis Creek Creek Complex (In Domain 2) Mouth (C-15) 0.35 0.64 2.29 0.75 0.27 0.860 0.678 Purvis Creek Purvis Creek Mid-stretch (C-29) 0.32 0 0 0.7 0.92 0.412 0.020 Mid-stretch (C-29) 0.32 0 0 0.7 0.02 0.03 0.04 0.073 AB Seep Area 0 0.10 0.82 0 0 0.114 0.073 <td co<="" td=""><td>Control</td><td>0.50</td><td>-</td><td></td><td>0.33</td><td>0.90</td><td>0.562</td><td>0.085</td></td>	<td>Control</td> <td>0.50</td> <td>-</td> <td></td> <td>0.33</td> <td>0.90</td> <td>0.562</td> <td>0.085</td>	Control	0.50	-		0.33	0.90	0.562	0.085
Crescent River Troup Creek 0.47 0.44 0.41 0.23 0.27 0.384 0.011 Mouth (C-5) 0.17 0.57 0.86 0.20 1.25 0.810 0.209 Eastern Creek Upstream (C-6) 0.17 0 0 0.46 0 0.126 0.040 Mid-stretch (C-7) 0.35 0.64 2.29 0.75 0.27 0.860 0.678 Purvis Creek Creek Complex (In Domain 2) Mouth (C-15) 0.35 0.64 2.29 0.75 0.27 0.860 0.678 Purvis Creek Purvis Creek Mid-stretch (C-29) 0.32 0 0 0.7 0.92 0.412 0.020 Mid-stretch (C-29) 0.32 0 0 0.7 0.02 0.03 0.04 0.073 AB Seep Area 0 0.10 0.82 0 0 0.114 0.073 <td co<="" td=""><td></td><td></td><td>Poforonco I</td><td>ocations</td><td></td><td></td><td></td><td></td></td>	<td></td> <td></td> <td>Poforonco I</td> <td>ocations</td> <td></td> <td></td> <td></td> <td></td>			Poforonco I	ocations				
Mouth (C-5)	Crescent River	0.47			0.23	0.27	0.364	0.011	
Mouth (C-5)								0.012	
Mouth (C-5)			Main C	anal					
Part	Mouth (C-5)	0.17			0.20	1.25	0.610	0.209	
Upstream (C-6) Mild-stretch (C-7) 0.17 0.23 0.41 0.40 0.24 0.53 0.126 0.040 0.35 0.046 0.021 0.53 0.355 0.018 0.018 Western Creek Complex (In Domain 2) Mouth (C-15) 0.35 0.644 2.29 0.75 0.27 0.860 0.678 Purvis Creek Domain I (Marsh) AB Seep Area Orice (MGS) O 0.10 0.62 0 0 0.114 0.073 Marsh Cird (MGS) <th colspa<="" td=""><td>(2 3)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th>	<td>(2 3)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	(2 3)							
Mid-stretch (C-7) 0.23 0.41 0.40 0.21 0.53 0.356 0.018	Unstroom (C. 6)	0.17			0.46	0	0.126	0.040	
Mouth (C-15) 0.35 0.64 2.29 0.75 0.27 0.860 0.678	wild stretch (e-r)	0.20	0.41	0.40	0.21	0.00	0.000	0.010	
Purvis Creek Purvis Creek Purvis Creek Purvis Creek					-				
Upstream (C-36)	Mouth (C-15)	0.35	0.64	2.29	0.75	0.27	0.860	0.678	
Mid-stretch (C-29)			Purvis (<u>Creek</u>					
Mid-stretch (C-29)	Unstream (C-36)	0	1 07	0.56	0	0.91	0.508	0 249	
Northwestern inlet from Turtle River (D) 0.31 0.06									
AB Seep Area 0 0.10 0.62 0 0 0 0.144 0.073 Marsh Grid (MG)	Mouth (C-16)	0.39	1.10	0.50	0.83	0.46	0.656	0.090	
Marsh Grid (MG)			Domain 1	(Marsh)					
Northwestern boundary (C-103) 0.10 0.06 0.29 0.14 0.00 0.112 0.012	AB Seep Area	0	0.10	0.62	0	0	0.144	0.073	
Near old oil-processing site (C-33) 0.64 1.40 3.86 0 0 0.31 0.39 0.154 0.034									
Near old oil-processing site (C-33) 0.64 1.40 3.86 0 0 0 1.180 2.577	• ,								
Near old oil-processing site (C-33) 0.64 1.40 3.86 0 0 0 1.180 2.577	117 (W)	0.07	Ü	O	0.51	0.59	0.134	0.034	
Northwestern inlet from Turtle River (D) 0.31 1.17 0 0.32 0 0.360 0.230			Domain 3	(Marsh)					
Northwestern inlet from Turtle River (D) 0.31 1.17 0 0.32 0 0.360 0.230	Near old oil-processing site (C-33)	0.64	1.40	3.86	0	0	1.180	2.577	
Southeastern boundary (C-45) 0 0 0 0 0 0 0 0 0			Domain 4	(Marsh)					
Northern boundary (C-103) 0.10 0.06 0 0.25 0.082 0.011 Northeastern boundary (C-104) 0 0 0.46 0.50 0.50 0.292 0.071 Southern location (C-105) 0.14 0.61 0.31 0.73 0 0.358 0.095 Feasibility Study (FS) Locations Feasibility Study (FS) Area 1 (Creek) 0 0 0.36 0 0 0.072 0.026 FS Area 2 (Creek) 0 0 0 0 0 0 0 FS Area 3 (Creek) 0.77 1.05 2.33 0.21 0.17 0.906 0.772 FS Area 4 (Creek) 0.08 0 0 0 0 0.012 FS Area 5 (Creek) 0.05 0.71 0.15 0.60 0.36 0.464 0.047 FS Area 5 (Creek) 0.50 0.71 0.15 0.60 0.36 0.464 0.047 FS Area 5 (Creek) 0.50 0.71 0.15 0.60 0.36 0.464 0.047 FS Area 5 (Creek) 0.50 0.71 0.15 0.60 0.36 0.464 0.047 FS Area 5 (Creek) 0.50 0.71 0.15 0.60 0.36 0.464 0.047 FS Area 5 (Creek) 0.50 0.71 0.15 0.60 0.36 0.464 0.047 FS Area 5 (Creek) 0.50 0.71 0.15 0.60 0.36 0.464 0.047 FS Area 5 (Creek) 0.50 0.71 0.15 0.60 0.36 0.464 0.047 FS Area 5 (Creek) 0.50 0.71 0.15 0.60 0.36 0.464 0.047 FS Area 5 (Creek) 0.50 0.71 0.15 0.60 0.36 0.464 0.047 FS Area 5 (Creek) 0.50 0.71 0.15 0.60 0.36 0.464 0.047 FS Area 5 (Creek) 0.50 0.71 0.15 0.60 0.36 0.464 0.047 FS Area 5 (Creek) 0.50 0.71 0.15 0.60 0.36 0.464 0.047 FS Area 5 (Creek) 0.50 0.71 0.15 0.60 0.36 0.464 0.047 FS Area 5 (Creek) 0.50 0.71 0.15 0.60 0.36 0.464 0.047 FS Area 5 (Creek) 0.50 0.71 0.15 0.60 0.36 0.464 0.047 FS Area 5 (Creek) 0.50 0.71 0.15 0.60 0.36 0.464 0.047 FS Area 5 (Creek) 0.50 0.71 0.15 0.60 0.36 0.464 0.047 FS Area 5 (Creek) 0.50 0.71 0.15 0.60 0.36 0.464 0.047 FS Area 5 (Creek) 0.50 0.71 0.15 0.60 0.36 0.464 0.047 FS Area 5 (Creek) 0.50 0.71 0.15 0.60 0.36 0.464									
Northern boundary (C-103) 0.10 0.06 0 0 0.25 0.082 0.011 Northeastern boundary (C-104) 0 0 0.46 0.50 0.50 0.292 0.071 Southern location (C-105) 0.14 0.61 0.31 0.73 0 0.358 0.095 Southern location (C-105) 0.14 0.61 0.31 0.73 0 0.358 0.095 Southern location (C-105) 0.14 0.61 0.31 0.73 0 0.358 0.095 Feasibility Study (FS) Area 1 (Creek) 0 0 0 0 0 0 0 0 FS Area 2 (Creek) 0 0 0 0 0 0 0 0 FS Area 3 (Creek) 0.77 1.05 2.33 0.21 0.17 0.906 0.773 FS Area 4 (Creek) 0.08 0 0 0 0 0 0 FS Area 5 (Creek) 0.50 0.71 0.15 0.60 0.36 0.464 0.047 FS Area 5 (Creek) 0.50 0.71 0.15 0.60 0.36 0.464 0.047 Southern boundary (C-103) 0.01 0.032 0.002 FS Area 5 (Creek) 0.50 0.71 0.15 0.60 0.36 0.464 0.047 Southern boundary (C-104) 0.01 0.01 Southern boundary (C-104) 0.01 0.01 Southern boundary (C-104) 0.50 Southern boundary (C-105) 0.50 Southern boundary (C-104) 0.50 Southern	Southeastern boundary (C-45)	0	0	0	0	0	0	0	
Northeastern boundary (C-104)			Blythe Islan	d (Marsh)					
Southern location (C-105) 0.14 0.61 0.31 0.73 0 0.358 0.095 Feasibility Study (FS) Area 1 (Creek) 0 0 0.36 0 0 0.072 0.026 FS Area 2 (Creek) 0		0.10		0				0.011	
Feasibility-Study (FS) Locations Feasibility Study (FS) Area 1 (Creek) 0 0 0.36 0 0 0.072 0.26 FS Area 2 (Creek) 0 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>									
Feasibility Study (FS) Area 1 (Creek) 0 0 0.36 0 0 0.072 0.266 FS Area 2 (Creek) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.773 1.05 2.33 0.21 0.17 0.906 0.773 0.773 FS Area 4 (Creek) 0.08 0 0 0 0.1 0.032 0.002 FS Area 5 (Creek) 0.50 0.71 0.15 0.60 0.36 0.464 0.047	Southern location (C-105)	0.14	0.61	0.31	0.73	0	0.358	0.095	
FS Area 2 (Creek) 0.17 0.906 0.773 5.773 FS Area 4 (Creek) 0.08 0 0 0 0.1 0.032 0.002 FS Area 5 (Creek) 0.50 0.71 0.15 0.60 0.36 0.464 0.047			Feasibility-Study	(FS) Locations					
FS Area 3 (Creek) 0.77 1.05 2.33 0.21 0.17 0.906 0.773 FS Area 4 (Creek) 0.08 0 0 0 0.1 0.032 0.002 FS Area 5 (Creek) 0.50 0.71 0.15 0.60 0.36 0.464 0.047									
FS Area 4 (Creek) 0.08 0 0 0 0.1 0.032 0.002 FS Area 5 (Creek) 0.50 0.71 0.15 0.60 0.36 0.464 0.047	, ,					-			
FS Area 5 (Creek) 0.50 0.71 0.15 0.60 0.36 0.464 0.047									
	, ,								
FS Area 6 (Marsh) 0 0.04 0 0 0.33 0.074 0.021	, ,								
	FS Area 6 (Marsh)	0	0.04	0	0	0.33	0.074	0.021	

2. Cochran's Test (C) for homogeneity of variances of amphipod reproduction c

 $C_{(cal.)}$ = 2.577/5.384 = 0.48 * , as compared to $C_{(tab.)}$ = 0.16 for P criterion = 0.05, k = 25, and v = 4

3. Nonparametric test (Kruskal-Wallis Test) of amphipod reproduction f

$$H_{(adi.)} = [12 / n (n-1)] \sum_{i=1}^{n} R_i^2 / n_i] - 3 (n+1)$$

 $H_{(adj.)}$ = 61.15 **, as compared to $\chi^2_{(tab.)}$ = 43.0 for P criterion = 0.01 and 24 df

^aSurface sediment (0 - 15 cm in depth) employed in amphipod toxicity tests was collected on October 16-18, 2006. Control sediment was formulated the laboratory. Laboratory dilution water was formulated with artificial sea salt to a salinity of 20 ppt

^bEach replicate (r) consisted of 20 amphipods at start of test (i. e., 20 amphipods at end of test = 100% survival).

^cCochran's Test (C) indicates homogeneity of variances when $C_{\text{cal.}}$ is identified by the symbol "ns" and heteroscedasticity when associated with the symbol "*" (P criterion = 0.05 in both cases).

^dA parametric ANOVA indicates statistically significant differences among sediment sources when F_(cal.) is identified by the symbol " ** " (P criterion = 0.01). Tukey's (w) test indicates the specific sources of any significant differences detected in an ANOVA. In Tukey's test, data underscored by the same horizontal line are not significantly different, whereas data not underscored by the same horizontal line are significantly different (P criterion = 0.05).

eReproductive response is calculated as 1/2 of the number of juveniles produced in a replicate / number of surviving adult females.

^fSince significant differences in amphipod reproduction were detected by the Kruskal-Wallis test, which is incapable of indicating sources of the differences, sediment sources at site that <u>appear</u> to be characterized by substantially impared mean reproduction, in comparison to mean reproduction for the Crescent River reference location, are identified in**bold print**.

Table 4-16_Relationships between survival of amphipods (*Leptocheirus plumulosus*) and chemical characteristics of surface sediment of estuary at LCP Site (2006 data)^{a,b}

A. Evaluation of Metals of Potential Concern (COPC) and PAHs

- 1. Number of samples (n): 24 (including Crescent River and Troup Creek reference locations)
- 2. Number of Independent Chemical Variables: 22
- 3. <u>Linear Coefficients of Determination</u> (r²) for Chemical Variables vs. Survival of Amphipods (statistical significance for Cu at P criterion = 0.05; for Pb and Cd at P criterion = 0.01)^d:

Silt/clay: +0.033 ns Al: +0.0079 ns Cr: +0.047 ns Mn: +0.034 ns V: +0.0069 ns Total mercury: +0.0065 ns As: +0.0085 ns Co: +0.012 ns Ni: +0.0040 ns Zn: -0.134 ns Aroclor 1268: +0.021 ns Ba: -0.025 ns Cu: -0.20 * K: +0.063 ns Lead (Pb): -0.45 ** Be: +0.0059 ns Fe: +0.019 ns Ag: -0.00088 ns Cd: -0.40 ** Total PAHs: -0.068 ns Mg: +0.056 ns TI: +0.011 ns

4. Parametric Analysis of Variance (ANOVA) for Relationship

Source of Variation	Degrees of freedom (df)	Sum of squares (SS)	Mean square (MS)	F _(cal.)
Explained	22	341.68	15.53	11.25 ns
Unexplained	1	1.38	1.38	
Total	23	343.06		as compared to F _(tab.) =
				248.55 for P criterion =
				0.05, 22 numerator df,
				and 1 denominator df

- 5. Parametric squared multiple correlation coefficient (R²): 0.9960 ns (as compared to 0.9998 for P criterion = 0.05, n = 24, and m = 23)
- 6. Kruskal's Index of Importance (mean partial r²)

1) Ba: 0.37	6) TI: 0.18	11) Mn: 0.076	16) Ni: 0.064	21) Silt/clay: 0.038
2) Cd: 0.28	7) Cr: 0.16	12) Al: 0.074	17) Zn: 0.064	22)Total PAHs: 0.037
3) Lead (Pb): 0.26	8) Ag: 0.098	13) As: 0.074	18) Co: 0.062	
4) Be: 0.26	9) Fe: 0.085	14) V: 0.073	19) Aroclor 1268: 0.06	0
5) Cu: 0.18	10) Mg: 0.082	15) K: 0.072	20) Total mercury: 0.09	50

B. Evaluation of Primary Chemicals of Potential Concern Independent of Other Metals

- 1. Number of samples (n): 24 (including Crescent River and Troup Creek reference locations)
- 2. Number of Independent Chemical Variables: 4
- 3. <u>Linear Coefficients of Determination (r²) for COPC vs. Survival of Amphipods</u>
 (statistical significance for Pb at P criterion = 0.01)^d:

Total mercury: +0.0065 ns Aroclor 1268: +0.021 ns **Lead (Pb): -0.45** ** Total PAHs: -0.068 ns

B. Evaluation of Primary Chemicals of Potential Concern Independent of Other Metals -- Continued

4. Parametric Analysis of Variance (ANOVA) for Relationship

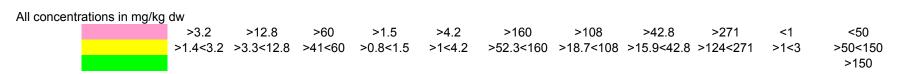
Source of Variation	Degrees of freedom (df)	Sum of squares (SS)	Mean square (MS)	$F_{(cal.)}$
Explained	4	171.59	42.9	4.76 **
Total mecury	1	11.44	11.44	1.27 ns
Aroclor 268	1	6.82	6.82	0.76 ns
Lead	1	119.94	119.94	13.3 **
Total PAHs	1	4.02	4.02	0.45 ns
<u>Unexplained</u>	19	171.47	9.02	
Total	23	343.06		as compared to F _(tab.) =

- 4.50 for P criterion = 0.01,
- 4 numerator df. and
- 19 denominator df;
- 4.38 for P criterion = 0.05,
- 1 numerator df, and
- 19 denominator df; and
- 8.18 for P criterion = 0.01,
- 1 numerator df, and
- 19 denominator df;

- 5. Parametric squared multiple correlation coefficient (R²): 0.50 ** (as compared to 0.49 for P criterion = 0.01, n = 24, and m = 5)
- 6. Kruskal's Index of Importance (mean partial r)
 - 1) Lead: 0.44
 - 2 Total PAHs: 0.052
 - 3) Aroclor 1268: 0.035
 - 4) Total mercury: 0.035

^aSurface sediment is from 0 - 15 cm in depth.

^bData evaluated in this table are based on previously presented tables addressing chemistry of sediment (Tables 4-3b and 4-5; 2006 data) and toxicity of sediment (Table 4-15).


^CAll independent chemical variables (as well as silt and clay content) are evaluated in this table except total organic content (TOC), calcium, sodium, and several metals not characteristic of sediment (antimony and selenium; Table 4-5). The exclusion of these metals also caused the number of independent and dependent variables (23) to be less than sample size (24), which is necessary for computer program to function.

^dThese coefficients of determination (r²) assume linear relationships between chemical variables and survival of amphipods, which may not always exist. Consequently, the r² values may be most useful in identifying relationships in which statistically significant correlations are shown to exist and the general "direction" of all relationships (i. e., whether there is a positive or negative relationship between concentration of chemical in sediment and survival of amphipods). (The r² values are preceded by a positive or negative sign to indicate the direction of the underlying "r" values.)

These results are to be interpreted with caution because of the substantial probability that unexplained variance is inflated (too high) because of intercorrelations among independent variables (i. e., variance inflaton factors [VIFs] that are in excess of 100).

Table 4-17_Evaluation of 2006 amphipod toxicity test results with concentrations of selected constituents

	Survival	Reproductive				Total							
Station	Rate %	Response ^a	Mercury	A-1268	Lead	PAHs	Cadmium	Chromium	Copper	Nickel	Zinc	% TOC	Sulfide
CR-C	88	0.364	0.013	0.00125	4.29	0.02	0.04	6.6	2.5	1.9	11	0.67	30.7
TC-C	72	0.050	0.074	0.026	17.4	0.04	0.14	26.6	8.2	7.7	45.8	3.00	77.2
C-5	87	0.610	7.03	31	40.9	2.16	0.23	57.3	11.3	12.9	69.8	4.72	564
C-6	67	0.126	8.75	25	31.9	0.37	0.22	50	13.0	11.3	72	6.56	7.2
C-7	91	0.356	3.27	13	27.9	0.47	0.19	50.2	11.5	12	73.1	5.75	169
C-15	79	0.860	0.46	1.0	25.8	0.44	0.21	55.2	11.8	13.7	76.2	4.22	1,230
C-36	84	0.508	1.09	1.4	28.9	0.57	0.28	59.8	12.8	14.1	27.1	4.66	1,080
C-29	84	0.142	0.67	0.98	25.7	0.52	0.24	49.6	12.1	12.8	79.4	5.23	957
C-16	87	0.656	0.19	1.2	6.55	2.56	0.06	14.2	3.2	3.8	18.1	0.96	0.25
M-AB	81	0.144	0.06	0.07	2.53	0.04	0.01	1.9	0.5	0.6	2.7	0.41	2.8
K-7(M)	71	0.112	2.36	4.6	30	0.25	0.14	61.9	11.7	12.5	71.7	4.42	11
H-7(M)	66	0.154	1.82	4.1	27.2	0.29	0.13	55.6	11.0	10.8	64.0	5.81	0.2
C-33	70	1.180	0.1	0.06	27.8	0.98	0.12	5.4	4.8	1.8	27.1	1.63	121
D-C	87	0.360	1.22	0.64	23.3	0.29	0.24	86.8	10.7	10.9	61.3	5.21	105
C-45	60	0	0.57	0.79	26.4	0.56	0.22	57.3	11.5	13.3	72.3	4.92	100
C-103	80	0.082	0.37	0.19	26.8	0.27	0.19	67.5	12.3	16.3	77.1	5.48	411
C-104	80	0.292	0.28	0.21	17.3	0.23	0.13	34.8	7.5	9.6	43.4	3.47	25.7
C-105	82	0.358	0.4	0.34	18.1	0.15	0.17	44.5	8.2	11.1	50.8	2.36	112
FS-AREA1	41	0.072	1.07	0.92	44.2	0.23	0.15	26.8	6.6	6.6	30.3	2.43	13.5
FS-AREA2	1	0	1.07	0.85	275	2.47	0.75	27	25.4	10.2	126	7.69	56.5
FS-AREA3	87	0.906	3.57	2.0	177	0.97	0.40	81.7	21	14.8	106	7.71	517
FS-AREA4	85	0.032	1.34	5.8	14.9	0.29	0.08	27.6	6.1	6.9	36.1	2.53	147
FS-AREA5	88	0.464	4.54	11	29.7	1.76	0.21	67.4	11.8	13.3	73.1	4.35	773
FS-AREA6	78	0.074	2.03	3.1	28.6	0.24	0.18	60.3	11.8	12.1	74.8	5.95	15.7

Bolded test endpoints indicate survival or reproduction is significantly different than controls. Note that the Troup Creek reference station (TC-C) was toxic.

^a - defined as 1/2 of the number of juveniles produced ÷ the number of surviving adult females.

Table 4-18_Equilibrium partitioning of selected metals in surface sediment of estuary at LCP Site (2006 data)^a

				Simulta	neously e	xtracted n	netals S	SEM (dw) ^b)				∑SEM	Acid vola	atile sulfide		
	Cad	dmium	Co	pper	L	ead	N	ickel	S	ilver	Z	Zinc Zinc	(µmol/g,	A\	/S (dw)	∑ SEM /	∑ SEM -
Sediment source (S)	mg/kg	µmol/g	mg/kg	µmol/g	mg/kg	µmol/g	mg/kg	µmol/g	mg/kg	µmol/g	mg/kg	µmol/g	dry wt)	mg/kg	μmol/g	AVS ^c	AVS ^d
						Re	ference	Locations	<u>3</u>								
Crescent River	<u>0.1</u>	0.00089	0.3	0.0047	2.6	0.0125	<u>0.5</u>	0.0085	0.3	0.0028	5.0	0.0765	0.1059	30.7	0.9517	0.111	
Troup Creek	0.2	0.0018	<u>0.4</u>	0.0063	<u>4.1</u>	0.0197	<u>0.8</u>	0.0136	<u>0.4</u>	0.0037	21	0.3213	0.3664	77.2	2.3932	0.153	
							Main (
Mouth (C-5)	0	0	<u>1</u>	0.0157	<u>9</u>	0.0432	<u>2</u>	0.0340	<u>1</u>	0.0093	32.9	0.5034	0.6056	564	17.4800	0.035	
							Eastern	Creek						_			
Upstream (C-6)	0.3	0.0027	2.0	0.0314	15.6	0.0749	1.7	0.0289	0.7	0.0065	42.6	0.6518	0.7962	7.2	0.2232	3.567	0.5730
Mid-stretch (C-7)	0.3	0.0027	2.8	0.0440	15	0.0720	1.9	0.0323	<u>0.6</u>	0.0056	43.3	0.6625	0.8191	169	5.2390	0.156	
					<u>w</u>	estern Cı	eek Con	plex (In D	Domain 2)				_		_	
Mouth (C-15)	<u>1</u>	0.0089	<u>1</u>	0.0157	12.6	0.0605	<u>2</u>	0.0340	<u>1</u>	0.0093	43.5	0.6656	0.7940	1,230	38.1300	0.021	
							Purvis	Creek									
Upstream (C-36)	<u>1</u>	0.0089	<u>2</u>	0.0314	14.5	0.0696	3	0.0510	<u>2</u>	0.0186	42.8	0.6548	0.8343	1,080	33.4800	0.025	
Mid-stretch (C-29)	0	0	1	0.0157	10.6	0.0509	2	0.0340	<u>1</u>	0.0093	48.8	0.7466	0.8565	957	29.6700	0.029	
Mouth (C-16)	0	0	0.6	0.0094	2.8	0.0134	<u>1</u>	0.0170	0	0	9.9	0.1515	0.1913	<u>1</u>	0.03100	6.171	0.1603
							Doma	ain 1						_			
AB Seep Area	<u>0.1</u>	0.00089	0.2	0.0031	2.2	0.0106	0.4	0.0068	0.2	0.0019	2.0	0.0306	0.0539	2.8	0.0868	0.621	
Marsh Grid (MG)																	
K7 (M)	0.3	0.0027	2.8	0.0440	13.4	0.0643	1.8	0.0306	<u>0.5</u>	0.0046	28.7	0.4391	0.5853	11	0.3410	1.716	0.2443
H7 (M)	0.3	0.0027	3.5	0.0550	13.6	0.0653	1.9	0.0323	<u>0.5</u>	0.0046	27.3	0.4177	0.5776	0.4	0.0124	46.581	0.4177
							Doma	ain 3						_		_	
Near old oil-processing site (C-33)	0	0	0	0	13	0.0624	1	0.0170	0	0	26.6	0.4070	0.4864	121	3.7500	0.130	
							Doma	ain 4						_		_	
Northwestern inlet from Turtle River (D)	0.3	0.0027	0.6	0.0094	7.2	0.0346	1.2	0.0204	0.6	0.0056	34.7	0.5309	0.6036	105	3.2550	0.185	
Southeastern boundary (C-45)	0	0	<u>1</u>	0.0157	<u>7</u>	0.0336	<u>1</u>	0.0170	1	0.0093	50.1	0.7665	0.8421	100	3.1000	0.272	
							Blythe	Island									
Northern boundary (C-103)	0	0	1	0.0157	9.8	0.0470	1	0.0170	1	0.0093	36.2	0.5539	0.6429	411	12.7400	0.050	
Northeastern boundary (C-104)	Ö	0	<u> </u>	0.0157	<u>5</u>	0.0240	<u> </u>	0.0170	1	0.0093	14.1	0.2157	0.2817	25.7	0.7967	0.354	
Southern location (C-105)	0	0	<u>-</u> 1	0.0157	<u>5</u>	0.0240	<u>1</u>	0.0170	<u>1</u>	0.0093	21.5	0.3290	0.3950	112	3.4700	0.114	
						Feasibil	ity-Stud	(FS) Loc	ations								
Area 1 (Creek)	0	0	0	0	20.4	0.0979	<u>1</u>	0.0170	0	0	14.9	0.2280	0.3429	13.5	0.4185	0.819	
Area 2 (Creek)	0.5	0.0044	<u>1</u>	0.0157	95.4	0.4579	2	0.0340	1	0.0093	78	1.1934	1.7147	56.5	1.7484	0.981	
Area 3 (Creek)	1	0.0089	2	0.0314	63.1	0.3029	3	0.0510	2	0.0186	58	0.8874	1.3002	517	16.0300	0.081	
Area 4 (Creek)	0	0	0.8	0.0126	5.8	0.0278	1	0.0170	0	0	18.7	0.2861	0.3435	147	4.5600	0.075	
Area 5 (Creek)	0	0	1	0.0157	8.2	0.0394	1	0.0170	1	0.0093	42.2	0.6457	0.7271	773	23.9600	0.030	
Area 6 (Marsh)	0	0	3.3	0.0518	14.1	0.0677	1.8	0.0306	1	0.0093	33.4	0.5110	0.6704	15.7	0.4867	1.377	0.1837

^aThis study was conducted as part of a comprehensive investigation performed in 2006 to identify causes of toxicity of sediment.

 $^{^{\}mbox{\scriptsize b}}$ Concentrations of metals $\underline{\mbox{\scriptsize underlined}}$ in $\mbox{\scriptsize bold print}$ represent detection limits for the metals.

 $^{^{\}text{C}}$ A value of \sum SEM / AVS that is \leq 1 is one criterion for indicating the absence of direct toxicity of the six metals (considered collectively) to benthic biota.

 $^{^{}d}$ A value of Σ SEM - AVS that is \leq 5 μ mol/g is the preferred criterion for indicating the absence of direct toxicity of the six metals (considered collectively) to benthic biota (SAI, 2003).

Table 4-19a.__ Apparent effects thresholds (AETs) for chemicals of potential concern (COPC) in surface sediment of estuary at LCP Site (based on 2006 data) a, b, c

Sampling	Tot	tal mercury	/ (mg/kg,	dw)	Are	oclor 1268	ß (mg/kg, c	dw)		Lead (m	g/kg, dw)		T	otal PAHs	(mg/kg, d	lw)
Total Tota	Sampling			Repro-	Sampling			Repro-	Sampling			Repro-	Sampling			Repro-
Color 160	station	Survival	Growth	duction	station	Survival	Growth	duction	station	Survival	Growth	duction	station	Survival	Growth	duction
Color 160		1	1	1		1	1	1		1	1	1		1	1	1
Edg	EC40			_	MC24	_			EC/19				EC49		_	_
EGY																
ECT 79 78 78 78 78 78 78 8220 346 346 346 346 346 346 346 346 346 346																
EGS 10 01 01 01 01 01 01 01 01 01 01 01 01																
		74				330		330						6.197	6.197	6.197
ECS 42 44 45 6C7 500 100 100 EC1 60 60 649 EC5 2.534 2.736 2.737 3.730 3.732 1.732																
MC46 35 38 38 5 523 198 199 199 190 190 190 190 190 190 190 190																
Model 35																
Model 35	MC30	40	40	40	MC45	140	140	140	EC5	48	48	48	EC42	2.534	2.534	2.534**
MCC1 23 23 29 EC3 130 130 130 130 130 130 130 130 130 13	MC46	35	35	35	EC23	130	130	130	WC21	47	47	47	MC20	2.238	2.238	
Mactal 29 29 29 Mactal 100 110 110 ECD 43 43 43 ECTS 1.335 1		30	30	30	EC10	120	120	120			45			1.527		
Morit 28 28 28 ECSH 100 100 110 100 McG 42 42 42 100 130 130 McG 28 42 42 100 100 1100 McG 28 28 28 ECSH 100 1100 1100 McG 42 42 42 42 ECSH 100 1100 1100 McG 42 42 42 42 ECSH 100 1100 1100 McG 42 42 42 42 ECSH 100 1100 1100 McG 42 42 42 42 ECSH 100 1100 1100 1100 McG 42 42 42 42 ECSH 100 1100 1100 1100 McG 42 42 42 42 42 ECSH 100 1100 1100 1100 McG 42 42 42 42 ECSH 100 1100 1100 1100 1100 McG 42 42 42 42 ECSH 100 1100 1100 1100 1100 1100 1100 110																
ECA 28 28 28 28 28 28 28 28 28 28 29 28 28 29 29 29 29 29 29 29 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20																
ECIO 25 26 26 ECI 90 90 90 90 90 MC7 42 42 42 42 MC80 1.193												42				
MC19 24 24 24 24 26 MC77 76 76 76 76 76 76 76 76 76 76 76 76 7																
MC41 22 22 22 23 MC88 68 68 68 68 68 MC55 41 41 41 41 MC4 1010 1.010 1.010 1.010 MC44 22 22 22 23 ECS 95 95 95 MC53 41 41 41 41 MC4 10 MC5 0.097																
MC24 22 22 22 22 EGA 59 99 99 99 MC33 41 41 41 41 41 EC1 0.987 0.997 0.9																
ECS	MC24	22	22	22	EC8	59	59	59	MC13	41	41	41	EC1	0.997	0.997	0.997
CC21																
MC20 18 18 18 18 EC25 44 44 44 EC10 40 40 40 WC4 0.896	EC35	20	20	20	MC47	54	54	54	WC16	40	40	40	MC46	0.955	0.955	0.955
MC20 18 18 18 18 EC25 44 44 44 EC10 40 40 40 WC4 0.896	EC3	19**	19	19**	EC37	44	44	44	MC36	40	40	40	EC23	0.910	0.910	0.910
EC41 17 17 17 17 EC44 43 43 43 WC34 40 40 40 EC32 0.833 0.833 0.833 0.833 0.833 WC34 17 17 17 17 WC34 18 18 18 18 18 18 18 18 18 18 18 18 18	MC20				FC25	44	44	44	FC10	40	40	40	WC4	0.896	0.896	0.896
ECCB 17 17 17 17 MC14 39 39 39 WC44 39 39 39 ECCB 0.478 0.478 0.479 0.479 WC41 15 18 18 ECCB 19 37 37 37 WC41 15 19 19 ECCB 19 37 37 37 WC41 15 19 19 ECCB 19 37 37 37 WC41 15 19 19 ECCB 19 37 37 37 WC41 15 19 19 ECCB 19 37 37 37 WC41 13 13 13 13 WC41 13 13 13 WC41 13 13 13 WC41 13 13 WC41 13 13 WC41 1																
WC50 16 16 16 EC36 39 39 39 EC3 39 39 39 WC66 0.878 0.779 0.																
EC33 14 14 14 MC39 37 37 37 MC20 38 38 38 MC26 0.858 0.858 0.858 0.858 MC26 0.859 MC21 13 13 13 13 MC30 32 32 32 WC31 37 37 37 37 MC20 37 37 37 MC37 0.769 0.899 0.899 0.899 MC21 13 13 13 MC30 32 32 32 WC38 37 37 37 MC37 0.769 0.		16	16			39										0.878
MC12 13 13 13 13 MC19 33 38 38 38 MC36 0.449 0.449 0.449 0.449 MC13 13 13 13 MC19 33 38 38 BCC 0.00 0.0000 0.000 0.000 0.000 0.0000 0.0000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.00								38								
MC13																
EC44 13 13 13 MC19 33 33 33 EC40 37 37 37 EC16 0.774 0.774 0.775 EC23 13 13 13 MC30 32 32 32 WC38 37 37 37 MC37 0.769 0.769 0.769 0.769 EC23 13 13 13 MC18 30 30 30 EC33 36 36 36 MC1 0.761 0.761 0.761 0.761 WC38 13 13 13 MC18 30 30 30 EC33 36 36 36 MC1 0.761 0.761 0.761 0.761 WC38 12 12 12 MC23 28 28 28 EC68 36 36 36 MC42 0.670 0.750 0.750 MC28 12 12 12 EC32 28 28 EC68 36 36 36 MC45 0.744																
EC9 13 13 13 13 MC18 32 32 32 WC38 37 37 MC37 0.769 0.																
WC38 13 13 13 MC18 30 30 30 WC42 36 36 36 MC1 0.781 0.										37 **						
WC38 13 13 13 MC18 30 30 30 WC42 36 36 36 MC1 0.781 0.	5000	40	40	40	*****				14/000			27 **	****	0.704	0.704	0.704
WC35 13 13 13 ECS5 30 30 WC42 36 36 36 C750 0.750 0.750 WC24 12 12 12 12 12 EC22 28 28 EC23 36 36 36 MC25 0.772 0.772 0.729 0.729 0.729 0.729 0.729 0.729 0.729 0.729 0.728																
MC28 12 12 12 MC23 28 28 28 28 ECC8 36 36 36 36 MC45 0.744 0.744 0.744 0.744 WC41 12 12 12 12 EC42 28 28 28 EC37 SG 36 36 36 MC45 0.749 0.749 0.749 WC41 12 12 12 EC42 28 28 28 EC37 SG 36 36 36 MC45 0.749 0.728 0.728 0.728 0.728 0.728 0.728 0.728 0.728 0.728 0.728 0.728 0.728 0.728 0.728 0.728 0.729 0.739 0.719																
WC24 12 12 12 EC32 28 28 28 28 WC35																
MC34 12 12 12 12 12 12 12 12 12 12 12 12 12																
MC33																
EC13 11 11 11 EC48 26 26 26 MC27 35 35 35 EC37 0.715 0.715 0.715 EC24 11 11 11 EC46 26 26 26 WC47 35 35 35 35 MC47 0.714 0.714 0.714 EC25 11 11 11 EC68 26 26 26 WC47 35 35 35 35 MC47 0.714 0.714 0.714 EC25 11 11 11 EC68 26 26 WC47 35 35 35 35 MC27 0.714 0.714 0.714 0.714 EC25 11 11 11 WC17 25 25 25 25 WC49 35 35 35 MC22 0.682 0.																
EC25 11 11 11 11 WC17 25 25 25 WC49 35 35 35 MC2 0.682 0.682 0.682 0.670 0.670 MC27 9.4 9.4 9.4 MC31 23 23 23 WC50 34 34 34 WC5 0.659 0.659 0.658 MC40 8.9 8.9 8.9 8.9 MC7 21 21 21 MC24 34 34 34 MC32 0.658 0.658 0.658 MC17 8.4 8.7 8.7 MC62 20 20 20 EC13 34 34 34 MC32 0.648 0.648 0.648 0.648 0.648 0.648 0.648 0.648 0.648 0.642 0.642 0.642 0.642 0.642 0.642 0.642 0.642 0.642 0.642 0.642 0.642 0.642 0.642 0.642 0.642 0.642	EC13															
MC22 10 10 10 10 EC40 24 24 24 WC43 34 34 34 BC15 0.670 0.670 0.670 0.659 MC14 3.0 9.4 9.4 MC31 23 23 23 23 WC50 34 34 34 WC5 0.559 0.659 0.659 MC14 9.0 9.0 9.0 9.0 9.0 MC38 21 21 21 MC32 34 34 34 MC22 0.558 0.658 0.658 MC64 0.648 MC14 8.9 8.9 8.9 8.9 MC7 21 21 1 1 MC24 34 34 34 34 MC22 0.558 0.658 0.658 MC17 21 21 1 MC24 34 34 34 34 MC22 0.557 0.657 0																
MC27 9.4 9.4 9.4 9.4 MC31 23 23 23 WC50 3.4 34 34 WC5 0.659 0.659 0.659 0.658 MC40 8.9 8.9 8.9 8.9 8.9 MC7 21 21 21 MC24 34 34 34 MC32 0.658 0.658 0.658 MC40 8.9 8.9 8.9 8.9 MC7 21 21 21 MC24 34 34 34 MC32 0.657 0.65																
MC14 9.0 9.0 9.0 MC38 21 21 21 MC32 34 34 34 34 MC22 0.658 0.658 0.658 0.658 MC7 21 21 21 MC24 34 34 34 34 MC32 0.657 0.																
MC40 8.9 8.9 8.9 MC7 21 21 21 MC24 34 34 34 34 MC32 0.657 0.657 0.658 MC17 8.4 8.4 8.4 MC4 20 20 20 EC15 34 34 34 34 C68 0.648 0.648 0.648 0.648 0.642 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																
EC31 8.7 8.7 8.7 MC28 20 20 20 EC13 34 34 34 34 MC13 0.648 0.648 0.648 MC35 8.3 8.3 8.3 MC1 20 20 20 EC15 34 34 34 34 MC27 0.642 0.642 0.648 0.648 MC35 8.0 8.0 8.0 8.0 8.0 EC18 20 20 20 WC31 34 34 34 MC27 0.642																
MC17 8.4 8.4 8.4 8.4 MC1 20 20 20 EC15 34 34 34 MC27 0.642 0.648 0.648 MC34 MC34 8.0 8.0 8.0 8.0 8.0 EC18 20 20 20 WC8 34 34 34 EC31 0.638 0.638 0.638 MC26 7.6 7.6 7.6 7.6 7.6 MC40 19 19 19 19 MC26 34 34 34 34 MC31 0.633 0.633 0.633 MC36 MC26 7.6 7.6 7.6 7.6 MC40 19 19 19 MC45 34 34 34 MC31 0.633 0.633 0.633 MC36 MC36 6.7 6.7 6.7 6.7 MC42 18 18 18 18 EC7 33 33 33 WC43 0.629 0.629 0.629 0.629 MC26 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.2 EC2 17 17 17 WC23 32 32 32 MC16 0.699 0.599 0.599 MC34 6.2 6.2 6.2 EC14 17 17 17 WC25 32 32 32 32 MC15 0.599 0.599 MC32 5.8 5.8 5.8 MC32 16 16 16 MC31 31 31 31 EC7 0.575 0.555 0.55												34				
MC35 8.3 8.3 8.3 8.3 MC1 20 20 20 WC31 3.4 3.4 3.4 MC27 0.642 0.64																
WC45 7.8 7.8 7.8 7.8 WC16 20 20 20 EC35 34 34 34 34 34 MC31 0.838 0.638 0.636 EC39 6.8 6.8 6.8 MC40 19 19 19 WC45 34 34 34 MC31 0.833 0.633 0.633 0.633 MC36 6.7 6.7 6.7 6.7 EC4 19 19 19 MC40 33 33 33 WC43 0.629 0.629 0.629 0.629 EC4 6.5 6.5 6.5 6.5 MC25 18 18 18 18 EC7 33 33 33 EC4 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.612 0.612 0.612 MC25 6.3 6.3 6.3 6.3 EC3 17 17 17 WC23 32 32 32 EC4 0.616 0.608 0.608 0.608 MC44 6.2 6.2 6.2 6.2 EC22 17 17 17 WC23 32 32 32 WMC15 0.599 0.599 MC32 5.8 5.8 5.8 MC32 16 16 16 EC32 32 32 32 WMC15 0.599 0.599 0.599 MC32 5.8 5.8 5.8 MC32 16 16 16 MC41 32 32 32 32 EC10 0.588 0.588 0.588 0.588 MC39 5.5 5.5 MC2 15 15 15 MC33 31 31 MC19 0.589 0.589 0.569 MC39 5.3 5.3 5.3 5.3 EC38 15 15 15 MC37 31 31 31 EC2 0.566 0.566 0.566 0.566 0.566 MC39 5.3 5.3 5.3 5.3 EC38 15 15 15 MC37 31 31 31 EC24 0.588 0.588 0.588 MC39 5.3 5.3 5.3 5.3 EC38 15 15 15 MC37 31 31 31 EC24 0.588 0.588 0.588 MC39 5.3 5.3 5.3 5.3 EC38 15 15 15 MC37 31 31 31 EC24 0.588 0.588 0.588 MC39 5.3 5.3 5.3 5.3 EC38 15 15 15 MC37 31 31 31 EC24 0.566 0.566 0.566 0.566 MC39 5.3 5.3 5.3 5.3 EC38 15 15 15 MC37 31 31 31 EC24 0.588 0.588 0.588 MC39 5.3 5.3 5.3 EC38 15 15 15 MC37 31 31 31 EC24 0.588 0.588 0.588 MC39 5.3 5.3 5.3 EC38 15 15 15 MC37 31 31 31 EC24 0.588 0.588 0.588 MC39 5.3 5.3 5.3 EC38 15 15 15 MC37 31 31 31 EC24 0.566 0.566 0.566 0.566 MC39 5.3 5.3 5.3 5.3 EC38 15 15 15 MC37 31 31 31 EC24 0.588 0.588 0.588 MC39 5.3 5.3 5.3 EC38 15 15 15 MC37 31 31 31 EC24 0.588 0.588 0.588 MC39 5.3 5.3 5.3 EC38 15 15 15 MC37 31 31 31 EC24 0.566 0	MC35	8.3	8.3		MC1			20	WC31		34	34	MC27	0.642		0.642
MC26 7.6 7.6 7.6 7.6 7.6 MC40 19 19 19 WC45 34 34 34 34 MC28 0.633 0.636 0.682 0.682 0.682																
EC39 6.8 6.8 6.8 MC16 19 19 19 MC40 33 33 33 WC28 0.630 0.630 0.630 0.630 MC36 6.7 6.7 6.7 6.7 6.7 MC42 18 18 18 18 EC7 33 33 33 EC9 0.626																
MC36 6.7 6.7 6.7 6.7 6.7 EC4 19 19 19 MC26 33 33 33 EC9 0.629 0.629 0.629 EC4 6.5 6.5 6.5 6.5 MC25 18 18 18 18 EC7 33 33 33 EC9 0.626 0.626 0.626 0.626 EC20 6.4 6.4 6.4 6.4 MC21 18 18 18 WC41 33 33 33 WMC11 0.612 0.616 0.616 0.616 0.616 MC25 6.3 6.3 6.3 6.3 EC3 17 17 17 WC23 32 32 32 EC41 0.608 0.608 0.608 MC44 6.2 6.2 6.2 6.2 EC22 17 17 17 WC23 32 32 32 MC15 0.599 0.599 0.599 MC32 5.8 5.8 5.8 MC32 16 16 16 16 EC32 32 32 32 WC21 0.599 0.599 0.599 MC32 5.8 5.8 5.8 MC32 16 16 16 16 EC32 32 32 32 WC35 0.586 0.586 0.588 MC31 5.6 5.6 5.6 EC2 16 16 16 MC41 32 32 32 WC35 0.586 0.586 0.588 MC31 5.6 5.6 5.6 5.6 EC2 16 16 16 MC41 32 32 32 WC35 0.586 0.586 0.586 MC31 5.6 5.6 5.6 5.6 EC2 16 16 16 WC13 31 31 31 EC7 0.575 0.575 EC14 5.6 5.6 5.6 5.6 MC11 15 15 15 MC39 31 31 31 WC19 0.569 0.569 0.569 0.569 MC39 5.3 5.3 5.3 EC38 15 15 15 MC39 31 31 31 31 EC2 0.566 0.568 MC39 5.3 5.3 5.3 EC38 15 15 15 MC39 31 31 31 31 EC2 0.566 0.568 MC39 5.3 5.3 5.3 EC38 15 15 15 MC39 31 31 31 31 EC2 0.566 0.568 MC39 5.3 5.3 5.3 EC38 15 15 15 MC39 31 31 31 31 EC2 0.566 0.568 MC39 5.3 5.3 5.3 EC38 15 15 15 MC39 31 31 31 31 EC2 0.566 0.568 MC39 5.3 5.3 5.3 EC34 15 15 15 MC39 31 31 31 31 EC2 0.566 0.568 MC39 5.3 5.3 5.3 EC34 15 15 15 MC39 31 31 31 31 EC2 0.566 0.568 MC39 5.3 5.3 5.3 EC34 15 15 15 MC39 31 31 31 MC19 0.569 0.569 0.569 0.569 MC39 5.3 5.3 5.3 EC34 15 15 15 MC39 31 31 31 MC19 0.569 0.569 0.569 0.568 MC39 5.3 5.3 5.3 EC34 15 15 15 MC39 31 31 31 MC19 0.569 0.569 0.568 MC39 5.3 5.3 5.3 EC34 15 15 15 MC39 31 31 31 MC39 0.546 0.546 0.546 MC37 5.2 5.2 5.2 WC5 15 15 15 MC22 31 31 31 31 MC39 0.541 0.54																
WC17 6.7 6.7 6.7 6.7 MC24 18 18 18 18 WC4 33 33 33 EC9 0.626 0.626 0.626 0.626 6 C626 0.626 6.6 6.5 6.5 6.5 6.5 6.5 6.5 6.5 MC25 18 18 18 18 WC4 33 33 33 WC11 0.612 0.6																
EC4 6.5 6.5 6.5 MC25 18 18 18 18 WC4 33 33 33 MC11 0.616 0.616 0.616 0.616 MC25 6.3 6.4 6.4 6.4 6.4 MC21 18 18 18 WC41 33 33 33 MC11 0.612 0.612 0.612 MC25 6.3 6.3 6.3 6.3 6.3 EC3 17 17 17 WC23 32 32 32 EC41 0.608 0.608 0.608 MC44 6.2 6.2 6.2 6.2 EC2 17 17 17 17 WC23 32 32 32 MC15 0.599 0.599 0.599 MC32 5.8 5.8 5.8 5.8 MC32 16 16 16 EC32 32 32 32 EC10 0.588 0.589 0.589 MC31 5.6 5.6 5.6 EC2 16 16 16 MC41 32 32 32 32 WC35 0.586 0.586 EC49 5.6 5.6 5.6 EC21 16 16 16 WC13 31 31 31 EC7 0.575 0.575 EC14 5.6 5.6 5.6 MC11 15 15 15 MC39 31 31 31 MC19 0.569 0.569 0.569 MC39 5.3 5.3 5.3 EC34 15 15 15 MC39 31 31 31 EC2 0.566 0.568 MC39 5.3 5.3 5.3 EC34 15 15 15 MC39 31 31 31 EC2 0.566 0.568 0.568 MC39 5.3 5.3 5.3 EC34 15 15 15 MC39 31 31 31 EC2 0.566 0.566 0.566 MC39 5.3 5.3 5.3 EC34 15 15 15 MC39 31 31 31 EC2 0.566 0.566 0.566 MC37 5.3 5.3 5.3 EC34 15 15 15 MC39 31 31 31 EC2 0.566 0.566 0.566 MC39 5.3 5.3 5.3 EC34 15 15 15 MC39 31 31 31 EC2 0.566 0.566 0.566 MC39 5.3 5.3 5.3 EC34 15 15 15 MC39 31 31 31 EC2 0.566 0.566 0.566 MC39 5.3 5.3 5.3 EC34 15 15 15 MC39 31 31 31 EC2 0.566 0.566 0.566 MC39 5.3 5.3 5.3 EC34 15 15 15 MC39 31 31 31 EC2 0.566 0.566 0.566 MC39 5.3 5.3 5.3 EC34 15 15 15 MC39 31 31 31 EC2 0.566 0.566 0.566 MC39 5.3 5.3 5.3 EC34 15 15 15 MC39 31 31 31 EC2 0.566										33		33				
MC25 6.3 6.3 6.3 6.3 EC3 17 17 17 WC23 32 32 32 EC41 0.608 0.608 0.608 WC25 6.2 6.2 6.2 6.2 6.2 17 17 17 MC22 32 32 32 MC15 0.599 0.599 0.599 MC32 5.8 5.8 5.8 5.8 MC32 16 16 16 16 EC32 32 32 32 WC21 0.598 0.588 0.588 MC32 15 5.6 5.6 5.6 5.6 EC2 16 16 16 16 WC13 31 31 31 EC7 0.575 0			6.5			18										
MC44 6.2 6.2 6.2 EC2 17 17 17 17 MC22 32 32 32 MC15 0.599 0.599 0.599 MC32 5.8 6.2 6.2 EC14 17 17 17 WC35 32 32 32 MC21 0.599 0.599 MC32 5.8 5.8 5.8 MC32 16 16 16 EC32 32 32 32 EC10 0.588 0.588 0.588 MC31 5.6 5.6 5.6 5.6 EC2 16 16 16 16 MC41 32 32 32 WC35 0.586 0.586 0.586 0.586 EC49 5.6 5.6 5.6 5.6 EC21 16 16 16 WC13 31 31 31 EC7 0.575 0.575 0.575 EC14 5.6 5.6 5.6 5.6 MC11 15 15 15 15 MC39 31 31 31 EC7 0.568 0.568 MC39 5.3 5.3 5.3 EC38 15 15 15 MC39 31 31 31 EC2 0.566 0.568 0.568 MC39 5.3 5.3 5.3 EC38 15 15 15 MC39 31 31 31 EC2 0.566																
EC38 6.2 6.2 6.2 EC14 17 17 17 WC35 32 32 32 32 MC21 0.589 0.589 0.589 MC32 5.8 5.8 5.8 MC32 16 16 16 EC32 32 32 32 EC10 0.588 0.588 0.588 MC31 5.6 5.6 5.6 5.6 EC2 16 16 16 MC41 32 32 32 32 WC35 0.586 0.586 EC49 5.6 5.6 5.6 5.6 EC21 16 16 16 WC13 31 31 31 EC7 0.575 0.57																
MC32 5.8 5.8 5.8 MC32 16 16 16 EC32 32 32 32 32 WC35 0.588 0.588 0.588 EC49 5.6 5.6 5.6 EC2 16 16 16 MC41 32 32 32 WC35 0.586 0.586 0.586 EC49 5.6 5.6 5.6 EC21 16 16 16 WC13 31 31 31 EC7 0.575 0.575 0.575 EC14 5.6 5.6 5.6 5.6 MC11 15 15 15 MC39 31 31 31 EC7 0.575 0.569 0.569 MC39 5.3 5.3 5.3 EC38 15 15 15 MC39 31 31 31 EC2 0.566 0.566 0.568 MC39 5.3 5.3 5.3 EC38 15 15 15 MC39 31 31 31 EC2 0.566 0.56																
MC31 5.6 5.6 5.6 5.6 EC2 16 16 16 WC13 31 31 31 EC7 0.575 0.586 0.586 EC49 5.6 5.6 5.6 5.6 5.6 EC21 16 16 16 WC13 31 31 31 EC7 0.575 0.576																
EC49 5.6 5.6 5.6 5.6 EC21 16 16 16 WC13 31 31 31 EC7 0.575 0.575 0.575 EC48 5.5 5.6 5.6 MC11 15 15 15 MC39 31 31 31 MC19 0.569 0.569 0.569 MC39 5.3 5.3 5.3 EC38 15 15 15 MC33 31 31 31 EC2 0.566 0.56																
EC14 5.6 5.6 5.6 MC1 15 15 15 MC39 31 31 31 MC19 0.569 0.569 0.569 MC39 5.3 5.3 5.3 5.3 EC38 15 15 15 MC37 31 31 31 EC2 0.566 0.566 0.566 MC37 5.3 5.3 5.3 5.3 EC24 15 15 15 MC37 31 31 31 EC2 0.566 0.566 0.566 MC37 5.3 5.3 5.3 EC24 15 15 15 EC20 31 31 31 EC1 0.566 0.566 0.566 MC37 5.2 5.2 5.2 WC5 15 15 15 EC14 31 31 31 EC29 0.546 0.546 0.546 WC37 5.2 5.2 5.2 WC5 15 15 15 WC22 31 31 31 MC33 0.541 0.54	EC49		5.6		EC21								EC7			
MC39 5.3 5.3 5.3 EC38 15 15 15 MC33 31 31 31 EC2 0.566					MC11					31						
MC37 5.3 5.3 5.3 EC24 15 15 15 EC20 31 31 31 31 EC14 0.555 0.555 0.555 EC28 5.3 5.3 5.3 EC17 15 15 15 EC14 31 31 31 EC29 0.546 0.546 0.546 WC37 5.2 5.2 5.2 WC5 15 15 15 WC22 31 31 31 MC33 0.541 0.541 0.541 EC30 5.1 5.1 5.1 MC17 14 14 14 MC42 31 31 31 EC40 0.538 0.538 0.538 EC15 5.0 S.0 S.0 S.0 S.0 S.0 S.0 S.0 S.0 S.0 S										31						
EC28 5.3 5.3 5.3 EC17 15 15 15 EC14 31 31 31 EC29 0.546 0.54																
WC37 5.2 5.2 5.2 S.2 S.2 <td></td>																
EC30 5.1 5.1 5.1 MC17 14 14 14 MC42 31 31 31 31 EC40 0.538 0.538 0.538 EC27 14 14 14 MC35 30 30 30 MC12 0.525 0.525 WC4 4.8 4.8 4.8 MC12 13 13 13 MC34 30 30 30 WC24 0.525 0.525 0.525 MC23 4.7 4.7 4.7 EC29 13 13 13 MC11 30 30 30 WC44 0.525 0.525 0.525 EC19 4.7 4.7 4.7 WC43 13 13 15 EC30 30 30 MC39 0.517 0.517 0.517 0.516 MC18 4.6 4.6 MC33 12 12 12 WC20 30 30 30 WC26 0.515 0.515 0.515																
EC15 5.0 5.0 5.0 EC27 14 14 14 MC35 30 30 30 MC12 0.525 0.525 0.525 WC4 4.8 4.8 4.8 MC12 13 13 13 MC34 30 30 WC44 0.525 0.525 0.525 0.525 MC34 4.7 4.7 4.7 EC29 13 13 13 MC11 30 30 30 MC39 0.517 0.517 0.517 EC19 4.7 4.7 4.7 WC43 13 13 13 EC30 30 30 MC9 0.516 0.516 0.516 MC18 4.6 4.6 4.6 MC33 12 12 12 WC20 30 30 30 WC26 0.515 0.515 0.515																
MC23 4.7 4.7 4.7 EC29 13 13 13 MC11 30 30 30 MC39 0.517 0.517 0.517 EC19 4.7 4.7 4.7 WC43 13 13 13 EC30 30 30 30 MC9 0.516 0.516 0.516 MC18 4.6 4.6 MC33 12 12 12 WC20 30 30 30 WC26 0.515 0.515 0.515	EC15	5.0	5.0	5.0	EC27	14	14	14	MC35	30			MC12	0.525		0.525
EC19 4.7 4.7 4.7 WC43 13 13 13 EC30 30 30 MC9 0.516 0.516 0.516 MC18 4.6 4.6 4.6 MC33 12 12 12 WC20 30 30 30 WC26 0.515 0.515 0.515																
MC18 4.6 4.6 MC33 12 12 12 WC20 30 30 30 WC26 0.515 0.515 0.515																
			_								_				_	•
		T	I	T			I	T		I		T		T		T

Table 4-19a.__ Continued

To	tal mercur	y (mg/kg,	dw)	Ar	oclor 1268	3 (mg/kg, o	dw)		Lead (m	g/kg, dw)		To	otal PAHs	(mg/kg, d	lw)
Sampling			Repro-	Sampling			Repro-	Sampling			Repro-	Sampling			Repro-
station	Survival	Growth	duction	station	Survival	Growth	duction	station	Survival	Growth	duction	station	Survival	Growth	duction
	1	1	1		1	1	1		1	1	Î		1	Î	1
EC18	4.6	4.6	4.6	EC28	12	12	12	WC18	30	30	30	EC21	0.507	0.507	0.507
EC47	4.5	4.5	4.5	EC16	12	12	12	WC27	30	30	30	MC23	0.501	0.501	0.501
EC22 MC38	4.5 4.3	4.5 4.3	4.5 4.3	EC15 MC35	12 11	12 11	12 11	WC26 MC38	29 29	29 29	29 29	MC3 EC30	0.490 0.483	0.490 0.483	0.490 0.483
EC36	4.3	4.3	4.3	MC9	11	11	11	MC31	29	29	29	MC5	0.479	0.479	0.479
EC29 WC30	4.1	4.1	4.1	MC8 EC34	11 11	11	11	MC19 MC12	29 29	29	29	EC38	0.474 0.473	0.474 0.473	0.474 0.473
WC30 WC42	4.0 3.8	4.0 3.8	4.0 3.8	EC34 EC30	11 11	11 11	11 11	MC12 WC28	29	29 29	29 29	EC3 MC35	0.473 0.457	0.473	0.473 0.457
WC5	3.8	3.8	3.8	EC20	11	11	11	MC45	29	29	29	MC44	0.454	0.454	0.454
MC12 MC7	3.6 3.6	3.6 3.6	3.6 3.6	WC50 MC34	11 10	11 10	11 10	MC28 MC23	28 28	28 28	28 28	WC47 MC38	0.449 0.435	0.449 0.435	0.449 0.435
EC27	3.5	3.5	3.5	MC34 EC43	10 9.5	10 9.5	9.5	EC3	28	28 28	28	MC38 EC20	0.435	0.435	0.435
MC1	3.4	3.4	3.4	MC41	9.2	9.2	9.2	EC19	28	28	28	MC16	0.433	0.433	0.433
WC24	3.3	3.3	3.3	MC5	8.3	8.3	8.3	EC16	28	28	28	MC49	0.429	0.429	0.429
MC15 MC21	3.1 3.0	3.1 3.0	3.1 3.0	MC3 MC43	8.2 8.1	8.2 8.1	8.2 8.1	WC29 WC12	28 28	28 28	28 28	WC45 WC37	0.428 0.428	0.428 0.428	0.428 0.428
MC16	3.0	3.0	3.0	WC8	7.0	7.0	7.0	WC24	27	27	27	WC23	0.424	0.424	0.424
MC8	3.0	3.0	3.0	WC22	6.9	6.9	6.9	WC19	27	27	27	MC41	0.420	0.420	0.420
EC21 MC4	3.0 2.8	3.0 2.8	3.0 2.8	WC42 WC14	5.5 5.2	5.5 5.2	5.5 5.2	MC14 EC44	27 27	27 27	27 27	EC35 EC27	0.420 0.420	0.420 0.420	0.420 0.420
WC16	2.8	2.8	2.8	WC14 WC35	4.9	5.2 4.9	5.2 4.9	EC44 EC42	27	27	27	WC38	0.420	0.420	0.420
MC9	2.6	2.6	2.6	MC29	4.8	4.8	4.8	EC41	27	27	27	WC34	0.413	0.413	0.413
MC2 EC24	2.6 2.6	2.6 2.6	2.6 2.6	WC21 WC24	4.8 4.5	4.8 4.5	4.8 4.5	EC28 WC3	27 27	27 27	27 27	MC34 WC24	0.405 0.404	0.405 0.404	0.405 0.404
WC31	2.6	2.6	2.6	WC48	4.3	4.3	4.3	WC33	27	27	27	WC24 WC40	0.404	0.404	0.404
EC50	2.5	2.5	2.5	WC30	4.3	4.3	4.3	WC7	27	27	27	WC22	0.400	0.400	0.400
EC43	2.4	2.4	2.4	WC41 MC10	4.2	4.2	4.2	WC6	27	27 27	27	MC42	0.396	0.396	0.396
WC36 MC5	2.3 2.1	2.3 2.1	2.3 2.1	WC4	4.1 4.1	4.1 4.1	4.1 4.1	EC39 MC1	27 27	27	27 27	WC16 MC30	0.396 0.394	0.396	0.396 0.394
WC28	2.1	2.1	2.1	EC47	4.0	4.0	4.0	WC25	26	26	26	MC17	0.391	0.391	0.391
WC6	2.1	2.1	2.1	WC23	3.8	3.8	3.8	EC21	26	26	26	MC10	0.389	0.389	0.389
WC26 WC23	2.0 2.0	2.0 2.0	2.0 2.0	EC13 WC28	3.7 3.5	3.7 3.5	3.7 3.5	WC1 WC9	26 26	26 26	26 26	EC17 MC40	0.380 0.371	0.380 0.371	0.380 0.371
WC22	1.9	1.9	1.9	WC25	3.1	3.1	3.1	EC31	26	26	26	WC7	0.365	0.365	0.365
WC33	1.8	1.8	1.8	EC49	2.9	2.9	2.9	WC14	25	25	25	MC14	0.363	0.363	0.363
WC25 WC15	1.8 1.8	1.8 1.8	1.8 1.8	WC40 WC39	2.5 2.5	2.5 2.5	2.5 2.5	WC11 MC6	25 25	25 25	25 25	WC12 WC8	0.360 0.360	0.360 0.360	0.360 0.360
MC3	1.7	1.7	1.7	WC15	2.5	2.5	2.5	MC2	25	25	25	EC39	0.359	0.359	0.359
WC39	1.7	1.7	1.7	WC36	2.4	2.4	2.4	MC15	25	25	25	WC41	0.354	0.354	0.354
WC21 WC27	1.7	1.7	1.7	WC31 WC20	2.4	2.4 2.4	2.4 2.4	EC47 EC4	25 25	25 25	25 25	EC44 MC6	0.351	0.351 0.343	0.351
WC12	1.6 1.6	1.6 1.6	1.6 1.6	WC12	2.4 2.4	2.4	2.4	EC29	25 25	25 25	25 25	EC25	0.343 0.343	0.343	0.343 0.343
MC29	1.5	1.5	1.5	WC45	2.2	2.2	2.2	WC32	25	25	25	WC21	0.340	0.340	0.340
EC11	1.5	1.5	1.5	WC13	2.2	2.2	2.2	MC30	24	24	24	WC6	0.323	0.323	0.323
WC29 WC20	1.5 1.5	1.5 1.5	1.5 1.5	WC27 WC18	2.1 2.1	2.1 2.1	2.1 2.1	MC21 WC2	24 24	24 24	24 24	EC13 WC25	0.318 0.318	0.318 0.318	0.318 0.318
WC19	1.5	1.5	1.5	WC29	2.0	2.0	2.0	WC10	24	24	24	WC9	0.318	0.318	0.318
WC14	1.5	1.5	1.5	EC11	1.9	1.9	1.9	MC7	24	24	24	WC15	0.317	0.317	0.317
WC3 MC10	1.4 1.3	1.4 1.3	1.4 1.3	WC6 MC6	1.9 1.8	1.9 1.8	1.9 1.8	WC30 EC36	24 23	24 23	24 23	WC17 WC14	0.314 0.310	0.314 0.310	0.314 0.310
WC2	1.3	1.3	1.3	WC19	1.8	1.8	1.8	EC2	23	23	23	EC28	0.305	0.305	0.305
WC9	1.3	1.3	1.3	WC7	1.8	1.8	1.8	MC5	23	23	23	WC18	0.294	0.294	0.294
MC43 WC1	1.2 1.2	1.2 1.2	1.2	EC50 WC33	1.7 1.7	1.7 1.7	1.7 1.7	MC8 MC9	23 22	23 22	23 22	WC28 WC19	0.289 0.287	0.289 0.287	0.289 0.287
WC10	1.2	1.2	1.2	WC26	1.7	1.7	1.7	MC4	22	22	22	WC11	0.276	0.276	0.276
WC32	1.1	1.1	1.1	WC9	1.7	1.7	1.7	MC10	21	21	21	WC10	0.272	0.272	0.272
WC18 WC8	1.1 1.0	1.1 1.0	1.1 1.0	MC49 MC50	1.5 1.5	1.5 1.5	1.5 1.5	EC38 EC18	21 18	21 18	21 18	WC20 WC31	0.268 0.253	0.268 0.253	0.268 0.253
WC7	0.95	0.95	0.95	WC10	1.4	1.4	1.4	EC46	16	16	16	WC13	0.246	0.246	0.246
WC13	0.92	0.92	0.92	MC48	1.0	1.0	1.0	EC11	16	16	16	WC36	0.242	0.242	0.242
WC47 EC17	0.88 0.79	0.88 0.79	0.88 0.79	WC49 WC32	1.0 1.0	1.0 1.0	1.0 1.0	EC25 MC18	15 14	15 14	15 14	WC30 EC43	0.242 0.240	0.242 0.240	0.242 0.240
MC6	0.79	0.79	0.79	WC32	0.78	0.78	0.78	MC18 MC17	14 14	14	14	WC42	0.240	0.240	0.240
EC16	0.77	0.77	0.77	WC34	0.76	0.76	0.76	EC12	14	14	14	MC50	0.229	0.229	0.229
WC11	0.52	0.52	0.52	WC11	0.75	0.75	0.75	MC16	13	13	13	WC27	0.207	0.207	0.207
WC40 MC49	0.50 0.40	0.50 0.40	0.50 0.40	WC2 WC1	0.63 0.62	0.63 0.62	0.63 0.62	EC45 EC24	13 13	13 13	13 13	MC29 WC32	0.184 0.183	0.184 0.183	0.184 0.183
MC50	0.37	0.37	0.37	WC37	0.35	0.35	0.35	MC29	12	12	12	WC32	0.163	0.162	0.162
WC44	0.35	0.35	0.35	WC38	0.33	0.33	0.33	EC27	11	11	11	WC39	0.151	0.151	0.151
EC45 EC46	0.28 0.26	0.28 0.26	0.28 0.26	EC46 WC44	0.27 0.16	0.27 0.16	0.27 0.16	EC43 EC17	9.1 8.7	9.1 8.7	9.1 8.7	WC29 EC50	0.138 0.126	0.138 0.126	0.138 0.126
MC48	0.20	0.20	0.20	EC45	0.16	0.15	0.16	MC48	5.8	5.8	5.8	MC48	0.126	0.126	0.126
WC49	0.20	0.20	0.20	WC47	0.023	0.023	0.023	EC50	5.7	5.7	5.7	EC46	0.060	0.060	0.060
WC46 EC12	0.089	0.089 0.044	0.089	WC46 EC12	0.0079	0.0079	0.0079 0.0074	MC49 MC50	4.4	4.4 3.9	4.4 3.9	EC45	0.037	0.037	0.037 0.0065
EG12	0.044	0.044	0.044	EC12	0.0074	0.0074	0.0074	MCSU	3.9	3.9	3.9	EC12	0.0065	0.0065	0.0065

^aChemical and toxicological data are based on 50 sediment samples collected from each of the Main Canal (MC), Eastern Creek (EC), and Western Creek Complex (WC) on October 22 - 25, 2006 (the only year that this evaluation was conducted). Toxicological data pertain to chronic (28-day) tests with amphipods (*Leptocheirus plumulosus*) exposed to the same 150 sediment samples.

bData associated with black print and green background identify concentrations of COPC in surface sediment that were not toxic to amphipods, whereas data identified by red print indicate toxic sediment. Sediment was judged to be toxic to amphipods if survival was ≤ 85% (mean control survival = 97.5%) or if growth or reproduction was less than the lower limit of the 60% confidence interval (CI) for the mean response of control amphipods. This latter protocol is a conservative statistical approach for identifying AETs that identifies a greater number of toxic samples than if a more conventional (e. g., 95%) CI was employed.

^cAETs for each COPC and associated measurement endpoints are identified by rectangular borders. The lowest (and most relevant) AET for a COPC is identified by double stars (**).

Table 4-19b.__ Apparent effects thresholds (AETs) for selected metals in surface sediment of estuary at LCP Site (based on 2006 data) a, b, c

Colua	y at L	or Site	(baseu	011 2006	uala)						
Ca	admium (mg/kg, dv	v)		Copper (n	ng/kg, dw)		Nickel (r	ng/kg, dw))
Sampling			Repro-	Sampling	. <u></u>		Repro-	Sampling	9		Repro-
station	Survival	Growth	duction	station	Survival	Growth	duction	station	Survival	Growth	duction
	1	t	t		t	1	t		1	1	1
WC42	0.376	0.376	0.376	MC47	28.2	28.2	28.2	WC39	25.6	25.6	25.6
WC17	0.363	0.363	0.363	EC8	25.3	25.3	25.3	WC17	25.1	25.1	25.1
WC8	0.362	0.362	0.362	WC17	22.4	22.4	22.4	WC36	23.2	23.2	23.2
WC21	0.359	0.359	0.359	EC5	21.8	21.8	21.8	WC38	22.1 **	22.1	22.1
WC5	0.336	0.336	0.336	MC19	20.7	20.7	20.7	WC40	21.9	21.9	21.9
WC50	0.32	0.32	0.32	MC42	20.1	20.1	20.1	WC37	21.8	21.8	21.8
EC48	0.304	0.304	0.304	EC7	20.1	20.1	20.1	MC44	21	21	21
WC48	0.302	0.302	0.302	MC46	20	20	20	WC15	20.3	20.3	20.3
WC31	0.3	0.3	0.3 0.296	EC6	19.9	19.9 19.9	19.9	MC47	20.2	20.2	20.2
MC46	0.296	0.296	0.296	WC39	19.9		19.9	MC46	20.2	20.2	20.2
WC4	0.295	0.295	0.295 **	MC41 MC11	19.4	19.4	19.4	WC16 WC21	19.9 19.9	19.9 19.9	19.9
				WC40	19.1 19.1	19.1 19.1	19.1 19.1	WC21	19.9	19.9 19.6	19.9 19.6
				EC1	19.1	19.1	19.1	WC31	18.9	18.9	18.9
				MC44	18.8	18.8	18.8	WC42	18.5	18.5	18.5
				WC34	18.8	18.8	18.8	WC45	18.4	18.4	18.4
				MC35	18.8	18.8	18.8	WC33	18.4	18.4	18.4
				WC45	18.8	18.8	18.8	WC18	18.4	18.4	18.4
				WC37	18.7	18.7	18.7				
				MC33	18.5	18.5	18.5				
				WC38	18.4 **	18.4	18.4				
,	Silver (m	g/kg, dw)			Zinc (mg	g/kg, dw)					
Sampling			Repro-	Sampling			Repro-				
station	Survival	Growth	duction	station	Survival	Growth	duction				
	1	1	1		1	1	1				
EC6	0.463	0.463	0.463	MC47	106	106	106				
EC37	0.463	0.463	0.463	EC6	98.7	98.7	98.7				
EC5	0.412	0.412	0.413	MC6	97.1	97.1	97.1				
EC8	0.387	0.387	0.387	EC8	96.3	96.3	96.3				
EC40	0.364	0.364	0.364	MC41	95	95	95				
EC35	0.357	0.357	0.357	WC42	93.8	93.8	93.8				
MC27	0.354	0.354	0.354	MC42	93	93	93				
EC7	0.338	0.338	0.338	EC5	92.8	92.8	92.8				
MC42	0.323	0.323	0.323	MC30	91.4	91.4	91.4				
MC19	0.309	0.309	0.309	EC3	90.5 **	90.5	90.5 **				
EC33 EC41	0.306 0.299	0.306 0.299	0.306 0.299								
MC28	0.297	0.299	0.299								
WC12	0.295	0.295	0.295								
WC15	0.294	0.294	0.294								
MC47	0.291	0.291	0.291								
WC45	0.287	0.287	0.287								
WC19	0.28	0.28	0.28								
MC11	0.277	0.277	0.277								
MC33	0.275	0.275	0.275								
MC12	0.274	0.274	0.274								
WC24	0.272	0.272	0.272 **								

^aChemical and toxicological data are based on 50 sediment samples collected from each of the Main Canal (MC), Eastern Creek (EC), and Western Creek Complex (WC) on October 22 - 25, 2006 (the only year that this evaluation was conducted). Only those samples required to derive AETs are presented in this table. Toxicological data pertain to chronic (28-day) tests with amphipods (*Leptocheirus plumulosus*) exposed to the same 150 sediment samples.

^bData associated with black print and green background identify concentrations of COPC in surface sediment that were not toxic to amphipods, whereas data identified by red print indicate toxic sediment. Sediment was judged to be toxic to amphipods if survival was ≤ 85% (mean control survival = 97.5%) or if growth or reproduction was less than the lower limit of the 60% confidence interval (CI) for the mean response of control amphipods. This latter protocol is a conservative statistical approach for identifying AETs that identifies a greater number of toxic samples than if a more conventional (e.g., 95%) CI was employed.

^cAETs for each metal and associated measurement endpoints are identified by rectangular borders. The lowest (and most relevant) AET for a metal is identified by double stars (**).

Table 4-20_Sediment effect concentrations summary - amphipods (Leptocheirus plumulosus)

			Me	rcury						Arocl	or 1268					OC-n	ormaliz	ed Aroclo	or 1268		
		ı	Reproduct	ive Respo	nse				F	Reproduct	ve Respo	ise				F	Reproduct	ive Respo	nse		
SEC Concentration Accuracy Reliability Rank	ER-L 11.8 70 14	ER-M 21.9 56 11	<i>TEL</i> 4.9 97 19	PEL 15.5 61 12	<i>AET</i> 19 59 12	Total # of samples 230	# samples in effects data set 46	ER-L 19 110 32	ER-M 35 86 25	<i>TEL</i> 6.5 144 41	PEL 24.7 97 28	AET 44 81 23	Total # of samples 230	# samples in effects data set 66	ER-L 3.0 28 6	ER-M 4.9 22 4	<i>TEL</i> 1.0 36 7	PEL 3.3 27 5	<i>AET</i> 7.9 21 4	Total # of samples 80	# samples in effects data set 16
			Survi	val Rate						Survi	val Rate						Survi	val Rate			
SEC Concentration Accuracy Reliability Rank	ER-L 11.3 83 16	ER-M 21.7 72 14	TEL 4.2 124 24	PEL 15.4 76 15	<i>AET</i> 62 56 11	Total # of samples 240	# samples in effects data set 47	ER-L 16.0 113 37	ER-M 32 85 28	TEL 6.2 142 46	PEL 20.3 97 32	AET 64 71 23	Total # of samples 240	# samples in effects data set 78	ER-L 3.0 38 8	ER-M 5.2 31 7	TEL 0.9 43 9	PEL 3.5 37 8	<i>AET</i> 12.3 27 6	Total # of samples 90	# samples in effects data set 19
		s	urvivors A	verage We	eight				S	ırvivors A	verage We	ight				Sı	urvivors A	verage We	eight		
SEC Concentration Accuracy Reliability Rank	ER-L 21.6 137 10	ER-M 38.1 134 10	<i>TEL</i> 8.1 132 10	PEL 21.9 138 10	<i>AET</i> 145 131 10	Total # of samples 240	# samples in effects data set 18	ER-L 61.0 133 8	ER-M 110 131 8	<i>TEL</i> 19.4 122 8	PEL 61 133 8	<i>AET</i> 420 133 8	Total # of samples 240	# samples in effects data set 15	ER-L 5.0 46 5	<i>ER-M</i> 7.5 46 5	<i>TEL</i> 1.9 39 4	PEL 5.6 46 5	AET 15.1 45 5	Total # of samples 90	# samples in effects data set 9
	T	otal Poly	cyclic Ar	omatic H	ydrocarl	bons			c	C-norm	alized PA	.Hs					L	ead			
		ı	Reproduct	ive Respo	nse				F	Reproduct	ve Respo	ise				F	Reproduct	ive Respo	nse		
SEC Concentration Accuracy Reliability Rank	ER-L 3.1 47 3	ER-M 5.6 41 3	<i>TEL</i> 1.4 50 4	PEL 3.1 47 3	AET 12 36 3	Total # of samples 230	# samples in effects data set 17	ER-L 2.2 16 1	ER-M 4.3 18 1	<i>TEL</i> 0.9 19	PEL 1.9 16 1	<i>AET</i> 2.7 18 1	Total # of samples 80	# samples in effects data set 3	ER-L 66.3 40 2	ER-M 238 38 1	TEL 44.8 52 2	PEL 88.7 39 2	<i>AET</i> 177 38 1	Total # of samples 230	# samples in effects data set 9
			Average S	Survival Ra	ite					Average S	urvival Ra	te					Average S	Survival Ra	ite		
SEC Concentration Accuracy Reliability Rank	ER-L 1.5 66 7	ER-M 4.4 60 7	<i>TEL</i> 0.8 103 12	PEL 2.1 65 7	<i>AET</i> 6 56 6	Total # of samples 240	# samples in effects data set 27	ER-L 0.6 36 6	ER-M 1.0 30 5	<i>TEL</i> 0.2 52 9	PEL 0.6 36 6	AET 2.7 26 5	Total # of samples 90	# samples in effects data set 16	ER-L 59.8 56 2	ER-M 196 53 2	<i>TEL</i> 40.8 77 3	PEL 88.4 54 2	AET 177 53 2	Total # of samples 240	# samples in effects data set 10
																_					
		Si	urvivor's A	verage We	eight		# samples		Sı	ırvivor's A	verage We	ight		# samples		Sı	ırvivor's A	verage We	eight		# samples in

Accuracy = Number od samples where effect was predicted correctly Reliability = (# samples in effects data set ÷ total # samples) * Accuracy

Table 4-21_Toxicity test results for grass shrimp (Palaemonetes pugio) for major areas of estuary at the LCP Site (2002 - 2005 data)

Location	Year	Area	DNA Strand Damage	Embryo Development %	Embryo Hatching %	Ovary Maturation %	Survival %
Control		Control	NA NA	69.3	93	73.3	93
TC-C(S)		Troup Creek Reference	NA	44	84	52	88
CR-C(S)		Crescent River Reference	NA	73	96	73	92
C-16		South Purvis Creek	NA	44	76	61	72
C-33		Domain 3	NA	36	39	76	84
C-5		Main Canal	NA	11	0	20	80
C-7	2000	Eastern Creek	NA	11	0	32	77
MG-B7(C)		Domain 1	NA	48	92	57	93
MG-D9(C)		Domain 1	NA	55	88	63	83
MG-H7(C)		Domain 1	NA	0	0	48	89
MG-K7(C)	_	Domain 1	NA	0	0	60	76
MG-N2(C)		Domain 1	NA NA	45	85	64	76
Control		Control	2.2	61	92	85	87
TC-C		Troup Creek Reference	2.1	77	90	85	87
CR-C		Crescent River Reference	2.2	53	88	73	73
C-15		Western Creek Complex	2.1	74	89	93	87
C-15		Domain 4	2.1	25	84	39	
	2002				-		40
C-5	2002	Main Canal	4.3	21	61	40	57
C-6		Eastern Creek	3.6	16	50	32	15
C-7		Eastern Creek	3.9	18	77	38	23
D-C		Domain 4	2.3	28	88	57	67
MG-H7(C)		Domain 1	3.8	8	65	36	20
MG-K7(C)		Domain 1	NA	0	0	0	48
Control		Control	1.3	40	93.3	80.3	81.7
TC-C		Troup Creek Reference	2.4	50	82	83	83
CR-C		Crescent River Reference	1.7	29	97	73	87
C-15		Western Creek Complex	1.9	21	87	73	58
C-45		Domain 4	1.7	45	88	78	85
C-5	2003	Main Canal	2.7	28	88	72	85
C-6		Eastern Creek	2.2	32	88	78	72
C-7		Eastern Creek	1.9	30	93	78	77
D-C		Domain 4	1.8	29	87	74	83
MG-H7(C)		Domain 1	3.6	9	35	33	27
MG-K7(C)		Domain 1	2.2	15	87	71	83
Control		Control	2.1	36	87	71	87
TC-C		Troup Creek Reference	2.5	39	73	72	82
CR-C		Crescent River Reference	2	38	93	80	87
C-33	1	Domain 3	2.6	9	67	78	42
M-AB	1	Domain 1 Removal Area	1.9	34	85	78	83
C-101		Domain 3	3.0	10	63	76	13
C-105		Blythe Island	2.8	11	65	55	63
C-5	1	Main Canal	2.2	29	83	54	67
MG-H7(C)	1	Domain 1	2.2	38	82	76	78
MG-K7(C)		Domain 1	2.3	17	70	70	67
A-C	2004	Domain 4	1.9	26	92	62	52
C-100	+	Domain 3	2.3	25	83	78	73
C-100 C-102	+	Domain 4	2.3	28	87	56	32
	+						
C-104	-	Blythe Island	2.3	49	85	61	30
C-15	-	Western Creek Complex	2.1	44	88	59	65
C-45	-	Domain 4	2.0	29	92	54	47
C-7	-	Eastern Creek	3.5	3	45	58	27
D-C	4	Domain 4	2.7	21	72	75	60
C-103	4	Blythe Island	2.2	29	87	77	28
C-6		Eastern Creek	2.4	33	82	72	40

Location	Year	Area	DNA Strand Damage	Embryo Development %	Embryo Hatching %	Ovary Maturation %	Survival %
Control		Control	1.9	54	91.7	81.3	81.7
TC-C		Troup Creek Reference	2.23	30.7	90	77.3	83.3
CR-C		Crescent River Reference	1.8	56.3	86.7	75.7	76.7
C-5		Main Canal	2.2	29.3	80	66	65
C-36		North Purvis Creek	1.9	38.7	80	79	73.3
C-29		North Purvis Creek	1.9	22	85	63.7	71.7
C-16		South Purvis Creek	2.1	28.3	85	66.7	71.7
C-6		Eastern Creek	1.63	37	83.3	69.3	73.3
C-7		Eastern Creek	3.67	8.7	46.7	50.3	36.7
C-15		Western Creek Complex	2.07	27	85	75.7	76.7
MG-K7(M)		Domain 1	2	31.7	76.7	83.3	81.7
MG-H7(M)		Domain 1	1.87	31.7	88.3	79.7	73.3
C-33		Domain 3	1.7	52.3	90	83.7	83.3
D-C	2005	Domain 4	2	18	85	63.7	56.7
C-45	2005	Domain 4	4.43	12	23.3	21.3	25
C-103		Blythe Island	1.97	34.7	90	60.3	78.3
C-104		Blythe Island	1.7	27.7	86.7	66	71.7
C-105		Blythe Island	2.07	28.3	81.7	68	83.3
C-200		Domain 3	1.8	46.7	86.7	72.3	81.7
C-201		South Turtle River	2.13	28.7	88.3	68	83.3
C-202		North Turtle River	1.67	47.3	83.3	70.7	80
C-203		South Turtle River	1.9	24.7	86.7	63.7	76.7
FS-AREA1		Domain 3	2.23	29	86.7	76.3	83.3
FS-AREA2		Domain 3	1.87	56.3	81.7	75.3	78.3
FS-AREA3		Domain 3	1.9	3.7	8.3	70.3	76.7
FS-AREA4		Main Canal	2.07	37.7	85	68.7	81.7
FS-AREA5		Main Canal	1.7	34	81.7	77.3	76.7
FS-AREA6		Domain 2	1.87	22.3	81.7	66.7	71.7
Neter	Percentag	e of samples considered toxic:	32%	69%	26%	29%	40%

NA - Not Analyzed

DNA - deoxyribonucleic acid

Red color indicates toxicity (i.e., significantly different than controls at p=0.5)

Table 4-22_Sediment effect concentrations summary - grass shrimp

	Mercury								Arock	or 1268					OC-n	ormalize	d Aroclo	r 1268			
			Embryo D	evelopmen	nt		# samples			Embryo D	evelopmen	t		# samples			Embryo D	evelopmer	t		# samples
SEC Concentration Accuracy Reliability Rank	ER-L 3.2 45 15	ER-M 10.5 36 12	<i>TEL</i> 1.4 51 17	<i>PEL</i> 4.8 41 14	AET 11.0 37 12	Total # of samples 77	in effects data set 26	ER-L 12.0 41 10	ER-M 20.0 33 8	<i>TEL</i> 3.2 46 11	PEL 10.7 40 10	AET 41.0 29 7	Total # of samples 77	in effects data set 19	ER-L 3.5 41 11	ER-M 5.2 33 9	<i>TEL</i> 1.0 40 10	<i>PEL</i> 2.9 42 11	AET 7.9 29 8	Total # of samples 77	in effects data set 20
			Embryo	Hatching			# samples			Embryo	Hatching			# samples			Embryo	Hatching			# samples
SEC Concentration Accuracy Reliability Rank	ER-L 13.5 61 7	ER-M 46.0 59 7	<i>TEL</i> 3.9 56 7	PEL 15.4 60 7	AET 86.6 57 7	Total # of samples 77	in effects data set 9	ER-L 18.6 59 7	ER-M 23.0 57 7	<i>TEL</i> 5.0 52 6	PEL 16.6 60 7	AET 69.0 60 7	Total # of samples 77	in effects data set 9	ER-L 4.2 56 7	ER-M 7.0 57 7	<i>TEL</i> 1.3 52 6	PEL 5.4 57 7	<i>AET</i> 15.1 59 7	Total # of samples 77	in effects data set 9
			Ovary N	Maturation			# samples			Ovary N	laturation			# samples			Ovary N	laturation			# samples
SEC Concentration Accuracy Reliability Rank	ER-L 13.0 57 5	ER-M 46.0 57 5	TEL 3.4 52 5	<i>PEL</i> 17.3 56 5	AET 86.6 55 5	Total # of samples 77	in effects data set 7	ER-L 18.4 55 6	ER-M 43.5 58 6	<i>TEL</i> 4.8 48 5	PEL 25.3 56 6	AET 69.0 58 6	Total # of samples 77	in effects data set 8	ER-L 3.9 53 6	ER-M 7.0 55 6	<i>TEL</i> 1.2 47 5	PEL 5.7 55 6	<i>AET</i> 15.1 57 7	Total # of samples 77	in effects data set 9
			Survi	val Rate			# samples			Surviv	/al Rate			# samples			Surviv	/al Rate			# samples
SEC Concentration Accuracy Reliability Rank	ER-L 16.4 48 4	ER-M 46.0 47 4	TEL 4.3 49 4	<i>PEL</i> 14.8 48 4	<i>AET</i> 86.6 45 4	Total # of samples 77	in effects data set 7	ER-L 19.0 51 6	ER-M 41.0 50 6	<i>TEL</i> 5.8 43 5	PEL 27.9 49 6	AET 69.0 49 6	Total # of samples 77	in effects data set 9	ER-L 4.3 48 6	ER-M 7.5 49 6	<i>TEL</i> 1.3 45 6	PEL 5.7 48 6	AET 15.1 48 6	Total # of samples 77	in effects data set 10
			DNA Stra	ind Damage	•		# samples			DNA Stra	nd Damage	•		# samples			DNA Stra	nd Damage	•		# samples
SEC Concentration Accuracy Reliability Rank	ER-L 10.8 49 7	ER-M 22.0 47 7	TEL 3.5 48 7	PEL 8.5 49 7	AET 86.6 43 6	Total # of samples 64	in effects data set 9	ER-L 19.0 49 7	ER-M 24.0 44 6	<i>TEL</i> 6.2 40 6	PEL 16.3 48 7	AET 69.0 44 6	Total # of samples 65	in effects data set 9	ER-L 4.3 35 5	ER-M 7.3 39 5	TEL 1.4 31 4	PEL 4.7 36 5	AET 15.1 42 6	Total # of samples 65	in effects data set 9

Table 4-22_(Continued) Sediment Effect Concentrations Summary - Grass Shrimp

Total Polycyclic Aromatic Hydrocarbons OC-normalized PAHs Lead **Embryo Development Embryo Development Embryo Development** # samples # samples # samples in effects Total # of in effects Total # of in effects Total # of ER-L ER-M TEL PEL ER-L ER-M TEL PEL AET ER-L ER-M TEL PEL AET AET samples data set samples data set samples data set SEC Concentration 4.0 6.1 1.6 4.5 11.5 77 1.3 2.5 0.5 1.4 4.3 77 1190 1190 139 198 419 77 Accuracy 26 25 32 25 27 27 26 28 27 25 25 25 22 23 25 Reliability Rank 2 2 3 2 2 2 2 2 2 0.3 0.3 0.3 0.3 0.3 **Embryo Hatching Embryo Hatching Embryo Hatching** # samples # samples # samples Total # of in effects Total # of in effects Total # of in effects data set ER-L ER-M TEL PEL AET samples data set ER-L ER-M TEL PEL AET samples ER-L FR-M TEL PFI AET samples data set SEC Concentration 3.9 6.1 1.6 3.3 11.8 77 5 1.0 1.6 0.4 0.9 4.3 77 1190 1190 174 204 419 77 5 Accuracy 55 56 53 56 58 56 56 53 57 58 58 58 56 56 58 Reliability Rank 4 4 3 4 4 4 4 3 4 4 1 1 1 1 **Ovary Maturation Ovary Maturation Ovary Maturation** # samples # samples # samples Total # of in effects Total # of in effects Total # of in effects ER-L ER-M TEL PEL AET samples data set ER-L ER-M TEL PEL AET samples data set ER-L ER-M TEL PEL AET samples data set 6.1 4.6 NA SEC Concentration 6.1 2.0 52.8 77 1.6 1.6 0.6 1.2 13.7 77 NA NA NA 1190 77 0 51 51 48 48 55 50 50 46 49 55 77 77 77 77 55 Accuracy Reliability Rank 1 1 0 0 Survival Rate Survival Rate Survival Rate # samples # samples # samples Total # of in effects Total # of in effects Total # of in effects ER-L ER-M TEL PEL AET samples data set ER-L ER-M TEL PEL AET samples data set ER-L ER-M TEL PEL AET samples data set SEC Concentration 7.2 11.5 2.1 4.8 52.8 77 1.7 2.2 0.6 1.1 13.7 77 NA NA NA NA 1190 77 45 43 46 45 45 45 44 46 0 0 0 0 Accuracy 46 45 46 2 2 2 Reliability Rank 2 2 2 2 2 2 0 0 0 0 0 2 **DNA Strand Damage DNA Strand Damage DNA Strand Damage** # samples # samples # samples Total # of Total # of in effects Total # of in effects in effects ER-M ER-L ER-L TEL PFI AET data set ER-L ER-M TEL PEL AET samples data set FR-M TEL PFI AET samples data set samples

0.6

41

2

1.6

41

2

0.9

42

2

13.7

43

2

65

3

NA

65

0

NA

65

0

NA

#REF!

#REF!

NA

65

0

1190

43

0

65

0

Accuracy = Number od sample

SEC Concentration

Reliability Rank

Accuracy

Reliability = (# samples in effects data set ÷ total # samples) * Accuracy

8.8

41

2.3

42

1

3.9

41

1

52.8

42

1

65

2

1.5

42

2

6.6

40

1

Table 4-23_Grass shrimp toxicity - embryo development rate compared to primary chemicals of potential concern (COPCs)

TC-C 77 0.038 0.03 0.060 14.0 C-15 74 1.300 2.80 0.060 32.0 CR-C(S) 73 0.014 0.02 0.080 2.0 CR-C 56.3 0.095 0.01 0.136 12.4 FS-AREA2 56.3 2.170 2.30 5.097 387.0 MG-D9(C) 55 2.280 1.40 0.234 28.0 CR-C 53 0.025 0.19 0.060 12.0 C33 52.3 0.243 0.01 0.649 419.0 TC-C 50 0.044 0.10 0.061 9.4 C-104 49 0.510 0.67 0.788 23.0 MG-BT/C 48 6.600 15.00 0.562 28.0 C-202 47.3 0.218 0.21 0.442 17.2 C-202 47.3 0.218 0.21 0.442 17.2 C-202 44.7 4.4330 8.	Station	Embryo Development %	Mercury	Aroclor 1268	Total PAHs	Lead
CR-C(S) 73 0.014 0.02 0.080 2.0 CR-C 56.3 0.095 0.01 0.136 12.4 PS-AREA2 56.3 2.170 2.30 5.097 387.0 MG-D9(C) 55 2.280 1.40 0.234 28.0 CR-C 53 0.025 0.19 0.060 12.0 C33 52.3 0.025 0.19 0.060 12.0 C33 52.3 0.025 0.19 0.060 12.0 C30 0.044 0.10 0.61 9.4 C-104 49 0.510 0.67 0.788 23.0 MG-BT(C) 48 6.600 15.00 0.562 28.0 C-202 47.3 0.218 0.21 0.442 17.2 C-202 47.3 0.218 0.21 0.442 17.2 C-200 46.7 4.430 8.20 1.365 15.40 MG-PACC 45 12.300 0.63 0.564	TC-C	_	0.038	0.03		14.0
CR-C 56.3 0.095 0.01 0.136 12.4 FS-AREA2 56.3 2.170 2.30 5.097 387.0 MG-D9/C) 55 2.280 1.40 0.234 28.0 CR-C 53 0.025 0.19 0.060 12.0 C-33 52.3 0.243 0.01 0.649 419.0 C-104 49 0.510 0.67 0.788 23.0 MG-B7(C) 48 6.600 15.00 0.562 28.0 C-202 47.3 0.218 0.21 0.442 17.2 C-200 46.7 4.430 8.20 1.365 154.0 MG-N2(C) 45 12.300 0.63 0.564 29.0 C-45 45 0.620 0.70 0.180 17.0 C-16 44 0.052 0.04 0.810 17.0 C-15 44 0.052 0.04 0.810 12.0 C-16 39 </td <td>C-15</td> <td>74</td> <td>1.300</td> <td>2.80</td> <td>0.060</td> <td>32.0</td>	C-15	74	1.300	2.80	0.060	32.0
CR-C 56.3 0.095 0.01 0.136 12.4 FS-AREA2 56.3 2.170 2.30 5.097 387.0 MG-D9/C) 55 2.280 1.40 0.234 28.0 CR-C 53 0.025 0.19 0.060 12.0 C-33 52.3 0.243 0.01 0.649 419.0 C-104 49 0.510 0.67 0.788 23.0 MG-B7(C) 48 6.600 15.00 0.562 28.0 C-202 47.3 0.218 0.21 0.442 17.2 C-200 46.7 4.430 8.20 1.365 154.0 MG-N2(C) 45 12.300 0.63 0.564 29.0 C-45 45 0.620 0.70 0.180 17.0 C-16 44 0.052 0.04 0.810 17.0 C-15 44 0.052 0.04 0.810 12.0 C-16 44 </td <td>CR-C(S)</td> <td>73</td> <td>0.014</td> <td>0.02</td> <td>0.080</td> <td>2.0</td>	CR-C(S)	73	0.014	0.02	0.080	2.0
MG-D9(C) 55 2.280 1.40 0.234 28.0 CR-C 53 0.025 0.19 0.060 12.0 C-33 52.3 0.243 0.01 0.649 419.0 TC-C 50 0.044 0.10 0.061 9.4 C-104 49 0.510 0.67 0.788 23.0 MG-B7(C) 48 6.600 15.00 0.562 28.0 C-202 47.3 0.218 0.21 0.442 17.2 C-200 46.7 4.430 8.20 1.365 154.0 MG-N2(C) 45 12.300 0.63 0.564 29.0 C-45 45 0.620 0.70 0.180 17.0 C-16 44 0.279 0.60 0.107 3.7 TC-C(S) 44 1.200 2.80 1.360 28.0 TC-C(S) 44 1.200 2.80 1.360 28.0 TC-C 39		56.3	0.095	0.01	0.136	12.4
CR-C 53 0.025 0.19 0.060 12.0 C-33 52.3 0.243 0.01 0.649 419.0 TC-C 50 0.044 0.10 0.061 9.4 C-104 49 0.510 0.67 0.788 23.0 MG-BT(C) 48 6.600 15.00 0.562 28.0 C-202 47.3 0.218 0.21 0.442 17.2 C-200 46.7 4.430 8.20 1.365 154.0 MG-N2(C) 45 12.300 0.63 0.564 29.0 C-45 45 0.620 0.70 0.180 17.0 C-16 44 0.279 0.60 0.107 3.7 TC-C(S) 44 0.052 0.04 0.810 12.0 C-15 44 1.200 2.80 1.360 28.0 C-36 38.7 1.920 3.70 1.189 29.1 CR-C 38						387.0
CR-C 53 0.025 0.19 0.060 12.0 C-33 52.3 0.243 0.01 0.649 419.0 TC-C 50 0.044 0.10 0.061 9.4 C-104 49 0.510 0.67 0.788 23.0 MG-BT(C) 48 6.600 15.00 0.562 28.0 C-202 47.3 0.218 0.21 0.442 17.2 C-200 46.7 4.430 8.20 1.365 154.0 MG-N2(C) 45 12.300 0.63 0.564 29.0 C-45 45 0.620 0.70 0.180 17.0 C-16 44 0.279 0.60 0.107 3.7 TC-C(S) 44 0.052 0.04 0.810 12.0 C-15 44 1.200 2.80 1.360 28.0 TC-C 39 0.026 0.03 0.468 8.0 C-36 38.7		55	2.280	1.40		
C-33 52.3 0.243 0.01 0.649 419.0 TC-C 50 0.044 0.10 0.061 9.4 C-104 49 0.510 0.67 0.788 23.0 MG-B7(C) 48 6.600 15.00 0.562 28.0 C-202 47.3 0.218 0.21 0.442 17.2 C-200 46.7 4.430 8.20 1.365 154.0 MG-N2(C) 45 12.300 0.63 0.564 29.0 C-45 45 0.620 0.70 0.180 17.0 C-16 44 0.279 0.60 0.107 3.7 TC-CS 44 1.200 2.80 1.360 28.0 C-15 44 1.200 2.80 1.360 28.0 TC-C 39 0.026 0.03 0.468 8.0 C-36 38.7 1.920 3.70 1.189 29.1 CR-C 38 <	CR-C	53	0.025	0.19	0.060	12.0
C-104 49 0.510 0.67 0.788 23.0 MG-B7(C) 48 6.600 15.00 0.562 28.0 C-202 47.3 0.218 0.21 0.442 17.2 C-200 46.7 4,430 8.20 1.365 154.0 MG-N2(C) 45 12.300 0.63 0.564 29.0 C-45 45 0.620 0.70 0.180 17.0 C-16 44 0.279 0.60 0.107 3.7 TC-C(S) 44 0.052 0.04 0.810 12.0 C-15 44 1.200 2.80 1.360 28.0 TC-C 39 0.026 0.03 0.468 8.0 C-36 38.7 1.920 3.70 1.189 29.1 CR-C 38 0.010 0.06 0.090 2.2 MG-H7(C) 38 0.820 12.00 4.945 34.0 FS-AREA4 37.7	C-33	52.3	0.243	0.01	0.649	419.0
MG-B7(C) 48 6.600 15.00 0.562 28.0 C-202 47.3 0.218 0.21 0.442 17.2 C-200 46.7 4.430 8.20 1.365 154.0 MG-N2(C) 45 12.300 0.63 0.564 29.0 C-45 45 0.620 0.70 0.180 17.0 C-16 44 0.279 0.60 0.107 3.7 TC-CS 44 0.052 0.04 0.810 12.0 C-15 44 1.200 2.80 1.360 28.0 TC-C 39 0.026 0.03 0.468 8.0 C-36 38.7 1.920 3.70 1.189 29.1 CR-C 38 0.010 0.06 0.090 2.2 MG-H7(C) 38 0.820 12.00 4.945 34.0 FS-AREA4 37.7 1.160 7.00 0.561 15.4 C-6 37	TC-C	50	0.044	0.10	0.061	9.4
MG-B7(C) 48 6.600 15.00 0.562 28.0 C-202 47.3 0.218 0.21 0.442 17.2 C-200 46.7 4.430 8.20 1.365 154.0 MG-N2(C) 45 12.300 0.63 0.564 29.0 C-45 45 0.620 0.70 0.180 17.0 C-16 44 0.279 0.60 0.107 3.7 TC-C6 44 0.052 0.04 0.810 12.0 C-15 44 1.200 2.80 1.360 28.0 TC-C 39 0.026 0.03 0.468 8.0 C-36 38.7 1.920 3.70 1.189 29.1 CR-C 38 0.010 0.06 0.090 2.2 MG-H7(C) 38 0.820 12.00 4.945 34.0 FS-AREA4 37.7 1.160 7.00 0.561 15.4 C-6 37	C-104	49	0.510	0.67	0.788	23.0
C-202 47.3 0.218 0.21 0.442 17.2 C-200 46.7 4.430 8.20 1.365 154.0 MG-N2(C) 45 12.300 0.63 0.564 29.0 C-45 45 0.620 0.70 0.180 17.0 C-16 44 0.279 0.60 0.107 3.7 TC-C(S) 44 0.052 0.04 0.810 12.0 C-15 44 1.200 2.80 1.360 28.0 TC-C 39 0.026 0.03 0.468 8.0 C-36 38.7 1.920 3.70 1.189 29.1 CR-C 38 0.010 0.06 0.090 2.2 MG-H7(C) 38 0.820 12.00 4.945 34.0 FS-AREA4 37.7 1.160 7.00 0.561 15.4 C-6 37 86.600 69.00 1.484 42.1 C-33 36	MG-B7(C)	48		15.00		28.0
C-200 46.7 4.430 8.20 1.365 154.0 MG-N2(C) 45 12.300 0.63 0.564 29.0 C-45 45 0.620 0.70 0.180 17.0 C-16 44 0.279 0.60 0.107 3.7 TC-C(S) 44 0.052 0.04 0.810 12.0 C-15 44 1.200 2.80 1.360 28.0 C-26 39 0.026 0.03 0.468 8.0 C-36 38.7 1.920 3.70 1.189 29.1 CR-C 38 0.010 0.06 0.090 2.2 MG-H7(C) 38 0.820 12.00 4.945 34.0 C-6 37 86.600 69.00 1.484 42.1 C-33 36 0.079 0.02 0.086 17.0 C-103 34.7 1.990 0.56 0.492 24.2 M-AB 34 <t< td=""><td></td><td>47.3</td><td></td><td></td><td></td><td></td></t<>		47.3				
MG-N2(C) 45 12.300 0.63 0.564 29.0 C-45 45 0.620 0.70 0.180 17.0 C-16 44 0.279 0.60 0.107 3.7 TC-C(S) 44 0.052 0.04 0.810 12.0 C-15 44 1.200 2.80 1.360 28.0 TC-C 39 0.026 0.03 0.468 8.0 C-36 38.7 1.920 3.70 1.189 29.1 CR-C 38 0.010 0.06 0.090 2.2 MG-H7(C) 38 0.820 12.00 4.945 34.0 FS-AREA4 37.7 1.160 7.00 0.561 15.4 C-6 37 86.600 69.00 1.484 42.1 C-33 36 0.079 0.02 0.086 17.0 C-103 34.7 1.990 0.56 0.492 24.2 M-AB 34		46.7				154.0
C-45 45 0.620 0.70 0.180 17.0 C-16 44 0.279 0.60 0.107 3.7 TC-C(S) 44 0.052 0.04 0.810 12.0 C-15 44 1.200 2.80 1.360 28.0 TC-C 39 0.026 0.03 0.468 8.0 C-36 38.7 1.920 3.70 1.189 29.1 CR-C 38 0.010 0.06 0.090 2.2 MG-H7(C) 38 0.820 12.00 4.945 34.0 FS-AREA4 37.7 1.160 7.00 0.561 15.4 C-6 37 86.600 69.00 1.484 42.1 C-33 36 0.079 0.02 0.086 17.0 C-103 34.7 1.990 0.56 0.492 24.2 M-AB 34 2.500 2.10 7.290 15.0 FS-AREA5 34 <	MG-N2(C)	45				
C-16 44 0.279 0.60 0.107 3.7 TC-C(S) 44 0.052 0.04 0.810 12.0 C-15 44 1.200 2.80 1.360 28.0 TC-C 39 0.026 0.03 0.468 8.0 C-36 38.7 1.920 3.70 1.189 29.1 CR-C 38 0.010 0.06 0.090 2.2 MG-H7(C) 38 0.820 12.00 4.945 34.0 FS-AREA4 37.7 1.160 7.00 0.561 15.4 C-6 37 86.600 69.00 1.484 42.1 C-33 36 0.079 0.02 0.086 17.0 C-103 34.7 1.990 0.56 0.492 24.2 M-AB 34 2.500 2.10 7.290 15.0 FS-AREA5 34 3.320 12.00 1.394 27.2 C-6 32 <				0.70	0.180	
TC-C(S) 44 0.052 0.04 0.810 12.0 C-15 44 1.200 2.80 1.360 28.0 TC-C 39 0.026 0.03 0.468 8.0 C-36 38.7 1.920 3.70 1.189 29.1 CR-C 38 0.010 0.06 0.090 2.2 MG-H7(C) 38 0.820 12.00 4.945 34.0 FS-AREA4 37.7 1.160 7.00 0.561 15.4 C-6 37 86.600 69.00 1.484 42.1 C-33 36 0.079 0.02 0.086 17.0 C-103 34.7 1.990 0.56 0.492 24.2 M-AB 34 2.500 2.10 7.290 15.0 FS-AREA5 34 3.320 12.00 1.394 27.2 C-6 32 80.000 19.00 0.811 47.0 MG-H7(M) 31.7	C-16	44		0.60		3.7
C-15 44 1.200 2.80 1.360 28.0 TC-C 39 0.026 0.03 0.468 8.0 C-36 38.7 1.920 3.70 1.189 29.1 CR-C 38 0.010 0.06 0.090 2.2 MG-H7(C) 38 0.820 12.00 4.945 34.0 FS-AREA4 37.7 1.160 7.00 0.561 15.4 C-6 37 86.600 69.00 1.484 42.1 C-33 36 0.079 0.02 0.086 17.0 C-103 34.7 1.990 0.56 0.492 24.2 M-AB 34 2.500 2.10 7.290 15.0 FS-AREA5 34 3.320 12.00 1.394 27.2 C-6 32 80.000 19.00 0.811 47.0 MG-K7(M) 31.7 5.680 16.00 0.876 29.5 MG-H7(M) 31.7 </td <td></td> <td></td> <td></td> <td>0.04</td> <td></td> <td></td>				0.04		
TC-C 39 0.026 0.03 0.468 8.0 C-36 38.7 1.920 3.70 1.189 29.1 CR-C 38 0.010 0.06 0.090 2.2 MG-H7(C) 38 0.820 12.00 4.945 34.0 FS-AREA4 37.7 1.160 7.00 0.561 15.4 C-6 37 86.600 69.00 1.484 42.1 C-33 36 0.079 0.02 0.086 17.0 C-103 34.7 1.990 0.56 0.492 24.2 M-AB 34 2.500 2.10 7.290 15.0 FS-AREA5 34 3.320 12.00 1.394 27.2 C-6 33 11.000 41.00 11.510 27.0 C-6 32 80.000 19.00 0.811 47.0 MG-K7(M) 31.7 4.310 36.00 1.296 28.8 TC-C 30.7 <td></td> <td>44</td> <td></td> <td></td> <td></td> <td></td>		44				
C-36 38.7 1.920 3.70 1.189 29.1 CR-C 38 0.010 0.06 0.090 2.2 MG-H7(C) 38 0.820 12.00 4.945 34.0 FS-AREA4 37.7 1.160 7.00 0.561 15.4 C-6 37 86.600 69.00 1.484 42.1 C-33 36 0.079 0.02 0.086 17.0 C-103 34.7 1.990 0.56 0.492 24.2 M-AB 34 2.500 2.10 7.290 15.0 FS-AREA5 34 3.320 12.00 1.394 27.2 C-6 32 80.000 19.00 0.811 47.0 MG-K7(M) 31.7 5.680 16.00 0.876 29.5 MG-H7(M) 31.7 4.310 36.00 1.296 28.8 TC-C 30.7 0.092 0.02 0.112 16.6 C-7 3	TC-C	39				
CR-C 38 0.010 0.06 0.090 2.2 MG-H7(C) 38 0.820 12.00 4.945 34.0 FS-AREA4 37.7 1.160 7.00 0.561 15.4 C-6 37 86.600 69.00 1.484 42.1 C-33 36 0.079 0.02 0.086 17.0 C-103 34.7 1.990 0.56 0.492 24.2 M-AB 34 2.500 2.10 7.290 15.0 FS-AREA5 34 3.320 12.00 1.394 27.2 C-6 32 80.000 19.00 0.811 47.0 MG-K7(M) 31.7 5.680 16.00 0.876 29.5 MG-H7(M) 31.7 4.310 36.00 1.296 28.8 TC-C 30.7 0.092 0.02 0.112 16.6 C-7 30 4.100 3.70 11.782 43.0 C-5 29.						
MG-H7(C) 38 0.820 12.00 4.945 34.0 FS-AREA4 37.7 1.160 7.00 0.561 15.4 C-6 37 86.600 69.00 1.484 42.1 C-33 36 0.079 0.02 0.086 17.0 C-103 34.7 1.990 0.56 0.492 24.2 M-AB 34 2.500 2.10 7.290 15.0 FS-AREAS 34 3.320 12.00 1.394 27.2 C-6 32 80.000 19.00 0.811 47.0 MG-K7(M) 31.7 5.680 16.00 0.876 29.5 MG-H7(M) 31.7 4.310 36.00 1.296 28.8 TC-C 30.7 0.092 0.02 0.112 16.6 C-7 30 4.100 3.70 11.782 43.0 C-5 29.3 1.100 4.20 1.067 25.8 CR-C						
FS-AREA4 37.7 1.160 7.00 0.561 15.4 C-6 37 86.600 69.00 1.484 42.1 C-33 36 0.079 0.02 0.086 17.0 C-103 34.7 1.990 0.56 0.492 24.2 M-AB 34 2.500 2.10 7.290 15.0 FS-AREA5 34 3.320 12.00 1.394 27.2 C-6 33 11.000 41.00 11.510 27.0 C-6 32 80.000 19.00 0.811 47.0 MG-K7(M) 31.7 5.680 16.00 0.876 29.5 MG-H7(M) 31.7 4.310 36.00 1.296 28.8 TC-C 30.7 0.092 0.02 0.112 16.6 C-7 30 4.100 3.70 11.782 43.0 C-5 29.3 1.100 4.20 1.067 25.8 CR-C 29<						
C-6 37 86.600 69.00 1.484 42.1 C-33 36 0.079 0.02 0.086 17.0 C-103 34.7 1.990 0.56 0.492 24.2 M-AB 34 2.500 2.10 7.290 15.0 FS-AREA5 34 3.320 12.00 1.394 27.2 C-6 33 11.000 41.00 11.510 27.0 C-6 32 80.000 19.00 0.811 47.0 MG-K7(M) 31.7 5.680 16.00 0.876 29.5 MG-H7(M) 31.7 4.310 36.00 1.296 28.8 TC-C 30.7 0.092 0.02 0.112 16.6 C-7 30 4.100 3.70 11.782 43.0 C-5 29.3 1.100 4.20 1.067 25.8 CR-C 29 0.560 0.87 0.243 22.0 C-5 29						
C-33 36 0.079 0.02 0.086 17.0 C-103 34.7 1.990 0.56 0.492 24.2 M-AB 34 2.500 2.10 7.290 15.0 FS-AREA5 34 3.320 12.00 1.394 27.2 C-6 33 11.000 41.00 11.510 27.0 C-6 32 80.000 19.00 0.811 47.0 MG-K7(M) 31.7 5.680 16.00 0.876 29.5 MG-H7(M) 31.7 4.310 36.00 1.296 28.8 TC-C 30.7 0.092 0.02 0.112 16.6 C-7 30 4.100 3.70 11.782 43.0 C-5 29.3 1.100 4.20 1.067 25.8 CR-C 29 0.560 0.87 0.243 22.0 C-5 29 2.100 12.00 2.350 28.0 C-5 29						
C-103 34.7 1.990 0.56 0.492 24.2 M-AB 34 2.500 2.10 7.290 15.0 FS-AREA5 34 3.320 12.00 1.394 27.2 C-6 33 11.000 41.00 11.510 27.0 C-6 32 80.000 19.00 0.811 47.0 MG-K7(M) 31.7 5.680 16.00 0.876 29.5 MG-H7(M) 31.7 4.310 36.00 1.296 28.8 TC-C 30.7 0.092 0.02 0.112 16.6 C-7 30 4.100 3.70 11.782 43.0 C-5 29.3 1.100 4.20 1.067 25.8 CR-C 29 0.560 0.87 0.243 22.0 C-5 29 2.100 12.00 2.350 28.0 C-45 29 0.300 0.96 0.625 13.0 C-103 29						
M-AB 34 2.500 2.10 7.290 15.0 FS-AREA5 34 3.320 12.00 1.394 27.2 C-6 33 11.000 41.00 11.510 27.0 C-6 32 80.000 19.00 0.811 47.0 MG-K7(M) 31.7 5.680 16.00 0.876 29.5 MG-H7(M) 31.7 4.310 36.00 1.296 28.8 TC-C 30.7 0.092 0.02 0.112 16.6 C-7 30 4.100 3.70 11.782 43.0 C-5 29.3 1.100 4.20 1.067 25.8 CR-C 29 0.560 0.87 0.243 22.0 C-5 29 2.100 12.00 2.350 28.0 C-45 29 0.300 0.96 0.625 13.0 C-103 29 0.160 0.18 0.630 3.9 FS-AREA1 29						
FS-AREA5 34 3.320 12.00 1.394 27.2 C-6 33 11.000 41.00 11.510 27.0 C-6 32 80.000 19.00 0.811 47.0 MG-K7(M) 31.7 5.680 16.00 0.876 29.5 MG-H7(M) 31.7 4.310 36.00 1.296 28.8 TC-C 30.7 0.092 0.02 0.112 16.6 C-7 30 4.100 3.70 11.782 43.0 C-5 29.3 1.100 4.20 1.067 25.8 CR-C 29 0.560 0.87 0.243 22.0 C-5 29 2.100 12.00 2.350 28.0 C-45 29 0.300 0.96 0.625 13.0 C-103 29 0.160 0.18 0.630 3.9 FS-AREA1 29 0.686 1.30 0.490 32.0 C-201 28.7 <td></td> <td></td> <td></td> <td></td> <td></td> <td>15.0</td>						15.0
C-6 33 11.000 41.00 11.510 27.0 C-6 32 80.000 19.00 0.811 47.0 MG-K7(M) 31.7 5.680 16.00 0.876 29.5 MG-H7(M) 31.7 4.310 36.00 1.296 28.8 TC-C 30.7 0.092 0.02 0.112 16.6 C-7 30 4.100 3.70 11.782 43.0 C-5 29.3 1.100 4.20 1.067 25.8 CR-C 29 0.560 0.87 0.243 22.0 C-5 29 2.100 12.00 2.350 28.0 C-45 29 0.300 0.96 0.625 13.0 C-103 29 0.160 0.18 0.630 3.9 FS-AREA1 29 0.686 1.30 0.490 32.0 C-201 28.7 1.010 0.94 1.166 16.3 C-105 28.3		34				
C-6 32 80.000 19.00 0.811 47.0 MG-K7(M) 31.7 5.680 16.00 0.876 29.5 MG-H7(M) 31.7 4.310 36.00 1.296 28.8 TC-C 30.7 0.092 0.02 0.112 16.6 C-7 30 4.100 3.70 11.782 43.0 C-5 29.3 1.100 4.20 1.067 25.8 CR-C 29 0.560 0.87 0.243 22.0 C-5 29 0.560 0.87 0.243 22.0 C-5 29 2.100 12.00 2.350 28.0 C-45 29 0.300 0.96 0.625 13.0 C-103 29 0.160 0.18 0.630 3.9 FS-AREA1 29 0.686 1.30 0.490 32.0 C-201 28.7 1.010 0.94 1.166 16.3 C-105 28.3						
MG-K7(M) 31.7 5.680 16.00 0.876 29.5 MG-H7(M) 31.7 4.310 36.00 1.296 28.8 TC-C 30.7 0.092 0.02 0.112 16.6 C-7 30 4.100 3.70 11.782 43.0 C-5 29.3 1.100 4.20 1.067 25.8 CR-C 29 0.010 0.10 0.084 7.5 D-C 29 0.560 0.87 0.243 22.0 C-5 29 2.100 12.00 2.350 28.0 C-45 29 0.300 0.96 0.625 13.0 C-103 29 0.160 0.18 0.630 3.9 FS-AREA1 29 0.686 1.30 0.490 32.0 C-201 28.7 1.010 0.94 1.166 16.3 C-16 28.3 0.572 3.60 0.274 5.8 C-105 28.3						
MG-H7(M) 31.7 4.310 36.00 1.296 28.8 TC-C 30.7 0.092 0.02 0.112 16.6 C-7 30 4.100 3.70 11.782 43.0 C-5 29.3 1.100 4.20 1.067 25.8 CR-C 29 0.010 0.10 0.084 7.5 D-C 29 0.560 0.87 0.243 22.0 C-5 29 2.100 12.00 2.350 28.0 C-45 29 0.300 0.96 0.625 13.0 C-103 29 0.160 0.18 0.630 3.9 FS-AREA1 29 0.686 1.30 0.490 32.0 C-201 28.7 1.010 0.94 1.166 16.3 C-16 28.3 0.572 3.60 0.274 5.8 C-105 28.3 0.040 0.39 0.565 22.9 D-C 28						
TC-C 30.7 0.092 0.02 0.112 16.6 C-7 30 4.100 3.70 11.782 43.0 C-5 29.3 1.100 4.20 1.067 25.8 CR-C 29 0.010 0.10 0.084 7.5 D-C 29 0.560 0.87 0.243 22.0 C-5 29 2.100 12.00 2.350 28.0 C-45 29 0.300 0.96 0.625 13.0 C-103 29 0.160 0.18 0.630 3.9 FS-AREA1 29 0.686 1.30 0.490 32.0 C-201 28.7 1.010 0.94 1.166 16.3 C-16 28.3 0.572 3.60 0.274 5.8 C-105 28.3 0.040 0.39 0.565 22.9 D-C 28 0.550 1.20 0.087 18.0 C-5 28 10.000 </td <td></td> <td>31.7</td> <td></td> <td>36.00</td> <td>1.296</td> <td></td>		31.7		36.00	1.296	
C-7 30 4.100 3.70 11.782 43.0 C-5 29.3 1.100 4.20 1.067 25.8 CR-C 29 0.010 0.10 0.084 7.5 D-C 29 0.560 0.87 0.243 22.0 C-5 29 2.100 12.00 2.350 28.0 C-45 29 0.300 0.96 0.625 13.0 C-103 29 0.160 0.18 0.630 3.9 FS-AREA1 29 0.686 1.30 0.490 32.0 C-201 28.7 1.010 0.94 1.166 16.3 C-16 28.3 0.572 3.60 0.274 5.8 C-105 28.3 0.040 0.39 0.565 22.9 D-C 28 0.550 1.20 0.087 18.0 C-5 28 10.000 24.00 2.553 24.0 C-102 28 0.730 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
C-5 29.3 1.100 4.20 1.067 25.8 CR-C 29 0.010 0.10 0.084 7.5 D-C 29 0.560 0.87 0.243 22.0 C-5 29 2.100 12.00 2.350 28.0 C-45 29 0.300 0.96 0.625 13.0 C-103 29 0.160 0.18 0.630 3.9 FS-AREA1 29 0.686 1.30 0.490 32.0 C-201 28.7 1.010 0.94 1.166 16.3 C-16 28.3 0.572 3.60 0.274 5.8 C-105 28.3 0.040 0.39 0.565 22.9 D-C 28 0.550 1.20 0.087 18.0 C-5 28 10.000 24.00 2.553 24.0 C-102 28 0.730 0.72 0.612 15.0 C-104 27.7 1.90		30				
CR-C 29 0.010 0.10 0.084 7.5 D-C 29 0.560 0.87 0.243 22.0 C-5 29 2.100 12.00 2.350 28.0 C-45 29 0.300 0.96 0.625 13.0 C-103 29 0.160 0.18 0.630 3.9 FS-AREA1 29 0.686 1.30 0.490 32.0 C-201 28.7 1.010 0.94 1.166 16.3 C-16 28.3 0.572 3.60 0.274 5.8 C-105 28.3 0.040 0.39 0.565 22.9 D-C 28 0.550 1.20 0.087 18.0 C-5 28 10.000 24.00 2.553 24.0 C-102 28 0.730 0.72 0.612 15.0 C-104 27.7 1.900 0.04 1.647 25.7 C-15 27 2.110						
D-C 29 0.560 0.87 0.243 22.0 C-5 29 2.100 12.00 2.350 28.0 C-45 29 0.300 0.96 0.625 13.0 C-103 29 0.160 0.18 0.630 3.9 FS-AREA1 29 0.686 1.30 0.490 32.0 C-201 28.7 1.010 0.94 1.166 16.3 C-16 28.3 0.572 3.60 0.274 5.8 C-105 28.3 0.040 0.39 0.565 22.9 D-C 28 0.550 1.20 0.087 18.0 C-5 28 10.000 24.00 2.553 24.0 C-102 28 0.730 0.72 0.612 15.0 C-104 27.7 1.900 0.04 1.647 25.7 C-15 27 2.110 6.80 1.015 25.3 A-C 26 0.790						
C-5 29 2.100 12.00 2.350 28.0 C-45 29 0.300 0.96 0.625 13.0 C-103 29 0.160 0.18 0.630 3.9 FS-AREA1 29 0.686 1.30 0.490 32.0 C-201 28.7 1.010 0.94 1.166 16.3 C-16 28.3 0.572 3.60 0.274 5.8 C-105 28.3 0.040 0.39 0.565 22.9 D-C 28 0.550 1.20 0.087 18.0 C-5 28 10.000 24.00 2.553 24.0 C-102 28 0.730 0.72 0.612 15.0 C-104 27.7 1.900 0.04 1.647 25.7 C-15 27 2.110 6.80 1.015 25.3 A-C 26 0.790 1.30 0.477 16.0 C-45 25 0.24	D-C	29	0.560			22.0
C-45 29 0.300 0.96 0.625 13.0 C-103 29 0.160 0.18 0.630 3.9 FS-AREA1 29 0.686 1.30 0.490 32.0 C-201 28.7 1.010 0.94 1.166 16.3 C-16 28.3 0.572 3.60 0.274 5.8 C-105 28.3 0.040 0.39 0.565 22.9 D-C 28 0.550 1.20 0.087 18.0 C-5 28 10.000 24.00 2.553 24.0 C-102 28 0.730 0.72 0.612 15.0 C-104 27.7 1.900 0.04 1.647 25.7 C-15 27 2.110 6.80 1.015 25.3 A-C 26 0.790 1.30 0.477 16.0 C-45 25 0.240 1.90 0.140 18.0	C-5					
FS-AREA1 29 0.686 1.30 0.490 32.0 C-201 28.7 1.010 0.94 1.166 16.3 C-16 28.3 0.572 3.60 0.274 5.8 C-105 28.3 0.040 0.39 0.565 22.9 D-C 28 0.550 1.20 0.087 18.0 C-5 28 10.000 24.00 2.553 24.0 C-102 28 0.730 0.72 0.612 15.0 C-104 27.7 1.900 0.04 1.647 25.7 C-15 27 2.110 6.80 1.015 25.3 A-C 26 0.790 1.30 0.477 16.0 C-45 25 0.240 1.90 0.140 18.0	C-45	29	0.300	0.96	0.625	13.0
FS-AREA1 29 0.686 1.30 0.490 32.0 C-201 28.7 1.010 0.94 1.166 16.3 C-16 28.3 0.572 3.60 0.274 5.8 C-105 28.3 0.040 0.39 0.565 22.9 D-C 28 0.550 1.20 0.087 18.0 C-5 28 10.000 24.00 2.553 24.0 C-102 28 0.730 0.72 0.612 15.0 C-104 27.7 1.900 0.04 1.647 25.7 C-15 27 2.110 6.80 1.015 25.3 A-C 26 0.790 1.30 0.477 16.0 C-45 25 0.240 1.90 0.140 18.0	C-103	29				3.9
C-201 28.7 1.010 0.94 1.166 16.3 C-16 28.3 0.572 3.60 0.274 5.8 C-105 28.3 0.040 0.39 0.565 22.9 D-C 28 0.550 1.20 0.087 18.0 C-5 28 10.000 24.00 2.553 24.0 C-102 28 0.730 0.72 0.612 15.0 C-104 27.7 1.900 0.04 1.647 25.7 C-15 27 2.110 6.80 1.015 25.3 A-C 26 0.790 1.30 0.477 16.0 C-45 25 0.240 1.90 0.140 18.0		29				32.0
C-16 28.3 0.572 3.60 0.274 5.8 C-105 28.3 0.040 0.39 0.565 22.9 D-C 28 0.550 1.20 0.087 18.0 C-5 28 10.000 24.00 2.553 24.0 C-102 28 0.730 0.72 0.612 15.0 C-104 27.7 1.900 0.04 1.647 25.7 C-15 27 2.110 6.80 1.015 25.3 A-C 26 0.790 1.30 0.477 16.0 C-45 25 0.240 1.90 0.140 18.0	C-201	28.7			1.166	16.3
D-C 28 0.550 1.20 0.087 18.0 C-5 28 10.000 24.00 2.553 24.0 C-102 28 0.730 0.72 0.612 15.0 C-104 27.7 1.900 0.04 1.647 25.7 C-15 27 2.110 6.80 1.015 25.3 A-C 26 0.790 1.30 0.477 16.0 C-45 25 0.240 1.90 0.140 18.0	C-16	28.3	0.572	3.60	0.274	5.8
D-C 28 0.550 1.20 0.087 18.0 C-5 28 10.000 24.00 2.553 24.0 C-102 28 0.730 0.72 0.612 15.0 C-104 27.7 1.900 0.04 1.647 25.7 C-15 27 2.110 6.80 1.015 25.3 A-C 26 0.790 1.30 0.477 16.0 C-45 25 0.240 1.90 0.140 18.0	C-105	28.3		0.39		
C-5 28 10.000 24.00 2.553 24.0 C-102 28 0.730 0.72 0.612 15.0 C-104 27.7 1.900 0.04 1.647 25.7 C-15 27 2.110 6.80 1.015 25.3 A-C 26 0.790 1.30 0.477 16.0 C-45 25 0.240 1.90 0.140 18.0						
C-102 28 0.730 0.72 0.612 15.0 C-104 27.7 1.900 0.04 1.647 25.7 C-15 27 2.110 6.80 1.015 25.3 A-C 26 0.790 1.30 0.477 16.0 C-45 25 0.240 1.90 0.140 18.0	C-5					
C-104 27.7 1.900 0.04 1.647 25.7 C-15 27 2.110 6.80 1.015 25.3 A-C 26 0.790 1.30 0.477 16.0 C-45 25 0.240 1.90 0.140 18.0		28				
C-15 27 2.110 6.80 1.015 25.3 A-C 26 0.790 1.30 0.477 16.0 C-45 25 0.240 1.90 0.140 18.0						
A-C 26 0.790 1.30 0.477 16.0 C-45 25 0.240 1.90 0.140 18.0						
C-45 25 0.240 1.90 0.140 18.0						
	C-100	25	3.300	3.60		

Table 4-23_Grass shrimp toxicity - embryo development rate compared to primary chemicals of potential concern (COPCs)

Station	Embryo Development %	Mercury	Aroclor 1268	Total PAHs	Lead
C-203	24.7	0.880	0.82	0.980	60.1
FS-AREA6	22.3	8.790	5.80	0.608	27.6
C-29	22	1.050	2.20	0.826	25.4
C-5	21	11.000	19.00	1.110	21.0
C-15	21	2.800	0.79	0.446	28.0
D-C	21	0.680	0.88	1.044	27.0
C-7	18	14.000	430.00	0.454	36.0
D-C	18	1.870	3.90	0.794	35.5
MG-K7(C)	17	3.000	10.00	1.684	46.0
C-6	16	48.000	19.00	4.363	20.0
MG-K7(C)	15	22.000	24.00	5.042	26.0
C-45	12	0.245	0.61	0.725	20.3
C-5	11	11.500	3.70	0.270	36.0
C-7	11	30.500	23.00	0.229	38.0
C-105	11	0.200	0.26	0.632	12.0
C-101	10	0.530	0.97	1.067	20.0
MG-H7(C)	9	6.800	2.20	0.222	21.0
C-33	9	0.044	0.03	0.441	8.9
C-7	8.7	80.400	82.00	6.072	52.0
MG-H7(C)	8	62.000	64.00	1.060	29.0
FS-AREA3	3.7	0.760	0.52	52.800	1190.0
C-7	3	18.000	20.00	3.550	29.0
MG-H7(C)	0	4.160	17.00	0.204	50.0
MG-K7(C)	0	3.100	0.33	11.726	47.0
MG-K7(C)	0	46.000	92.00	0.828	27.0

All concentrations in mg/kg.

Bolded value indicates toxicity at reference station.

PAHs = Polycyclic aromatic hydrocarb	> 3.2	> 12.8	> 4	> 198
Red typeface indicates toxic sample	> 1.4	> 3.3	> 1.6	> 139

Shading indicates likely contribution to toxic effect - Grass shrimp SECs from Table 4-22.

Table 4-24_Reproduction and DNA strand damage of field-collected indigenous grass shrimp (Palemonetes pugio) for major areas and years in estuary at LCP Site (2002 - 2007 data)^a

A. PERCENT OF EMBRYOS HATCHING

			Replicate			Mean
Major area 2006 mean concentrations of COPC in surface						Statistical significance vs. control in same
sediment and adult shrimp (mg/kg, dw)	Year	1	2	3	Value (x)	b year
Skidaway River	2002	Sontrol 90	94	81	88.3	
<u> Skidaway River</u>	2002	90	9 4 95	90	91.7	
	2004	95	80	85	86.7	
	2005	94	90	88 95	90.7	
	2006 2007	80 95	88 80	85 95	84.3 90.0	
Grand mean:	2007				88.6	
0.4.14 11.54	Main C	anal (Creek)		00.0	
Mouth C-5)	2002	79	88	90	85.7	ns (P = 0.32)
<u> </u>	2003	75	90	90	85.0	ns (P = 0.16)
2006 Concentrations	2004	80	90	75	81.7	ns (P = 0.23)
Sediment tHg7.0; A1268: 31; Pb: 41	2005	83	90	81	84.7	ns (P = 0.075)
Shrimp: tHg 0.35; A1268: 0.33; Pb: 0.65	2006 2007	80 75	85 90	93 80	86.0 81.7	ns (P = 0.37) ns (P = 0.14)
	Domain 1 (Ba			60	01.7	115 (F = 0.14)
Mid-stretch (M-25/NOAA 4)	2002		46	53	54.0	** (P = 0.0032)
MIG-SUCION (IVI-25/NOAA 4)	2002	63 85	80	95	86.7	ns (P = 0.19)
2006 Concentrations	2004	65	45	70	60.0	* (P = 0.026)
Sediment tHg: 0.78; A1268: 1.2; Pb: 21	2005	85	79	77	80.3	* (P = 0.015)
Shrimp tHg: 0.36; A1268: 0.87; Pb: 0.17	2006	95	75	88	86.0	ns (P = 0.41)
	2007	95	80	95	90.0	ns (P = 0.50)
	East	ern Creek				
<u>Upstream (C-6)</u>	2002					
2006 Concentrations	2003 2004					
Sediment tHg: 8.8; A1268: 25; Pb: 32	2005	65	85	83	77.7	ns (P = 0.085)
Shrimp tHg: 0.40; A1268: 0.79; Pb: 0.092	2006	83	78	75	78.7	ns (P = 0.050)
	2007	65	80	75	73.3	* (P = 0.033)
<u>We</u>	stern Creek C	Complex (in	Domain 2)			
Mouth (C-15)	2002					
	2003					
2006 Concentrations	2004			92	01.0	ns (P = 0.47)
Sediment tHg: 0.46; A1268: 1.0; Pb: 26 Shrimp tHg: 0.23; A1268: 0.24; Pb: 0.15	2005 2006	96 93	85 75	90	91.0 86.0	ns (P = 0.47) ns (P = 0.39)
p a.ig. 0.20,200. 0.2 i, . a. 00	2007	80	90	95	88.3	ns (P = 0.41)
	D	omain 3				
Northern boundary (C-100)	2002					
·	2003					
2006 Concentrations	2004					
Sediment tHg:2.5; A1268: 3.3; Lead: 33	2005	88	96 70	90	91.3	ns (P = 0.42)
Shrimp tHg:0.33; A1268: 0.45; Lead: 0.16	2006 2007	95 	78 	83	85.3 	ns (P = 0.41)
		omain 4				
Northwestern Inlet from Turtle Biver (D)	2002					
Northwestern Inlet from Turtle River (D)	2002 2003					
2006 Concentrations	2003					
Sediment tHg: 1.2; A1268: 0.64; Pb: 23	2005	83	88	92	87.7	ns (P = 0.20)
Shrimp tHg: 0.14; A1268: 0.12 ; Pb: 0.15	2006	93	83	90	88.7	ns (P = 0.16)
	2007					

A. PERCENT OF EMBRYOS HATCHING -- CONTINUED

			Replicate			Mean
			•			Statistical
Major area						significance vs.
2006 mean concentrations of COPC in surface						control in same b
sediment and adult shrimp (mg/kg, dw)	Year	1	2	3	Value (x)	year
	Blyt	the Island				
Northern boundary (C-103)	2002					
	2003					
2006 Concentrations	2004					
Sediment tHg: 0.37; A1268: 0.19; Pb: 27	2005	83	90	94	89.0	ns (P = 0.34)
Shrimp tHg: 0.13; A1268: 0.10; Pb: 0.14	2006 2007	78	90	85	84.3	ns (P = 0.50)
Northeastern boundary (C-104)	2002					
2000 Compositions	2003					
2006 Concentrations Sediment tHg: 0.28; A1268: 0.21; Pb: 17	2004 2005	94	85	83	87.3	ns (P = 0.22)
Shrimp tHg: 0.14; A1268: 0.10; Pb: 0.13	2005	9 4 95	85	78	86.0	ns (P = 0.22)
Similip ang. 6.14, A1266. 6.16, 1 b. 6.16	2007					
Southern Major area (C-105)	2002					
Godfiem Major area (G-100)	2002					
2006 Concentrations	2004					
Sediment tHg: 0.40; A1268: 0.34; Pb: 18	2005	94	85	90	89.7	ns (P = 0.38)
Shrimp tHg: 0.21; A1268: 0.12; Pb: 0.14	2006	80	98	80	86.0	ns (P = 0.41)
	2007					
B. DNA STRA	ND DAMAGE	(TAIL MOM	ENT) OF EM	IBRYOS		
			Replicate			Mean
						Statistical
						significance vs. control in same
<u>Major area</u>	Year	1	2	3	Value (x)	year b
		Control			- 1	
Skidaway Diyer	2002	2.4	1.3	2.7	2.13	
<u>Skidaway River</u>	2002	2.4	1.3	1.6	1.87	
	2004	2.1	2.3	2.7	2.37	
	2005	1.4	1.9	2.5	1.93	
	2006	2.0	1.8	2.5	2.10	
	2007	1.1	2.0	2.3	1.80	
	Main C	anal (Creek)	1			
Mouth (C-5)	2002	3.9	2.9	3.1	3.30	* (P = 0.048)
· · · · · · · · · · · · · · · · · · ·	2003	2.2	3.1	1.9	2.40	ns (P = 0.23)
	2004	3.2	2.0	2.1	2.43	ns (P = 0.44)
	2005	2.4	1.9	2.7	2.33	ns (P = 0.19)
	2006	2.1	2.9	2.4	2.47	ns (P = 0.15)
	2007	2.3	1.6	2.7	2.20	ns (P = 0.23)
	Domain 1 (B	ank of Main	Canal)			
Mid-stretch (M-25/NOAA 4)	2002	5.7	4.6	3.3	4.53	* (P = 0.026)
	2003	2.8	1.9	3.1	2.60	ns (P = 0.16)
	2004	4.5	3.4	3.1	3.67	* (P = 0.038)
	2005	2.8	3.2	2.3	2.77	ns (P = 0.058)
	2006	3.0	1.9	2.3	2.40	ns (P = 0.24)
	2007	2.4	2.0	2.9	2.43	ns (P = 0.11)

B. DNA STRAND DAMAGE (TAIL MOMENT) OF EMBRYOS -- CONTINUED Replicate Mean Statistical significance vs. control in same vear b 2 3 Value (x) Major area Year **Eastern Creek** Upstream (C-6) 2002 2003 -----2004 2005 1.9 2.2 2.6 2.23 ns (P = 0.23)ns (P = 0.32) 2.9 2006 2.2 2.30 1.8 2007 2.9 2.2 3.1 2.73 ns(P = 0.054)Western Creek Complex Mouth (C-15) 2002 ----------2003 2004 2.5 ns(P = 0.36)1.5 2.3 2.10 2005 2006 1.9 2.7 2.2 2.27 ns(P = 0.31)ns(P = 0.24)2007 1.8 2.5 2.40 2.9 Domain 3 Northern boundary (C-100) 2002 2003 2004 2005 2.6 2.00 ns(P = 0.44)1.5 1.9 ns(P = 0.38)2006 20 18 29 2 23 2007 Domain 4 Northwestern Inlet from Turtle River (D) 2002 2003 _____ ----------____ 2004 2005 2.6 2.2 2.00 ns (P = 0.45)12 ns(P = 0.46)2006 2.6 1.7 1.9 2.07 2007 **Blythe Island** 2002 Northern boundary (C-103) 2003 -----2004 ----------2005 2.2 1.4 2.0 1.87 ns(P = 0.44)2006 ns(P = 0.36)2.5 1.5 1.9 1.97 2007 2002 Northeastern boundary (C-104)

2003 2004

2005

2006

2007 2002

2003 2004

2005 2006

2007

Southern Major area (C-105)

2.5

1.8

1.6

1.3

1.3

1.5

2.6

1.9

1.8

2.4

2.0

1.8

1.87

1.90

2.07

1.67

ns (P = 0.45)

ns(P = 0.29)

ns (P = 0.39)

ns (P = 0.098)

^aEach replicate of embryonic grass shrimp pertains to young from a single adult female. Concentrations of COPC in sediment (evaluated in 2006) are based on a single sample, while sample size for body burdens of COPC in adult shrimp approximates about 50 composited male and female individuals.

b Statistical significance was determined by nonparametric, unpaired, one-tailed "t' tests. All statistical relationships between control and area values were nonsignificant (ns) except for several values for the Main Canal, the bank of the Main Canal, and Eastern Creek.

Table 4-25_Selected community characteristics of benthic macroinvertebrates in surface sediment at LCP estuary (October 2000 data) and a second community characteristics of benthic macroinvertebrates in surface sediment at LCP estuary (October 2000 data).

Station	Total No. Taxa	Mean no. of Taxa per Repl.	No. of Taxa per Repl. (Std Dev)	Total No. Individuals	Mean Density (no./m2)	Density (Std Dev)	H' Shannon (log e)	d Diversity (log 2)	1/S Simpson Diversity	J [.] Pielou Evennes	D Margalef Richness	e Equitability	silt & clay %	Total Organic Carbon %
C5 - mouth of Main Canal	5	3.3	2.1	30	435	356	1.46	2.10	0.63	0.90	1.18	1.18	90	6.5
C16 - mouth of Purvis Creek	16	10.0	2.6	125	1,812	594	2.20	3.17	0.95	0.79	3.11	0.80	17	1.0
C7 - mid-stretch Eastern Creek	14	7.3	3.2	312	4,522	4,703	1.62	2.34	0.71	0.62	2.26	0.50	96	6.7
C33 - near old oil processing site	9	4.7	2.5	31	449	349	1.95	2.81	0.85	0.89	2.33	1.09	6.6	0.9
CR - Crescent River	12	6.0	3.5	107	1,551	1,354	1.74	2.50	0.75	0.70	2.35	0.66	8.2	0.33
TC - Troup Creek	23	11.0	8.5	107	1,551	1,525	2.63	3.80	1.14	0.84	4.71	0.87	44	2.1
Dominant Taxonomic	c Groups %	,												
	<u>C5</u> 47	<u>C16</u> 56	<u>C7</u> 56	<u>C33</u>	<u>CR</u> 78	<u>TC</u> 67								
Polychaetes	47	56	56	61	78	67								
Oligochaetes	20	24	38	6.5	2	0								
Bivalves	3	9	1	6.5	0	2								
Gastropods	30	0	1	23	0	0								
Arthropods	0	11	2	3	3	28								
Cnidaria	0	0	0	0	16	3								
Rhynchocoela	0	0	2	0	2	0								

^a - Macrobenthos were collected with a Petite Ponar grab sampler down to a sediment depth of about 15 cm. Three replicate samples were collected at each station and combined for presentation in this table.

Table 4-26_Exposure assumptions for finfish and wildlife evaluated in food-web exposure models for chemicals of potential concern (COPCs) in environmental media of estuary at LCP Site

Modeled predator	Body weight (kg, wt) ^a	Diet ^b	Food ingestion rate (kg,dw/day ^C	Sediment ingestion rate (kg,dw/day) ^d	Water ingestion rate (L/day) ^e	Time-use factor (TUF)	Territory (AUF)
			<u>Fish</u>				
Higher trophic level fish (Age group II)	2.0	40% mummichogs 30% fiddler crabs 30% blue crabs	0.04 wet wt (2% of body weight)	0 (not employed in models)	143 (for Aroclor 1268 model only)	1 (year- round resident)	Water depth of 0.3 - 1.2 m (1 - 4 ft)
			Reptiles	<u>.</u>	•		
Diamondback terrapin	0.14	90% fiddler crabs 10% mummichogs	0.00059 (0.4% of body weight)	0.000027 (4.6% of food rate)	0 (estimate not available)	1 (year- round resident)	100 m (328 ft) along same small tidal creek
			Birds				
Red-winged blackbird	0.037	90% insects 10% fiddler crabs	0.0086 (23% of body weight)	0.00017 (2% of food rate)	0.0065	1 (year- round resident)	0.07 ha (0.17 acres)
Clapper rail	0.28	85% fiddler crabs 10% insects 5% mummichogs	0.025 (9% of body weight)	0.0025 (10% of food rate)	0.025	1 (year- round resident)	1.2 ha (2.97 acres)
Green heron	0.20	90% mummichogs 5% blue crabs 5% fiddler crabs	0.024 (12% of body weight)	0.00048 (2% of food rate)	0.023	1 (year- round resident)	2.5 ha (6.18 acres)
			Mamma	l <u>s</u>			
Marsh rabbit	1.0	100% cordgrass	0.088 (9% of body weight)	0.0018 (2% of food rate)	0.099	1 (year- round resident)	3.1 ha (7.66 acres)
Raccoon	3.7	45% fiddler crabs 45% blue crabs 10% mummichogs	0.20 (5% of body weight)	0.019 (9.5% of food rate)	0.32	1 (year- round resident)	39 ha (96.37 acres)
River otter	6.7	30% mummichogs 50% silver perch 10% fiddler crabs 10% blue crabs	0.33 (5% of body weight)	0.015 (4.5% of food rate)	0.55	1 (year- round resident)	295 ha (728.94 acres)

^aBody weights for the raccoon and river otter were derived from U. S. EPA's (1993) wildlife exposure factors handbook. Body weights for other predators were derived from the general scientific literature: red drum (Evans and Engel, 1994), diamondback terrapin (Allen and Littleford, 1955), red-winged blackbird (Orians, 1961), clapper rail (USGS, Undated), green heron (U. Guelph, 2000), and marsh rabbit (U. Michigan, 1999). Whenever available, body weights for adult females (to which most toxicity reference values apply) indigenous to Georgia or the southeastern United States are reported.

^bDiets of predators are usually representative of diets reported in the general scientific literature, but are limited to food items that were collected in this investigation.

^cFood ingestion rate of the red drum was derived from Evans and Engel (1994). Food ingestion rates of other predators were derived as functions of wildlife body weights by the allometric equations developed by Nagy (1987). Specific equations employed were — 1) diamondback terrapin: equation for insectivorous lizards, the only available equation); 2) red-winged blackbird: equation for passerine birds; 3) clapper rail and green heron: equation for "all birds;" 4) marsh rabbit: equation for herbivorous mammals; and 5) raccoon and river otter: equation for "all eutherians."

^dSediment ingestion rates of predators were derived as functions of predator food ingestion rates according to the general relationships developed by Beyer et al. (1994).

^eWater ingestion rates of predators were derived as functions of predator body weights by the allometric equations developed by the U. S. EPA (1993) for birds and mammals.

^fTerritories of predators are based on information presented in Texas Parks and Wildlife (Undated) for red drum; Gibbons et al. (2001) for diamondback terrapin; Case and Hewitt (1964) for red-winged blackbird; Zembal et al. (1998) for clapper rail; Gibbs and Melvin (1992) for green heron; and U. S. EPA (1993) for marsh rabbit, raccoon, and river otter.

Table 4-27_Toxicity reference values (TRVs) for finfish and wildlife evaluated in food-web exposure models for chemicals of potential concern (COPCs) in environmental media of estuary at LCP Site

Modeled	Chemical of potential concern	Type of	
predator	(COPC)	TRV ^a	Reference/comments a
Fishes (all sciaenid	Methylmercury	LOAEL = 0.30	Median highest LOAEL reported for 7 species of mostly freshwater fishes (as reviewed by Dillon, 2006b) (1.2 mg/kg dry weight conversion).
fishes)		NOAEL = 0.15	Median highest NOAEL reported for 7 species of mostly freshwater fishes monitored for various toxicological effects (as reviewed by Dillon, 2001) (0.6 mg/kg dry weight conversion).
	PCBs	LOAEL = 1.3	LOAEL value from Matta et al. (2001). (5.2 mg/kg dry weight conversion)
		NOAEL = 0.34	NOAEL value from Matta et al. (2001). (1.36 mg/kg dry weight conversion).
Reptiles (diamond- back terrapin)	Methylmercury	LOAEL = 5	Study of single gavage dose of chemical to juvenile alligators (Peters 1983) interpreted by Sprenger et al. (1997)
		NOAEL = 0.5	LOAEL-to-NOAEL uncertainty factor of 10 applied to alligator LOAEL
	PCBs (Aroclor 1254)	LOAEL = 3.2	Study (3 weeks) of Caspian terrapin metabolism after exposure to Aroclor 1254 (Yawetz et al., 1983) interpreted by Sprenger et al. (1997)
		NOAEL = 0.32	LOAEL-to-NOAEL uncertainty factor of 10 applied to terrapin LOAEL
	Lead	LOAEL = 2.8	Assume LOAEL and NOAEL derived for birds exposed to lead
		NOAEL = 0.28	are applicable to reptiles (Reiser and Temple 1981)
Birds (red-winged	Methylmercury	LOAEL = 0.06	Spalding et al. 2000 growth reduction in great egret.
Birds (red-winged blackbird, clapper rail, green heron)		NOAEL = 0.02	LOAEL-to-NOAEL uncertainty factor of 3 applied to mallard LOAEL
	Inorganic mercury	LOAEL = 0.90	Chronic study of sexual maturity and reproduction of Japanese
		NOAEL = 0.45	quail fed mecuric chloride (Hill and Schaffner, 1976)
	PCBs (Aroclor 1268)	NOAEL = 1.3	Study (9 weeks) of weight gain, livability, fertility, egg weight, and egg-shell thickness of chickens after exposure to Aroclor 1268 (Lillie et al., 1974; as identified by Huston, 2001)
		LOAEL = 3.9	NOAEL-to-LOAEL adjustment factor of 3 applied to chicken NOAEL
	Lead	LOAEL = 11.3 NOAEL = 3.85	Chronic study of reproduction in Japanese quail (Eden et al., 1976) Chronic study of reproduction in American kestrels (Pattee, 1984)
Mammals (marsh	Methylmercury	LOAEL = 0.15	Chronic (two-generation) study of mortality
rabbit, raccoon,		NOAEL = 0.075	in mink (Dansereau et al., 1999)
river otter)	Inorganic mercury	LOAEL = 0.37	Chronic (two-generation) study of fertility and reproduction
•	-	NOAEL = 0.37	of rats fed mecuric chloride (Note NOAEL and LOAEL are the same).
			(Heath et al., 2009)
	PCBs (Aroclor 1254)	LOAEL = 0.3	Study (297 days) of mink reproduction after exposure
		NOAEL = 0.03	to Aroclor 1254 (Aulerich and Ringer, 1977)
	Lead	LOAEL = 80	Chronic (2-year) study of reproduction
		NOAEL = 8	in rats (Azar et al., 1973)

Acronyms employed in this table are -- NOAEL (no observed adverse effect level), LOAEL (lowest observed adverse effect level). Unit of measurement for reptilian, avian, and mammalian TRVs is mg/kg BW/day. Unit of measurement for fishes TRVs is mg/kg (ww). Dry weight conversion assumes 75% fish moisture content. TRVs for inorganic mercury are not relevant for fishes and were not available for reptiles.

Table 4-28_Hazard quotients (HQs) for finfish based on exposure models (2000-2007 data)

Chemical of Potential Concern	Location in Study Area		Estimated Environmental Exposure EEE	TI	rence Value RV BW/day) ^b	Hazard Quotient HQ (EEE / TRV) ^c	
(COPC)			(mg/kg BW/day) ^a	LOAEL	NOAEL	(EEE /	NOAEL
	Evans and Engle (1994) m	odel					
	Troup Creek Reference	95UCL exposure	0.140	0.30	0.15	0.5	0.9
Methyl-mercury (with fish growth)	•	Mean exposure	0.110	0.30	0.15	0.4	0.7
(with hish growth)	LCP Estuary	95UCL exposure	0.980	0.30	0.15	3.3	6.5
	LCP Estuary	Mean exposure	0.870	0.30	0.15	2.9	5.8
	Approach 1 (K _{PW} derived	by Clark et al. (1990) p	procedure				
	Troup Creek Reference	95UCL exposure	0.139	1.3	0.34	0.1	0.4
	Troup Creek Kererence	Mean exposure	0.079	1.3	0.34	0.1	0.2
	LCP Estuary	95UCL exposure	0.791	1.3	0.34	0.6	2.3
	LOF Estudiy	Mean exposure	0.796	1.3	0.34	0.6	2.3
	Approach 2 (K _{PW} derived	by Bergen et al. (1993	3) procedure				
AI 4000	Troup Creek Reference	95UCL exposure	0.138	1.3	0.34	0.1	0.4
Aroclor 1268	Houp Creek Reference	Mean exposure	0.078	1.3	0.34	0.1	0.2
	LCP Estuary	95UCL exposure	0.763	1.3	0.34	0.6	2.2
	LOF Estudiy	Mean exposure	0.714	1.3	0.34	0.5	2.1
	Approach 3 (K _{PW} eliminat	ed in favor of direct es	stimation of C WD (Gobas	s, 1993)			
	Troup Creek Reference	95UCL exposure	0.146	1.3	0.34	0.1	0.4
	Troup Creek Reference	Mean exposure	0.085	1.3	0.34	0.1	0.3
	LCP Estuary	95UCL exposure	1.876	1.3	0.34	1.4	5.5
	LOF Estuary	Mean exposure	1.767	1.3	0.34	1.4	5.2

^a - Assumptions on which EEEs are based are presented in Appendix H and expressed as mg/kg (wet wt).

^b - TRVs are reviewed in Table 4-27. TRVs for red drum are expressed as mg/kg (wet wt).

 $^{^{\}mbox{\scriptsize c}}$ - HQs greater than 1 are identified in $\mbox{\bf bold}$ $\mbox{\bf print}$ in this table.

Table 4-29_Hazard quotients (HQs) for field-collected finfish exposed to methylmercury and Aroclor 1268 in environmental media of estuary at LCP Site (2000 - 2007 data)

Chemical of potential concern	Location in	Estimated Environmental Exposure EEE	Referenc	xicity e ValueTRV /kg, dw) ^b		rd Quotient HQ EEE / TRV) ^c
(COPC)	study area	(mg/kg, dw) ^a	LOAEL	NOAEL	LOAEL	NOAEL
Silver Perch (B	Bairdiella chrysoura)					
Methyl-	Troup Creek Reference	0.22	4.0	0.60	0.00	0.55
mercury (MeHg =	95UCL exposure:	0.33 0.29	1.2 1.2	0.60 0.60	0.28 0.24	0.55 0.48
(Meng = 100% of tHg)	Mean exposure:	0.29	1.2	0.60	0.24	0.40
100 % 01 (119)	Crescent River Reference					
	95UCL exposure:	0.18	1.2	0.60	0.15	0.30
	Mean exposure:	0.16	1.2	0.60	0.13	0.27
	LCP Estuary					
	95UCL exposure:	1.85	1.2	0.60	1.54	3.08
	Mean exposure:	1.6	1.2	0.60	1.33	2.67
Aroclor 1268	Troup Creek Reference					
	95UCL exposure:	0.23	5.2	1.36	0.04	0.17
	Mean exposure:	0.19	5.2	1.36	0.04	0.14
	Crescent River Reference					
	95UCL exposure:	0.033	5.2	1.36	0.01	0.02
	Mean exposure:	0.024	5.2	1.36	0.00	0.02
	LCP Estuary					
	95UCL exposure:	7.05	5.2	1.36	1.36	5.18
	Mean exposure:	5.67	5.2	1.36	1.09	4.17
	·					
Dad During (Cai	comono coellotus)					
•	aenops ocellatus)					
Methyl-	Troup Creek Reference	0.40	4.0	0.00	0.44	0.00
mercury	95UCL exposure:	0.13 0.1	1.2 1.2	0.60 0.60	0.11 0.08	0.22 0.17
(MeHg = 89% of tHg)	Mean exposure:	0.1	1.2	0.60	0.06	0.17
00 /0 01 11 19)	Crescent River Reference					
	95UCL exposure:	0.16	1.2	0.60	0.13	0.27
	Mean exposure:	0.16	1.2	0.60	0.13	0.27
	LCP Estuary					
	95UCL exposure:	1.25	1.2	0.60	1.04	2.08
	Mean exposure:	1.01	1.2	0.60	0.84	1.68
Aroclor 1268	Troup Creek Reference	2.42		4.00		0.40
	95UCL exposure:	0.13	5.2	1.36	0.03	0.10
	Mean exposure:	0.10	5.2	1.36	0.02	0.07
	Crescent River Reference					
	95UCL exposure:	0.016	5.2	1.36	0.00	0.01
	Mean exposure:	0.016	5.2	1.36	0.00	0.01
	LCP Estuary					
	95UCL exposure:	1.87	5.2	1.36	0.36	1.38
	Mean exposure:	1.43	5.2	1.36	0.28	1.05
	•					

Table 4-29_Continued

Chemical of potential concern	Location in	Estimated Environmental Exposure EEE	Reference	xicity ce ValueTRV /kg, dw) ^b		d Quotient HQ EEE / TRV) ^c
(COPC)	study area	(mg/kg, dw) ^a	LOAEL	NOAEL	LOAEL	NOAEL
Black Drum (Pe	ogonias cromis)					
Methyl-	Troup Creek Reference					
mercury	95UCL exposure:	0.11	1.2	0.60	0.09	0.18
(MeHg = 91% of tHg)	Mean exposure:	0.10	1.2	0.60	0.08	0.17
	Crescent River Reference					
	95UCL exposure:	0.05	1.2	0.60	0.04	0.08
	Mean exposure:	0.04	1.2	0.60	0.03	0.07
	LCP Estuary 95UCL exposure:	0.87	1.2	0.60	0.73	1.45
	Mean exposure:	0.76	1.2	0.60	0.63	1.27
Aroclor 1268	Troup Creek Reference					
	95UCL exposure:	0.12	5.2	1.36	0.02	0.09
	Mean exposure:	0.10	5.2	1.36	0.02	0.07
	Crescent River Reference					
	95UCL exposure:	0.017	5.2	1.36	0.00	0.01
	Mean exposure:	0.017	5.2	1.36	0.00	0.01
	LCP Estuary					
	95UCL exposure:	6.45	5.2	1.36	1.24	4.74
	Mean exposure:	5.51	5.2	1.36	1.06	4.05
Spotted Seatro	ut (Cynoscion nebulosus)					
Methyl-	Troup Creek Reference					
mercury	95UCL exposure:	0.38	1.2	0.60	0.32	0.63
(MeHg = 100% of tHg)	Mean exposure:	0.34	1.2	0.60	0.28	0.57
0,	Crescent River Reference					
	95UCL exposure:	0.13	1.2	0.60	0.11	0.22
	Mean exposure:	0.11	1.2	0.60	0.09	0.18
	LCP Estuary					
	95UCL exposure:	2.65	1.2	0.60	2.21	4.42
	Mean exposure:	2.27	1.2	0.60	1.89	3.78
Aroclor 1268	Troup Creek Reference					
	95UCL exposure:	0.21	5.2	1.36	0.04	0.15
	Mean exposure:	0.16	5.2	1.36	0.03	0.12
	Crescent River Reference					
	95UCL exposure:	0.016	5.2	1.36	0.00	0.01
	Mean exposure:	0.016	5.2	1.36	0.00	0.01
	LCP Estuary 95UCL exposure:	5.91	5.2	1.36	1.14	4.35
	Mean exposure:	4.92	5.2 5.2	1.36	0.95	4.35 3.62
	oan oxpoodio.		J. <u>L</u>		0.00	

Table 4-29_Continued

Chemical of potential		Estimated	Т	oxicity	Haza	rd Quotient HQ
concern	Location in	Environmental Exposure EEE	Reference	Value TRV /kg, ww) ^b		EEE / TRV) ^c
(COPC)	study area	(mg/kg, dw) ^a	LOAEL	NOAEL	LOAEL	NOAEL
Striped Mullet	(Mugil cephalus)					
Methyl-	Troup Creek Reference					
mercury	95UCL exposure:	0.03	1.2	0.60	0.03	0.05
(MeHg =	Mean exposure:	0.02	1.2	0.60	0.02	0.03
37% of tHg)	Crescent River Reference					
	95UCL exposure:	0.011	1.2	0.60	0.01	0.02
	Mean exposure:	0.008	1.2	0.60	0.01	0.01
	•	0.000		0.00	0.0.	0.0.
	LCP Estuary 95UCL exposure:	0.10	1.2	0.60	0.08	0.17
	Mean exposure:	0.10	1.2	0.60	0.08	0.17
	iviean exposure.	0.09	1.2	0.00	0.06	0.15
Aroclor 1268	Troup Creek Reference					
	95UCL exposure:	0.250	5.2	1.36	0.05	0.18
	Mean exposure:	0.18	5.2	1.36	0.03	0.13
	Crescent River Reference					
	95UCL exposure:	0.016	5.2	1.36	0.00	0.01
	Mean exposure:	0.016	5.2	1.36	0.00	0.01
	LCP Estuary					
	95UCL exposure:	21.0	5.2	1.36	4.04	15.46
	Mean exposure:	13.2	5.2	1.36	2.54	9.71

^aEEEs (body burdens) of methylmercury and Aroclor 1268 in finfish derived from 2000-2007. Assumes fish are 25% solids. Body burdens of methylmercury are based on values of total mercury presented in Table 4-11a.

^bTRVs are reviewed in Table 4-27.

 $^{^{\}rm c} HQs$ greater than 1 are identified in bold print in this table.

Table 4-30_Hazard quotients (HQs) for wildlife at LCP estuary based on exposure models (2000-2007 data)

Chemical of Potential	Location in Study Area	Estimated Environmental Exposure EEE	•	nce ValueTRV	-	otient HQ TRV) ^c
Concern (COPC)		(mg/kg BW/day) ^a	LOAEL	NOAEL	LOAEL	NOAEL
Diamondback	terrapin (<i>Malaclemys terr</i>	apin)				
	Troup Creek Reference	0.00017	5	0.5	0.00003	0.0003
	Main Canal	0.0019	5	0.5	0.0004	0.004
	Eastern Creek	0.0029	5	0.5	0.0006	0.006
	Western Creek Complex	0.00093	5	0.5	0.0002	0.002
	Purvis Creek	0.00045	5	0.5	0.0001	0.001
Methylmercury	Domain 1	0.0032	5	0.5	0.001	0.006
	Domain 2	0.00093	5	0.5	0.0002	0.002
	Domain 3	0.00090	5	0.5	0.0002	0.002
	Domain 4	0.00071	5	0.5	0.0001	0.001
	Blythe Island	0.00061	5	0.5	0.0001	0.001
	Area A	0.0028	5	0.5	0.0006	0.006
	Troup Creek Reference	0.0016	3.2	0.32	0.0005	0.005
	Main Canal	0.023	3.2	0.32	0.007	0.07
	Eastern Creek	0.026	3.2	0.32	0.008	0.08
	Western Creek Complex	0.006	3.2	0.32	0.0019	0.019
Aroclor 1268	Purvis Creek	0.0052	3.2	0.32	0.002	0.02
(TRVs are for	Domain 1	0.014	3.2	0.32	0.004	0.04
Aroclor 1254	Domain 2	0.0063	3.2	0.32	0.002	0.02
	Domain 3	0.0053	3.2	0.32	0.002	0.02
	Domain 4	0.0035	3.2	0.32	0.001	0.01
	Blythe Island	0.0013	3.2	0.32	0.0004	0.004
	Area A	0.0209	3.2	0.32	0.0065	0.065
	Troup Creek Reference	0.0082	2.8	0.28	0.003	0.03
	Main Canal	0.013	2.8	0.28	0.005	0.05
	Eastern Creek	0.037	2.8	0.28	0.013	0.13
	Western Creek Complex	0.009	2.8	0.28	0.003	0.03
	Purvis Creek	0.009	2.8	0.28	0.003	0.03
Lead	Domain 1	0.050	2.8	0.28	0.02	0.18
	Domain 2	0.015	2.8	0.28	0.005	0.05
	Domain 3	0.051	2.8	0.28	0.02	0.18
	Domain 4	0.007	2.8	0.28	0.003	0.03
	Blythe Island	0.006	2.8	0.28	0.002	0.02
	Area A	0.036	2.8	0.28	0.013	0.13

Area A is defined as the Main Canal + Eastern Creek + Domain 1.

^a - Assumptions on which EEEs are based are presented in Table 29. All EEEs are base on the 95UCL concentrations as presented in Appendix H.

^b - TRVs are reviewed in Table 4-28. TRVs used as surrogates for Aroclor 1268 in diamondback terrapins and mammals pertain to Aroclor 1254.

^c - HQs greater than 1 are identified in **bold print** in this table.

Table 4-30_Hazard quotients (HQs) for wildlife at LCP estuary based on exposure models (2000-2007 data)

Chemical of Potential Concern (COPC)	Location in Study Area	Estimated Environmental Exposure EEE	•	nce ValueTRV BW/day) ^b	Hazard Que	otient HQ (TRV) ^c
Concern (COPC)		(mg/kg BW/day) ^a	LOAEL	NOAEL	LOAEL	NOAEI
Red-Winged B	lackbird (Agelaius phoeni	iceus)				
	Troup Creek Reference	0.0046	0.06	0.02	0.08	0.23
	Domain 1	0.020	0.06	0.02	0.33	1.00
	Domain 2	0.0087	0.06	0.02	0.14	0.43
	Domain 3	0.0084	0.06	0.02	0.14	0.42
	Domain 4	0.0076	0.06	0.02	0.13	0.38
Methylmercury	Blythe Island	0.0071	0.06	0.02	0.12	0.36
	Main Canal	0.013	0.06	0.02	0.22	0.67
	Eastern Creek	0.017	0.06	0.02	0.29	0.86
	Western Creek Complex	0.0087	0.06	0.02	0.14	0.43
	Purvis Creek	0.0060	0.06	0.02	0.10	0.30
	Area A	0.0170	0.06	0.02	0.28	0.85
	Troup Creek Reference	0.0046	0.90	0.45	0.005	0.01
	Domain 1	0.064	0.90	0.45	0.07	0.14
	Domain 2	0.033	0.90	0.45	0.04	0.07
	Domain 3	0.016	0.90	0.45	0.02	0.04
	Domain 4	0.010	0.90	0.45	0.01	0.02
Inorganic	Blythe Island	0.0071	0.90	0.45	0.01	0.02
	Main Canal	0.048	0.90	0.45	0.05	0.11
	Eastern Creek	0.125	0.90	0.45	0.14	0.28
	Western Creek Complex	0.021	0.90	0.45	0.02	0.05
	Purvis Creek	0.012	0.90	0.45	0.01	0.03
	Area A	0.075	0.90	0.45	0.08	0.17
	Troup Creek Reference	0.013	3.9	1.3	0.00	0.01
	Domain 1	0.169	3.9	1.3	0.04	0.13
	Domain 2	0.054	3.9	1.3	0.01	0.04
	Domain 3	0.035	3.9	1.3	0.01	0.03
	Domain 4	0.027	3.9	1.3	0.01	0.02
Aroclor	Blythe Island	0.0105	3.9	1.3	0.00	0.01
1268	Main Canal	0.27	3.9	1.3	0.07	0.21
	Eastern Creek	0.37	3.9	1.3	0.09	0.28
	Western Creek Complex	0.048	3.9	1.3	0.01	0.04
	Purvis Creek	0.050	3.9	1.3	0.01	0.04
	Area A	0.25	3.9	1.3	0.06	0.19
	Troup Creek Reference	0.118	11.3	3.85	0.01	0.03
	Domain 1	0.44	11.3	3.85	0.04	0.12
	Domain 2	0.31	11.3	3.85	0.03	0.08
	Domain 3	0.69	11.3	3.85	0.06	0.18
	Domain 4	0.12	11.3	3.85	0.01	0.03
Lead	Blythe Island	0.101	11.3	3.85	0.01	0.03
	Main Canal	0.17	11.3	3.85	0.02	0.05
	Eastern Creek	0.37	11.3	3.85	0.03	0.10
	Western Creek Complex	0.16	11.3	3.85	0.01	0.04
	Purvis Creek	0.14	11.3	3.85	0.01	0.04
	Area A	0.34	11.3	3.85	0.03	0.09

Table 4-30_Hazard quotients (HQs) for wildlife at LCP estuary based on exposure models (2000-2007 data)

Chemical of Potential Concern (COPC)	Location in Study Area	Estimated Environmental Exposure EEE	•	nce ValueTRV BW/day) ^b	Hazard Quotient HQ (EEE / TRV) ^c		
Concern (COLC)		(mg/kg BW/day) ^a	LOAEL	NOAEL	LOAEL	NOAEI	
Clapper Rail (F	Rallus longirostris)						
	Troup Creek Reference	0.0032	0.06	0.02	0.05	0.16	
	Domain 1	0.059	0.06	0.02	0.99	2.96	
	Domain 2	0.018	0.06	0.02	0.29	0.88	
	Domain 3	0.017	0.06	0.02	0.28	0.84	
	Domain 4	0.014	0.06	0.02	0.23	0.68	
Methylmercury	Blythe Island	0.012	0.06	0.02	0.19	0.58	
	Main Canal	0.035	0.06	0.02	0.58	1.74	
	Eastern Creek	0.052	0.06	0.02	0.86	2.59	
	Western Creek Complex	0.018	0.06	0.02	0.29	0.88	
	Purvis Creek	0.0084	0.06	0.02	0.14	0.42	
	Area A	0.0499	0.06	0.02	0.83	2.49	
	Troup Creek Reference	0.0023	0.90	0.45	0.003	0.01	
	Domain 1	0.128	0.90	0.45	0.14	0.29	
	Domain 2	0.060	0.90	0.45	0.07	0.13	
	Domain 3	0.027	0.90	0.45	0.03	0.06	
	Domain 4	0.016	0.90	0.45	0.02	0.03	
Inorganic	Blythe Island	0.009	0.90	0.45	0.01	0.02	
mercury	Main Canal	0.093	0.90	0.45	0.10	0.21	
	Eastern Creek	0.245	0.90	0.45	0.27	0.54	
	Western Creek Complex	0.037	0.90	0.45	0.04	0.08	
	Purvis Creek	0.017	0.90	0.45	0.02	0.04	
	Area A	0.147	0.90	0.45	0.16	0.33	
	Troup Creek Reference	0.031	3.9	1.3	0.008	0.02	
	Domain 1	0.43	3.9	1.3	0.11	0.33	
	Domain 2	0.14	3.9	1.3	0.04	0.11	
	Domain 3	0.105	3.9	1.3	0.03	0.08	
	Domain 4	0.072	3.9	1.3	0.02	0.06	
Aroclor	Blythe Island	0.025	3.9	1.3	0.01	0.02	
1268	Main Canal	0.64	3.9	1.3	0.16	0.49	
	Eastern Creek	0.82	3.9	1.3	0.21	0.63	
	Western Creek Complex	0.13	3.9	1.3	0.03	0.10	
	Purvis Creek	0.13	3.9	1.3	0.03	0.10	
	Area A	0.596	3.9	1.3	0.15	0.46	
	Troup Creek Reference	0.16	11.3	3.85	0.01	0.04	
	Domain 1	1.28	11.3	3.85	0.11	0.33	
	Domain 2	0.23	11.3	3.85	0.02	0.06	
	Domain 3	0.87	11.3	3.85	0.08	0.23	
	Domain 4	0.13	11.3	3.85	0.01	0.03	
Lead	Blythe Island	0.11	11.3	3.85	0.01	0.03	
Leau	Main Canal	0.27	11.3	3.85	0.01	0.03	
	Eastern Creek	0.27	11.3	3.85	0.02	0.07	
	Western Creek Complex	0.93	11.3	3.85	0.08	0.24	
	=						
	Purvis Creek	0.18	11.3	3.85	0.02	0.05	

Table 4-30_Hazard quotients (HQs) for wildlife at LCP estuary based on exposure models (2000-2007 data)

Chemical of Potential Concern (COPC)	Location in Study Area	Estimated Environmental Exposure EEE	•	nce ValueTRV BW/day) ^b	Hazard Quotient HQ (EEE / TRV) ^c		
Concern (COPC)		(mg/kg BW/day) ^a	LOAEL	NOAEL	LOAEL	NOAEI	
Green Heron (A	Butorides striatus)						
	Troup Creek Reference	0.012	0.06	0.02	0.20	0.61	
	Domain 1	0.166	0.06	0.02	2.77	8.30	
	Domain 2	0.047	0.06	0.02	0.78	2.33	
	Domain 3	0.0497	0.06	0.02	0.83	2.48	
	Domain 4	0.035	0.06	0.02	0.59	1.77	
Methylmercury	Blythe Island	0.028	0.06	0.02	0.46	1.39	
	Main Canal	0.089	0.06	0.02	1.48	4.44	
	Eastern Creek	0.21	0.06	0.02	3.53	10.6	
	Western Creek Complex	0.047	0.06	0.02	0.78	2.33	
	Purvis Creek	0.035	0.06	0.02	0.58	1.75	
	Area A	0.17	0.06	0.02	2.76	8.27	
	Troup Creek Reference	0.002	0.90	0.45	0.002	0.004	
	Domain 1	0.046	0.90	0.45	0.05	0.10	
	Domain 2	0.019	0.90	0.45	0.02	0.04	
	Domain 3	0.010	0.90	0.45	0.01	0.02	
Inorganic mercury	Domain 4	0.005	0.90	0.45	0.01	0.01	
	Blythe Island	0.003	0.90	0.45	0.003	0.01	
	Main Canal	0.031	0.90	0.45	0.034	0.07	
	Eastern Creek	0.083	0.90	0.45	0.093	0.19	
	Western Creek Complex	0.013	0.90	0.45	0.014	0.03	
	Purvis Creek	0.006	0.90	0.45	0.007	0.01	
	Area A	0.053	0.90	0.45	0.058	0.12	
	Troup Creek Reference	0.028	3.9	1.3	0.007	0.02	
	Domain 1	0.78	3.9	1.3	0.20	0.60	
	Domain 2	0.26	3.9	1.3	0.07	0.20	
	Domain 3	0.38	3.9	1.3	0.10	0.29	
	Domain 4	0.15	3.9	1.3	0.04	0.12	
Aroclor	Blythe Island	0.104	3.9	1.3	0.03	0.08	
1268	Main Canal	0.68	3.9	1.3	0.03	0.52	
	Eastern Creek	0.97	3.9	1.3	0.17	0.75	
	Western Creek Complex	0.26	3.9	1.3	0.23	0.73	
	Purvis Creek	0.16	3.9	1.3	0.07	0.20	
	Area A	0.16	3.9	1.3	0.04	0.12	
	Troup Creek Reference	0.82	11.3	3.85	0.02	0.06	
	Domain 1	0.25	11.3	3.85	0.02	0.06	
	Domain 2		11.3			0.07	
	Domain 3	0.298		3.85	0.03		
		3.66	11.3	3.85	0.32	0.95	
Laci	Domain 4	0.14	11.3	3.85	0.01	0.04	
Lead	Blythe Island	0.086	11.3	3.85	0.01	0.02	
	Main Canal	0.14	11.3	3.85	0.01	0.04	
	Eastern Creek	0.25	11.3	3.85	0.02	0.06	
	Western Creek Complex	0.22	11.3	3.85	0.02	0.06	
	Purvis Creek	0.14	11.3	3.85	0.01	0.04	
	Area A	0.22	11.3	3.85	0.02	0.06	

Table 4-30_Hazard quotients (HQs) for wildlife at LCP estuary based on exposure models (2000-2007 data)

Chemical of Potential Concern (COPC)	Location in Study Area	Estimated Environmental Exposure EEE	•	nce ValueTRV BW/day) ^b	Hazard Quotient HQ (EEE / TRV) ^c		
Concern (COFC)		(mg/kg BW/day) ^a	LOAEL	NOAEL	LOAEL	NOAEI	
Marsh Rabbit ((Sylvilagus palustris)						
	Troup Creek Reference	0.000054	0.15	0.075	0.0004	0.001	
	Domain 1	0.0019	0.15	0.075	0.0126	0.025	
	Domain 2	0.0008	0.15	0.075	0.005	0.011	
	Domain 3	0.0004	0.15	0.075	0.003	0.005	
	Domain 4	0.0003	0.15	0.075	0.002	0.004	
Methylmercury	Blythe Island	0.00026	0.15	0.075	0.002	0.003	
	Main Canal	0.0066	0.15	0.075	0.044	0.089	
	Eastern Creek	0.0013	0.15	0.075	0.009	0.017	
	Western Creek Complex	0.0008	0.15	0.075	0.005	0.010	
	Purvis Creek	0.00022	0.15	0.075	0.001	0.003	
	Area A	0.0013	0.15	0.075	0.009	0.017	
	Troup Creek Reference	0.00067	0.37	0.37	0.002	0.00	
	Domain 1	0.038	0.37	0.37	0.10	0.10	
	Domain 2	0.018	0.37	0.37	0.05	0.05	
	Domain 3	0.0075	0.37	0.37	0.02	0.02	
Inorganic Mercury	Domain 4	0.0046	0.37	0.37	0.01	0.01	
	Blythe Island	0.0031	0.37	0.37	0.01	0.01	
	Main Canal	0.076	0.37	0.37	0.21	0.21	
	Eastern Creek	0.057	0.37	0.37	0.15	0.15	
	Western Creek Complex	0.013	0.37	0.37	0.04	0.04	
	Purvis Creek	0.0047	0.37	0.37	0.01	0.01	
	Area A	0.037	0.37	0.37	0.10	0.10	
	Troup Creek Reference	0.018	0.3	0.03	0.06	0.60	
	Domain 1	0.0904	0.3	0.03	0.30	3.01	
	Domain 2	0.027	0.3	0.03	0.09	0.88	
	Domain 3	0.015	0.3	0.03	0.05	0.48	
Aroclor 1268	Domain 4	0.016	0.3	0.03	0.05	0.53	
(TRVs are for	Blythe Island	0.0039	0.3	0.03	0.01	0.13	
Aroclor 1254	Main Canal	0.096	0.3	0.03	0.32	3.20	
	Eastern Creek	0.14	0.3	0.03	0.48	4.82	
	Western Creek Complex	0.024	0.3	0.03	0.08	0.81	
	Purvis Creek	0.024	0.3	0.03	0.09	0.94	
	Area A	0.099	0.3	0.03	0.33	3.31	
	Troup Creek Reference	0.23	80	8	0.003	0.028	
	Domain 1	0.33	80	8	0.004	0.04	
	Domain 2	0.35	80	8	0.004	0.04	
	Domain 3	0.69	80	8	0.009	0.09	
	Domain 4	0.32	80	8	0.003	0.04	
Lead	Blythe Island	0.17	80	8	0.004	0.04	
Leau	Main Canal	0.42	80	8	0.002	0.02	
	Eastern Creek	0.34	80	8	0.003	0.03	
	Western Creek Complex	0.295	80 80	8	0.004	0.04	
	Purvis Creek	0.293	80 80		0.004	0.04	
	Area A	0.31	80 80	8	0.004	0.04	

Table 4-30_Hazard quotients (HQs) for wildlife at LCP estuary based on exposure models (2000-2007 data)

Chemical of Potential Concern (COPC)	Location in Study Area	Estimated Environmental Exposure EEE	•	nce ValueTRV BW/day) ^b	Hazard Quotient HQ (EEE / TRV) ^c		
Concern (COFC)		(mg/kg BW/day) ^a	LOAEL	NOAEL	LOAEL	NOAEI	
Raccoon (Proc	yon lotor)						
	Troup Creek Reference	0.0018	0.15	0.075	0.01	0.02	
	Domain 1	0.0203	0.15	0.075	0.14	0.27	
	Domain 2	0.015	0.15	0.075	0.10	0.20	
	Domain 3	0.015	0.15	0.075	0.10	0.20	
	Domain 4	0.015	0.15	0.075	0.10	0.19	
Methylmercury	Blythe Island	0.014	0.15	0.075	0.10	0.19	
	Main Canal	0.017	0.15	0.075	0.11	0.23	
	Eastern Creek	0.0201	0.15	0.075	0.13	0.27	
	Western Creek Complex	0.015	0.15	0.075	0.10	0.20	
	Purvis Creek	0.014	0.15	0.075	0.09	0.19	
	Area A	0.019	0.15	0.075	0.13	0.26	
	Troup Creek Reference	0.00032	0.5	0.05	0.00	0.01	
	Domain 1	0.0204	0.37	0.37	0.06	0.06	
	Domain 2	0.0098	0.37	0.37	0.03	0.03	
	Domain 3	0.0041	0.37	0.37	0.01	0.01	
Inorganic Mercury	Domain 4	0.0023	0.37	0.37	0.01	0.01	
	Blythe Island	0.0011	0.37	0.37	0.00	0.00	
	Main Canal	0.015	0.37	0.37	0.04	0.04	
	Eastern Creek	0.041	0.37	0.37	0.11	0.11	
	Western Creek Complex	0.0059	0.37	0.37	0.02	0.02	
	Purvis Creek	0.0027	0.37	0.37	0.01	0.01	
	Area A	0.024	0.37	0.37	0.06	0.06	
	Troup Creek Reference	0.0054	0.3	0.03	0.02	0.18	
	Domain 1	0.078	0.3	0.03	0.26	2.61	
	Domain 2	0.033	0.3	0.03	0.11	1.11	
	Domain 3	0.029	0.3	0.03	0.11	0.97	
1 1260	Domain 4	0.029	0.3	0.03	0.10	0.77	
Aroclor 1268 (TRVs are for		0.023	0.3	0.03	0.06	0.77	
Aroclor 1254	Blythe Island	0.017	0.3	0.03	0.00	3.67	
11100101 120 1	Main Canal	0.146	0.3	0.03	0.37	4.87	
	Eastern Creek						
	Western Creek Complex	0.031	0.3	0.03	0.10	1.05	
	Purvis Creek	0.031	0.3	0.03	0.10	1.02	
	Area A	0.106	0.3	0.03	0.35	3.53	
	Troup Creek Reference	0.071	80	8	0.001	0.009	
	Domain 1	0.15	80	8	0.002	0.02	
	Domain 2	0.11	80	8	0.001	0.01	
	Domain 3	0.29	80	8	0.004	0.04	
	Domain 4	0.049	80	8	0.001	0.01	
Lead	Blythe Island	0.041	80	8	0.001	0.005	
	Main Canal	0.066	80	8	0.001	0.008	
	Eastern Creek	0.13	80	8	0.002	0.02	
	Western Creek Complex	0.061	80	8	0.001	0.008	
	Purvis Creek	0.053	80	8	0.001	0.007	
	Area A	0.12	80	8	0.001	0.01	

Table 4-30_Hazard quotients (HQs) for wildlife at LCP estuary based on exposure models (2000-2007 data)

Chemical of Potential Concern (COPC)	Location in Study Area	Estimated Environmental Exposure EEE	•	nce ValueTRV BW/day) ^b	Hazard Que (EEE /	otient HO TRV) ^c
Concern (COLC)		(mg/kg BW/day) ^a	LOAEL	NOAEL	LOAEL	NOAE
River Otter (Lu	tra canadensis)					
	Troup Creek Reference	0.0061	0.15	0.075	0.04	0.08
	Main Canal	0.00013	0.15	0.075	0.001	0.002
	Eastern Creek	0.00051	0.15	0.075	0.003	0.007
	Western Creek Complex	0.00018	0.15	0.075	0.001	0.002
	Purvis Creek	0.0046	0.15	0.075	0.03	0.06
Methylmercury	Domain 1	0.00235	0.15	0.075	0.02	0.03
	Domain 2	0.01082	0.15	0.075	0.07	0.14
	Domain 3	0.0127	0.15	0.075	0.08	0.17
	Domain 4	0.0333	0.15	0.075	0.22	0.44
	Blythe Island	0.0326	0.15	0.075	0.22	0.43
	Area A	0.0086	0.15	0.075	0.06	0.11
	Troup Creek Reference	0.00491	0.37	0.37	0.013	0.013
	Main Canal	0.00013	0.37	0.37	0.0004	0.0004
	Eastern Creek	0.00064	0.37	0.37	0.002	0.002
	Western Creek Complex	0.00016	0.37	0.37	0.0004	0.0004
	Purvis Creek	0.00396	0.37	0.37	0.01	0.01
Inorganic mercury	Domain 1	0.00226	0.37	0.37	0.006	0.006
	Domain 2	0.01075	0.37	0.37	0.03	0.03
	Domain 3	0.01082	0.37	0.37	0.03	0.03
	Domain 4	0.02773	0.37	0.37	0.07	0.07
	Blythe Island	0.0268	0.37	0.37	0.07	0.07
	Area A	0.0009	0.37	0.37	0.00	0.00
	Troup Creek Reference	0.0071	0.3	0.03	0.02	0.24
	Main Canal	0.00073	0.3	0.03	0.002	0.02
	Eastern Creek	0.00027	0.3	0.03	0.001	0.01
	Western Creek Complex	0.00069	0.3	0.03	0.002	0.02
Aroclor 1268	Purvis Creek	0.01737	0.3	0.03	0.058	0.58
(TRVs are for	Domain 1	0.01027	0.3	0.03	0.034	0.34
Aroclor 1254	Domain 2	0.04164	0.3	0.03	0.139	1.39
	Domain 3	0.05056	0.3	0.03	0.169	1.69
	Domain 4	0.11827	0.3	0.03	0.394	3.94
	Blythe Island	0.11232	0.3	0.03	0.374	3.74
	Area A	0.00419	0.3	0.03	0.014	0.14
	Troup Creek Reference	0.05574	80	8	0.001	0.01
	Main Canal	0.00020	80	8	0.000003	0.0000
	Eastern Creek	0.0010	80	8	0.00001	0.0001
	Western Creek Complex	0.00032	80	8	0.00001	0.0000
	Purvis Creek	0.00681	80	8	0.00009	0.0009
Lead	Domain 1	0.00523	80	8	0.00007	0.0007
	Domain 2	0.03258	80	8	0.0004	0.004
	Domain 3	0.03238	80	8	0.0004	0.004
	Domain 4	0.04683	80	8	0.002	0.02
	Blythe Island	0.04683	80	8	0.0005	0.006
	Area A	0.03782	00	o	0.0003	0.003

Table 7-1_Sampling stations comprising fiddler crab polygons

_									
5-NOAA-G	6-NOAA-G	7-NOAA-G	9-NOAA-G	M-25	M-100	M-104	M-108	M-204	TC
Fiddler Crab Sa	ampling Stations	5							
5-NOAA-G -04	6-NOAA-G -04	7-NOAA-G -04	9-NOAA-G -04	M-25 -00	M-100 -04	M-104 -04	M-108 -04	M-204 -05	TC-C -02
5-NOAA-G -05	6-NOAA-G -05	7-NOAA-G -05	9-NOAA-G -05	M-25 -02	M-100 -05	M-104 -05	M-108 -05	M-204 -06	TC-C -05
5-NOAA-G -06		8-NOAA-G -04	8-NOAA-G -04	M-25 -03	M-100 -06	M-104 -06	M-108 -06		TC-M -03
5-NOAA-G -07		8-NOAA-G -05	8-NOAA-G -05	M-25 -04	M-103 -04	M-101 -04			TC-M -04
M-102 -04		8-NOAA-G -06	8-NOAA-G -06	M-25 -04	M-103 -05	M-104 -05			TC-M -06
M-102 -05		8-NOAA-G -07	8-NOAA-G -07	M-25 -05	M-103 -06				TC-M -07
			7-NOAA-G -04	M-25 -06					
			7-NOAA-G -05	M-25 -07					
			6-NOAA-G -04						
			6-NOAA-G -05						
Sediment Samp	oling Stations								
5-NOAA-G -04	6-NOAA-G -04	7-NOAA-G -04	9-NOAA-G -04	M-25 -00	M-100 -04	M-104 -04	M-108 -04	M-204 -05	TC-C -02
5-NOAA-G -05	6NOAA-G -05	7-NOAA-G -05	9-NOAA-G -05	M-25 -02	M-100 -05	M-104 -05	M-108 -05	M-204 -06	TC-C -03
5-NOAA-G -06	6-NOAA-G -06	7-NOAA-G -05	9-NOAA-G -06	M-25 -03	M-100 -06	M-104 -06	M-108 -06	C-34 -00	TC-C -04
5-NOAA-G -07	6-NOAA-G -07	7-NOAA-G -05	9-NOAA-G -07	M-25 -04	M-103 -04	M-101 -04	C-104 -04	C-34 -05	TC-C -05
C-4 -00	SD2M-3 -04	8-NOAA-G -04	8-NOAA-G -04	M-25 -05	M-103 -05	M-104 -05	C-104 -05	C-34 -06	TC-C -06
C-4 -02	SD2M-5 -04	8-NOAA-G -05	8-NOAA-G -05	M-25 -06	M-103 -06	A-C -02	C-104 -06	C-34 -07	TC-C -07
C-4 -03	SD2M-16 -04	8-NOAA-G -06	8-NOAA-G -06	M-25 -07	M-44 -00	A-C -03	SD5M-5 -04	C-200 -05	TC-C(S) -00
C-4 -04		8-NOAA-G -07	8-NOAA-G -07	SD-19 -03	M-44 -05	A-C -04	SD5M-12 -04	C-204 -05	TC-M -02
C-5 -00		C-12 -00	7-NOAA-G -04	SD-20 -03	C-14 -00	A-M -02	SD5M-27 -04	M-41 -00	TC-M -03
C-5 -02		C-12 -05	7-NOAA-G -05	SD-21 -03	C-14 -05	A-M -03		M-41 -05	TC-M -04
C-5 -03		C-13 -00	7-NOAA-G -05	SDMC-AET-47 -06	C-36 -00	A-M -04		M-41 -06	TC-M -05
C-5 -04		C-13 -02	7-NOAA-G -05	SDMC-AET-48 -06	C-36 -05	C-32 -00		FS-AREA1 05	TC-M -06
C-5 -05		C-13 -03	6-NOAA-G -04	SDMC-AET-49 -06	C-36 -06	C-32 -05		FS-AREA1 06	TC-M -07
C-5 -06		C-13 -04	6NOAA-G -05	SDMC-AET-50 -06	SD3M-12 -04	C-101 -04		FS-AREA1 07	TC-M(S) -00
C-5 -07		C-13 -05	6-NOAA-G -06		SD3M-15 -04	M-39 -00			
M-26 -00		C-14 -00	6-NOAA-G -07		SD3M-21 -04	M-46 -00			
M-102 -04		C-14 -05	C-12 -00		SD4M-12 -04	M-46 -02			
M-102 -05		M-27 -00	C-12 -05		SD4M-33 -05	M-46 -03			
SD-01 -03		M-27 -02	C-13 -00		SD-UPC-C8 -05	M-46 -04			
SD-02 -03		M-27 -03	C-13 -02		SD-UPC-C9 -05	SD3M-14 -04			
SD-03 -03		M-27 -04	C-13 -03		SD-UPC-C10 -05	SD3M-16 -04			
SD-04 -03		SD2C-6 -04	C-13 -04		SD-UPC-C11 -05	SD3M-22 -04			
SD-05 -03		SD2C-7 -04	C-13 -05		SD-UPC-C12 -05	SD3M-25 -04			
SD-06 -03		SD2C-9 -04	C-15 -00		SD-UPC-C13 -05	SD4M-49 -05			
SD3M-2 -04		SD2C-10 -04	C-15 -02			SD-UPC-C2 -05			
SDMC-AET-1 -06		SD2C-11 -04	C-15 -03			SD-UPC-C3 -05			
SDMC-AET-2 -06		SD2C-12 -04	C-15 -03			SD-UPC-C4 -05			
SDMC-AET-3 -06		SD2C-19 -04	C-15 -04			SD-UPC-C5 -05			
SDMC-AET-4 -06		SD2C-6 -04	C-15 -05						
SDMC-AET-5 -06		SD2C-6 -04	C-15 -06						
SDMC-AET-6 -06		SD2C-6 -04	C-15 -07						
SDMC-AET-7 -06		SD2C-6 -04	M-27 -00						
SDMC-AET-8 -06		SD2M-1 -04	M-27 -02						
SDMC-AET-9 -06		SD2M-2 -04	M-27 -03						
SDMC-AET-10 -06	;	SD2M-12 -04	M-27 -04						

Table 7-1_Sampling stations comprising fiddler crab polygons

5-NOAA-G	6-NOAA-G	7-NOAA-G	9-NOAA-G	M-25	M-100	M-104	M-108	M-204	TC
Sediment Samp	oling Stations (Cont'd.)							
		SDWC-AET-7 -06	SD2C-6 -04						
		SDWC-AET-8 -06	SD2C-7 -04						
		SDWC-AET-9 -06	SD2C-8 -04						
		SDWC-AET-10 -06	SD2M-2 -04						
		SDWC-AET-11 -06	SD2M-3 -04						
		SDWC-AET-12 -06	SD2M-5 -04						
		SDWC-AET-13 -06	SD2M-16 -04						
		SDWC-AET-14 -06	SDWC-AET-6 -06						
		SDWC-AET-15 -06	SDWC-AET-7 -06						
		SDWC-AET-16 -06	SDWC-AET-8 -06						
		SDWC-AET-17 -06	SDWC-AET-9 -06						
		SDWC-AET-18 -06	SDWC-AET-10 -06						
		SDWC-AET-19 -06							
		SDWC-AET-20 -06							
		SDWC-AET-21 -06							

Table 7-2_Fiddler crab BAF data

All concentrations in mg/kg dw

	Merc	cury	A-12	268	Lea	ad
	Sediment	Tissue	Sediment	Tissue	Sediment	Tissue
5-NOAA-G	3.20	0.29	9.64	1.57	25.79	0.59
6-NOAA-G	0.65	0.24	1.14	0.36	22.19	0.49
7-NOAA-G	1.90	0.28	3.24	0.61	27.09	0.53
9-NOAA-G	1.37	0.25	1.73	0.69	24.85	0.50
M-25	5.83	0.57	13.92	2.87	21.29	1.45
M-100	1.83	0.25	3.28	1.04	23.26	0.47
M-104	1.29	0.26	2.37	0.42	21.20	0.46
M-108	0.49	0.22	0.26	0.19	18.42	0.43
M-204	2.88	0.32	2.90	0.68	67.90	0.68
TC	0.08	0.05	0.05	0.23	17.64	0.66

	% TOC	% Lipids
5-NOAA-G	4.3	2.5
6-NOAA-G	5.8	3.6
7-NOAA-G	5.3	3.9
9-NOAA-G	5.1	1.4
M-25	2.9	4.2
M-100	3.9	4.0
M-104	4.8	2.5
M-108	5.8	2.8
M-204	4.6	2.5
TC	3.5	2.0

Table 7-3_ Sampling stations comprising mummichog polygons

C-5	C-6	C-9	C-13	C-39	C-45	C-100	C-102	C-103	C-204	c-c	D-C	T-C
Mummichog Sampling Sta	ations											
C-5 -02	C-6 -00	C-9 -00	C-13 -00	C-39 -05	C-45 -02	C-100 -04	C-102 -04	C-103 -04	C-204 -05	C-C -02	D-C -05	TC-C -00
C-5 -03	C-6 -02	C-9 -02	C-13 -02	C-39 -06	C-45 -03	C-100 -05	C-102 -05	C-103 -05	C-200 -05	C-C -03	D-C -06	TC-C -02
C-5 -04	C-6 -03	C-9 -03	C-13 -03	C-39 -07	C-45 -04	C-100 -06		C-103 -06		C-C -04		TC-C -03
C-5 -05	C-6 -04	C-9 -04	C-13 -04	C-33 -00	C-45 -05			C-104 -04		C-C -05		TC-C -04
C-5 -06	C-6 -05	C-9 -05	C-13 -05	C-33 -02				C-104 -05		C-C -06		TC-C -05
C-5 -07	C-6 -06	C-9 -06		C-33 -03				C-104 -06				TC-C -06
	C-6 -07	C-9 -07		C-33 -04								TC-C -07
				C-33 -05								
				C-33 -06								
				C-33 -07								
				C-34 -06								
				C-34 -07								
Sediment Sampling Statio		0.0.00	0.42.00	0.20.05	C-45 -00	0.400.04	0.400.04	C 402 04	0.204.05	0.0.00	D C 00	TC-C -02
C-5 -00	C-6 -00	C-9 -00	C-13 -00	C-39 -05		C-100 -04	C-102 -04	C-103 -04	C-204 -05	C-C -02	D-C -02	
C-5 -02	C-6 -02	C-9 -02	C-13 -02	C-39 -06	C-45 -02	C-100 -05	C-102 -05	C-103 -05	C-34 -00	C-C -03	D-C -03	TC-C -03
C-5 -03	C-6 -03	C-9 -03	C-13 -03	C-39 -07	C-45 -03	C-100 -06	C-102 -06	C-103 -06	C-34 -05	C-C -04	D-C -04	TC-C -04
C-5 -04	C-6 -04	C-9 -04 C-9 -05	C-13 -04	C-30 -00	C-45 -04	M-44 -04	M-103 -04	C-104 -04	C-34 -06	C-C -05	D-C -05	TC-C -05 TC-C -06
C-5 -05	C-6 -05		C-13 -05	C-30 -05	C-45 -05	M-44 -05 M-100 -04	M-103 -05	C-104 -05	C-34 -07	C-C -06	D-C -06	
C-5 -06 C-5 -07	C-6 -06 C-6 -07	C-9 -06 C-9 -07	C-12 -00 C-12 -05	C-30 -06	C-45 -06 M-44 -00	M-100 -04 M-100 -05	M-103 -06 SD4M-3 -04	C-104 -06 M-108 -04	C-200 -05 M-41 -00	C-M -02	D-M -02 D-M -03	TC-C -07 TC-C(S) -00
C-5 -07 C-4 -00	M-20 -00	C-9 -07 C-3 -00		C-31 -00 C-31 -02	M-105 -04		SD4M-3 -04 SD4M-9 -04		M-41 -00 M-41 -05	C-M -03	D-M -03 D-M -04	TC-C(S) -00 TC-M -02
	M-20 -05	C-3 -00 C-3 -02	C-14 -00	C-31 -02 C-31 -03	M-105 -04 M-105 -05	M-100 -06	SD4M-9 -04 SD4M-12 -04	M-108 -05	M-41 -05 M-41 -06	C-M -04	D-M -04 SD4M-2 -04	TC-M -02 TC-M -03
C-4 -02 C-4 -03	M-21 -00	C-3 -02 C-3 -03	C-14 -05 C-15 -00	C-31 -04	SD2M-19 -04	SD3M-6 -04 SD3M-12 -04	SD4M-18 -04	M-108 -06 SD5M-1 -04	M-204 -05	M-105 -04 M-105 -05	SD4M-5 -04	TC-W -03
C-4 -03 C-4 -04	M-21 -02	C-3 -03 C-3 -04	C-15 -00 C-15 -02	C-31 -04 C-31 -05	SD4M-1 -04	SD3M-12 -04 SD3M-15 -04	SD4M-27 -05	SD5M-1 -04 SD5M-3 -04	M-204 -06	SD4M-10 -04	SD4M-8 -04	TC-M -04
M-26 -00	M-21 -03	M-25 -00	C-15 -02 C-15 -03	C-31 -06	SD4M-5 -04	SD3M-18 -04	SD4M-28 -05	SD5M-4 -04	FS-AREA1 -05	SD4M-44 -05	SD4M-10 -04	TC-M -06
SD-01 -03	M-21 -04	M-25 -02	C-15 -03	C-31 -07	SD4M-19 -04	SD3M-21 -04	SD4M-29 -05	SD5M-9 -04	FS-AREA1 -06	SD4M-45 -05	SD4M-17 -04	TC-W -00
SD-01-03 SD-02-03	MG-K7-C -00	M-25 -03	C-15 -04 C-15 -05	C-33 -00	SD4M-45 -05	SD4M-33 -05	SD4M-31 -05		FS-AREA1 -07	SD4M-46 -05	SD4M-17 -04 SD4M-36 -05	
SD-02 -03 SD-03 -03	MG-K7-C -00	M-25 -04	C-15 -05	C-33 -02	SD4M-47 -05	SD-UPC-C8 -05	SD4M-32 -05	SD5M-16 -04	F3-AREAT-01	3D4W-40 -03	SD4M-37 -05	1 C-IVI(3) -00
SD-03 -03 SD-04 -03	MG-K7-C -02	M-25 -05	C-15 -00 C-15 -07	C-33 -02	SD-LPC-C2 -05	SD-UPC-C9 -05	3D4W-32 -05	SD5M-17 -04			SD4M-38 -05	
SD-04 -03 SD-05 -03	MG-K7-C -04	M-25 -06	M-27 -00	C-33 -04	SD-LPC-C3 -05	SD-UPC-C10 -05		SD5M-17 -04 SD5M-21 -04			SD4M-39 -04	
SD-06 -03	MG-K7-M -00	M-25 -07	M-27 -02	C-33 -05	SD-LPC-C4 -05	SD-UPC-C11 -05		SD5M-25 -04			SD4M-40 -05	
SD-07 -03	MG-K7-M -05 MG-K7-M -06	MG-B7-C -00	M-27 -03 M-27 -04	C-33 -06 C-33 -07	SD-LPC-C5 -05 SD-LPC-C6 -05	SD-UPC-C12 -05 SD-UPC-C13 -05		SD5M-29 -04			SD4M-42 -05 SD4M-43 -05	
SD-08 -03		MG-B7-C -02									SD4M-43 -05 SD4M-44 -05	
SD-09 -03	SE-10 -03 SE-11 -03	MG-B7-C -03	6-NOAA-G -04 6-NOAA-G -05	C-34 -00 C-34 -05	SD-LPC-C7 -05 SD-LPC-C8 -05	SD-UPC-C14 -05					SD4M-44 -05 SD4M-50 -05	
SD-10 -03 SD-11 -03	SE-11-03 SE-12-03	MG-B7-C -04 MG-B7-M -00	6-NOAA-G -05	C-34 -06	SD-LPC-C9 -05	SD-UPC-C15 -05 SD-UPC-C16 -05					3D4W-50 -05	
SD-11 -03 SD-12 -03	SE-12 -03 SE-13 -03	MG-B7-M -05	6-NOAA-G -00	C-34 -07	SD-LPC-C10 -05	SD-UPC-C17 -05						
						3D-0FC-017-03						
SDMC-AET-1 -06	SE-14 -03	MG-B7-M -06	7-NOAA-G -04	M-37 -00	SD-LPC-C11 -05							
SDMC-AET-2 -06	SE-15 -03	MG-D9-C -00	7-NOAA-G -05	M-37 -05								
SDMC-AET-3 -06	SE-16 -03	MG-D9-C -02	7-NOAA-G -06	M-37 -06								
SDMC-AET-4 -06	SE-17 -03	MG-D9-C -03	7-NOAA-G -07	M-37 -07								
SDMC-AET-5 -06	SE-18 -03	MG-D9-C -04	8-NOAA-G -04	M-38 -00								
SDMC-AET-6 -06	SE-19 -03	MG-D9-M -00	8-NOAA-G -05	M-38 -05								
SDMC-AET-7 -06	SDEC-AET-2 -06	MG-D9-M -05	8-NOAA-G -06	M-40 -00								
SDMC-AET-8 -06	SDEC-AET-3 -06	MG-D9-M -06	8-NOAA-G -07	M-41 -00								
SDMC-AET-9 -06	SDEC-AET-4 -06	SD-15 -03	9-NOAA-G -04	M-41 -05								
SDMC-AET-10 -06	SDEC-AET-5 -06	SD-16 -03	9-NOAA-G -05	M-41 -06								
SDMC-AET-11-06	SDEC-AET-6 -06	SD-17 -03	9-NOAA-G -06	M-200 -05								
SDMC-AET-12-06	SDEC-AET-7 -06	SD-18 -03	9-NOAA-G -07	SD3M-3 -04								
SDMC-AET-13-06	SDEC-AET-8 -06	SD19 -03	SD2C-6 -04	SD3M-5 -04								
3DIVIO-AL 1-13-00	ODEO-AL1-0-00	3019-03	3020-0-04	3D3WI-3 -04								

Table 7-4_Bioaccumulation factors for finfish - area weighted method

If it is assumed that the source of all mercury and A-1268 in finfish is from the LCP estuary creek sediment (regardless of how the fish acquired the chemical through the food web), then fish body burden is ultimately related to the sediment source.

	% Total	Average Hg	Sed. Hg	Avg A-1268	Sed. A-1268
Area	Area	Sed.Conc.	Contribution	Sed. Conc.	Contribution
Main Canal	2	7.4	0.148	27.64	0.553
Eastern Creek	7	20.28	1.420	49.57	3.470
Western Creek Complex	4	2.75	0.110	3.18	0.127
Purvis Creek	87	1.22	1.061	3.78	3.289

Area Weighted Estuary Sediment Concentration

2.74 mg/kg dw

7.44 mg/kg dw

Measured mean wholebody from estuary

Mercury	A-1268
1.14	1.43
0.84	5.51
1.60	5.67
2.27	4.92
0.23	13.2
0.416	0.192
0.307	0.741
0.584	0.762
0.829	0.661
0.084	1.775
	1.14 0.84 1.60 2.27 0.23 0.416 0.307 0.584 0.829

Table 7-5_Data for bioaccumulation factors for finfish

		Black	Drum			Red Drum					
	Mercury		A-12	A-1268			ury	A-12	268		
	Sediment	Tissue	Sediment	Tissue		Sediment	Tissue	Sediment	Tissue		
2003	0.44	0.61	0.6	2.88	2003	0.44	0.674	0.6	1.02		
2004	1.81	1.74	9.36	5.32	2004	1.81	2.24	9.36	1.55		
2005	1.32	0.86	4.24	7.77	2005	1.32	0.622	4.24	0.69		
2006	0.61	0.54	1.1	4.81	2006	0.61	1.026	1.1	3.51		
2007	0.59	0.87	1.1	5.33	2007	0.59	1.686	1.1	2.505		
2002	0.62	0.41	3.05	7.31	2002	0.62	0.812	3.05	1.15		
2000	1.04	0.925	0.63	4.15	2005 TC-C	0.145	0.509	0.053	0.122		
2005 TC-C	0.145	0.097	0.053	0.106	2007 TC-C	0.10	0.163	0.047	0.082		
2006 TC-C	0.082	0.114	0.028	0.089	2005 CR-C	0.095	0.182	0.012	0.016		
2005 CR-C	0.095	0.045	0.012	0.017							

		Silver	Perch		Spotted Seatrout						
	Mercury		Mercury A-1268			Mercury			A-1268		
	Sediment	Tissue	Sediment	Tissue		Sediment	Tissue	Sediment	Tissue		
2003	0.44	1.61	0.6	3.83	2003	0.44	1.43	0.6	3.66		
2004	1.81	2.59	9.36	7.14	2004	1.81	4.02	9.36	7.15		
2005	1.32	0.83	4.24	2.81	2005	1.32	2.83	4.24	6.55		
2006	0.61	1.5	1.1	3.65	2006	0.61	1.71	1.1	2.85		
2007	0.59	1.52	1.1	3.31	2007	0.59	2.95	1.1	4.0		
2002	0.62	1.12	3.05	16.04	2002	0.62	0.9	3.05	5.81		
2000	1.04	2.12	0.63	2.91	2000	1.04	0.64	0.63	0.99		
2005 TC-C	0.145	0.321	0.053	0.152	2005 TC-C	0.145	0.348	0.053	0.19		
2006 TC-C	0.082	0.298	0.028	0.147	2006 TC-C	0.082	0.306	0.028	0.179		
2007 TC-C	0.10	0.375	0.047	0.125	2007 TC-C	0.10	0.391	0.047	0.079		
2005 CR-C	0.095	0.161	0.012	0.024	2005 CR-C	0.095	0.108	0.012	0.016		

Stri	ned	Mu	llet
Our	veu	IVIU	met

	Merc	ury	A-1268				
	Sediment	Tissue	Sediment	Tissue			
2004	1.81	0.21	9.36	18.51			
2005	1.32	0.3	4.24	12.06			
2006	0.61	0.21	1.1	9.32			
2007	0.59	0.16	1.1	12.45			
2005 TC-C	0.145	0.081	0.053	0.058			
2006 TC-C	0.082	0.026	0.028	0.315			
2007 TC-C	0.10	0.019	0.047	0.216			
2005 CR-C	0.095	0.021	0.012	0.016			

Table 7-6_Bioaccumulation factors for biota LCP Chemical, Brunswick, GA

	Total Mercury in Sediment to Total Mercury in Biota					Aroclor-1268 in Sediment to Aroclor-1268 in Biota				
	Curve Fit				Curve Fit					
Receptor	a	b	R^2	Type	Source	a	b	R^2	Type	Source
Cordgrass	Not Evalua	ated				0.022	0.0000		Linear	Figure 7-20
Fiddler Crabs	0.2187	0.4733	0.8725	Power	Figure 7-2	0.1995	0.0000	0.9167	Linear	Figure 7-3
Blue Crabs	1.303	0.0000		Linear	Figure 7-9	0.426	0.0000		Linear	Figure 7-8
Mummichogs	0.2348	0.4706	0.8840	Power	Figure 7-7	1.2188	0.4918	0.8117	Power	Figure 7-6
			BAFs form	ned from P	lots of Data Ag	gregated by	Years			
Silver Perch	1.6511	0.7371	0.7917	Power	Figure 7-15	2.4556	0.8834	0.8876	Power	Figure 7-14
Red Drum	1.2095	0.7002	0.7205	Power	Figure 7-11	0.7748	0.6803	0.7492	Power	Figure 7-10
Black Drum	0.9084	1.0323	0.8967	Power	Figure 7-13	2.5436	0.9589	0.8972	Power	Figure 7-12
Spotted Seatrout	1.9818	0.8641	0.7301	Power	Figure 7-17	2.1172	0.8997	0.9130	Power	Figure 7-16
Striped Mullet	0.2144	0.8472	0.8657	Power	Figure 7-19	3.9936	1.0458	0.8887	Power	Figure 7-18
Area-Weighted BAFs										
Receptor	BAF				Source	BAF				Source
Silver Perch	0.584				Table 7-4	0.762				Table 7-4
Red Drum	0.416				Table 7-4	0.192				Table 7-4
Black Drum	0.307				Table 7-4	0.741				Table 7-4
Spotted Seatrout	0.829				Table 7-4	0.661				Table 7-4
Striped Mullet	0.084				Table 7-4	1.775				Table 7-4

Curve Fite Type:

Linear y = a x + bLogarithmic (Log) $y = a \ln(x) + b$

Power $y = a x^b$

Table 7-7_Key parameters for wildlife food chain models LCP Chemical, Brunswick, GA

	Food Ingestion Rate	Body Weight	Sediment Ingestion Rate	Water Ingestion Rate			Area Use Factor			
Receptor	kg dry wt/day	kg wet weight	kg dry w/d	L/day	Blue Crabs	Cordgrass	Fiddler Crabs	Mummi- chogs	Silver Perch	Unitless
Clapper rail	0.025	0.28	0.0025	0.025	0.0	0.0	0.95	0.05	0.0	1.0
Green Heron	0.024	0.2	0.00048	0.023	0.05	0.0	0.05	0.9	0.0	1.0
Marsh rabbit	0.088	1.0	0.0018	0.099	0.0	1.0	0.0	0.0	0.0	1.0
Raccoon	0.20	3.7	0.019	0.32	0.45	0.0	0.45	0.1	0.0	0.3
River otter	0.33	6.7	0.015	0.55	0.1	0.0	0.1	0.3	0.5	1.0

The Area Use Factor for the river otter was based on the original area of the site that did not include Domain 4. The value of 0.66 was calculated by dividing 480 acres by 728 acres (Appendix H Table H-7 home range for river otter).

However, we have now changed the area of the site to 790 acres.

Therefore the area use factor for the river otter was adjusted to 1.

Table 7-8_Toxicity reference values for receptors LCP Chemical, Brunswick, GA

	Avi	ian ¹	Man	nmal ¹		Fis	sh ²		
Parameter	NOAEL, mg/kg- BW/day	LOAEL, mg/kg- BW/day	NOAEL, mg/kg- BW/day	LOAEL, mg/kg- BW/day	NOAEL	, mg/kg	LOAEL, mg/kg		
					wet weight	dry weight	wet weight	dry weight	
Methyl mercury	0.02	0.06	0.075	0.15	0.15	0.6	0.3	1.2	
Aroclor-1268	1.3	3.9	0.03	0.3	0.34	1.36	1.3	5.2	

¹ Values in mg/kgBW/day

² The fish TRVs are the same as reported earlier in Table 30 but are converted to mg/kg dry weight for use in the determination of protective concentrations assuming 75% body water.

Table 7-9_Average methylmercury contents in sediment and biota

Item	Average Percentage Methylmercury
Sediment	0.75%
Cordgrass	10%
Fiddler Crabs	68%
Blue Crabs	100%
Mummichogs	92%
Silver Perch	100%
Red Drum	89%
Black Drum	91%
Spotted Seatruot	100%
Striped Mullet	37%

Table 7-10_Determination of protective sediment concentrations for marsh rabbit - Aroclor 1268 LCP Chemical, Brunswick, GA

		Cordgra	ass					
Sediment Concentration mg/kg	Sediment Ingestion Rate kg/day	Predicted Concentration, mg/kg, dry ¹	Fraction of Diet ²	Food Ingestion Rate kg/day	Body Weight kg	Total Dose mg/kg/day	Aroclor 1268 NOAEL mg/kg/day ³	Hazard Quotient
5	0.0018	0.11	1.0	0.088	1.0	0.0185	0.03	0.62
7	0.0018	0.15	1.0	0.088	1.0	0.0259	0.03	0.86
8	0.0018	0.18	1.0	0.088	1.0	0.0296	0.03	0.99
10	0.0018	0.22	1.0	0.088	1.0	0.0370	0.03	1.23
14	0.0018	0.31	1.0	0.088	1.0	0.0517	0.03	1.7
16	0.0018	0.35	1.0	0.088	1.0	0.0591	0.03	2.0

		Cordgra	ass					
Sediment Concentration mg/kg	Sediment Ingestion Rate kg/day	Predicted Concentration, mg/kg, dry ¹	Fraction of Diet ²	Food Ingestion Rate kg/day	Body Weight kg	Total Dose mg/kg/day	Aroclor 1268 LOAEL mg/kg/day ³	Hazard Quotient
50	0.0018	1.10	1.0	0.088	1.0	0.185	0.3	0.62
60	0.0018	1.32	1.0	0.088	1.0	0.222	0.3	0.74
70	0.0018	1.54	1.0	0.088	1.0	0.259	0.3	0.86
80	0.0018	1.76	1.0	0.088	1.0	0.296	0.3	0.99
100	0.0018	2.20	1.0	0.088	1.0	0.370	0.3	1.2
160	0.0018	3.52	1.0	0.088	1.0	0.591	0.3	2.0

- 1 Predicted concentrations in prey reflected bioaccumulation relationships in Table 7-6.
- 2 Dietary fractions and other food-chain model assumptions were drawn from parameter values on Table 7-7.
- 3 Toxicity reference values are provided in Table 7-8.

Table 7-11_Determination of protective sediment concentrations for clapper rail - mercury LCP Chemical, Brunswick, GA

]	Fiddler Crabs			Mummichogs						
Total Mercury Sediment Concentration mg/kg	Methyl-mercury Sediment Concentration mg/kg ¹	Sediment Ingestion Rate kg/day	Predicted Total Mercury Concentration, mg/kg, dry ²	Predicted Methylmercury Concentration, mg/kg	Fraction of Diet ³	Predicted Total Mercury Concentration, mg/kg, dry ²	Predicted Methylmercury Concentration, mg/kg	Fraction of Diet	Food Ingestion Rate kg/day	Body Weight kg	Total Dose mg kg ⁻¹ day	wicicury	Hazard Quotient
1	0.008	0.0025	0.22	0.15	0.95	0.23	0.22	0.05	0.025	0.28	0.0136	0.02	0.68
2	0.015	0.0025	0.30	0.21	0.95	0.33	0.30	0.05	0.025	0.28	0.0190	0.02	0.95
2.2	0.017	0.0025	0.32	0.22	0.95	0.34	0.31	0.05	0.025	0.28	0.0199	0.02	0.99
3	0.023	0.0025	0.37	0.25	0.95	0.39	0.36	0.05	0.025	0.28	0.0230	0.02	1.15
5	0.038	0.0025	0.47	0.32	0.95	0.50	0.46	0.05	0.025	0.28	0.0294	0.02	1.47
8	0.060	0.0025	0.59	0.40	0.95	0.62	0.57	0.05	0.025	0.28	0.0369	0.02	1.84

]	Fiddler Crabs]	Mummichogs						
Total Mercury Sediment Concentration mg/kg	Methyl-mercury Sediment Concentration mg/kg ¹	Sediment Ingestion Rate kg/day	Predicted Total Mercury Concentration, mg/kg, dry ²	Predicted Methylmercury Concentration, mg/kg	Fraction of Diet ³	Predicted Total Mercury Concentration, mg/kg, dry ²	Predicted Methylmercury Concentration, mg/kg	Fraction of Diet	Food Ingestion Rate kg/day	Body Weight kg	Total Dose mg kg ⁻¹ day	wichedry	Hazard Quotient
10	0.075	0.0025	0.65	0.44	0.95	0.69	0.64	0.05	0.025	0.28	0.0410	0.06	0.68
15	0.113	0.0025	0.79	0.54	0.95	0.84	0.77	0.05	0.025	0.28	0.0499	0.06	0.83
20	0.150	0.0025	0.90	0.61	0.95	0.96	0.88	0.05	0.025	0.28	0.0574	0.06	0.96
21.8	0.164	0.0025	0.94	0.64	0.95	1.00	0.92	0.05	0.025	0.28	0.0598	0.06	0.997
25	0.188	0.0025	1.00	0.68	0.95	1.07	0.98	0.05	0.025	0.28	0.0639	0.06	1.1
30	0.225	0.0025	1.09	0.74	0.95	1.16	1.07	0.05	0.025	0.28	0.0699	0.06	1.2

- 1 Proportions of methyl mercury in sediments and various tissues are provided in Table 7-9.
- 2 Predicted concentrations in prey reflected bioaccumulation relationships in Table 7-6.
- 3 Dietary fractions and other food-chain model assumptions were drawn from parameter values on Table 7-7.
- 4 Toxicity reference values are provided in Table 7-8.

 $\label{thm:concentration} Table~7-12_Determination~of~protective~sediment~concentrations~for~raccoon~-~Aroclor~1268~LCP~Chemical,~Brunswick,~GA$

		Fiddler (Crabs	Blue Cı	rabs	Mummio	chogs						
Sediment Concentration mg/kg	Sediment Ingestion Rate kg/day	Predicted Concentration, mg/kg, dry ¹	Fraction of Diet ²	Predicted Concentration, mg/kg, dry	Fraction of Diet	Predicted Concentration, mg/kg, dry	Fraction of Diet	Food Ingestion Rate kg/day	Body Weight kg	Area Use Factor	Total Dose mg kg ⁻¹ day	Aroclor 1268 NOAEL mg/kg/day ³	Hazard Quotient
1.0	0.019	0.2	0.45	0.43	0.45	1.2	0.1	0.20	3.7	0.3	0.0081	0.03	0.27
3.0	0.019	0.6	0.45	1.28	0.45	2.1	0.1	0.2	3.7	0.3	0.0217	0.03	0.72
4.25	0.019	0.8	0.45	1.81	0.45	2.5	0.1	0.2	3.7	0.3	0.0299	0.03	0.997
5.0	0.019	1.0	0.45	2.13	0.45	2.7	0.1	0.2	3.7	0.3	0.0348	0.03	1.2
7.0	0.019	1.4	0.45	2.98	0.45	3.2	0.1	0.2	3.7	0.3	0.0478	0.03	1.6
10.0	0.019	2.0	0.45	4.26	0.45	3.8	0.1	0.2	3.7	0.3	0.0670	0.03	2.2

		Fiddler (Crabs	Blue Ci	rabs	Mummio	chogs						
Sediment Concentration mg/kg	Sediment Ingestion Rate kg/day	1	Fraction of Diet ²	Predicted Concentration, mg/kg, dry	Fraction of Diet	Predicted Concentration, mg/kg, dry	Fraction of Diet	Food Ingestion Rate kg/day	Body Weight kg	Area Use Factor	Total Dose mg kg ⁻¹ day	Aroclor 1268 LOAEL mg/kg/day ³	Hazard Quotient
10	0.019	2.0	0.45	4.26	0.45	3.8	0.1	0.2	3.7	0.3	0.067	0.3	0.22
40	0.019	8.0	0.45	17.04	0.45	7.5	0.1	0.2	3.7	0.3	0.256	0.3	0.85
47	0.019	9.4	0.45	20.02	0.45	8.1	0.1	0.2	3.7	0.3	0.299	0.3	0.998
50	0.019	10.0	0.45	21.30	0.45	8.3	0.1	0.2	3.7	0.3	0.318	0.3	1.1
80	0.019	16.0	0.45	34.08	0.45	10.5	0.1	0.2	3.7	0.3	0.504	0.3	1.7
100	0.019	20.0	0.45	42.60	0.45	11.7	0.1	0.2	3.7	0.3	0.628	0.3	2.1

¹ Predicted concentrations in prey reflected bioaccumulation relationships in Table 7-6.

² Dietary fractions and other food-chain model assumptions were drawn from parameter values on Table 7-7.

³ Toxicity reference values are provided in Table 7-8.

Table 7-13_ Determination of protective sediment concentrations for green heron - mercury LCP Chemical, Brunswick, GA

				Fiddler Crabs			Blue Crabs		I	Mummichogs						
Sediment Concentration mg/kg	Methyl- mercury Sediment Concentration mg/kg ¹	Sediment Ingestion Rate kg/day	Predicted Total Mercury Concentration, mg/kg, dry ²	Predicted Methyl- mercury Concentration, mg/kg ¹	Fraction of Diet ³	Predicted Total Mercury Concentration, mg/kg, dry2	mercury		Predicted Total Mercury Concentration, mg/kg, dry2	mercury	Fraction of Diet	Food Ingestion Rate kg/day	Body Weight kg	Total Dose mg kg ⁻¹ day ⁻¹	Methyl Mercury NOAEL mg/kg/day ⁴	Hazard Quotient
0.3 0.4 0.44 0.6 0.8 1	0.0023 0.0030 0.0033 0.0045 0.0060 0.0075	0.00048 0.00048 0.00048 0.00048 0.00048 0.00048	0.12 0.14 0.15 0.17 0.20 0.22	0.08 0.10 0.10 0.12 0.13 0.15	0.05 0.05 0.05 0.05 0.05 0.05	0.4 0.5 0.6 0.8 1.0 1.3	0.4 0.5 0.6 0.8 1.0 1.3	0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.13 0.15 0.16 0.18 0.21 0.23	0.12 0.14 0.15 0.17 0.19 0.22	0.9 0.9 0.9 0.9 0.9 0.9	0.024 0.024 0.024 0.024 0.024 0.024 0.024	0.2 0.2 0.2 0.2 0.2 0.2	0.0161 0.0189 0.0199 0.0237 0.0281 0.0321	0.02 0.02 0.02 0.02 0.02 0.02 0.02	0.80 0.94 0.995 1.19 1.4 1.6

]	Fiddler Crabs			Blue Crabs			Mummichogs						
Sediment Concentration mg/kg	Methyl- mercury Sediment Concentration mg/kg ¹	Sediment Ingestion Rate kg/day	Predicted Total Mercury Concentration, mg/kg, dry ²	mercury	Fraction of Diet ³	Predicted Total Mercury Concentration, mg/kg, dry2	mercury		Predicted Total Mercury Concentration, mg/kg, dry2	mercury	Fraction of Diet	Food Ingestion Rate kg/day	Body Weight kg	Total Dose mg kg ⁻¹ day ⁻¹	Methyl Mercury LOAEL mg/kg/day ⁴	Hazard Quotient
1	0.0075	0.00048	0.22	0.15	0.05	1.3	1.3	0.05	0.23	0.22	0.9	0.024	0.2	0.0321	0.06	0.53
2	0.0150	0.00048	0.30	0.21	0.05	2.6	2.6	0.05	0.33	0.30	0.9	0.024	0.2	0.0492	0.06	0.82
2.70	0.0203	0.00048	0.35	0.24	0.05	3.5	3.5	0.05	0.37	0.34	0.9	0.024	0.2	0.0598	0.06	0.997
4	0.0300	0.00048	0.42	0.29	0.05	5.2	5.2	0.05	0.45	0.41	0.9	0.024	0.2	0.0779	0.06	1.3
5	0.0375	0.00048	0.47	0.32	0.05	6.5	6.5	0.05	0.50	0.46	0.9	0.024	0.2	0.0908	0.06	1.5
6	0.0450	0.00048	0.51	0.35	0.05	7.8	7.8	0.05	0.55	0.50	0.9	0.024	0.2	0.1033	0.06	1.7

- 1 Proportions of methyl mercury in sediments and various tissues are provided in Table 7-9.
- 2 Predicted concentrations in prey reflected bioaccumulation relationships in Table 7-6.
- 3 Dietary fractions and other food-chain model assumptions were drawn from parameter values on Table 7-7.
- 4 Toxicity reference values are provided in Table 7-8.

 $\label{thm:concentration} \textbf{Table 7-14_Determination of protective sediment concentrations for river otter-mercury LCP Chemical, Brunswick, GA}$

]	Fiddler Crabs			Blue Crabs		N	Mummichogs	
Sediment Concentration mg/kg	Methyl-mercury Sediment Concentration mg/kg ¹	Sediment Ingestion Rate kg/day	Predicted Total Mercury Concentration, mg/kg, dry ²	mercury	Fraction of Diet ³	Predicted Total Mercury Concentration, mg/kg, dry ²	Predicted Methyl-mercury Concentration, mg/kg	Fraction of Diet	Predicted Total Mercury Concentration, mg/kg, dry ²	Predicted Methyl- mercury Concentration, mg/kg	Fraction of Diet
1 2	0.0075 0.0150	0.015 0.015	0.22 0.30	0.149 0.206	0.1 0.1	1.3 2.6	1.30 2.61	0.1 0.1	0.23 0.33	0.22 0.30	0.3 0.3
1.66	0.0125	0.015	0.28	0.189	0.1	2.2	2.16	0.1	0.30	0.27	0.3
4 6 8	0.0300 0.0450 0.0600	0.015 0.015 0.015	0.42 0.51 0.59	0.287 0.347 0.398	0.1 0.1 0.1	5.2 7.8 10.4	5.21 7.82 10.42	0.1 0.1 0.1	0.45 0.55 0.62	0.41 0.50 0.57	0.3 0.3 0.3

	Silver Perch							
Predicted Total Mercury Concentration, mg/kg, dry ²	Predicted Methyl-mercury Concentration, mg/kg ¹	Fraction of Diet	Food Ingestion Rate kg/day	Body Weight	Area Use Factor	Total Dose mg	Methyl Mercury NOAEL mg/kg/day ⁴	Hazard Quotient
1.7 2.8	1.7 2.8	0.5 0.5	0.33 0.33	6.7 6.7	1.00 1.00	0.0510 0.0861	0.075 0.075	0.68 1.15
2.4	2.4	0.5	0.33	6.7	1.00	0.0747	0.075	0.997
4.6	4.6	0.5	0.33	6.7	1.00	0.1462	0.075	1.9
6.2	6.2	0.5	0.33	6.7	1.00	0.2001	0.075	2.7
7.6	7.6	0.5	0.33	6.7	1.00	0.2502	0.075	3.3

Table 7-14_Continued

]	Fiddler Crabs			Blue Crabs		1	Mummichogs	
Sediment Concentration mg/kg	Methyl-mercury Sediment Concentration mg/kg ¹	Sediment Ingestion Rate kg/day	Predicted Total Mercury Concentration, mg/kg, dry ²	Predicted Methyl- mercury Concentration, mg/kg	Fraction of Diet ³	Predicted Total Mercury Concentration, mg/kg, dry ²	Predicted Methyl-mercury Concentration, mg/kg	Fraction of Diet	Predicted Total Mercury Concentration, mg/kg, dry ²	Predicted Methyl- mercury Concentration, mg/kg	Fraction of Diet
2 3	0.0150 0.0225	0.015 0.015	0.30 0.37	0.206 0.250	0.1 0.1	2.6 3.9	2.61 3.91	0.1 0.1	0.33 0.39	0.30 0.36	0.3 0.3
4.12	0.0309	0.015	0.43	0.291	0.1	5.4	5.37	0.1	0.46	0.42	0.3
5 6 7	0.0375 0.0450 0.0525	0.015 0.015 0.015	0.47 0.51 0.55	0.319 0.347 0.374	0.1 0.1 0.1	6.5 7.8 9.1	6.52 7.82 9.12	0.1 0.1 0.1	0.50 0.55 0.59	0.46 0.50 0.54	0.3 0.3 0.3

	Silver Perch							
Predicted Total Mercury Concentration, mg/kg, dry ²	Predicted Methyl-mercury Concentration, mg/kg ¹	Fraction of Diet	Food Ingestion Rate kg/day	Body Weight kg	Area Use Factor	Total Dose mg	Methyl Mercury LOAEL mg/kg/day ⁴	Hazard Quotient
2.8	2.8	0.5	0.33	6.7	1.00	0.086	0.15	0.57
3.7	3.7	0.5	0.33	6.7	1.00	0.117	0.15	0.78
4.7	4.7	0.5	0.33	6.7	1.00	0.150	0.15	0.997
5.4	5.4	0.5	0.33	6.7	1.00	0.174	0.15	1.2
6.2	6.2	0.5	0.33	6.7	1.00	0.200	0.15	1.3
6.9	6.9	0.5	0.33	6.7	1.00	0.226	0.15	1.5

- 1 Proportions of methyl mercury in sediments and various tissues are provided in Table 7-9.
- 2 Predicted concentrations in prey reflected bioaccumulation relationships in Table 7-6.
- 3 Dietary fractions and other food-chain model assumptions were drawn from parameter values on Table 7-7.
- 4 Toxicity reference values are provided in Table 7-8.

Table 7-15_Determination of protective sediment concentrations for river otter - Aroclor 1268 LCP Chemical, Brunswick, GA

		Fiddler (Crabs	Blue Cı	abs	Mummio	chogs	Silver P	erch						
Sediment Concentration mg/kg	Sediment Ingestion Rate kg/day		Fraction of Diet ²	Predicted Concentration, mg/kg, dry	Fraction of Diet	Predicted Concentration, mg/kg, dry	Fraction of Diet	Predicted Concentration, mg/kg, dry	Fraction of Diet	Food Ingestion Rate kg/day	Body Weight kg		Total Dose mg kg ⁻¹ day	Aroclor 1268 NOAEL mg/kg/day ³	Hazard Quotient
0.2	0.015	0.040	0.1	0.085	0.1	0.55	0.3	0.59	0.5	0.33	6.7	1	0.0238	0.03	0.79
0.3	0.015	0.050	0.1	0.107	0.1	0.62	0.3	0.72	0.5	0.33	6.7	1	0.0282	0.03	0.94
0.27	0.015	0.054	0.1	0.115	0.1	0.64	0.3	0.77	0.5	0.33	6.7	1	0.0299	0.03	0.997
0.3	0.015	0.060	0.1	0.128	0.1	0.67	0.3	0.85	0.5	0.33	6.7	1	0.0324	0.03	1.08
0.4	0.015	0.080	0.1	0.170	0.1	0.78	0.3	1.09	0.5	0.33	6.7	1	0.0405	0.03	1.4
0.5	0.015	0.100	0.1	0.213	0.1	0.87	0.3	1.33	0.5	0.33	6.7	1	0.0482	0.03	1.6

			Fiddler (Crabs	Blue Cı	rabs	Mummio	chogs	Silver P	erch						
C	Sediment Concentration mg/kg	Sediment Ingestion Rate kg/day	Predicted Concentration, mg/kg, dry ¹	Fraction of Diet ²	Predicted Concentration, mg/kg, dry	Fraction of Diet	Predicted Concentration, mg/kg, dry	Fraction of Diet	Predicted Concentration, mg/kg, dry	Fraction of Diet	Food Ingestion Rate kg/day	Body Weight kg		Total Dose mg kg ⁻¹ day	Aroclor 1268 LOAEL mg/kg/day ³	Hazard Quotient
	2	0.015	0.399	0.1	0.852	0.1	1.71	0.3	4.53	0.5	0.33	6.7	1	0.147	0.3	0.49
	3	0.015	0.599	0.1	1.278	0.1	2.09	0.3	6.48	0.5	0.33	6.7	1	0.206	0.3	0.7
	4.65	0.015	0.928	0.1	1.981	0.1	2.60	0.3	9.55	0.5	0.33	6.7	1	0.298	0.3	0.993
	5	0.015	0.998	0.1	2.130	0.1	2.69	0.3	10.18	0.5	0.33	6.7	1	0.317	0.3	1.1
	6	0.015	1.197	0.1	2.556	0.1	2.94	0.3	11.96	0.5	0.33	6.7	1	0.370	0.3	1.2
	7	0.015	1.397	0.1	2.982	0.1	3.17	0.3	13.70	0.5	0.33	6.7	1	0.421	0.3	1.4

¹ Predicted concentrations in prey reflected bioaccumulation relationships in Table 1.

² Dietary fractions and other food-chain model assumptions were drawn from parameter values on Table 2.

³ Toxicity reference values are provided in Table 7-8.

Table 7-16_Summary of protective sediment concentrations for wildlife and fish based on a hazard quotient (1.0)

	P	rotective Sedimo	ent Concentratio	ns
Receptor	Total N	Mercury	Aroclo	or-1268
	NOAEL	LOAEL	NOAEL	LOAEL
Marsh Rabbit	NA	NA	8	80
Clapper Rail	2.2	22	NA	NA
Raccoon	NA	NA	4.3	47
Green Heron	0.44	2.7	NA	NA
River Otter	1.7	4.1	0.27	4.7
Finfish				
Finfish Model ^a	0.19	0.47		
Finfish Model b			1.5	7
Finfish Model ^c			2.06	10.00
Red Drum ^d	0.73	1.55	2.5	16.8
Red Drum ^e	2.32	3.95	7.6	27.6
Black Drum d	0.85	1.6	0.55	2.1
Black Drum ^e	2.5	4.65	1.93	7.1
Silver Perch d	0.43	0.87	0.58	2.41
Silver Perch ^e	1.52	2.55	1.99	7.0
Spotted Seatrout d	0.42	0.7	0.67	2.8
Spotted Seatrout ^e	1.1	1.85	2.2	8.0
Striped Mullet d	11	25	0.39	1.3
Striped Mullet ^e	19.9	39	0.84	3.0

NA - Not assessed because receptor is not at risk.

a - Based on red drum model exposure (Evans and Engel, 1994) procedure (See Appendix H.)

b - Finfish model exposure Approach 1 (K_{PW} derived by Clark et al. (1990) procedure).

c - Finfish model exposure Approach 2 (K_{PW} derived by Bergen et al. (1993) procedure).

d - Based on BAF curves for data aggregated by year for field-collected finfish.

e - Based on area-weighted site BAF for field-collected finfish.

^{-- -} Model does not apply to receptor.

Table 7-17_Determination of protective sediment concentrations for higher trophic level finfish - mercury LCP Chemical, Brunswick, GA

Finfish exposure model based on Red Drum from Evans and Engel (1994)

		Fiddler Crab	s		Blue Crabs			Mummichog	S	Conc.	Diogganimul			
Sediment Concentrati on mg/kg	Predicted Total Mercury Conc. mg/kg, dry ¹	Predicted Methyl- mercury Conc. mg/kg ²	Fraction of Diet ³	Predicted Total Mercury Conc. mg/kg, dry ¹	Predicted Methyl- mercury Conc. mg/kg ²	Fraction of Diet ³	Predicted Total Mercury Conc. mg/kg, dry ¹	Predicted Methyl- mercury Conc. mg/kg ²	Fraction of Diet ³	mercury in Red Drum Diet, mg/kg	Bioaccumul ation Factor for E&E Model (includes growth) ⁵	E&E Model Predicted Red Drum Conc. mg/kg dw ⁶	Methyl Mercury NOAEL mg/kg dw ⁷	Hazard Quotient
0.10	0.07	0.05	0.30	0.1	0.1	0.30	0.07	0.06	0.40	0.08	4.78	0.38	0.6	0.63
0.15	0.09	0.06	0.30	0.2	0.2	0.30	0.08	0.07	0.40	0.10	4.78	0.50	0.6	0.83
0.19	0.10	0.07	0.30	0.2	0.2	0.30	0.08	0.07	0.40	0.12	4.78	0.59	0.6	0.986
0.3	0.12	0.08	0.30	0.4	0.4	0.30	0.09	0.08	0.40	0.17	4.78	0.84	0.6	1.4
0.4	0.14	0.10	0.30	0.5	0.5	0.30	0.09	0.09	0.40	0.22	4.78	1.05	0.6	1.8
0.5	0.16	0.11	0.30	0.7	0.7	0.30	0.10	0.09	0.40	0.26	4.78	1.26	0.6	2.1

	Fiddler Crabs		S	Blue Crabs			1	Mummichog	s	Conc.	Piogogumul			
Sediment Concentrati on mg/kg	Predicted Total Mercury Conc. mg/kg, dry ¹	Predicted Methyl- mercury Conc. mg/kg ²	Fraction of Diet ³	Predicted Total Mercury Conc. mg/kg, dry ¹	Predicted Methyl- mercury Conc. mg/kg ²	Fraction of Diet ³	Predicted Total Mercury Conc. mg/kg, dry ¹	Predicted Methyl- mercury Conc. mg/kg ²	Fraction of Diet ³	Methyl- mercury in Red Drum Diet, mg/kg dw ⁴	Bioaccumul ation Factor for E&E Model (includes growth) ⁵	E&E Model Predicted Red Drum Conc. mg/kg dw ⁶	Methyl Mercury LOAEL mg/kg dw ⁷	Hazard Quotient
0.3 0.4 0.47 0.6 0.7 1.0	0.12 0.14 0.15 0.17 0.18 0.22	0.08 0.10 0.10 0.12 0.13 0.15	0.30 0.30 0.30 0.30 0.30 0.30 0.30	0.4 0.5 0.6 0.8 0.9 1.3	0.4 0.5 0.6 0.8 0.9 1.3	0.30 0.30 0.30 0.30 0.30 0.30	0.09 0.09 0.10 0.10 0.11 0.11	0.08 0.09 0.09 0.09 0.10 0.11	0.40 0.40 0.40 0.40 0.40 0.40	0.17 0.22 0.25 0.31 0.35 0.48	4.78 4.78 4.78 4.78 4.78 4.78 4.78	0.84 1.05 1.20 1.47 1.67 2.3	1.2 1.2 1.2 1.2 1.2 1.2	0.70 0.88 0.998 1.2 1.4 1.9

¹ Based on bioaccumulation models presented on Table 7-6.

- 2 Based on average proportions of methylmercury in biota in Table 7-9.
- 3 Based on dietary fractions presented in Table 29.
- 4 Concentration in prey normalized by dietary fraction.
- 5 Food-chain multiplier for the Evans and Engel (1994) model including growth. (See Table 1 in Appendix H.)
- 6 Bioaccumulation factor from Evans and Engel (1994) model mutiplied by the concentration in the Red Drum diet.
- 7 Toxicity Reference Values are in Table 7-8.

Yellow shading identifies protective sediment concentration at a HQ of 1.

5

Table 7-18_Determination of protective sediment concentrations for higher trophic level finfish - Aroclor 1268 LCP Chemical, Brunswick, GA

Gobas Model Approach 1 - Gobas model using estimate of Aroclor 1268 concentration in surface water from Clark et al. (1990)

		Fiddle	r Crabs	Blue	Crabs	Mumn	nichogs				
Sediment Concentration mg/kg	Predicted Surface Water Conc. µg/L Clark et al. (1990) ¹	Predicted Conc. mg/kg, dry ¹	Fraction of Diet ²	Predicted Conc. mg/kg, dry ¹	Fraction of Diet ²	Predicted Conc. mg/kg, dry ¹	Fraction of Diet ²	Average Conc. in Prey, mg/kg dw ³	Gobas Model Predicted Conc. Red Drum, mg/kg dw ⁴	Aroclor 1268 NOAEL mg/kg dw	Hazard Quotient
1.0	0.003	0.2	0.30	0.43	0.30	0.6	0.40	0.41	0.85	1.36	0.63
1.5	0.005	0.3	0.30	0.64	0.30	0.7	0.40	0.55	1.18	1.36	0.87
1.8	0.006	0.4	0.30	0.77	0.30	0.7	0.40	0.63	1.37	1.36	1.01
2	0.007	0.4	0.30	0.85	0.30	0.8	0.40	0.69	1.49	1.36	1.10
3	0.010	0.6	0.30	1.28	0.30	0.9	0.40	0.94	2.09	1.36	1.54
4	0.013	0.8	0.30	1.70	0.30	1.1	0.40	1.19	2.68	1.36	1.97

		Fiddler Crabs		Blue Crabs		Mumn	nichogs				
Sediment Concentration mg/kg	Predicted Surface Water Conc. µg/L Clark et al. (1990) ¹	Predicted Conc. mg/kg, dry ¹	Fraction of Diet ²	Predicted Conc. mg/kg, dry ¹	Fraction of Diet ²	Predicted Conc. mg/kg, dry ¹	Fraction of Diet ²	• • • • • • • • • • • • • • • • • • • •	Gobas Model Predicted Conc. Red Drum, mg/kg dw ⁴	Aroclor 1268 LOAEL mg/kg dw	Hazard Quotient
6 7 8.5 9 10 15	0.020 0.023 0.028 0.030 0.033 0.050	1.2 1.4 1.7 1.8 2.0 3.0	0.30 0.30 0.30 0.30 0.30 0.30 0.30	2.56 2.98 3.62 3.83 4.26 6.39	0.30 0.30 0.30 0.30 0.30 0.30 0.30	1.3 1.4 1.6 1.6 1.7 2.1	0.40 0.40 0.40 0.40 0.40 0.40	1.66 1.89 2.23 2.34 2.56 3.65	3.82 4.37 5.20 5.48 6.02 8.72	5.2 5.2 5.2 5.2 5.2 5.2 5.2	0.73 0.84 1.00 1.05 1.16 1.68

¹ Concentration in surface water was estimated by the partition coefficient for suspended sediments K_{PW} in Appendix H given by Clark et al. (1990).

² See Table 4-26 in main document.

³ Concentrations in fiddler crabs, blue crabs, and mummichogs weighted by proportion of red drum diet.

⁴ See Table 2 in Appendix H for details.

Table 7-18_ Determination of protective sediment concentrations for Red Drum - Aroclor 1268 (Continued) LCP Chemical, Brunswick, GA

Gobas Model Approach 2 - Gobas model using estimate of Aroclor 1268 concentration in surface water from Bergen et al. (1993)

		Fiddle	r Crabs	Blue	Crabs	Mumn	nichogs				
Sediment Concentration mg/kg	Predicted Surface Water Conc. µg/L Bergen et al. (1993) ¹	Predicted Conc. mg/kg, dry ¹	Fraction of Diet ²	Predicted Conc. mg/kg, dry ¹	Fraction of Diet ²	Predicted Conc. mg/kg, dry ¹	Fraction of Diet ²	Average Cocentratio n in Prey, mg/kg dw ³	Gobas Model Predicted Conc. Red Drum, mg/kg dw ⁴	Aroclor 1268 NOAEL mg/kg dw	Hazard Quotient
1.0	0.002	0.2	0.30	0.43	0.30	0.6	0.40	0.41	0.77	1.36	0.57
2.0	0.004	0.4	0.30	0.85	0.30	0.8	0.40	0.69	1.32	1.36	0.97
2.1	0.004	0.4	0.30	0.88	0.30	0.8	0.40	0.70	1.36	1.36	0.997
2.2	0.004	0.4	0.30	0.94	0.30	0.8	0.40	0.74	1.43	1.36	1.05
3	0.005	0.6	0.30	1.28	0.30	0.9	0.40	0.94	1.84	1.36	1.35
4	0.007	0.8	0.30	1.70	0.30	1.1	0.40	1.19	2.34	1.36	1.72

		Fiddler Crabs		Blue Crabs		Mumn	nichogs				
Sediment Concentration mg/kg	Predicted Surface Water Conc. µg/L Bergen et al. (1993) ¹	Predicted Conc. mg/kg, dry ¹	Fraction of Diet ²	Predicted Conc. mg/kg, dry ¹	Fraction of Diet ²	Predicted Conc. mg/kg, dry ¹	Fraction of Diet ²	Average Cocentratio n in Prey, mg/kg dw ³	Gobas Model Predicted Conc. Red Drum, mg/kg dw ⁴	Aroclor 1268 LOAEL mg/kg dw	Hazard Quotient
6 8 9 10 12 15	0.011 0.014 0.016 0.018 0.021 0.027	1.2 1.6 1.8 2.0 2.4 3.0	0.30 0.30 0.30 0.30 0.30 0.30	2.56 3.41 3.83 4.26 5.11 6.39	0.30 0.30 0.30 0.30 0.30 0.30	1.3 1.5 1.6 1.7 1.9 2.1	0.40 0.40 0.40 0.40 0.40 0.40	1.66 2.11 2.34 2.56 3.00 3.65	3.31 4.26 4.72 5.19 6.10 7.46	5.2 5.2 5.2 5.2 5.2 5.2 5.2	0.64 0.82 0.9082 0.997 1.17 1.43

¹ Concentration in surface water was estimated by the partition coefficient for suspended sediments K_{PW} in Appendix F given by Bergen et al. (1993).

² See Table 4-26 in main document.

³ Concentrations in fiddler crabs, blue crabs, and mummichogs weighted by proportion of red drum diet.

⁴ See Table 3 in Appendix H for details.

Table 7-19_Determination of protective sediment concentrations for red drum - mercury * LCP Chemical, Brunswick, GA

Sediment Concentration mg/kg	Predicted Total Mercury Concentration mg/kg, dry ¹	Predicted Methyl-mercury Concentration, mg/kg	Mean Methyl Mercury Reference ^a Concentration	Body Burden less Reference	Methyl Mercury NOAEL mg/kg/day	Hazard Quotient
0.5	0.74	0.66	0.27	0.40	0.6	0.66
0.6	0.85	0.75	0.27	0.49	0.6	0.81
0.73	0.97	0.87	0.27	0.60	0.6	0.9998
0.8	1.03	0.92	0.27	0.65	0.6	1.09
1.0	1.21	1.08	0.27	0.81	0.6	1.35
2.0	1.97	1.75	0.27	1.48	0.6	2.47

Based on Area-Weighted Site BAF

Sediment Concentration mg/kg	Predicted Total Mercury Concentration mg/kg, dry ¹	Predicted Methyl-mercury Concentration mg/kg	Mean Methyl Mercury Reference ^a Concentration	Body Burden less Reference	Methyl Mercury NOAEL mg/kg/day	Hazard Quotient
2	0.83	0.74	0.27	0.47	0.6	0.79
2.1	0.87	0.78	0.27	0.51	0.6	0.85
2.32	0.97	0.86	0.27	0.59	0.6	0.99
2.5	1.04	0.93	0.27	0.66	0.6	1.10
3.0	1.25	1.11	0.27	0.84	0.6	1.41
4.0	1.66	1.48	0.27	1.21	0.6	2.02

^{* -} from field-collected finfish

Based on BAF Curves

Sediment Concentration mg/kg	Predicted Total Mercury Concentrati on mg/kg, dry ¹	Predicted Methyl-mercury Concentration mg/kg	Mean Methyl Mercury Reference ^a Concentration	Body Burden less Reference	Methyl Mercury LOAEL mg/kg/day	Hazard Quotient
1.0 1.3 1.55	1.21 1.45 1.64	1.08 1.29 1.46	0.27 0.27 0.27	0.81 1.03	1.2 1.2	0.67 0.86 0.997
1.6 2.0 4.0	1.68 1.97 3.19	1.50 1.75 2.84	0.27 0.27 0.27 0.27	1.23 1.48 2.57	1.2 1.2 1.2 1.2	1.02 1.23 2.15

Based on Area-Weighted Site BAF

Sediment Concentration mg/kg	Predicted Total Mercury Concentrati on mg/kg, dry ¹	Predicted Methyl-mercury Concentration mg/kg	Mean Methyl Mercury Reference ^a Concentration	Body Burden less Reference	Methyl Mercury LOAEL mg/kg/day	Hazard Quotient
2 3.0 3.95 4.0 5.0 6.0	0.83 1.25 1.64 1.66 2.08 2.50	0.74 1.11 1.46 1.48 1.85 2.22	0.27 0.27 0.27 0.27 0.27 0.27 0.27	0.47 0.84 1.20 1.21 1.58 1.95	1.2 1.2 1.2 1.2 1.2 1.2	0.39 0.70 0.996 1.01 1.32 1.63

a - From Troup Creek reference area (Table 4-11a in text)

Yellow shading identifies protective sediment concentration at a HQ of 1.

Table 7-20_ Determination of protective sediment concentrations for red drum - Aroclor 1268 * LCP Chemical, Brunswick, GA

Sediment Concentration	· · · · · · · · · · · · · · · · · · ·	Mean Reference		Aroclor 1268 NOAEL	Hazard
mg/kg	mg/kg, dry	Concentration	Reference	mg/kg/day	Quotient
1.0 2.0	0.77 1.24	0.09 0.09	0.68 1.15	1.36 1.36	0.50 0.85
2.5	1.45	0.09	1.36	1.36	0.996
3.0 4.0 5.0	1.64 1.99 2.32	0.09 0.09 0.09	1.55 1.90 2.23	1.36 1.36 1.36	1.14 1.40 1.64

Based on Area-Weighted Site BAF

	Predicted				
Sediment	Aroclor-1268		Body Burden	Aroclor 1268	
Concentration	Concentration	Mean Reference	less	NOAEL	Hazard
mg/kg	mg/kg, dry	Concentration	Reference	mg/kg/day	Quotient
5	0.96	0.09	0.87	1.36	0.64
6	1.15	0.09	1.06	1.36	0.78
7.55	1.45	0.09	1.36	1.36	1.000
8.0	1.54	0.09	1.45	1.36	1.06
9	1.73	0.09	1.64	1.36	1.20
10	1.92	0.09	1.83	1.36	1.35

^{* -} from field-collected finfish

Yellow shading identifies protective sediment concentration at a HQ of 1.

Based on BAF Curves

	Predicted			Aroclor	
Sediment	Aroclor-1268	Mean		1268	
Concentration	Concentration,	Reference	Body Burden	LOAEL	Hazard
mg/kg	mg/kg, dry	Concentration	less Reference	mg/kg/day	Quotient
10	3.71	0.09	3.62	5.2	0.70
15	4.89	0.09	4.80	5.2	0.92
16.8	5.28	0.09	5.19	5.2	0.998
20	5.95	0.09	5.86	5.2	1.13
25	6.92	0.09	6.83	5.2	1.31
30	7.84	0.09	7.75	5.2	1.49

Based on Area-Weighted Site BAF

	Predicted			Aroclor	
Sediment	Aroclor-1268	Mean		1268	
Concentration	Concentration	Reference	Body Burden	LOAEL	Hazard
mg/kg	mg/kg, dry	Concentration	less Reference	mg/kg/day	Quotient
20	3.84	0.09	3.75	5.2	0.72
25	4.80	0.09	4.71	5.2	0.91
27.55	5.29	0.09	5.20	5.2	1.000
30	5.76	0.09	5.67	5.2	1.09
35	6.72	0.09	6.63	5.2	1.28
40	7.68	0.09	7.59	5.2	1.46

Table 7-21_Determination of protective sediment concentrations for black drum - mercury * LCP Chemical, Brunswick, GA

Predicted

Methyl-mercury

Concentration,

mg/kg dw

0.49

0.57

0.66

0.70

0.83

1.69

Based on BAF Curves

Mean Methyl

Mercury

Reference a

Concentration

0.10

0.10

0.10

0.10

0.10

0.10

Hazard Quotient 0.65 0.79 0.93 1.00

1.21

2.65

Methyl

Mercury

NOAEL

mg/kg/day

0.6

0.6

0.6

0.6

0.6

0.6

Body Burden

less reference

0.39

0.47

0.56

0.60

0.73

1.59

Based on BAF Curves

Sediment Concentration mg/kg	Predicted Total Mercury Concentration, mg/kg dw	Predicted Methyl-mercury Concentration, mg/kg dw	Mean Methyl Mercury Reference ^a Concentration	Body Burden less reference	Methyl Mercury LOAEL mg/kg/day	Hazard Quotient
1.0	0.91	0.83	0.10	0.73	1.2	0.61
1.2	1.10	1.00	0.10	0.90	1.2	0.75
1.5	1.38	1.26	0.10	1.16	1.2	0.96
1.55	1.43	1.30	0.10	1.20	1.2	1.00
1.7	1.57	1.43	0.10	1.33	1.2	1.11
2.0	1.86	1.69	0.10	1.59	1.2	1.33

Based on Area-Weighted Site BAF

Sediment Concentration mg/kg	Predicted Total Mercury Concentration, mg/kg dw	Predicted Methyl-mercury Concentration, mg/kg dw	Mean Methyl Mercury Reference ^a Concentration	Body Burden less reference	Methyl Mercury NOAEL mg/kg/day	Hazard Quotient
1.0	0.307	0.28	0.10	0.18	0.6	0.30
2.0	0.614	0.56	0.10	0.46	0.6	0.76
2.5	0.768	0.70	0.10	0.60	0.6	1.00
3.0	0.921	0.84	0.10	0.74	0.6	1.23
4.0	1.228	1.12	0.10	1.02	0.6	1.70
5.0	1.535	1.40	0.10	1.30	0.6	2.16

Based on Area-Weighted Site BAF

Sediment Concentration mg/kg	Predicted Total Mercury Concentration, mg/kg dw	Predicted Methyl-mercury Concentration, mg/kg dw	Mean Methyl Mercury Reference ^a Concentration	Body Burden less reference	Methyl Mercury LOAEL mg/kg/day	Hazard Quotient
2.0	0.614	0.56	0.10	0.46	1.2	0.38
2.5	0.768	0.70	0.10	0.60	1.2	0.50
4.65	1.428	1.30	0.10	1.20	1.2	1.00
5.0	1.535	1.40	0.10	1.30	1.2	1.08
6.0	1.842	1.68	0.10	1.58	1.2	1.31
7.0	2.149	1.96	0.10	1.86	1.2	1.55

Predicted Total

Mercury

Concentration,

mg/kg dw

0.54

0.63

0.72

0.77

0.91

1.86

Sediment

Concentration

mg/kg

0.6

0.7

0.8

0.85

1.0

2.0

^{* -} from field-collected finfish

a - From Troup Creek reference area (Table 4-11a in text)

Table 7-22_Determination of protective sediment concentrations for black drum - Aroclor 1268 * LCP Chemical, Brunswick, GA

Sediment Concentration mg/kg	Predicted Aroclor-1268 Concentration mg/kg, dry	Mean Reference Concentration	Body Burden less reference	Aroclor 1268 NOAEL mg/kg/day	Hazard Quotient
0.4	1.06	0.07	0.99	1.36	0.72
0.5	1.31	0.07	1.24	1.36	0.91
0.55	1.43	0.07	1.36	1.36	1.00
0.6	1.56	0.07	1.49	1.36	1.09
0.7	1.81	0.07	1.74	1.36	1.28
1.0	2.54	0.07	2.47	1.36	1.82

Sediment Concentration mg/kg	Predicted Aroclor-1268 Concentration mg/kg, dry	Mean Reference Concentration	Body Burden less reference	Aroclor 1268 LOAEL mg/kg/day	Hazard Quotient
1.0	2.54	0.07	2.47	5.2	0.48
2.0	4.94	0.07	4.87	5.2	0.94
2.14	5.26	0.07	5.19	5.2	1.00
2.5	6.12	0.07	6.05	5.2	1.16
3.0	7.29	0.07	7.22	5.2	1.39
4.0	9.61	0.07	9.54	5.2	1.83

Based on Area-Weighted Site BAF

Sediment Concentration mg/kg	Predicted Aroclor-1268 Concentration mg/kg, dry	Mean Reference Concentration	Body Burden less reference	Aroclor 1268 NOAEL mg/kg/day	Hazard Quotient
1.0	0.74	0.07	0.67	1.36	0.49
1.5	1.11	0.07	1.04	1.36	0.77
1.93	1.43	0.07	1.36	1.36	1.00
2.0	1.48	0.07	1.41	1.36	1.04
2.5	1.85	0.07	1.78	1.36	1.31
3.0	2.22	0.07	2.15	1.36	1.58

Sediment Concentration mg/kg	Predicted Aroclor-1268 Concentration mg/kg, dry	Mean Reference Concentration	Body Burden less reference	Aroclor 1268 LOAEL mg/kg/day	Hazard Quotient
6.0	4.45	0.07	4.38	5.2	0.84
7.0	5.19	0.07	5.12	5.2	0.98
7.10	5.26	0.07	5.19	5.2	1.00
8.0	5.93	0.07	5.86	5.2	1.13
9.0	6.67	0.07	6.60	5.2	1.27
10	7.41	0.07	7.34	5.2	1.41

^{* -} from field-collected finfish

Table 7-23_ Determination of protective sediment concentrations for silver perch - mercury * LCP Chemical, Brunswick, GA

Sediment Concentration mg/kg	Predicted Total Mercury Concentration, mg/kg dw	Predicted Methyl-mercury Concentration, mg/kg dw	Mean Methyl Mercury Reference ^a Concentration	Body Burden less reference	Methyl Mercury NOAEL mg/kg/day	Hazard Quotient
0.3	0.68	0.68	0.29	0.39	0.6	0.65
0.4	0.84	0.84	0.29	0.55	0.6	0.92
0.43	0.89	0.89	0.29	0.60	0.6	1.00
0.5	0.99	0.99	0.29	0.70	0.6	1.17
0.6	1.13	1.13	0.29	0.84	0.6	1.41
0.7	1.27	1.27	0.29	0.98	0.6	1.63

Based on BAF Curves

Sediment Concentration mg/kg	Predicted Total Mercury Concentration, mg/kg dw	Predicted Methyl-mercury Concentration, mg/kg dw	Mean Methyl Mercury Reference ^a Concentration	Body Burden less reference	Methyl Mercury LOAEL mg/kg/day	Hazard Quotient
0.6	1.13	1.13	0.29	0.84	1.2	0.70
0.7	1.27	1.27	0.29	0.98	1.2	0.82
0.869	1.49	1.49	0.29	1.20	1.2	1.00
1.0	1.65	1.65	0.29	1.36	1.2	1.13
2.0	2.75	2.75	0.29	2.46	1.2	2.05
5.0	5.41	5.41	0.29	5.12	1.2	4.26

Based on Area-Weighted Site BAF

Sediment Concentration mg/kg	Predicted Total Mercury Concentration, mg/kg dw	Predicted Methyl-mercury Concentration, mg/kg dw	Mean Methyl Mercury Reference ^a Concentration	Body Burden less reference	Methyl Mercury NOAEL mg/kg/day	Hazard Quotient
1.0	0.58	0.58	0.29	0.29	0.6	0.49
1.3	0.76	0.76	0.29	0.47	0.6	0.78
1.52	0.89	0.89	0.29	0.60	0.6	1.00
1.6	0.93	0.93	0.29	0.64	0.6	1.07
1.7	0.99	0.99	0.29	0.70	0.6	1.17
1.8	1.05	1.05	0.29	0.76	0.6	1.27

Based on Area-Weighted Site BAF

Sediment Concentration mg/kg	Predicted Total Mercury Concentration, mg/kg dw	Predicted Methyl-mercury Concentration, mg/kg dw	Mean Methyl Mercury Reference ^a Concentration	Body Burden less reference	Methyl Mercury LOAEL mg/kg/day	Hazard Quotient
1	0.58	0.58	0.29	0.29	1.2	0.25
2.0	1.17	1.17	0.29	0.88	1.2	0.73
2.55	1.49	1.49	0.29	1.20	1.2	1.00
3	1.75	1.75	0.29	1.46	1.2	1.22
4.0	2.34	2.34	0.29	2.05	1.2	1.71
5	2.92	2.92	0.29	2.63	1.2	2.19

^{* -} from field-collected finfish

a - From Troup Creek reference area (Table 4-11a in text)

Table 7-24_Determination of protective sediment concentrations for silver perch - Aroclor 1268 * LCP Chemical, Brunswick, GA

	Predicted				
Sediment	Aroclor-1268	Mean		Aroclor 1268	
Concentration	Concentration	Reference	Body Burden	NOAEL	Hazard
mg/kg	mg/kg, dry	Concentration	less reference	mg/kg/day	Quotient
0.4	1.09	0.16	0.94	1.36	0.69
0.5	1.33	0.16	1.18	1.36	0.86
0.58	1.51	0.16	1.36	1.36	1.00
0.6	1.56	0.16	1.41	1.36	1.04
0.7	1.79	0.16	1.64	1.36	1.20
1.0	2.46	0.16	2.30	1.36	1.69

	Predicted				
Sediment	Aroclor-1268	Mean		Aroclor 1268	
Concentration	Concentration	Reference	Body Burden	LOAEL	Hazard
mg/kg	mg/kg, dry	Concentration	less reference	mg/kg/day	Quotient
1.5	3.51	0.16	3.36	5.2	0.65
2.0	4.53	0.16	4.37	5.2	0.84
2.4	5.34	0.16	5.19	5.2	1.00
3.0	6.48	0.16	6.33	5.2	1.22
4.0	8.36	0.16	8.20	5.2	1.58
5.0	10.18	0.16	10.02	5.2	1.93

Based on Area-Weighted Site BAF

Sediment Concentration mg/kg	Predicted Aroclor-1268 Concentration mg/kg, dry	Mean Reference Concentration	Body Burden less reference	Aroclor 1268 NOAEL mg/kg/day	Hazard Quotient
1	0.76	0.16	0.61	1.36	0.45
1.5	1.14	0.16	0.99	1.36	0.73
2.0	1.51	0.16	1.36	1.36	1.00
3.0	2.29	0.16	2.13	1.36	1.57
4.0	3.05	0.16	2.89	1.36	2.13
5.0	3.81	0.16	3.66	1.36	2.69

	Predicted				
Sediment	Aroclor-1268	Mean		Aroclor 1268	
Concentration	Concentration	Reference	Body Burden	LOAEL	Hazard
mg/kg	mg/kg, dry	Concentration	less reference	mg/kg/day	Quotient
5.0	3.81	0.16	3.66	5.2	0.70
6.0	4.57	0.16	4.42	5.2	0.85
7.0	5.35	0.16	5.19	5.2	1.00
8.0	6.10	0.16	5.94	5.2	1.14
9.0	6.86	0.16	6.70	5.2	1.29
10.0	7.62	0.16	7.47	5.2	1.44

^{* -} from field-collected finfish

Table 7-25_Determination of protective sediment concentrations for spotted seatrout - mercury * LCP Chemical, Brunswick, ${\rm GA}$

Based on BAF Curves

Sediment Concentration mg/kg	Predicted Total Mercury Concentration, mg/kg dw	Predicted Methyl-mercury Concentration, mg/kg dw	Mean Methyl Mercury Reference ^a Concentration	Body Burden less reference	Methyl Mercury NOAEL mg/kg/day	Hazard Quotient
0.3	0.70	0.70	0.34	0.36	0.6	0.60
0.4	0.90	0.90	0.34	0.56	0.6	0.93
0.42	0.94	0.94	0.34	0.60	0.6	1.00
0.5	1.09	1.09	0.34	0.75	0.6	1.25
0.8	1.63	1.63	0.34	1.29	0.6	2.16
1	1.98	1.98	0.34	1.64	0.6	2.74

		Duscu	on Bill Curve	7.5		
Sediment Concentration mg/kg	Predicted Total Mercury Concentration, mg/kg dw	Predicted Methyl-mercury Concentration, mg/kg dw	Mean Methyl Mercury Reference ^a Concentration	Body Burden less reference	Methyl Mercury LOAEL mg/kg/day	Hazard Quotient
0.5	1.09	1.09	0.34	0.75	1.2	0.62
0.7	1.46	1.46	0.34	1.12	1.2	0.93
0.75	1.54	1.54	0.34	1.20	1.2	1.00
0.8	1.63	1.63	0.34	1.29	1.2	1.08
0.9	1.81	1.81	0.34	1.47	1.2	1.22
1.0	1.98	1.98	0.34	1.64	1.2	1.37

Based on Area-Weighted Site BAF

Based on Area-Weighted Site BAF

Sediment Concentration mg/kg	Predicted Total Mercury Concentration, mg/kg dw	Predicted Methyl-mercury Concentration, mg/kg dw	Mean Methyl Mercury Reference ^a Concentration	Body Burden less reference	Methyl Mercury NOAEL mg/kg/day	Hazard Quotient
0.8	0.66	0.66	0.34	0.32	0.6	0.54
1.0	0.83	0.83	0.34	0.49	0.6	0.82
1.1	0.94	0.94	0.34	0.60	0.6	0.99
1.3	1.08	1.08	0.34	0.74	0.6	1.23
1.4	1.16	1.16	0.34	0.82	0.6	1.37
1.5	1.24	1.24	0.34	0.90	0.6	1.51

Sediment Concentration mg/kg	Predicted Total Mercury Concentration, mg/kg dw	Predicted Methyl-mercury Concentration, mg/kg dw	Mean Methyl Mercury Reference ^a Concentration	Body Burden less reference	Methyl Mercury LOAEL mg/kg/day	Hazard Quotient
1	0.83	0.83	0.34	0.49	1.2	0.41
1.5	1.24	1.24	0.34	0.90	1.2	0.75
1.85	1.53	1.53	0.34	1.19	1.2	0.99
3.0	2.49	2.49	0.34	2.15	1.2	1.79
4	3.32	3.32	0.34	2.98	1.2	2.48
5.0	4.15	4.15	0.34	3.81	1.2	3.17

^{* -} from field-collected finfish

a - From Troup Creek reference area (Table 4-11a in text)

 $\label{thm:concentrations} Table~7-26_Determination~of~protective~sediment~concentrations~for~spotted~seatrout~-~Aroclor~1268~*~LCP~Chemical,~Brunswick,~GA$

Sediment Concentration	Predicted Aroclor-1268 Concentration	Mean Reference	Body Burden	Aroclor 1268 NOAEL	Hazard
mg/kg	mg/kg, dry	Concentration	less reference	mg/kg/day	Quotient
0.5 0.6	1.13 1.34	0.11 0.11	1.02 1.23	1.36 1.36	0.75 0.90
0.667	1.47	0.11	1.36	1.36	0.9998
0.7	1.54	0.11	1.43	1.36	1.05
0.8 1.0	1.73 2.12	0.11 0.11	1.62 2.01	1.36 1.36	1.19 1.48

	Predicted				
Sediment	Aroclor-1268	Mean		Aroclor 1268	
Concentration	Concentration	Reference	Body Burden	LOAEL	Hazard
mg/kg	mg/kg, dry	Concentration	less reference	mg/kg/day	Quotient
1.0	2.12	0.11	2.01	5.2	0.39
2.0	3.95	0.11	3.84	5.2	0.74
2.77	5.29	0.11	5.18	5.2	0.9969
3.0	5.69	0.11	5.58	5.2	1.07
4.0	7.37	0.11	7.26	5.2	1.40
5.0	9.01	0.11	8.90	5.2	1.71

Based on Area-Weighted Site BAF

Sediment Concentration mg/kg	Predicted Aroclor-1268 Concentration mg/kg, dry	Mean Reference Concentration	Body Burden less reference	Aroclor 1268 NOAEL mg/kg/day	Hazard Quotient
2.0 2.1	1.32 1.39	0.11 0.11	1.21 1.28	1.36 1.36	0.89
2.22 2.5 3.0 4.0	1.47 1.65 1.98 2.64	0.11 0.11 0.11 0.11	1.36 1.54 1.87 2.53	1.36 1.36 1.36 1.36	0.997 1.13 1.38 1.86

Sediment Concentration mg/kg	Predicted Aroclor-1268 Concentration mg/kg, dry	Mean Reference Concentration	Body Burden less reference	Aroclor 1268 LOAEL mg/kg/day	Hazard Quotient
6.0 7.0 8.02 9.0 10	3.97 4.63 5.30 5.95 6.61 7.27	0.11 0.11 0.11 0.11 0.11 0.11	3.86 4.52 5.19 5.84 6.50 7.16	5.2 5.2 5.2 5.2 5.2 5.2 5.2	0.74 0.87 0.998 1.12 1.25 1.38

^{* -} from field-collected finfish

Table 7-27_Determination of protective sediment concentrations for striped mullet -mercury * LCP Chemical, Brunswick, GA

Sediment Concentration mg/kg	Predicted Total Mercury Concentration, mg/kg dw	Predicted Methyl-mercury Concentration, mg/kg dw	Mean Methyl Mercury Reference ^a Concentration	Body Burden less reference	Methyl Mercury NOAEL mg/kg/day	Hazard Quotient
9.0	1.38	0.51	0.02	0.49	0.6	0.82
10	1.51	0.56	0.02	0.54	0.6	0.90
11.3	1.67	0.62	0.02	0.60	0.6	0.998
12	1.76	0.65	0.02	0.63	0.6	1.05
13	1.88	0.70	0.02	0.68	0.6	1.13
15	2.13	0.79	0.02	0.77	0.6	1.28

Based on BAF Curves

Sediment Concentration mg/kg	Predicted Total Mercury Concentration, mg/kg dw	Predicted Methyl-mercury Concentration, mg/kg dw	Mean Methyl Mercury Reference ^a Concentration	Body Burden less reference	Methyl Mercury LOAEL mg/kg/day	Hazard Quotient
15	2.13	0.79	0.02	0.77	1.2	0.64
20	2.71	1.00	0.02	0.98	1.2	0.82
25.1	3.29	1.22	0.02	1.20	1.2	0.997
30	3.83	1.42	0.02	1.40	1.2	1.16
35	4.36	1.61	0.02	1.59	1.2	1.33
40	4.88	1.81	0.02	1.79	1.2	1.49

Based on Area-Weighted Site BAF

Sediment Concentration mg/kg	Predicted Total Mercury Concentration, mg/kg dw	Predicted Methyl-mercury Concentration, mg/kg dw	Mean Methyl Mercury Reference ^a Concentration	Body Burden less reference	Methyl Mercury NOAEL mg/kg/day	Hazard Quotient
15 19	1.26 1.60	0.47 0.59	0.02 0.02	0.45 0.57	0.6 0.6	0.74 0.951
19.94	1.67	0.62	0.02	0.60	0.6	0.9996
21	1.76	0.65	0.02	0.63	0.6	1.05
22	1.85	0.68	0.02	0.66	0.6	1.11
25	2.10	0.78	0.02	0.76	0.6	1.26

Based on Area-Weighted Site BAF

Sediment Concentration mg/kg	Predicted Total Mercury Concentration, mg/kg dw	Predicted Methyl-mercury Concentration, mg/kg dw	Mean Methyl Mercury Reference ^a Concentration	Body Burden less reference	Methyl Mercury LOAEL mg/kg/day	Hazard Quotient
20	1.68	0.62	0.02	0.60	1.2	0.50
30	2.52	0.93	0.02	0.91	1.2	0.76
39.1	3.28	1.22	0.02	1.20	1.2	0.996
50	4.20	1.55	0.02	1.53	1.2	1.28
60	5.04	1.86	0.02	1.84	1.2	1.54
70	5.88	2.18	0.02	2.16	1.2	1.80

^{* -} from field-collected finfish

a - From Troup Creek reference area (Table 4-11a in text)

Yellow shading identifies protective sediment concentration at a HQ of 1.

Table 7-28_ Determination of protective sediment concentrations for striped mullet - Aroclor 1268 * LCP Chemical, Brunswick, GA

Sediment Concentration mg/kg	Predicted Aroclor-1268 Concentration mg/kg, dry	Mean Reference Concentration	Body Burden less reference	Aroclor 1268 NOAEL mg/kg/day	Hazard Quotient
0.30 0.35 0.392 0.40 0.50	1.13 1.33 1.50 1.53 1.93 3.99	0.14 0.14 0.14 0.14 0.14 0.14	0.99 1.19 1.36 1.39 1.79 3.85	1.36 1.36 1.36 1.36 1.36 1.36	0.73 0.88 0.998 1.02 1.32 2.83

	Predicted				
Sediment	Aroclor-1268	Mean		Aroclor 1268	
Concentration	Concentration	Reference	Body Burden	LOAEL	Hazard
mg/kg	mg/kg, dry	Concentration	less reference	mg/kg/day	Quotient
1.0	3.99	0.14	3.85	5.2	0.74
1.2	4.83	0.14	4.69	5.2	0.90
1.32	5.34	0.14	5.20	5.2	0.999
1.4	5.68	0.14	5.54	5.2	1.06
1.5	6.10	0.14	5.96	5.2	1.15
2.0	8.24	0.14	8.10	5.2	1.56

Based on Area-Weighted Site BAF

	Predicted				
Sediment	Aroclor-1268	Mean		Aroclor 1268	
Concentration	Concentration	Reference	Body Burden	NOAEL	Hazard
mg/kg	mg/kg, dry	Concentration	less reference	mg/kg/day	Quotient
0.7	1.24	0.14	1.10	1.36	0.81
0.8	1.42	0.14	1.28	1.36	0.94
0.843	1.50	0.14	1.35	1.36	0.996
0.9	1.60	0.14	1.46	1.36	1.07
1.0	1.78	0.14	1.63	1.36	1.20
1.2	2.13	0.14	1.99	1.36	1.46

	Predicted				
Sediment	Aroclor-1268	Mean		Aroclor 1268	
Concentration	Concentration	Reference	Body Burden	LOAEL	Hazard
mg/kg	mg/kg, dry	Concentration	less reference	mg/kg/day	Quotient
1.0	1.78	0.14	1.63	5.2	0.31
2.0	3.55	0.14	3.41	5.2	0.66
3.0	5.33	0.14	5.18	5.2	0.9967
4.0	7.10	0.14	6.96	5.2	1.34
5.0	8.88	0.14	8.73	5.2	1.68
6.0	10.65	0.14	10.51	5.2	2.02

^{* -} from field-collected finfish

Table 7-29_COPC concentrations protective of benthic invertebrates

	Grass	s Shrimp ^a	Am	ohipods ^b
COPC	TEL	PEL / ER-L	TEL	PEL / ER-L
Mercury	1.4	3.2 (ER-L)	4.2	11.3 (ER-L)
Reliability Rank	17	15	24	16
Aroclor 1268 Reliability Rank	3.2 11	12.8 (PEL)	6.2 46	16 (ER-L) 37
Total PAHs Reliability Rank	1.6	4.0 (ER-L) 2	0.8 12	1.5 (ER-L) 7
Lead Reliability Rank	139 0.3	198 (PEL) 0.3	41 3	60 (ER-L)

^a - based on most sensitive endpoint (embryo development)

Reliability rank is specific to species

TEL - Threshold Effect Level

PEL - Probable Effects Level

ER-L - Effects Range Low

Numbers in bold and italics indicate the selected protective concentration ranges

^b - based on most sensitive endpoint (survival)

Table 7-30. Sediment remedial goal options for protection of wildlife and finfish LCP Chemical, Brunswick, GA

COPC Receptor Group	NOAEL		Rule	e of 5 F	Range		LOAEL	Selected RGO Range
Mercury mg/kg								
Omnivorous Birds	2.2	3.2	4.7	7	10	15	22	_
Piscivorous Birds	0.44	0.6	0.8	1.1	1.5	2.0	2.7	1 - 3
Piscivorous Mammals	1.7	2.0	2.4	2.8	3.3	3.9	4.2	
Aroclor 1268 mg/k	g							
Herbivorous Mammals	8	12	17	25	37	55	80	
Omnivorous Mammals	4.3	6	10	14	21	32	47	5 - 10
Piscivorous Mammals	0.27	0.4	0.7	1.1	1.8	2.9	4.6	
Mercury mg/kg			·	·				
Red Drum	0.73	1.0	1.3	1.7	2.2	3.0	3.95	
Black Drum	0.85	1.1	1.5	2.0	2.6	3.5	4.65	
Silver Perch	0.43	0.6	0.8	1	1.4	1.9	2.55	1 - 3
Spotted Seatrout	0.42	0.5	0.7	0.9	1.1	1.4	1.85	
Striped Mullet	11	14	17	21	26	32	39	
Aroclor 1268 mg/kg	g		·	·				
Red Drum	2.5	3.7	5.6	8.3	12.4	18.4	27.6	
Black Drum	0.55	0.8	1.3	2	3	4.6	7.1	
Silver Perch	0.58	0.9	1.3	2	3.1	4.6	7	3 - 6
Spotted Seatrout	0.67	1	1.5	2.3	3.5	5.3	8	
Striped Mullet	0.39	0.5	0.8	1.1	1.5	2.1	3	

Source: From Table 7-16. Data from field-collected finfish used here.

APPENDIX A

GLOBAL POSITIONING SYSTEM COORDINATES FOR MAJOR SAMPLING STATIONS IN ESTUARY AT LCP SITE

Appendix A Coordinates of Sampling Stations Referenced in Main Body of Document

Station	Coordina	tes	Station	Coordina	tes
ID	Х	Y	ID	X	Y
<u> </u>					
	Main Canal			Domain 3 (Marsh) ^C	
C-1		422224.46	C 20		422770.0
	861136.25	432334.16	C-30	861611.06	432778.9
C-2	861080.06	432337.56	C-31	860957.44	432987.4
C-3	860471.44	432388.75	C-32	859743.25	433275.6
C-4	859884.56	432452.41	C-33	861812.69	433302.7
C-5	859713.00	432503.41	C-34	861541.13	434079.9
			C-35	859669.50	434450.2
			C-39	861351.51	432589.3
			C-100	861028.00	435630.0
<u>E</u>	<u>astern Creek</u>		C-101	859845.00	433866.0
C-6	860499.25	431266.84	C-204	860974.11	434131.6
C-7	860442.31	431765.53	M-26	859688.81	432549.3
C-8	860276.94	431862.97	M-37	861297.25	432558.9
C-9	860524.81	432273.50	M-38	860957.44	432987.4
			M-39	859729.75	433341.9
			M-40	861807.19	433294.5
Wester	n Crook Comple		M-41		
	rn Creek Comple	_		861541.13	434026.9
C-10	860283.75	430713.09	M-42	860064.19	434386.6
C-11	859798.75	431254.88	M-43	859689.06	434481.5
C-12	859565.63	431704.84	M-100	859730.00	435328.0
C-13	859434.00	431650.84	M-101	859730.00	433775.0
C-14	859314.69	431774.69	M-102	859759.00	432636.0
C-15	859371.06	431939.28	M-204	860981.49	434008.8
_	b				
<u> </u>	urvis Creek b			Domain 4 (Marsh)	
C-16	858072.88	430755.97	C-45	858154.75	432257.2
C-29	859479.19	432658.44	C-A	859253.00	433763.2
C-36	859698.63	435170.03	C-B	858757.13	434016.2
M-28/NOAA10	858064.69	430620.03	C-C	856904.44	432297.5
M-44	860368.25	435649.75	C-D	857384.88	433902.8
			C-102	859041.00	435840.0
Don	nain 1 (Marsh) ^C	_	M-46	859553.19	433519.1
C-18	860893.50	430685.06	M-A	859231.56	433750.0
C-B7	860572.06	432214.38	M-B	858753.31	434027.1
C-D9	860361.44	432104.56	M-C	856878.88	432247.6
C- H7	860498.56	431675.84	M-D	857382.25	433919.6
C-K7	860447.75	431486.16	M-103	859622.00	435312.0
C-N2	860913.50	430771.44	M-104	859455.00	433171.0
M-25/NOAA4	860731.56	432373.97	M-105	857827.00	431972.0
M-AB	861163.31	431379.13			
M-19	860826.88	432153.19	Е	Blythe Island (Marsh)	;
M-B7	860590.94	432228.97	C-103	853227.00	431747.0
M-D7 M-D9	860351.69	432114.31	C-103	854469.00	431157.0
M-H7	860496.81	431670.91	C-104 C-105	854224.00	428668.0
M-K7	860444.00	431498.03	M-106	854391.00	427398.0
M-N2	860922.88	430764.81	M-107 M-108	852215.00 855043.00	430308.0
			IVI- 106	855043.00	430888.0
Don	nain 2 (Marsh) ^C	_	Fea	sibility Study (FS) Ar	eas
M-20	860496.75	431262.16	FS Area 1		
M-21	860364.25	431542.75	FS Area 2		
M-22	860449.50	431763.69	FS Area 3	FS areas are large are	as from which
M-23	860262.38	431763.69	FS Area 4	composite samples w	
M-24			FS Area 5	composite samples w	cre collected
	860219.44	432127.97			
M-27	859451.13	431654.06	FS Area 6		
M-NOAA3	860168.85	432092.57			
M-NOAA5 ^d	859688.22	432470.04			
M-NOAA6	859727.63	431532.80			
M-NOAA7	859229.02	431523.32			
	859138 61	431731 56			
M-NOAA8 M-NOAA9	859138.61 859490.28	431731.56 432009.99			

^aLocations of these sampling stations are illustrated in Figures 3-3 through 3-5 of the main body of this document, with environmental media sampled at the stations identified in Tables 3-2 through 3-4.

^bLocations identified as marsh stations (M-44 and M-28/NOAA10) reflect conditions in Purvis Creek.

^cMarsh locations identified by the "C" prefix, unlike those identified by the "M" prefix, exhibited drainage from creek water at time of sampling.

 $^{^{\}rm d}\text{Station}$ M-26 is located near the border between Domains 2 and 3.

APPENDIX B

UPDATED REFINED ECOLOGICAL SCREENING FOR CHEMICALS OF POTENTIAL CONCERN IN ESTUARY AT LCP SITE

B.1 Sediment

B.2 Surface Water

Appendix B

UPDATED REFINED ECOLOGICAL SCREENING FOR CHEMICALS OF POTENTIAL CONCERN IN ESTUARY AT LCP SITE

This appendix is an update of the refined ecological screening that was performed for all chemicals evaluated in the estuary at the LCP Site in Section 2 of the "Problem Formulation" phase (Step 3) of this baseline ecological risk assessment (BERA). Results of the Problem Formulation phase, together with results of preliminary screening-level evaluations (Steps 1 and 2 of the BERA), were submitted by Honeywell to Region 4 of the U. S. Environmental Protection Agency in 2001 (Honeywell International, 2001).

The screening strategy (including Figure 1, as well as Table 1 for sediment and Table 2 for surface water) presented in this appendix reflect, whenever possible and appropriate, the text and strategy presented in the original refined ecological screening document. Major differences in this updated ecological screening are: 1) the exclusive use of new chemical data in the screening process (i. e., data generated during 2000 as part of the estuarine BERA, and after clean-up activities at the site had been completed); 2) the elimination of results of aquatic toxicity tests as a screening criterion; and 3) the comparison of concentrations of site chemicals to concentrations at a new reference location in a different estuarine system from the system in which the LCP Site is situated (i. e., the Crescent River).

For sediment (Table 1) and surface water (Table 2) maximum concentrations of chemicals are compared to Region 4 (USEPA) or other conservative ecological screening values (ESVs).

It is important to emphasize that, although many chemicals are identified in this screening as chemicals of potential concern (COPC), only the major chemicals historically known to be of concern – mercury, Aroclor 1268, lead, and polynuclear aromatic hydrocarbons (PAHs) will be used to quantify risks to ecological receptors. The remaining COPCs will largely be evaluated qualitatively as to their potential contribution to risks in the estuary. However, all chemicals present in surface water and surface sediment from the site are, in fact, evaluated in the toxicity tests and macrobenthos evaluations conducted as part of the BERA.

Reference

Honeywell, International. 2001. Problem formulation for baseline ecological risk assessment for the estuary at the LCP Chemical Site in Brunswick, Georgia – December 2001. Morristown, NJ. 24 pp.

Table B-1_ Updated refined ecological screening for chemicals of potential concern (COPC) in estuarine surface sediment at LCP Site ^a

						Elements o	f screeni	ng proce	ss			<u> </u>
		Major association	No.	Maximum detected conc. (C)	Ecological effects	Maximum definable hazard		Sam	ple conc.	> FFV		
	Preliminarily	with	samples /	or	value	quotient	Excl.		•	cl. high	DIs	Reference
	•			max. DL ^b	EEV	•	high	,		ici. riigii		
	evaluated	LCP	no.	max. DL	EEV	MDHQ	nign	DLS			Max. DL	value
	chemicals	Facility	detects	(ppm)	(ppm) - E	(C / E)	No.	%	No.	%	(ppm)	(ppm) ^c
tals with Associated U	ISEPA Region 4 Ecological Effec	ts Values (EEVs)										
Antimony		No	92/16	2.7	12	0.23	0	0		lo High		<1.0
Arsenic		No	92/87	22	7.24	3.0	18	69			DLs	7.34
Cadmium		No	242/189	0.95	1	0.95	0	0	14	54	2.30	<0.24
Chromium		Yes (?)	92/92	160	52.3	3.1	14	54		_	DLs	21.18
Copper		No	242/240	41.6	18.7	2.2	2	8		lo High		6.25
Lead		Yes	703/703	1590	30.2	52.6	22	28		-	DLs	13.72
Mercury		Yes	780/777	145	0.13	1,115	75	96	No	o High	DLs	0.217
Nickel		Yes (?)	242/239	25.6	15.9	1.6	1	4	N	lo High	DLs	6.16
Silver		Yes (?)	242/180	1.02	2	0.51	0	0	18	69	4.50	<0.49
Zinc		No	242/242	131	124	1.1	0	0	N	lo High	DLs	29.775
										-		
tals without USEPA Re	egion 4 EEVs, but with Associate	ed Reference Concentratio	ns									
	legion 4 EEVs, but with Associate	ed Reference Concentratio	ns 92/92	56500								14204
Aluminum	egion 4 EEVs, but with Associate			56500 96.2	 	 		 	 	 	 	14204 19.85
Aluminum Barium	egion 4 EEVs, but with Associate	No	92/92		 	 	 	 	 	 	 	
Aluminum Barium Beryllium	egion 4 EEVs, but with Associate	No Yes	92/92 92/92	96.2			 		 			19.85
Aluminum Barium Beryllium Calcium	egion 4 EEVs, but with Associate	No Yes No	92/92 92/92 92/88	96.2 2.6								19.85 0.86
Aluminum Barium Beryllium Calcium Cobalt	egion 4 EEVs, but with Associate	No Yes No Yes	92/92 92/92 92/88 92/92	96.2 2.6 21900				 			 	19.85 0.86 1627
Aluminum Barium Beryllium Calcium Cobalt Iron	legion 4 EEVs, but with Associate	No Yes No Yes No	92/92 92/92 92/88 92/92 92/90	96.2 2.6 21900 10.6	 	 	 	 		 	 	19.85 0.86 1627 3.6
Aluminum Barium Beryllium Calcium Cobalt Iron Magnesium	egion 4 EEVs, but with Associate	No Yes No Yes No No	92/92 92/92 92/88 92/92 92/90 92/92	96.2 2.6 21900 10.6 44200	 	 	 	 		 	 	19.85 0.86 1627 3.6 15322
Aluminum Barium Beryllium Calcium Cobalt Iron Magnesium Manganese	egion 4 EEVs, but with Associate	No Yes No Yes No No Yes	92/92 92/92 92/88 92/92 92/90 92/92 92/92	96.2 2.6 21900 10.6 44200 10000	 	 	 	 	 	 	 	19.85 0.86 1627 3.6 15322 3048
Aluminum Barium Beryllium Calcium Cobalt Iron Magnesium Manganese Methyl mercury	egion 4 EEVs, but with Associate	No Yes No Yes No Yes No Yes	92/92 92/92 92/88 92/92 92/90 92/92 92/92 92/92	96.2 2.6 21900 10.6 44200 10000	 		 	 	 	 	 	19.85 0.86 1627 3.6 15322 3048 285
Aluminum Barium Beryllium Calcium Cobalt Iron Magnesium Manganese Methyl mercury Potassium	egion 4 EEVs, but with Associate	No Yes No Yes No No Yes No	92/92 92/92 92/88 92/92 92/90 92/92 92/92 92/92 148/147	96.2 2.6 21900 10.6 44200 10000 0.05			 	 		 	 	19.85 0.86 1627 3.6 15322 3048 285 <0.0003452
Aluminum Barium Beryllium Calcium Cobalt Iron Magnesium Manganese Methyl mercury Potassium Selenium	legion 4 EEVs, but with Associate	No Yes No Yes No Yes No Yes Yes (?)	92/92 92/92 92/88 92/92 92/90 92/92 92/92 92/92 148/147 92/91	96.2 2.6 21900 10.6 44200 10000 0.05 5100			 	 			 	19.85 0.86 1627 3.6 15322 3048 285 <0.0003452 1705
tals without USEPA Re Aluminum Barium Beryllium Calcium Cobalt Iron Magnesium Manganese Methyl mercury Potassium Selenium Sodium Thallium	legion 4 EEVs, but with Associate	No Yes No Yes No Yes No Yes Yes (?)	92/92 92/92 92/88 92/92 92/90 92/92 92/92 92/92 148/147 92/91 92/19	96.2 2.6 21900 10.6 44200 10000 0.05 5100 4.3			 	 			 	19.85 0.86 1627 3.6 15322 3048 285 <0.0003452 1705 <0.775

Table B-1_ Updated refined ecological screening for chemicals of potential concern (COPC) in estuarine surface sediment at LCP Site ^a

	Elements of screening process Maximum Maximum											
	Major		Maximum detected	Ecological	Maximum definable							
	association	No.	conc. (C)	effects	hazard		Sam	ple conc.	> EEV			
Preliminarily	with	samples /	or	value	quotient	Excl	any	In	cl. high	DLs	Reference	
evaluated	LCP	no.	max. DLb	EEV	MDHQ	high	DLs			Max. DL	value	
chemicals	Facility	detects	(ppm)	(ppm) - E	(C / E)	No.	%	No.	%	(ppm)	(ppm) ^c	
anic Chemicals with Associated USEPA Region 4 EEVs												
Dioxins/Furans												
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)	No	3/3	0.000054	2.5E-06	21.5	3	100	No	o High	DLs	0.000000225	
PCBs												
Aroclor-1268	Yes	778/741	570	0.00003	19,000,000	74	96	75	97	0.10	<0.04944	
Pesticides												
4,4'-DDD	No	42/0	0.055	0.0033		0	0	25	100	0.06	<0.00282	
4,4'-DDE	No	42/0	0.055	0.0033		0	0	25	100	0.06	<0.00282	
4,4'-DDT	No	42/4	0.003	0.0033	9.1	4	16	25	100	0.06	<0.00282	
Chlordane	No	42/0	0.28	0.0017		0	0	25	100	0.28	< 0.0013	
Dieldrin	No	42/0	0.055	0.0033		0	0	25	100	0.06	<0.00282	
Endrin	No	42/1	0.0044	0.0033	1.3	1	4	25	100	0.06	< 0.00282	
gamma-BHC (Lindane)	No	42/0	0.028	0.0033		0	0	18	72	0.03	<0.00146	
Semivolatile Organic Chemicals												
2-Methylnaphthalene	Yes	549/238	0.64	0.33	1.9	0	0	1	1	0.45	<0.00686	
Acenaphthene	Yes	696/320	2.1	0.33	6.4	0	0	2	3	1.40	<0.00686	
Acenaphthylene	Yes	696/350	0.31	0.33	0.9	0	0	2	3	1.40	< 0.00661	
Anthracene	Yes	696/381	2	0.33	6.1	0	0	2	3	1.40	< 0.00656	
Benzo(a)anthracene	Yes	696/433	12	0.33	36.4	2	3	3	4	1.40	< 0.00734	
Benzo(a)pyrene	Yes	696/433	10	0.33	30.3	2	3	3	4	1.40	< 0.00794	
bis(2-Ethylhexyl) phthalate	No	25/22	0.78	0.18	4.3	14	56	17	68	1.10	0.16	
Chrysene	Yes	696/432	17	0.33	51.5	2	3	3	4	1.40	< 0.00798	
Dibenzo(a,h)anthracene	Yes	696/377	6.5	0.33	19.7	0	0	2	3	1.40	< 0.00657	
Fluoranthene	Yes	696/464	4.9	0.33	14.8	1	1	2	3	1.40	< 0.0093	
Fluorene	Yes	696/337	4.3	0.33	13.0	1	1	2	3	0.45	< 0.0063	
High Molecular Weight PAHs (HPAHs	Yes			0.66		2	3	Not	Applic		Not Applicable	
Low Molecular Weight PAHs (LPAHs	Yes			0.33		1	1			able	Not Applicable	
Naphthalene	Yes	696/322	5.1	0.33	15.5	1	1	2	3	0.45	<0.0070	
Phenanthrene	Yes	696/369	17.000	0.33	51.5	0	0	2	3	1.40	<0.0069	
Pyrene	Yes	696/492	21	0.33	63.6	3	4		o High		< 0.091	
Total PAHs ^(d)	Yes	330/ 102		1.7	00.0	3	4		•	able	Not Applicable	

Table B-1_ Updated refined ecological screening for chemicals of potential concern (COPC) in estuarine surface sediment at LCP Site ^a

_					Elements o	f screeni	ng proce	ss			
	Major		Maximum detected	Ecological	Maximum definable						
	association	No.	conc. (C)	effects	hazard		Sam	ple conc. :	> EEV		
Preliminarily	with	samples /	or	value	quotient	Excl.	any	Inc	cl. high	DLs	Reference
evaluated	LCP	no.	max. DLb	EEV	MDHQ	high	DLs			Max. DL	value
chemicals	Facility	detects	(ppm)	(ppm) - E	(C / E)	No.	%	No.	%	(ppm)	(ppm) ^c
ganic Chemicals without USEPA Region 4 EEVs, but with Associated	d Reference C	Concentration	IS_								
Dioxins/Furans											
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin (OCDD	No	3/3	0.0088								0.0031
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD)	No	3/3	0.00089								0.00025
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin (HxCDD	No	3/3	0.00003								0.000003
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin (HxCDD	No	3/3	0.00032								0.000004
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin (HxCDD	No	3/3	0.00005								0.000037
1,2,3,7,8-Pentachlorodibenzo-p-dioxin (PeCDD	No	3/3	0.000009								0.000001
hepta-CDD (total)	No	3/3	0.0044								0.00069
hexa-CDD (total)	No	3/3	0.0014								0.00388
penta-CDD (total)	No	3/3	0.00019								0.00012
tetra-CDD (total)	No	3/3	0.00012								0.00028
1,2,3,4,6,7,8,9-Octachlorodibenzofuran (OCDF)	No	3/3	0.0026								0.000003
1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)	No	3/3	0.0015								0.000003
1,2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF)	No	3/3	0.00080								0.000000
1,2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)	No	3/3	0.0059								0.000000
1,2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)	No	3/3	0.0017								0.000000
1,2,3,7,8,9-Hexachlorodibenzofuran (HxCDF)	No	3/2	0.00033								0.000000
1,2,3,7,8-Pentachlorodibenzofuran (PeCDF)	No	3/3	0.0067								0.000000
2,3,4,6,7,8-Hexachlorodibenzofuran (HxCDF)	No	3/3	0.00073								0.000000
2,3,4,7,8-Pentachlorodibenzofuran (PeCDF)	No	3/3	0.0010								0.000000
2,3,7,8-Tetrachlorodibenzofuran (TCDF)	No	4/4	0.0041								0.000000
hepta-CDF (total)	No	3/3	0.0033								0.000006
hexa-CDF (total)	No	3/3	0.01208								0.000006
penta-CDF (total)	No	3/3	0.01521								0.000002
tetra-CDF (total)	No No	3/3	0.01155								0.000003

Table B-1_ Updated refined ecological screening for chemicals of potential concern (COPC) in estuarine surface sediment at LCP Site ^a

					Elements o	f screenir	ng proce	ss			
	Major		Maximum detected	Ecological	Maximum definable						
	association	n No.	conc. (C)	effects	hazard		Sam	ple conc.	> EEV		
Preliminarily	with	samples /	or	value	quotient	Excl.	any	In	cl. high	DLs	Reference
evaluated	LCP	no.	max. DL ^b	EEV	MDHQ	high	DLs			Max. DL	value
chemicals	Facility	detects	(ppm)	(ppm) - E	(C / E)	No.	%	No.	%	(ppm)	(ppm) ^c
Pesticides											
Aldrin	No	42/1	0.01								<0.001
alpha-BHC	No	42/0	0.028								<0.001
peta-BHC	No	42/0	0.028								< 0.001
delta-BHC	No	42/1	0.0074								<0.001
Endosulfan I	No	42/1	0.0061								<0.001
Endosulfan II	No	42/0	0.055								<0.002
Endosulfan sulfate	No	42/0	0.055								<0.002
Endrin aldehyde	No	42/4	0.048								<0.002
Heptachlor	No	42/0	0.028								<0.001
Heptachlor epoxide	No	42/1	0.0048								<0.001
Methoxychlor	No	42/0	0.28								< 0.015
Toxaphene	No	42/0	2.8								<0.15
Semivolatile Organic Chemicals											
1,2,4-Trichlorobenzene	No	25/0	<u>2.1</u>								< 0.302
1,2-Dichlorobenzene	No	25/0	2.1								< 0.302
1,3-Dichlorobenzene	No	25/0	2.1								< 0.302
1,4-Dichlorobenzene	No	25/0	2.1								< 0.302
1-Methyl Naphthalene	No	331/13	5.4								< 0.009
2,2'-Oxybis(1-Chloropropane	No	25/0	2.1								< 0.302
2,4,5-Trichlorophenol	No	25/0	2.1								< 0.302
2,4,6-Trichlorophenol	No	25/0	2.1								< 0.302
2,4-Dichloropheno	No	25/0	2.1								< 0.302
2,4-Dimethylphenol	No	25/0	2.1								< 0.302
2,4-Dinitrophenol	No	25/0	11								<1.575
2,4-Dinitrotoluene	No	25/0	2.1								<0.302
2,6-Dinitrotoluene	No	25/0	2.1								< 0.302
2-Chloronaphthalene	No	25/0	2.1								< 0.302
2-Chlorophenol	No	25/0	2.1								< 0.302
2-Methylphenol	No	25/0	2.1								< 0.302
2-Nitroaniline	No	25/0	11								<1.575
2-Nitrophenol	No	25/0	2.1								< 0.302
3,3'-Dichlorobenzidine	No	25/0	4.2								<0.612

Table B-1_ Updated refined ecological screening for chemicals of potential concern (COPC) in estuarine surface sediment at LCP Site ^a

					Elements o	f screenii	ng proce	ss			
	Major		Maximum detected	Ecological	Maximum definable						
	association	n No.	conc. (C)	effects	hazard		Sami	ple conc. :	> FFV		
Preliminarily	with	samples /	or	value	quotient	Excl.			cl. high	DLs	Reference
evaluated	LCP	no.	max. DL ^b	EEV	MDHQ	high	,			Max. DL	value
chemicals	Facility	detects	(ppm)	(ppm) - E	(C / E)	No.	%	No.	%	(ppm)	(ppm) ^c
-Nitroaniline	No	25/0	<u>11</u>								<1.575
/4-Methylphenol	No	25/1	0.20								<0.3025
,6-Dinitro-2-methylpheno	No	25/0	<u>11</u>								<1.575
-Bromophenyl-phenylether	No	25/0	<u>2.1</u>								<0.3025
-Chloro-3-methylpheno	No	25/0	<u>2.1</u>								<0.3025
-Chloroaniline	No	25/0	4.2								<0.6125
-Chlorophenyl-phenyletheı	No	25/0	<u>2.1</u>								<0.3025
-Nitroaniline	No	25/0	<u>11</u>								<1.575
-Nitropheno	No	25/0	<u>11</u>								<1.575
enzo(b)fluoranthene	Yes	696/412	6.3								<0.0104
enzo(g,h,i)perylene	Yes	696/407	9.00								<0.0071
enzo(k)fluoranthene	Yes	696/374	2.5								<0.0077
is(2-Chloroethoxy) methane	No	25/0	<u>2.1</u>								< 0.3025
is(2-Chloroethyl) ether	No	25/0	<u>2.1</u>								< 0.3025
utylbenzylphthalate	No	25/1	0.17								< 0.3025
arbazole	No	25/0	<u>2.1</u>								< 0.3025
i-n-butylphthalate	No	25/0	<u>2.1</u>								0.205
i-n-octylphthalate	No	25/0	2.1								< 0.3025
ibenzofuran	No	25/0	2.1								<0.11
Piethylphthalate	No	25/0	2.1								< 0.3025
Dimethylphthalate	No	25/0	2.1								< 0.3025
exachlorobenzene	No	25/1	0.098								< 0.3025
lexachlorobutadiene	No	25/0	<u>2.1</u>								< 0.3025
lexachlorocyclopentadiene	No	25/0	2.1								< 0.3025
lexachloroethane	No	25/0	2.1								<0.3025
ndeno(1,2,3-cd)pyrene	Yes	696/402	4.2								<0.0072
sophorone	No	25/0	<u>2.1</u>								<0.3025
l-Nitroso-di-n-propylamine	No	25/0	2.1								<0.3025
I-Nitrosodiphenylamine/Diphenylamine	No	25/0	<u>2.1</u>								<0.3025
litrobenzene	No	25/0	2.1								<0.3025
rentachloropheno	No	25/0	<u>11</u>								<1.575
Phenol	No No	25/0	2.1								<0.3025

All sediment concentrations, associated detection limits, and ecological effects values are reported in dry weight.

^aCOPC, as determined by a weight-of-evidence approach, are identified i**nlarge bold print**, as are data reflecting the rationale for the identification.

^bThe acronym "DL" refers to "detection limit."

^cHalf the detection limit wdas used to represent non-detected values for total PAHs.

Table B-2_ Updated refined ecological screening for chemicals of potential concern (COPC) in estuarine surface water at LCP Sate

					Elements of	screening p	rocess			
			Maximum		Maximum					
	Major		detected	Ecological	definable					
	association	No.	conc. (C)	screening	hazard		Sa	mple conc. > E	SV	
Preliminarily	with	samples /	or	value	quotient	Exc	l. any		. high DLs	Reference
•		·	max. DL ^b		•	high DLs				
evaluated	LCP	no.		ESV	MDHQ		%	NI-	Max. DL	value
chemicals	Facility	detects	(ppm)	(ppm) - E ^c	(C / E)	No.	%	No.	% (ppm)	(ppm)
al Metals with Associated Ecological Screening Values (E	ESVs)									
Aluminum	No	11/11	1.80	1.5	1.2	2	18	No	High DLs	0.94
Antimony	No	11/1	0.0059	4.3	0.001	0	0	No	High DLs	< 0.02
Arsenic	No	11/5	0.0072	0.036	0.2	0	0	No	High DLs	0.0054
Beryllium	No	11/0		0.00013		0	0		100 0.004	< 0.004
Cadmium	No	11/0		0.0093		0	0	No	High DLs	< 0.005
Chromium	Yes (?)	11/8	0.0046	0.103	0.05	0	0		High DLs	<0.01
Copper	No	11/11	0.0045	0.0029	1.6	5	45		High DLs	0.0024
7.7									-	
Iron	No	11/11	1.2	0.3	4.0	10	90		High DLs	0.695
Lead	Yes	75/28	0.0073	0.0085	0.8	0	0	No	High DLs	0.00565
Mercury	Yes	99/99	0.000795	0.000025	20.3	24	52	No	High DLs	0.0000079
Nickel	Yes (?)	11/0		0.0083		0	0	11 '	100 0.04	< 0.04
Selenium	No	11/4	0.0079	0.071	0.1	0	0	No	High DLs	< 0.01
Silver	Yes (?)	11/0		0.00023		0	0	11	100 0.01	< 0.01
Thallium	No	11/2	0.0065	0.0213	0.3	0	0		High DLs	0.0061
Zinc	No	11/10	0.0190	0.086	0.2	0	0		High DLs	0.0076
solved Metals with Associated Ecological Screening Value		11/8	0.046	4.5	0.3	0	0	N-	High DLs	<0.20
Aluminum, dissolved	No			1.5						
Antimony, dissolved	No	11/0		4.3		0	0		High DLs	<0.02
Arsenic, dissolved	No	11/5	0.0059	0.036	0.2	0	0		High DLs	0.00395
Beryllium, dissolved	No	11/0		0.00013		0	0		100 0.004	< 0.004
Cadmium, dissolved	No	11/0		0.0093		0	0		High DLs	< 0.005
Chromium, dissolved	Yes (?)	11/4	0.0048	0.103	0.05	0	0		High DLs	<0.01
Copper, dissolved	No	11/10	0.0035	0.0029	1.2	1	9	2	18 0.02	0.0018
Iron, dissolved	No	11/6	0.56	0.3	1.9	1	9	No	High DLs	0.0375
Lead, dissolved	Yes	28/19	0.0023	0.0085	0.3	0	0		High DLs	0.00101
Mercury, dissolved	Yes	28/17	0.000009	0.000025		0	0		100 0.0002	0.0000406
Nickel, dissolved	Yes (?)	11/0		0.0083		0	0		100 0.002	<0.04
Selenium, dissolved	No	11/2	0.0082	0.0063	0.1	0	0		High DLs	<0.04
						0				
Silver, dissolved	Yes (?)	11/0		0.00023			0		100 0.01	<0.01
Thallium, dissolved	No	11/2	0.0060	0.0213	0.3	0	0		High DLs	0.0053
Zinc, dissolved	No	11/9	0.0150	0.086	0.2	0	0	No	High DLs	0.0155
al Metals without Ecological Screening Values (ESVs)										
Barium	Yes	11/11	0.041							0.03
Calcium	Yes	11/11	360							305
Cobalt	No	11/0	0.01							< 0.01
Magnesium	Yes	11/11	1200							1030
Manganese	No	11/11	0.16							0.0355
Methyl mercury	Yes	81/81	0.000016							0.00000008
Potassium	Yes (?)	11/11	430							320
Sodium	Yes	11/11	9300							7750
Vanadium	No	11/6	0.0130							< 0.015

					Elements of s	screening p	rocess			
			Maximum		Maximum					
	Major		detected	Ecological	definable					
	association	No.	conc. (C)	screening	hazard		Sar	mple conc. > E	91/	
D. II				· ·				•		5.
Preliminarily	with	samples /	or	value	quotient	Excl	. any	Inci	. high DLs	Referen
evaluated	LCP	no.	max. DLb	ESV	MDHQ	high	DLs		Max. DL	value
chemicals	Facility	detects	(ppm)	(ppm) - E ^c	(C / E)	No.	%	No.	% (ppm)	(ppm)
solved Metals without Ecological Screening Values (ESVs)										
Barium, dissolved	Yes	11/11	0.039							0.027
Calcium, dissolved	Yes	11/11	360							295
Cobalt, dissolved	No	11/0	0.01							< 0.01
Magnesium, dissolved	Yes	11/11	1200							1020
Manganese, dissolved	No	11/5	0.15							<0.02
<u> </u>		11/11	430							325
Potassium, dissolved	Yes (?)									
Sodium, dissolved	Yes	11/11	9600							7250
/anadium, dissolved	No	11/2	0.0066		-					<0.02
anic Chemicals with Associated Ecological Screening Values (ESVs)									
Dioxins/Furans										
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)	No	3/0		0.0000001	-	0	0	No	High DLs	7.75E-1
Pesticides										
I,4'-DDD	No	11/0		0.000025		0	0	11 1	00 0.0001	< 0.000
.4'-DDE	No	11/0		0.00014		0	0	No	High DLs	< 0.000
,4'-DDT	No	11/0		0.000001		0	0		0.0001	<0.000
ldrin	No	11/0		0.00013		0	0		High DLs	<0.0000
lpha-BHC	No	11/0		14.004		0	0		High DLs	<0.0000
Chlordane	No	11/0		0.000004		0	0		0.0005	<0.000
Dieldrin	No	11/0		0.000004		0	0		0.0005	<0.000
Endosulfan I	No	11/0		0.0000087		0	0		00 0.00005	<0.0000
Endosulfan II	No	11/0		0.0000087		0	0		0.0001	<0.0001
Endrin	No	11/0		0.0000023		0	0		0.0001	<0.0001
gamma-BHC (Lindane)	No	11/0		0.000016		0	0		0.00005	<0.0000
Heptachlor	No	11/0		0.0000036		0	0		0.00005	<0.0000
Heptachlor epoxide	No	11/0		0.0000036		0	0	11 1	0.00005	< 0.0000
Methoxychlor	No	11/0		0.00003		0	0	11 1	0.0005	< 0.0005
oxaphene	No	11/0		0.0000002		0	0	11 1	00 0.005	<0.005
Semi-Volatiles										
1,2,4-Trichlorobenzene	No	11/0		0.0045		0	0	11 1	00 0.01	<0.01
,2-Dichlorobenzene	No	11/0		0.0197		0	0		High DLs	<0.01
,3-Dichlorobenzene	No	11/0		0.0285		0	0		High DLs	<0.01
,4-Dichlorobenzene	No	11/0		0.0199		0	0		High DLs	<0.01
2,4-Dinitrophenol	No	11/0		0.0485		0	0		100 0.05	<0.05
-Nitrophenol	No	11/0		0.0717		0	0		High DLs	<0.05
·		46/1	0.00022		0.02	0	0		High DLs	
cenaphthene	Yes			0.0097						<0.000
Butylbenzylphthalate	No	11/1	0.00100	0.0294	0.03	0	0		High DLs	<0.01
Di-n-butylphthalate	No	11/1	0.00059	0.0034	0.2	0	0		91 0.01	<0.01
Diethylphthalate	No	11/0		0.0759		0	0		High DLs	<0.01
Dimethylphthalate	No	11/0		0.58		0	0		High DLs	<0.01
Fluoranthene	Yes	46/2	0.00012	0.0016	0.08	0	0		High DLs	<0.000
Hexachlorobutadiene	No	11/0		0.00032		0	0	11 1	0.01	<0.01
Hexachlorocyclopentadiene	No	11/0		0.00007		0	0	11 1	0.01	<0.01
Hexachloroethane	No	11/0		0.0094		0	0	11 1	00 0.01	< 0.01
sophorone	No	11/0		0.129		0	0		High DLs	<0.01

					Elements of	screening p	rocess				
			Maximum		Maximum						
	Major		detected	Ecological	definable						
	association	No.	conc. (C)	screening	hazard		Sa	mple conc	:. > ESV		
Preliminarily	with	samples /	or	value	quotient	Excl	. any	Incl. high DLs			Reference
evaluated	LCP	no.	max. DL ^b	ESV	MDHQ	high	DLs			Max. DL	value
chemicals	Facility	detects	(ppm)	(ppm) - E ^c	(C / E)	No.	%	No.	%	(ppm)	(ppm)
-Nitrosodiphenylamine/Diphenylamine	No	11/0		33		0	0		No High D		<0.01
laphthalene	Yes	46/1	0.0050	0.0235	0.2	0	0		No High D		<0.0002
Vitrobenzene	No	11/0		0.0668		0	0		No High D		<0.01
Pentachlorophenol	No	11/0		0.0079		0	0	11	100	0.05	< 0.05
Phenol	No	11/0		0.058	-	0	0		No High [DLs	<0.01
anic Chemicals without Associated Ecological Screening Values (ESVs)											
Dioxins/Furans											
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin (OCDD)	No	3/3	0.00000006								0.00000005
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD)	No	3/1	0.0000000072								0.000000004
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	No	3/0	0.000000037								<0.00000000
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	No	3/0	0.000000035								<0.00000000
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin (HxCDD)	No	3/0	0.000000035								<0.00000000
1,2,3,7,8-Pentachlorodibenzo-p-dioxin (PeCDD)	No	3/0	0.0000000032								<0.00000000
nepta-CDD (total)	No	3/3	0.00000003								1.03E-08
. ,	No	3/1	0.00000003								9.20E-09
nexa-CDD (total)	No No	3/1	0.00000001								1.23E-09
penta-CDD (total)											
etra-CDD (total)	No No	3/0	0.0000000027								<0.000000001
1,2,3,4,6,7,8,9-Octachlorodibenzofuran (OCDF)	No	3/0	0.0000000073								<0.00000000
,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)	No	3/0	0.0000000031								<0.0000000
1,2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF)	No	3/0	0.0000000040								<0.00000000
1,2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)	No	3/0	0.0000000027								<0.00000000
1,2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)	No	3/0	0.0000000024								<0.00000000
1,2,3,7,8,9-Hexachlorodibenzofuran (HxCDF)	No	3/0	0.0000000032								<0.00000000
1,2,3,7,8-Pentachlorodibenzofuran (PeCDF)	No	3/0	0.0000000025								<0.00000000
2,3,4,6,7,8-Hexachlorodibenzofuran (HxCDF)	No	3/0	0.000000028								<0.00000000
2,3,4,7,8-Pentachlorodibenzofuran (PeCDF)	No	3/1	0.000000476								<0.00000000
2,3,7,8-Tetrachlorodibenzofuran (TCDF)	No	3/0	0.0000000020								<0.000000001
nepta-CDF (total)	No	3/0	0.0000000035								<0.000000001
nexa-CDF (total)	No	3/0	0.0000000027								<0.000000001
penta-CDF (total)	No	3/0	2.4E-09								<0.000000001
etra-CDF (total)	No	3/1	0.000000047								<0.000000001
PCBs											
Aroclor-1268	Yes	75/23	0.00100								0.00003
Pesticides											
peta-BHC	No	11/0	0.00005								< 0.00005
delta-BHC	No	11/0	0.00005								< 0.00005
Endosulfan sulfate	No	11/0	0.0001								< 0.0001
Endrin aldehyde	No	11/0	0.0001								< 0.0001

						Elements of s	screening pr	ocess				
				Maximum		Maximum						
		Major		detected	Ecological	definable						
		association	No.	conc. (C)	screening	hazard	Sample conc. > ESV					
Prelim	inarily	with	samples /	or	value	quotient	Excl.		•	Incl. high	DLs	Reference
evalu	,	LCP	no.	max. DLb	ESV	MDHQ	high	-		. 3	Max. DL	value
chem	icals	Facility	detects	(ppm)	(ppm) - E ^c	(C / E)	No.	%	No.	%	(ppm)	(ppm)
emi-Volatiles												
-Methyl Naphthalene		No	46/1	0.0068								<0.0002
,2'-Oxybis(1-Chloropropane)		No	11/0	<u>0.01</u>								<0.01
4,5-Trichlorophenol		No	11/0	<u>0.01</u>								<0.01
4,6-Trichlorophenol		No	11/0	0.01								<0.01
4-Dichlorophenol		No	11/0	<u>0.01</u>								<0.01
4-Dimethylphenol		No	11/0	<u>0.01</u>								<0.01
4-Dinitrotoluene		No	11/0	<u>0.01</u>								< 0.01
6-Dinitrotoluene		No	11/0	<u>0.01</u>								< 0.01
-Chloronaphthalene		No	11/0	0.01								< 0.01
-Chlorophenol		No	11/0	0.01								< 0.01
-Methylnaphthalene		No	45/1	0.00063								< 0.0002
Methylphenol		No	11/0	0.01								<0.01
Nitroaniline		No	11/0	0.05	-							<0.05
Nitrophenol		No	11/0	0.01								<0.01
3'-Dichlorobenzidine		No	11/0	0.02					-			<0.02
Nitroaniline		No	11/0	0.05					-			<0.05
4-Methylphenol		No	11/0	<u>0.01</u>								<0.01
6-Dinitro-2-methylphenol		No	11/0	0.05								<0.05
Bromophenyl-phenylether		No	11/0	<u>0.01</u>								<0.01
Chloro-3-methylphenol		No	11/0	<u>0.01</u>								<0.01
Chloroaniline		No	11/0	0.02								<0.02
Chlorophenyl-phenylether		No	11/0	<u>0.01</u>								<0.01
Nitroaniline		No	11/0	0.05								< 0.05
cenaphthylene		Yes	46/0	0.0002								< 0.0002
nthracene		Yes	46/0	0.0002								< 0.0002
enzo(a)anthracene		Yes	46/0	0.0002								< 0.0002
enzo(a)pyrene		Yes	46/0	0.0002								< 0.0002
enzo(b)fluoranthene		Yes	46/0	0.0002								< 0.0002
enzo(g,h,i)perylene		Yes	46/0	0.0002								< 0.0002
enzo(k)fluoranthene		Yes	46/0	0.0002								< 0.0002
s(2-Chloroethoxy) methane		No	11/0	0.01								<0.01
s(2-Chloroethyl) ether		No	11/0	0.01								<0.01
is(2-Ethylhexyl) phthalate		No	11/6	0.0051								0.00291
arbazole		No	11/0	0.01 0.01								<0.01
hrysene		Yes	46/0	0.0002								<0.0002
-n-octylphthalate		No	11/1	0.0016								<0.01
benzo(a,h)anthracene		Yes	46/0	0.0002								<0.0002
ibenzofuran		No	11/0	<u>0.01</u>								<0.01
uorene		Yes	46/1	0.00016								<0.0002
exachlorobenzene		No	11/0	<u>0.01</u>								<0.01
deno(1,2,3-cd)pyrene		Yes	46/0	0.0002								< 0.0002
Nitroso-di-n-propylamine		No	11/0	<u>0.01</u>								< 0.01
henanthrene		Yes	46/0	0.0002								< 0.0002
/rene		Yes	46/1	0.000089								< 0.0002

^aCOPC, as determined by a weight-of-evidence approach, are identified in**large bold print**, as are data reflecting the rationale for the identification.

^bThe acronym "DL" refers to "detection limit." One-half of the DL was used to represent non-detects for sums of PAHs.

^cMost ESVs are Region 4 (U. S. EPA) saltwater chronic screening values. However, Region 4 values do not exist for aluminum, antimony, beryllium, and iron. ESVs employed for these four metals are The State of Florida's marine criteria.

APPENDIX C

TOXICITY TEST REPORTS

(On CD Only)

RESULTS OF CHRONIC BIOMONITORING SCREEN TESTS CONDUCTED ON RECEIVING WATER SAMPLES COLLECTED FROM SITE LCP

Submitted to:

Mr. Curt Rose CDR Environmental Specialists 171 Cays Drive Naples, Florida 34114

Submitted by:

The SeaCrest Group 1341 Cannon Street Louisville, Colorado 80027 303-661-9324

November 10, 2000

The SeaCrest Group 1

INTRODUCTION

Biomonitoring provides an effective means to test multimedia waters for toxicity. These tests complement chemical analyses in detecting environmental effects, since the detection of such effects solely through chemical analyses are often difficult to accomplish.

Chronic tests, conducted with the marine invertebrate *Mysidopsis bahia* (mysids) and the marine fish known as the sheepshead minnow (*Cyprinodon variegatus*), measure significant differences in growth between control and exposed organisms, as well as survival effects. These tests are conducted over 7 days as opposed to the 96 hr acute tests which measure only survival effects.

MATERIALS AND METHODS

Sample Collection

Grab samples of water from six sites, labeled TC, CR, C-5, C-7, C-16, and C-33, were collected into one-gallon plastic containers at unspecified times on October 11, 2000; from 10:40 to 12:40 on October 13, 2000; and from 13:25 to 16:10 on October 16, 2000. Each set of samples were chilled and shipped overnight to the SeaCrest lab in ice chests where they were delivered at 10:15 on October 12, 2000; at 09:00 on October 14, 2000; and at 10:15 on October 17, 2000. At the lab the samples were refrigerated at 4°C between uses. The Chain of Custody forms documenting sample collection and transfer times are included in Appendix 1.

Dilution Water

An artificial saltwater was created using Forty Fathoms^R sea salts added to deionized water. This was used as the control water for the test. The average salinity of the samples was $25^{\circ}/_{\infty}$. The salinity of the samples that were below $25^{\circ}/_{\infty}$ were adjusted up with Forty Fathoms^R sea salts. The samples that were above $25^{\circ}/_{\infty}$ were not adjusted or diluted. The control water was adjusted to $25^{\circ}/_{\infty}$. All samples were allowed to set for a time and equilibrate with the salts before animals were added.

Test Organisms

The tests were conducted with *Mysidopsis bahia* (mysids), a saltwater invertebrate, and a saltwater fish, the sheepshead minnow (*Cyprinodon variegatus*). The mysids and sheepshead minnows were obtained from Aquatic BioSystems, Inc., an aquatic test organism supplier located in Ft. Collins, Colorado. The animals were received on the day the test was started. The animals were acclimated to test temperature and aerated prior to being used. Both species were fed newly-hatched brine shrimp (*Artemia* sp.) prior to being used and during the test.

One day old sheepshead minnow larvae were used in the tests, as required by the guidelines. The tests used 7 day old mysids, since growth measurements and sex determinations were required at test termination.

The SeaCrest Group

Both species were tested in reference toxicant tests using copper sulfate to ensure the organisms' health and test acceptability.

CDR

Test Procedures

No alkalinity

Upon receipt at the lab, the water samples were analyzed for ammonia, alkalinity, sálinity, dissolved oxygen, and pH. Ammonia was determined with an Orion ion selective electrode according to procedures contained in APHA/AWWA/WPCF (1998). Alkalinity was determined according to procedures described in Hach Chemical Company (1992). Conductivity, dissolved oxygen, and pH probes were used to take these measurements. Salinity was determined using an Aquafauna^R salinity refractometer.

The tests followed the procedures in Peltier, et al. (1994) and were started on October 12, 2000. Per client request, the waters were tested only at the 100% concentration, with no dilution series created.

The Mysidopsis were tested in 260 ml plastic disposable cups containing 150 ml of test water. There were 8 replicates of each sample. Each replicate contained five test organisms, for a total of forty organisms per sample. The test organisms were monitored daily for survival. The water in each beaker was changed daily. Water quality readings of temperature, pH, and dissolved oxygen were measured, before and after each water change. The mysids were fed brine shrimp (Artemia sp.) at a rate of approximately 150 Artemia per mysid, twice a day. After seven days, the mysids were removed from the test waters and individually sexed (if mature) under a dissecting microscope. After sexing they were euthanized and placed into specially-prepared drying pans to dry overnight. The replicates were weighed the next day on a six-place electrobalance to determine weights to the nearest 0.01 mg. The sheets with the test information and daily readings are located in Appendix 2. The sheets with the survival numbers and final sex determinations are located in Appendix 3. The average dry weight determinations are located in Appendix 4.

The sheepshead minnows were exposed in 1 liter glass jars to which 500 ml of test media was added. Ten fish were placed in each jar and four replicates at each concentration were used. Fish were monitored for survival daily and fed live *Artemia* sp. once daily. Water in the cups was changed and monitored with readings of temperature, dissolved oxygen, and pH, daily. After seven days, the fish were removed from the cups and euthanized. The fish were weighed on a four place analytical balance after drying overnight in an oven at approximately 95°C. The benchsheet with all survival and growth information is located in Appendix 5.

REFERENCE TOXICANT TESTS

The batches of test organisms acquired from Aquatic BioSystems, Inc. were tested in reference toxicant tests using $CuSO_4$. These tests were conducted at the same time as the chronic tests with the sample waters. The benchsheets for the reference toxicant tests are located in Appendix 6.

The SeaCrest Group 3

The sample tests ran very well and there was good control survival for both species. However the LC50 concentrations for the two species did not correlate well with the results presented in the guidelines from testing conducted by the EPA. The mysid LC50 was below the range listed in the guidelines and the sheepshead minnow LC50 was well above the range listed. However, since the test results were good and control survival was good for both species, we do not consider the reference toxicant test results as an indication that the animals were not healthy.

REFERENCES

APHA/AWWAWPCF. 1998. Standard Methods for the Examination of Water and Wastewater. 20th Edition. American Public Health Association.

Hach Company. 1992. Hach Water Analysis Handbook. 2nd Edition. Hach Company, Loveland, Colorado.

Peltier, C.I. et al. 1994. Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Water to Marine and Estuarine Organisms. Second Edition. EPA/600/4-91/003. 483 pp.

APPENDIX 1. Chains of Custody Forms

1341 Cannon Street • Louisville, Colorado 80027 303-661-9324 • FAX 303-661-9325

Chain of Custody Record

(enclose with each shipping container)

Pur	chase Order Number
Pro	ject Number (lab use only)

10:15, 10/12/00

CANARY COPY Client

Cort Rose Client: ___ Contact: Address: 171 Care Dave Program/Site: LCP 941-394-8441 300446-451 Neples FL 34114 Phone: These fields may be used for field test results field test. Acute Chronic Collected by: ____ Sample Sample Identification (Effluent Receiving, Sediment, list other) Date Type Total Total Sampled Time (composite, grab) Units Volume 10/11/00 G845 3 1 C-16 C-33 8

60 Autum 11 E 2 C 11 .		'-7'3	
omments and special testing instructions: For	Days 1+2 of tests.	1 Refer to Atterment	1 1 for mittel sample
Salmer of 5-25 ppt			lowson et al. to S. Pitney
Test 100 So receiving we	ake. Run positive + Megative	controls. and 5 Pitma	to Cost Rose
elinquished by: Cut Rose Com Rep	presenting: CDR Eywingatil	To Whom: Fed Expess	Date/Time: 10/11/00
elinquished by: Rep	oresenting:	To Whom: _ / _ /	Date/Time:
ext recipient:Reli	inquished by:	Rec'd by: A. W	Date/Time: 10/12/00 1915

1341 Cannon Street • Louisville, Colorado 80027 303-661-9324 • FAX 303-661-9325

Chain of Custody Record

(enclose with each shipping container)

Purchase	Order	Number
-----------------	-------	--------

Clie	ent:				Co	intact:	(v:	+ 160.	52		Δddr	ess: 17	n Con	3 Nr.		┦''	Oject	NUIT	IDEI (lab i	use only)
Pro	ent: ogram/Site:CP				Ph	ione: _	94	1-396	1-84	41		<u>_</u>) apts	FL ?	<u> </u>	_	2004/4	16-	300	151
Col	llected by:								ute			ronic			*******	These fi	ields may ield test re	be used	E	
	Sample Identification (Effluent, Receiving, Sedlment, list other)	Da [,] Sam;		Time	Sam Typ (composit	oe ,	$C_{em_{o}}$	FH Minnow	Accelerated	Certio	FH Minnow	Accelerated	TAR.	Other	,	/ \			/Total	Total Volume
1	TC1	10113	ارمى		Gal	2									1	V		<u></u>	3	Jame
2	∠R ¹														V	V			3	
3	C-5			1240											V	V			3	
4	C-7			1040											V	1			3	
5	C-16			1230											V	V		-	3	
6	C-33	1,		1203		,									V	1//			1 2	
7			-												 	-			3	
8																			 	
9																	1		 	
10								†						†				ļ	 	
Cor	n:ments and special testir	ng insti	ructio	ns:F	Fa' 5	Jás	3,0		of	testi				1 12	260 60 20tus	AHii	ulmut e tras	1 +		
	CORRUGEDEC	<u>FIM</u>	FO	N. U.																
Reli	linguished by: Cut Ray	u C	Zn_		Repres	senting		<u> </u>			Te	o Whon	n: <u>F</u> c.	5 Em	, נו אי		Date/Ti	me:	5:00 PM	1
Reli	linquished by:				Repres	senting	g:				То	o Whor	n:				Date/Ti	me: _		T
Nex	xt recipient:				Relinq	uished	- :yd k				R	lec'd by	y:	11/1	<u>د ا _</u>	\	Date/Ti	me: _t	0.14.00	0910
				~ ^^~									, ,	D/ C/U						

The JeaCrest Group An Environmental Services Company

1341 Cannon Street • Louisville, Colorado 80027

Chain of Custody Record

(enclose with each shipping container)

Purchase Orde	r Number
#3	

	303-661-9324 • F	AX 303-661-9	325		-										D,	niact	Mum	nber (lab	
Clie Pro	ent: gram/Site:			Cor Pho	ntact: one: _	Cx 941	+ 120 (- 39	vc u - 80	141	Addr			Syn D. 1=1 3					10e1 (1ab 20045/	
Col	lected by:							ute		Chr	onic	<u> </u>			These for fi	elds may eld test i	be use	d	
	Sample Identification	Date Sampled	Time	Samp Type (composite,	ole e , grab)	Cerrio	FH Minno	Accelerator	Cerio Ce	FH Minnou.	Accelerate.	TAR.	Other	,	/>	,		/Total Units	Total Volume
1	TC1	10/16/00	1415	CKL	2									じ	V			2	Tolumo
2	CRI		1329	5 1										V	V			2	
3	C-5		1515 %	(U)										V	V			2	
4	C-7		1430											V	V			2	
5	C-16		1538	3										V	V			2	
6	6-33		1610											V	V	<u> </u>		2	
7																			
8																-	}	 	
9																			
1Q																			
Cor	nments and special test		1 M2	tes	Dcy	, G.	+70	t tes	ti				1	Netra Lyntin		techner uphe to			
Reli	inquished by:	80L)		Repres	enting	: <u>C</u>	DLS				o Whoi	m: <u></u>	SUEX	٠, ٠		Date/T	ime:	10/16/6	10 173
Reli	nquished by:			Repres	enting	:				Т	o Whoi	m:/		·		Date/T	ime:		1
Nex	t recipient:			Relinqu	ııshed	by: _				R	Rec'd b	y: <i>H:[</i>]	Le U	2		Date/T	ime: /	10/17/00	1015

APPENDIX 2. Mysidopsis bahia Test Setup and Daily Readings

The SeaCrest Group

An Environmental Services Company
Aquatic Toxicology Laboratory

7-Day Chronic Mysid Shrimp (Mysidopsis bahia)

Survival, Growth, and Fecundicy Test

Job Code Number: 3004410 - 300451

	Test Dates: 10-12-00	Through 10-19-00
	Test Times: 1600	Through 1600
Sample Numbers:	<u> 300446, 300</u> 447	Results Checked By: []
	300448, 300449	<u>. </u>
	<u> 300450, 700</u> 451	IJ

Study Director:

TEST CONDITIONS

Organism/Age	<i>Mysidopsis bahia</i> 7 Days	No. of Reps	8
Dilution Water		Number of Organisms/Replicate	5
Temperature	26-27°C	Type/Volume of Test Chamber	HDPE/250ml
Test Accept. criteria	> 80% Surv. >.20mg Growth	Feeding	3 Times Daily

SAMPLING/DILUTION DOCUMENTATION

	Sample Numbers/ Dates								
Set # 1	Set # 2	Set # 3	Set # 4						
	Dilut	ions							
Concentrations	Volume Test Solution	Volume Dilution Water	Total Volume ()						
100%	150 mL	Ø	150mL						
Totals									

RANDOMIZATION

Organism Batch No.	Date	Analyst

Job Code #:

Mysid Shrimp Survival, Growth, and Fecundity Test Daily Record of Test Conditions

	D.O. (mg/l)													
Day	0	1		2	2	3	3		1	Ę	5	e	3	7
Initial/Final	l	ı	F	ı	F	ı	F	L	F	l	F	1	F	F
Control	5.8	6.4	7.1	5.0	5.9	5.1	5.6	5.1	5.7	5.3	5.7	6.4	6.4	5.1
300446	6.0	5.9	7.3	5.2	6.4	4.8	6.3	49	6.2	5.0	5.4	5.9	6	5.0
300447	6.4	4.6	6.7	4.9	6.2	4.7	6.1	49	60	5.1	6.9	5.1	6.6	5.2
200448	7.8	5.3	6.2	5.4	61	4.8	6.0	49	6.1	5.1	7.1	5.4	6.9	5.7
300 449	6.7	2.3	66	5.5	60	5.1	5.8	5.2	5.7	5.6	6.7	2.5	6.6	
300450	8.2	2.1	6.5	2.1	7.4	5.0	6.5	5.1	6.7	5,2	7.3	5.3	6.4	6.1
300 451	6.2	5.2	5.9	5.0	6.2	5,0	5.7	5.1	۵.۵	5.4	5.4	5.1	3.7	(9.2
Meter No.	3	Э	2	9	۵	2	2	2	2	2	2	9	2	2

pH (Initial)											
Day	0	0 1 2 3 4 5 6 7									
Control	8.0	7.9/8.0	7.8/7.9	79/8.0	7.5/79	3.0/8.3	7.9/8.2	8.0			
300446	7.8	1	79/7.8	8.0/7 8	79/7.8	7.9/7.9	7.8/7.8	7.8			
300447	7.3	7.3/7.4	7.8/74	7.8/7.5	78/15	7.8/7.5	7.7/7.5	7.7			
300448	7.3	7.8/7.4	7.8/7.5	7.9/7.6	7.8/7.6	78/7.5	7.8/7.6	7.8			
300449	7.2	7.8/7.4	7.7/7.4	7.9/7.5	77/75	7.8/15	7.8/7.5	7.9			
300450	7.3	7.9/7.5	7.8/7.4	7.8/7.5	7 8/74	7.8/7.5	7.8/7.5	7.9			
300451	7.8	8.0/7.9	7.9/7.4	7.8/7.5	7.8/74	7.8/7.5	7.9/7.5	7.9			
Meter No.	9	9	6	フ	7	フ	()	0			

Mysid Shrimp Survival, Growth, and Fecundity Test Daily Record of Test Conditions

	Temperature (°C) (Initial)									
Day	0	1	2	3	4	5	6	7		
Control	200	26.2/26.3	25.4/26.2	25.9/244	25.6/24 6	24.7/24.8	26.5/25.6	22.9		
300446	26.5	27.0/26.9	26.5/27.0	25.6/25.1	254/25.0	25.4/25.9	26.0/24.5	26.1		
300 447	JC .O	F.2C\1.05G	50.5/30.2					25.7		
300 448		25.5/25.4	26.1/26.1	24.8/254	24 8/252	24.6/25.2	25.9/25.0	26.⊅		
300449	26.1	27.0/26.9	26.5/26.2	25.6/25.1		2+9/25.0	36.2/32.3	26.9		
300450	26.3	26.7/26.5	36.3/26.1	24.9/25.1	27.9/251	25.3/24.9	26.6/250	22.3		
300451	25.9	26.3/26.6	25.7/27.00	24.6/24.9	24.7	25.1/24.8	26.5/25.	24.7		
Meter No.	٦ ٦	2	2	7	7	フ		9		

	Salinity (ppt) (Initial)								
Day	0	1	2	3	4	5	6	7	
Control	25		32			25			
300446	24	25	52			26			
200447	27		26			ZS			
300448	24		2 3			26			
300449	25		24	r		26			
300450	25		24			2.7			
300451	24	24 24	ач			25			
Meter No.						l			

Day	0	1	2	3	4	5	6	7
Initials	SB	SB	SB	Got	6.44	Cost	5B	JB

FAC Initial readings of samples on back of page.

C 33 దర TC 12 10.01 CIL CR 25 25 2 27 24 10.01 50.01 10.01 10.01 (0.01 11.0 <1.0 61.0 <1.0 <1.0 <1.0 19 24 26 ДЗ 24 Sol. 13 Cl. <0.01 NH3 <1.0 13 (0.01 10.01 (0.01 10.01 <0.01 <1.0 <1.0 <1.0 <1.0 <1.0 Sal. 19 32 26 27 27 Clar (0.01 (0.01 (0.01 (0.01 18 (0.01 <1.0 11.0 11.0 <1.0 <1.0 NH3 <1.0

/ weight issue?

APPENDIX 3. *Mysidopsis bahia* Surival and Sex Determinations

Job Code #:

Test Start-Date/Time:

Test Stop-Date/Time:

				N	Vumbe	r Aliv	e	·- <u>-</u>			_		
Conc:	Pon				Di	ay				Fem. with	Fem.	Males	Immatu-
Conc.	Rep. No.	0	1	2	3	4_	5	6	7	eggs	eggs		
Control	Α	2	5	5	5	5	5	5	5			1	4
	В	5	5	5	5_	5	5	2	2			1	3_
	С	5	5	2	5	5	5	2	2	3			3
	D	5	5	14	4	4	4	4	4				4
	E	2	5	5	5_	5	5	J	2			5	
	F	5	5	2	5_	5	5	2	2			4	
	G	5	5	5	5	<u> </u>	5	2	2	/		2	2_
	H	5	5	5	5	5	5	5	2	<u> </u>			2
							۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔						-
Conc:	Α	5	5	1	5	5	5	2	7				5
100%	В	5	5	2	5	5	5	5	5			3	2_
, -	С	5	5	5	5	5_	5	5	5	उ			
	D	5	5	5	5	5_	.5	2	5				4
300446	E	5	5	2	5	5	5	5	2	<u> </u>		3	/
IC	F	5	5	5	5	5	5	5	5	/_			15
10	G	5	5	5	5	5	5	5	2				3
	Н	5	5	5	5	5	5	ک .	5				4
				_									
Conc:	А	5	2	5	5	5	5	5	5	1			4
100%	В	5	5	5	5	5	-5	5	5				4
100 /5	С	ς	5	5	5	5	5	5	5	1		/	3
	D	5	5	5	5	5	5	S	5	/		<i>ે</i>	2
300447	Ē	5	5	5	5	5	5	5	5	2			3
CR	F	5	5	5	s	5	5	5	5				4
	G	5	5	5	5	5	5	5	5	/			4
	Н	5	5	5	5	5	5	5	5	2		<u></u>	3
Conc:	А	1	5	5	S	5	5	5	5			2	3
100%	В	2	2	5	4	4	+	4	4	/			3
100 10	С	5	5	5	.5	5	5	2	5	2			マ
المالية المالية	D	5	5	5	5	# 5	5	5	5	a			(1)
-20448	E	5	5	5	5	5	5	5	2	· _/		/	
C-5	F	5	5	5	5	5	5	4	4	à			2
(C)	G	5	5	5	5	5	5	5	5	/	·	2	3
	Н	5	4	И	4		4	4	Ч	/			3

,. Job Code #:

300446-300451

				١	Numbe	er Alive	е						
1	Pop				D	ay		_		Fem. with	Fem.	Males	Immatu
	Rep. No.	0	1	2	3	4	5	6	7	eggs	eggs		
Conc:	Α	5	5	7	5	5	5	5	\$ 84			<u>а</u>	1
100%	В	5	5	5	5	5	5	5	\$ 45				5
10070	С	5	5	5	5	5	5	5	7			2	3
	D	2	5	5	5	5	5	2	5	2		/	2
300449	E	2	5	5	5	5	5	2	2		, 	1	4
	F	5	5	5	5	5	5_	2	5				7
C-+	G	2	5	5	5	5	5	S	5			0	3
	Н	5_	5	5	8	5	5	5	2			2	3
Conc:	Α	7,	5	5	5	5	5	5	5	/			4
100%	В	5	2	4	4	4	4	4_	4	\supset			2
100 10	С	5	5	2	5	5	5	5	2			2	3
	D	2_	5	5	5	5	5	4	L	1			3
300450	E	5	5	5	5	5	_5	2	5	3			3
10-16	F	5	5	5	5	5	-5	5	5	/		9	2
0-10	G	5	S	5	5	5	5	2	5				4
	Н	5	5	5	5	5	5	_5	2				Ч
Conc:	Α	2	5	5	5	5	5	5	2				_2_
100%	В	5	2	2	5	5	5	S	2	J		/	~
100 73	С	2	5	5	5	5	_5	5	5	Э.			-22
	D	5	5	5	5	5	5_	2	15)		1	3
300421	E	5	5	5	5	5	_5	5	2				5
0-33	F	5	5	5	S	5	5	2	5			2	3
	G	5	5	2	5	5	5	5	5	3		/	
	H	5	5	5	5	5	5	5	5	ک			3_
Day/Ti	ime	10/12	10/13	10/14	10/15	10/16	10/17	10/18	10/19	10/19	10/19	10/19	16/19
Initia		SD	SU	38	64	GA	644	Jø	13	Jo	JB	SL	なた

APPENDIX 4. Mysidopsis bahia Growth Determinations

Weight Data for Mysid Shrimp Growth

Job Code #: 300+46-300+51

Drying Date/Time: From:

10.19.00

Drying Temp. (°C):

100°C

To:

10.30.00

Analyst:

SB

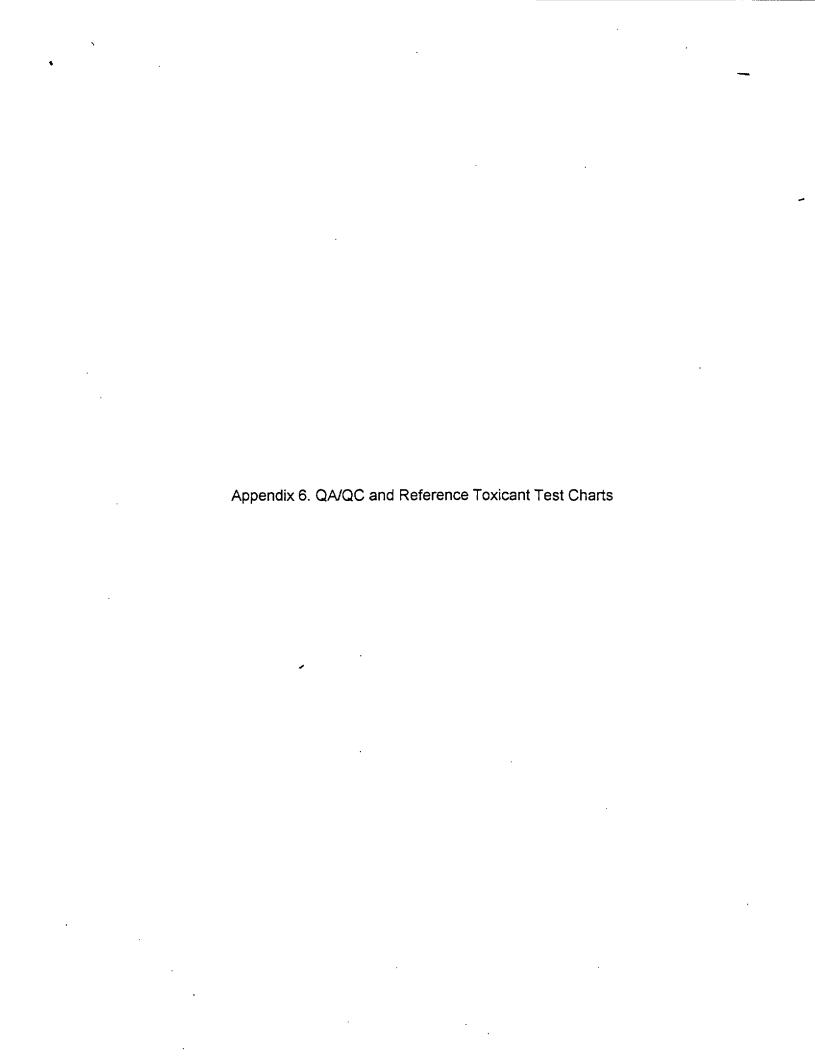
Weighing Date/Time:

10.30.00/150

Conc:	Rep	Tare Wgt. (mg)	Gross Dry Wgt. (mg)	No. of animals	Mean Dry Wgt. of animal (mg)	Remarks _
Control	ı	15.51	17.44	5	0.39	
	2	14.01	15.63	5	0.32	
	3	11.83	14.68	5	0.570	CE 19/c
,	4	12.07	13.88	513 1 8 4	0.4346	0-36 0-15 MG O
	7	11, 13	13.15	5	0.41	
	6	13.32	14.85	5	0.33	480
	7	8.87	11.47	5	0.52	0.48 CDE
	8	10.90	15.16	5	0.85	$\overline{X} = QXH M$
		12.09	14.73	2	0.53	
	2	10.88	12.94	2	3.41	
	3	10.87	13.93	5	0.61	
	4	13.07	16.89	2	0.76	
300446	5	12.57	15.04	2	0.49	
TC	6	13.61	17.14	5	0.71	•
	7	14.44	16.95	2	0.50	
	8	12.46	14.61	5	0.43	$\overline{X} = 0.56 \text{ Wg}$
]	11,23	13.80		0.46	
	ک ک	10.79	13.47	5	0.54	
	3	11.65	15.08	2	0.69	
200111	4	10.31	17.25	5	6.79	
300447	5	10.45	13.04	2	0.23	
CR	6	11.38	15.56	2	C.84	
	7	11.64	14.32	7.	0.54	
	8	13.86	16.18	.5	0.46	x =a60 mg
		12.12	17.48	2	0,47	11/1/00
	3	16-97	21.47	SE MAY	0.90	TIS CESB 0.90
	3	18.06	21.37	T_	0.66	·
222777	4	15,34	19.59	2	0.8.5	
300448 C5	5	18,80	21.14	2	0.47	CENC 11 900
<u>C</u> 5	(6)	17.53	22.62	EF 184	1.02	1.27 CEUM 1.02
	7	20.66	23.31	5	0.51	CEKC 11/9/00
	8	21.30	24.95	55 JA 84	c-73	0.91 CESIS 0.7:

Weight Data for Mysid Shrimp Growth

Job Code #:


300446-300451

Conc:	Rep	Tare Wgt. (mg)	Gross Dry Wgt. (mg)	No. of animals	Mean Dry Wgt. of animal (mg)	Remarks
	1	17.91	20.82	55 744		0.73 cesa
	٦	18.10	21.06	2	0.59	
	3	15.88	21.43	2	1.11	
300449	4	18.36	22.09	2	0.75	
C7	5	18.13	20.80	5	0.53	
	6	17.82	24.27	5	1.29	
	7	17.97	23.26	S	1.06	
	8	16.60	30.48	5	0.78	$\bar{x} = 0.84$ ma
		20.15	23.41	2	0.65	
	λ	19.04	28.53	FIF HJELLS	1.90	2.37 CESO 1.90
	Ş	18.97	2245	5	0.70	CF HC 119/00
	4	17.48	19.92	FE 448	6.49	ALET CEUR O.4
300450	5	20.39	27.18	2	1,36	
CIL	9	17.48	19.71	S	0.45	
	7	16.37	18.10	5	0.35	
	8	18.30	20.57	5	0.45	$\bar{x} = 0.79 \text{ mg}$
	ļ	18.10	20.93	b	0.57-	
	٦	18.91	22.69	5	0.76	
jj j	3	20.22	23.98	5	0.75	
	4	16. 58	18.70	S	0.42	
300451	5	17.40	19.05	5	0.33	
300451 C33	6	18.01	26.20	5	0.44	
	7	16.35	18. 35	5	0.40	
	8	17.26	19.04	5	0.36	X = 0.50 mg
		21.56	30.08	2	1.70	Frozen mysid From 10.13.00

APPENDIX 5. Cyprinodon variegatus (Sheepshead minnow) Test Sheets

1. EXPOSURE CHAM	BER		ı ř.h	
Water Depth	Volume: Surface Area:	500	500 ml (25) 250 ml (26) cm to	cm
2. FEEDING SCHEDU	LE			
Not Fed: Fed Daily: Fed Irregularly (Describe) Food Used:			uc 11/10/	00
3. AERATION				
None:	,	•		
Slow:	(Bubbles or	ml/min)		
Moderate:	(Bubbles or	-		
Vigorous:	(Bubbles or	ml/min)		
From:	AM/PM;		/	_(Date)
To:	AM/PM;			_(Date)
4. SCREENED ANIMAL Not Used:				
Used:	cm Diameter	•		
5. CONDITION/APPEAR but immobile; loss of orience healthy.		ovement; etc	.) Surui	
6. Comments:	<u></u>			
•				

		DR-E	NVIRON	MENT	AL							146-45	/		
Site: -									Tempia				C- = 51	· ^//	17
WC %:	_								Dilution				(25%.) 00-0	
Sample		10/11	100						Species	s Infor	mation		SHM	00/011	$(\leq 1d)$
est St			2/00	160	0			•	Γest En	ided:	1010		1600		
est Co			400								7	7			SAL.
				304.1	7	ay 2	T	Day 3	Da	y 4	Day	5	Day 6	Day 7	-Gond
Conc	Test	Day 0		Day 1	_			315.9	5.3						24
C-33	DO	5.7	4.7	-15.7		<u> 16.1</u>							815.7	3.5	
C-16	DO	7.2	4.7	16.2						15.7	1 1 2		716.9	5.4	- 25
C-7	DO	6.2	5.2	-16.0	14.5	159		15.9	501			6.5 5.		5.6	25
C-5	DO	6.5	5.4	16.1	9.8	16.2	5.6	16.0	5.21		4.21	6.9 5.5	17.1	5.7	24
CR	DO	6.0	4.5	16.0	4.7	16.5	15.1	16.1	5.31	6.2	4.3 1	6.6 5.	5170	5.3	27
TC	DO	5.8	4.5		49	16.0	15	216.2		15.8		5.6 5.			24
	DO		4.7		127	16.0	-	116.6		5.3		5.8 5.4	1 15.4	5.6	25
ONTRU		5.7			13:1					· • • • • •			21017		
C-33	°C	25.7		126.0		127.	0 25.	4125.4				259 24	<u> 4 14 </u>	25.0	24
2-16	°C	26.0		3 <i>125.</i> 8		126.1	UZ5.	<u> </u>	24.21			258 <u>24</u>	61247	25.1	24
C-7	°C	25.8		31260	125.	1126.	125.	6125.2		260	25.0 /2	LA 23.	7125.2	24.5	211
C-5	°C	24.7	25.1	1240	24.5	126.	25.	3/24.5	26.01	260	25.1 12	57 23.	7/28.1	24.5	23
CR	c	25.0		125,8				8 25.4	25.31		26012		81951	24.9	25
TC_	- <u>c</u>	25.3	25.8		25.4		7 25.	71254			26.0 12		81950	24.0	25
							433		- C						25
NTROL	°C	24.9		.1252		كسيباكب	100	0125.6			26.0 12		8126.0	24.0	4.3
-33	pН	7.9	7.8		8.0	17.0	<u>- 7.8</u>	17.5		7.9		7.5 8		RI	ļ
-16	pН	7.5	7.9	17.4	17.8	17.5	77.8	17.5	8.3 /	7.9		74 8		8.1	27
-7	рΗ	7.4	7.8	17.5	7.7	17.5	7.8	17.5	821	7.9	7.6 1	15 80	717.5	7.9	27
2-5	pН	7.4	7.8	17.5	7.7	17.5	7.8	125		8.0		7.5 8 7.5 7.0	1171.	8.0	26
CR	pН	7.4	155	77.5	199		178	17.5	8.21	7.9		7.5 7.0		7.8	32
TC	pH	4.9		17.9	+	17.9	1-54	17.9		8.4		9 8.7		8.0	W 26
							144								25
NTROL	pН	8.1	179	18.1		17.8							18.4	8.1	
	_1C-	11 #1	CR E#	#2-	C5 E#1	H O (C	7Rec	 4	A Reo'g #	<u> 4437</u>	Rec'g#3	Recor	#1 R	lecon #2	Recon #3
Hardnes	e	12	2=	}-	24	Z 1	.	<u> </u>	25		2			NA	M
Alkalinit	y -	12	1	7	7.7		7		25	60 100		Î		· • · · · ·	7
Chlorine		0.0/	120	.01	- /	01		.01	20.0		(0.01	 			1
Ammonia		7.0		.0		1.0	-77.		<7.0		₹4.0	1			V
		_	_	,				_	_						
	ep 0		2	3	4	5	6	7	Cup		&Tare	Tare	Fish \		Avg Wt
	‡1 1(10	10	19	14	19	19	# 28			10 396			
33	2 10	10	10	10	10	10	8	17_	# 27	11.0	734	10349	0.00		
J [#	3 10	10	10	10	10	10	10	10	* 26	11. (<u>(20</u>	1.0602			8] O.7°
#	4 10		10	10	17	7	17	6	# 25	11.0	436	1.0406	0.00		9
	1 10		10	10	10	10	10		# 24	1.0	463			00 1.0	
	2 10		10	10		10	10		# 23	11. 7			0.01		0.45
10			19		19	9	19		# 32	++- +	35,99			17/1-0	-1 n 05
	3 10		+	19				19		4. 4		1.0513			;; ;;;;;
	4 10		110	10	19	9	8	8	# 21		7501	10246	0.00		>
#			10	10	110	10	10	10	# 20	11. 0	1578	1.0399	0.01	59 1.50	
7 #	2 10		10	10	/0	10	9_	19	# 19	11.0	1618	10537	0.00		71-00
7 #			10	10	10	9	9	8	# 18	11.) 33 G	1.0 27	6.00		71.00
#			10	10	10	10	10	19	# 17	176	E IL	INGUI	0.009		7
#										11:5	77/	10//2	102	بشيرة فساخصوب الب	+
			110	10	10	10	 1 층-	7		+	7774	1.0436	0015		
5 #			10	10.	10	10	10		# 15	ti. Ň	7600	1.0438	0017		1127
#			10	10	10	10	10	10	# 14	<u> 11. ()</u>	561	1.0462	6.009	19 0.99	
#	4 10	10	10	10	10	10	10		# 13	11.0	612	1.0470	0.013	3 1.33	1 .
#	1 10	10	10	10		10	10		# 12	1.0	430	10.315	0.01		
- 44		10	10	10	10	13	10		# 11	11 5	£ 39	1.0302	0-019		ا ۸۸ ا
					10	10				1	- /_ · 	10/134	7		-11.00
R #		10	10	10			10	10	# 10	 . 	559	1.042	6-01		վ՝ ∣
*	4 10	10	10	10		10	9	9	# 9	$\mu \cdot \mathcal{O}$	608	10517	0.00	91 0.91	
*			10	/0		10	9	18 1	# 8	11.0	5591	1.0498	0.000		
** **	1 10		9	9	9	9	9	4	¥ 7	1). 0	6311	1.0508	0 012		10.68
** **	1 10	9	1.2	10		10	9	19	* 6	1.0	293	1.0249	6-00		0.00
** **	1 10 2 10		110 1			9	8		+ 5	1.19	49,1	10 300	0.00		;
* # # # # # # # # # # # # # # # # # # #	1 10 2 10 3 10	10	_	10	~ I				¥ ' 4	H ×	1 2040	1.0.31		Name and Address of the Owner, where the Owner, which the Owner, where the Owner, which the	+
**************************************	1 10 2 10 3 10 4 10	10	10	10	9		10	1 1/1 -		/17	617 1	1.0495	0.0122	1 1.22	_
**************************************	1 10 2 10 3 10 4 10 1 10	10 10	10	10	10	10	10					2 A 1	10.0.2		-
**************************************	1 10 2 10 3 10 4 10 1 10 2 10	10 10 10	000	10 10	10 10	10 10	10	10	¥ 3	1-05	16	1.0415	0.010		113
**************************************	1 10 2 10 3 10 4 10 1 10 2 10	10 10	000	10	10 10	10		10	¥ 3	1-05	16	1.0415		1-01	1.13
**************************************	1 10 2 10 3 10 4 10 1 10 2 10 3 10	10 10 10	000	10 10	10 10 10	10 10	10 10	10	¥ 3	1.05	356	1.6 242	0.011	1-01	1.13
*** ** ** ** ** ** ** ** ** *	1 10 2 10 3 10 4 10 1 10 2 10 3 10	10 10 10 10 10	00000	10 10 10	10 10 10 10	10 10 10 10	10 10 10	10 10 10	* 3 * 1	1-05 1-0 1-04	356 -69	1.6242 1.0353	0.011	1-01	1.13
######################################	1 10 2 10 3 10 4 10 1 10 2 10 3 10 4 10	10 10 10 10 10 10 10	00000	10 10 10 10 HW	10 10 10 10 HW	10 10 10 10 10	10 10	10 10 10 Hw	* 3 * 1	1-05	356 -69 450	1.6 242 1.0353 1.0415	0.011	1 1-01 1 1-01 5 0.35	1.13 Pretest
######################################	1 10 2 10 3 10 4 10 1 10 2 10 3 10 4 10 6 10	10 10 10 10 10 10 10 10 10 5 Hw	10 10 10 10 10 10 10	10 10 10 10 10 14 14 14 14 14 14 14 14 14 14 14 14 14	10 10 10 10 10 HW	10 10 10 10 10 10 10	10 10 10	10 10 10 Hw	* 3 * 1	1-05 1-0 1-04	356 -69 450	1.6342 1.0353 1.0415 C5	0.010 0.011 0.011 0.003	-0 	1.13 Pretest
* # # # # # # # # # # # # # # # # # # #	1 10 2 10 3 10 4 10 1 10 2 10 3 10 4 10 CR C 26 2	10 10 10 10 10 10 10 10 10 10 400 3	10 10 10 10 10	10 10 10 10 10 14 10 14 10 14 10 14 10 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	10 10 10 10 HW	10 10 10 10 10 10 10 10 10 10 10 10 10 1	10 10 10	10 10 10	1 3 1 2 4 1 2 4 1 9	1-05	356 -69 450	1.6 3.42 1.0353 1.0415 C5 26	0.010 0.011 0.011 0.003 C7 27	1-01 1 10/4 5 0.35 C/6 C	1.13 Pretest

Form: 037 Effective: May, 1997

The SeaCrest Group Fathead Minnow Acute Benchsheet

Permittee: MYSIO NEFTOX											Lab Number: Template Number: (25%)										
Site:	j. —												Dilution Water Sar 4-0 00-07 (25%)								
WC '											Template Number: Dilution Water: SALT 4-0 00-07 (25%) Species Information: ABS MYSID 00/005 (10d) Test Ended: 10/19/40 1100										
Sample Date:										Ta	t Fn	سبب	. 10	1191	on On	110	2				
Test.	t Started: 10/15/00 1130 t Conditions: Cus6+									1	41-1-41		1		-						
Test !	<u>Çon</u>	ditio	ns:	(°u	50	/						Temp	eratu	re °C				pН	-Gone		
Conc	<u> </u>	Nu	mber A	Alive		<u> </u>		ved O			0	24	48	72	96	0	24	48	72	96	umh
& Rep	0	24	48	72	96		24	48	72	96					- 30		8.4	_			20
250	5	0				5.6	5.7			 	100	25.4		 		1.1	0.1	-			
	5	0	-	 	 					↓				 		} -	 -	 			
						<u> </u>				<u> </u>	<u> </u>			<u> </u>		 	 			-	
																		20			-
10 5	5	2		0	-	5.7	57	55	5.3		25.9	253	25.7	25.4	_	80	8.4	7.9	7.9		26
125	5	+-	1	0	1_	1	1						i							<u> </u>	
	1	+-	+-	٢_	+	f^{-}	t		Ι												<u> </u>
	 	┼	+-	+	+	 				1											
<i>-</i>	-	1.	+	1_	上-	100		5%	52	50	25.9	257	25.6	25.4	25.7	8.0	8.4	79	7.9	80	26
25	5	 	0	١ ,	-	19.1	3.7	12.0	0.0	10.0	<u> </u>	2.0		1			<u> </u>				
	5	μ_	₩_	1-	0	 			 	 	 						1	1			
	 	<u> </u>	 	 		 	 	 		\vdash	_			 		 	T				
		<u> </u>				<u> </u>			<u> </u>	-	25.9	201	201	2521	251	80	0.4	79	79	79	26
31.25	5	5	5	5	5	57	5.8	55	5.1	5.1	W.7	621	426	14).7	43.6	<u>U.U</u>	$\mathcal{O}^{\mathcal{I}}$	1.5.		· · · ·	
	5	5	5	5	5					 				-	-		 				
									<u> </u>	 	 					 	 			-	
														- 4				-	-	00	71
5.625	5	5	5	5	5	5.7	5.8	5.6	5.2	5.2	258	25.0	25.2	25.1	25.4	8.0	18.4	127	15	0.0	26
	5	5	15	13	5	<u> </u>											<u> </u>				
	1	 	 	Ť	1	1										<u> </u>	<u> </u>	<u> </u>			
	 	1	T	 	1	1										<u> </u>		<u> </u>			<u></u>
	5	5.	5	5	5	57	1	5.6	53	5.Z	25.6	25.3	250	25.1	25.3	80	8.4	7.9	79	7.9	26
<u>C</u>	5	5	5	5	5	 	6.0	<u> </u>	1									<u> </u>			
	12	1	10	۲	 	 	ں،ط		 												
		-	 	-		 			 	1	 										
	!	 	 	 	├ ──					+						T		1			
	<u> </u>	 	<u> </u>	 	ļ	 				 					 	1	 		<u> </u>		
	<u> </u>	↓		<u> </u>	 	<u> </u>	 	 -						-	 	1	\vdash			T	
		<u> </u>	<u> </u>			<u> </u>	 	 	 	 	 				-	 		1	1		
			<u> </u>						<u> </u>	 	 				-	 	1	+	-		
										 	<u> </u>			-	-	 	┼	-	-	-	1
						<u>L</u>				<u> </u>	 		-	 	 	 	-	┼		-	
			T					<u> </u>						ļ		 				┼─	
	T	1						L							<u> </u>	ļ.,-	<u> </u>	1	1	177.1	
Initials	Hin	HIN	HW	410	MIN									<u> </u>	<u> </u>	HW	HU	HW		HW	
muais	111000	11400	<u> </u>		luent #	<u>. </u>	Red	eiving	#1		Reco	n			Efflu	ent #2			Rece	iving #	2
					JUSTIL A	r 1	T			. —		****									
Ha	ırdnes	s (mg/	(1)	 	_===		+	-													
Al	kalinit	y (mg/i	I)	<u> </u>			 						-		=						
C	hlorine	e (mg/i)	<u> </u>			┼				 -				10			\dashv			
Amm	onia Ir	nitial (n	ng/l)	<u></u>		-	<u> </u>									<u> </u>				_	
	:	inal (n	(1)	1 -			1 '				1										

Results calculated using the Summary Method.

CDR Sponsor Species MYSIDOPSIS BAHIA Study Number 300445-300451 Dates of test 10/15/00 to 10/19/00 Test Material CUSO4 Concentration Units: PPB Report run by KAC Date of report 11-13-2000

REF TOX

Number	Number	Percent		
Exposed	Dead	Dead		
10	10	100.0		
10	10	100.0		
10	10	100.0		
10	0	0.0		
10	0	0.0		
10	0	0.0		
	10 10 10 10 10	Exposed Dead 10 10 10 10 10 10 10 10 10 0		

Method	W	LC50	95% Confidence Lower	Limits Upper	Slope
Binomial Moving Average Probit Logit		44.19 ***** ***** 49.60	31.25 *****	62.50 ***** *****	N/A N/A 0.00 5.87

Note -- In order to produce this summary report, no warning or diagnostic messages were given (if any occurred). An asterisk appearing next to the method indicates that there was a warning associated with the corresponding method. You should run the full report for this method to determine the problem. This report is intended for informational purposes only.

Form: 037 Effective: May, 1997

The SeaCrest Group Fathead Minnow Acute Benchsheet

																						7
Perr														Lab Number: -								4
Site:											<u> </u>	Template Number:										4
	TVIO A													Dilution Water: SALT H2O 00-07 (25%) Species Information: ABS SHM 001011 (2d)								4
Sam	ple I	Date	-								1 <u>s</u> r	<u>secie</u>	<u>s in</u>	form	<u>atior</u>	1: A7	<u>35. S</u>	<u>34M</u>	_00	1011	(2d)	4
Test	Star	rted:	10	1/3/0	10	11:0	20				 I E	est E	nder	d:	10/17	<u>i,/00</u>	_//_	45				4
Test	Cor	nditio	ns:	Ci	(SO ,	Į.		ABU	ATOO	<u>. </u>						·						ا
	1		umber.			T	Diss	olved C	Oxyger	.1	<u> </u>	- Terr	nperatu	ure °C				pН			-Gend.	SAL
Conc & Rep		_		1	96	0	24					24			96	0	24	48	72	96	-umhos	700
1000	10	10			9	15.6		14.6	6.4	15.7	125.7	21254	1/261	d260	25.7	7.8	7.7	17.7	R3	7.8	22	1
7000	10	10		9	18	1	1-4-	+	1	1	1		1	1	1						22	i
	+	+10	+-	+-	10	+	+	+	+	+-	+-	+	+-	+	+		•					İ
	+		+	+	+	 	+	+	+	+-	+	+	+	+	+	 	 	 	-	 	 	1
<u> </u>	4_		+	4	+	ب	 	+	+	 	1000	+	1000	24.0	250	ججا	 		 	1	 _	1
500	10			10	19	5.6	14.7	46	6.4	5.7	123.3	478.7	1260	126.0	120	<u> </u>	T. +	7.1	85	1.71	22	4
<u> </u>	10	9	19	17	17	<u>L_</u>		<u> </u>		<u> </u>	<u> </u>				<u> </u>	<u> </u>		<u> </u>	<u> </u> '		22	1
	Γ_{-}		T_{\perp}			T	Τ	L	<u> </u>	<u> </u>	<u>L</u>	<u> </u>	<u>L_</u>	<u> </u>	<u> </u>	<u></u>	<u> </u>	<u> </u>			<u> </u>	l
]			T'	ſ'	[<u>'</u>	'			<u> </u>	
250	10	10	10	10	10	5.7	117	4.7	125	5.6	25.2	25.5	26.0	1258	158	8.1	77	77	8.4	7.9	21	ĺ
<u> </u>	10	9	9	9	19	1-	144	十/: 一	10	<u> </u>	1	10-34	-	100-	1200			1			24	
	1/0	+	+	+-	+1	┼	┼─	 '	 	 	 	+-	+	 		 	 	 		-		l
	┼	+	 	 	┼	┼	├ ─		 '	├──	 	┼──	┼─	 '	 	 	 	 		\vdash	 	l
	 	 	<u> </u>		 	<u></u>		 '	 '	<u> </u>	 	 	 	<u> </u>		<u> </u>	لا	لييا			<u> </u>	
125	10	10	10	10	10	5.7	4.8	4.6	65	5.5	252	1255	259	255	258	8.1	7.7	7.1	<u>ছ</u> হ	77	21	1
	10	910	10	10	10		['		<u> </u> !		<u> </u>	Щ.	<u> </u>								21	l
										[<u> </u>	Ţ							ГJ			i
	 		 	†	†	\vdash										$\overline{}$			1			ĺ
125	 	1.	10	10	10	57	11 01	4.2	15	5.3	251	156	250	259	256	21	77	77	24	79	21	l
62.5		_	+	9	9	7.1	1.1	11.5	<u> </u>	البيبر	1	100.50	220	<i>D.</i> ,,	we	<u>ن.</u>		- 			27	i
	10	10	9	17	111	 '	 -	├──┤			 '	 									4	i
	 '	 	 '	<u> </u>	 	 	 !				 '	 	 			, 						,
	<u> </u>		<u> </u>		'	!				ل	<u> </u>								لبي			i
0	10	10	10	10	10	5.7	4.6	4.8	6.5	5.9	24.6	25.8	249	16.0	25.7	81	7.8	7.7	<u> 33</u>	7.8	22	
	10	10	10	10	10			$\lceil \rceil$			ſ <u></u> '										22	
					1																	
		 		\vdash									$\overline{}$									
	 	 	$\overline{}$	 	 	 				-			\vdash			-	一十	_				
				\longrightarrow								 	\vdash			-	-	-		-		
	 	\vdash				 					 	 	\vdash						-+	-		
												 _									———	
														1								
		$\overline{}$	\rightarrow						-	-							- 1					
										-					\dashv	-		-				
					17.11											11			114 (1)	111		
Initials	HW	Bo	HW !	HW	HW												<u> </u>		Hull			
				Effi	uent #1	1	Rec	eiving #	#1		Reco	n			Effluer	ıt #2		F	Receivi	ıng #2		
Har	rdness	· ///																				
nar	aness	(mg/i)			~					$\overline{}$								_				

Alkalinity (mg/l) Chiorine (mg/l) Ammonia Initial (mg/l) Ammonia Final (mg/l)

Appendix 7. Test Animal History Forms

1300 Blue Spruce Drive, Suite C Fort Collins, Colorado 80524

Toll Free: 800/331-5916 Tel: 970/484-5091 Fax:970/484-2514

> DEGETVED 10/12/00 D

ORGANISM HISTORY

/11/00	
ysidopsis bahia	
day	
venile	
/5/00	
mediately	
temia	
Mean	Range
24°C	
24 ppt	
135 mg/l	
8.08	
/LM	7
Jutilla	
	Mean 24°C 24 ppt

1300 Blue Spruce Drive, Suite C Fort Collins, Colorado 80524

Toll Free: 800/331-5916
Tel: 970/484-5091 Fax:970/484-2514

ORGANISM HISTORY

	OKC	SAMISM HIST	JKI	proce	,			
DATE:	10/11/00							
SPECIES:	Cyprinodon			Temp. PH 23.7 8.1	たして			
AGE:	N/A			23.) 8.	_			
LIFE STAGE:	Embryo .				<u>G</u> Af			
HATCH DATE:	HATCH DATE: 10/11/00							
BEGAN FEEDING:	N/A				pe			
FOOD:	N/A							
Water Chemistry Record:	7	Mean	Range					
TEMPER	ATURE:	22 ℃						
SALINITY/CONDUC	TIVITY:	26 ppt						
TOTAL HARDNESS (as	CaCO ₃):	-						
TOTAL ALKALINITY (as	CaCO ₃):	160 mg/l		*******				
	pH:	8.42	<u></u>					

Comments:

Facility Supervisor

RESULTS OF CHRONIC SEDIMENT TESTS CONDUCTED ON SAMPLES FROM THE LCP PROJECT

Submitted to:

Mr. Curt Rose CDR Environmental Specialists 171 Cays Drive Naples, Florida 34114

Submitted by:

The SeaCrest Group 1341 Cannon Street Louisville, Colorado 80027 303-661-9324

March 13, 2001

An Environmental Services Company

March 16, 2001

Mr. Curt Rose CDR Environmental Specialists 171 Cay Drive Naples, Florida 34114

Dear Curt:

Please find enclosed the report for the chronic aquatic sediment tests performed on eleven sediment samples using the marine benthic amphipod *Leptocheirus plumulosus*. I am providing you with the Materials, Methods, and Procedures write-up for the tests, as we discussed. I have included a brief written summary of the sediment test results. All the raw data for the tests is included in the Appendices.

I apologize that we could not obtain successful test results with the remaining five sediment samples. The first six sediments appeared to provide little difficulty. However it seems that the longer the test sediments were held, the worse survival results were obtained. This included the South Boulder Reservoir control sediment that was held under the same conditions as the test sediments throughout the holding time.

It's possible that any organic material in the sediments changed during the holding time and therefore less nutrition was provided. Although the test organisms were fed food recommended by the culturing facility from which they were purchased, the food available was not the diet recommended in the Chesapeake Bay test guidelines. The live algal cells they recommend were not available to our facility. This probably contributed to the testing difficulties. I have included all test results for the three groups of tests that were run. Hopefully information can be

The test organisms were tested in reference toxicant tests with copper sulfate. All three batches of amphipods produced LC50 concentrations that were within 23 ug/L (ppb) of each other. These are very similar results and should indicate that all three batches of animals were comparable in health and testability.

Please call if you have any questions.

Sincerely.

Kelly A. Carr

Laboratory Manager

enclosures: Report, Invoice

INTRODUCTION

Sediment contamination is an environmental issue that can have widespread effects on aquatic systems. The sediment may serve as a reservoir for numerous contaminants that can detrimentally affect an aquatic ecosystem. However not all substances found and measured in sediments are bioavailable. Therefore tests conducted with aquatic organisms that utilize the sediment for feeding and/or protection provide information on the ability of the sediment to adversely affect the aquatic community.

MATERIALS AND METHODS

Sample Collection

Grab samples of sediment from eleven sites were collected into clean, plastic containers from October 16 to October 19, 2000. The samples were chilled and shipped in coolers on CDR October 19, 2000 for overnight delivery to the SeaCrest lab, where they arrived at 10:30 on October 20, 2000. At the lab the sediment samples were refrigerated at 4°C between uses. The Chain of Custody forms documenting sample collection and transfer times are included in Appendix 1.

Dilution Water

A 20 part-per-thousand (%) artificial saltwater (Forty Fathoms^R sea salt) was used as the overlying water for the sediment tests. This water was created and aerated for a minimum of 48 hours before being adjusted to test temperature and used for the daily water change-outs.

Test Organisms

The chronic tests were conducted with a benthic estuarine invertebrate, the amphipod Leptocheirus plumulosus. The amphipods started in the chronic test should be approximately one day old. However it was not possible to get an exact age from the test organism supplier. The amphipods used in the present tests were between one and three days old at the start of the test, according to the "Organism History" information supplied with the animals. The supplier provided this as the closest grouping of age they could achieve. The Organism History records are supplied in Appendix 2.

The Leptocheirus were tested in reference toxicant tests using copper sulfate (CuSO₄) to measure health and test acceptability. The LC50 concentrations achieved for the three reference toxicant tests conducted with the Leptocheirus were 54.4 ug/L, 31.0 ug/L, and 49.1 ug/L copper.

Test Procedures

The 28-day chronic tests followed the procedures outlined in the December, 1992 publication of the Chesapeake Bay Program guidelines for "Development of a Chronic Sediment Toxicity Test for Marine Benthic Amphipods" (CBP/TRS 89/93).

In preparation the sediments did not require sieving but were thoroughly stirred and all large particles (i.e. branches, stones) were removed manually. Each sediment was visually inspected for indigenous organisms, none were observed. The control sediment, the experimental (field) control sediments, and the test sediments were treated and tested in the same way.

The test containers were 1 liter glass jars to which 175 ml of the homogenized sediment was added. Then 725 mis of $20^{\circ}/_{\infty}$ saltwater were poured over the sediment. The sediments were tested at the 100% concentration only, no dilution series was used. Five replicates were used for each sediment sample. A "performance control" sediment set was run in addition to the test sediments. The control was a clean, uncontaminated sediment obtained from Boulder Reservoir and consisting of organic material and sand. One "experimental" (field) sediment, collected from an area thought to be clean near the site of the test sediment collection, was tested with each batch of sediments.

The first set of chronic *Leptocheirus* tests was started on October 25, 2000 and ran for 28 days, ending on November 22, 2000. One of the experimental control sediments (TC) and five of the test sediments (MG-B7, MG-D9, MG-H7, MG-K7, and MG-N2) were run at this time, along with the performance control sediment. The second set of tests were run with the remaining four test sediments (C-5, C-7, C-16, AND C-33), the other experimental control sediment (CR), and the performance control sediment. These tests were started on December 13, 2000 and ended 28 days later on January 10, 2001. When these tests did not achieve a satisfactory control survival, the sediments were rerun in a third test starting on February 1, 2001 and ending 28 days later on March 1, 2001.

During all the tests the water over the sediments was changed once a day. One test container of each sediment was monitored every other day for temperature, dissolved oxygen, and pH, before the water change. Artificial saltwater used for the change-outs was held in the incubator at test temperature prior to use. Multiple 40-gallon batches of $20^{\circ}/_{\infty}$ saltwater were made during the chronic tests. The data sheet documenting the batch preparations and water quality checks is located in Appendix 3.

The test chambers were fed 1 ml of flake fish food slurry solution (4 grams of flake food blended into 1 liter of deionized water) three times a week. Observations of mortality and/or behavior effects were made and recorded at each water change-out.

The water over each sediment sample was measured for pH, salinity, alkalinity, conductivity, and ammonia at the beginning and at the end of the 28-day tests. The data sheets containing the readings of temperature, dissolved oxygen, and pH; and the water quality readings taken at the beginning and end of the test; are located in Appendices 4, 5, and 6 (for test sets 1, 2, and 3). The tests were held at a temperature of 25 ± 1°C in an incubator with a programmed day cycle of 16 hours light and 8 hours dark. The daily temperature readings and monthly light intensity readings for the incubator are located in Appendix 7. The temperature readings for the incubator were higher than those recorded in the tests themselves (as seen on

The SeaCrest Group

Nov.: Apparatus 5+6 not

(clouent and not in

the test data sheets), however the incubator readings show consistency in the temperature that was maintained.

Dissolved oxygen levels were maintained by aerating all replicates of each sediment test throughout the test study, as suggested in the Chesapeake Bay test instructions.

Test Termination

The sediment tests were terminated at 28 days. Water was pulled from each replicate of one sediment test and composited for final water quality readings. Then the water was poured from each replicate into a clean plastic pan and searched thoroughly for live animals. The sediment was then added to the pans and thoroughly searched also. Diligent effort was made to account for every test organism, either by retrieving them live or finding a body. After the live search, each replicate sediment was returned to the jar and saltwater solution containing rose bengal was added. The sediment was stirred to insure that the rose bengal stain contacted any organisms that were present. The next day (approximately 24 hours later) these sediments were again inspected and any remaining organisms were removed.

On the same day as the live pick, all adults pulled from the sediments were sexed using a dissecting microscope. The adults were euthanized following sexing and dried for 24 hours in a drying oven at approximately 95°C. The dried animals were cooled and weighed the next day. The data sheets containing the dry weight determinations and the number of surviving Leptocheirus per replicate are located in <u>Appendices 8, 9, and 10 (for test sets 1, 2, and 3)</u>.

The daily observation sheets, which also contain the number of adults and juveniles counted in each replicate at test termination, are located in Appendices 11, 12, and 13 (for test sets 1, 2, and 3).

Only Appendics 8 and 11

acc included in this

data report.

con

RESULTS

The first *Leptocheirus* chronic tests achieved acceptable performance control survival, although not as high as the 80% survival that the Chesapeake Bay study suggested could be achieved. Table 1 provides a summary of the first set of test results for tests performed on samples TC, MG-B7, MG-D9, MG-H7, MG-K7, and MG-N2. Juveniles were found only in the performance control (2) and in sample MG-N2 (23).

Table 1. Results of sediment tests run from October 25 to November 22, 2000.

Sediment	Survival (%)	Replicate Survival Range Low (%)	Replicate Survival Range High (%)	Survivor's Average Weight (mg)
Performance Control	71%	60%	90%	0.54
TC (Experimental Control)	29%	20%	35%	0.82
MG-B7	31%	15%	30%	1.11
MG-D9	39%	10%	60%	0.83
MG-H7	15%	0%	25%	0.96
MG-K7	0%			
MG-N2	49%	25%	65%	0.81

The second set of sediment tests did not achieve acceptable performance control survival. Therefore it was requested that these sediment samples be tested again to attempt to obtain acceptable results. Table 2 provides a summary of the first set of test results for tests performed on samples CR, C-5, C-7, C-16, and C-33. There were juveniles seen in the experimental control CR (10) and in sample C-7 (6).

Table 2. Results of sediment tests run from December 13, 2000 to January 10, 2001.

Sediment	Survival (%)	Replicate Survival Range Low (%)	Survival Range Survival Range	
Performance Control	36%	15%	55%	0.21
CR (Experimental Control)	32%	15%	55%	0.66
C-5	11%	5%	20%	0.23
C-7	31%	15%	40%	0.23
C-16	22%	5%	40%	0.31
C-33	67%	60%	80%	0.55

The second set of sediments were tested again to attempt to obtain acceptable results. These tests showed much lower survival numbers in every sediment sample, including the performance control and the experimental control. Table 3 provides a summary of the second set of test results for tests performed on samples CR, C-5, C-7, C-16, and C-33. There were no juveniles found in these test samples.

Table 3. Results of sediment tests run from February 1, to March 1, 2001.

Sediment	Survival (%)	Replicate Survival Range Low (%)	Replicate Survival Range High (%)	Survivor's Average Weight (mg)
Performance Control	0%			
CR (Experimental Control)	2%	0	2%	0.09
C-5	0%			
C-7	0%		<u></u>	
C-16	0%		<u></u>	
C-33	0%			

REFERENCE TOXICANT TEST RESULTS

The benchsheets for the reference toxicant tests are located in Appendix 14. Each batch of amphipods used for the chronic tests were tested in reference toxicant tests with CuSO₄ (the toxicant used at SeaCrest for saltwater organisms) to determine their health and test acceptability. The test guidelines recommended allowing the amphipods to obtain an age of at least one week before performing the reference test, since survival was very low if they were removed from sediment before that age. Some of the reference tests were run with reduced animals per replicate and/or reduced replicates when the number of animals ordered from the supplier did not match the number of animals received.

The Leptocheirus reference toxicant tests (called reference controls) were conducted on the first batch of test organisms from November 2 to November 6, 2000; on the second batch of test organisms from December 13 to December 17, 2000; and on the third batch of test organisms from February 12 to February 16, 2001. The test chambers were 30 ml plastic beakers containing water and a small piece of Nitex^R screen placed over the bottom of each beaker. The test was a static, non-renewal. The animals were fed 0.1 ml of fish flake slurry on days 0 and 2. The test concentrations run were 250, 125, 62.5, 31.25, and 15.63 ug/L copper (as CuSO₄). The LC50 concentrations for the three tests (three different batches of amphipods) were, respectively, 54.4 ug/L, 31.0 ug/L, and 49.1 ug/L copper.

REFERENCES

APHA/AWWA/WEF. 1998. Standard Methods for the Examination of Water and Wastewater. 20th Edition. American Public Health Association.

Hach Company. 1992. Hach Water Analysis Handbook. 2nd Edition. Hach Company, Loveland, Colorado.

Chesapeake Bay Program. December, 1992. "Development of a Chronic Sediment Toxicity Test for Marine Benthic Amphipods". CBP/TRS 89/93.

APPENDIX 1. Chain of Custody Form

The SeaCrest Group An Environmental Services Compani

Chain of Custody Record

(enclose with each shipping container)

Purchase Order Number
Project Number (lab use only)
2 ./

1341 Cannon Street • Louisville, Colorado 80027 303-661-9324 • FAX 303-661-9325 Client: Contact: ____ Address: 300459 - 300469 Program/Site: _ Phone: ____ Collected by: Supur Trans Acute These fields may be used Chronic for field test results Sample ' Amhunius Date Sample Identification Type Total Sampled Time (composite, grab) (Effluent, Receiving, Sediment, list other) Test (Lestochers Units Volume 10-16-00 1115 plumulasus 10-16-00 1635 10-19-00 Reter (0900) 3 10-18-00 1610 C-16 (5) 10-18-00 1010 6 10-19-00 1050 C-33 (5) MG-B7 (C)(5) 10-16-00 /1326 MG-D9(C)(5)10-18-00/1515 MG-H7(C)(5)/10-18-00/1605/ MG-K7(C)(s) 10-16-00 1455 Comments and special testing instructions: Elever (11) samples. There (3) replacetes per sample Monter survey growth and reproduction (if (consisted occur). Consist positive and regetive contests. Representing: CDR To Whom: Fw. Expect Date/Time: 6:00 PM Relinquished by: _____ To Whom: ____ Next recipient: Relinquished by: Rec'd by: Date/Time: 10.20 00 1030 Appendix 2. Test Organism History Sheets from Supplier

1300 Blue Spruce Drive, Suite C Fort Collins, Colorado 80524

Toll Free: 800/331-5916
Tel: 970/484-5091 Fax:970/484-2514

DEGENVED

L001024


ORGANISM HISTORY

DATE:	10/24/00		
SPECIES:	Leptocheirus plumulosus	Temp PH 23.3 8.2	Initial DO. 20.2
AGE:	1-3 day		
LIFE STAGE:	Juvenile	Solinity	After aeration
HATCH DATE:	Variable	190/	
BEGAN FEEDING:	Immediately	19%	8.2
FOOD:	Tetramin _® Flake Slurry		

Water Chemistry Record:	Mean	Range
TEMPERATURE:	25 °C	21-26°C
SALINITY/CONDUCTIVITY:	18 ppt	14-24 ppt
TOTAL HARDNESS (as CaCO ₃):		
TOTAL ALKALINITY (as CaCO ₃):	115 mg/l	90-135 mg/l
лH·	8 38	8 09-8 47

Comments:

Facility Supervisor

Page No.: \\
Form No.: 025

Effective: February, 1993

~		Callinita #	Dodo	Data Da
Batch No.	Quantity Water Prepared	Salinity *	Date	Data By
00.61	40L	20	10.24.00	64
00.02	40 L	20	10.31.00	and
0.02	40 L.	20	11.13.00	64
0.03	402	20	11-26.00	gr -
04	40 L	20	12.19.00	G.A.
01.01	50 L	20	01.02.01	64
1.02	3 5 L	20	07.01.01	art-
1.03	401	20	02.13.01	Opt
- 04	35 L	20	02-20-01	8/
			1	
······································				
-,			W	
			h	
·				

APPENDIX 4. Daily Temperature and Dissolved Oxygen Readings, Other Water Quality Readings for the First Five Sediment Samples and One Experimental Control Sediment (MG-B7, MG-D9, MG-H7, MG-K7, MG-N2, TC) Sediment Sample Source Control

Date of Test Initiation 10.25.00
Toxicologist Conducting Test Han Namon, Helly Carr, Geoff Markerson, Shacey Brestow

	Test Day	Test Replicate Sampled	Temperature (°C)	Dissolved Oxygen (mg/L)	pН	SAUNITY (PPT)	Alkalinity (mg/L)	Specific Conductance (umhos/cm)	Total Ammonia (mg/L)
10-25-00 1200 0 46	0	Control . 2	25.6	6.2	8.1	20	100	24900	0.45
10-27-20 1255	2	3	24.0	6.1	7.9				
10.21.00 10.50	4	.	z4. 4	6.0	7.9			_	
365 10	c	5	25.0	6.0	7.4	-		- ·	
6x co	7	+	24.7	5.7	7.3	-		—	
30,00	10	2	24.9	5.5	7.6	1		_	
60.55	12	3	24.5	6.3	7.5	<u>.</u>		-	
11 13.55 11 13.55	14	2	25.5	6.3	7.5				
11.10.00	16	}	26.1	5.6	7.9				
ا المالة المالة	انځ	2	24+	6. ⁰	73			_	
1530	7 c	3	26-2	5.8	7.8	_			

Figure D.3 Data sheet for temperature and overlying water chemistry measurements.

Sediment Sample Source	e(Cor	tro	
Date of Test Initiation	10	کد	00	
Toxicologist Conducting	Tes	t	·	

	Test Day	Test Replicate Sampled	Temperature (°C)	Dissolved Oxygen (mg/L)	рН	SAUNITY (ppt)	Alkalinity (mg/L)	Specific Conductance (umhos/cm)	Total Ammonia (mg/L)
10 15 15 15 15 15 15 15 15 15 15 15 15 15	22	5	23.8	6.3	7.4	_		_	
11.180	24	4	23.2	6.7	7.6	-		_	
10 1 10°	26	L ļ	24.6	5.9	7.7				
11.255	.28	3	23. 6	6.3	7.8	20	118	26400	౧.58
12									
					\times	pic			
	·	·							

Figure D.3 Data sheet for temperature and overlying water chemistry measurements.

Sediment Sample Source MG - B7

Date of Test Initiation 10 - 25 - 00

Date of Test Initiation 10.25.00
Toxicologist Conducting Test Dan Hunson, Hely Carr, Goff Henderson, Stacey Breslow

	Test Day	Test Replicate Sampled	Temperature (°C)	Dissolved Oxygen (mg/L)	pН	SALINITY (PP+)	Alkalinity (mg/L)	Specific Conductance (umhos/cm)	Total Ammonia (mg/L)
10.25 ±0 1315 86	0	1	25.4	6.2	8.0	20	//8	26 <i>6</i> 00	0.48
1235 1235 MC	2	3	at.0	6.1	7.4	-			
10 Z4 oc	4	2	24.4	6.0	7.6				
16 311 W	c	1	25.1	5.	7.3	_			
11 200	75	5	24.5	6.0	7.5	_		-	
11.4 00	16	Ŋ	25.5	5.8	7.6			_	
11 56	12	3	24.6	5.6	74			-	
11 335 11 355	14	•	25.1	5.7	7 \$			_	
11.10 CC	16	Ч	26.3	4.9	7-5				
1112 / 27 /	1 %	l	247	5.7	76	_		_	
5514 64 1510	7 c	4	25.7	2.1	7.5	_		_	

Figure D.3 Data sheet for temperature and overlying water chemistry measurements.

Page 2

Sediment Sample Source_	M	G-	BF	<u>-</u>	
Date of Test Initiation					
Toxicologist Conducting Te	est _	- 1			

	Test Day	Test Replicate Sampled	Temperature (°C)	Dissolved Oxygen (mg/L)	pН	SAUNITY (ppt)	Alkalinity (mg/L)	Specific Conductance (umhos/cm)	Total Ammonia (mg/L)
11.10.00	22	2	23.3	اربا	7.7				
11.18.00	24	4	23.6	5.4	7.6	_		-	
11 330	26	4	24.0	s.1	7.7	-		_	
1.22 × 1.25	२४	ı	24.2	6.0	ファ	2¢,	117	26700	0.71
(3,0							·		
					\times	re re			
								/	

Figure D.3 Data sheet for temperature and overlying water chemistry measurements.

Ţ

Sediment Sample Source MG-D9

Date of Test Initiation 10-25-00

Toxicologist Conducting Test Geoff Numberson, Yelly Carr, Sthey Greslow, Dan Hounson

	Test Day	Test Replicate Sampled	Temperature (°C)	Dissolved Oxygen (mg/L)	pН	SALINITY (PPT)	Alkalinity (mg/L)	Specific Conductance (umhos/cm)	Total Ammonia (mg/L)
Æt 10-25-00 1200	0	+	24. G	6.0	79	ZC	134	25800	0.30
MC 10-27-00 11:50	2	3	24.7	5.5	7.5			_	
100章 100章	4	5	24.2	<i>૬.</i> ૧	7.6				
10.3° 00	د	3	24.2	6-1	7. %	_			
1330	7	2	24.2	6.7	5.1				
118,00	1G	1	24.4	6.2	7.7			_	
1415 11-6-00 11-6-10	12	Ś	24.2	6.5	7.8	÷			
11. 2. 14°	14	İ	25.7	6.3	૪ .ા				
18 20	16	4	26.1	5.5	7.7			-	
11,210	15.	5	25.7	6.3	7.9				
3B 11 11.14 14.35	2 c	2	25.4	5.9	7.8	_			

Figure D.3 Data sheet for temperature and overlying water chemistry measurements.

Sediment Sample Source_	M	G-	D9	
Date of Test Initiation				
Toxicologist Conducting Te				

	Test Day	Test Replicate Sampled	Temperature (°C)	Dissolved Oxygen (mg/L)	На	SAUNITY uppt)	Alkalinity (mg/L)	Specific Conductance (umhos/cm)	Total Ammonia (mg/L)
6× 00	22	3	23 2	64	7.1				
11-18-00	24	2	23.2	6.7	8.0	_		_	
120 11 724V	26	l.	24.4	62	8 0			_	
11. 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	28	:3	245	6.6	79	2 い	116	27800	0 93
, 5									
					pe				

Figure D.3 Data sheet for temperature and overlying water chemistry measurements

Sediment Sample Source MG-H7

Date of Test Initiation 10.25.00

Toxicologist Conducting Test Geoff Hunderson, Yelly Carr, Stacy Preslow, Pan Hunson

	Test Day	Test Replicate Sampled	Temperature (°C)	Dissolved Oxygen (mg/L)	рН	SAUNITY (PPt)	Alkalinity (mg/L)	Specific Conductance (umhos/cm)	Total Ammonia (mg/L)
10.25 CC 1230	0	さ	25.1	5.1	7.6	20	144	24900	0.98
12-27-00 HC -01-01	2	5	24.8	6.1	7.8				
6 10 10 10 10 10 10 10 10 10 10 10 10 10	4	2	24 4	6.0	7.8				
10 3 20	Ç	•	24.7	6.0	76			<u> </u>	
11.2.10 11.2.10	7	5	24.2	5.9	7.5	-		-	
5th oc	ıc	3	25.1	6.0	7.6	_			
15 Ce 025	12	l	244	ا. ق	7, 2	·			
ار بین مربری	14	3	250	6.2	7.7	-		_	
50 th	16	2	25.4	5.6	7.7			1	
11.12.20 11.12.20 11.12.20	15/	7.7	24.1	6.0	7.6				
3754.04 1445	2 c		32.3	5.8	7.6	<u>. </u>			

Figure D.3 Data sheet for temperature and overlying water chemistry measurements.

Page 2

Sediment Sample Source MG-H7

Date of Test Initiation /0/25/00

Toxicologist Conducting Test

	Test Day	Test Replicate Sampled	Temperature (°C)	Dissolved Oxygen (mg/L)	pН	SAUNITY (ppt)	Alkalinity (mg/L)	Specific Conductance (umhos/cm)	Total Ammonia (mg/L)
6t,00	22	3	23.1	5.7	7. 7			_	
118.40	24	4	23.1	6.6	7.9	_		_	*
10 15 00 00 00 00 00 00 00 00 00 00 00 00 00	76	-72	24.6	6.1	7.8	_		_	
0 4 B	28	ì	24.6	6. 3	7.7	<u>7</u> c	101	25500	1.21
(, ,									
		, /	/						
						pr			
		·							
				·					

Figure D.3 Data sheet for temperature and overlying water chemistry measurements.

Sediment Sample Source MG-k7

Date of Test Initiation 10-25-00 Toxicologist Conducting Test Geoff Menderson, Yelly Carr, Stacey Breslow, Dan Honson

	Test Day	Test Replicate Sampled	Temperature (°C)	Dissolved Oxygen (mg/L)	pН	SALINITY (PP+)	Alkalinity (mg/L)	Specific Conductance (umhos/cm)	Total Ammonia (mg/L)	
10 23 CD	0	3	72.4.9	5.3	7.8	20	164	356 OC	1.31 0.98	E.E. GA (
10-27-00	2	4	24.4	5.7	7.6	-				
15. 24 00	4	5	24.2	5.8	7.8	_		-		
10 . 3 . W.	c	<u>-</u>	24-3	5.9	7.3	_		_		
11 7340	7	5	24.4	6.0	7.2	_		_		
SB 00 1445	IC	2	23.9	۱. ی	7.7	1		-		
1.0.25 C	12	l	24.3	4.5	7.0			~		
11. * 7. W.	l ų	l .	24.7	6.2	B.0	-		-		
3B cc.	14	²	24.7	5.9	7.8	_				
11.12.42 11.12.42	1 &	3	247	5.0	7.5			_		
76.14 EF	7 6	7	25.4	5.6	7.8	-				

Figure D.3 Data sheet for temperature and overlying water chemistry measurements.

Page 2

Sediment Sample Source_	MG-X7
Date of Test Initiation	-1 /
Toxicologist Conducting Te	est

	Test Day	Test Replicate Sampled	Temperature (°C)	Dissolved Oxygen (mg/L)	рН	SAUNITY uppt)	Alkalinity (mg/L)	Specific Conductance (umhos/cm)	Total Ammonia (mg/L)
# 67	22	Ċ.	74,7	ちっ	7.4	_		-	
118.00 118.00	24	3	23. 2	4.6	7.6	_		_	
(4)	26	3	'Z4 1	63	79			_	
Mary S. A. S.	28	1	24.4	,·6.0	つつ	70	166	25800	0.91
. /.,				•					
		,							
						pr			
						_			

Figure D.3 Data sheet for temperature and overlying water chemistry measurements.

Sediment Sample Source_MG· N2

Date of Test Initiation 10 - 25 - 00

Date of Test Initiation 10.25.00
Toxicologist Conducting Test Beoff Hinderson, Helly Carr, Stacy Breslow, In Thinson

	Test Day	Test Replicate Sampled	Temperature (°C)	Dissolved Oxygen (mg/L)	рН	SALINITY (PP+)	Alkalinity (mg/L)	Specific Conductance (umhos/cm)	Total Ammonia (mg/L)
08t 10:25 00 1115	0	2	25.7	3.8	フリ	20	152	25800	7.07
12:07	2	1	24.3	6.1	8.0				
10 LM CO	4	3	24.4	5.7	€ 0	-			
(set	c	2	24.1	6.7	6.1	~		<u> </u>	
2 35 oc	-T	3	244	5.8	5.9	-		_	
11.4.0	ıc	1	24.7	8.8	7.7			_	
11.600 mk	1 2	3	24 5	6.2	7.8	<u>`</u>		-	
161, 24 11. 12. 2	l t	3	25. 4	6.5	6.4	.—		-	
12,8	16	٦	22-2	5.6	8.0	_			
11. 12.0 11. 12.0 10.00	. 18	53	24.6	5 8	フを			_	
11.14.00	70	١	25.7	5.6	7.6	_			

Figure D.3 Data sheet for temperature and overlying water chemistry measurements.

Page 2

Sediment Sample Source MG - N2
Date of Test Initiation 10/25/00
Toxicologist Conducting Test

	Test Day	Test Replicate Sampled	Temperature (°C)	Dissolved Oxygen (mg/L)	pН	SALINITY (PPT)	Alkalinity (mg/L)	Specific Conductance (umhos/cm)	Total Ammonia (mg/L)
(1) 100 (1) 100 (1) 100	22	4	23.1	6.2	フぃ			ļ	
11.100 04.00 11.100 10.00	24	M	23.1	4.3	7. 1	~		-	
125 V	26	٢٠	24.3	6.7	7.1			_	
100 LC	, Z8	ţ	24.8	6.7	7. á	70	97	.27500	4.14
, 4									
:									
					\times	pr			

Figure D.3 Data sheet for temperature and overlying water chemistry measurements.

Sediment Sample Source TC (3)(s)

Date of Test Initiation 10.25.00

Toxicologist Conducting Test Dan Hanson, Hely Carr, Geoff Henderson, Slacey Breslow

	Test Day	Test Replicate Sampled	Temperature (°C)	Dissolved Oxygen (mg/L)	pН	SALINITY (PP+)	Alkalinity (mg/L)	Specific Conductance (umhos/cm)	Total Ammonia (mg/L)
102500	0	TC - 1	26.0	6.1	7.65	20	162	165 ccc	0.43
10-29-00 1245	2	5	24.9	5.8	7.5				
10. 24 ro	4	4	24.4	6.0	7.7				
61st oc 10 31.00 1355	c	5	24.9	5.8	7.0				
1.2.00	•	رم	24.6	6.1	7.0	-			
50,00 11.45)C	J	24.4	6.2	7.8				
11. 60 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12	4	24.5	6.5	78	-		-	
11 3 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2	ř4	1	28.0	6.2	6.9	_		-	
11.10.02	16	3	24.6	5.8	7.8				
11 31	18	H	24.6	6.0	7. 8			_	
11.14.12 51 1527	2 ¢	2	24.1	2.8	7.7				

Figure D.3 Data sheet for temperature and overlying water chemistry measurements.

Page 2

Sediment Sample Source	TC (c)(s)
Date of Test Initiation	125/00
Toxicologist Conducting Test	1

	Test Day	Test Replicate Sampled	Temperature (°C)	Dissolved Oxygen (mg/L)	pН	SAUNITY (ppt)	Alkalinity (mg/L)	Specific Conductance (umhos/cm)	Total Ammonia (mg/L)
6 10 20 11 16 20	22	Z	23.4	\$. <u>&</u>	7.9				
11.14.00	24	3	24.4	6.2	7.9	•		_	
10 70 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	76	4	Z3.7	6.1	ア. ア			-	
130°	२४	2	25.9	5-8	7.7	30	<i>J</i> 07	27500	0.84
·					\times	W.		_	
				-					
				•					

Figure D.3 Data sheet for temperature and overlying water chemistry measurements.

APPENDIX 7. Incubator Daily Temperature Readings and Monthly Light Intensity Readings

The SeaCrest Group Louisville, Colorado

Page No.: Form No.: 022a

Effective: February, 1993

		TEMPERA	TURE RECORD				
Incuba	itor No. : 1	Ac	ceptable Temperature Range:	75-79° F (24-26° C)			
Incubator Mak	e : Department of	Agriculture	Model: PCG 78				
NIST Correction:	D	ate of NIST Co	prrection: Initials:				
Date	Temperature	Data By	Maintenance Performed	Light Intensity (fc)			
10.3.00	76.4	G.A.	TEMP OK FOR TESTS				
10.4.00	76.7	GA.	te et tr tr				
10.5.00	26.3	64	59 tr 10 ft				
10.6.00	25.5	Ja					
10.7.04	2a·3	JB					
10.8.00	25.4	Cect					
10.9.00	27.0	6.4	TEMP OIL FOR TESTS				
10.10.00	a 6.3	ی	1. 1. 1. 1,	•			
10.11.00	96.2	(R	to to to to				
10.12.00	JG· 7	SB	6 6 9				
10.13.00	26.6	JB	1				
10.14.00	26.4	SR	1				
10.15.00	26. 5	ient	4 ,6 4				
10.16.00	26.5	6t	te to te				
16.17.00	26.4	6.7	6 1. 4.				
10.18.00	26.7	Grt -	ir 1, ,,				
10.19.00	d6.7	SB					
10.20.00	26.9	JB	1				
10.01001	26.69	50	1. 1. 1				
10.22.00	27. 3	6*	tt i, j, le				
10.2300	77.4	C++	e ()				
10-24 00	27 2	دم					
10.25 00	26.6	64	si te a				
10.26.00	26.7	6-1	se k s, s,				
10.97.00	26.8	Œ.	1				
10.28.00	27-0	Sis	1. (, , , ,				
10.29.00	28.9	6×t	TURNED DOWN				
10-30 22	76.2	Cet.	Temfor for Terrs				

The SeaCrest Group Louisville, Colorado

Page No.: Form No.: 022a

Effective: February, 1993

		TEMPER A	TURE RECORD				
Incub	ator No. : 1		cceptable Temperature Rang	re : 75-79° F (24-26° C)			
والمراك والمراوي والم	ce: Department of			l : PCG 78			
NIST Correction:		والمستندي المستندي والمستندي	NIST Correction: Initials:				
Date	Temperature	Data By	Maintenance Performed				
10.31.00	265	God	TEMP IX TERTET				
11160	747	6.4	0 0				
11.2 00	24 Z	C 4	11 1, , ,				
11 3.00	3(° C	SKI					
11.4.00	2.50	CC					
11.5.00	25.2	6rc					
11 6.60	25 1	G#					
1176.	27 4	यं त्र	Tr				
11800	274	Cert	to to a				
11900	271	GA					
11:1000	36.9	500	,				
11.11.00		56					
11.12 00	Z 6.5	€£ ₇	TEMP OR FOR TESTS				
11 13 00	271	Cut	te et er ,				
111400	777	614	,				
11.15 00	272	(تربار	1 11				
11.16 60	27 3	GM	, .,				
11.17.00	32.0	22					
11-18-00	244	SQ					
11.19.00	24.4	ac	TLANGIT!	1			
11 20 00	272	&et .	TEMIN OK FET IN-				
11.21 65	<u>; , z</u>	617	,				
117766	27.2	હત	ri Y				
11 23 00	274	ack	(, , ,				
1124.00	27.6	50	l				
11.35.00	276	5 K	(
11.26 00	276	Cot	16 4. 11 6.				
11 2700	77 7	Œŧ	to n				

Appendix 8. Number Surviving and Dry Weight Determinations for First Five Sediment Samples and One Experimental Control Sediment (MG-B7, MG-D9, MG-H7, MG-K7, MG-N2, TC)

Weight Data Form

	Test Dates 10 25	St Material Section LCP alyst Wt. o Over Dried Pan Replicate 1990 24.36 7 23.27 7 25.00 1 2 25.93 1 1 2 25.93 1 1 2 25.93 1 1 27.69			Species LEPIDLACIEU, PINITULISU,					
	Test Material	Land M. T		Weighing Date	11 to 10 11 -		Food TLTRA	MIN		
	Location LCP			Oven Temp (°C	1 100 (95	المجنوب (د. محمد المحدد	Age Organisms			
	Analyst			Drying Time (h)			Initial No/Rep	2 0		
Par ²	Sample	Replicate	Wt. of Oven Dried Pan (mg)	Wt. of Pan + Oven Dried Organisms (mg)	Dried WL of Organisms (mg)	Number of Survivors	Mean wt per Survivor	Sample Mean	*	
	Conterl		1990	<u> </u>	9.33	15	0.62	-6.47 x	# 5.E 19/1/00	
Z	11	=	24.36	29 31	4.95	12	0.41	0.25*	12/1/80	
3	,	7	23.27	31.56	8.29	12	0.69	- 0. 1/1 *		
4	,	7	25.09	3407	8.98	, i i	0.64	0.45x		
5	,	5	27.50	3 3 46	6.46	18	0.36		$\bar{X} = 0.54$	
6	TC	1	28.44	34 33	5.89	6	0.98	0.29*	X	
7	.,	2	25.93	3c 49	4.56	6	0.76			
દ	и	3	25.31	29 5g	4.07	6	0.68			
9	II	+	26.51	31 42	4.91	7	0.70			
10	n	,	27.69	3) 65	3.96	4	0.99	0.82 m	·N	
	MG·B7	ı	35.69	43 18	7.49	6	1.25		Q	
12		2		34 99	3.77	3	1.26			
13	31	3	33.87	45 99	12.12	1+	0.87			
14	n	4	30.15	36.32	6.17	5	1.23			
15	,	15,	30.48	33 24	2.76	3_	0.92	1.11 m	lz	
16	MG 29	,	27.66	32 47	5.81	7	0.83		(
17	"	Z	30.65	33 26	2.61	2	1.31			
18	n	נעל	25.76	31.40	5.64	ų	0.71			
19	1,	4	27 48	36.45	8.97	12	0.75			
20		5	29.80	35 JC	5.30	10	0.53	0.83w	v	
21	M4 H7	ı	28.31	32.71	4.40	4	1.10		0	
22	1,	=	27.68	34.47	6.79	5	1.36			
73	.,	-	32.52	-	-	0	-	-		
24		4	34.91	<u> </u>	5.49	5	1.10			
ZS	,	-	34.94	37 49	2.55	ı	0.26	0.96 n	Re	
26	MC·K-		33.42	•	-	0	_	-	7	
27			30.94	-	~	0	-	-		

Figure D.10 Weight data sheet.

Weight Data Form

	Test Dates 0-2	5-00 - 11-	- 22 - 60	Species Le	ptocheirus	s plumul	losus				
	Test Material			Weighing Date	11-27-0	0	Food]		
	Location LCF			Oven Temp (°C)	Age Organisms					
	Analyst			Drying Time (h)	Initial No/Rep					
Sery Sery	Sample	Replicate	Wt of Oven Dried Pan (mg)	WL of Pan + Oven Dried Organisms (mg)	Dried WL of Organisms (mg)	Number of Survivors	Mean wt per Survivor	Sample Mean			
28	M10 K7	3	35.66	-	-	0	-	_			
29	(1	4	36.37	-	-	0	-	-			
36	,,	.5	35.44	-	-	Ö	-				
3.1	MG NZ	1	35.38	-c42	5.04	૪	0.63				
72	.,	2	34.32	41.32	7.0	11	0.64				
77	V		34. 36	43.99	9.63	12	0.80				
·~	,,	4	39.68	45.35	5.67	5	1.13				
27,			38.11	49 44	11.33	13	0.87	0.81	mz		
20	Con-out #1/ALERA		35.11	37.91	2.8	20	0.14				
27	Control = 2 / Tresent		44.04	47.51	3.47	20	0.17	0.16 Y	14		
									U		
					170						
-					7						
1 1											
	\overline{A}										
1	_/										
											
	<u> </u>		L				<u>l</u>		!		

Figure D.10 Weight data sheet.

Appendix 11. Daily Comments and Observations for First Five Sediment Samples and One Experimental Control Sediment (MG-B7, MG-D9, MG-H7, MG-K7, MG-N2, TC)

SDMS

POOR LEGIBILITY

PORTIONS OF THIS DOCUMENT MAY BE UNREADABLE, DUE TO THE QUALITY OF THE ORIGINAL

*PLEASE CONTACT THE APPROPRIATE RECORDS CENTER TO VIEW THE MATERIAL

		· V
Study Director		
Study Court Country		
Survivo Control	1 -1.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Fed Mon., Wed., Fri
Study Name CC1 110-1	E SICIFICIOS S	
	-	A Obs.
	Daily Comme	
Day O	Date 10 - 25 - 00	Initials the
14.50	· I Sed	Int Tetra-min per rep
1200 Added 20 cinc	MISAS TO CECH PEDITOR	The remaining per rep
Day/	Date 10 . 26 . cc	Initials
	CEEN SWIMMING IN RE	•
OF SO LENTOCHERS	COCK SWIMMING IN ISC	
	7.3 Table 10 St Table 10	
	<u> </u>	
2	12 27 24	
Day_2	Date 18 -27 - 00	Initials HC
MC 13:00 No Lepho	liver seen (FR)	ml Tetra Min slumy bres.
THE TO.SE THE REPORT		
	4) of A
Day	Date 10 - 28 - 00	Initials MC
HC 13:35 MONES SI	en in vers 52.	3. 4. Holes that look like
Air az bien	asid hales seen in	sediment.
	MAY ZINKE CHESTERAL	
Day 	D 19 24 50	Initiale 6th-
	Date 10 - 24 - 50	•
1050 MURROWNE	kles speni in all per	?;

Figure D.7 Daily comment data sheet.

	Page 2
Study Director Study Code Study Name	
Daily Comment Sheet	
Day 5 Date 10 - 30 - 00 Initials 64	_
13:30 64 BURELD HOLDE SETEN IN ALL REEL FEB	
	_
Date 10 - 31 - cc Initials (2)	_
1345 BA BULLION HOLES SECON IN MERCETS	
Date_11 - 1 - 00 Initials A	-
1250 GA BUREOUTH HILLES SEEN IN ARLEMPS. FOD	
Date 11 - 2 - CO Initials Oct 1350 Cet Reel Hours Second in Allo Reps	_
	······································
Date 11 - 3 - 60 Initials Dec	
525 the Burrow holes observed in all reps Fed	

Figure D.7 Daily comment data sheet.

	Page ?
Study Director Study Code Study Name Control	
Daily Comment Sheet Day 10 Date 11-4-00 Initials SB 14303B Corrowholes seen in recl. recs.	
Date 11 - 5 - cc Initials Get 1250 GA 3 240, > HOLOS SUTEN 11 ALL REPS.	
Date 11 - 6 - 00 Intels 217 1500 CA ROPECCO TOUR SCREW III HAN REPORTED:	
Day 13 Date 11-7-00 Initials CR	
1465 SB Burne holes seen in all reps.	
Date 1 - 5 - 20 Initials Sut 235 Get 12 2023 1100 5 SUCK IN ALL K-P (FUR)	

Figure 0.7 Daily comment data sheet.

			- Page
Study Director Study Code Study Name	-6]		·
	Daily Comme	ent Sheet	
ay15	Date 11 - 9 - CC	Initials_SB	
1200 SB BC	mus holes seen in	all regit.	
ny 16	Date 1) -10 - 00	Initials_SB	
recis burne	12 holes seen in a 184. Fed mi Teh	00 reps. molts see	en in
, 17	Date 1) - 11 - 00	Initials <u>SK</u>	
40 x Burro	w holes seen in a	er necs.	
	Date 1 - 12 - cc		
	Date 11 - 13		

Figure 0.7 Daily comment data sheet.

		Page 5
Study Director Study Code Study Name	rol	
	Daily Comment Sheet	
Day	Date	•
isie sa komeu	holes seen in all recs.	
Day21 _122 <gatn:1< td=""><td>Date 11 - 15 - 00 Initials 64</td><td>(F. Q)</td></gatn:1<>	Date 11 - 15 - 00 Initials 64	(F. Q)
Day 22 1615 1500 P. 155	Date 11 - 16 - 00 Initials QUT	
1615 ison Rujer		
Day <u>83</u> 1425 No Lyon	Date 11 - 17-00 Initials MC	
1700 Buccos	holes seen in all reps.	

Figure D.7 Daily comment data sheet.

-	age	10
_	1)	

Study Name					
			. 01		
- > ~	_	Daily Comm			
		11 - 19 - 20			
1312 Ext 5 20	1+0	(A) C - TN /11	100 100		
«					
					· _ · · · · · · · · · · · · · · · · · ·
Day ≥ 6	Date_1	1 - 20 - 1	Initials &		
10 + 64 Pin >	-n, teu	(3 ° 4	T-P (T-P		
<u></u>					
	····				
77		31 4 -	lamala d		
Day	Date f	1 - 21 -60	initials of		
1255 Com R 118-					
\$255 Cm B , 18.	is incre	SC+17AI In 14 E	2 + 3		
1255 Cm B 116-	Date	Sc+121 In 4 F	2 + 3		Survival %
1255 Cm B 116-	Date Zro #	11 · 22 · 1 -	Initials DA	# 50-5	Survival %
1255 Cm B 116-	Date	11-22-1- Sci VI #	Initials Dir	# Eps.F.	+3/0
1255 Cm B 116-	Date 1 Zro #	11-22-1- 5,2 1 # 15 12	Initials DA 9 5 10 7 5	# Eps.F.	<u> 60</u>
1255 Cm B 116-	Date 1 Zro #	11-22-1- 5,2 1 # 15 12	Initials Diff S Q 5 10 7 5 5 7	# 80-5	<u>60</u>
1255 Cm B 116-	Date Cro #	11 - 22 - 1 - 12 - 12 12 14	Initials DA 3 9 5 10 7 5 5 7 4 10	# FASE:	60 60 70
Day ZS	Date Date 7	11-22-1- 5,2 1 # 15 12	Initials Diff S Q 5 10 7 5 5 7	# 80-5	<u>60</u>
Day ZS TELT THEN DITA	Date Cro #	11 - 22 - 1 - 12 - 12 12 12 14 18	Initials DA 8 9 5 10 7 5 5 7 4 10 4 9	# FASE:	60 60 70
Day ZS TELT THEN DITA	Date Date 7	11-22-1- 5,2 1 # 15 12 14 18	Initials DA 8 9 5 10 7 5 5 7 4 10 4 9	# FASE:	60 60 70
Day ZS TELT THEN DITA	Date Date 7	11 - 22 - 1 - 12 - 12 12 12 14 18	Initials DA 8 9 5 10 7 5 5 7 4 10 4 9	# FASE:	60 60 70
	Date Date 7	11-22-1- 5,2 1 # 15 12 14 18	Initials DA 8 9 5 10 7 5 5 7 4 10 4 9	# FASE:	60 60 70

Study Director Study Code MG - 13 7		
Study Name L plum	o lesus	Fed Mon., Wed., Fri.
		•
	Daily Comm	
Day O	Date 10 - 25 - 00	Initials Dia
315 Added 10 orga	eniems to each repleted	I'm Tetra-min to each rep.
		
Day/	Date 10 - 26 - 00	Initials <u></u> 安人
0920 De Lepto	CHEIRL SEEN FLOATING IN	V GETS. 243 (PULPER SMOOTE)
	A PARCEIA NO.	
Day 2	Date 10 - 27 - 00	Initials, AIC
MC 1239 NO	Lephchirus seen. 7	Fed Int Tetra-Min sharry / rep.
		N. 4.
Day3	Date 10 - 28 - 00	Initials
	1 1 1.	
HC 1355 No	Leptochirus Seen.	
	·	
Day	Data 117 ac	Initials <u>دم</u>
	Date 10 - 24 - 26	1110000

Flgure 0.7 Daily comment data sheet.

	Page 2
Study Director Study Code Study Name	
Daily Comment Sheet	
Day 5 Date 16 - 30 - 00 Initials 6	*
13 20 BA NO LEATERNIES SEEN	
Day 6 Date 10 - 31 - 00 Initials 6	<u> </u>
1405 EA BURROW HOLES SEEN IN PAPER 243.	
CHAPT SOUTHLESS AND SOUTH SOUT	
Day	
1310 BURRINGHOLES SEEN IN DLE REPROFER.	
	*/
•	
Day 8 Date 11 - 2 - 00 Initials 6 1405 Gt BEIRROW HOLDS SCERL IN MLL ROPS.	
THE CA GOODERCHA ADECS SEEN THE THEORY	The second of th
· · · · · · · · · · · · · · · · · · ·	
Date 11 - 3 - oc Initials	
1530 Du Burou holes observed in all reps Fe	<u>d</u>

Figure D.7 Daily comment data sheet.

		Tage:
Study Director Study Code Study Name MG - B7		, 0
Daily Commo	ent Sheet	
Day 10 Date 11 - 4 - 60	Initials \(\frac{\sqrt{1}}{\sqrt{1}}\)	
151500 Burrow holes seen i	in all regs.	
Day 11 Date 11 - 5 - Cc	Initials_64	
1310 Get ROLLES STORE SOLLES	C. 121-92	•
T: (4176 T) - (41		
Date 11 - 6 - 00 1550 GA BLEROW HUT SCOTI N AU	Initials RA	
-		
Day 13 Date 11 - 7 - CC	initials_ <i>S&</i>	
1340 SR Burew holes seen in all re	c).	
	·	
Day 14 Date 11 - 5 - 00 1335 Gur Burgers Mores Sators and Alia		

Figure D.7 Daily commant data sheet.

		Page 4
Study Director Study Code Study NameN	NG - B7	
	Daily Comment Sheet	
Day	Date 11 - 9 . 00 Initials SB	
112.5 SB B:	wrow holes seen in all row.	
Day	Date 11 - 10 - 00 Initials CK	
1540 CD Bo	rrowholesseen in all reps. Fed IML TE	tra-min/rep.
17		
Day	Date 11 - 11 - 00 Initials 58	
1335 3B 13cr	rrow holes seen in all reps.	
	Date 11 - 12 - 00 Initials 60+	
	Bureou man stan when Rets Ford	

Figure D.7 Daily comment data sheet.

	Page 5
Study Director Study Code Study Name	
Daily Comment Sheet Date 11 - 14 - CO Initials St	
1510 3B Burrow holes seen in all reps.	
Day 71 Date 11 - 15 - 00 Initials Gri	
1248 BA BUREOU HOLES SEETH IN ALL DEEK (FLT)	
Day 77 Date 11-16-00 Initials COX. 1650 On BURROLL HOLLT SETENT OF ALL PLYTS.	
Day 33 Initials BC Fod all reps.	
Day 17t 24 Date 11 - 18 - 00 Initials BUL 1746 Burrow hole seen in all reps	
	(

Figure D.7 Daily comment data sheet.

Page	0

Daily Comment Sheet Day 25 Date 11 - 19 - 00 Init 1330 Get RUFFOW HOLDS SCON IN MUC Day 26 Date 11 - 20 - 00 Init 1330 Get Romant Sheet No. 1330 Get Romant Sheet Date 11 - 19 - 00 Initi 1330 Get Romant Sheet Date 11 - 19 - 00 Initi 1330 Get Romant Sheet Date 11 - 19 - 00 Initi Date 11 - 20 - 00 Initi	als Ext
1330 GA RUFROW HOLPS SCEN IN ALC ay Z6 Date 11 - 20 - 00 Initi	als Ext
ayZ.{	als Ext
ny 'Z7 Date // - 2/ - 20 Initia	uls Ga
1310 ON BUREIN HELE'S SEEN IN ALL PEPS	
	:
	•
	/i4
, , , , , , , , , , , , , , , , , , ,	als Go
TEST TAKEN DIGNA REP # SOME OF	als Gt Survival 2
TEST THEN DOWN REP # SOME OF 3	3 0 30%
TEST THEN DINN REP # 500 10.# 8	3 0 30% 3 0 15
1 6 3 2 3 0 3 14 9	3 0 30% 3 0 15
1 6 3 1 6 3 2 3 0 3 14 9 4 5 4	3 0 30% 3 0 15
1 6 3 1 6 3 2 3 0 3 14 9 4 5 4	9 # 500 Survival % 3 0 30% 5 0 70
1 6 3 1 6 3 2 3 0 3 14 9 4 5 4	\$ # 500 Survival 2 3 0 30% 3 0 15 5 0 70 1 0 25 2 0 15 X=
1 6 3 1 6 3 2 3 0 3 14 9 4 5 4	\$ # 500 Survival 2 3 0 30% 3 0 15 5 0 70 1 0 25 2 0 15 X=
1 6 3 1 6 3 2 3 0 2 14 9 4 5 4	\$ # 500 Survival 2 3 0 30% 3 0 15 5 0 70 1 0 25 2 0 15 X=

		1.09
ar.		
" , MC, - D'	7	. 1
ame L. Piv.	I I I I I I I I I I I I I I I I I I I	Ned., Fri.
	Daily Comment Sheet	
Day	Date 10 - 25 - 00 Initials 64	
1200 EN ADDED	20 0=68 15 1015 /12 (=17) 1 -1 TERA MN /12=0	
		
		
Day/	Date 10 - 26 - 00 Initials 64	
let itie No 20	PLICHEIRUS ORSCRUED.	
	· ·	
		· · · · · · · · · · · · · · · · · · ·
Day 2	Date 10 -27 - Ca Initials HC	
1150 BC. No	Leptochirus seen. Fed/ml Testra-	Min Sturry Trep.
		77.7
		•
	<u> </u>	
2	Date 10 - 28 . 06 Initials 29 C	
Day	Date 10 - 23 - 00 Initials 21	,
16		
1300 AC Du	rrow foles seek in Rep. 1.	
-		
Day	Date 12 - 21 - 00 Initials Bet	
,	LEPTACHCIRUS SEEN	

Figure D.7 Daily comment data sheet,

	Page 3
Study Director Study Code Study Name	
Daily Comment Sheet Date 11 - 4 - 00 Initials SR 1415 SB No Lectochinos seen.	
Date 11 - 5 - 00 Initials (公本) 1232 (公本) 327(こと 124 (公元) 124 (公元)	
Day 17 Date 11 - 15 - 00 Initials (1) 14 - 5A - 15 - 10 IN 11 PAUL PAPER FED :	
Day 13 Date 11.7.00 Initials SR 1330 SR Burrow poles seen in all repl.	
Day 14 Date 11 - 8 - 00 Initials 64	

Figure 0.7 Daily comment data sheet.

_	Tage
Shirth Disease	0
Study Director	
Study Code	
Study Name MG - D9	
Daily Comment Shee	nt
Day 5 Date 1 - 9 - 00	Initials_SB
MOSSA ASTROLL holes seen in all rep.	s. Melts seen in recs 394.
Day 6 Date 11 - 1C - CO II	nitials_SB
1440 SR Burrow holes reen in all	rent (Fed) Im) Tetra-min/rep.
SETAL A SUPPLIE LANGE CONTRACTOR OF THE PARTY OF THE PART	
Day 17 Date 11 - 11 - 00 In	sals <u>SVS</u>
1325 SO Burrow holes seen in allre	ar. ·
Day 18 Date 11 - 12 - 50 li	nitials_ &t
1216 ELL BURELL HOLD SE DE IN ME DAYS.	
Day 19 Date 11 - 13 - 65 In	nitials CA
1320 LA BLEEFIN IN IPS TOTAL IN INTERES 34	——————————————————————————————————————

Figure D.7 Daily comment data sheet.

Study Director
Study Code
Study NameMG-D9
Daily Comment Sheet
Day 20 Date 11 - 14 - 00 Initials SR
1437 SB Burrow holes seen in reps 3\$4.
146) US SOFTEE MINES SECTION 1
Day 21 Date !! - 15 - 60 Initials 64
1155 GA RURREN HELLS SEEN IN REPS. 445. (FED.)
Day 27 Date 11 - 16 - 50 Initials 64
1550 Ed BURREUS HOURS SEEN IN ALL REPS.
·
Day 23 Date 11-17-00 Igitials MC 1700 Nothing seen - water to slowey. All reps fed.
1700 Nothing seek - maken to Bloway. All near ted.)
·
Day 24 Date 11 - 18 - 00 Initials F2
ll me
1600 Burge Loles seen in all reps.

Figure D.7 Daily comment data sheet.

Study Director Study Code im C Study Name					
		Daily Co	mment Sheet	·	
DayZS		late 11 - 19 - 00	Initials_6	<u> </u>	
5247 DE S	Contract Ho	its section in	Mill Richards	·	
<u> </u>		•			
					PART LINE
Day2	D:	ate 11 - 20 - 00	Initials @t		
-		SC 670; 107 ALG		·	
	, pr. vy. aproximent v voja i bala v pr. vy. za zmina s s sp				
	A A STANDARD LATER FOR THE STANDARD AND STAN				
	, y -y -dressed e tale, h-y p.a Shoot, ta				
Day 27	Da	ite <u>1 2' - 2c-</u>	Initials <u>દ</u> ્ય		
		10 1 - 2' - cc- /Borrow stows			
			1517N		
			SITIN.		
			1517N		
			1517N		
			1517N		
	LEPSOCHERO.		1517N		
123 in Get Nic	LERGULARINA	IBERREW HORS	·		Survival %
1230 Get AN	LERGULARINA	1Bonne sto. 25	Initials ©	· · · · · · · · · · · · · · · · · · ·	35 %
1230 Get AN	LERGULARINA	1Bonge etc 25	Initials 6	PARRICO	Survival % 35% 10%
1230 Get AN	Di Pap *	ate 11 - 22 - ca <aviyat =<="" td=""><td> Initials @ 3 4 </td><td>P. → BAP. € 5</td><td>35 %</td></aviyat>	Initials @ 3 4	P. → BAP. € 5	35 %
1230 Get AN	Di Rap *	18 0 22 - 00 1 - 22 - 00 1 - 22 - 00 1 - 22 - 00 1 - 22 - 20 2 2 - 20 2 2 - 20 2 2 - 20 2 2 2 2 2 2 2 2 2	Initials @ 3 4 2 C	P. → BAP. C	35 % 10% 40%
1230 Get AN	Di Pap #	2 8 17-	Initials 6 8 9 3 4 2 0 2 6 9 3	P → BAP, CS	35 % 10 % 40 %
1230 Get AN	Di Rap *	2 - 22 - CC	Initials 6 8 3 4 2 6	P. → BAP. C	35 % 10% 40%

Figure D.7 Daily comment data sheet.

Study Director			
Study Code MG-H7	_		
Study Name_ A. Planulos	95	FedMon, Wed., Fri.	
	Daily Comn	nent Sheet	
	Date 10 - 25 - 60		
Day			
1230 EA ASOLO 200	FEANISMS / 2158. FEED IM	(EIRAMI) I FEF	
Day/	Date 10 - 24 - 00	Initials 64	
E940 BY LEPTOCHEIR	US SCENI FLOATING IN	200 5. (PULLED UNDER)	
źr ·			
)ay	Date 10 - 27 - 60	Initials 10	
NC. 12:25 No Les	obochirus seen. Le	Initials &C /rep	•
Day3	Date 10 - 28 . 00	Initials_EIC	
·			
HC 14:10 Saw	what looks like de	ad animals in rep. 4.	
		•	
			_ _
Day	Date 10 - 29 - 00	Initials_Get	
1035 cm N LEPTO	GHETPI SEEN		
		and the second s	

Figure D.7 Daily comment data sheet.

Study Code Study Name <u>MG-</u>	<u>- H7</u>		
	Daily Comm		
Day5	Date_10 - 30 - 00	Initials Code	
1310 GK	LUMTOCHETRES SEEM FILMTING	IN SOPES (BUSHOT CALD-TR). (FEE) <u>. </u>
			
)ay6	Date 10 - 31 - 00	Initials 62.	
1+20 No Leto	CHOIRS SECA.		
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	7 7		
		laidala 6 h	
ay	Date 11 - 1 - 05	Initials 64	
1350 Oct No Y	Epischerist sour (Edo.)	÷.	
		· · · · · · · · · · · · · · · · · · ·	
_			
)ay	Date 11 . 2 . 50	Initials <u>Cuk</u>	
410 EA NIL LET	Prochagos Sean		
			
			
		•	
ay9	Date_11 - 3 - 00	Initials_09=	
140 st 1-			
540 B No 18			

Figure D.7 Daily comment data sheet.

	Pag
Study Director Study Code Study Name	
Daily Comment Sheet	
Day 10 Date 11 - 4 - 00 Initials SE	3
Troose ource holes neen in new 124	
Day 11 Date 11 - 5 - 00 Initials OF	
Date 11 - 6 - 00 Initials Ext 16 27 GAL R. REGION MIGLION SURN IN MILL REPORT FORD ;	
Date 11 - 7 - 00 Initials 5B	
1415 SB Kurrow holes seen in all reas.	
Date 11 - 8 - 50 Initials 64 1325 on Business much screen in the Rope. Fito	

Figure D.7 Daily comment data sheet.

			Page 4
Study Director Study Code Study Name MC	- \ \ \ \ \ \ \ \ \ \		
Day15	Daily Comme	Initials S	
1126 DR BUSTOL	shder seenin repui,	⊋ \$5.	
	Date 11 - 10 - 00	Initials_SC	
Day (c	cow holes seen in a		tre minfage.
		·	
Day	Date 1 - 11 - 00	Initials	_
1400 SB B -11	raw holes reen in	allreps	
	Date 11 - 12 - 00		
Day	Date <u>Ⅱ - /? - ৫০</u>	Initials CA	
1245 for Rica	of a month of the policy of th		

Figure D.7 Daily comment data sheet.

			Page
Study Director Study Code Study Name MG -	H-7		
Day <u>20</u>	Daily Comm Date 11 - 14 - 00	nent Sheet InitialsUS	
1445 SB BUTTOL	holes seen in all	rep.s.	
7.			
1210 GA P. 1246 A	Date 11 - 15 - 00	Initials Cart	
ay <u>77</u> 1610 6# Rurru	Date 11 - 16 - 00	Initials <u>ਲਾਂ</u> ,ਟਵਾਸS . :	
. 32	Date <u>// - / 7 - 00</u>	laisiala WA	
	oles seen. Fed all re		
ay_ 2.1	Date_11 - 18 - 00	Initials DA	
740 Burrow ho	les seen in all rep	5	

Figure D.7 Daily comment data sheet.

Page	مار
v	
	•
	•
	,
	-

617 Day ⊂S Initials Date 11 - 22 - 50 # BURLION TEST TAKEN PONN: RIP # 0 545 0 0 3 0 $\bar{x}=15$ \circ Day____ Initials Date_ SEC

Daily Comment Sheet

SEEN IN ALL FETS.

Date 11 - 19 - 60

Date 11 - 20 - 01

Parkenin Hoce 422N in HUL Roma

1300 CA BORRIN HOLES SPEN IN PUR. 243

Initials 💯

Initials 🖄

Initials Get

Figure D.7 Daily comment data sheet.

Study Director

Study Name

Day_ 26___

12 45 Get

Study Code mG-H7

1300 Get BURROW HOLDS

Day___ 25 __

			Page 1
Study Director Study Code MG-K7 Study Name A. Plum	Note of	Fed Mon., Wed., Frie	·
Subsy Hame n. I I have		•	
Day	•	nment Sheet	
	C ORLANISMS / PAR. ECH L		
Day 1	Date 10 .26 .00	Initials_&_4	
TO LO TEM INC LE	PROCESSES SERVICES.		
Day_2	Date 10 - 27 - 00 Hochirus seen. Fed	Initials HC MI Terra-Min s/Mrry/rep.	
Day3	Date <u>/ 8 - 28 - 00</u>	Initials <u>KNC</u>	
AC 14:40 No Le	phochicus seen.		
	Date 10 - 29 - 00		

Figure D.7 Daily comment data sheet.

			Page 4
Study Director Study Code Study Name	-X7		V
		at Chan	
Day	Daily Commer	Initials SIS	
1140 JR	Burrow Mes seen in	reps 44.5.	
Day	Date 11 - [0 - 00	Initials Signature	
1545 SB	No leptochira veer	. (Fed) In L Tetr	z-min/rep
Day 17	Date 11 - 11 - 00	Initials	
1330 JB Bur	rowholes seen in repu	1,245.	
	Date 11 - 12 - 00	Initials <u>Cod</u>	
	Date 11 - 13 - 00		
		·	

Figure 0.7 Daily comment data sheet.

1 age 4

Study Director Study Code m G-K7						
Study Name						
		D. Z. G. samont	Share			
Day 3.5	Date //	Daily Comment		/		
1340 BK B					·	
		·				
		.				
-		. <u>20 - 00</u>				
13+ wa No Lepts	CHETTER / BU.	Size D Hearth	Transfer of the second			
	· • • • • • • • • • • • • • • • • • • •			 , <u>-</u>	<u></u>	
	(· · · · · · · · · · · · · · · · · · ·		
	<u></u>				··	
	· · · · · · · · · · · · · · · · · · ·				·	
Day	Date !!	21 . 00	Initials 64			
1370 6A NO LEP						
				÷		
Day <u> </u>	Date 11	. 24 . 00.	Initials_	et.		-: -:
TEST THEOR DOWN	ROP #	Scalman #	उ	9 !	# BasiEs	Survival
	,	0			0	<u> </u>
		0		-	C)	. 0
	. 3	0		-	0	0
-	ų	O			C.	0
	5	0	! -	-	0	0
Day	Date		Initials			>
/-				-/-		
				/ _		/
	/	/HC		/	/	<u>/</u>
	/		/	<u></u>		

Figure D.7 Daily comment data sheet.

Source M.G. N.Z. Source M.G. N.Z. Source M.G. N.Z. Source M.G. N.Z. Daily Comment Sheet Initials G. Da			V
Date 10 - 25 - 00 Initials Com The property of the property o	Study Director		
Date 10 - 25 - 00 Initials Com The property of the property o	Study Code MG - NZ		
Daily Comment Sheet Date 10 - 25 - 05 Initials Gol ADDED TO TOWN ASSESSMENT FETCH MAN / 2000. AND ADDED TO TOWN ASSESSMENT ASSESS		fed Man., Wed., fri.	
Date 10 - 25 - 00 Initials God ay 1 Date 10 - 26 - 00 Initials God ay 2 Date 10 - 27 - 00 Initials God ay 2 Date 10 - 27 - 00 Initials God av 2 Date 10 - 27 - 00 Initials God av 2 Date 10 - 27 - 00 Initials ACC ACCORDANCE SEED IN All TEGER Min Slurry frep.	·	·	
ay / Date 10 - 27 - 00 Initials AND Marry / rep. Date 10 - 28 - 00 Initials AND Marry / rep. Date 10 - 28 - 00 Initials AND Marry / rep. Date 10 - 28 - 00 Initials AND Initials AND The Andrews of th		Daily Comment Sheet	
ay / Date 10 - 27 - 00 Initials AND Marry / rep. Date 10 - 28 - 00 Initials AND Marry / rep. Date 10 - 28 - 00 Initials AND Marry / rep. Date 10 - 28 - 00 Initials AND Initials AND The Andrews of th	Day <i>C</i>	Date 10 - 25 - OC Initals Get	
ay 1 Date 10.26.00 Initials Ed. Date 10.27.00 Initials Ed. Date 10.27.00 Initials Ed. Date 10.28.00 Initials Ed. Date 10.28.00 Initials Ed. Date 10.28.00 Initials Ed. Date 10.28.00 Initials Ed.			·
Date 10. 27.00 Initials the south of the self in all reps. Date 10. 25.00 Initials the self in all reps.			
Date 10. 27.00 Initials the south of the self in all reps. Date 10. 25.00 Initials the self in all reps.			
Date 10. 27.00 Initials the south of the self in all reps. Date 10. 25.00 Initials the self in all reps.			
Date 10. 27.00 Initials the south of the self in all reps. Date 10. 25.00 Initials the self in all reps.			_
Date 10. 27.00 Initials the south of the self in all reps. Date 10. 25.00 Initials the self in all reps.			
Date 10. 27.00 Initials the south of the self in all reps. Date 10. 25.00 Initials the self in all reps.		Data 13 7.4 - 00 Initiale (27)	
Date 10.27.00 Initials the surry / rep. Date 10.27.00 Initials the surry / rep. Date 10.28.00 Initials the surry / rep. Date 10.28.00 Initials the surry / rep. Date 10.29.00 Initials the surry / rep.			
Date 10-28-00 Initials AC AC 14:25 Burnow holes seen in all reps. Date 10-29-00 Initials 64	3416 CA LEPTICKLIFT.	SCIA FROATING WEET, T. (FEARCH LITTLE)	
Date 10-28-00 Initials AC AC 14:25 Burnow holes seen in all reps. Date 10-29-00 Initials 64			
Date 10-28-00 Initials AC AC 14:25 Burnow holes seen in all reps. Date 10-29-00 Initials 64	\$2 % 7 Jan 1971 19 5 19		
Date 10-28-00 Initials AC AC 14:25 Burrow holes seen in all reps. Date 10-29-00 Initials 64			
Date 10-28-00 Initials AC AC 14:25 Burnow holes seen in all reps. Date 10-29-00 Initials 64			
Date 10-28-00 Initials AC AC 14:25 Burnow holes seen in all reps. Date 10-29-00 Initials 64		۸.	
Date 10-28-00 Initials AC AC 14:25 Burnow holes seen in all reps. Date 10-29-00 Initials 64	ay	Date 10 - 17 - 06 Initials 100	
Date 10-28-00 Initials AC AC 14:25 Burnow holes seen in all reps. Date 10-29-00 Initials 64	BC 12:10 No Lept	chirus seen. Fe 4 /m/ Petra-Min slurry /rep.	
ay 4 Date 10-24-00 Initials 64		. 07	
ay 4 Date 10-24-00 Initials 64			
ay 4 Date 10-24-00 Initials 64			
ay 4 Date 10-24-00 Initials 64			
ay 4 Date 10-24-00 Initials 64			
ay 4 Date 10-24-00 Initials 64	2	·	
ay 4 Date 10 - 24 - 05 Initials 64	Day	Date 10 - 28 - 00 Initials MC	
ay 4 Date 10 - 24 - 05 Initials 64			
ay 4 Date 10 - 24 - 05 Initials 64	De 14:25 Juno	w poles seen in all reps.	
	av 4	Date 10 - 25 - DO Initials 64	
Males Tail			
	TO A STATE OF MEAN		

Figure D.7 Daily comment data sheet.

			Tage
			U
Study Director			
Study Code	.40		
Study Name MG -	N&)		
	Daily Comn	nent Sheet	
5	Date 10 - 30 - 00	Initials 64	
Day5			
134c Get 1302	ROWING HELLA SPECI IN 1	MC REP. (FID)	
		_	
	_		
Day 6	Date 10 - 31 - 60		
1320 Cent 13	eran was seen in a	a Reprint	
157577	3 The Law 2 S Course by Bridge Course		
 y			
Day	Date 1 - 00	Initials <u>A</u>	
1230 CH 2020	THE HOLL SCOTT IN GE	- FOR FIDE	
Day &	Date H + 2 + 0c	Initials 6 ±	
	HOLES COON IN ACT PR		
	ASSESS CONTRACTOR OF THE PROPERTY OF THE PROPE	<u> </u>	
			
6			
DayT	Date 14 - 3 - 60	Initials	
1570 an Burro-	- holes observed in a	sureps. (Fcd)	

Figure D.7 Daily comment data sheet.

	Page 3
Study Director Study Code Study NameMGN2	
Daily Comment Sheet Day [O Date 11 - 4 - 00 Initials 58 1450 38 Burner Moles Seen in Cele reas.	
Date !! -5 -00 Initials GA 13730 GA BODGSON HOLES SETTIN IN HELL PETS.	
Date 11 - 6 - 00 Initials but 1610 but Books Hower sereni ini itul Reps. For.	
Day 13 Date 11-7-00 Initials SB. 1425 SA Rurrau holes seen in all regs.	
174) OR BUILD HOLES DEED IN AUX FOL	

Figure 0.7 Daily comment data sheet.

	Page 4
Study Director Study Code Study Name MG - N2	
Daily Comment Sheet Day 5 Date 1 - 9 - 00 Initials 5 R	
1125 So Berrow holes seen in all reps.	
Day_ (6 Date_11 - 10 - 00 Initials_58	
1515 so sure holes seen in all reps. molts seenin al	<u> </u>
Day 17 Date 11 - 11 - 00 Initials 513	
in other reps.	
Day 18 Date 11 - 12-00 Initials 32. 12+0 64 PARTE ~ METS GUEST 1 HE ROOMS.	
Day 19 Date 11 - 13 - CO Initials 64 1370 CO Supply (First)	

Figure 0.7 Daily comment data sheet.

	Page 5
Study Director Study Code Study Name MG - N 2	
Daily Comment Sheet Day 20 Date 11-14-00 Initials SR	
145 FUR RUSTOW holes seen in all reps.	
Date 11 - 15 - 00 Initials Ed 1201 CA RIES 1000 SOTEN NO RETPORT 94. (FCD.)	
ay 77 Date 11 - 16 - 60 Initials Of 1600 EA Buzzon Houer Sceni int Am Pops.	
Date 11-17-00 Initials HC 11040 HRC Burrow Lotes seen. Fearl reps.	
Date 11.18.00 Initials Of 1720 BL Burrow holes seen in all reps.	

Figure D.7 Daily comment data sheet.

Page	,	6

Study Name							
		Daily Com	ment Sheet				
Day25							
1250 GOT BURIE.	عديم با مدعد	STEN IN A	LL POPS	<u> </u>			
							
							
		. 2: . Ac					
1250 UT No LET	5-1HE +4 / 21	returners	s. Fre /A	+ Ft. No	477 to (500)	}	
						/	
18.77							
				-			
u 2.7	Data //	. 71 . 00	loiti	ale îst			
······		. 21 .00		als 🤐			
1240 Get Buicewa				als عند			
				als_ <i>ûk</i>			
				als_ ثند			
				als_û#.			
				als_û#.			
1240 bit Builer	- nc e //·	. 76 19 14.1	7,472-				
1240 Get Builes.	Date //	- 2 Z - C L	7,472-	nals_GA		Sundiv	ad val
1240 Get Builes.	Date //	- 22 - CC	Z,4-72- Init		#2		ial .
1240 Get Builes.	Date 11	- 2 Z - C L	Init	uais GA		Sucviv 402	yal.
1240 Get Builes.	Date //	. 22. cc	Init	nals GA	#2	402 55	ral 3
	Date 11 12cp # 1	22-66 SURTIVITY #	Init	nais GA	#2.m.,/	402 55 60	ial .
1240 Get Builes.	Date //	22-66 SURTIVITY #	Init	als 64	# 8	402 55 60 35	
1240 GH BUILEN.	Date_// 2:5 # 1 2 3 4	- 22 - 62 Septime # 8 16 12 5	Init	1 3 1 7 1 6 1 1 5 5	#2 m./	402 55 60	}
1240 GA BURELLE	Date 11 12-13 # 1 2 3 4 5	- 22 - 62 Septime # 8 16 12 5	Init	1 3 1 7 1 6 1 1 5 5	# 8	402 55 60 35	}
1240 GA BURELLE	Date 11 12-13 # 1 2 3 4 5	22-66 SURTIVING # 8 12 5 13	Init	1 3 1 7 1 6 1 1 5 5	# 8	402 55 60 35	
1240 GA BURELLA	Date 11 12-13 # 1 2 3 4 5	- 22 - 62 Septime # 8 16 12 5	Init	1 3 1 7 1 6 1 1 5 5	# 8	402 55 60 35	

Page	

Study Code TC - (<)(s) Study Name L. plumulosus	Fed Mon, Wed, Fri.
	<i>y</i>
Daily Comm	
Date 10 - 25 - 00	
1115 Added 20 organisms per rep. Fed	Iml letra-min
Day Date 10 - 26 - 00	Initials
G# 1000 NO LEGICONEIRUS ORSERVED	· · · · · · · · · · · · · · · · · · ·
* : X - X - Y - FEAT -	
Day 2 Date 11 - 27 - 00	Initials &C
MC 12:45 No Leptochirus seen. Fed	Int Jetra-Min Shory 1 515.
	- 72 /
	·
	140
Day 3 Date 10 - 28 - 60	Initials <u>AC</u>
MC 14:15 Burrow holas seen in all	roos except res. 5.
The first Charles with the second	77. 47.
Date 10 - 29 - 00	
1030 GA PIRECU HOURS SCENI W 126 R	<i>u</i> P :

Figure D.7 Daily comment data sheet.

Study Director

Daily Comment Sheet Daily 14.00 Initials 56 1425 08 Burner holes observed in all regis Day 11 Date 11.5.00 Initials 64 1350 64 Burner many Stand of the first	Study Director Study Code Study Name	(c)(s)		
Date 1 - 6 - 00 Initials Give the Get Berner war Seen in all received to the control of the cont		Date 11 - 4 - 00	Initials 5.03	
Date 11 - 7 - 00 Initials SR HACO SR BUTTON heles seen in all recovered to	·			
ay 14 Date 11 - 8 - 00 Initials Of			. (F.OT.)	
ay 14 Date 11 - 8 - 00 Initials 34 Bor of Burrow Hours soon in au out out. For				
	ny 14 30% Et Borr	Date 11 - 8 - 00	Initials OA	

Figure D.7 Daily comment data sheet.

•	Page 4
Study Director Study Code Study Name TC (c)(s)	
Daily Comment Sheet	
Day 15 Date 11 - 9 - 00 Initials 513	
1150 SB No animals seen-water murky.	
Day (6 Date 11 - 10 - CO Initials SR3	(
1450 SR BOTTOW hotes seen in rep 4. water too murky is reported see: (Fed) IML Tetra-min/rep	n other
Day 17 Date 11 - 11 - 00 Initials (5/3	
1350 SB Borrow holes seen in all rect.	
Day 18 Date 11 - 12 - 00 Initials Oct 1317 Oct PORTLE MOUNTS REPORT IN THE PORTLE.	
Day 19 Date 11 - 13 - 00 Initials 6th	
1400 Lat Rizzoni Moles Great IN Entry 445 Feb	

Figure D.7 Daily comment data sheet.

	Page:
Study Director Study Code Study Name	
Daily Comment Sheet Day 20 Date 11 - 14 - 00 Initials	<u>50</u>
morky to see in 1905 4\$5.	2,93. water too
Date 11 - 15 - CC Initials 1230 GA BULLED HOLL SCOOL IN PUL 207. FORD	<u> </u>
y 22 Date 11 - 16 - 00 Initials 6 LL GAT BURELL WILLIAM SECTA, INC. 1444 1955	
y_23_ Date 11-17-00 Initials & Burrow holds seen. All reps feed	90C
y 24 Date 11 - 18 - 00 Initials	84

Figure 0.7 Daily comment data sheet.

					Pag
tudy Director tudy Code T C - Co					
		Daily Comme	nt Sheet		
1y	Date_	11 -19 -00			
7 20 Fet	BULGOLA	HOLES SEEN	IN ALL BLEET.		
	<u>,</u>				
26	Date_1	11 -20 -00	Initials_Cut		
ا در هم	The state of the state	soul in Pers.	2.44 (=1.70	· · · · · · · · · · · · · · · · · · ·	
	D SEC. AND RANGE STATE OF THE PROPERTY OF THE	المراجع فيستناه والمتاريخ والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والم			
	SHOW THE LATER COMMERCE				
'27		! . 2 1 . 00			
500 Cdx	Burken Ho	ER SCEN IN R	EDS. 441.		
28	BURRELL HOL		Eng. 441.	** BASICS	Survival
2 g	BURRELL HOL	11 - 22 - CC	Initials 5B. 3 3.	# BASICS	
2 g	Date of Rep &	11 - 22 - CC Significant	Initials Sig.	0	Survival 30%
2 x	Date 1	11 - 22 - CC Significant	Initials 5B. 3 3.	0	30%
	Date J	11 - 22 - CC Significant	Initials 53 9 9 9 3 3 3 1 5 5 5	0	30% 30% 30% 35%
ZX EST TAKEN DIE	Date 1 2 2 3 4 5	11 - 22 - CC Significant	Initials 53 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	000	30% 30% 30%
ZX Esi Taken Div	Date 1 Date 1 Date 4	11 - 22 - CC Significant	Initials 58. 8 9 3 3 3 3	0 0 0	30% 30% 30% 35%
2 y	Date 1 2 2 3 4 5	11 - 22 - CC Significant	Initials 53 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0 0 0	30% 30% 30% 35%

Figure D.7 pally comment data sheet.

Appendix 14. Reference Toxicant Test Benchsheets and Reference Stock Prep Sheets

Form: 037 Effective: May, 1997

The SeaCrest Group Fathead Minnow Acute Benchsheet

Per	mitte		enro	CJ+6-//	<u> </u>	Re	F. FO					TI	ab N	umt	er:							
	3												emp									
	3 %:		و ب ه	b)	C٠	50	4						ilutio						(20	70) (ZOPP	•).
	nple											<u> S</u>	pecie	es Ir	ıforn	natic	n: 4	CPT.	ABS			9-122
Tes	t Sta	artec	1: 11	· 2 0	6	123	30					II.	est E	nde	d:	11.6	.00	123	6			
Tes	t Co	ndit	ions	×	Ven	J - 12	EENE															
Cont	: L		Numb	er Aliv	/e			Dis	solved	Oxyge	en		Ten	nperat	ture °C	;			рH			Gend:
& Re) 2	4 4	8	72	96	0	24	48	72	98	0	. 24	48	72	96	0	24	48	72	96	-µmhei
75	0 3				Ō.	0	5.5	12.0	06.	16.	3 -	25.	5 32.0	24.	724	6 -	83	2 7.	7.9	18.0	> -	20
	L																		1			
														1		<u> </u>				1	<u> </u>	
/25	3) (0	5.4	3.3	<u> </u>	T	T -	25	3 32.0	, –	-	T-	8.1	17.5	1 -	T -	T -	20
	\top						T	T					7	T			T	T		T^{-}	T	
		1		T			T	T	7	T	T						T	T	T		T	1
	1			\top				1	T	T		T	T	T	1		1	T	T		1]
6.Z.S	3	12	19	. -	2	2	5.4	2.3	(0.2	6.3	6.0	25.	2256	24.7	24.3	24.6	8.1	7.4	7.9	8.0	8.0	70
	1		$\neg \neg$	\top				1	1	1	1	7	1		1	1		1	1	T^{-}		1
	1	1		7	7				1			1	T			T	Π		T		1	
					\neg					1			1									
31 25	3	12	1 9	. 2	-	Z	54	2.5	6.3	6.2	6.1	25.	25.5	24.7	247	24.6	81	7.3	7.9	8.0	7.9	20
<u> </u>	† <u>-</u>	 	1 3	+	十		<u> </u>	-	10.5	1	1	1							1			
	†	1-	1	1	十				 		1	1	1				_	 				
	†-	+	+-	+	\neg				 		 	 	 		·	 	 	 				
5.675	3	13	13	3	+	3		3.7	1.2	64	65	251	25.3	านว	247	24.6	c,	7.7	19	SC 75	7.7	26
<u>0.6 €5</u>	╁	 	╁┷	+-	+		3.5	2,5	0.0	<u> </u>	10.3	1	2015		,,,			7.0	بندا	3 -		
	1-	1	┪—	+-	十				-	-	 	 										
	1	+	1	+-	+																	<u></u>
0	3	3	13	13	+	3	F 7	7/-	, , ,	67	Cui	24.9	25.2	20.1	24.2	246	81	7.7	7 a	フロ	79	کن
	13	13	+~	+-3		^	3./	<u>ع.به</u>	9.3	0.7	6.4	-7.7	80.0	27.1	27.2	276	J./	1.5	÷11	1.0		
	 	 	+	+	+															i		
	 	 	┼─	+	+	-+								-+								
	 		+	+	+-	-+																
	 	 	┼	+	╁	\dashv										{						
	 	 	+	+	+	\dashv			 				+									
	 	 	 	+	+	\dashv													-+			
	 	-	+	┼	+	-							+									
	 		 	┼	+-	+								+								
	 			-	+-	4																
	<u> </u>			-	4-	-																
				 	+	4														_+		
nitials	64	SB	SB	6+	a	+											Gat		(art 1	Out	
				Ef	fluer	nt #1		Rece	iving #	‡1		Recor	?			Effluer	t #2		R	eceivi	ng #2	
Har	dness	(ma/l)				_	_											F	<u></u>		
	alinity		-			Z				_												
	lorine	-			Z								JXG	\mathcal{I}								
Ammo					/						X		1									
			J/	17								$\overline{}$										

Ammonia Final (mg/l)

1d≡¶?₹⊤@d · §6 · X · @Ä+{±@X@@ · · · · · · G ₹ 9₹€9<mt< $\frac{1}{4} \mathbb{R}_{0}^{2} \mathbb{I}_{0}^{2} = \frac{1}{4} \mathbb{I}_{0}^{2} \mathbb{I}_{0}^{2} + \mathbb{I}_{0}^{2} \mathbb{I}_{0}^{2} = \mathbb{I}_{0}^{2} \mathbb{I}_{0}^{2} \mathbb{I}_{0}^{2} = \mathbb{I}_{0}^{2} \mathbb{I}_{0}^{2} = \mathbb{I}_{0}^{2} \mathbb{I}_{0}^{2} = \mathbb{I}_{0}^{2} \mathbb{I}_{0}^{2} = \mathbb{I}_{0}^{2} \mathbb{I}_{0}^{2} = \mathbb{I}_{0}^{2} \mathbb{I}_{0}^{2} = \mathbb{I}_{0}^{2} \mathbb{I}_{0}^{2} = \mathbb{I}_{0}^{2} \mathbb{I}_{0}^{2} = \mathbb{I}_{0}^{2} \mathbb{I}_{0}^{2} =$ (8"\$/ï= L<LSA\$V9B& [\$A♥= CHUSÏLED: \$ 9ZY[Q\$6:\$/8Y PV LUTHE SEACREST GROUP Page ************************************* Results calculated using the Summary Method. CDR Sponsor LEPTOCHIRUS Species Study Number REF TOX 11/2/00 to Dates of test 11/6/00

CUSO4

KAC

PPB

01-20-2001

SEDIMENT TESTS

Test Material

Report run by

Date of report

Concentration Units:

Concentration	Number	Number	Percent
(PPB)	Exposed	Dead	Dead
250.0	3	3	100.0
125.0	3	3	100.0
62.5	3	1	33.3
31.3	3	1	33.3
15.6	3	0	0.0
Control	3	0	η. η

Method	W	LC50	95% Confid Lower	dence Limits Upper	Slope
Binomial		71.79	*****	*****	N/A
Moving Average		52.54	17.05	114.26	N/A
Probit		54.43	19.44	147.26	3.87
Logit		63.23	0.00	Infinity	2.87

Note -- In order to produce this summary report, no warning or diagnostic messages were given (if any occurred). An asterisk appearing next to the method indicates that there was a warning associated with the corresponding method. You should run the full report for this method to determine the problem. This report is intended for informational purposes only.

************************* End Of Report ****************

The SeaCrest Group Broomfield, Colorado

Form No:048

Effective: November, 1998

STOCK PREPARATION								
Substance: C. So.4								
Manufacturer: VW/2 Lot No: 12/189/4/256								
Date Received: 11-19-94 Expiration Date: 8 3-99								
Solvent Used: PZ HZC								
Manufacturer: ~ 4	Lot No: ~/~							
Date Received: N.A.	Expiration Date: "/a							
Balance Used: 2								
Date/Time of Calibration: //- 3 00								
Amount Weighed or Volume Used: 250 mg								
Volume Diluted To: / /_								
Calculated Nominal Stock Concentration: 100	mg/L							
Expiration Date of Stock: 05 3 04								
Special Preparation Procedures Used (heat, stirri	ng, shaking, etc.): N/A							
Purpose for stock: L Plantace Re	F TOO SCLUTION							
Stock prepared by: 624								
	Time: 1030							
Notes and Comments: ~/								
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								

The SeaCrest Group Broomfield, Colorado

Form No:048 Effective: November, 1998

CV PDEPARATION									
STOCK PREPARATION									
Substance: Co S O a SOLUTION									
Manufacturer: Seacrest Garas Lot No: —									
Date Received: —	Expiration Date:								
Solvent Used: SALT HZO									
Manufacturer: SLACZEST GREAP	Lot No: 00-02								
Date Received: /0.3/ 00	Expiration Date: N/,								
Balance Used: N/A									
Date/Time of Calibration: ~/A									
Amount Weighed or Volume Used: 2 5 m	5 05 100 mg/h								
Volume Diluted To: / /	·								
Calculated Nominal Stock Concentration: 25	C PPE								
Expiration Date of Stock: 05. 2.04									
Special Preparation Procedures Used (heat, stirr	ing, shaking, etc.): N/μ								
Purpose for stock: L PLUMULOSUS	Per Tox								
Turpose for steem.									
Stock prepared by: 64									
Date: //-2.00	Time: 1036								
Notes and Comments: $^{\prime\prime}/_{\!\scriptscriptstyle{+}}$									

Appendix D.2

SKIDAWAY INSTITUTE OF OCEANOGRAPHY (SURFACE SEDIMENT)

Protocols for Toxicity, Ovary Formation, Embryo Production and Embryo Development in Grass Shrimp (Palaemonetes pugio) Exposed to Test Sediments

Principal Investigator: Richard F. Lee

Skidaway Institute of Oceanography

10 Ocean Science Circle Savannah, GA 31411

Telephone Number: 912-5982494

FAX: 912-5982310

E-mail: dick@skio.peachnet.edu

INTRODUCTION

Grass shrimp (*Palaemonetes pugio*) are an important component of the estuarine food web in the southeastern United States (Kneib,1987). For the tests described below, juvenile grass shrimp were exposed to test sediments for 2.0 months. If no toxicants are present in the sediments then juveniles grow into adults, adult females produce large ovaries, eggs are produced and fertilized, embryos develop and hatch into the free living zoea stage. The developing embryos, enclosed in egg sacs, are attached externally to the abdomen of the females. Embryos develop within the egg sac for approximately two weeks (at 27°C) after which the zoea stage emerges from the egg sac.

METHODS

Sediment exposure

Three groups (n=3) with each group consisting of 25 juvenile grass shrimp were exposed to test sediments (500g) in aquaria with 20 liters of estuarine water at 27°C (salinity 28ppt). Grass shrimp were fed *Artemia* and kept under 12hour light/12 hour dark regime. Every 5 days the following parameters were determined: (a) number of dead grass shrimp; (b) number of females with mature ovaries; (c) number of females with attached embryos. After embryos reach stage 9 they were removed by a cut at the stem attaching them to females. Twenty four embryos were transferred to 24 well polystyrene plates containing 2ml of estuarine water in each well and 1embryo was placed in each well. Embryos were collected from one female from each sediment exposure (n=3).. Culture plates were kept in the dark at 27°C and per cent of embryos hatching out from each female was determined. Hatching generally was completed within 48 hours after transfer to the culture plates.

QUALITY ASSURANCE

At the beginning and end of the study positive control experiments were carried out with late stages embryos using 1μ M. 2μ M. 5μ M and 10μ M 2,4-nitroquinoline-4-oxide. This is a known DNA damaging agent and previously shown to effect grass shrimp embryo hatching (Lee et al., 2000). A dose-response curve was prepared determining embryo hatching at each concentration. The dose-response curves was within one standard deviation of previously prepared dose-response curves. In addition, we included during the study a reference sediment from the Skidaway River estuary which previously has

been shown to have very low effects on the reproduction, embryo production and embryo hatching tests.

REFERENCES

Kneib,R.T. 1987. Seasonal abundance, distribution and growth of postlarval and juvenile grass shrimp (*Palaemonetes pugio*) in a Georgia, USA, salt marsh. Mar. Biol. 96: 215-223.

Lee, R., G.B. Kim, K.A. Maruya, S.A. Steinert and Y. Oshima. 2000. DNA strand breaks (comet assay) and embryo development effects in grass shrimp (*Palaemonetes pugio*) embryos after exposure to genotoxicants. Mar. Environ. Res. 50: 553-557.

Table 1 - Data for Toxicity, Reproduction, Embryo Production and Embryo Hatching of Grass Shrimp Exposed to Test Sediments

Sample ID	Toxicity	Reproduction	Embryo Production	Embryo Hatching
	(% killed)	(% forming mature ovaries)	(% females producing embryos)	(% hatching
C-5	12,28,20	32,12,16	4,12,16	0
C-7	32,20,16	52,12,32	4,20,8	0
C-16	36,28,20	68,40,76	44,52,36	76,88,64
C-33	12,12,24	84,68,76	32,24,52	36,52,28
тс	12,16,8	52,60,44	44,36,52	76,88,88
MG-N2	12, 28,32	60,52,80	52,44,40	92,88.76
MG-87	4,12,4	44,76,52	44,40,60	92,96,88
MG-D9	12,16,24	72,60,56	52,44,68	80,88,96
MGK17	28,20,24	48,56,76	0	0
MG-H7	12,4,16	68,44,32	0	0
CR	4,16,4	80,64,76	76,72,72	100,96,92
reference sediment Skidaway River	4.8.8	76,84,60	80,52,76	96,96,88

Table 2 - Toxicity, Reproduction and Embryo Development Tests on Grass Shrimp Exposed to Sediments from the LCP Site and Reference Areas

Sample ID Toxicity Tests (% grass shrimp killed during 2 months in test sediments)		(% of sun	tion Tests viving females which mature ovaries)	(% of surv which pro	Embryo Development (% of surviving female: which produced embryos)		
	Mean	S.D. (n=3)	Mean	S.D. (n=3)	Mean	S.D. (n=3)	
C-5	20	8	20	11	11	6	
C-7	23	8	32	20	11	8	
C-16	28	8	61	19	44	8	
C-33	16	7	76	8	36	14	
тс	12	4	52	8	44	8	
MG-N2	24	4	64	14	45	6	
MG-B7	7	5	57	17	48	11	
MG-D9	17	6	63	8	55	12	
MG-K17	24	4	60	14	0	0	
MG-H7	11	6	48	18	0	0	
CR	8	7	73	2	73	2	
reference sediment (SkIO)	7	2	58 73 <u>con</u>	18 12 <u>corr</u>	69	15	

Table 2, cont.

Sample ID	(% of emb	atching Test ryos hatching) S.D. (n=3)
C-5	0	3. D. (II= 3)
C-7	0	
C-16	76	12
C-33	39	12
тс	84	7
MG-N2	85	8
MG-B7	92	4
MG-D9	88	8
MG-K17	0	
MG-H7	0	
CR	96	4
reference sediment (Skidaway River)	93	5

B. SUPPORTING TOXICOLOGICAL INFORMATION FOR ESTUARY AT LCP SITE

B.1 <u>SEACREST GROUP</u> (SURFACE SEDIMENT)

RESULTS OF CHRONIC SEDIMENT TESTS CONDUCTED ON SAMPLES FROM THE LCP PROJECT

Submitted to:

Mr. Curt Rose CDR Environmental Specialists 6001 N. Ocean Drive Suite 1103 Hollywood, Florida 33019

Submitted by:

The SeaCrest Group 1341 Cannon Street Louisville, Colorado 80027 303-661-9324

January 6, 2003

INTRODUCTION

Sediment contamination is an environmental issue that can have widespread effects on aquatic systems. The sediment may serve as a reservoir for numerous contaminants that can detrimentally affect an aquatic ecosystem. However not all substances found and measured in sediments are bioavailable. Therefore tests conducted with aquatic organisms that utilize the sediment for feeding and/or protection provide information on the ability of the sediment to adversely affect the aquatic community.

MATERIALS AND METHODS

Sample Collection

Grab samples of sediment from ten sites; labeled CR-C, TC-C, H7-C, K7-C, D-C, 5-C, 6-C, 7-C, 15-C, and 45-C; were collected into clean, plastic containers from August 22 to August 23, 2002. The samples were chilled and shipped in coolers on August 26, 2002 for overnight delivery to the SeaCrest lab, where they arrived at 10:15 on August 27, 2002. At the lab the sediment samples were refrigerated at 4°C between uses. The Chain of Custody forms documenting sample collection and transfer times are included in Appendix 1.

Dilution Water

A 20 part-per-thousand (°/_{oo}) artificial saltwater (Forty Fathoms^R sea salt) was used as the overlying water for the sediment tests. This water was created and aerated for a minimum of 48 hours before being adjusted to test temperature and used for the daily water change-outs.

Test Organisms

The chronic tests were conducted with a benthic estuarine invertebrate, the amphipod Leptocheirus plumulosus. It is recommended that the amphipods started in the chronic test be approximately one day old. However as they were purchased from a test organism supplier (Aquatic BioSystems, Inc in Ft. Collins, CO), the amphipods used in the present tests were "less than 48 hours old" at the start of the test. The Organism History record supplied with the test organisms is provided in Appendix 2.

The Leptocheirus were tested in a reference toxicant test using copper sulfate (CuSO₄) to measure health and test acceptability. An LC50 concentration was not achieved in the ref tox test, as there was no concentration at which 50% of the animals died. The animals were floating and appeared near death in the two highest test concentrations (125 ppb and 250 ppb) but since they moved slightly when touched they could not be considered dead. The facility that supplied the test organisms was contacted but they were unable to supply ref tox information as they do not perform reference toxicant testing on any of their amphipod cultures. If the animals in the 125 ppb and 250 ppb concentrations had died, the LC50 would have been around 75 ppb. Since we have only run this Leptocheirus sediment test this year, we have only this one number as reference. However a Leptocheirus ref tox test conducted at SeaCrest two

The SeaCrest Group 2

years ago showed an LC50 concentration around 55 ppb, which would be considered within range of the 75 ppb LC50.

Test Procedures

The 28-day chronic tests followed the procedures outlined in the December, 1992 publication of the Chesapeake Bay Program guidelines for "Development of a Chronic Sediment Toxicity Test for Marine Benthic Amphipods" (CBP/TRS 89/93).

In preparation for the test, the sediments did not require sieving, but were thoroughly stirred and all large particles (i.e. branches, stones) were removed manually. Each sediment was visually inspected for indigenous organisms, none were observed. The control sediment and the test sediments were handled and tested in the same manner.

The test containers were 1 liter glass jars to which 175 ml of the homogenized sediment was added. Then 725 mls of 20% saltwater were poured over the sediment. The sediments were tested at the 100% concentration only, no dilution series was used. Five replicates were used for each sediment sample. A "performance control" sediment set was run in addition to the test sediments. The control was a clean, uncontaminated saltwater sediment obtained from Aquatic BioSystems, Inc. in Ft. Collins, CO, who in turn obtains this "culture sediment" from a collection facility located in Maryland.

The chronic *Leptocheirus* tests were started on September 4, 2002 and ran for 28 days, ending on October 2, 2002. All ten samples were tested, along with the saltwater control sediment. During the test the water over the sediments was changed once a day. Observations were made daily for the first week of the test and then three times a week thereafter. One random test container of each sediment was monitored three times a week for temperature, dissolved oxygen, and pH, before the water change.

Artificial saltwater used for the change-outs was held in the incubator at test temperature prior to use. Several batches of $20^{\circ}l_{\infty}$ saltwater were made during the chronic tests. The data sheet documenting the batch preparations and water quality checks is located in Appendix 3. The test chambers were fed 1 ml of fish flake food slurry solution (4 grams of flake food blended into 1 liter of deionized water) three times a week.

The water over each sediment sample was measured for pH, salinity, alkalinity, conductivity, and ammonia at the beginning and at the end of the 28-day tests. The data sheets containing the readings of temperature, dissolved oxygen, and pH; and the water quality readings taken at the beginning and end of the test; are located in Appendix 5. The tests were held at a temperature of 25 ± 1 °C in an incubator with a programmed day cycle of 16 hours light and 8 hours dark. The daily temperature readings and monthly light intensity readings for the incubator are located in Appendix 4. The temperature readings for the incubator were higher than those recorded in the tests themselves (as seen on the test data sheets), however the incubator readings show consistency in the temperature that was maintained.

Dissolved oxygen levels were maintained by aerating all replicates of each sediment test throughout the test study, as suggested in the Chesapeake Bay test instructions.

Test Termination

The sediment tests were terminated at 28 days. Water was pulled from each replicate of one sediment test and composited for final water quality readings. Then the water and sediment was poured from each replicate jar into a clean plastic pan and searched thoroughly for live adult animals. Diligent effort was made to account for every adult test organism, either by retrieving them live or finding a body. After the live search, each replicate sediment was returned to its jar and saltwater solution containing Rose Bengal was added. The sediment was stirred to insure that the Rose Bengal stain contacted any organisms that were present. The next day (approximately 24 hours later) the Rose Bengal solution was removed and 99% Isopropyl alcohol was added to preserve all specimens until the sediment could be thoroughly searched for additional adults and to count any juveniles that might be present. All adults found during the live pick were also preserved in 99% Isopropyl alcohol.

After the preserved sediments were checked for adults and juveniles, all adults pulled from the sediments were sexed using a dissecting microscope. The adults were then dried for 24 hours in a drying oven at approximately 95°C. The dried animals were cooled and weighed the next day. The data sheets containing the total number, per replicate, of surviving Leptocheirus found at the end of the test; the number of males and females found in each test container; dry weight determinations for the adults; and the number of juveniles found in each

RESULTS

The *Leptocheirus* chronic test achieved acceptable performance control survival. Survival was 87% in the control sediment and ranged from 48-80% in the test sediment samples. Table 1 provides a summary of the test results, including survival numbers and mean weights per sample. Juveniles were found in several sediments but only the control and sample 15-C showed numbers in the double digits.

Table 1. Results of sediment tests run from September 4 to October 2, 2002.

Sediment	Survival (%)	Replicate Survival Range Low (%)	Replicate Survival Range High (%)	Survivor's Average Weight (mg)
Performance Control	87%	75%	100%	0.79
45-C	71%	40%	95%	0.60
15-C	77%	65%	90%	0.70
7-C	56%	25%	80%	0.43
6-C	48%	5%	80%	0.51
5-C	54%	40%	80%	0.42
D-C	63%	50%	80%	0.61
K7-C	68%	50%	90%	0.46
H7-C	80%	65%	100%	0.46
TC-C	80%	65%	95%	0.63
CR-C	53%	0%	95%	0.59

Table 2. Further results of sediment tests run from September 4 to October 2, 2002

able 2. Further results of sediment tests run from September 4 to October 2, 2002.							
Sediment	Number Juveniles Found	Number Female Adults	Number Male Adults	Reproductive Response*			
Performance Control	106	48	39	1.10			
45-C	18	36	35	0.25			
15-C	46	46	31	0.50			
7-C	0	29	27	0.0			
6-C	0	19	29	0.0			
5-C	6	30	24	0.10			
D-C	0	26	37	0.0			
K7-C	0	36	32	0.0			
H7-C	1	49	31	0.01			
TC-C	2	46	34	0.02			
CR-C	6	27	26	0.11			

^{*} Determined using the equation provided in the chronic sediment testing guideline:

Fertility = No. Juveniles/2

No. Surviving Females

6

REFERENCE TOXICANT TEST RESULTS

The amphipods used for the chronic test were tested in a reference toxicant test with CuSO₄ (the toxicant used at SeaCrest for saltwater organisms) to determine their health and test acceptability. The test guidelines recommended allowing the amphipods to obtain an age of at least one week before performing the reference test, since survival was very low if they were removed from sediment before that age.

The Leptocheirus reference toxicant test (called the "reference control") was conducted from September 17 to September 21, 2002. The test chambers were 30 ml plastic beakers containing water and a small piece of Nitex^R screen placed over the bottom of each beaker. The test was a static, non-renewal. The animals were fed 0.1 ml of fish flake slurry on days 0 and 2. The test concentrations run were 250, 125, 62.5, 31.25, and 15.63 ug/L copper (as CuSO₄). The LC50 concentration could not be determined since there was not enough death in the test at 96 hours to create one. However all organisms in the two highest concentrations of the test (125 and 250 ppb) were floating on the surface of the water and looked near death, only moving when prodded. If those animals are counted as dead, the LC50 produced would be 75.3 ppb, which is in line with reference toxicant tests run previously with these organisms in the SeaCrest laboratory.

REFERENCES

APHA/AWWA/WEF. 1998. Standard Methods for the Examination of Water and Wastewater. 20th Edition. American Public Health Association.

Hach Company. 1992. Hach Water Analysis Handbook. 2nd Edition. Hach Company, Loveland, Colorado.

Chesapeake Bay Program. December, 1992. "Development of a Chronic Sediment Toxicity Test for Marine Benthic Amphipods". CBP/TRS 89/93.

APPENDIX 1. Chain of Custody Form

SOR13 200 8282 0425 5979 FedEx Copy 1 From 4a Express Package Service Packages up to 150 lbs. 5 FedEx Standard Overnight
6 FedEx First Overnight
Earliest head business enterning
delivery to select Cecurion Sender's FedEx FedEx Priority Overnight Account Number Sender s 3 FedEx 2Day Second business day 20 FedEx Express Saver
Third business day
Minemum charge One pound rate NEW FedEx Extra Hours
Later drop-off with next business
ettermoon delivery for select locations Name Phone 954 927-1165 4b Express Freight Service Packages over 150 lbs. Company CDR ENVIRONMENTAL SPECIALISTS 7 FedEx 1Day Freight 8 FedEx 2Day Freight 83 FedEx 3Day Freight Address 6001 N OCFAN DR STE 1103 * Call for Confirmation 5 Packaging Declared value hove 5500 City HOLLYWOOD ZIP 33019 6 FedEx Envelope 2 FedEx Pak* Other Pkg Includes FedEx Box, FedEx Tube and customer pkg. Includes FedEx Small Pak, FedEx Large Pak, and FedEx Sturdy Pak 2 Your Internal Billing Reference 6 Special Handling --- Include FedEx address in Section 3 3 SATURDAY Delivery
Available only for
FedEx Priority Overnight
and FedEx 2Dey to select
ZP codes 3 To SUNDAY Delivery 1 HOLD Weekday

1 at FedEx Location 31 at FedEx Location Recipient's Name Available only for FedEx Priority Overnight and FedEx 2Day to select locations Dorf this shi a box must be checked -4 Yes
As per ettached
Shipper's Declarator Cargo Aircraft Company Onty Obtain Recip Address Payment Bill to. We cannot deliver to P O boxes or P D ZIP codes. 2 Recipient 3 Third Party 4 Credit Card 5 Cash/Check 100 Credit Card No. 10 Total Packages Total Weight Total Declared Value[†] Total Charges Credit Ca d Auth 10ur kebday is limited to \$100 unless you declare a higher value. See the FedEx Service Guide for details 8 Release Signature Sign to authorize delivery without obtaining signature 406 By signing you authorize us to deliver this shipment without obtaining a signature and agree to indemnify and hold us hamiless from any resulting claims.

0188128419

The SeaCrest Group

Chain of Custody Record

(enclose with each shipping container)

Purchase Order Number	r
-----------------------	---

1341 Cannon Street • Louisville, Colorado 80027 303-661-9324 • FAX 303-661-9325

Client:CUrt Kos Program/Site:LCP [2000000		Contact Phone:	: 	Δ2 - 2	E1 - 1	-50	Addr	ess: _					ojeci	Nun	IDEI (lab	use only)
Collected by: Vacaus par			Phone:	7¢ 6		cute	338		ronic			戊	These	fields ma	y be use	ed	
Sample Identification (Effluent, Receiving, Sediment, list othe		Time	Sample Type (composite, grab)		FH Minno.	Accelerated		FH Mmno	Accelerated		25 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6			/ lield test	/ / lesuits	/Total Units	Total Volume
1 CR-C	8/23/02										V					I	Gal
2 TC-C	8/23/02	1430	G													l	
3 H7-C	8/23/02	0840	C													l	
4 K7-C	8 23 02	0920	<u></u>													l	
5 D-C	8/23/02											! ! !				l	
6 5-6	8/22/02	0905	<u>C.</u>													l	
7 6-C	8/22/02	0945	C													i	
8 7-C	8/22/02	0920	<u></u>													l	
9 15-G	8/24/02	1230	C													l	
10 45-C	8/24/62										V					1	
Comments and special test	ting instructio	ns:															
														· · · · · · · · · · · · · · · · · · ·			
	<u>,,,</u>					. 15						·					
Relinquished by:	webe-	Grock	≥ B epresentir	ıg:(SDB	3		т	o Whor	n: _F	EDEL	Exp	<i>X</i> ()	Date/T	ime:	2124/07	2-100
Relinquished by:						`											
Next recipient:			Relinquishe	d hv					Pacid h	,, ¬	بأ-لـ	de		D-4- 7			7 1/15-

Appendix 2. Test Organism History Sheets from Supplier

1300 Blue Spruce Drive, Suite C Fort Collins, Colorado 80524

DATE:

SPECIES:

Comments:

COPY

Toll Free: 800/331-5916
Tel: 970/484-5091 Fax:970/484-251

LP 020904

DOis = 5.3, Fs = 6

Doin = 5.25fu = 6.

Dois = 5.2, fs = 6.

DOi6 = 5.3, \$6 =6.

7.57-8.50

ORGANISM HISTORY

9/4/02

Leptocheirus plumulosus

AGE:	<48 hour		·		·
LIFE STAGE:	Larvae				
HATCH DATE:	Variable	···			
BEGAN FEEDING:	Immediately	,	·		
FOOD:	Tetramin _® F	lake Slurry		•	
				•	
			•	À	
Chemistry Record:		Mean	Range	•	
TEMPERATU	ЛRE:	25 ℃	21-	30°C	DOG=5.3, f,=6
SALINITY/CONDUCTIV	ITY:	17 ppt	14-	24 ppt	temp: = 26.2
TOTAL HARDNESS (25 CaC	CO ₃):				pHi= 7.7
ATOTAL ALKALINITY (as CaC	CO ₃):	145 mg/l	65-	180 mg/l	10i2 = 5.4, Fz = 6

Facility Supervisor

APPENDIX 3. Forty Fathoms^R Salt Water Batches

ne SeaCrest Group juisville, Colorado

COPY

Page No. : Form No. : 025

Effective: January, 2000

		SALTWATER LOC	3	
Batch No.	Quantity Water Prepared	Salinity *	Date	Data By
02-001	50 gal	' 4 0	1-8-12	an
02-002	35 gal	30 30	3-1-02	an
02-003	40 sal	<i>うロ</i>	3-1-07 5-6-7 6-26-02	Jan
12-w4	50 gal	32	6-26-02	K5-0
02-005	40gal	30	8 22.02	3m
07.00c	50 apl	30	9.11.02	For
F00 100	50gal	20	9.25 02	300
07.00,	-30 cm+	70	9-200	
92008	50gal	30	10.18.02	557
02009	50gg1	28	12.6.02	567
and the second	<u> </u>			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
A Company				
de la companya de la				
	•			
sured in parts pe	er thousand (°/ _∞)			

APPENDIX 4. Incubator Daily Temperature Readings and Monthly Light Intensity Readings

1118 SeaCrest Group

Page #: Form #: 022

Effective: November 2001

TEMPERATURE RECORD

| Incubator #: | Acceptable Temperature Range: スィース6℃

acceptable Light Range: 50-100ff candles

incubator Make: Model: PC 678 Dept. NIST Correction: Date of NIST Correction: Initials: Light Intensity Temperature Initials (fc) Date Maintenance Notes 25,6 145 8-11-12 8-R-02 AB 25.6 HB 26.0 8-13-02 8-14-02 26.0 8-15-02 HB Temo ON for Texts 8-16-02 26.4 8-17-02 25.7 8-18-02 25-8 LUS 8-19-02 8-20-02 8-21-02 8-22-02 8-23-02 25-9 8-24-02 25.5 HB 8-25-02 (HS 25 25 26-0 26-2 M5 Temp OX for Text-62.0 8-28-02 26.5 8-29-02 8-30-02 26.3 8-31-02. 25-8 Tem, OK for tests 9-1-02 26.2 MD 10 9-2-02 26.2 11 9-3-02 9-4-02 26.1 9-5-02 Oxfor 24.9 9-6-02 26.8 9-7-02 d6.8 HS 9-8-02 11 9-9-02 43 25.6 11 9-10-02 -44. 9-11-02 Adjusted Tema down HB 9-12-02 9-13-02 23.4 9-14-02 Temp of for teits adjusted temp down MB 9.15.02 16.02 26.5 HK

geaCrest Group cousville, Colorado

語でのできる。

Page #: Form #: 022

Effective: November 2001

	TEMPERATURE RECORD												
			MPERATURE RECO										
incubator #:		Accept	table Temperature F	Range: 👌	1-26°C								
Acceptable Ligh	t Range: 50	-100/-	t. candles										
incubator Make:	Dept. ch	<u> ኢ</u>		Model: (C678								
NIST Correction	: '	Date of	f NIST Correction:		Initials:								
				Light									
				Intensity									
Date	Temperature	Initials	Maintenance	(fc)	Notes								
9,17.02	24.5	HB											
79.18.02	25-4	15/5		ļ									
19.19.02	25.6	HAS	-	1 - 11									
9,20-02	24.4 25-3	9(60.4									
9-21-02	254	46		 									
9.23-02	25.6	JB.		 									
9-24-02	26.8	HB	·····										
9-25-02	27.1	HB			Okay for Tests								
₹6-26-02	27.4	HV	Tempadjusted		Temp Probe may have been ex								
9-27-02	24-8	90	1 3										
9-28-02	25.5	125			0 (, , , , ,								
9-29-02	27.3	#5		ļ	Probe not in HO								
9-30-02	27.0	THS.											
10-1-02	26.0	HB											
10-03-02	27.0	R											
10-4-02	26.7	R											
10-5-02	28-4	R											
10-6-02	<i>37 1</i>	11/3											
10-7-02	27.3	HO			Turned down								
10-8-02	23.7	R											
10-9-02	<u>33. a</u>	HB			Turned up								
10-10-07	24.5 24.4	14B			Mirred up								
10-11-02	94 2	1		58.9	- Madia () Ind								
10-23-02	24.2 23 3	(Mt)		7.0.	Turned up								
10.14 02	22.a l	76=			man apr								
1015-02	25.3	HS											
10 16 02	25.3 25.2	SF											
10.18.02	248	HIS SF											
10.18.02	25.6	80											
10-19-02	248	57			Turned up								
10-25-02	258	/ss /ABS			·								
10 21-02	260	MAS											
102202	26.4	\$6. \$6	 										
10-23-02	27.0	<i>5</i> 0		<u> </u>	Turped down								

APPENDIX 5. Water Quality Readings for the Test

28-day Leptocheirus Benchsheet

Form # 31 Effective: September 2002

Client	Co	ntrol	Site				Lab #	, —		
H ₂ 0	20 900	sea suit	Sample Date				Species Info	A65 LA	020764 (4	45hc)
Start Date	940	2 1700		E	nd Date	10-	2-02			_ ′
Test Condit	ions	W/120,50	20, 175 mls	2d + 6	75 ml 1	1170				
		·								
		· · · · · · · · · · · · · · · · · · ·		* *						
										_

	0	1	3	6	8	10	13
Day	Wed	Thurs	Set	Tues	Thurs	SJ	Tues
Date	7/4	915	9 2	9/10	9/12	4/14	9/17
гер		5	2	3	4		5
DO	6.3	4.6 53	6.0 6.0	6.0 5.1	5.8 54	6.0	6.5 6.4
Temp °C	25.0	25.5 24.2	24.8 24%	25.4 24.7	24.2 24.0		150 240
pН	7.6	69 7.7	7.85 8.0	7.67 7.77	7.86 7.86	7.9 8.2	7.6 7.8
alkalinity salinity ammonia conductivity	105 20 .241* 2920	* not taken	until day.	3 due to	no ammonia	i probe un	hil then

	15	17	20	22	24	27	28
Day	Thurs	Sect	TURS	Thurs	Sat	Tues	Wed
Date	9/19	9/21	9/24	9/26	4/28	10 1	10/2
rep	2	3	1	4	5	3	5
DO	5.9 50	5,9 6.0	7.2 6.9	5.9 5.7	6.1 5-8	4.4	5.7
Temp °C	25.2 24.0	24.8 24.8	25.0 24.5	24.1 24.2	24.0 24.0	79.8 4.0	25.8
pН	7.8 7.9	7.9 7.9	7.8 7.8	7.6 7.7	7.5 7.9	7.2 7.8	7.6
alkalinity							57
salinity							22
ammonia							40,20
conductivity							31300

28-day Leptocheirus Benchsheet

Client	CDR	Site 45 - C	Lab# 302323
H_20	20 /00 Sec. Solt	Sample Date 8 24.02	Species Info ABS LP OZUTELL (48hrs)
Start Date	94.02 1700	End Date	10-2-00
Test Condi	tions 20/cep. 5%	(EUS), 175/11/ sed+ 675 ml 1	4,0
		· · · · · · · · · · · · · · · · · · ·	

	0	1	3	6	8	10	13
Day	wed	Thurs_	Sat	Tues	Thurs	5at	Tues
Date	9/4	415	714	4/10	9/12	9/14	4/17
rep	d_	d	9	55 6 6E	a	d	a
DO	6.2	5.4 5.4	5.8 6.3	57 5.6	6.261	576.0	5.6 5.7
Temp °C	250	25.0 24.	25.4 25,0	26.0 25.2	24.5 24.3	24.2 24.0	25.0 24.0
рН	8.0	7.9 7.9	7.86 8.00	7.83 7.89	7.7 7.8	7.8 8.1	77 7.8
alkalinity salinity ammonia conductivity	144 25 2.86 ⁴ 31,000	EGUL CONT	vic 9/4/02 restreading & when new	alren on Da ammonid pr	3 live rec'd		

 $\tau \searrow$

	15	17	20	22	24	27	28
Day	Thurs	Sat	Tues	Thurs	5×1+	Tues	Wed
Date	4/19	9/21	9/24	9/26	9/28	10/1	10/2
rep	C	D	3.6d 5%.	d	<i>l</i> ,	a	Ð
DO	5.75.9	6.7 5.9	68 808	5.7 5.7	6.5 16.0	5.6 5.7	2.6
Temp °C	24.4 24.1	24.5 24.3	259 245	24.7, 24.2	24.0 24.1	24.7 24.0	24.7
pН	7.3 7.9	7.9 45.0	7.4 17.7	7.8 7.9	8.1 8.3	7.8 8.0	7.5
alkalinity		*	EMA				92
salinity		•					24
ammonia							0.283
conductivity							33300

28-day Leptocheirus Benchsheet

Client	CDR		Site	15-C		Lab # 3023	122
H_20	20 1/00 500	Sout	Sample Date	8.24.02	Spec	cies Info A BS LA	0 (209C/ (-48h)s
Start Date	9.4.02	1700		End Date	10.2.02		
Test Condi	itions 20	Jep. 50	ps, 175ml	sed + 675 ml	Hau		
							

	0	1	3	6	8	10	13
Day	wed	Thurs	Sit	Tues	Thurs	Sat	TUPS
Date	914	9/5	9/4	9/10	9/12	9/14	7/17
rep	е	P	9	Ь	a	d	q
DO	6.0	5.3 5.3	5.7 5.9	5.6 5.6	6.2 6.1	5.7 5.8	5-9 6.0
Temp °C	250	25.1 24.0	25.2 25.3			24.0 24.0	24.4 24.0
рН	8-0	7.9 7.9	8.03 8.01	8.01 7.96	7.9 7.9	8.0 82	8-0 7.9
alkalınıty	171			-	- •		
salinity	24						
ammonia	2.79	\$ see control	note				
conductivity	30,300	(SW-1906)					

	15	17	20	22	24	27	28
Day	Thurs	Sat	TUZ	Thurs	Sat	TURS	Wid
Date	3/19	9/21	9/24	4/26	9/28	10/1	10/2
rep	J	٥	a	_ d	e.	٥	\mathcal{B}
DO	5.5 5.7	5.8 60	3,6 6.2	5.65.8	6.3 5.9	5.9 5.7	5.9
Temp °C	24.4 24.1	24.9 24.6	25.6245	24.4 24.3	24.3 24.1	24.0 24.0	24.4
рН	7.8 7.9	8.0 80	7.4 7-8	7881	8.2 8,4	7.9 18.1	7.9
alkalinity	·	4					107
salinity							23
ammonia							0.247
conductivity							33100

Client	CDR	•	Site7	. С	Lab #	302321
H ₂ 0	30 % s	en sout Samp	le Date 🥎	. 22.02	Species Info	ABSIC OZEGOY LYBA
Start Date	94.02	1700		End Date	10-2-03	
Test Condit	tions <u>20</u>	/rep, 5 reps, 17	5 ml sed t	675 ml sed	H208nee	
						•
						

	0	1	3	6	8	10	13
Day	Wid	Thurs	Sut	Tues	Thuc	Sout	Tues
Date	9/4	9/5	4/7	9/10	4/17	9/14	9/17
rep	3 La	ن.	a	ė	b	C	a
DO	9.4	5.5 54	5.9 5.8	7.5 5.5	5.8 5.5	6.7 6.0	5.4 6.5
Temp ^o C	25.0	25.3 24.5	25.1 29.0	25.7 24-1	24,2 24,0	24.0 24.1	25.8 240
рH	7.9	8074	8.1 8.1	7.71 7.86	8.10 8.03	8.0 8.3	7.8 7.9
alkalinity	180					•	
salinıty	22	,					
ammonia	2.60	* See contro	of mate				
conductivity	30400	Θm					

	15	17	20	22	24	27	28
Day	Thurs	Sur	TUZS	Thurs	Sat	TUES	Wed
Date	9/19	9/21	9/24	9/26	9/28	10/1	10/2
rep	D	ن	ė	d	e	ع	6
DO	5.9 5.7	55 5.9	7-1 7.0	6.1 5.6	6.1 5.9	45 60	516
Temp °C	24.0 240	25.7 25.0	24.6 24.1	24.1	24.3 24.0	24.3	25.8
рН	7.6 7.9	7.9 7.9	7.9 8.0	7.7 78	7.9 8.2	1.4 21	78
alkalinity		,					90
salinity							A3
ammonia							0.164
conductivity							30900

Form #: 31 Effective: September 2002

	0	1	1		3	(3		8		10		13
Day	Wed	thu	<u>75</u>	Si	t	Tues		Th	Urs	Sut		TUR	>
Date		٦	5	9/7		9/10	>	4/1	2	4/	14	9/17	
rep	ď	b		a		e		0	`	(d	
DO	5,4	5.6	5.5	5	6.0	5.7	5.8	5.9	5.8	6.1	60	6.1	6.4
Temp °C	25.6	24.0	24.4	26.1	25.4	25.4			24.1	24.0	24.0	26.0	24.0
рH	7.9	79	7.9	7.77	7.91	8.57	8.02	-7.7	7.8	80	12.2	7.8	7.9
alkalinity	167											:	•
salinity	21			•									
ammonia	1.43	Ne see	control 1	note									
conductivity		BM	L										

	•	•	*	
20	22	24	27	28
Tue	Thars	Sat	Tues	Wed
9/21	9/26	4/28	10/1	10/2
a	9	C	ં તુ	e
7.0 6.9	6.3 5.3	5-8 5-9	6.4 6.3	77- 5
60 24.1	24.0 24.1	24.7 24.0	24.724.6	25,2
9 7.9	7.5 8.0	7.9 8-1	7.7 810	7.7
· · · · · · · · · · · · · · · · · · ·				112
			•	23
				20200
				31800
	7/24 Q 7.0 6.9 60 24.1	20 22 Thers 9/24 9/26 A 4 7.0 6.9 6.3 5.3 60 24.1 24.0 24.1	20 22 24 The Thers Sut 9/24 9/26 4/28 A C 7.0 6.9 6.3 5.3 5.8 5.9 60 24.1 24.0 24.1 24.7 24.0	20 22 24 27 The Thers Set Tres 9/24 9/26 4/28 10/1 A C 3 7.0 6.9 6.3 5.3 5.8 5.9 6.4 6.3 60 24.1 24.0 24.1 24.7 24.0 24.7 24.6 9 7.9 7.5 8.0 7.9 8.1 7.7 8.0

Form #: 31 Effective: September 2002

Client	CDR	Site 5 - C	Lab# 3023i9
H ₂ 0	20 Year sea sour	Sample Date 8.22.62	Species Info ABS LP CZC904 (States
Start Date	94.02 1700	End Date	10-2-02
Test Cond	itions w/ces.	5 ceps, 175 mi sed + 675 ml	11,0

	0	1	3	6	8	10	13
Day	Wed	Thurs	Sut	TUES	Thurs	Sert	Tues
Date	4/4	9/5	9/7	9/10	9/12	9/14	9/17
rep	C	4	a	e	'a		a
DO	5.2	5.4 5.2	5.9 6.1	5.4 56	5.9 5.9	6.1 6.2	6.3 6.6
Temp °C	25.6	26.0 24.7	26.1 25.6		24.1 24.1	24.0 24.0	25.0 24.0
pН	7.6	7.8 7.9	7.79 7.92	7.72 7.87	7.6 7.7	7.9 8.0	7.8 7.9
alkalinity	195						
salinity	22						
ammonia	1.78		note			٠.	
conductivity	<u> 19800</u>	βM.	74.0				•

	15		1	7	2	20		22		24	2	7	28
Day	Thurs		Sat		TUES		The	ics	Sat		Tues		Wid
Date	9/19		ί	7/21		9/24	9	26	9/	28	10/1		10/2
rep	<u>D</u>			2	વ		c	·	<u> </u>		e		9
DO	5.99	W	. . • •	60	6.7	6.7	6.5	6.5	5.9	5.9	4.0	63	5.L
Temp °C	25.4 2	4.4	24.9	24-0	24.9	24-0	24.9	24.7	24.6	24-0	14.7	24.5	2514
рH	7.717	9	7.9	7-9	7.8	7.9	2.5	8.0	7.8	18.1	73:	8.1	17.7
alkalinity			•										98
salinity													2
ammonia		•											0.363
conductivity													30600

Client	OR	Site D - C	Lab# 302318
H ₂ 0	wºlos seasout	Sample Date 3.23.02	Species Info ABS LF 02 C9 04 (LYShrs)
Start Date	9.4.02 1700	End Date	/σ-2-σ ₂
Test Condit	ions 20/rep. 50	eps, 175 ml sed + 675 ml Hzc)
	<u>-i-</u>		

·····	0	1	3	6	8	10	13
Day	Wed	Thus	Sect	Tues	Thurs	Sout	Tues
Date	9/4	9/5	1/7	9/10	9/12	9/14	9/17
rep	e	a	J	<u> </u>	e	9	6
DO	5.6	4.6 5.2	5.8 5.7	5.8 7.4	579 5.9	5.0 5.7	5.7 5.8
Temp °C	25.0	25.9 24.1	24.7 24.7	25.7 24.9	24.3 24.2	24.2 24.4	24.7 24-0
рН	7.9	7,7 7,8	1.93 B.00	7.70 7.81	7.9 7.8	7.5 81	7.5 7.9
alkalinity	136				-		
salinity	24						
ammonia	1.38	+ see contro	1 note			_	
conductivity		Bur.					

	15	17	20	22	24	27	28
Day	thurs	Sut	Tues	Thurs	Sat	Ties	Wed
Date	9/1						
rep	0	\mathcal{C}	6.4 d	d	a		C
DO	6.2 6.3	64 5.9	to-7 '0.7	5.7 5.0	512 5.2	5.7 5.2	5.4
Temp °C	25.6 24.6	24.0 24.0	240 24.1	24.9 24.	25.4 24.2	24.4 24.7	25.1
pН	7.7 17.3	7.6 7.8	7.8 7.9	7.3 7.7	7.4 8.2	7.8 8.1	7.1
alkalinity		4	Bels		· · · · · · · · · · · · · · · · · · ·		74
salinity			10-11				22
ammonia]						0.213
conductivity							30200)

Form #: 31

28-day Leptocheirus Benchsheet

Effective: September 2002

Client	CDR	Site <u> </u>	Lab #	302317	
H ₂ 0	20% Hoth seasel	Sample Date 8.23 02	Species Info	LP 020904	(c48hes)
Start Date	9.4.07 1700	End Date	10-2-02		
Test Condit	tions $\frac{20}{RP}$, 5	reps, 175 ml sed+ 675 ml	It _i O		
					
					

	0	1	3	6	8	10	13
Day	Wed	Thucs	Sat	TUZS	Thurs	Sat.	TURS
Date	9/4	9/5	9/7	9/10	9/12	9/14	4/17
rep	و	a	5745C	b	C	a	6
DO	4.6	5.1 5.4	1217 5.7	5,9 7.4	5.7 57	6.6 65	5.3 5.6
Temp °C	25.0	25.9 24.1	247 25.0	25.4 24.9	24.1 24.2	24.0 24.4	25.0 24.0
pН	7.9	7.9 7.9	7.97 6,01	7.81 7.90	1.8 7.9	B.1 B.2	7.7 7.9
alkalinity	178						
salinity	22						
ammonia	3.19	* see contro	Inde				
conductivity	251600	الالكا	. •				

ſ		15	17	20	22	24	27	- 28	I
Γ	Day	Thuis	Sat	Tues	Thirs	Set	Tues	Wed	
	Date	9/19	9/21	9/24	9/26	9/28	10/1	10/2	
Ī	ер	a	il il	61a	d	A	\mathcal{C}	e	डाम स्ट
	00	62 63	3,8 6,9	3.66.8	5.5 3.5	6.2 6.1	5.1 4.5	6-1	5.6
4	Γemp °C	24.0 24.4	243 240	24.0 243	243 24-1	4.24.4 24.4	26.0 25.3	25.5	}
· T	Н	79 7.5	77 7.8	75 78	77 7.9	8.0 8.3	7.6 8.1	7.7	
	alkalinity		4	tekind				101	
	salinity			Y				22	}
[ammonia						:	40.20]
	conductivity							30200	I

Form #: 31 Effective: September 2002

Client	CDR	Site 117 - C	Lab#_302316
H ₂ 0	20 900 Secresalt	Sample Date 8.23 0 2	Species Info ABS if 020904 (49 hrs
Start Date	9.4.02 1700	End Date	10-2-02
Test Condi	tions 20/rep. 5	reps, 175 ml set + 675, 1	1,0
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	

	0	1	3	6	8	10	13
Day	Wed	Thurs	Sat	TJES	Thurs	Sint	TUES
Date	9/4	9/5	9/7	9/10	17/12	9/14	9/17
rep	d	ં	<u>a</u>	b		a	a
DO	6.2	5.4 5.3	6.2 6.2	5.7 5.4	6240	1.0 61	6.0 5.9
Temp °C	25.0	25.3 24.	25.2 24.8	26.0 25.2	240 24.3	240 24.0	24.5 24.0
рН	7-6	7.9 8.0	8.00 8.01	7.97 7.44	7.8 7.6	80 812	8.0 7.9
alkalinity	173			<u> </u>			
salinity	ኋጔ		,				
ammonia		* see control	nok				
conductivity	30,300	βM					

	15	17	20	22	24	27	28
Day	Thurs	Sut	Tues	Thurs	Sat	Tues,	Wed
Date	9/19	1/21	9/24	9/26	9/28	1/01	10/2
rep	<u>ل</u>	Ь	d	d	e	Q	C
DO	5.85.8	5,9 6.0	68 67	2657	6.4 40	5.9 5.7	6.1
Temp °C	24.5 24.1	245 24.6	25.624,6	245 24.3	24,1 24.1	24.0 24.0	23.7
ρН	7.07.9	8.0 8.0	7,9:7.9	79 80	8.1 8.3	79 80	8,0
alkalinity	.8	•	,			<u> </u>	107
salinity							24
ammonia							10.2E
conductivity							33200

Form #: 31 Effective: September 2002

Client	COR	Site TC-C	Lab# 302315
H ₂ 0	20 % sea sout	Sample Date 8 23 02	Species Info ABS LP 020701 (448 hrs)
Start Date	9.4.02 1700	End Date	10-2-02
Test Condit	ions 20/12p, 5	reps, 175 mi sed + 675 ml	

	0	1	3	6	8	10 ,	13
Day	Wed	Thurs	Sch	Tues	Thurs	Sat	Tues
Date	9/4	9/5-	9/7	9:10	9/12	9/14	9/17
rep	6	لا	, 6	Fe	a	_ C	d
DO	6.3	5.5 24.09	5.8 5.9	7.5 5.5	5.9 5.7	6.8 6.0	6.3 6.4
Temp °C	25.0	25.3 5.5 2	24.8 25.0	24.8 24.7	25.0 24.0	24.0 240	25.4 24.0
pН	8.0	1.7 7.8	8.1 8.1	7.90 742	8.04 7.96	8.1 8.2	8.0 8.0
alkalinity	155						
salinity	23		1				
ammonia	1.43	# see control	note				
conductivity	29900	ക്ഷ				-	

	15	17	20	22	24	27	28
Day	Thurs	Sut	Tues	Thurs	Sat	Tues.	Wed
Date	9/19	9/21	9/24	9/26	4/28	10/1	10/2
rep	b	C	e	ď	e	٦	e
DO	5.9 5.9	6,0 60	7.0 7.0	5.9 518	6.1 5-8	12.4 6.5	5.7
Temp °C	24.2 24:0	25.0 24.8	25,0 24,4	24.2 28.0	24. 24.0	14% 24.0	35.8
pΗ	8.1 8.0	8.2 811	8.0 8.0	7.9 7.9	7.4 8.2	8.0 8 "	7.4
alkalinity		•					118
salinity							35
ammonia							40.20
conductivity							31900

Client	CDR	Site	CR-C	Lab#_302314
H ₂ 0	20% seasont	Sample Date	8 23 02	Lab # 302314 Species Info ABS LP 020904 (c/1846)
Start Date	9.4.02 1700		End Date	10-2-02
Test Condi	tions 20/rep. 5.	eps, 175ml sed	1+675, d Hou	

	0	1	3	6	8	10	13
Day	Wed	Thurs	Sat	Tues	Thurs	Sat.	Tues
Date	9/4	9/5	9/7	9/10	9/12	9/14	9/17
rep	ď	. 6	U	Ь	d	a	C
DO	5.7	5.5 5.5	5.9 5.8	6.0 7.4	5.9 5.9	4.9 60	5.3 5.8
Temp °C	25.0	25.8 24.0	24.9 25.4	25.0 24.6	24.2 240	240 24.4	24.6 24.0
pН	7.7		7.84 7.93	7.88 7.87	7.8 7.9	7.5 8.	75 7.8
alkalinity	90				<u> </u>		· · · · · · · · · · · · · · · · · · ·
salinity	a5						
ammonia	<.150	* see contro	1 nate				
conductivity	31200	BM	•	•			

	15	17	20	22	24	27	28	Ì
Day	Thurs	Sut	Tues	Thurs	51t,	Tues	Wed	
Date		9/21	9/24	9/26	9/28	10/1	10/2	l
rep	erso d	a	6-1 b	d	a		e	36185
DO 6	40 4	11 5 B	3.8 60	5.3 5.2	0.3 61	5.3 5.3	6	5.4
Temp °C	240 24.60	24.7 240	242 24-1	244 241	24.0 24.2	25,4 25,1	25.5	T
рН	7.8   7.9	7.0 7.7	7-2 7.4	73 7.5	7.9 8.3	7.7 8,0	7.6	
alkalinity			EEUD		- <del></del>		79	
salinity							22	
ammonia						:	40.60	
conductivity							29000	

Appendix 6. Total Number of Animals Surviving, Adult Sex Ratios, Dry Weight Determinations of Adults, and Numbers of Juveniles Found, Per Test Container

Page # Form #: 31c Effective December 2002

Lab # Oven temp (°C)		ontrol	—— Dryin	g time (hr)	24		Leptocheirus age	19-30 (
								for clai
Replicate	#	Leptocheirus & T		Tare(a)	Weight (mg)		Mean weight	(hma)
1 (a)	51	1.0445		0307	13.8	21	.6.6	0.94
2 (6)	53	1.0731		581	15.0	16	.9.4	
3 (e)	53	1.0625		741	184	19	9.7	0.97
4 (8)	54	1.0646		<u>515</u>	/3/	طا	. 8.2	0.82
5 (e)	55	1,0559	1.0	474	85	15	\$ 5-7.57	0.57
						~~		
				<del></del>		<b>8</b> 7%	<b>V</b> - 0.79	
						<u> </u>		
					NOTES			
					HOTES			
Juven	niles		57	\$				
q-2	_	a	6	15				
b- 3		b	<u> </u>	9				
c - 50		Ć,	9	10				
d-20		λ	5	11	·			
e- 4		ė	12	3				
	-							
		<del> </del>				<u> </u>	<del></del>	· · · · · · · · · · · · · · · · · · ·
	,						····	
			<del> = ==</del>					· · · · · · · · · · · · · · · · · · ·
				<del></del>		<del></del>		·
		····	<del></del>		<del></del>	<del></del>	<del></del>	<del></del>

Page # Form # 31c Effective December 2002

Lab # 302323 45-C

Oven temp (°C) 99 Drying time (hr) 24 Leptocheirus age 29-30 d.

Replicate	#	Leptocheirus & Tare	(a) Tare (a) 1.05 78	Weight (mg)	Survivor#	Mean weight	ma
q	46	1.0662	1.0578	84	- 11	.7.6	] (
<u>b</u>	47	1.0587	1.0544	4.3	8	.5:4	j
C	48	1.04 79	1.0357	12.8	17	.75	]
d	49	1.0660	1.0589	7.1	طا	. 4.4	]
e	50	1,0700	1.0607	9.3	19	,49	
					5		
					(71%)	X = 0.60 ma	D
							ľ

Juveniles		8	1		
9-4	a	4	7		
b- 9	b	1 3	5		
c- Ø	C	9	8		
d - 1	d	ìo	6		
e- 4	e	9	10	 	
·····		<del></del>			<del></del>

Page #: Form #: 31c Effective: December 2002

Lab#	302	322	<u>15</u> -C			
Oven temp (°C)	99		Drying time (hr)	24	Leptocheirus age	29-30 d.

Replicate	#	Leptocheirus & Tare	A) Tare(A)	Weight (mg)	Survivor#	Mean weight	(gry)
a	41	1.0641	1.0530	11./	13	.85	۵′
Ь	42	12646	1.0559	8.7	14	.6.2	
C	43	1.0573	1.0452	121	18	.6.7	
d	44	1.0670	1.0556	11,4	18	.63	
e	45	1.0488	1.0384	10.4	14	マイ	
					){ }		
					(77%)	V= 0.70 m	D

Juveniles		07	] 9	
Q- 11	A.	5_	8	
<u> </u>	h	6	8	
<u> </u>	C	8	10	
<u>d</u> - 10	d	<u> </u>	13	
e-2	e	7_	7	
		•		

Page #: Form #: 31c

Effective: December 2002

Lab#	302321	<u>7</u> -C		
Oven temp (°C)	99	Drying time (hr) 24	Leptocheirus age	29-300

Replicate	#	Leptocheirus & Tare	A Tare(A)	Weight (mg)		Mean weight	(mg)
a	36	1.0482	1,0420	6.2	智性16	.3,9	, ús
b	37	1,0420	1.0350	7.0	12	.5.8	
C	38	1.0433	1.0392	4.1	10	.41	
d	39	1.0522	1.0458	6.4	13	4.9	l
	40		1.0540	1.5	\$255	.30	
					<b></b>		
					(56%)	I=0.43 M	h)
							+

8	1 9		
a 7	9		
b 5	7		
c 4	6		
d ġ	5		
l 3	12		
	A 7 b 5 c 4 d 8 e 3	b 5 7 c 4 6 d 8 5	b 5 7 c 4 6 d 8 5

Page #: Form #: 31c Effective: December 2002

Lab#	302320	6-C			
Oven temp (°C)	99	Drying time (hr)	24	Leptocheirus age	29-30 d

Replicate	#	Leptocheirus & Tare		Weight (mg)	Survivor#	Mean weight	(ma)
a	31	1.0561	1.0482	7.9	13	.6.1	•
5	32	1.0605	1.0523	82	16	,5.1	
_	33	1:0547	1.0502	4.5	7	.6.4	
d	34	1.0354	1.0340	1.4		.14	
e	35	1-0575	1.0501	7.4	11	.6.7	
					3		L
					(48%)	$\bar{X} = 0.51  \text{mg}$	

Iveniles	8	9	
q - Ø	R \$	5	
b-05	b 10	10	
<u>c-B</u>	<u>c</u> 3	4	
<u>d</u> -ø	4 1	Q	•
e-0	e 7	4	
			 <del></del>
		·	 
<u> </u>			 

Page # Form # 31c Effective December 2002

` Lab #	302319	<u>5-C</u>			
Oven temp (°C)	99	Drying time (hr)	24	Leptocheirus age	29-30 d

Replicate	#	Leptocheirus & Tare	A) Tare(a)	Weight (mg)	Survivor#	Mean weight	(mg
a	26	1.0514	1.0481	33	9	.3.7	
ط	27	1.0432	1:0362	7.0	17_	.5.8	
C	28	1.0399	1.0369	30	9	.33	
d	29	1.0424	1.0398	26	8	.33	
e	30	1.0509	1.0432	7.7	16	. 4.8	
					(54%)	X=0.42 M	
							P
							1

Jueniles	07	1 9	
9-0	a b	3	
b-8	b 4	8	
c- 0	e lo	3	
d-1	1 2	6	
e-5	e 6	10	
•			
<del> </del>			

Page #: Form #: 31c

Effective: December 2002

Lab # 302318  $\Omega$ - $\Omega$ Oven temp (°C) 99 Drying time (hr) 24 Leptocheirus age 39-304.

Replicate	#	Leptocheirus & Tare	(a) Tare(a)	Weight (mg)	Survivor#	Mean weight	(mg)
9	21	1.0578	1.0506	7.2	10	.7.2	٥
b	22	1.0396	1.0333	la3	12	.53	
C	23	1.0503	1,0391	11.2	19	.7.0	
d	24	1.0561	1.0502	59	12	.49	
ė	25	1.04 69	1.0388	8.1	13	.6.2	
					13%	X=0.61 mg	Λ
						<b>—</b>	ľ
					-		

Juveniles a-0	8	7	
a-0	a 7	3	
h- Ø	6 5	7	
c-Ø	c in	lo	
d-0	d 5	4	
e- Ø	e 7	6	
		· · · · · · · · · · · · · · · · · · ·	
		<u> </u>	

Page # Form # 31c Effective December 2002

Lab#	$302317$ $\chi$	7-C			
Oven temp (°C)	99	Drying time (hr)	24	Leptocheirus age	19-300

Replicate	#	Leptocheirus & Tare	(4) Tare (4)	Weight (mg)	Survivor#	Mean weight	(mg)
a	16	1,0613	1.0534	7.9	14	.5.6	]
Ь	17	1.0461	1.0389	7.2	13	.4.0	]
C	18	1.0464	1.0422	4,2	11	.38	j
<u>d</u>	19	1.0493	1.0444	49	_15	,33	]
e	20	1.0404	1.0340	6.4	10	.6.4	
		'					
					48%	X = 0.40 m	4
							$\boldsymbol{\mathcal{H}}$

Juveniles	<i>♂</i>	1 7		
<u>e</u> _ Ø	a b	8		
5-8	<u>b 10</u>	8		
c- Ø	c 4	17		
<u>d-8</u>	d 6	a		
e- Ø	e 6	14		
		·		
			···	
				·
-			<del>-</del>	
		······································		

Page #: Form #: 31c

Effective: December 2002

Lab#	302316	<u>H7</u> -C			
Oven temp (°C)	99	Drying time (hr)	24	_Leptocheirus age	29-300

Replicate	#	Leptocheirus & Tare		Weight (mg)	Survivor#	Mean weight	[mg)
q	11	1.0446	1.0389	<b>\$5.7</b>	13	.44	] `
<u> </u>	12	1.0523	1.0452	7.1	15	.4.7	
C	13	1.0522	1.0459	63	15	.42	]
d	14	1.0561	1,0473	8.හ	14	.63	
е_	15	1.0458	1.0380	7,8	23	.3.4	
							ļ
					(80%)8	=0.46 mg	
							]

Juveniles	07	i g		
4- 0	a 3	10		
b- Ø	6 8	7		
c- 0	c s	10		
<u>d-</u> 1	d 5	9		
<u>e-0</u>	e 10	13.		
		·		
				-
<del></del>				
			····	

Page #: Form #: 31c Effective: December 2002

Lab#	302315	<u> 7C-</u> C	
Oven temp (°C)	99	Drying time (hr) 24	Leptocheirus age <u>29 - 30 d</u>

Replicate	#	Leptocheirus & Tare	(a) Tare(a)	Weight (mg)	Survivor#	Mean weight	(mg)
а	6	1.0698	1,0643	5,5	13	4.2	
Ь	7	1.0641	1.0529	11.2	ط۱	.70	
C	8	1.0567	1.0450	11.7	17	.6.9	Ì
d	9	1.0531	1.0410	12.1	19	.6.4	
e	10	1,0499	1.0392	10.7	15	7.1	
			-				
				()	80% Y	X=0.63m	2

Jurniles	<i>5</i>	1 2		
a - 15 0	<u>1</u> 4	q'		
b- Hb 2	b 8	8		
e- 14 0	c 8	9	·	
d- 19 0	<u>d</u> 5	14		
e- 15 0	e 9	b		
<b>一</b>	1.4			
HLI Wrong number	s recorded first	line.		
1803	<u> </u>			
		·		
				<del></del>

Page #
Form # 31c

Effective December 2002 ce-c 302314 ` Lab # Leptocheirus age 29-30 1. Drying time (hr) 24 Oven temp (°C) Leptocheirus & Tare (a) Tare(A) Weight (mg) Survivor # Mean weight Replicate 7.0451 1.0451 Ø Ø a 1.05.30 8.7 2 13 6 3 8 1.0489 1.0519 30 1.0455 1.0564 109 19 1.0532 **NOTES** Juvenile counts: 12 Wrong numbers recorded first dime.

# B.2 SKIDAWAY INSTITUTE OF OCEANOGRAPHY (SURFACE SEDIMENT AND INDIGENOUS GRASS SHRIMP)

## FINAL REPORT

Mortality, Ovary Formation, Embryo Production, Embryo Hatching and DNA Strand Damage in Grass Shrimp (Palaemonetes pugio) Exposed to Sediments from Sites in Southeastern Georgia. Embryo Hatching and DNA Strand Damage in Grass Shrimp Embryo Collected from Several Sites in Southeastern Georgia.

Richard F. Lee Skidaway Institute of Oceanography 10 Ocean Science Circle Savannah, GA 31411

Telephone. 912-5982494 FAX. 912-5982310 E-Mail

### INTRODUCTION

In the present study juvenile grass shrimp (*Palaemonetes pugio*) were exposed to test sediments provided by Curt Rose and to reference sediments from the Skidaway River for approximately 2 months. The following changes occur when grass shrimp are held in aquarium with test sediments: (1)juveniles grow into adults: (2) adult females produce large mature ovaries: (3) eggs are produced and fertilized; (3) embryos develop and hatch into the free living zoea stage. The developing embryos, enclosed in eggs sacs, are attached externally to the abdomen of the female. Embryos develop within the egg sac for approximately two weeks (at 27°C) after which the zoea emerge. The following data were collected: (1) mortality during the 2 months of the study; (2) per cent of females which formed mature ovaries; (3) per cent of females which produced embryos; (4) per cent of embryos which hatched into zoea; (5) amount of DNA strand damage (DNA tail moment) in late stage embryos.

### **MATERIALS AND METHODS**

## Sediment exposure

Three groups (n=3) with each group consisting of 20 juvenile grass shrimp were exposed to test sediments (1000g) in aquaria with 20 liters of estuarine water kept at 27°C (salinity 28ppt). Grass shrimp were fed *Artemia* and kept under 12hour light/12 hour dark regime. Every 5 days the following parameters were determined: (a) number of dead grass shrimp; (b) number of females with mature ovaries; (c) number of females with attached embryos. After embryos reached stage 8 they were removed by a cut at the stem attaching them to females. Forty eight embryos were transferred to two 24 well polystyrene plates with each well containing 1.2ml of estuarine water and 1 embryo was placed in each well. Embryos were collected from one female from each sediment exposure (n=3).. Culture plates were kept in the dark at 27°C and per cent of embryos hatching out from each female was determined. Hatching generally was completed within 48 hours after transfer to the culture plates. Embryos from stage 7 were used to asses DNA strand damage, i.e. comet assay (see below for procedures).

Hatching Tests and DNA Strand Damage on Embryos from Grass Shrimp Collected at Field Sites

Grass shrimp with embryos were collected with dip nets in October 21, 2002 from a number of sites, including two sites at the LCP canal, Crescent River (Sapelo Sound), Troop Creek (Brunswick area) and Skidaway River (reference site). Hatching rates (see above) and DNA strand damage (Comet assay – see below) were determined with embryos taken from 3 different females at each collection site.

## Single-Cell Electrophoresis(SCG)Assays for DNA Strand Damage

All chemicals were purchased from Sigma or Fisher Scientific. The procedures for the SCG asay are described by Singh et al. (1988) with modifications for marine animals by (Steinert et al., 1998). The procedures described by Steinert et al.(1998) were used along with a few modifications for grass shrimp embryos (Lee et al., 2000). Prior to the assay, agarose-coated microscope slides were made by inserting slides into a Coplin jar containing 1% normal melting-

point agarose diluted in TAE solutions (0.04 M Tris-acetate and 1 mM EDTA), wiping the rear side of slide with tissue and then drying in air. Ten to 20 embryos from a single female were used and pooled for each assay. Embryos were ground with a glass homogenizer and left to stand for 5 min to allow heavy materials, e.g. embryonic coats, in the extract to settle. The supernatant was transferred to a microcentrifuge tube and centrifuged for 5 min (1000 x g). The supernatant was discarded, the precipitate was suspended using 50 µl of 0.65% low meltingpoint agarose diluted in Kenny's salt solution (0.4M NACL, 9mM KCL, 0.7 mM K₂HPO₄, 2mM NaHCO₃) then added onto the prepared agarose-coated slide, covered with a cover slip, and spread. After gel solidification (3min at 4°C for 2 hours), slides were soaked three times for 2 min each in cold distilled water in a chilled Coplin iar to remove salt. unwinding, slides were transferred into chambers filled with electrophoresis and unwinding buffer (0.1N NaOH and 1mM EDTA, >pH13). After standing for 15 min, electrophoresis was carried out for 20 min at 25 V and 300 mA. Slides were soaked three times for 2 min each in 0.4M TRIS (pH 7.5) in a chilled Coplin jar to neutralize the gels, followed by transfer to ethanol in a Coplin jar for 5 min. The slides were then placed on a paper towel. Preparations were stained with 15µl of the DNA stain, ethidium bromide (20µg/ml).

The amount of DNA strand damage was determined in cells using a Nikon Eclipse E400 inverted fluorescent microscope (x200 magnification). Fifty randomly selected cells per slide were used for calculation of DNA tail moments (amount of DNA in tail times tail length) The cell images are projected onto a high-sensitivity CCD camera. The computerized image-analysis system (Komet Version 4.01, Kinetic Imaging Ltd) was used to determine DNA tail moments.

## Quality assurance

At the beginning and end of the study positive control experiments were carried out with late stages embryos using  $1\mu M$ ,  $2\mu M$ ,  $5\mu M$  and  $10\mu M$  2,4-nitroquinoline-4-oxide. This is a known DNA damaging agent and previously shown to effect grass shrimp embryo hatching (Lee et al., 2000). A dose-response curve was prepared where embryo hatching at each concentration was determined. The dose-response curves were within one standard deviation of previously prepared dose-response curves. In addition, we included during the study a reference sediment from the Skidaway River estuary which previously has been shown to have very low effects on the reproduction, embryo production and embryo hatching tests compared to controls. Controls were grass shrimp reproducing without sediment in the aquarium.

### RESULTS

Juvenile grass shrimp exposed to test and reference sediments were allowed to grow into adults and reproduce. The reference sediments from the Skidaway had good ovary formation, good production of embryos, high hatching rates and very low DNA damage. Grass shrimp exposed to sediments with low levels of genotoxicants generally have DNA tail moments ranging from 1.2 to 3.0. Grass shrimp exposed to sediments from 5-C, 6-C, 7-C had DNA tail moments higher than this normal range. It should be noted that DNA tail moments of 10 to 20 were common in embryos collected from the LCP canal before and during remediation of this site. There was high mortality of grass shrimp exposed to sediments from 15-C, 6-C, H7-C. Grass shrimp from K7-C did not form ovaries and thus there was no reproduction of grass shrimp exposed to

sediment from this station. Embryo production was low for grass shrimp exposed to sediments from stations H7-C, K7-C, D-C, 7-C. and 45-C. Hatching rates were signficantly lower for embryos from shrimp exposed to sediments from stations 6-C, 5-C and H7-C. There was an odor of fuel oil or some other petroleum product in sediments from stations 6-C and K7-C. Grass shrimp zoea which hatched from shrimp exposed to sediment from station 6C were very weak swimmers. The embryos from shrimp exposed to sediments from station 5C had unusally large eyes and possibly deformed eyes. The water above sediment from 45-C was very turbid, even though the water was changed several times during the course of the tests. It seems likely that the low amount of reproduction in grass shrimp exposed to this sediment may have been in part due to this high turbidity since the grass shrimp uses sunlight as a cue for reproduction (they will not reproduce in the dark). Much of the sediments from 45-C contained very fine clay sized particles which remained suspended in the water during the tests. There was very little light penetration in the aquaria with sediments from 45-C. Only sediments from station 45-C showed this high level of resuspension.

### REFERENCES

Lee, R., G.B. Kim, K.A. Maruya, S.A. Steinert and Y. Oshima. 2000. DNA strand breaks (comet assay) and embryo development effects in grass shrimp (*Palaemonetes pugio*) embryos after exposure to genotoxicants. Mar. Environ. Res. 50: 553-557.

Singh.N.P., M.T. McCoy, R.R. Tice and E.L. Schneider. 1988. A simple technique for the quantitation of low levels of DNA damage in individual cells. Experimental Cell Research 175: 184-191.

Steinert, SA., R. Streib-Montee, J.M. Leather and D.B. Chadwick. 199. DNA damage in mussels at sites in San Diego Bay. Mutation Res. 399: 65-85.

Table 1 - Data for Mortality, Reproduction, Embryo Production, Embryo Hatching and DNA
Damage of Grass Shrimp Exposed to Test Sediments
Study began on Sept 2,2002 and ended on December 10, 2002

Sample ID	Mortality (% mortality)	Reproduction ( % of females forming mature ovaries)	Embryo Production (% of females producing embryos)		
CR-C	20,25,35	80,63,75	60,50,50		
TC-C	5,15,20	75,90,89	63,80,89		
H7-C	85,65,90	50,25,33	25,0,0		
K7-C	40,65,50	0,0,0	0,0,0		
D-C	55,20,25	60,50,60	20,25,40		
5-C	35,45,60	50,40,29	33,17,14		
6-C	80.90,80	50,17,29	33,0,14		
7-C	65,80,55	40,50,25	20,33,0		
15-C	5,20,15	90,100,88	80,78,63		
45-C	40,65,75	33,50,33	17,25,33		
Reference Sediment (Skidaway River)	10,20,10	83,100,71	83,57,43		

Table 1, cont.

Sample ID	Embryo Hatching Test (% hatching into zoea stage)	DNA Strand Damage Test - Comet Assay (DNA tail moment)
CR-C	88,92,83	1.7,2.4,2.6
TC-C	96,85,90	2.4,1.9,2.1
H7-C	70,67,58	2.9,4.7,3.7
K7-C	no embryos	no embryos
D-C	92,83,88	2.2,1.7,3.0
5-C	70,65,48	3.7,5.2,3.9
6-C	46,65,40	3.8,2.9,4.1
7-C	88,67,75	3.2,4.9,3.5
15-C	92,81,94	1.5,2.7,2.2
45-C	79,83,90	2.3,1.9,2.6
Reference Sediment (Skidaway River)	94,85,96	1.3,2.4,2.9

Table 2 - Means and Standard Deviation ofr Mortality, Reproduction, Embryo Production, Embryo Hatching and DNA Damage of Grass Shrimp Exposed to Test Sediments

Sample ID Mortality (% mortality of grass shrimp during 2 months in test sediments)		Reproduction (% of females produced mature	which	Embryo Development (% of females which produced embryos)		
	<u>Mean</u>	S.D. (n=3)	Mean	S.D. (n=3)	Mean	S.D. (n=3)
CR-C	27	8	73	9	53	6
TC-C	13	8	85	8	77	13
H7-C	80	14	36	13	8	14
K7-C	52	13	no mature ovaries		ries no embryos produce	
D-C	33	19	57	6	28	10
5-C	43	13	40	11	21	10
6-C	85	6	32	17	16	17
7-C	77	11	38	13	18	17
15-C	13	8	. 93	6	74	9
45-C	60	18	39	10	25	8
Reference Sediment	13	6	85	15	61	20

Table 2, cont.

Sediment ID	Embryo Hatching Test (% hatching into zoea stage)		DNA Strand Damage Test - Comet Assay (DNA tail moment)		
	<u>Mean</u>	S.D. (n=3)	Mean	S.D.(n=3)	
CR-C	88	5	2.2	0.5	
TC-C	90	6	2.1	0.3	
H7-C	65	6	3.8	0.9	
K7-C	no embryos		no embryos		
D-C	88	5	2.3	0.7	
5-C	61	12	4.3	0.8	
6-C	50	13	3.6	0.6	
7-C	77	11	3.9	0.9	
15-C	89	7	2.1	0.6	
45-C	84	6	2.3	0.4	
Reference Sediment	92	6	2.2	0.8	

Table 3 - Hatching Tests and DNA Strand Damage Tests (Comet Assay) on Embryos from Grass Shrimp Collected at Various Sites in Coastal Georgia

Hatching Test Collection Site (% hatching into zoea stage)			DNA Strand Damage Test (Comet Assay) (DNA tail moment)			
		<u>Mean</u> ১ <u>৯২</u>	S.D.(n=3)		<u>Mean</u>	S.D.(n=3)
Canal at LCP site (rock rubble station)	46 53 63,35,26	42 54		5.7,4.6,3.3	4.6	1.1
LCP canal where it empties into Purvis Creek (entrance to Purvis Creek station)	79,88,90	86	6	3.9,2.9,3.1	3.3	0.5
Crescent River (Sapelo Sound area)	90,98,85	91	7	1.5,3.1,2.0	2.2	0.8
Troop Creek (Brunswick area)	88.94,83	88	6	2.2,3.3,1.9	2.5	0.7
Skidaway River (reference site)	90,94,81	89	6	2.4,1.3,2.7	2.1	0.7

matrix =

gass shring

embryos

(not sediment sym)

These reed

Sample

IDs.

Pid we thin

Linkert ?

dutu?

To rewart

To reward

To rewart

To reward

To rewart

Table A - Hatching Rates and DNA Strand Damage from Grass Shrimp Embryos Collected in 1997, 1998 and 1999 from LCP Site

### Collection # 1

Date of collection - October, 1997 Collection site - pond with very high concentration of Hg at LCP site

No evidence of grass shrimp reproduction in grass shrimp collected at this site

Collection site - canal leading away from LCP site into Purvis Creek

Hatching Rate (% of embryos hatching into zoea stageJ)

DNA Strand Damage (DNA tail moment

35,63, 29

3.7, 5.9, 8.8

## Collection # 2

Date of collection - October, 1999

Pond with very high concentration of Hg no longer here. Cleanup of the site has begun

Collection site - canal leading away from LCP site into Purvis Creek, rock rubble site within the canal, grass shrimp collected at mid-tide

Hatching Rate (% of embryos hatching into zoea stage) DNA Strand Damage (DNA tail moment)

4, 31,2

10.5, 15.8, 20.5

# ECOLOGICAL MONITORING INVESTIGATION FOR THE ESTUARY AT THE LCP CHEMICAL SITE IN BRUNSWICK, GEORGIA

-- 2003 Monitoring Investigation --

# Volume I

# Prepared for:

Honeywell International Inc. 101 Columbia Road Morristown, NJ 07962-1139

# Prepared by:

CDR Environmental Specialists, Inc. Suite 1103 6001 N. Ocean Drive Hollywood, FL 33019

<u>and</u>

GeoSyntec Consultants Suite 200 1100 Lake Hearn Drive Atlanta, GA 30342

June 2004

## **SUMMARY**

An ecological monitoring investigation of the estuary at the LCP Site in Brunswick, Georgia, was conducted during October of 2003. The investigation was performed according to an experimental design that was predicated on the design employed for a baseline ecological risk assessment (BERA) conducted for the estuary in 2000 and a subsequent monitoring investigation in 2002. Four chemicals of potential concern (COPC) – mercury, Aroclor 1268, lead, and polynuclear aromatic hydrocarbons (PAHs) – were addressed.

### COPC in Surface Water

Surface water of Purvis Creek was characterized by concentrations of **total mercury** that ranged from 33.3 to 48.2 ng/L, as contrasted to levels ranging from 1.24 to 2.10 ng/L at two reference locations in Troup Creek and the Crescent River. Values of total mercury in Purvis Creek were marginally higher than the generic chronic ecological screening value (ESV) of 25 ng/L established for mercury by Region 4 of the U. S. EPA. The percentage of total mercury that was in the form of **methylmercury** ranged from 1.8 to 2.6%. Methylmercury was not detected at the reference locations.

**Aroclor 1268**, for which there is no specific ESV, was detected (1.0 ug/L) only at the mouth of Purvis Creek. Lead was never detected in the study area.

## COPC in Surface Sediment

Surface sediment (0 - 15 cm in depth) in creeks at the LCP site was characterized by concentrations of total mercury that ranged from 0.15 to 80 mg/kg (dry wt). However, preliminary ecological remedial sediment goals (PERSGs) identified by the U. S. EPA for mercury (4 mg/kg for all ecological resources except the federally endangered wood stork, Mycteriaa americana, for which 1 mg/kg was established) were commonly exceeded only in the Main Canal (also termed the LCP Ditch), Eastern Creek (or North-South Tributary), and Marsh Grid. Concentrations of Aroclor 1268 in creek sediment at the site ranged from <0.28 to 33 mg/kg. However, only the 33 mg/kg value, which occurred at one sampling station in the Eastern Creek, exceeded the more stringent of two PERSGs for Aroclor 1268 (150 mg/kg for all ecological resources except the wood stork, for which 24 mg/kg was established). Lead concentrations in creek sediment ranged from 11 to 52 mg/kg, with only sediment from the Eastern Creek routinely exceeding the PERSG for lead (30 mg/kg for all ecological resources including the wood stork). Concentrations of total PAHs in creek sediment ranged from 0 to 11.60 mg/kg, with some sediment in all areas except the Western Stream Complex and mouth of Purvis Creek exceeding the PERSG for total PAHs (0.486 mg/kg for all ecological resources including the wood stork).

Concentrations of all four COPC in **marsh sediment** at the site typically were lower than levels described above for creek sediment. Only **mercury** concentrations recorded near the Eastern Creek exceeded the 4 mg/kg PERSG for mercury, although sediment near the Main Canal and at some stations in the western part of the site additionally exceeded the 1 mg/kg

PERSG. Aroclor 1268 concentrations exceeded the more rigorous 24 mg/kg PERSG at only one station near the Eastern Creek, and, even there, the recorded concentration was just 25 mg/kg. Lead concentrations exceeded the applicable 30 mg/kg PERSG only at the same station near the Eastern Creek. Total PAH levels were greater than the applicable 0.486 mg/kg PERSG at some stations near the Main Canal, Eastern Creek, and western part of the site.

A supplemental study was conducted to document statistically reliable (i. e., accurate and precise) estimates of concentrations of total mercury and Aroclor 1268 in surface sediment of major areas at the site -- the Main Canal, Eastern Creek, and Marsh Grid. This effort, which was based on random sampling in each area, generated the following 80% confidence intervals (CIs) for mean concentrations of the two COPC in the three areas – mercury in Main Canal: 5.50 to 11.70 mg/kg; Aroclor 1268 in Main Canal: 2.59 to 4.35 mg/kg; mercury in Eastern Creek: 9.14 to 24.22 mg/kg; Aroclor 1268 in Eastern Creek: 21.68 to 79.94 mg/kg; mercury in Marsh Grid: 0.36 to 1.50 mg/kg; and Aroclor 1268 in Marsh Grid: 0.61 to 1.57 mg/kg.

## **COPC** in Biota

Body burdens of COPC were determined in whole bodies of several types of biota – fiddler crabs (Uca spp.), mummichogs (Fundulus heteroclitus), blue crabs (Callinectes sapidus), and several species of sciaenid fishes that included silver perch (Bairdiella chrysoura) and red drum (Sciaenops ocellatus). Concentrations of total mercury in fiddler crabs collected from the southern part of the LCP Site (mean mercury concentrations ranging from 0.18 to 0.82 mg/kg; dry wt) were typically an order-of-magnitude higher than mean concentration of mercury in fiddler crabs from the Troup Creek reference location (0.034 mg/kg). A difference of similar magnitude occurred for mummichogs obtained from the Main Canal (mean mercury concentration of 0.54 mg/kg), Eastern Creek (0.50 - 0.71 mg/kg), and northern part of the site (0.39 mg/kg) vs. reference fish (0.077 mg/kg). Blue crabs (Callinectes sapidus) from Purvis Creek were characterized by mercury body burdens (mean concentrations ranging from 1.48 to 1.60 mg/kg) that approached two orders-of-magnitude greater than body burdens of crabs from the reference location (0.073 mg/kg). The highest mean concentration of mercury in sciaenid fishes (1.61 mg/kg) occurred in silver perch. Lowest mean concentrations of mercury characterized red drum, (0.67 mg/kg), and black drum, Pogonias cromis (0.61 mg/kg).

Body burdens of **Aroclor 1268** in **fiddler crabs** collected from two sampling stations in the southern part of the site (mean concentrations of Aroclor 1268 ranging from 1.83 to 2.06 mg/kg) were about 2X higher than mean concentration of Aroclor 1268 in fiddler crabs from the Troup Creek reference location (0.99 mg/kg). However, Aroclor 1268 was not detected in fiddler crabs obtained from near the mouth of Purvis Creek. **Mummichogs** from all locations evaluated at the site displayed mean concentrations of Aroclor 1268 (1.09 – 7.97 mg/kg) that were as much as an order-of-magnitude greater than observed in reference fish (0.45 mg/kg). **Blue crabs** from Purvis Creek were characterized by body burdens of Aroclor 1268 (mean concentrations ranging from 2.76 to 3.60 mg/kg) that approached an order-of-magnitude greater than body burdens of crabs from the reference location (0.43 mg/kg). The

highest mean body burden of Aroclor 1268 in sciaenid fishes occurred in silver perch (3.83 mg/kg), whereas the lowest concentration was exhibited by red drum (1.02 mg/kg).

Body burden of lead in fiddler crabs collected from the AB seepage area at the site (mean lead concentration of 32.86 mg/kg) was dramatically higher than mean concentration in reference fiddler crabs (0.41 mg/kg). In addition, mean lead concentration in fiddler crabs from near the Main Canal (1.55 mg/kg) was about 3X higher than in reference organisms (0.41 mg/kg); whereas mean lead level in fiddler crabs from near the mouth of Purvis Creek (0.56 mg/kg) was only marginally higher than in reference organisms. The mean concentration of lead in **mummichogs** from the northern part of the site was 1.27 mg/kg, as contrasted to a reference value of 0.54 mg/kg. Lead was seldom detected **in blue crabs** or **sciaenid fishes** from the study area.

### Chronic Toxicity of Surface Sediment to Biota

In a laboratory-based study, **amphipods** exposed for 28 days to creek surface sediment collected from eight sampling stations at the LCP Site exhibited impaired **survival** (from a statistical perspective) in sediment from six of these stations – sediment from the Main Canal, two stations in the Eastern Creek, a station in the Western part of the site, and two stations in the Marsh Grid – vs. survival of reference organisms (i. e., organisms exposed to sediment from either Troup Creek or the Crescent River). Conversely, amphipods exposed to sediment from the Western Creek Complex and from a second station in the western part of the site were characterized by survival that was statistically indistinguishable from survival of at least one cohort of reference organisms. **Growth** (weight) of organisms exposed to sediment from all eight stations was significantly less than growth of reference organisms. **Reproductive response** of organisms at all site stations and reference locations was statistically similar.

Grass shrimp exposed in the laboratory for 2 months to creek surface sediment from the same eight stations at the site were characterized by survival that was generally higher than survival of amphipods. Indeed, only survival for one station in the Marsh Grid and a station in the Western Creek Complex was significantly lower than survival of reference organisms. Percent of surviving female grass shrimp forming mature ovaries generated results that were similar to survival of shrimp except that just shrimp exposed to sediment from the station in the Marsh Grid displayed ovarian formation that was statistically distinguishable from that of reference organisms. Percent of surviving female grass shrimp producing embryos was impaired only in sediment from one station in the Marsh Grid, and percent of embryos hatching was impaired in sediment from the same station. Assessment of DNA strand damage in embryos (which is a reversible condition) generated information that is largely redundant to information generated by the other measurement endpoints.

Coefficients of determination  $(r^2)$  derived from paired data addressing concentrations of COPC in creek surface sediment vs. toxicity of sediment to amphipods and grass shrimp indicate that COPC played only a limited role in sediment toxicity. In the case of the **chemical-toxicological relationships** for amphipod toxicity, greatest correlation occurred between concentration of lead in sediment and survival of organisms  $(r^2 = 0.57)$ ,

concentration of total PAHs and survival ( $r^2 = 0.61$ ), as well as concentration of lead and growth of organisms ( $r^2 = 0.63$ ). However, even this last correlation value merely implies that only 63% of the variation in amphipod growth can be explained in terms of variation in concentration of lead in sediment. The relationships ( $r^2$  values) between concentrations of COPC in sediment and grass shrimp toxicity are all unremarkable. These findings are supported by the U. S. EPA in its conclusion that many inorganic chemicals (e. g., arsenic, cadmium, chromium, copper, and silver) are present in site sediment at concentrations (or detection limits) exceeding generic ecological effects values (EEVs) established by Region 4 of the U. S. EPA.

## Toxicological Condition of Indigenous Grass Shrimp

**Percent of embryos hatching** (mean hatching success) from indigenous female grass shrimp collected from a sampling station located mid-way in the Main Canal at the LCP Site and from a station situated in the Main Canal at its confluence with Purvis Creek was statistically similar to hatching of reference and control shrimp. **DNA strand damage** in embryos from female shrimp obtained from these two site stations was statistically indistinguishable from damage in reference and control organisms.

## Time-series Differences in Toxicological Condition of Indigenous Grass Shrimp

Percent of embryos hatching (mean hatching success) from indigenous female grass shrimp collected from a sampling station located mid-way in the Main Canal at the LCP Site in 1999 (about 3 months after removal activities in the estuary at the site were completed), 2002, and in this investigation (2003) increased by over 7-fold (from 12 to 87%) between 1999 and 2003, an increase that is statistically significant and, also, reflective of baseline conditions for the site. Hatching success of grass shrimp obtained from the Main Canal at its confluence with Purvis Creek in 1997 (about 3 months before removal activities were initiated), 2002, and in this investigation (2003) increased from 42% to 85-86%, also a statistically significant increase and reflective of baseline conditions for the site.

DNA strand damage of embryos from the Main Canal, as measured by DNA tail moment, significantly decreased from 15.6 in 1999 to 2.6 in 2003. However, a decrease in DNA tail moment of embryos from the Main Canal at its confluence with Purvis Creek from 1997 (a 6.1 value) to 2003 (2.4) is not statistically significant. DNA damage recorded for both locations in 2003 appears to be approaching baseline conditions for the site.

# Time-series Differences in Concentrations of COPC in Environmental Media

Qualitative (i. e., non-statistical) time-series comparisons of concentrations of COPC in environmental media routinely monitored at the LCP Site indicate that the highest levels of COPC in environmental media typically occurred in 1995, with substantially decreasing levels recorded thereafter.

In one of the more extreme examples, concentration of total mercury in surface water in the Main Canal at the site was 7,400 ng/L in 1995, decreased dramatically to 170 ng/L in 1996, and decreased again to 14-59 ng/L in 2000 (the last year in which water chemistry was monitored in the Main Canal). Similarly, concentration of total mercury in creek sediment from the Marsh Grid decreased from 330 mg/kg in 1995 to 4.3 - 46 mg/kg in 1996, and to 2.2-22 mg/kg in 2003. Also, concentration of Aroclor 1268 in creek sediment from the Marsh Grid decreased from 910 mg/kg in 1995 to 3.3-21 mg/kg in 1996 and to 0.94-3.5 mg/kg in 2000, appeared to increase in 2002 (6.5 – 92 mg/kg), and decreased again in 2003 (0.79 – 24 mg/kg).

Decreases in concentrations of COPC in environmental media were still occurring in 2003 at a number of locations at the site. These cases were total mercury in creek sediment, marsh sediment, and mummichogs; Aroclor 1268 in creek sediment, marsh sediment, fiddler crabs, mummichogs, and sciaenid fishes; and lead in marsh sediment, fiddler crabs, mummichogs, blue crabs, and most sciaenid fishes. Other cases were observed in 2003 – notably Aroclor 1268 in blue crabs from Purvis Creek and lead in fiddler crabs from the AB seepage area – that clearly merit continued evaluation.

The numerous and dramatic decreases in concentrations of COPC documented in environmental media shortly after 1995, the decreases in concentrations of COPC in some environmental media that occurred in 2003, and the need to further evaluate levels of COPC observed in other environmental media in 2003 collectively constitute a rationale for continued ecological monitoring of the estuary at the LCP Site.

# **TABLE OF CONTENTS (VOLUME I)**

Se	<u>ction</u>	<u>Page</u>
	<u>SUMMARY</u>	i
	<u>LIST OF FIGURES</u>	vii
	<u>LIST OF TABLES</u>	viii
	LIST OF APPENDICES (VOLUME II)	ix
	LIST OF ACRONYMS, ABBREVIATIONS, AND DEFINITIONS	<b>X</b>
1.	INTRODUCTION	1
2.	PROCEDURES	3
3.	RESULTS OF 2003 MONITORING INVESTIGATION AT LCP SITE	4
	3.1 Basic Study	4
	3.1.1 Presence of Chemicals of Potential Concern in Environmental Media 3.1.1.1 Surface Water 3.1.1.2 Surface Sediment a) Creek Habitat b) Marsh Habitat 3.1.1.3 Biota	4 5 5
,	3.1.2 Chronic Toxicity of Creek Surface Sediment to Biota 3.1.2.1 Amphipods 3.1.2.2 Grass Shrimp 3.1.2.3 Chemical and Toxicological Relationships	7 8
	3.1.3 Toxicological Condition of Indigenous Grass Shrimp	9
	3.2 Supplemental Sediment Study	9
4.	COMPARISONS OF HISTORICAL AND CONTEMPORARY ECOLOGICAL CONDITIONS AT LCP SITE	12
	4.1 Toxicological Condition of Indigenous Grass Shrimp	12
	4.2 Concentrations of Chemicals of Potential Concern in Environmental Media	12
5.	REFERENCES	14

# **LIST OF FIGURES (VOLUME I)**

# **Figure**

- 1. Location of LCP Site in Brunswick, Georgia
- 2. Locations of sampling stations for creek surface water and associated biota of estuary at LCP Site
- 3. Locations of sampling stations for creek surface sediment and associated biota of estuary at LCP Site
- 4. Locations of sampling stations for marsh surface sediment and associated biota of estuary at LCP Site

#### **LIST OF TABLES (VOLUME I)**

#### Table

- 1. Basic experimental design for data generation and analysis in investigation of estuary at LCP Site
- 2. General water quality characteristics of creek surface water of estuary at LCP Site
- 3. Chemicals of potential concern (COPC) in creek surface water of estuary at LCP Site
- 4. Physical/chemical characteristics and chemicals of potential concern (COPC) in creek surface sediment of estuary at LCP Site
- 5. Physical/chemical characteristics and chemicals of potential concern (COPC) in marsh surface sediment of estuary at LCP Site
- Chemicals of potential concern (COPC) in whole bodies of biota of estuary at LCP Site
- 7. Statistical analysis of survival, growth, and reproductive response of amphipods (*Leptocheirus plumulosus*) exposed for 28 days to creek surface sediment of estuary at LCP Site
- 8. Statistical analysis of survival, reproduction, and DNA strand damage of grass shrimp (*Palaemonetes pugio*) exposed for 2 months to creek surface sediment of estuary at LCP Site
- Coefficients of determination for relationships between concentrations of chemicals of potential concern (COPC) and toxicity of creek surface sediment of estuary at LCP Site
- 10. Statistical analysis of reproduction and DNA strand damage of indigenous grass shrimp (*Palaemonetes pugio*) collected from estuary at LCP Site
- 11. Statistically based concentrations of total mercury, Aroclor 1268, and general sediment quality variables in surface sediment of major areas of estuary at LCP Site
- 12. Statistical analysis of time-series differences in reproduction and DNA strand damage of indigenous grass shrimp (*Palaemonetes pugio*) collected from estuary at LCP Site
- 13. Qualitative analysis of time-series differences in concentrations of chemicals of potential concern (COPC) in environmental media of estuary at LCP Site

### LIST OF APPENDICES (VOLUME II)

# **Appendix**

# A. <u>SUPPORTING CHEMISTRY INFORMATION FOR ESTUARY AT LCP SITE</u>

- A.1 STL Mobile Laboratory (Most Evaluated Chemicals)
  - A.1.1 Surface Water
  - A.1.2 Surface Sediment
  - A.1.3 Biota
- A.2 Frontier Geosciences (Mercury and Methylmercury in Surface Water)

# B. <u>SUPPORTING TOXICOLOGICAL INFORMATION FOR ESTUARY AT LCP SITE</u>

- B.1 SeaCrest Group (Surface Sediment)
- B.2 Skidaway Institute of Oceanography (Surface Sediment and Indigenous Grass Shrimp)

# LIST OF ACRONYMS, ABBREVIATIONS, AND DEFINITIONS

ANOVA - analysis of variance

ASTM - American Society for Testing and Materials

BERA – baseline ecological risk assessment

CI – confidence interval

COPC - chemical of potential concern

cm - centimeter

CVAFS – cold vapor atomic fluorescence spectrometry

DNA - deoxyribose nucleic acid

EEV - ecological effects value

ESV – ecological screening value

g - gram

kg – kilogram

L – liter

LCP - Linden Chemicals and Plastics

ug – microgram

ug/L - parts per billion

mg - milligram

mg/kg - parts per million

mS/cm - milliSiemens per centimeter

n = sample size (number of samples)

ng/L – parts per trillion

PAH – polynuclear aromatic hydrocarbon

PERSG - preliminary ecological remedial sediment goal

ppt - parts per thousand

 $r^2$  – linear coefficient of determination

RT = regulatory threshold

TOC - total organic carbon

U - undetected

U. S. EPA – U. S. Environmental Protection Agency

#### 1. INTRODUCTION

This report presents the results of the 2003 ecological monitoring investigation of the estuary at the Linden Chemicals and Plastics (LCP) Site in Brunswick, Georgia (Figure 1). The report consists of two volumes. This volume (Volume I) contains the most germane information generated in the investigation. Volume II contains the laboratory reports and raw data that constitute the basis of Volume I.

The 2003 monitoring investigation was conducted according to the same basic experimental design that was employed in a monitoring investigation performed for the estuary in 2002 (CDR Environmental Specialists and GeoSyntec Consultants, 2003a). That earlier investigation, and, in turn, this investigation, reflected modifications of the design of a baseline ecological risk assessment (BERA) conducted for the estuary in 2000 (CDR Environmental Specialists and GeoSyntec Consultants, 2001). These modifications were implemented primarily in response to a critique by Region 4, U. S. Environmental Protection Agency (U. S. EPA, 2001a), of the results of the BERA. The modifications included a focus on the "holistic" Purvis Creek system, as contrasted to individual, isolated sampling stations within the system. This focus resulted in a reduction in the number of sampling stations employed in the 2002 and 2003 investigations, which also represented the natural evolution from the scientific requirements of a BERA to those of a subsequent, routine monitoring investigation.

An additional modification in the 2002 and 2003 monitoring investigations was a strict focus on chemicals of potential concern (COPC) at the LCP Site – mercury, Aroclor 1268, lead, and polynuclear aromatic hydrocarbons (PAHs) – as contrasted to analyses of extensive suites of chemicals in the BERA. Similarly, studies and analyses that did not generate useful information in the BERA were curtailed or eliminated. Consequently, chemical studies of surface water, evaluation of environmental media for mercury species other than total mercury, and use of reference locations were de-emphasized. Toxicological studies of surface water, community studies of indigenous macrobenthos, and normalization of concentrations of COPC in sediment and biota according to various abiotic variables were completely eliminated.

In the 2002 and 2003 monitoring investigations, additional sampling stations were established in western part of the site to better characterize that part of the estuary than occurred in the BERA. The number of sampling stations evaluated for sediment toxicity was also increased from the number evaluated in the BERA to include those stations characterized by the highest concentrations of COPC in the BERA. Measurement endpoints in toxicity tests with "laboratory" (i. e., uncontaminated) grass shrimp (*Palaemonetes pugio*) exposed to sediment obtained from the site included DNA strand damage in embryos, which was not evaluated in the BERA. New studies were also conducted of the condition of grass shrimp indigenous to (collected from) the site. Red drum (*Sciaenops ocellatus*), a target species not collected in the BERA, and other sciaenid fishes, were captured in 2002 and 2003 and evaluated for body burdens of COPC.

Finally, this report presents both statistical and qualitative (i. e., non-statistical) comparisons between historical and contemporary estuarine conditions at the LCP Site. In particular, a statistically rigorous sampling design was employed to estimate concentrations of total mercury and Aroclor 1268 in surface sediment of major areas of the estuary at the site.

#### 2. PROCEDURES

Field activities conducted during the 2003 monitoring investigation of the estuary at the LCP Site occurred during October (usually during the period of October 14 - 17, 2003).

The 2003 monitoring investigation was conducted according to a work plan developed by CDR Environmental Specialists and GeoSyntec Consultants (2003b). The fundamental sampling frame employed in the 2003 monitoring investigation was identical to the sampling frame established for the 2002 investigation. Consequently, the 2003 investigation focused on three general strata at the site: 1) creek surface water (and associated biota); 2) creek surface sediment (and biota); and 3) marsh surface sediment (and biota). The sampling stations occupied in these basic areas and the environmental media sampled are illustrated in, respectively, Figures 2, 3, and 4. (It should be noted that these sampling stations are not sequentially numbered because they are a subset of the more numerous sampling stations initially established in the BERA.) In addition, Troup Creek and the Crescent River were selectively utilized as reference locations.

The basic experimental design of the 2003 monitoring investigation (Table 1) is best reviewed in the context of Figures 2, 3, and 4. In addition to this basic design, a supplemental study based on statistically rigorous protocols was employed to estimate concentrations of total mercury and Aroclor 1268 in surface sediment of the Main Canal (also termed the LCP Ditch), Eastern Creek (or North-South Tributary), and Marsh Grid (where sediment removal actions occurred during 1998 – 1999) in the southern part of the site.

Surface water samples intended for analyses of total mercury and methylmercury were collected by the "clean-hands" technique and analyzed by Frontier Geosciences, located in Seattle, Washington. All other chemical analyses were performed by the STL Laboratory in Mobile, Alabama. Toxicity tests with amphipods (*Leptocheirus plumulosus*) exposed to surface sediment were conducted by The SeaCrest Group, located in Louisville, Colorado. Sediment toxicity tests with grass shrimp were conducted at the Skidaway Institute of Oceanography (Savannah, Georgia) and were supervised by Dr. Richard Lee according to protocols developed by him. Both types of laboratory toxicity tests were conducted with subsamples of the same surface sediment analyzed for COPC. The term "surface sediment," as used in this report, refers to a layer of sediment approximately 0 to 15 cm in depth.

# 3. RESULTS OF 2003 MONITORING INVESTIGATION AT LCP SITE

The 2003 monitoring investigation consisted of a basic study and a supplemental sediment study. In this section of the report, key elements or concepts of the investigation are often identified in **bold print** to facilitate reading of the report.

#### 3.1 Basic Study

The basic study addressed presence of COPC in environmental media, chronic toxicity of surface sediment to biota, and toxicological condition of grass shrimp indigenous to the LCP Site.

# 3.1.1 Presence of Chemicals of Potential Concern in Environmental Media

Surface water, surface sediment, and biota at the LCP Site are sequentially addressed.

#### 3.1.1.1 Surface Water

General water quality characteristics of surface water at the LCP Site, as reflected by conditions at several sampling stations in Purvis Creek, and at the two reference locations were generally similar (Table 2). Water temperature ranged from approximately 23 to 25⁰ C. Salinity, and the related variables of conductivity and total dissolved solids, were typical of estuarine water. However, these values for Troup Creek were substantially lower than values for the other stations. Values of pH ranged from 6.6 to 7.2, and dissolved oxygen concentrations ranged from 6.1 to 7.4 mg/L.

Concentrations of **total mercury** in surface water of Purvis Creek (33.3 – 48.2 ng/L) were an order-of-magnitude higher than levels at the reference locations (1.24 – 2.10 ng/L), and were marginally higher than the generic chronic ecological screening value (ESV) of 25 ng/L established for mercury by Region 4 of the U. S. EPA (Table 3). The percentage of total mercury that was in the form of methylmercury ranged from 1.8 to 2.6% for Purvis Creek. Methylmercury was not detected at the reference locations.

Aroclor 1268, for which there is no specific ESV, was detected (1.0 ug/L) only at the mouth of Purvis Creek. Lead was never detected in the study area.

#### 3.1.1.2 Surface Sediment

Surface sediment in creek habitat and marsh habitat of the LCP Site is separately addressed.

#### a) Creek Habitat

Silt and clay content of creek sediment at the LCP Site ranged from 9.0% at Station 33 to 99.2% at Station D, whereas silt and clay content at the reference locations ranged from 28.6 to 39.1% (Table 4). Total organic carbon (TOC) content generally exhibited the expected positive relationship with silt/clay content and ranged from 0.94 to 5.9%.

**Total mercury** concentrations in creek sediment at the site (0.15 – 80 mg/kg) ranged from about 1 to 3 orders-of-magnitude higher than mercury levels at the reference locations (<0.02 - 0.044 mg/kg). All mercury concentrations recorded at the site exceeded the gereric ecological effects value (EEV) of 0.13 mg/kg established for mercury by Region 4 of the U. S. EPA. However, preliminary ecological remedial sediment goals (PERSGs) identified by the U. S. EPA (2001b) for mercury – 4 mg/kg for all ecological resources except the federally endangered wood stork, *Mycteriaa americana*, for which 1 mg/kg was established – were commonly exceeded only in the Main Canal, Eastern Creek, and Marsh Grid. (Concentrations of mercury [and Aroclor 1268] in creek sediment from the Main Canal and Eastern Creek are definitively addressed in Section 3.2 of this report.)

Aroclor 1268 concentrations in creek sediment at the site (<0.28 – 33 mg/kg) were always greater than levels at the reference locations (<0.20 mg/kg). However, the more stringent PERSG identified by the U. S. EPA (2001b) for Aroclor 1268 – 24 mg/kg for the wood stork as contrasted to 150 mg/kg for all ecological resources – were exceeded only at one sampling station in the Eastern Creek (where the above-referenced 33 mg/kg value recorded at that station exceeded just the 24 mg/kg PERSG for the wood stork).

Lead concentrations in creek sediment at the site (11 - 52 mg/kg) were always greater than levels at the reference locations (7.5 - 9.4 mg/kg). However, only stations situated in the Eastern Creek (and, also, the single station evaluated in the northern part of the site) routinely exceeded the generic EEV of 30.2 mg/kg established for lead by Region 4 of the U. S. EPA and the PERSG identified by the U. S. EPA (2001b) for lead (30 mg/kg for all ecological resources including the wood stork).

Total PAH concentrations in creek sediment at the site (0 - 11.60 mg/kg) were usually elevated over levels observed at the reference locations (0 - 0.03 mg/kg). In addition, all evaluated areas, with the exception of the Western Stream Complex and mouth of Purvis Creek, were characterized by concentrations of total PAHs at some stations that exceeded the generic EEV of 1.684 mg/kg established for total PAHs by Region 4 of the U. S. EPA and/or the PERSG identified by the U. S. EPA (2001b) for total PAHs (0.486 mg/kg for all ecological resources including the wood stork).

#### b) Marsh Habitat

Concentrations of all four COPC in marsh sediment at the LCP Site (Table 5) were typically lower than levels described above for creek sediment. However, all mercury concentrations recorded at the site except at the AB seep location exceeded the generic EEV of 0.13 mg/kg. Conversley, the 4 mg/kg PERSG for mercury was exceeded only near the Eastern Creek, and

the 1 mg/kg PERSG was additionally exceeded only near the Main Canal and at some stations in the western part of the site. (Concentrations of mercury [and Aroclor 1268] in sediment from the Marsh Grid are definitively addressed in Section 3.2 of this report.)

Aroclor 1268 concentrations exceeded the 24 mg/kg PERSG (the more rigorous criterion for Aroclor 1268) only at one station near the Eastern Creek, and, even there, the recorded concentration was just 25 mg/kg. Lead concentrations exceeded the 30 mg/kg PERSG and generic 30.2 EEV only at the same station near the Eastern Creek. Total PAH levels exceeded the generic 1.684 EEV at that same station and, also, at one station in the western part of the site; the 0.486 PERSG was additionally exceeded near the Main Canal and at another station near the Eastern Creek.

### 3.1.1.3 Biota

Body burdens of **total mercury** in whole bodies of **fiddler crabs** (*Uca* spp.) collected from the southern part of the LCP Site (mean mercury concentrations ranging from 0.18 to 0.82 mg/kg, dry wt) were typically an order-of-magnitude higher than mean concentration of mercury (0.034 mg/kg) in fiddler crabs from the Troup Creek reference location (Table 6). A difference of similar magnitude occurred for **mummichogs** (*Fundulus heteroclitus*) obtained from the Main Canal (mean mercury concentration of 0.54 mg/kg), Eastern Creek (0.50 – 0.71 mg/kg), and northern part of the site (0.39 mg/kg) vs. reference fish (0.077 mg/kg).

Blue crabs (Callinectes sapidus) from Purvis Creek were characterized by mercury body burdens (mean concentrations ranging from 1.48 to 1.60 mg/kg) that approached two orders-of-magnitude greater than body burdens of crabs from the reference location (0.073 mg/kg).

Sciaenid fishes were captured only from Purvis Creek, and not from a reference location. The highest mean body burden of mercury (1.61 mg/kg) occurred in silver perch (*Bairdiella chrysoura*). Lowest mean concentrations of mercury characterized red drum, *Sciaenops ocellatus* (0.67 mg/kg), and black drum, *Pogonias cromis* (0.61 mg/kg).

Body burdens of Aroclor 1268 in fiddler crabs collected from two locations in the southern part of the site (mean concentrations of Aroclor 1268 ranging from 1.83 to 2.06 mg/kg) were about 2X higher than mean concentration of Aroclor 1268 in fiddler crabs from the Troup Creek reference location (0.99 mg/kg). However, Aroclor 1268 was not detected in fiddler crabs obtained near the mouth of Purvis Creek (mean default value for Aroclor 1268 was 0.44 mg/kg). Mummichogs from all locations evaluated at the site displayed mean concentrations of Aroclor 1268 (1.09 – 7.97 mg/kg) that were as much as an order-of-magnitude greater than observed in reference fish (0.45 mg/kg).

Blue crabs from Purvis Creek were characterized by body burdens of Aroclor 1268 (mean concentrations ranging from 2.76 to 3.60 mg/kg) that approached an order-of-magnitude greater than body burdens of crabs from the reference location (0.43 mg/kg). The highest mean body burden of Aroclor 1268 in sciaenid fishes occurred in silver perch (3.83 mg/kg), whereas the lowest concentration was exhibited by red drum (1.02 mg/kg).

Body burden of **lead** in **fiddler crabs** collected from the AB seepage area at the site (mean lead concentration of 32.86 mg/kg) was dramatically higher than mean concentration in reference fiddler crabs (0.41 mg/kg). In addition, mean lead concentration in fiddler crabs from near the Main Canal (1.55 mg/kg) was about 3X higher than in reference organisms (0.41 mg/kg); whereas mean lead level in fiddler crabs from near the mouth of Purvis Creek (0.56 mg/kg) was only marginally higher than in reference organisms. The mean concentration of lead in **mummichogs** from the northern part of the site was 1.27 mg/kg, as contrasted to a reference value of 0.54 mg/kg.

Lead was seldom detected in blue crabs or sciaenid fishes from the study area.

#### 3.1.2 Chronic Toxicity of Creek Surface Sediment to Biota

Chronic toxicity of creek surface sediment at the LCP Site to amphipods and grass shrimp is sequentially addressed, followed by an evaluation of the relationships between concentrations of COPC in sediment and observed toxicity.

# 3.1.2.1 Amphipods

Survival (mean survival) of amphipods (i. e., uncontaminated organisms) exposed in the laboratory for 28 days to creek surface sediment collected from eight sampling stations at the LCP Site was most severely impacted (from a statistical perspective) at Station 7 in the Eastern Creek (Table 7). In addition, survival of amphipods exposed to sediment from a number of stations – both stations in the Marsh Grid (H7 and K7), Station 6 in the Eastern Creek, Station 45 in the western part of the site, and Station 5 in the Main Canal – was significantly lower than survival of reference organisms (i. e., organisms exposed to sediment from either Troup Creek or the Crescent River). Conversely, amphipods exposed to sediment from the Western Creek Complex (Station 15) and from a second station in the western part of the site (Station D) were characterized by survival that was statistically indistinguishable from survival of at least one cohort of reference organisms.

Growth (weight) of amphipods exposed to sediment from the eight site stations generally reflected the above-described pattern of survival. One major exception is that the least affected amphipods (organisms exposed to sediment from Stations 15 and D) exhibited growth that was significantly less than that of both cohorts of reference organisms.

Reproductive response of amphipods at all site stations and reference locations was statistically similar.

It is important to note that all sediment samples evaluated for toxicity were composite samples (typically consisting of five grab samples) and, consequently, represent substantial areas of the estuary.

## 3.1.2.2 Grass Shrimp

Grass shrimp exposed in the laboratory for 2 months to creek surface sediment collected at the LCP Site (Table 8) were characterized by **survival** that was generally higher than the above-referenced survival of amphipods. However, sediment from Station H7 in the Marsh Grid was identified as being toxic to grass shrimp, as well as to amphipods; and Station 15 in the Western Creek Complex was additionally determined to be toxic. Sediment from all other stations at the site was no more toxic than both reference sediments and even control sediment.

Evaluation of percent of surviving female grass shrimp forming mature ovaries generated results that were similar to those described above for survival of grass shrimp. However, one notable exception was that ovarian formation of shrimp exposed to sediment from Station 15 in the Western Creek Complex, as well as ovarian formation for all stations except H7 in the Marsh Grid, was statistically indistinguishable from that of reference and control shrimp.

Assessment of percent of surviving female grass shrimp producing embryos indicated a more complex statistical relationship among individual stations than was the case for survival and ovarian formation of shrimp (note the more numerous horizontal lines in Part 3 of Section C of Table 8). However, the primary relationship between site stations and reference locations was fairly constant; namely, that Station H7 in the Marsh Grid was the only station for which ovarian production was significantly impaired as compared to reference conditions. (Note that only the Crescent River reference location is employed in this comparison because of the high variance (s²) associated with Troup Creek, which, in turn, would have precluded the use of parametric analysis of variance [ANOVA] in the overall assessment.)

Evaluation of **percent of embryos hatching** indicated no statistically significant differences in hatching among site and reference stations. However, Station H7 in the Marsh Grid was not included in the statistical analysis because of the high variance (s²) related to hatching for that station. On a qualitative basis, Station H7 was clearly characterized by impaired embryo hatching.

Assessment of **DNA strand damage in embryos** (which is a reversible condition) offered little additional information regarding toxicity of sediment at the site. This relatively sophisticated measurement endpoint identified only Station H7 in the Marsh Grid as exhibiting significantly greater DNA damage than damage at a reference location.

It is important to again note that all sediment samples evaluated for toxicity were composite samples (typically consisting of five grab samples) and, consequently, represent substantial areas of the estuary.

## 3.1.2.3 Chemical and Toxicological Relationships

Coefficients of determination (r²) derived from paired data addressing concentrations of COPC in creek surface sediment (Table 4) vs. toxicity of sediment to amphipods (Table 7) and grass shrimp (Table 8) indicate that COPC played only a limited role in sediment toxicity (Table 9).

In the case of chemical-toxicological relationships for amphipod toxicity, greatest correlation occurred between concentration of lead in sediment and survival of organisms ( $r^2 = 0.57$ ), concentration of total PAHs and survival ( $r^2 = 0.61$ ), as well as concentration of lead and growth of organisms ( $r^2 = 0.63$ ). However, even this last correlation value merely implies that only 63% of the variation in amphipod growth can be explained in terms of variation in concentration of lead in sediment.

The relationships (r² values) between concentrations of COPC in sediment and grass shrimp toxicity are all unremarkable. Indeed, the numerous cases, for both amphipods and shrimp, in which "reverse correlation" occurred, or for which r² values were extremely low, indicates that toxicity of sediment is caused largely by chemicals other than COPC. The U. S. EPA (2001b) supports this finding in its conclusion that many inorganic chemicals (e. g., arsenic, cadmium, chromium, copper, and silver) are present in site sediment at concentrations (or detection limits) exceeding EEVs promulgated by Region 4 of the U. S. EPA.

## 3.1.3 Toxicological Condition of Indigenous Grass Shrimp

**Percent of embryos hatching** (mean hatching success) from indigenous female grass shrimp collected from a sampling station (Station 25) located mid-way in the Main Canal at the LCP Site and from a station situated in the Main Canal at its confluence with Purvis Creek (Station 5) was statistically similar to hatching of reference and control shrimp (Table 10).

**DNA strand damage in embryos** from female shrimp obtained from the same two site stations was statistically indistinguishable from damage in reference and control organisms.

### 3.2 Supplemental Sediment Study

The objective of this supplemental study was to document statistically reliable estimates of concentrations of total mercury and Aroclor 1268 (together with general sediment quality variables) in surface sediment of major areas of the estuary at the LCP Site. The areas addressed in this study are the Main Canal, Eastern Creek, and Marsh Grid (Table 11). Sediment data derived in this study for these areas are intended to serve as definitive substitutes for the limited sediment data presented in Table 4 of this report.

Statistically reliable estimates of any variable must be **accurate** and **precise** (i. e., sufficiently precise to achieve the objective of the study). Accuracy is usually achieved by some form of random sampling, thereby ensuring that each unit in a population (e. g., every location in each of the three major areas at the site) has a theoretically equal chance of being

sampled and measured. Appropriate precision is most commonly achieved by taking enough samples from the population. In this study, the appropriate number of sediment samples to collect from each of the three main areas was determined by use of the following formula (U. S. EPA, 1982):

$$n = (t^{2}_{.20}) (s^{2}) / \Delta^{2},$$
 (Equation 1)

with n = number of samples; t = "t" value for a "two-tailed" confidence interval and a probability of 0.20;  $s^2$  = variance of sample;  $\Delta = RT - x$ ; RT = regulatory threshold (PERSG of 1 mg/kg for total mercury and 24 mg/kg for Aroclor 1268); and x = mean of sample. The basic principles involved in estimating the appropriate number of samples to collect is clearly evident from this equation. Appropriate sample size is a direct function of the estimated variance of a sample and is inversely related to the magnitude of the difference between the estimated mean of the sample and the regulatory threshold.

Both s² and x in the above-referenced equation were estimated for all three major areas from results of a sampling effort in the Marsh Grid during the monitoring investigation in 2002. The resulting estimation of sample size for total mercury and Aroclor 1268 in sediment indicated that a greater number of samples were required for Aroclor 1268 to achieve desired precision than for mercury. The required sample size was 22, which was increased to 25 to provide an extra margin of safety. This number of sediment samples (25 samples) was then randomly collected in 2003 from each of the three major areas by use of a random numbers table applied to a grid developed for each area. Each of the 25 sediment samples was then analyzed for mercury, Aroclor 1268, and associated sediment quality variables (TOC and grain-size distribution).

The results of this supplemental sediment study (Table 11) indicate that surface sediment from the **Main Canal** was characterized by a mean concentration of **total mercury** of 8.60 mg/kg, with an 80% confidence interval (CI) ranging from 5.50 to 11.70 mg/kg. For **Aroclor 1268**, mean sediment concentration was 3.47 mg/kg, with a CI of from 2.59 to 4.35 mg/kg. Consequently, it can be concluded with 80% confidence that mean levels of mercury and Aroclor 1268 in sediment from the Main Canal were, respectively, greater than and less than applicable PERSGs (1 mg/kg for mercury and 24 mg/kg for Aroclor 1268).

The Eastern Creek contained sediment in which the mean concentration of mercury was 16.68 mg/kg, with an 80% CI of from 9.14 to 24.22 mg/kg. For Aroclor 1268, mean sediment concentration was 50.81 mg/kg, with a CI of 21.68 to 79.94 mg/kg. Once more, it can be concluded with 80% confidence that the mean level of mercury in sediment was greater than the 1 mg/kg PERSG for mercury. However, for Aroclor 1268, sample size was not quite large enough to clearly indicate (with 80% confidence) if the applicable 24 mg/kg PERSG was exceeded, although the "closeness" of the lower limit of the 80% CI (21.68 mg/kg) to the PERSG (24 mg/kg) suggests that the PERSG was probably exceeded.

The Marsh Grid was characterized by mean concentrations of mercury and Aroclor 1268 in sediment that were substantially lower than observed in the Main Canal or Eastern Creek.

# 4. <u>COMPARISONS OF HISTORICAL AND CONTEMPORARY</u> <u>ECOLOGICAL CONDITIONS AT LCP SITE</u>

This section of the report addresses time-series differences in toxicological condition of grass shrimp indigenous to the LCP Site and, additionally, time-series differences in concentrations of COPC in environmental media routinely monitored at the site.

## 4.1 Toxicological Condition of Indigenous Grass Shrimp

Percent of embryos hatching (mean hatching success) from indigenous female grass shrimp collected from mid-way in the Main Canal at the LCP Site (Station 25) was evaluated in October of 1999 (Lee, 2004), October of 2002 (CDR Environmental Specialists and GeoSyntec Consultants, 2003a), as well as in this investigation (Table 12). (October of 1999 was about 3 months after removal activities in the estuary at the site were completed.) Hatching success increased by over 7-fold (from 12% to 87%) between 1999 and 2003, an increase that is statistically significant and, also, reflective of baseline conditions for the site (Table 10).

Hatching success of grass shrimp obtained from the Main Canal at its confluence with Purvis Creek (Station 5) in October of 1997 (Lee, 2004), October of 2002, and in this investigation increased from 42% to 85-86%, also a statistically significant increase and reflective of baseline conditions for the site (Table 10). (October of 1997 was about 3 months before removal activities in the estuary at the site were initiated.)

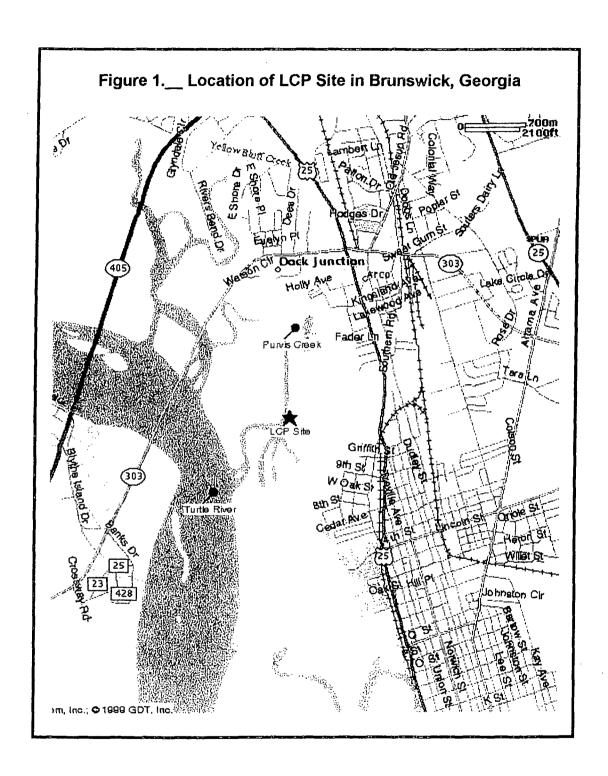
**DNA strand damage of embryos** from Station 25, as measured by DNA tail moment, significantly decreased from 15.6 in 1999 to 2.6 in 2003 (Table 12). However, a decrease in DNA tail moment of embryos for Station 5 from 1997 (a 6.1 value) to 2003 (2.4) is not statistically significant. DNA damage recorded for both stations in 2003 appears to be approaching baseline conditions for the site (Table 10).

# 4.2 <u>Concentrations of Chemicals of Potential Concernin Environmental Media</u>

Qualitative (i. e., non-statistical) time-series comparisons of concentrations of COPC in environmental media routinely monitored at the LCP Site (Table 13) indicate that the highest levels of COPC in environmental media (indicated by red coding in the table) typically occurred in 1995, with substantially decreasing levels (identified by green coding in the table) recorded thereafter. (Note that these time-series comparisons are based on a number of different investigations and reporting protocols. In addition, although sampling stations in the earlier investigations [1995 to 1997] were selected to conform to the general site locations addressed in the later investigations [2000 – 2003], this "matching" of stations may not be precise. Also, only selected site locations are included in this evaluation. Consequently, the general, qualitative character of this table merits emphasis.)

In one of the more extreme examples, concentration of total mercury in surface water in the Main Canal at the site was 7,400 ng/L in 1995, decreased dramatically to 170 ng/L in 1996, and decreased again to 14 – 59 ng/L in 2000 (the last year in which water chemistry was monitored in the Main Canal). Similarly, concentration of total mercury in creek sediment from the Marsh Grid decreased from 330 mg/kg in 1995 to 4.3 - 46 mg/kg in 1996, and to 2.2 – 22 mg/kg in 2003. Also, concentration of Aroclor 1268 in creek sediment from the Marsh Grid decreased from 910 mg/kg in 1995 to 3.3 - 21 mg/kg in 1996 and to 0.94 – 3.5 mg/kg in 2000, appeared to increase in 2002 (6.5 – 92 mg/kg), and decreased again in 2003 (0.79 – 24 mg/kg).

Decreases in concentrations of COPC in environmental media were still occurring in 2003 at a number of locations at the site. These cases were total mercury in creek sediment, marsh sediment, and mummichogs; Aroclor 1268 in creek sediment, marsh sediment, fiddler crabs, mummichogs, and sciaenid fishes; and lead in marsh sediment, fiddler crabs, mummichogs, blue crabs, and most sciaenid fishes.


Other cases were observed in 2003 – notably Aroclor 1268 in blue crabs from Purvis Creek and lead in fiddler crabs from the AB seepage area – that clearly merit continued evaluation. These cases are indicated by orange coding in Table 13.

The numerous and dramatic decreases in concentrations of COPC documented in environmental media shortly after 1995, the decreases in concentrations of COPC in some environmental media that occurred in 2003, and the need to further evaluate levels of COPC observed in other environmental media in 2003 collectively constitute a rationale for continued ecological monitoring of the estuary at the LCP Site.

#### 5. REFERENCES

- CDR Environmental Specialists and GeoSyntec Consultants. 2001. Baseline ecological risk assessment for the estuary at the LCP Chemical Site in Brunswick, Georgia site investigation/analysis and risk characterization. Hollywood, FL. Volumes I and II.
- CDR Environmental Specialists and GeoSyntec Consultants. 2003a. Ecological monitoring investigation for the estuary at the LCP Chemical Site in Brunswick, Georgia 2002 monitoring investigation. Hollywood, FL. Volumes I and II.
- CDR Environmental Specialists and GeoSyntec Consultants. 2003b. Ecological monitoring program for estuary at LCP Chemical Site in Brunswick, Georgia Year 2003. Hollywood, FL. 21 pp.
- Lee, R. F. 2004. Mortality, ovary formation, embryo production, embryo hatching, and DNA strand damage in grass shrimp (*Palaemonetes pugio*) exposed to sediments from sites in southeastern Georgia; and embryo hatching and DNA strand damage in grass shrimp embryos collected from several sites in southeastern Georgia. Skidaway Institute of Oceanography. Savannah, GA. 9 pp.
- National Oceanic and Atmospheric Administration (NOAA) and U. S. Environmental Protection Agency (Region 4). 1998. LCP Chemical Site monitoring study data report. Final draft. Seattle, WA. 127 pp.
- PTI Environmental Services and CDR Environmental Specialists. 1998. Ecological risk assessment of the marsh area of the LCP Chemical Site in Brunswick, Georgia. Bellevue, WA. Volumes I and II.
- Sprenger, M. D., N. J. Finley, and M. Huston. 1997. Ecological assessment: ecological risk evaluation of the salt marsh and adjacent areas at the LCP Superfund Site, Brunswick, Georgia. U. S. EPA Environmental Response Team. Edison, NJ. Volumes I and II.
- U. S. Environmental Protection Agency. 1982. Test methods for evaluating solid waste: physical/chemical methods. SW-846. Office of Solid Waste Management. Washington, D. C.
- U. S. Environmental Protection Agency (Region 4). 2001a. Numerous letters and E-mails from Annie Godfrey, Region 4, U. S. EPA, to Mark Kamilow, Honeywell International.
- U. S. Environmental Protection Agency. 2001b. Development and recommendations of preliminary ecological remedial sediment goals at the LCP Chemical Site; Brunswick, GA Technical note. Environmental Response Team. Edison, NJ. 22 pp.

# **FIGURES**



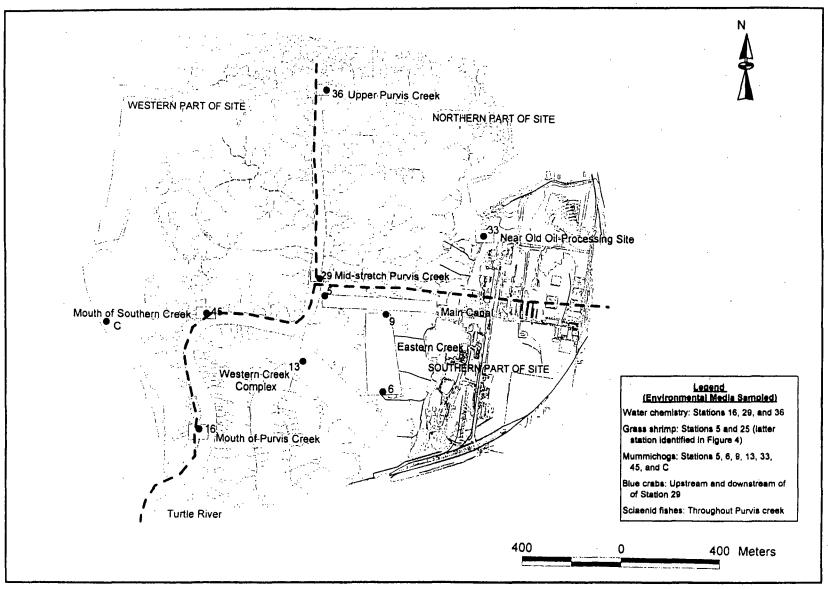



Figure 2.__Locations of sampling stations for creek surface water and associated biota of estuary at LCP Site

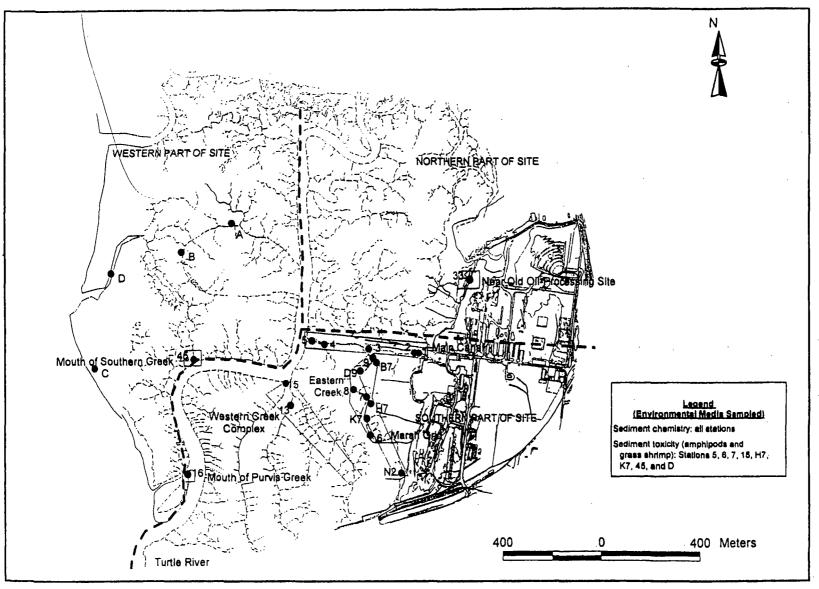



Figure 3.__Locations of sampling stations for creek surface sediment and associated biota of estuary at LCP Site

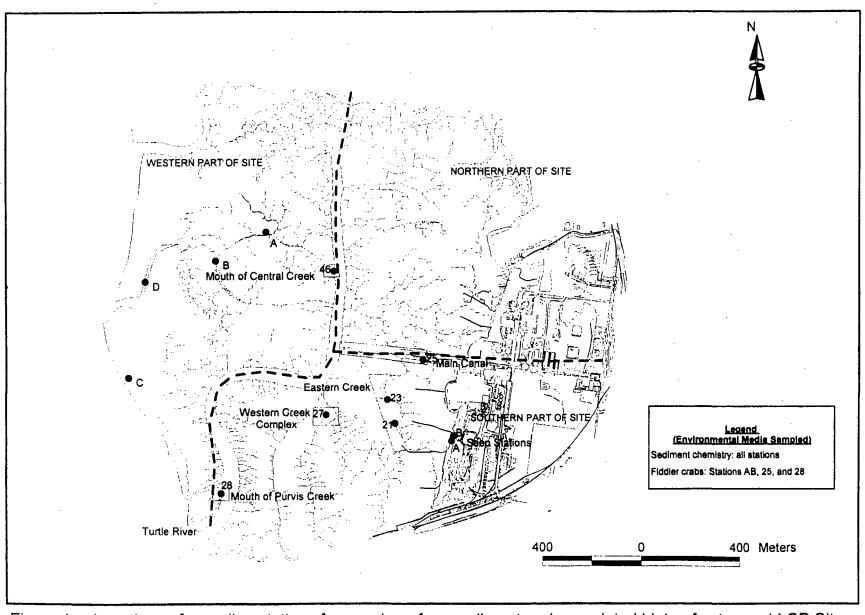



Figure 4.__Locations of sampling stations for marsh surface sediment and associated biota of estuary at LCP Site

# **TABLES**

**(**)

Table 1.__Basic experimental design for data generation and analysis in investigation of estuary at LCP Site^a

	Number of sampling	Analytical	Typical reporting	
Measurement	stations	method ^c	limit	Other details
		Surfa	ce Water Chemistry	- Creek Water
General water quality characteristics	5	Hydrolab	<u></u>	******
Total mercury	5	CVAFS; FGs-069	0.15 ng/L	Sampling performed by "clean-hands" technique
Methylmercury	5 5	CVAFS; FGs-070 8082	0.025 ng/L	Sampling performed by "clean-hands" technique
Aroclor 1268 .ead	5	6010B	0.5 ug/L 0.005 ug/L	
		Surface S	ediment Chemistry -	Crock Sadimantid
Santa atau diakibudian	25		edinient Chemistry -	Creek Sedimenty
Grain-size distribution	25	ASTM D422	0.05% (d=4)	
Fotal organic carbon	25 25	9060	0.05% (dry wt)	<del></del>
Total mercury	25	7471A	0.02 mg/kg (dry wt)	
Aroclor 1268	25	8082	0.2 mg/kg (dry wt)	<del></del>
Lead	25	6010B	1.0 mg/kg (dry wt)	
PAHs	25	8270C	0.007 mg/kg (dry wt)	18 different PAHs evaluated
		Surface \$	ediment Chemistry	Marsh Sediment) ^d
Grain-size distribution	13	ASTM D422	—	
Total organic carbon	13	9060	0.1% (dry wt)	
Total mercury .	- 13	7471A	0.02 mg/kg (dry wt)	
Aroclor 1268	13	8082	0.1 mg/kg (dry wt)	••••
Lead	13	6010 <b>B</b>	0.5 mg/kg (dry wt)	
PAHs	13	8270C	0.007 mg/kg (dry wt)	18 different PAHs evaluated
		Surface	Sediment Toxicity -	Creek Sediment ^d
Amphipods	10	CBP/TRS 89/93	<del></del>	28-day chronic test; 5 replicates per sampling station; evaluation of survival, growth, and reproduction of amphipods exposed to sediment in laboratory
Grass shrimp	10	Standard Lee test		2-month chronic test; 3 replicates per sampling station; evaluation of survival, reproduction, and DNA strand damage (Comet Test) of shrimp exposed to sediment in laboratory
Grass shrimp	4	Special Lee test		Direct evaluation of reproduction and DNA strand damage (Comet Test) of shrimp collected in field (no laboratoty exposure to sediment)
	Cha	micel Deck. Dueden	a of Dieta (M/bala Ba	
Biota Collected	Cile	medi body burden	a Of Diora (Miliote DO	dies) Creek and Marsh Stations
Fiddler crabs	4	<u>:</u>		5 to 7 replicates of about 10 - 40 composited male crabs per sampling station; replicate weight = about 10 - 30 g;
Mummichogs	8		****	2 to 3 replicates of 3 - 40 composited fish (about 50 - 70 mm in length) per sampling station; replicate weight = 20 - 100 g
Blue crabs	3			7 replicates of individual male crabs per sampling station; crab length (point-to-point on carapace) = about 110 - 175 mn (102 - 375 g)
Silver perch	1			8 replicates of individual silver perch per sampling station; fish length (total length) = 145 - 195 mm (39 - 103 g)
Red drum	1			8 replicates of individual red drum per sampling station; fish length (total length) = 340 - 390 mm (431 - 628 g)
Black drum	1			8 replicates of individual black drum per sampling station; fish length (total length) = 155 - 245 mm (52 - 238 g)
Spotted seatrout	1	*****		8 replicates of individual spotted seatrout per sampling station fish length (total length) = 280 - 420 mm (222 - 800 g)

Table 1.__Continued

Measurement	Number of sampling stations b	Analytical method ^c	Typical reporting limit	Other details
		Chemical A	nalyses Performed on Whole Bodies of Biota	
Total mercury		7471A	0.02 mg/kg (dry wt)	<del></del>
Aroclor 1268		8082	0.1 mg/kg (dry wt)	<del></del>
_ead		6010B	0.25 mg/kg (dry wt)	

^aIn addition to this basic experimental design (or basic monitoring program), a statistically based study was conducted in which 25 surface sediment samples were collected from the Main Canal, Eastern Creek, and Marsh Grid. These samples (a total of 75 samples) were analyzed for total mercury and Aroclor 1268 (also, total organic content and grain-size distribution).

^bNumber of sampling stations sometimes includes up to two reference locations — Troup Creek and the Crescent River.

^cAnalytical methods are U. S. EPA methods unless otherwise indicated.

^dSurface sediment is defined as between 0 and 15 cm in depth.

Table 2. __General water quality characteristics of creek surface water of estuary at LCP Site^a

Sampling station	Temperature (°C)	Salinity (ppt)	Conductivity (mS/cm)	Total dissolved solids (mg/L)	pH (pH units)	Dissolved oxygen (mg/L)
		Purvis Cree	<u>k</u>			
Upper Purvis Creek (36)	24.6	21	33.3	20	7.1	6.1
Mid-stretch Purvis Creek (29)	24.8	21	33.7	21	7.0	6.9
Mouth of Purvis Creek (16)	25.2	22	34.2	21	7.2	7.4
•	Re	ference Loca	ations			
Troup Creek	22.9	10	18.4	11	6.6	6.5
Crescent River	23.0	25	39.5	24	6.9	6.2

^aSurface water in Purvis Creek was evaluated between 1500 and 1545 on October 14, 2003, during ebb tide. Water at the Troup Creek reference location was measured at 1000 - 1015 on October 14, during ebb tide. Water at the Crescent River reference location was measured at 1100 - 1115 on October 14, 2003, during end of flood tide.

Table 3. Chemicals of potential concern (COPC) in creek surface water of estuary at LCP Site^a

·	Mercury	(ng/L or ppt) ^b		
Sampling station	Total	Methyl (% of total)	Aroclor 1268 ^c (ug/L or ppb)	Lead ^d (ug/L or ppb)
	Southern	Part of Site		
Mouth of Purvis Creek (16)	33.3	0.613 (1.8)	1.0	<5
	Northern	Part of Site		
Mid-stretch Purvis Creek (29)	44.1	1.01 (2.3)	<0.50	<5
Upper Purvis Creek (36)	48.2	1.23 (2.6)	<0.50	<5
	Referen	ce Locations		
Troup Creek	2.10	<0.025 (<1.2)	<0.50	<5
Crescent River	1.24	<0.025 (<2.0)	<0.50	<5

^aCreek surface water samples were collected on October 14, 2003 (most samples) and October 16, 2003 (site samples analyzed for Aroclor 1268 and lead) usually during ebb tide.

^bThe U. S. EPA Region 4 chronic ecological screening value (ESV) for mercury (total mercury ) is 25 ng/L.

^cThere is no U. S. EPA Region 4 chronic ESV for Aroclor 1268. However, the Region 4 ESV for Aroclor 1254, which is generally considered to be a more toxic Aroclor, is 0.03 ug/L.

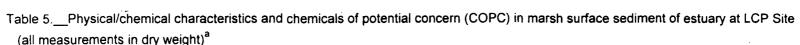
^dThe U. S. EPA Region 4 chronic ESV for lead (total lead) is 8.5 ug/L.

Table 4.__Physical/chemical characteristics and chemicals of potential concern (COPC) in creek surface sediment of estuary at LCP Site (all measurements in dry weight)^a

		Total organic	Total			Total
	Silt and clay	carbon	mercury ^b	Aroclor 1268 ^c	Lead ^d	PAHs ^e
Sampling station	(%)	(%)	(mg/kg or ppm)	(mg/kg or ppm)	(mg/kg or ppm)	(mg/kg or ppm)
		Southern	Part of Site	•		
Main Canal		<del></del>				
(upstream to downstream)						
1	24.5	1.3	3.3	3.3	11	0.02
2	89.3	3.8	8.4	11	32	0.30
3	53.2	1.4	8.0	3.5	21	0.47
4	92.1	3.4	4.0	9.9	26	0.68
5	68.7	3.2	10	24	27	2.45
Eastern Creek						
(upstream to downstream)	00.7	0.7		40	47	0.70
6	82.7	3.7	80 4.2	19	47 43	0.72
7	90.4	3.1		3.7 33	43 37	11.60
8 9	84.5 75.7	4.3 3.6	36 15	0.60	37 46	0.13 1.36
9	75.7	3.0	15	0.00	. 40	1.30
Western Creek Complex						
(upstream to downstream)	04.4	2.0	0.40	4.0	00	0.44
13	91.4	3.6	0.48	1.3	23	0.41
15	88.4	3.5	2.8	0.79	28	0.34
Mouth of Purvis Creek (16)	90.9	3.7	0.59	0.71	27	0.09
		Northern	Part of Site			
Near old oil-processing site (33)	9.0	0.94	0.34	0.32	50	0.64
		Western	Part of Site			
Mouth of southern creek (45)	98.1	3.0	0.62	0.70	17	0.00
Northern stretch of "U" creek (A)	90.9	4.2	3.4	0.73	25	0.53
Western stretch of "U" creek (B)	96.3	4.3	1.5	0.87	22	0.48
Western inlet from Turtle River (C)	96.7	3.6	0.15	<0.28	13	0.26
Northwestern inlet from	99.2	3.2	0.56	0.87	22	0.08
Turtle River (D)		<del></del>		0.01		

Table 4. Continued

		Total organic	Total			Total
Sampling station	Silt and clay (%)	carbon (%)	mercury ^b (mg/kg or ppm)	Aroclor 1268 ^c (mg/kg or ppm)	Lead ^d (mg/kg or ppm)	PAHs ^e (mg/kg or ppm)
		Man	sh Grid			
В7	92.6	3.7	2.2	0.79	31	3.19
<b>D</b> 9	78.6	3.6	14	6.3	28	0.93
H7	93.3	3.0	6.8	2.2	21	0.08
K7	70.7	3.3	22	24	26	4.97
N2	92.0	5.9	3.6	1.8	52	1.10
		Referenc	e Locations			
Troup Creek	39.1	1.3	0.044	<0.20	9.4	0.00
Crescent River	28.6	1.1	<0.02	<0.20	7.5	0.03


^aCreek surface sediment (0 - 15 cm in depth) was collected during the period of October 14 - 16, 2003.

^bPreliminary ecological remedial sediment goals (PERSGs) for total mercury are 4 mg/kg for all ecological resources except for protection of the federally endangered wood stork, for which 1 mg/kg has been established (U. S. EPA, 2001b).

^cPERSGs for Aroclor 1268 are 150 mg/kg for all ecological resources except for protection of the federally endangered wood stork, for which 24 mg/kg has been established (U. S. EPA, 2001b).

^dThe PERSG for total lead is 30 mg/kg (U. S. EPA, 2001b).

^ePAH values reflect only detected PAHs (i. e., no adjustments are made for undetected values; e. g., assigning these values 1/2 of their detection limits). The PERSG for total PAHs is 0.486 mg/kg (U. S. EPA, 2001b).



		Total organic	Total			Total
Sampling station	Silt and clay (%)	carbon (%)	mercury ^b (mg/kg or ppm)	Aroclor 1268 ^c (mg/kg or ppm)	Lead ^d (mg/kg or ppm)	PAHs ^e (mg/kg or ppm)
		Souther	n Part of Site	٠		
Main Canal						
25	90.7	3.9	' 2.0	3.3	24	1.11
Eastern Creek			·			
(upstream to downstream)				•		
21	93.0	4.9	32	25	42	3.35
23	93.3	4.0	6.3	5.3	28	0.59
Western Creek Complex (27)	98.8	3.7	0.64	0.87	22	0.23
Mouth of Purvis Creek (28)	30.8	1.2	0.28	0.48	8.8	0.10
Seep location (AB)	2.7	0.1	0.03	<0.12	2.1	0.00
		Westerr	Part of Site			
Mouth of central creek (46)	35.8	1.7	0.59	0.66	16 .	0.34
Northern stretch of "U" creek (A)	99.3	4.1	2.1	0.84	26	0.12
Western stretch of "U" creek (B)	99.1	4.1	2.2	0.77	26	0.05
Western inlet from Turtle River (C)	84.0	4.4	0.62	0.79	28	3.43
Northwestern inlet from Turtle River (D)	96.2	3.8	1.0	0.82	24	0.06
		Referenc	ce Locations	•		•
Troup Creek	94.4	4.2	0.076	<0.33	21	0.00
Crescent River	66.0	1.7	0.039	<0.25	12	0.00

^aMarsh surface sediment (0 - 15 cm in depth) was collected during the period of October 14 - 16, 2003.

^bPreliminary ecological remedial sediment goals (PERSGs) for total mercury are 4 mg/kg for all ecological resources except for protection of the federally endangered wood stork, for which 1 mg/kg has been established (U.S. EPA, 2001b).

^cPERSGs for Aroclor 1268 are 150 mg/kg for all ecological resources except for protection of the federally endangered wood stork, for which 24 mg/kg has been established (U.S. EPA, 2001b).

dThe PERSG for lead is 30 mg/kg (U.S. EPA, 2001b).

^ePAH values reflect only detected PAHs (i. e., no adjustments are made for undetected values; e. g., assigning these values 1/2 of their detection limits). PERSG for total PAHs is 0.486 mg/kg (U.S. EPA, 2001b).

Table 6.__Chemicals of potential concern (COPC) in whole bodies of biota of estuary at LCP Site^a

Biota and			·	Replica	te	<u> </u>			Mean	95% confidence
sampling station	1	2	3	4	5	6	7	8	(x) ^b	interval ^c
		Tot	al Mercu	ry (ma/k	g or ppr	n,dry wt	t)			•
Fiddler Crabs (all marsh stations)										
Southern Part of Site								·		
ry "AB" seepage from land fain Canal upstream (25)	0.91 0.37	0.97 0.44	0.56 0.42	0.86 0.45	1.00 0.39	0 76 0 38	0 66 0.41	_	0.82 0.41	0.67 - 0.97 0.38 - 0.44
douth of Purvis Creek (28)	0.16	0.17	0.18	0.17	0.20	0.20	0.21	-	0.18	0.16 - 0.20
Reference Location										
roup Creek	0.043	0.032	0.035	0.033	0.025	~		-	0.034	0.026 - 0.04
Mummichogs (all creek stations)			•		,					
Southern Part of Site	0.54	0.54							0.54	- 0.54
lain Canal – downstream (5) astem Creek – upstream (6)	0.54	0.69	0.73	_	-	_	Ξ	_	0.54 0.71	0.66 - 0.76
astem Creek – downstream (9)	0.45	0.49	0.56	-	_	·	-	-	0.50	0.36 - 0.64
Vestern Creek Complex (13)	0.19	0.20	0.13	-	-	-		-	0.17	0.08 - 0.26
Northern Part of Site lear old oil-processing site (33)	0.51	0.34	0.31	_	_		-	-	0.39	0.12 - 0.66
Western Part of Site										
fouth of Southern Creek (45) Vestern inlet from Turtle River (C)	0.16 0.13	0.15 0.11	0.15 0.13	_	_	-	-	_	0.15 0.12	0.14 - 0.16 0.09 - 0.15
Reference Location										
roup Creek	0.047	0.100	0.083	-	-	-	-	-	0.077	0.010 - 0.14
Blue Crabe										
Site Joper Purvis Creek	1.8	3.1	0.93	0.86	1,9	1.2	1.4	_	1.60	0.89 - 2.31
ower Purvis Creek	0.76	2.5	3.8	1.3	0.84	0.74	0.59	_	1.48	0.42 - 2.54
Reference Location										
roup Creek	0.049	0.076	<0.02	0.04	0.27	<0.02	0.058	-	0.073	-
Silver Perch										
Purvis Creek	1.4	1.8	1.0	1.2	1.4	1.5	2.4	2.2	1.61	1.20 - 2.02
Red Drum										
Purvis Creek	1.3	0.38	0 64	0. <del>59</del>	0.30	1.2	0.30	0.68	0.67	0.35 - 0.99
Black Drum										
Purvis Creek	0.53	0.59	0.53	0.67	0.75	0.42	0.90	0.51	0.61	0.48 - 0.74
Spotted Seatrout Purvis Creek	1,5	1.7	1,4	1.5	1.3	1.6	1.2	1.2	1.43	1.28 - 1.58
			ocior 126	e (malk	. AE DAD	a darud				
Siddles Cooks		4	QCI01 129	o migre	יועק וע א	I,UIY WE	L			
Fiddler Crabs (all marsh stations)										
Southern Part of Site By "AB" seepage from land	2.0	2.4	3.1	1.9	1.4	18	1.8	_	2.06	1.55 - 2.57
Main Canal – upstream (25)	1.4	2.2	1.1	1.9	2.1	1.8	2.3	-	1.83	1.42 - 2.24
Vouth of Purvis Creek (28)	<0.87	<0.77	<0.91	<0.83	<0.10	<0.10	<0 77	-	0.44	-
Reference Location Froup Creek	<0.69	<0.61	1.8	1.3	1.2		-	-	0.99	
Mummichogs (all creek stations)										
Southern Part of Site										
vlain Canal – downstream (5) Eastern Creek – upstream (6)	5.7 8.8	9.1 11	6.1	_	-	_	_	_	7.40 7.97	0 - 29.06 1,39 - 14.5
astem Creek → downstream (9)	3.5	4.3	2.9	_	_	-	-	-	3.57	1.83 - 5.31
Western Creek Complex (13)	1.0	1.4	1.5	_	-	-	-	-	1.30	0.64 - 1.96
Northern Part of Site year old oil-processing site (33)	1.6	2.2	1 1	_	-	-	-	_	1.63	0.26 - 3 00
Western Part of Site										0.00 4.00
Mouth of Southern Creek (45) Western inlet from Turtle River (C)	0.97 1.1	1.1 1.4	1.2 1.1	_	-	-	-	_	1.09 1.20	0.80 - 1.38 0.77 - 1.63
Reference Location	••		•••							

Biota and				Mean	95% confidence					
sampling station	.1	2	3	4	5	6	7	8	(x) ^b	interval
•		Aroclor 1	268 (mg/	kg or pp	m,dry w	t) – Cor	ntinued			
Blue Crabs										
Site										
ipper Purvis Creek	2.1	1.7	2.2	3.7	3.0	4.7	1.9		2.78	1.74 - 3.78
ower Purvis Creek	2.2	1.8	5.0	1.7	4.0	7.9	2.5	-	3.60	1.52 - 5.68
Reference Location										
roup Creek	< 0.45	<0.28	< 0.33	<0.45	<0.26	2.0	<0.28	-	0 43	_
Silver Perch										
Purvis Creek	3.9	3.0	2.8	5.9	2.8	4.1	4.3	3.8	3.83	2.97 - 4.69
Red Drum										
Purvis Creek	0.97	1.0	1.0	1.1	1.1	1.0	0.98	0.98	1.02	0.98 - 1.06
Black Drum										
Purvis Creek	4.9	1.1	3.6	4.2	4.0	1.8	2.2	1.2	2.88	1.65 - 4.11
Spotted Seatrout										
ourvis Creek	2.3	7.1	2.6	1.5	1.4	5.2	4.8	4.4	3.66	1.96 - 5.30
			Lead (m	ng/kg or	pom.dn	/ wt)				
Fiddler Crabs										
(all marsh stations)										
Southern Part of Site										
By "AB" seepage from land	20	34	39	52	38	36	11		32.88	20.42 - 45.3
fain Canal upstream (25)	0.95	2.1	1.0	4.2	1.1	0.79	0.72	_	1.55	0.39 - 2.7
fouth of Purvis Creek (28)	0.70	0.57	0.66	0.54	0.42	0.27	0.77	-	0.56	0.40 - 0.72
Reference Location		0.55	0.00	40 DE	-0.25				0.44	
roup Creek	0.42	0 55	0.82	<0.25	<0.25	-	-	-	0.41	-
<u>Mummichogs</u> (all creek stations)										
Southern Part of Site										
vlain Canal – downstream (5)	0.59	0.55		-	-	-	-	-	0.57	0.32 - 0 82
astern Creek - upstream (6)	0.31	0.38	0.52	-		-	-		0.40	0.13 - 0.67
astem Creek - downstream (9)	0.36	0.43	0 44	-	-	-	_		0.41	0.30 - 0.52
Vestern Creek Complex (13)	1.1	0.62	0.65	-	-	-	-		0.79	0.12 - 1.40
Northern Part of Site										
lear old oil-processing site (33)	1.3	10	1.5	-	-	-	-	-	1.27	0.64 - 1.90
Western Part of Site										
Nouth of Southern Creek (45)	0.46	0.37	0.56	-	-	-	-	-	0.46	0 22 - 0.70
Vestern inlet from Turtle River (C)	0.58	0.44	0.48	-	-	-	-	-	0 50	0.32 - 0.6
Reference Location										
roup Creek	0.49	0.49	0.63	-	-	-	-	-	0.54	0.34 - 0.74
Blue Crabs										
<u>Site</u> Jpper Purvis Creek	0.30	<0.25	<0.25	<0 25	<0.25	<0 25	<0.25		0.15	_
ower Purvis Creek	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	_	0.13	_
	-0.20									
Reference Location	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	< 0.25	_	0.12	_
Tout Cleak	10.23	-0.23	10.20	-0.20	-0.20		-0.20		0.12	
Silver Perch										
Purvis Creek	<0.25	<0.25	< 0.25	<0.25	<0.25	<0.25	<0.25	< 0.25	0.12	_
uris Clock	~0.23	~0.23	-0.23	-5.25	-0.20	-0.20	-0.23	-0.23	U. 12	_
Red Drum										
	-0.3E	<0.2E	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	0.12	_
Purvis Creek	<0 25	<0.25	~0.23	<b>~U.23</b>	~0.23	~0.23	~0.23	~v.23	0.12	_
Black Drum										
			0.00		-0.05	-0.05	0.00	0.00		
Purvis Cr <del>aek</del>	<0.25	<0.25	0.36	<0.25	<0.25	<0.25	0.38	0.30	0.21	-
Cantand Contract										
Spotted Seatrout										
Purvis Creek	< 0.25	<0.25	< 0.25	< 0.25	< 0.25	<0.25	<0.25	< 0.25	0.12	-

^aBiota were collected during the period of October 14 - 17, 2003, by hand (fiddler crabs), baited minnow traps (mummichogs and blue crabs), as well as hook-and-line and nets (sciaenid fishes). Two of the four types of bait employed in minnow traps contained low concentrations of two COPC (freshwater catfish: 0.033 mg/kg of total mercury; pork neckbones: 0.51 mg/kg of lead).

^bBold print identifies mean body burdens at site sampling stations that appear to differ substantially in comparison to mean body burdens at reference location. Mean values include undetected chemical values calculated as 1/2 of their detection limits.

⁶Bold print identifies body burdens at site sampling stations that are statistically greater in comparison to body burdens at reference location (i. e., lower limit of 95% confidence interval at site station > upper limit of 95% confidence interval at reference location). Confidence intervals are not determined for sets of chemical data that include undetected values.

Table 7.__Statistical analysis of survival, growth, and reproductive response of amphipods (Leptocheirus plumulosus) exposed for 28 days to creek surface sediment of estuary at LCP Site a

#### A. SURVIVAL OF AMPHIPODS

# 1. Raw Data (number of survivors)

			Replicate r			Mean	Variance
Sediment source (S)	1	2	3	4	5	(x)	(s ² )
Control	20	16	15	20	15	17.2	6.7
Southern Part of Site							
Main Canal (Stat. 5)	10	7	8	4	. 8	7.4	4.8
Eastern Creek						•	
Station 6	7 .	9	3	8	8	7.0	5.5
Station 7	1	0	0	0	0	0.20	0.2
Western Creek Comptex (Stat. 15)	9	13	6	17	16	12.2	21.7
Marsh Grid							·
Station H7	3	6	9	3	9	6.0	9.0
Station K7	10	12	8	15	9	10.8	7.7
Western Part of Site							
Mouth of southern creek (Stat. 45)	12	5	16	9	8	10.0	17.5
Northwestern inlet from Turtle River (Stat. D)	11	9	14	14	14	12 4	5.3
Reference (R) Locations							
Troup Creek	10	13	17	13	16	13.8	7.7
Crescent River	12	18	11	19	. 16	15.2	12.7

#### 2. Cochran's (C) test for homogeneity of variances of amphipod survival

 $C_{(cal.)} = s^2(max.) / s^2(total)$ 

 $C_{(cal.)}$  = 21.7 / 98.8 = 0.22 ns, as compared to  $C_{(tab.)}$  = 0.31 for P = 0.05, k = 11 and v = 4

# 3. Parametric one-way analysis of variance (ANOVA) followed by d Tukey's (w) test of amphipod survival

Source of variation in survival	Degrees of freedom (df)		Sum of Mean squares (SS) square (M			F(cal.)	_				
Sediment source (S) Error (R): Total (T):	<u>s (r - 1</u>	= 10 <u>) = 44</u> 1 = 54	1,159.60 <u>395.20</u> 1,554.80		115.96 8.98		12.91 **	aso F _{(tel}	as compared to F _(tab.) = 2.84 for P = 0.01, 10 numerator df, and 44 denominator df		
Sediment source (S):	<u>7</u>	<u>H7</u>	<u>6</u>	<u>5</u>	<u>45</u>	КZ	<u>15</u>	<u>D</u>	<u>TC</u>	CR	Cont.
Mean (x) survival:	0.2	6.0	7.0	7 4	10.0	10.8	12.2	12.4	13.8	15.2	17.2

w_(P = 0.05) = q (square root of error MS / r) = 4.80 (square root of 8.98 / 5) = 2.88

#### B. GROWTH (WEIGHT) OF AMPHIPODS

#### 1. Raw Data (mean weight of survivors; mg. dry wt)

_			Mean	Variance			
Sediment source (S)	1	2	3	4	5	(x)	(s ² )
Control	0.31	0.36	0.33	0.27	0.29	0.312	0.001
Southern Part of Site							
Main Canal (Stat. 5)	0.07	0.07	0.14	0.10	0.16	0.108	0.002
Eastern Creek Station 6 Station 7	0.13 0.10	0.11	0.03 0	0.06 · 0	0.05	0.076 0.020	0.002 0.002
Western Creek Complex (Stat. 15)	0.16	0.19	0.07	0.21	0.21	0.168	0.003
Marsh Grid							
Station H7	0.07	0.07	0.12	0.07	0.14	0.094	0.001
Station K7	0.18	0.07	0.18	0.23	0.11	0.154	0.004
Western Part of Site							·
Mouth of southern creek (Stat. 45)	0.11	0.12	0.10	0.07	0.11	0.102	0.0004
Northwestern inlet from Turtle River (Stat. D)	0.22	0.17	0.16	0.17	0.12	0.168	0.001
Reference (R) Locations							
Troup Creek	0.34	0.50	0.30	0.32	0.31	0.354	0.007
Crescent River	0.49	0.33	0.36	0.33	0.32	0.366	0.005

### 2. Cochran's (C) test for homogeneity of variances of amphipod weight

 $C_{(cal.)} = s^2(max.) 7 s^2(total)$ 

 $C_{(col.)} = 0.007 / 0.028 = 0.25 \text{ ns},$ 

as compared to  $C_{\text{(tab.)}} = 0.31$  for P = 0.05, k = 11 and v = 4

#### 3. Parametric one-way enalysis of variance (ANOVA) followed by Tukey's (w) test of amphipod weight

Source of variation in weight	-	ees of om (df)		m of es(SS)	Mea square		F(cal.)	_			
Sediment source (S):		= 10		690	0.06		23.00 **,				
Error (R): Total (T):	<u>s (r - 1) = 44</u> sr - 1 = 54		<u>0.115</u> 0.805		0.003			as compared to			
								10 nu	= 2.84 fo merator o minator df		<b>,</b>
Sediment source (S):	1	<u>6</u>	<u>H7</u>	<u>45</u>	5	<b>K</b> 7	<u>15</u>	Q	Cont.	<u>TC</u>	CR
Mean (x) weight:	0.020	0.076	0.094	0.102	0 108	0.154	0.168	0,168	0.312	0.354	0.366

 $W_{(P=0.05)} = q$  (square root of error MS / r) = 4.80 (square root of 0.003 / 5) = 0.053

#### C. REPRODUCTIVE RESPONSE OF AMPHIPODS

#### 1. Raw Data (reproductive response)

_			Replicate - r		_	Mean	Variance
Sediment source (S)	1	2	3	4	5	(x)	(s ² )
Control	0.04	0.15	0	0.04	0.06	. 0.058	0.003
Southern Part of Site					•		
Main Canal (Stat. 5)	0.14	0 .	0.10	0.50	0	0.148	0.043
Eastern Creek Station 6 Station 7	. 0	0.17 0	0.50 0	0	0.38 0	0.210 0	0.051 0
Western Creek Complex (Stat. 15)	0.12	0	0	0	0	0.024	0.003
Marsh Grid Station H7 Station K7	0.50 0	0.20 0.07	0.25 0.10	0	0 0	0.190 0.034	0.043 0.002
Western Part of Site				·			
Mouth of southern creek (Stat. 45) Northwestern inlet from Turtle River (Stat. D)	0.06 0.07	0.25 0	0.06 0	0.07 0.07	0.00 0.12	0.088 0.052	0.009 0.003
Reference (R) Locations				•			
Troup Creek Crescent River	0.08 0.10	0 0.04	0.07 0.10	0.07 0	0.17 0	0.078 0.048	0.004 0.003

#### 2. Cochran's (C) test for homogeneity of variances

#### of amphipod reproductive response

 $C_{(cai.)} = s^2(max.) / s^2(total)$ 

C_(cat.) = 0.051 / 0.164 = 0.31 ns.

as compared to C(tab.) = 0.31

for P = 0.05, k = 11 and v = 4

# 3. Parametric one-way analysis of variance (ANOVA) d of amphipod reproductive response

Source of yenation in reproductive response	Degrees of freedom (df)	Sum of squares (SS)	Mean square (MS)	F(cal.)	_
Sediment source (S):	s-1 = 10	0.237	0.024	1.60 ns,	
Error (R):	s (r - 1) = 44	0.649	0.015		
Total (T):	sr - 1 = 54	0.886			as compared to
					$F_{\text{(tab.)}} = 2.06 \text{ for P} = 0.05,$
					10 numerator of, and 44 denominator of

^aSurface sediment (0 - 15 cm in depth) employed in amphipod toxicity test was collected on October 14 - 16, 2003. Control sediment was formulated in the laboratory. Laboratory dilution water was formulated with artificial sea salt to a salinity of 20 ppt.

^bEach replicate (r) consisted of 20 amphipods at start of test (i. e., 20 amphipods at end of test = 100% survival).

 $^{^{\}rm C}$ Cochran's (C) test indicates homogeneity of variances when  $C_{\rm (cat.)}$  is identified by the symbol "ns" (P = 0.05).

^d A parametric ANOVA indicates statistically significant differences among sediment sources when  $F_{(cal.)}$  is identified by the symbol "** (P = 0.01) and absence of significant differences when associated with the symbol "ns" (P = 0.05). Tukey's (w) test indicates the specific sources of any significant differences detected in an ANOVA. In Tukey's test, data underscored by the same horizontal line are not significantly different, whereas data not underscored by the same horizontal line are significantly different (P = 0.05).

^eReproductive response is calculated as 1/2 of the number of juveniles produced in a replicate / number of surviving adult females.

Table 8.__Statistical analysis of survival, reproduction, and DNA strand damage of grass shrimp (*Palaemonetes pugio*) exposed for 2 months to creek surface sediment of estuary at LCP Site^a

# A. SURVIVAL OF SHRIMP (JUVENILE TO ADULT) 1. Raw survival data (% survival)

		Replicate - r		Mean	Variance
Sediment source (S)	1	2	3	(x)	(92)
Control (Skidaway River)	80	90	75	82	58
Southern Part of Site					
Main Canal (Stat. 5)	90	75	90	85	75
Eastern Creek					
Station 6 Station 7	75 85	85 75	55 70	72 77	233 58
Western Creek Complex (Stat. 15)	55	70	, 50	58	108
Marsh Grid					
Station H7	25	. 20	35	. 27	58
Station K7	90	85	75	83	58
Western Part of Site					
Mouth of southern creek (Stat. 45)	85	75	95	85	100
Northwestern inlet from Turtle river (Stat. D)	85	80	85	83	. 8
Reference (R) Locations					
Troup Creek (TC)	90	75	85	83	58
Crescent River (CR)	95	80	85	87	58

#### 2. Cochran's (C) test for homogeneity of variances of survival data

 $C_{(cai.)} = s^2(max.) / s^2(total)$ 

 $C_{(cal.)} = 233 / 872 = 0.27 \text{ ns},$ 

as compared to  $C_{\text{(tab.)}} = 0.42$ 

for P = 0.05, k = 11 and v = 2

#### 3. Parametric one-way analysis of variance (ANOVA) followed by Tukey's (w) test of survival data d

Source of variation in survival	Degree			m of es (SS)	Me: square		F	(cal)	_	•	
Sediment source (S)	s - 1	= 10	9,6	46.97	964.	70	12	2.13 **,			
Error (R)	s (r - 1)	= 22	1.7	50.00	79.	55					
Total (T)	sr - 1	= 32	11,3	96.97			a:	s compar	ed to		
							F	(tab ) = 3.	26 for P	=	
								01, 10 m nd 22 der			
Sediment source (S):	<u>H7</u>	15	<u>6</u>	Z	Cont.	<u>.K7</u>	Ω	<u>TC</u>	5	45	CR.
Mean (x) survival (%):	27	58	72	77	82	83	83	83	85	85	87

 $W_{(P=0.05)} = q$  (square root of error MS / r) = 5.08 (square root of 79.55 / 3) = 15.0

#### B. PERCENT OF SURVIVING FEMALES FORMING MATURE OVARIES

#### 1. Raw data (% females)

		Replicate r	Mean	Variance	
Sediment source (S)	1	2	3	(x)	(\$ ² )
Control (Skidaway River)	79	92	70	80	122
Southern Part of Site					•
Main Canal (Stat. 5)	55	89	73	72	289
Eastern Creek					
Station 6	78	73	75	75	6
Station 7	63	82	89	78	181
Western Creek Complex (Stat. 15)	78	73	67	73	30
Marsh Grid					
Station H7	27	55	18	33	372
Station K7	63	91	60	71	292
Western Part of Site					*
Mouth of southern creek (Stat. 45)	78	82	67	76	60
Northwestern inlet from Turtle river (Stat. D)	54	90	78	.74	336
Reference (R) Locations					
Troup Creek (TC)	91	82	78	84	44
Crescent River (CR)	75	92	70	79	133

#### 2. Cochran's (C) test for homogeneity of variances of data

 $C_{(cal.)} = s^2(max.) / s^2(total)$ 

C_(cal.) = 372 / 1,865 = 0.20 ns,

as compared to C(tab) = 0.42

for P = 0.05, k = 11, and v = 2

#### 3, Parametric one-way analysis of variance (ANOVA) followed by Tukey's (w) test of data

Source of variation	Degree freedon		-	ium of ares (SS)		dean are (MS)	ı	F (cal.)			
Sediment source (S)	s - 1 :	= 10	5,	442.00	5	44.20		3.21 *			
Error (R)	<b>s</b> (r - 1)	= 22	<u>3.</u>	735.33	1	69.79					
Total (T)	sr - 1	= 32	9,	177.33				F _(tab.) 0.05,	mpared to	rP= atordf,	
Sediment source (S):	<u>H7</u>	<u>K7</u>	<u>5</u>	<u>15</u>	₽	<u>6</u>	<u>45</u>	Z	CR	Cont.	IC
Mean (x) %:	33	71	72	73	74	75	76	78	79	80	84

 $w_{(P = 0.05)} = q$  (square root of error MS / r)

= 5.06 (square root of 169.79 / 3) = 22.0

#### C. PERCENT OF SURVIVING FEMALES PRODUCING EMBRYOS

#### 1. Raw data (% females)

		Replicate - r	Mean	Variance		
Sediment source (S)	1	2	3	(x)	(\$ ² )	
Control (Skidaway River).	38	42	40	40	4	
Southern Part of Site						
Main Canal (Stat. 5)	27	. 22	36	28	50	
Eastern Creek						
Station 6	44	27	25	32	109	
Station 7	27	18	44	30	174	
Western Creek Complex (Stat. 15)	. 22	18	22	21	5	
Marsh Grid						
Station H7	9	18	0	9	81	
Station K7	18	8	20	15	41	
Western Part of Site						
Mouth of southern creek (Stat. 45)	33	45	56	45	132	
Northwestern inlet from Turtle river (Stat. D)	27	22	38	29	67	
Reference (R) Locations					•	
Troup Creek (TC)	82	36	33	50	754	
Crescent River (CR)	27	22	38	29	67	

#### 2. Cochran's (C) test for homogeneity of variances of data

#### (excluding Troup Creek)

 $C_{(cal.)} = s^2(max.) / s^2(total)$ 

C_(cal.) = 174 / 673 = 0.26 ns,

as compared to  $C_{(tab.)} = 0.44$ 

for P = 0.05, k = 10, and v = 2

#### 3. Parametric one-way analysis of variance (ANOVA) followed by

#### Tukey's (w) test of data (excluding Troup Creek)

Source of variation	Degree freedon			ım of nes (SS)		Mean are (MS)		F _(call)		
Sediment source (S)	s - 1	= 9	3,0	52.03	3	39.11		4.63 **		
Error (R)	<b>s</b> (r - 1)	<b>≈ 20</b>	1.4	63.33	7	73.17				
Total (T)	sr - 1	<del>-</del> 29	4,5	15.36				F _(tab.) 0 01, 9	pared to = 3,48 for l numerator denominal	df,
Sediment source (S):	<u>H7</u>	<u>K7</u>	<u>15</u>	5	Q	<u>CR</u>	Z	6	Cont.	<u>45</u>
Mean (x) (%):	9	15	21	28	29	29	30	32	40	45

 $W_{(P = 0.05)} = q$  (square root of error MS / r) = 5.01 (square root of 73.17 / 3) = 14.3

#### D. PERCENT OF EMBRYOS HATCHING

#### 1. Raw data (% hatching)

		Replicate - r		Mean	Variance	
Sediment source (S)	1	2	3	(x)	( <b>8</b> ⁴ )	
Control (Skidaway River)	95	100	85	93	58	
Southern Part of Site						
Main Canal (Stat. 5)	90	85	90	88	8	
Eastern Creek						
Station 6	90	85	90	88	8	
Station 7	100	90	90	93	33	
Western Creek Complex (Stat. 15)	95	85	80	87	58	
Marsh Grid					•	
Station H7	65	25	15	35	700	
Station K7	90	90	80	87	33	
Western Part of Site		•				
Mouth of southern creek (Stat. 45)	96	82	86	88	. 52	
Northwestern inlet from Turtle river (Stat. D)	90	90	80	87	33	
Reference (R) Locations						
Troup Creek (TC)	80	75	90	82	58	
Crescent River (CR)	100	95	95	97	8	

#### 2. Cochran's (C) test for homogeneity of variances of data

#### (excluding Station H7)

 $C_{(cal.)} = s^2(max.) / s^2(total)$ 

 $C_{(cat)} = 58 / 349 = 0.17 \text{ ns.}$ 

as compared to C_(tab.) = 0.44

for P =0.05, k = 10, and v = 2

#### 3. Parametric one way analysis of yarlance (ANOVA)

#### (excluding Station H7)

Source of variation	Degrees of freedom (df)	Sum of squares (SS)	Mean square (MS)	F (cal.)
Sediment source (S)	s - 1 = 9	504.97	56.11	1.59 ns,
Error (R)	s (r - 1) = 20	704.00	35.20	
Total (T)	sr - 1 = 29	1,208.97		as compared to
				F (tab ) = 2.39 for P =
				0.05, 9 numerator df, and 20 denominator (

E. DNA STRAND D	AMAGE IN E	MBRYOS
-----------------	------------	--------

#### 1. Raw data (DNA tail moment)

		2				
	Replicate - r		Mean	Variance		
1	2	3	(x)	( <b>s</b> ² )		
.9	1.7	1.3 ^e	1.30	0.16		
			• • •			
8 8	3 1	2.2	2.70	0.21		
.9	2.6	2.2	2.23	0.12		
1.1	1.3	2.2	1.87	0.24		
2.2	1.1	2.5	1.93	0.54		
.9	3.7	4.3	3.63	0.49		
.7	2.1	2.8	2.20	0.31		
2.2	1.1	1.9	1.73	0.32		
).9	1.9	2.5	1.77	0.65		
2.3	2.1	2.8	2.40	0.13		
).9	1.9	2.3	1.70	0.52		
	1	2.9 1.7 2.8 3.1 2.9 2.6 2.1 1.3 2.2 1.1 2.9 3.7 2.1 2.2 1.1 2.2 1.1 2.2 1.1 2.2 1.2 2.3 2.1	1.3° 1.3° 2.8 3.1 2.2 1.9 2.6 2.1 1.3 2.2 2.1 1.1 2.5 2.9 3.7 4.3 1.7 2.1 2.8 2.2 1.1 1.9 1.9 2.5 2.3 2.1 2.8	1.3° 1.3° 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30		

#### 2. Cochran's (C) test for homogeneity of variances of data

 $C_{(cal.)} = s^2(max.) / s^2(total)$ 

 $C_{(cal.)} = 0.65 / 3.69 = 0.18 \text{ ns},$ 

as compared to  $C_{\text{(tab.)}} = 0.42$ 

for P =0.05, k = 11, and v = 2

#### 3. Parametric one-way analysis of variance (ANOVA) followed by

#### Tukey's (w) test of data

Source of variation	•	rees of lom (df)		Sum of ares (SS)		lean re (MS)		F _(call)	_		
Sediment source (S)	s -	1 = 10		11.83	1	18		3.47 **,			
Error (R)	<u>s (r -</u>	1) = 22		<u>7.42</u>	Q.	).34					
Total (T)	\$r	- 1 = 32		19.25				as compa	ered to		
								F _(tab.) = : 0 01, 10 and 22 da	numerato	r df	
Sediment source (S):	<u>H7</u>	<u>5</u>	<u>TC</u>	<u> 6</u>	<u>K7</u>	<u>15</u>	7	Q	<u>45</u>	CR	Cont.
Mean (x) - (%):	3.63	2.70	2.40	2.23	2.20	1.93	1.87	1.77	1.73	1.70	1.30

 $w_{(P = 0.05)} = q$  (square root of error MS / r) = 5.06 (square root of 0.34 / 3) = 0.98

^aSurface sediment (0 - 15 cm in depth) employed in grass shrimp toxicity test was collected on October 14 - 16, 2003. Laboratory control sediment was uncontaminated marine sediment obtained from the Skidaway River. Laboratory dilution water was estuarine water (28 ppt).

^DEach replicate (r) consisted of 20 grass shrimp at start of test (i. e., 20 grass shrimp at end of test = 100% survival).

 $^{^{}c}$ Cochran's (C) test indicates homogeneity of variances when  $C_{(cat.)}$  is identified by the symbol ns (P = 0.05).

 $^{^{\}rm d}$ A parametric ANOVA indicates statistically significant differences among sediment sources when  $F_{(cal.)}$  is identified by the symbol "**" (P=0.05) or "**" (P=0.01). The symbol "ns" indicates the absence of statistically significant differences (P=0.05). Tukey's (w) test indicates the specific sources of any significant differences detected in an ANOVA. In Tukey's test, data underscored by the same horizontal line are not significantly different, whereas data not underscored by the same horizontal line are significantly different (P=0.05).

^eOnly two replicates were conducted for this control sediment. A symmetrical statistical design was achieved by assigning the mean value of those two replicates (i. e., 1.3) to a hypothetical 3rd replicate.

Table 9.__ Coefficients of determination for relationships between concentrations of chemicals of potential concern (COPC) and toxicity of creek surface sediment of estuary at LCP Site^a

Relat	ionship	Linear coefficient of
Chemical of potential	Toxicological	determination
concern (COPC) in sediment ^b	endpoint evaluated in sediment	(r²) ^c
Amp	hipod (Leptocheirus plumulosus) Stud	d by
otal mercury	Survival	0.079
rodor 1268	· ——	0.15
ead		0.57
otal PAHs	_	0.61
otal mercury	Growth (Weight)	0.11
roctor 1268		0.12
ead	<del></del>	0.63
otal PAHs		0.24
otal mercury	Reproduction	Reverse correlation
rodor 1268		Reverse correlation
ead		Reverse correlation
otal PAHs		0.19
Gra	ss Shrimp ( <i>Palaemonetes pugio</i> ) Study	,d
otal mercury	Survival	0.0021
roctor 1268	<del>-</del>	Reverse correlation
ead .	<del></del>	0.020
otal PAHs	<del></del>	Reverse correlation
otal mercury	Formation of ovaries	Reverse correlation
rodor 1268		Reverse correlation
ead		0.0001
otal PAHs		Reverse correlation
otal mercury	Production of embryos	0.0052
roctor 1268	<del></del>	0.078
ead		0.055
otal PAHs	<u>.</u> .	0.020
otal mercury	Hatching of embryos	Reverse correlation
roctor 1268	<del></del>	Reverse correlation
		Reverse correlation
ead		
ead otal PAHs		Reverse correlation
	DNA strand damage in embryos	Reverse correlation 0.0089
otal PAHs	DNA strand damage in embryos	
otal PAHs	DNA strand damage in embryos	0.0089

^aCreek surface sediment was 0 - 15 cm in depth.

^bToxicity reflected in this table could be associated with chemicals other than COPC. For example, numerous metals other than mercury and lead were probanly present in sediment, and dioxin was not evaluated in sediment.

^cLinear coefficient of determination (r²) describes the percent of variability in toxicological endpoints that can be explained by variation in chemical concentrations. The term "reverse correlation" refers to cases where decreased toxicity is associated with increased concentrations of COPC.

^dThe amphipod study (Table 7) and grass shrimp study (Table 8) were conducted with sediment from eight creek sampling stations and two reference locations.

Table 10.__Statistical analysis of reproduction and DNA strand damage of indigenous grass shrimp (*Palaemonetes pugio*) collected from estuary at LCP Site^a

		OF EMBRYOS w data (% hatci			
		Replicate - r		Mean	Variance
Location	1	2	3	(x)	(s²)
Control (Skidaway River)	90	95	90	88	8
Southern Part of Site					
Main Canal					
Station 25 (mid-way in Main Canal)	85	80	95	87	58
Station 5 (in Main Canal at confluence with Purvis Creek)	75	90	90	85	75
Reference (R) Locations					
Troup Creek (TC)	90	100	85	92	58
Crescent River (CR)	90	80	85	85	8

#### 2. Cochran's (C) test for homogeneity of variances of data

$$C_{(cal.)} = s^2(max.) / s^2(total)$$

 $C_{(cal.)} = 75 / 207 = 0.36 \text{ ns},$ 

as compared to C_(tab.) = 0.68

for P =0.05, k = 5, and v = 2

#### 3. Parametric one-way analysis of variance (ANOVA)

Degrees of	Sum of	Mean	
freedom (df)	squares (SS)	square (MS)	F (cal.)
I-1= 4	73.33	18.33	0.44 ns,
1(r-1)=10	416.67	41.67	
ir - 1 = 14	490.00		as compared to
			$F_{\text{(tab.)}} = 3.48 \text{ for P} =$
			0.05, 4 numerator df,
			and 10 denominator df
	freedom (df)   -1 = 4   (r - 1) = 10	freedom (df) squares (SS)  I - 1 = 4 73.33  I (r - 1) = 10 416.67	freedom (df) squares (SS) square (MS)  I - 1 = 4 73.33 18.33  I (r - 1) = 10 416.67 41.67

		ND DAMAGE O			
	1. <u>Raw c</u>	lata (DNA tail n	noment)		
		Replicate - r		Mean	Variance
Location	1	2	3	(x)	( <b>s</b> ² )
Control (Skidaway River)	2.9	1.1	1.6	1.9	0.86
Southern Part of Site					
Main Canal					
Station 25 (mid-way in Main Canal)	2.8	1.9	3.1	2.6	0.39
Station 5 (in Main Canal at confluence with Purvis Creek	2.2	3.1	1.9	2.4	0.39
Reference (R) Locations					
Troup Creek (TC)	1.9	2.9	1.3	2.0	0.65
Crescent River (CR)	1,1	2.9	1.8	1.9	0.82

#### 2. Cochran's (C) test for homogeneity of variances of dat

$$C_{(cal.)} = s^2(max.) / s^2(total)$$

C_(cal.) = 0.86 / 3.11 = 0.28 ns,

as compared to C_(tab.) = 0.68

for P =0.05, k = 5, and v = 2

#### 3. Parametric one-way analysis of variance (ANOVA)

Source of variation	Degrees of freedom (df)	Sum of squares (SS)	Mean square (MS)	F (cal.)
Location (L)	I - 1 = 4	1.21	0.30	0.48 ns,
Error (R)	l(r-1)=10	6.24	0.62	
Total (T)	ir - 1 = 14	7.45		as compared to
				$F_{(tab.)} = 3.48$ for $P =$
				0.05, 4 numerator df, and 10 denominator of

^aGrass shrimp (three females from each location) were collected in October 2003.

^DCochran's (C) test indicates homogeneity of variances when C_(cal.) is identified by the symbol "ns" (P = 0.05).

 $^{^{\}rm c}$ A parametric ANOVA indicates the absence of statistically significant differences among locations when  $F_{(cal.)}$  is identified by the symbol "ns" (P = 0.05).

Table 11.__Statistically based concentrations of total mercury, Aroclor 1268, and general sediment quality variables in surface sediment of major areas of estuary at LCP Site (all measurements in dry weight)^a

	Main Canal (Sample No. 1 at mouth; Sample No. 25 at headwater)			(Sample No.	Eastern Creek (Sample No. 1.at mouth; Sample No. 25 at headwater)				Marsh Grid lo. 1 at NW comer; Sample No. 25 at SE corner			
Sample	Total mercury	Aroclor 1268	Total organic content	Sitt/clay	Total mercury	Aroctor 1268	Total organic	Silt/clay	Total mercury	Arodor 1268	Total organic content	Sitt/clay
number	(mg/kg) ^b	(mg/kg) ^C	(%)	(%)	(mg/kg) ^b	(mg/kg) ^c	(%)	(%)	(mg/kg) ^b	(mg/kg) ^c	(%)	(%)
1	3.9	6.4	4.0	85.4	4.2	1.1	4.1	92.6	0.11	0.15	0.47	9.5
2	1.7	6.6	2.9	78.3	2.2	0.94	2.9	91	1.7	2.5	1.5	34.5
3	5.3	6.2	3.3	87.4	3.6	2.2	4.1	89.8	0.12	0.10	0.46	9.2
4	1.7	3.0	3.8	87.8	3.8	15	3.8	90.3	0.17	0.29	0.56	13.1
5	3.2	5.1	2.8	84.2	0.062	0.25	3.3	93.5	1.1	0.26	1.1	39
6	5.5	1.3	3.9	93.7	0.86	4.5	4.9	95.5	0.47	0.23	0.86	18.5
7	11	3.3	2.8	70.4	0.13	0.24	3.7	92.7	0.45	0.35	1.1	27
8	3.4	1.1	3.8	78.5	53	390	4.1	88.6	0.79	0.42	1.5	18.9
9	2.3	0.99	3.0	73.5	19	140	3.4	74.9	11	9.1	5.3	83.8
10	5.3	1.3	2.5	68.8	30	78	4.3	78.4	1.8	1.8	1.6	43.2
11	20	9.8	3.8	21.3	9.6	1.6	3.9	94.2	0.14	0.18	0.31	81.2
12	7.9	10	4.0	87.8	140	410	4.6	93.2	0.44	0.44	0.72	16.3
13	9.6	9.2	3.2	79.3	17	57	4.1	92.9	0.24	0.31	0.56	11.4
14	6.2	3.4	4.3	93.6	24	45	4.1	75.7	0.33	0.20	0.75	15.9
15	7.4	9.6	3.4	85.8	17	33	4.6	78.5	0.34	0.65	0.80	13.3
16	12	18	3.6	81.9	0.42	2.1	2.4	52.6	0.38	0.83	1.3	27.9
17	20	1.3	3.9	85	31	71	5.7	69.1	0.34	0.65	0.92	7.7
18	55	2.0	3.5	83.6	5.3	3.4	3.3	58.8	0.64	1.7	1.9	32.6
19	3.7	0.28	4.6	83.1	0.069	0.33	2.8	92.8	0.44	0.24	0.92	17.8
20	26	0.26	2.6	82.8	6.0	3.8	4.5	95	0.48	1.7	1.2	22.8
21	1.3	1.4	2.5	78.1	10	2.6	4.5	68.9	0.95	1.0	1.5	24.7
22	0.90	0.75	7.8	17.8	11	1.4	5.6	77.8	0.03	0.13	0.19	7.5
23	0.48	0.70	0.85	25	16	3.9	3.4	62.8	0.15	2.7	0.32	7.7
24	0.52	0.32	0.91	40.8	1.8	1.2	2.7	38.8	0.01	0.43	0.30	9.5
25	0.72	0.55	1.2	26.1	11	1.7	8.1	93.6	0.62	0.84	0.42	9.6
Mean (x):	8.60	3.47	3.32	71.2	16.68	50.81	4.12	81.3	0.93	1.09	1.06	24.1
Stand. dev. (s):	11.75	3.36	1.36	24.0	28.60	110.50	1.17	15.4	2.15	1.83	1.00	20.3
80% conf. inter. (CI):	5.50 - 11.70	2.59 - 4.35			9.14 - 24.22	21.68 - 79.94		-	0.36 - 1.50	0.61 - 1.57		
Recal. sample size :	5	1	· <b></b>	_	6	30	_	_	1,641	· 1		

⁸Surface sediment (0 - 15 cm in depth) was collected during the period of October 14 - 22, 2003. Sample collection was based on a random procedure in which 25 sediment samples were collected from midstream of consecutive 20-meter long segments in the Main Canal (~420 meters in length) and Eastern Creek (~840 meters in length). In the Marsh Grid, sediment samples were randomly obtained from 25 of 83 coordinates (A-1 through P-1) of a ~30-meter-square grid system.

^bPreliminary ecological remedial sediment goals (PERSGs) for total mercury are 4 mg/kg for all ecological resources except for protection of the federally endangered wood stork, for which 1 mg/kg has been established (U. S. EPA, 2001b).

^CPERSGs for Aroclor 1268 are 150 mg/kg for all ecological resources except for protection of the federally endangered wood stork, for which 24 mg/kg has been established (U. S. EPA, 2001b).

dSample size for this evaluation (n = 22, increased to 25, for each evaluated area) was based on an objective of estimating with 80% confidence if mean sedimentary concentrations of total mercury and Aroclor 1268 in the three areas exceeded worst-case PERSGs (1 mg/kg for total mercury and 24 mg/kg for Aroclor 1268). This estimation was based on a sample-size equation applied to a data set obtained in 2002 addressing concentrations of Aroclor 1268 in sediment from the Marsh Grid (n = 5, x = 36.80, and s = 38.94). (Aroclor 1268 was always determined to require a greater number of samples than total mercury to achieve the desired precision.) Recalculated sample size for each chemical in each area is based on the new (2003) values for sample size (n), mean (x), and standard deviation (s).

Table 12.__Statistical analysis of time-series differences in reproduction and DNA strand damage of indigenous grass shrimp (*Palaemonetes pugio*) collected from estuary at LCP Site^a

	A. PERCE	NT OF EME	RYOS HATO	HING		
	1.	Raw data (	% hatching)			•
			Replicate -	r	Mean	Variance
Location	Year (Y)	1	2	3	(x)	(s²)
	Main (	Canal in Sout	them Part of S	Site		
Station 25 (mid-way in Main Canal)	1999	4	31	2	12	262
	2002	63	46	53	54	73
	2003	85	80	95	87	58
Station 5 (in Main Canal at confluence	1997	35	63	29	42	329
with Purvis Creek)	2002	79	88	90	86	34

#### 2. Cochran's (C) test for homogeneity of variances of data

75

 $C_{(cal.)} = s^2(max.) / s^2(total)$ 

Station 25

2003

Station 5

85

75

C_(cal.) = 262 / 393 = 0.67 ns.

 $C_{(cal.)} = 329 / 438 = 0.75 \text{ ns},$ 

as compared to  $C_{(tab.)} = 0.87$  for P = 0.05, k = 3, and v = 2

#### 3. Parametric one-way analysis of variance (ANOVA)

#### Station 25

	Degrees of	Sum of	Mean	
Source of variation	freedom (df)	squares (SS)	square (MS)	F _(cal.)
Year (Y)	y - 1 = 2	8,328.67	4,164.34	31.74 **,
Error (R)	y(r-1)=6	<u>787.33</u>	131.22	
Total (T)	yr - 1 = 8	9,116.00		
	Sta	ation 5		
	Degrees of	Sum of	Mean	
Source of variation	freedom (df)	squares (SS)	square (MS)	F (cal.)
Year (Y)	y - 1 = 2	3,698.67	1,849.34	12.65 **,
Error (R)	y(r-1)=6	<u>877.33</u>	146.22	
Total (T)	yr - 1 = 8	4,576.00		

as compared to F (tab.) = 10.92 for P = 0.01, 2 numerator df, and 6 denominator df

#### B. DNA STRAND DAMAGE IN EMBRYOS

#### 1. Raw data (DNA tail moment)

•	1. 17	AM CARA ININ	2 Min III AIII AII	<u>v</u>		
			Replicate -	г	Mean	Variance
Location	Year (Y)	1	2	3	(x)	( <b>s</b> ² )
	<u>Main</u>	Canal in Sout	hem Part of S	Site		
Station 25 (mid-way in Main Canal)	1999	10.5	15.8	20.5	15.6	25.0
	2002	5.7	4.6	3.3	4.5	1.4
	2003	2.8	1.9	3.1	2.6	0.39
Station 5 (in Main Canal at confluence	1997	3.7	5.9	8.8	6.1	6.5
with Purvis Creek)	2002	3.9	2.9	3.1	3.3	0.3
	2003	2.2	3.1	1.9	2.4	0.39

#### 2. Cochran's (C) test for homogeneity of variances of data

$$C_{(cal.)} = s^2(max.) / s^2(total)$$

Station 25

Station 5

 $C_{(cal.)} = 25.0 / 26.8 = 0.93 *,$ 

$$C_{(cal.)} = 6.5 / 7.2 = 0.90 *,$$

as compared to  $C_{(tab.)} = 0.87$ 

for P = 0.05, k = 3, and v = 2

# 3. Nonparametric one-way analysis of variance (ANOVA) (Kruskal-Wallis Test; H)

$$H = [12/n(n+1)\sum_{i} R^{2}/n_{i}] - 3(n+1).$$

with  $n_i$  = number of data points in the ith sample,  $n = \sum_i n_i$ , and  $R_i$  = sum of ranks for ith sample

#### Station 25

H = [(0.13) (279)] - 30 H = 6.27 *,

#### Station 5

H = [(0.13) (265)] - 30H = 4.45 ns,

as compared to chi square = 5.99 for P = 0.05, and 2 df

^aGrass shrimp (three females from each location) were collected during the month of October in 1997, 1999, 2002, and 2003.

^bCochran's (C) test indicates homogeneity of variances when  $C_{(cal.)}$  is identified by the symbol "ns" and heteroscedasticy when associated by the symbol "*" (P = 0.05).

^cThe parametric ANOVA indicates statistically significant differences among years since  $F_{(cal.)}$  is identified by the symbol "**" (P = 0.01).

^dThe nonparametric ANOVA indicates statistically significant differences among years whrn "H" is identified by the symbol "*" (P = 0.05) and the absence of statistically significant differences among years when "H" is identified by the symbol "ns" (P = 0.05).

Table 13.__ Qualitative analysis of time-series differences in concentrations of chemicals of potential concern (COPC) in environmental media of estuary at LCP Site^a

Environmental medium	Site		<del></del>	Year of	evaluation		
(unit of measurement)	Location ^b	1995 ^c	1996 ^d	1997 ⁶	2000	2002 ⁹	2003 ^h
		Tota	al Mercury				
Surface water (ng/L)	Southern Part of Site						
(unfiltered)	Main Canal Mouth of Purvis Creek		22	32 - 398 26 - 43	16	- 11,3	- 33.3
	Reference locations	_	3.6 - 5.8	<5 - 26	1.7 - 3.3	1.14 - 1.24	1.24 - 2.10
Surface sediment			•				
n creek	Southern Part of Site Main Canal			24 - 65		1.2 - 11	5.50 - 11.70
(mg/kg, dry wt)	Eastern Creek			9.5	1.1 - 110	3.8 - 48	9.14 - 24.22
	Western Creek complex	1.9	1.4 - 2.6	1.8 - 2.6	2.0 - 9.7	1.3 - 1.5	0.48 - 2.8
•	Mouth of Purvis Creek			1.8	0.28	0.23	0.59
	Northern Part of Site			-	0.048 - 4.6		0.34
	Western Part of Site	-	-	-	0.15	0.24 - 1.4	0.15 - 3.4
	Marsh Grid			-	1.3 -50	2.6 - 62	
	Reference locations	0.13	0.05U - 0.13	0.008 - 0.027	0.0076 - 0.24	0.025 - 0.038	<0.02 - 0.04
iurface sediment	Southern Part of Site						
n marsh	Main Canal		_			8.5	2.0
mg/kg, dry wt)	Eastern Creek			13			6.3 - 32
	Western Creek complex	-	_	0.97 - 1.8	3.3	2.1	
	Mouth of Purvis Creek	-		0.75	0.53	1.0	
	Northern Part of Site			-	0.12 - 3.2	-	
	Western Part of Site		-	-		0.030 - 0.79	
	Marsh Grid		-	-	-	-	
	Reference locations	0.13	.088 - 0.13	0.047 - 0.050	0.0032 - 0.28	0.032 - 0.094	0.039 - 0.07
iddler crabs	Southern Part of Site						
mg/kg, dry wt)	AB seepage area		-	-	1.1	0.95	0.82
	Main Canal		-		0.74	0.67	0.41
	Eastern Creek	-	~	0.45	-	-	-
	Western Creek complex  Mouth of Purvis Creek	-	0.27 	0.14 - 0.30 0.11	 0,16	- 0.13	- 0.18
	Northern Part of Site	_	0.50	<b>0.11</b>	0,10	0.13	0.10
	Western Part of Site	-	0.44		-	-	-
	Marsh grid	_	1.8	_	_	-	_
	Reference locations	0.05	0.01 - 0.043	0.01 - 0.02	- 0.018 - 0.031	0.027	0.034
	Notation locations	0.03	0.01 ; 0.040	0.01 - 0.02	0.010 - 0.031	0.021	0.034
lummichogs	Southern Part of Site						
ng/kg, dry wt)	Main Canal		-			1.0	
	Eastern Creek Western Creek complex	_	_	0.38 - 0.55	0.33	0.43	
	Mouth of Purvis Creek	_	_	0.22	-	_	_
	Northern Part of Site		_	_		0.34	0.39
	Western Part of Site	_		-		0.18 - 0.27	0.12 - 0.15
	Reference locations	0.10	-	0.02 - 0.04	0.025 - 0.041	0.12	0.077
lue crabs	Purvis Creek		_			0.97 - 1.0	1.5 - 1.6
ng/kg, dry wt)	Reference locations	0.10	<b>→</b>	-	0.069 - 0.078	0.14	0.073
ilver perch	Purvis Creek	_	-	-		$M_{\rm eff}$	1.6
ng/kg, dry wt)	Reference locations	-	-	-	0.15	-	-
ed drum	Purvis Creek	-	-	~	-	0.81	0.67
ng/kg, dry wt)	Reference locations	-	-	-	-	-	
lack drum	Purvis Creek	-	-	_	0.92	0.41	0.61
ng/kg, dry wt)	Reference locations	_	_	_	-	_	_
				~			
potted seatrout	Purvis Creek	-			0.64	0.90	
ng/kg, dry wt)	Reference locations	-	-	-	-		-

Table 13.__ Continued

Environmental medium	Site		<del>-</del>		f evaluation		
(unit of measurement)	Location ^b	1995 ^c	1996 ^d	1997 ^e	2000'	2002 ⁹	2003 ^h
		A	oclor 1268				
Surface water (ug/L)	Southern Part of Site						
(unfiltered)	Main Canal			<0.2 - 5.5	1.0U	-	-
	Mouth of Purvis Creek	-	U	<0.2	1.0U	1.0U	1.0
	Reference locations	0.22	U	<0.2	0.33 - 1.0U	1.0U	<0.5
Surface sediment	Southern Part of Site						
n creek	Main Canal	62				0.25 - 23	
mg/kg, dry wt)	Eastern Creek			63			
	Western Creek complex					2.1 - 2.8	
	Mouth of Purvis Creek	<b>L</b>		11		1.9	0.71
	Northern Part of Site			-	والنبياتي	0.14	0.32
	Western Part of Site		<b>l</b> –	-			
	Marsh Grid			_			
	Reference locations	0.081	0.006 - 0.06	<0.028	0.044U - 0.089U	0.092U - 0.19	<0.20
Surface sediment	Southern Part of Site						
n marsh	Main Canal		-				
mg/kg, dry wt)	Eastern Creek						
	Western Creek complex	=	-				
	Mouth of Purvis Creek	-	-				
	Northern Part of Site			-			
	Western Part of Site		_	_		0.61 - 1.5	0.66 - 0.8
	Marsh Grid		_	_	~	_	
	Reference locations	0.081	0.0077 - 0.027	<0.028	0.046U - 0.063U	0.061U - 0.10U	<0.25 - <0.
iddler crabs	Southern Part of Site						
mg/kg, dry wt)	AB seepage area		_	_		2.8	
	Main Canal		-			2.8	
	Eastern Creek		-	-	~	_	-
	Western Creek complex	-	0.81	0.53 - 1.9			
	Mouth of Purvis Creek	_	_				
	Northern Part of Site	-	1.5	-	-	-	-
	Western Part of Site		1.2		-	-	-
	Marsh grid	-	73	-	-	-	-
	Reference locations	0.08	0.08 - 0.13	0.04 - 0.06	0.15 - 0.17	0.18	0.99
Nummichogs	Southern Part of Site						
mg/kg, dry wt)	Main Canal		-		_	70.00	7.4
	Eastern Creek	_	_			7.9 - 8.6	3.6 - 8.0
	Western Creek complex	-	-	0.66			
	Mouth of Purvis Creek		_		_	_	-
	Northern Part of Site		-	-		2.2	1.6
	Western Part of Site	-	-	- 0.08	-	0.21 - 2.4	1.1 - 1.2
	Reference locations		~	0.08	0.20 - 0.22	0.11	0.45
lue crabs	Purvis Creek		~	-	3. T. S.	1.9 - 2.4	21.
mg/kg, dry wt)	Reference locations	2.7	-	-	0.15 - 0.21	0.09	0.43
ilver perch	Purvis Creek	-	-	-	2.9		
mg/kg, dry wt)	Reference locations	~	-	-	0.33	-	
ed drum	Purvis Creek	-	-	-	-		
mg/kg, dry wt)	Reference locations	~	-	-	-	-	-
Black drum	Purvis Creek	-	-	-	4.2		
mg/kg, dry wt)	Reference locations	-	-	-	-	-	-
				_	0.99		فحنحتم
potted seatrout	Purvis Creek	_	-	_	0.33		

Table 13.__ Continued

Environmental medium	Site	4005C	1996 ^d		evaluation	2250	2003 ^h
(unit of measurement)	Location ^b	1995 ^c	1996	1997°	2000	20020	2003
			Lead				
Surface water (ug/L)	Southern Part of Site						
unfiltered)	Main Canal						-0.005
	Mouth of Purvis Creek	-	U	<2		50U	<0.005
	Reference locations	_	U	<2 - 11	5.0 U	50U	<0,005
Surface sediment	Southern Part of Site						
n creek	Main Canal					11 - 24	11 - 32
mg/kg, dry wt)	Eastern Creek Western Creek complex			20 - 23	23 - 29	31 - 32	23 - 28
	Mouth of Purvis Creek			20 - 23	23-25	31 - 32	23-20
	Northern Part of Site			_	13 - 63		
	Western Part of Site			_	_	14 - 19	13 - 25
	Marsh Grid				24 - 35	13 - 35	21 - 52
	Reference locations	24	5.0 - 20	1.7 - 6.3	2.0 - 12	12 - 14	7.5 - 9.4
urface sediment	Southern Part of Site						
n marsh	Main Canal		_		50.	12	24
mg/kg, dry wt)	Eastern Creek			23	25 - 34	20 - 21	28 - 42
	Western Creek complex	-	••	18 - 23	26	34	22
	Mouth of Purvis Creek			16	- [		
	Northern Part of Site			-	14 - 91		-
	Western Part of Site		-	-	- 1		16 - 28
	Marsh Grid		-	-	-	-	-
	Reference locations	24	16 - 19	10 - 11	5.9 - 24	16 - 24	12 - 21
iddler crabs	Southern Part of Site						
ng/kg, dry wt)	AB seepage area	-	-	-		* .	
	Main Canal	-	-	2.2	1.9	2.8	1.6
	Eastern Creek	-	1.1	- 10.22	-	-	-
	Western Creek complex Mouth of Purvis Creek	-	- -	1.0 - 2.2 0.42	1.0		
	Northern Part of Site	-	1.8	_		_	
	Western Part of Site	_	0.87	_			
	Marsh Grid	_	8.7	_	_	-	
	Reference locations	~	0.66 - 0.77	0.36 - 0.41	0.96 - 1.3	1.4	0.41
lummichogs	Southern Part of Site						
ng/kg, dry wt)	Main Canal	<b>~</b>	-	0.18 - 0.21	_	0.62	0.57
	Eastern Creek	-	-	0.22	0.98 - 1.2		
	Western Creek complex	~	_	0.10 - 0.39			
	Mouth of Purvis Creek	-	-	0.11		-	-
	Northern Part of Site	-	-	-		كإسيبتي	
	Western Part of Site	-	-	-	~ <b>I</b>	البسيب	
	Reference locations	~	-	0.26 - 0.39	0.87 - 2.8	1.3	0.54
lue crabs	Purvis Creek	-	-	-	0.71 - 1.1		
ng/kg, dry wt)	Reference locations	-	_	-	.75 - 1.1	1.2	0.12
lver perch	Purvis Creek	_	_		1611		
ng/kg, dry wt)	Reference locations	 -	_	_	1.6U 2.2U		
igring, Ory mi)	TOTAL PROPERTY INC.	- <del>-</del>	-	-	4.20	-	
ed drum	Purvis Creek	-	-	-	-	0.50	0.12
ig/kg, dry wt)	Reference locations		-	-	-	-	_
lack drum	Purvis Creek	-	-	<del>-</del> .	1.8U		السيي
ng/kg, dry wt)	Reference locations	-	_	_		-	_
-	Punin Cont				=		
ootted seatrout	Purvis Creek	-	-	~	1.8U		
ng/kg, dry wt)	Reference locations	-	-	-	-	-	~

Table 13.__ Continued

Environmental medium	Site	Year of evaluation										
(unit of measurement)	Location ^b	1995 [¢]	1996 ^d	1997 ^e	2000 ^f	2002 ⁹	2003 ^h					
	Po	lynuclear Arom	atic Hydrocarbons	(PAHs)								
Surface water (ug/L)	Southern Part of Site											
(unfiltered)	Main Canal	~	U		U	-	-					
	Mouth of Purvis Creek	-	U	-	ប		_					
	Reference locations	-	U	-	U	-	-					
Burface sediment	Southern Part of Site											
n creek	Main Canal	0.44			والمتنابية المتنابية	0.21 - 1.4						
mg/kg, dry wt)	Eastern Creek	_	0.39 - 0.67	-		0.28 - 4.3						
	Western Creek complex	-		-		U - 0.081						
	Mouth of Purvis Creek	-		-		0.33	0.09					
	Northern Part of Site	0.56		-			0.64					
	Western Part of Site	-	-	-	0.027	0.030 - 0.42	0 - 0.53					
	Marsh Grid	U	_		U - 0.22	U - 1.0						
	Reference locations	U	0.17 - 0.89	-	U	U	0 - 0.03					
Surface sediment	Southern Part of Site											
n marsh	Main Canal	0.83		-	U - 0.52	0.39						
mg/kg, dry wt)	Eastern Creek	-	-	-	0.007 - 0.17							
	Western Creek complex	-	-	•	U	0.18	0.23					
	Mouth of Purvis Creek	-	-	-	0.010	0.20	0.93					
	Northern Part of Site	0.28	_	_	U ~ 0.80	~	-					
	Western Part of Site		-	-	1.	النبطالها						
	Marsh Grid	υ	0.69	-	-		-					
	Reference locations	U	_	_	U - 0.005	u	0					

^aColor scheme employed in this table is intended to suggest general, qualitative (i. e., non-statistically based) trends over the years in concentrations of COPC in environmental media from various locations at the LCP Site. Red color is employed to identify levels of COPC prior to 2003 that have clearly not yet decreased to a point of equilibrium. Orange color signifies levels of COPC in 2003 that are apparently in the same state of flux. Green color identifies years in which levels of COPC decreased substantially in comparison to previous years.

^bSite locations are relatively large areas in which numerous samples of environmental media were often taken at different points in the locations during a year.

^cData for 1995 were generated by the U. S. EPA (Sprenger et al., 1997) and are <u>mean values</u> derived from parts of Tables 24 and 25 (surface water); Tables 3, 4, 9, 10, and 12 (creek and marsh surface sediment); Table 31 (fiddler crabs); Table 42 (mummichogs); and Table 37 (blue crabs).

^dData for 1996 were generated by PTI Environmental Services and CDR Environmental Specialists (1998) and are <u>single values</u> derived from parts of Table 5-1(surface water); a <u>range of values</u>, sometimes from several sampling stations in the same location, and always at different depths at the sampling stations, from parts of Table 5-2 (creek sediment); <u>mean values</u> for several depths from Figure 4-4 (most marsh sediment); and <u>mean values</u> from parts of Table 5-4 (marsh grid) and Figure 4-6 (fiddler crabs).

^eData for 1997 were generated by NOAA and Region 4, U. S. EPA (1998) and are typically a <u>range of values</u>, sometimes from several sampling stations in the same general location, derived from parts of Figure 3.1, Section 3.2.2, and Section 3.2.3 (surface water); <u>mean values</u>, sometimes a range of mean values from several sampling stations in the same general location, from Figures 3.4, 3.5, and 3.6 (creek and marsh [bank] surface sediment); and <u>mean values</u>, sometimes a range of mean values from several sampling stations in the same general location from Figures 3.20, 3.22, and 3.23 (fiddler crabs) and Figures 3.13, 3.15, and 3.16 (mummichogs).

Data for 2000 were generated by CDR Environmental Specialists and GeoSyntec Consultants (2001) and are typically mean values or a range in values derived from parts of Table 3 (surface water), Table 4 (creek sediment), Table 5 (marsh sediment), and Table 6 (fiddler crabs, mummichogs, blue crabs, silver perch, black drum, and spotted seatrout).

⁹Data for 2002 were generated by CDR Environmental Specialists and GeoSyntec Consultants (2003a) and are typically <u>mean values or a range in values</u> derived from parts of Table 3 (surface water), Table 4 (creek sediment), Table 5 (marsh sediment), and Table 6 (fiddler crabs, mummichogs, blue crabs, silver perch, red drum, black drum, and spotted seatrout).

^hData for 2003 are abstracted from the following tables in this report: Table 3 (surface water), Table 4 (most creek sediment), Table 5 (most marsh sediment), Table 11 (total mercury and Arcolor 1268 in sediment from Main Canal, Eastern Creek and Marsh Grid), and Table 6 (fiddler crabs, mummichogs, blue crabs, silver perch, red drum, black drum, and spotted seatrout).

# RESULTS OF SEDIMENT TESTS CONDUCTED FOR CDR ENVIRONMENTAL SPECIALISTS USING SAMPLES FROM BRUNSWICK, GEORGIA

#### Prepared for:

Mr. Curt Rose
CDR Environmental Specialists
6001 N. Ocean Drive
Suite 1103
Hollywood, Florida 33019

#### Prepared by:

The SeaCrest Group, LLC 1341 Cannon Street Louisville, Colorado 80027-1455 (303) 661-9324

February 22, 2005

#### **TABLE OF CONTENTS**

TABLE OF CONTENTS	2
LIST OF TABLES	3
INTRODUCTION	4
MATERIALS AND METHODS	4
Sample Collection  Dilution Water  Test Organisms  Test Procedures	4 4
RESULTSLEPTOCHEIRUS PLUMULOSUS TEST	
REFERENCE TOXICANT TEST RESULTS	7
LEPTOCHEIRUS PLUMULOSUS	7
REFERENCES	8
APPENDIX 1 – CHAIN OF CUSTODY FORM	9
APPENDIX 2 – WATER BATCHES USED FOR THE LEPTOCHEIRUS PLUMULOSUS TESTS	10
APPENDIX 3 – DAILY TEMPERATURE READINGS OF THE INCUBATOR DURING THE <i>LEPTOCHEIRUS PLUMULOSUS</i> TEST	11
APPENDIX 4 – TEST ORGANISM SUPPLIER HISTORY SHEETS	12
APPENDIX 5 – REFERENCE TOXICANT TEST BENCH SHEETS	13
APPENDIX 6 – DAILY INSTRUMENT READINGS	14
APPENDIX 7 – DAILY COMMENTS AND OBSERVATIONS OF THE LEPTOCHEIRUS PLUMULOSUS TEST	15
APPENDIX 8 – NUMBER SURVIVING, DRY WEIGHT DETERMINATIONS PER REPLICATE, SEXED MALES, AND JUVENILE PRODUCTION FOR THE LEPTOCHEIRUS PLUMULOSUS TEST	

Site: Brunswick, Georgia

#### LIST OF TABLES

Table 1.	Test survival and weight results for the Leptocheirus plumulosus sediment
	exposures
Table 2.	Test species sexing and juvenile production results for the Leptocheirus plumulosu.
	sediment exposures8

Site: Brunswick, Georgia

#### INTRODUCTION

Procedures have been established as a means to monitor the potential effects of contamination on aquatic systems. These test procedures can provide a measure of the impact on mortality, reproduction, and growth in acute and chronic exposures. The present report details the results of chronic testing on an aquatic invertebrate, *Leptocheirus plumulosus*, from sediments collected from sites near Brunswick, Georgia.

#### **MATERIALS AND METHODS**

#### Sample Collection

Grab samples of sediment were collected at twelve sites from October 19, 2004 to October 25, 2004. These samples were placed in clean, plastic containers. Federal Express shipped the samples in two separate coolers on October 27, 2004 for overnight delivery to the SeaCrest lab. They arrived at 12:40 pm on October 27, 2004. After delivery, the sediment samples were refrigerated at 4°C when not in use. The Chain of Custody forms documenting sample collection and transfer times is included in Appendix 1.

#### Dilution Water

Moderately hard laboratory reconstituted water was used as the overlying water for the sediment. Reconstituted water was prepared by mixing sodium bicarbonate, calcium sulfate, magnesium sulfate, and potassium chloride in deionized water

#### Test Organisms

The tests were conducted with a benthic estuarine amphipod *Leptocheirus plumulosus*. The amphipods used in the sediment tests were between one and two days old as prescribed by the test procedures. Organisms were tested in a reference toxicant test using copper sulfate to insure their health and test acceptability.

#### Test Procedures

The tests followed the procedures outlined in USEPA (1994)³. The *Leptocheirus plumulosus* tests were started on January 12, 2005 with the addition of water over the sediments. Animals were added to the test containers on the next day. The tests ran for 28 days, ending on February 9, 2005.

The sediments did not require sieving but were thoroughly stirred and all large particles (i.e. branches, stones) were removed manually. Each of the sediments was visually inspected for indigenous organisms but none were observed. All sample sediments were treated in the same manner in regards to processing and addition to the test containers.

Test containers were 300 ml glass jars to which 100 ml of the homogenized sediments were added. To this was added 175 ml of reconstituted water. The sediments were tested at the 100% concentration only. Twelve replicates were used for each sediment sample. Two sets of

Site: Brunswick, Georgia

controls were run for the nineteen sediment samples. The control set used clean, uncontaminated sediment created with medium-to-fine grain sand mixed with a small amount of organic material (decaying leaves) and potting soil.

The water over the sediments was changed twice daily. The test containers were monitored for temperature and dissolved oxygen, before and after a daily water change. Water used for the change-outs was held in the incubator at test temperature. The containers for the reconstituted water were refilled immediately after each change-out so that the water would be at test temperature by the next change-out. The data sheets documenting the batch preparation and water quality checks are located in Appendix 2.

Test animals were fed once a day. All Leptocheirus plumulosus test chambers received 1 ml of "Gorp" solution. Observations of mortality and/or effects were made at water change-out.

The water over each sediment sample was measured for pH, salinity, alkalinity, conductivity, and ammonia at the beginning and at the end of the tests. The data sheets containing the daily readings of temperature and dissolved oxygen, and the water quality readings taken at the beginning and end of both tests, are located in Appendix 6. The tests were held at a temperature of  $25 \pm 1^{\circ}$ C in an incubator with a programmed day cycle of 16 hours light and 8 hours dark. The daily temperature readings for the incubator are located in Appendix C. The temperature readings for the incubator were higher than those recorded in the tests themselves (as seen on the test data sheets), however, the incubator readings show consistency and adjustments to the temperatures in the incubators were made, as needed.

Dissolved oxygen levels were maintained above 4.0 mg/L, as per the sediment toxicity test guidelines. All sediments in both tests were aerated from the beginning of the tests due to low initial dissolved oxygen levels.

At the end of the Leptocheirus plumulosus test, water was pulled from each replicate of each sediment test and composited by test sediment for final water quality readings. The water was poured from the samples into a clean plastic pan and searched thoroughly for live animals. Then the sediment was added to the pans and thoroughly searched. Diligent effort was made to account for every test organism, either by retrieving them live or finding a body. The Leptocheirus plumulosus were sexed and present juveniles were counted. Live organisms were euthanized and placed in a drying oven at 60°C overnight. The Leptocheirus plumulosus were then weighed on a four-place analytical balance to determine average dry weights. The data sheets containing the dry weight determinations, the number of surviving Leptocheirus plumulosus per replicate for each sample, sexed adults and produced juveniles are located in Appendix 8.

Site: Brunswick, Georgia

#### **RESULTS**

#### Leptocheirus plumulosus Test

The amphipod test was run with all nineteen collected sediments. Two control sediments, using clean sand mixed with leave litter and potting soil, was run along with the sediments. Daily comment sheets for the test are located in Appendix 7. Table 1 summarizes test results.

TABLE 1. TEST SURVIVAL AND WEIGHT RESULTS FOR THE LEPTOCHEIRUS PLUMULOSUS SEDIMENT EXPOSURES.

SEDIMEN	I EAFUSURES.			
ANTHRO	Stiller de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la company	Superturior	Weigh Cangell (mg)	AND SEED OF SEED
Control-20	80-100	92	0.11-0.64	0.32
Control-21	75-95	86	0.14-0.32	0.22
1-04293-C6	20-55	37	0.16-0.54	0.38
2-04294-MGH7	15-30	24	0.38-0.60	0.50
3-04299-C103	50-95	72	0.11-0.35	0.23
4-04295-A-C	25-45	33	0.16-0.97	0.41
5-04299-C101	35-80	55	0.24-0.38	0.31
6-04299-C102	40-60	47	0.24-0.57	0.40
7-04299-C105	0	0	0	0
8-04296-D-C	45-75	49	0.14-0.38	0.23
9-04299-C100	65-90	76	0.28-0.31	0.29
10-04299-C104	50-90	66	0.27-0.34	0.32
11-04295-CR	25-50	40	0.05-0.28	0.18
12-04295-C45	0-45	23	0.00-0.50	0.26
13-04294-MGK7	10-70	41	0.21-0.35	0.29
14-04293-C5	45-75	63	0.34-0.50	0.40
15-04295-TC	25-60	42	0.30-0.43	0.36
16-04293-C7	cas 5-30	15	0.22-0.90	0.45
17-04295-C1833	30-60	42	0.19-0.43	0.35
18-04294-C15	0-10	3	0.00-0.85	0.25
19-04295-MAB	5-35	15	0.10-0.62	0.30
Beginning of Test	NA	NA	0.09	0.09

The amphipod *Leptocheirus plumulosus* was also tested to measure the fertility and sex ratio responses. Sexed adults and juvenile production for the tests are located in Appendix 7. Table 2 summarizes these test results.

Site: Brunswick, Georgia

TABLE 2. TEST SPECIES SEXING AND JUVENILE PRODUCTION RESULTS FOR THE LEPTOCHEIRUS PLUMULOSUS SEDIMENT EXPOSURES.

I LUMULUSUS SEDIMENT EAT USUKLS.											
2 22 11 11 2 2	Altern Height as menter	્રિક્સ <mark>કે કર</mark> ્સ મહિલામાં કિલ્લામાં કરવા છે. જેક <mark>કે કર્સ</mark> માહિલા કામમાં છે છે.									
Control-20	8	29									
Control-21	8	53									
1-04293-C6	5	30									
2-04294-MGH7	3	4									
3-04299-C103	10	3									
4-04295-A-C	. 4	2									
5-04299-C101	6	17									
6-04299-C102	6	30									
7-04299-C105	0	0									
8-04296-D-C	7	10									
9-04299-C100	9	29									
10-04299-C104	8	44									
11-04295-CR	5	45									
12-04295-C45	3	1									
13-04294-MGK7	5	2									
14-04293-C5	8	7									
15-04295-TC	5	30									
16-04293-C7	2	0									
17-04295-C15	6	24									
18-04294-C15	1	4									
19-04295-MAB	2	1									

#### REFERENCE TOXICANT TEST RESULTS

#### Leptocheirus plumulosus

The test organism history sheets from the supplier (Aquatic BioSystems, Inc., Ft. Collins, CO) are located in Appendix 4. The amphipod animal batches used in the sediment tests were tested against the reference toxicant copper (the toxicant recommended in the guidelines) to determine their health and test acceptability. This non-toxic substance was used instead of cadmium and the results should be interpreted with this in mind. The Leptocheirus plumulosus test was conducted from January 12 of 2005. The test consisted of 5 replicates per concentration, two organisms per replicate. The test beakers contained water and a small amount of sand placed over the bottom of each beaker. The test was a static, non-renewal; meaning the water was not changed daily. The animals were fed 0.1 ml of gorp on days 0 and 2. The test concentrations run were 250, 125, 62.5, 31.25, and 15.63 ppb copper.

The LC50 created was 121.85 ppb copper using the Probit statistical method. This method produced control results and followed methods according to the guidelines. There was no

Client: CDR Environmental Specialists

Site: Brunswick, Georgia

SCG Project No.: 304308

information in the guidelines as to what statistical method or LC50 range was used in order to produce the results for an acceptable reference toxicity tests for copper.

#### REFERENCES

- 1. APHA/AWWA/WEF. 1998. Standard Methods for the Examination of Water and Wastewater. 20th Edition. American Public Health Association, Washington, D.C.
- 2. Hach Chemical Company. 2002. Hach Water Analysis Handbook. Hach Chemical Company, Loveland, Colorado. 1260pp.
- 3. USEPA. 1994. Methods for Measuring the Toxicity and Bioaccumulation of Sediment-associated Contaminants with Freshwater Invertebrates. EPA-600-R-94-024.

Client: CDR Environmental Specialists

Site: Brunswick, Georgia

•

Appendix 1 - Chain of Custody Form

SCG Project No.: 304308

# The SeaCrest Group

1341 Cannon Street • Louisville, Colorado 80027

# **Chain of Custody Record**

(enclose with each shipping container)

Purchase	Order	Numbe
i dicilase	Oldel	HUITIDG

	303-661-9324 • FAX 303-661-9325													Pr	Project Number (lab use only)				
Client: Cost Rose Program/Site: LCP Bic	nywich		C P	ontact hone:	: 954	- 25>	-1165		_ Add	ress:					30	430	8		
Collected by:					<del></del>	Ac	cute		Ch	ronic	5		/	These fi for fi	ields ma eld test /	y be use results /	d /		
Sample Identification (Effluent, Receiving, Sediment, list other	Date Sampled	Time	Ту	nple pe site, grab)	Gerio.	FH Minno.	Accelerator		FH M.	Accelerate		Office	_/_				Total Units	Total Volume	
1 04293-05	10/14/04		Comp	esile	<u> </u>	28-1	cx A	mpl	رودت	icol							i		
204293-CL	10/15/04			<u></u>	<b>j</b>								77				1		
304293-67	10/14/04																(		
4 04294 - 615	10/20/04																1		
5 04294 - MG-H7(C	10/20/04				<u> </u>	<u></u>													
604294-MC-K7(C	10/20/04	_															1		
704285 - TC	10/21/04	_															1		
8 04295 - CR	10/21/04																1		
9 04795 MAB	10/21/04																1		
10 04295 C33	10/21/04	_	J	-				<b>V</b>									l		
Comments and special test	ting instruction	ns:		<del></del> -			<del></del>												
	<u> </u>	रिष्	<u>1 p</u>	us itu	<u>ic co</u>	4121	Cuc	2	nge	tive c	cuto	دل					-	<del></del>	
(2) Five Digit dat	c yet In	انارد	(y.	04	Con	tame	<u> </u>	Hou	<u> دینن</u>	copost	067	c plus	othe	- SAA	plc 10	ÜCLA.FI	iction	in icpai	
Relinquished by:	Rok		Repr	esentir	ng:(	2012	Eur	421	<u>t</u>	To Who	m: <u></u> [	ر کلارا	Espe	رن)	Date/T	ime: _	92610	43 1400	
Relinquished by:			Repr	esentir	ng:					To Who	m: <i>(</i>		<del>-</del>		Date/T	ime: _			
Next recipient:			Relin	quishe	ed by:				<del></del>	Rec'd b	y: <u>, X</u>	47	_		Date/Ti	ime: <u>*</u>	32704·	-1240	

# The SeaCrest Group

1341 Cannon Street • Louisville, Colorado 80027

# **Chain of Custody Record**

(enclose with each shipping container)

						-	
Purc	hase	90	rde	r Ni	mı	be	r

303-661-9324 • FAX 303-661-9325												] F	Project Number (lab use only)						
Client:		Contact:						Addı	Address:						304308				
Collected by:				_			cute				Chronic			T		e fields m field tes	nay be use st results	ed /	
Sample Identification (Effluent, Receiving, Sediment, list other	Date Sampled	Time	Samp Type (composite,	• /	$\epsilon_{erio}$	FH Minas	400 A		C Suice	FH Wins	Accelera.	Day /	<u>u</u> / .					Total Units	Total Volume
1 04255 - 645	10/21/04	/				,28	Dix	Am	رنبر	رزوو	1234	\ <u>.</u>				<u> </u>		1	
204795-A-C	10/21/04											Ľ						1	
304296 D-C	10/72/04																		
4 C4299 - C100	10/25/04	/																1	
504299-0101	10/25/04	/																1	
604299-(102	10/25/04																	i	
704299-C103	10/25/04																	l	
8 04 299 - C104	10/25/04																	1	
904299-0105	10/25/04																	1	
10	7																		
Comments and special tes	ting instructio	ons:																	
Relinquished by:			Repres	enting:							To Who	m: _				Date/	Time:		
Relinquished by: Representing:										To Who	m:{	7,		Date/Time:					
Next recipient:			Relinqu	ished 1	by:	: Rec'd by:						Date/Time: 192704~1240							

WHITE COPY: Accompanies samples

**CANARY COPY: Client** 

#### Sample Receipt Form

Project #: 304308 (1-18)	Sample	e#: —		
Date: 102704	Initials:	SP		<del></del>
Samples Were:				
1. Shipped Hand Delivered Messengered Notes:	(circle d	one)		
2. Airbill Present Y	N	NA		
3. Chilled to Ship Notes:		Ambie	ent Chilled	(circle one)
		Tce	Blue lo	e (circle one)
Cooler Received Broken or Leaking     Notes:		Y	N	NA
5. Sample Received Broken or Leaking Notes:		Y	N	NA
6. Received Within Holding Times Notes:		Ŷ	N	
7. Aeration necessary Notes:		Y	N	NA
8. Sample Received at Temperature between 0-6° C . Notes: ട്രൂസ്സ് received ചെട്ടും		Y	N	NA)
9. Description of Sample (Color, Odor, and/or Presence eff:	of Particula	te Matter	<b>:)</b> :	
rec'g				
DO         Temp         pH         CI           Eff         Rec'g	Aeration	Time	DO	pH
			<del></del>	<del>L</del>
COC Tape Was:	_ LESP			
1. Present on Outer Package	(4)	,		
2. Unbroken on Outer Package	N	NA		
3. Present on Sample Y 4. Unbroken on Sample Y	N (	NA)		
COC Record Was:  1. Present Upon Receipt of Sample	N			

Site: Brunswick, Georgia Appendix 2 - Water Batches Used for the Leptocheirus plumulosus Tests

SCG Project No.: 304308

10

Client: CDR Environmental Specialists

The SeaCrest Group, LLC

#### Saltwater Log

Page #: Form #: 29a Effective: January 2003

								Effective: January 2003
Batch #	וע	Salt Added	Date	Initials		Date	Initials	
65.001 05.007	50gal 50gal	50-911 43000	011905	5G AA	~19 20	012005		Albed 1 cup Sca Salt
05-60.3	SogAl	4.3 cups	620505	e	20	02070		cleunen Buket Added 1.5 cups astirred
		-						31.04.3 42111164
						· · · · · · · · · · · · · · · · · · ·		
Measur	ed in parts	per thousa	and (°/ ₀₀ )					

Client: CDR Environmental Specialists SCG Project No.: 304308 Site: Brunswick, Georgia Appendix 3 - Daily Temperature Readings of the Incubator during the Leptocheirus plumulosus Test

### Incubator 1 Temperature Record

Page #: \ Form #: 77a

Effective: January 2004

Incubator #:	1				
Incubator Make: Dept. of Ag			Incubator Model:	PC678	
Acceptable Temperature Range: 24-26°C			Acceptable Light Range: 50-100 foot candles		
NIST Correction:			Date of NIST Correction:		
Date: Initials:			Light Meter Reading Top:		
Light Meter Reading Middle:			Light Meter Reading Bottom:		
Date	Temperature	Initials	Maintenance	Notes	
12.2704	266	SŦ			
122804	Zb ()	58			
122904	25.8	5P			
123004	م) 25.	rom			
123104	75.6	rem			
010104	26.0	SP			
010201	25.9	SP		·	
019304	25.8	SP			
010405	25.6	ppin			
010505	76.0	den			
010605	26. c	AD	Calibratica portarmal A	temp elvertes using with them.	
010705	765	rem	·		
010805	26.0	ppm			
010905	265	AND THE			
011005	25.1	120			
011105	76.0	Rpm			
011205	23.6	A)-		turned up.	
011305	19.6	pour	REPLACED BULB 5	trinet of t	
011405	26.4	rom			
611505	२५ ५	izam			
011605	264	A)			
CILTOS	26.5	A)			
0118 %	77.0	Rpn			
011705	26.6	ppin			
012005	27.0	rom			
<u> </u>					

### **Incubator 1 Temperature Record**

Page #: 2 Form #: 77a

Effective: January 2004

Incubator #:	1				
Incubator #:	·· <u>'</u>		Incubator Model:	PC678	
Incubator Make: Dept. of Ag Acceptable Temperature Range: 24-26°C			Acceptable Light Range: 50-100 foot candles		
NIST Correction:			Date of NIST Correction:		
Date: Initials:			Light Meter Reading Top:		
Light Meter Reading Middle:			Light Meter Reading Bottom:		
Date Date	Temperature	Initials	Maintenance	Notes	
012105	26	SP			
012205	2 4.0	izem	7		
01230	26.7	A) _			
012405	26.8	AD.			
012505	26.8	AH			
012605	Z 6.8	rpm			
012705	Zleb	Ab			
OIZBUS	26.5	com	CHANGED LIGHT BULBS 2+3	DAPHNIA URUNIUS ARE AT LOCA TEMP	
0/2905					
013005	27.1	AD			
013105	26.6	AV			
020105	268	ppn			
202020	Zw.0	pry		`	
020305	261	AD			
020405	71.0	RPM			
020505	25.9	Rpm			
070605	265	AD-			
1770405	26.1	Ab	replaced lightenibe 184.		
020805	26.5	AU			
020905	26.6	Rom			
071005	764	AR			
05/102	26.5	ppy	TVENTO DOWN SULLHTAY		
705150	24.9	kom			
071305	24.9	AV			
021405	25.0	PU			
021505	25.0	AD			
021605	25.0	A <del>b</del>			
621705	7:0	icen			
051872	24.9	ppm			
021905	75.0	rom			

Client: CDR Environmental Specialists Site: Brunswick, Georgia

SCG Project No.: 304308

Appendix 4 - Test Organism Supplier History Sheets

#### 1300 Blue Spruce Drive, Suite C Fort Collins, Colorado 80524



Toll Free: 800/331-5916 Tel: 970/484-5091 Fax:970/484-2514



DATE:

1/13/05

#### **ORGANISM HISTORY**

		-	78 6
SPECIES:	Leptocheirus plumulosus		,
AGE:	<1 week		
LIFE STAGE:	Larvae	<del></del>	len
HATCH DATE:	Variable		201
BEGAN FEEDING:	Immediately	<del></del>	
FOOD:	Flake Shirry		
Water Chemistry Record:	Current	Range	
TEMPERATUR	RE: 22°C	21-26°C	
SALINITY/CONDUCTIVIT	Y: <u>17 ppt</u>	15-22 ppt	
TOTAL HARDNESS (as CaCC	) ₃ ):	<del></del>	
TOTAL ALKALINITY (as CaCC	0 ₃ ): 100 mg/l	100-160 mg/l	
Р	H: 8.37	8.05-8.62	
Comments:			
<del></del>	Jofelle.		
	Facility Supervisor		

Client: CDR Environmental Specialists Site: Brunswick, Georgia

Appendix 5 - Reference Toxicant Test Bench Sheets

SCG Project No.: 304308

The SeaCrest Group Louisville, CO

#### Sediment Organism Reftox Benchsheet

Form #: 108 Effective: October 2002

Dilution !	Series:	C (6)	Template #		<u>Cus</u>	Dilutio	n Water	: المرح	Date Made		7 . 07	
Jame an	e & source:	50/4	Template #: 011295	/ 7.1\	Test Start		on water.	1 201	Test End	$\sim$	( · / · · )	
Test Cor	ditions: .	10 AB3	at 48	101	- 7 \		205	16.50)		61-16	05 (1	640)
63( 00)						Pec	ceolice		NON TEN		<del>,</del>	
<u> </u>	0	24	48	72	96	į	/2\	2	1	2	3	
C)_G	<del></del>	2	2	2	2	ł	(3)	2	2	2	2	
		2	2 2		2	ł	62.5	2	2	2	2	<del>-       '</del>
	<u>2</u> 2	2	1 2	7.	2	ł	و مهم	2	2	2	1 2	<del>-   _                                  </del>
	7	2	2	2	2	ſ	<b></b> -	- <u>-</u>	z	1-2	2	7
					<del> </del>	1	}	<del> </del>	<del>                                     </del>			
				<del></del>	<b>†</b>	1		†		† · · · · ·		_
						1						
						1						
					<u> </u>	i	L					
DO	7.1	4.5	5.60	54	52		DO	6.9	5.1	54	5.2	5.1
	24.2	24.8	24.2	241	24.3		Temp		24.8	24.3	24.4	24.
рН	8.1	7.7	79	7.7	7.9	}	pΗ	8.1	7.5	7.9	7.4	7-8
	30,300		<del>  _ , </del>		<del> </del>	Į į		30,3∞	<del></del>			
1)	·2	2	2	7	7.	{	(4)	2	2	2	<del> </del>	
5 625	2	2	1 2	7	2	•	125	2	2	1 2	<del></del>	
reb	2	2	7		2	ď :	P6pp -	2	2	2	<del> </del>	
	<u> </u>	2	1 2		Z	[		2	2	2	<del> </del>	e
						1			<del>                                     </del>		<del> </del>	
			<del>                                     </del>		<del>                                     </del>	<b>)</b> i					<u> </u>	
						]						
						] ;						
						l						
DO	6.9	5.1	5.3	5.1	ļ	) :	DO	6.9	5.1	53	5.3	5.
	24 3	24.8	243	24.1		[	Temp	24.3	24.7	27.1	24.3	24
рН	8.1	7.6	79	7.5			pH	8	7.7	90	ب ع	7.
	30.361				<u> </u>	1		30 230	2	Repu		
2)		Z Z	cet 2		2		(5)		2	Z	1	-
31.25	7	2		Z Z	Z		25C	2	2	2	1 2	<del></del>
P€3p	<u> </u>	2	1 2	2	z		Mark.	2	2	2	2	<del>-   `</del>
	2	2	1-5-	7-				2	17	<del>                                     </del>	<del>-</del>	ن ا
					<del> </del>	<b>l</b> i			<del>                                     </del>	<del>                                   </del>	† — — —	+
						1						
												$\Box$
					ļ				<u> </u>			
		7.	<del> </del>					<del> </del>	-	<del> </del>	<del> </del>	
DO	69	5.2	34	52	5.1		DO	69	24.6	54	52	5.1
Temp	24.1	24.7	24.2	74.1	143		Temp			243	44	SAT
pH	8.1	7.6	7.9	7.4	74		pH Cond	8.0 30.201	7.7	7.9	80	7.6
Cond Initials	30,350 AD		0	A1)-	A		food	130 201 Feel	<del> </del>	Fed	<del></del>	+
andais	Reftox1	Reftox2	Recon #1	Recon #2		Chamb		11 41	<del></del>	3. Aeration	<del></del>	
lardness	(ACITOX I	TCHUXZ	1.60011#1	NGCOIT #Z	1. 2.2003016		apacity:		30 ml		Slow:	
lkalinity			<del>                                     </del>		1			rface Area:	cm ²	_	Med:	
Chlorine			<del> </del>	L	1		olution Vo		20 -15-ml		Fast:	<del> </del>
mmonia			<del>                                     </del>		1		Depth (co		cm	-	. ==	
	Schedule		<del></del>	<u> </u>	•	•	(cyclic):	•	to cm	-		
	Not fed:				Fed Daily:					-		
	Fed Irregula	rly:	0 & 48 hours	S	Food Used:		•					
	ned Animal E	•			-			-				
	Not Used:	Χ		Used:		cm diar	meter					
Conditi	on/annearan	ce of survivir	- ng organisms	at end of tes	st (i.e., alive b	ut immo	bile; loss	of orientation	n; erratic mov	ement; etc.):		
. Conditi	от парроциат.											

Results calculated using the Summary Method.

*********************

Sponsor	:			CDR
Species	:			LEPTO
Study Number	:			304308
Dates of test	:	01-12-05	to	01-16-05
Test Material	:			KCL
Concentration Units	:			ML
Report run by	:			SP
Date of report	:			02-23-2005

Concentration ( ML )	Number	Number	Percent
( 1417 )	Exposed	Dead	Dead
250.0	10	8	80.0
. 125.0	10	5	50.0
62.5	10	2	20.0
31.3	10	1	10.0
15.6	10	0	0.0
Control	10	0	0.0

ethod	W	LC50	95% Confid Lower	dence Limits Upper	Slope
Binomial		125.00	31.25	0.00	N/A`
Noving Average	*	125.00	77.45	303.52	N/A
robit		121.85	81.64	215.50	2.58
Probit Logit		121.50	77.22	245.27	3.82

Note -- In order to produce this summary report, no warning or diagnostic messages were given (if any occurred). An asterisk appearing next to the method indicates that there was a warning associated with the corresponding method. You should run the full report for this method to determine the problem. This report is intended for informational purposes only.

************************* End Of Report *******************

Client: CDR Environmental Specialists SCG Project No.: 304308 Site: Brunswick, Georgia Appendix 6 - Daily Instrument Readings Daily Temperature, Dissolved Oxygen and Beginning/Ending Water Quality Readings for Leptocheirus plumulosus Tests

									CDR	
			_			Bussed	(+ cu	fullung sheet Lab#	1)	
Client		IRT	2030	Sil	e <u>2</u>	doubleton		Lab#		
H ₂ 0	Naci.	- SCAMIX	20/00	Sample Dat	е			Species Info	ABSOLIOS	(L.plumulasus
Start Date		205				End Date	Ü	20905		,
Test Condi	tions	· sa~	ple #	115	amp	le ID=	C6	)		
				<del></del>						
						···			<del></del>	
									~/\	

	0	1	3	6	8	10	13
Day	Wed	THURS	SATURDAY	TUES	THURSDAY	> ~ <	TUES
Date	1/12	011305	011505	011805	0,2005	0.22-5	012505
rep	A _	C	В	D	E	4	7
DO	4.4	6258	5.8 0.1	58 59	4.0 5.4	7.4 10	57 55
Temp °C	24.2	24.8 24.3	24.5 24.9	24.1 24.2	24.2 24.6	2-1.1 245	24.1 247
рН	7.4	79 77	7.8 7.5	8.1 7.9	7.8 8.0	91179	8. 31
alkalinity	175						
salinity	20%						
ammonia	165						
conductivity	3,400						

	15	17	20	22	24	27	28
Day	TITUES	547	ていたら	Thurs	Sat	Tvo	Weil
Date	012705	012905	020105	020305	5 6 کونت ک	020505	0208
rep	3			F	<b>\</b>	B	C
DO	42 5.3	51 36	4.9 6.2	4.4 5.8	4553	4.2 5.6	52
Temp °C	741 21.2	24.2 24.6	24.8 25.3	25.6 24.8	25.4 25.0	24.3 25.4	24-6
рН	7.8 5.1	7.6 7.8	7.8 80	7.8 79	7673	7.7 7.9	3.0
alkalinity							165
salinity							22%
ammonia							1.45
conductivity							33 800

	Binamak COR
Client Curt Rose Site Pedra	Lab#
H ₂ 0 Nacl - Seamix (20) Sample Date	Species Info ABSOIIIOS (L. plumil
	nd Date 0 2 2 9 0 5
Test Conditions + Sample #2 (MG-H7(C)=	=> Sample IO
<u> </u>	

	0	1	3	6	8	10	13
Day	1/12	THURS	SATURDAY	TUESPAY	THURS	Sac	TUES
Date	Y12	011305	011505	011865	012005	0:22.5	012505
гер	Α	C	В	D	E	1	D
DO	4.3	56 56	4.9 6.8	5.8 6.0	4.4 5.4	76 7.0	59 61
Temp °C	24.1	243 242	24.8 25.3	24.0 24.1	24.5 249	24.2 24.1	242 251
рН	7.1	78 78	7.0 7.6	7.6 7.9	7.9 7.9	ブフ 75	76 86
alkalinity	المُل						
salinity	20%						
ammonia	1.05						
conductivity	31700		•				

	15	17	20	22	24	27	28
Day	THURS	5,25	TUESDAY	Thurs	Sat	Tues	Wei
Date	012705	0,2905	020105	020305	020505	020805	0238
rep	13		E	A	B	C	2
DO	4.1 5.1	5.350	6.0 6.2	6.8 6.3	6.1	59 65	53
Temp °C	25 2 242	25.1 25.3	24.6 25.1	24.1 24.4	24.9 24.1	24.1 25.2	246
рН	69175	7.7 7.9	7.8 80	72 7.6	76	7.2 7.7	7.5
alkalinity							102
salinity							23900
ammonia							3.56
conductivity							326

				Brusher						
Client	Ču	RT	Rosc	Site	Pedrickes	PA .	Lab#			
H ₂ 0	Naci	- 5	Parnix 22:	Sample Date			Species Info	ABSOLLIDE	L. olumulos	
Start Date		12			End Date	52 D	905	***************************************		
Test Condi	itions	SA	mple #3 1	Sande	IU# - C-1	03)				
						<u> </u>		·	·	

	0	1	3	6	8	10	13
Day	Wed	Thurs	SATURDAY	Tuesday	THURSDAY	S 14.5	uES
Date	Y12	413/05	011504	011863	012005	0.2205	012505
rep	A	C	В	0	E	()	D
DO	4.4	58 57	6.0 5.9	60 60	5.5 60	7.2 6.3	47 56
Temp °C	24.3	24.1 24.0	24.5 25.0	74.3 245	24.3 25.1	21.4 24.6	2/1/253
рН	7.0	7.7 7.8	7.6 7.9	75 79	7.8 8.0	77 79	72 84
alkalinity	80						
salinity	20%						
ammonia	0.387						
conductivity	31600						

	15	17	20.	22	24	27	28
Day	THURS	5~1	TUES	Thurs	5,4	Tues	Wel
Date	012705	012905	020105	020305	020565	20805	07 mg
rep	B		E.	A		<u> </u>	N I
DO	40 49	5.1 60	4.9 5.9	5.2 61	6.3 6.2	50 61	53
Temp °C	25 2 24	24.9 25.1	24.1 25.3	24.3 24.7	24.3 24.7	24.4 24.7	24.6
рН	7.2   8.1	75 77	7.7 7.9	7.5 7.7	73 76	74 77	7.7
alkalinity	<u> </u>	·- ·					143
salinity						i	22900
ammonia		•				i	7.31
conductivity							32.50c

lient Cue	r Rose	Site	Lab #	
20 Nucl-S	Parnix (20%) Sample	Date	Species Info ABSo	11105 11. dua
tart Date SU	205	End Date	02090	
	SAMPLE 14) =	2 A-C		
- <b>\</b>				_
_				
			<i>0</i> 20903	

	0	1	3	6	8	10	13
Day	Wild	Thurs	1/2 Fr. Sat	10 Sat Tues	Mr-Sun Thur	to war sat	Tues
Date	412	Y13	011505	0118-5	012005	0,2205	012505
rep	A	C	B	D	在	H	$\mathcal{L}$
DO	4.4	59 56	5.2 5.9	59 6.1	5.6 5.9	7.0 67	56 62
Temp °C	24.1	24.0 24.1	24.3 24.6	24.1 24.3	24.3 25.0	24.5 24.4	240 248
pН	7.6	79 78	7.9 7.6	79 81	7.9 8.0	79	77 85
alkalinity	156						
salinity	2070.						
ammonia	309						
conductivity	32300						

	15	17	20	22	24	27	28
Day	THURS	547	+u25	Thua	SAT	Tuis	wed
Date	012705	012405	020105	07.0300	620505	020805	0208
rep	$\mathcal{L}$	ت	E	A	3	С	۵
DO	4955	5357	5.8 6.3	5.2 6.1	54 61	5.2 6.0	5.4
Temp °C	2501249	248 251	24.3 25.1	24.3 24.8	29.3 25.1	Q4.1 24.6	24.6
pН	78181	90 10	7.9 81	7.2 7.8	7377	7.1 7.6	7.5
alkalinity							148
salinity							23/0
ammonia							0.313
conductivity							33/00

Client		DR	Site		Lab #	!
H ₂ 0	Nizce	Seamin who	Sample Date		Species Info	ABSOINOS (L. plumula
Start Date		1205		End Date	020905	
Test Condi	tions	Sanpt #	5 - 500	ple IO#		

	0	1	3	6	8	16	13
Day	Weo	Thon	SAT	小海5	Thurs	511.5	Tues
Date	011255	011305	011505	011305	012005	017265	012505
rep	A	C		${\mathcal B}$	F	ノン	C
DO	3.7	5.1 56	40 51	65 65	6.3 6.6	6.8 -1.3	4.2 5.3
Temp °C	24.1	24.4 24.7	24.3	24.7 25.1	24.2 24.0	24.1 24.2	24.5 24.4
pН	コン	7-1 7-3	76	77 6	7.0 7.6	7.4 7.7	6.8 8.3
alkalinity	132						
salinity	20/a						•
ammonia	1.31						
conductivity	25700						

	15	17	20	22	24	27	28
Day	Trucs	SaT	Tues	Thurs	Sat	Tues	Weel
Date	012705	0.2805	020105	020305	020505	070805	Pc 50
rep	0	В	E	A	В	C	۵
DO	4.3 5.2	25 45	4.2 5 6	4.6 4.5	4.9 5.6	45 5.1	4.6
Temp °C	24.3 24.0	24.6 25.3	24.3 25.2	246 25.3	24.3 24.5	7.4.3 24.6	24.1
рН	68 7.8	7.3 7.8	6.8 75	7.2 7.5	7.0 7.4	7.1 7.5	7.0
alkalinity							48
salinity	,						24%
ammonia	]						0.0588
conductivity	]						28,900

Client	CDR	Site	6	Lab#	
H ₂ 0	Nich - Sermix 2-	ါလSample Date		Species Info	ABS 011105 (L. plumia
Start Date	011805		End Date	020905	
Test Condit	ions invole	#6 -7 C-	102		
	•				
				·	

· ·	0	1	3	6	8	10	13
Day	10 <b>6</b> 0	Terre	SAT	Tues	Thurs	57	Tues
Date	011205	011705	0115.5	011705	012005	612205	012505
rep	Æ			12	Ĭ.	A	C
DO	0.3	49 54	55 53	5-2 61	5.5 6.0	55 60	4.8 5.5
Temp °C	24.6	24.7 25.1	24.1 24.7	24.6 253	24.1 24.0	24.2 24.3	24.0 24.3
pН	7.1	7.4 7.5	7979	7.7 7.9	7.0 7.8	7.6 7.2	7.6 84
alkalinity	213						
salinity	20/0	I					
ammonia	269						
conductivity	25400						

	15	17	20	22	24	27	28
Day	Thurs	SAGUERAT	Tun	Thors	SATUROM	Tues	Wed
Date	D12705	012905	620165	020305	020505	020905	0208
rep	<i>D</i>	ß	Ē	$\wedge$	13		0
DO	4.9 5.8	5.8 61	4.1 5.2	34 3.8	4.2 5.0	4.3 5.1	5.0
Temp °C	24.4 24.2	046 25.2		24.6 25.2	24.6 25.0	25.1 25.3	24.3
рН	14 80	7.7 7.9	7.4 7.9	7.5 7.6	7.3 7.9	72 78	7.4
alkalinity							136
salinity	1						21/2
ammonia	1						366
conductivity							30.FC

				B	insuch Colc	
Client	COR		Site	Patriceton	Lab #	
H ₂ 0	Naca	- Schnix 20/00	Sample Date			1850il105
Start Date		205		End Date	020905	
Test Cond	itions	Szmple #	7 =>((	(-105)		

			•				
STAR	0	1	*3	6	8	10	13
Day	Lto	thurs	SAT	Tues	Thurs	SAT	Tues
Date	011205	6.1305	011505	011305	012005	0.2205	012505
rep	A	C	D	3	3	八	C
DO	03	4.9 5.1	4.214-5	64 64	5.2 6.0	6716.9	4.5   5.6
Temp °C	24.5	24.3 24.7	24.41.24.5	24.4 25.3	24.1 24.3	24.3 24.4	24.1 24.2
рН	73	7.5 7.4	7.7 7.7	7.919.0	7.6 7.9	30 30	7.6 8.4
alkalinity	189			The second			
salinity	2070						
ammonia	3.73						
conductivity	25400						

E TO A IN		15		17		20	2	22		24		27	28				
Day	Thurs		SAT	WROM	Tu	Tues		U-5	SAT		To	es	wed				
Date			012	405	02010-		020305		020505		020505		020505		020805		0209
rep	I	)	13		E		1-	+	13		(	-	D				
DO	53	5.4	6.4	6.5	is. 1	6.2	3.9	2.5	2.3	15.6	4.5	5.4	4.1				
Temp °C	24.3	24.3	24.8	25.1	24.7	125.7	24.5	25.1	24.8	25.2	25.1	25.5	24.5				
Н	7.4	18.0	7.9	8.0	7.9	18.0	7.4	17.5	7.3	18.0	7.3	17.9	7.5				
alkalinity				A THE PARTY					PERM				138				
salinity													220/00				
ammonia													:264				
conductivity	377												27,80				

Client	CDR	Site	Lab #
H ₂ 0	NaCR-Scamix2	-/。, Sample Date	Species Info ABS 011105
Start Date	011205		End Date OZOFOS
Test Condit		#3-D	)C  G
	3		(E)
		Sa.	inple

	0	1	3	6	8	10	13
Day	WED	Thurs	SHT	112)	Thurs	545	Tuer
Date	3112.5	011305	011605	201130	012005	0.2265	012505
rep	₹	2	O.	B	6	14	C
DO	30	5.4 59	57 5.	59 62	5.8 63	رون ایا کا	4.6 5.9
Temp °C	24.7	24.6 25.0	24.3 24.4	24.7 25.0	24.1 24.2	241 24.7	24.3 246
pΗ	74	7.3 7.7	74 75	7.3 7.9	7.9 8.0	7.7 7 2	7.4 0.4
alkalinity	154						
salinity	2012						
ammonia	323						
conductivity	2530						

	15	17	20	22	24	27	28
Day	Thus	SATURDAY	Tues	Thuis	SATURDAY	Tues	Weil
Date	012705	012905	020105	UU305	020505	OZOBOS	OZSA
rep	۵	В	€	A	13	C	0
DO	4.3 5.6	5.8 6.2	55 b.1	4.0 4.3	4.0 5.2	4.3 5.4	4.4
Temp °C	24.3 24.5	24.3 25.2	24.3 25.1	24.5 25.0	24.0 25.1	24.5 25.1	24./
рΗ	7.3 81	70 79	7.5 74	7.2 7.4	7.1 7.5	7.7 7.4	7.3
alkalinity							45
salinity							2340
ammonia							0.165
conductivity.							31 200

Client	IDR	Site	_	Lab#	
$H_{2}0$	Necl Garrix 20/0.	Sample Date		Species Info A35	
Start Date	011705		End Date	078905	
Test Condit		9 - sample	TO# >	(C-100)	

	0	1	3	6	8	10	13
Day	bed	Thiri	SATURDAY	<b>FUESDAY</b>	Thursday	SAT	Tues
Date	011205	011305	011505	208110	0.2005	012205	012505
rep	Д	ن	B	D	E	A	<u>C</u>
DO	3.2	6760	5.2 5.1	4.9 6.3	5.6 6.1	5.5 61	5.8 6.Z
Temp °C	25.2	25.6 25.1	24.2 25.1	24.2 24.9	24 1 246	24.3 24.9	24.0 24.5
pН	7.9	8. \ \ 33.	7.7 8.0	7.6 8.0	8 7 80	7.9 8.0	7.6 8.1
alkalinity	172						
salinity	20/2						
ammonia	2.13						
conductivity							

	15	17	20	22	24	27	28
Day	THURSDAY	SATURDAY	TUES	THURSDAY	SATURDAY	Turs	Wed
Date	012705	012905	020105	020305	020505	020805	028
rep	B	Δ		A	B	C	0
DO	5.0 4.3	5.6 6.1	5.2 5.0	5.3 6.1	5.0 6.8	4.9 6.9	4.9
Temp °C	24.7 25.1	24.3 24.5	242246	24.3 24.6	25.1 25.8	24.8 25 1	24.2
рН	7.6 7.9	7.7 8.0	7.7 8.1	7.9 8.1	7.6 8,0	7.5 7.9	76
alkalinity							122
salinity							2+2
ammonia							,237
conductivity							3ú,00

Client	COR	Site		Lab#	
H ₂ 0	Nach-Seamin 2	Sample Date		Species Info	ABSOINOS
Start Date	011205	· 	End Date	Ozogos	
Test Condi		#10 - San	aple IDA	=> (C-104)	
				<del></del>	

	0	1			3		6		8	1	10		13
Day	UED	Th	<u>د ۲۰</u>	SAT	TURDAY	TU	ESDAY	Thu	rsday	SATU	IRDAY	Tues	der
Date	011205	0113	5 ه	011	505	01	1802	OIZ		012	205	0(2	
rep	$A_{-}$	C		(	3		<b>D</b>	E	•	A			
DO	7.1	65	07	5.0	5.1	5.2	6.6	5.3	6.4	5.5	6.2	5.9	6.2
Temp °C	25 1	24.9	250	24.2	25.0	243	124.5	24.1	24.7	24.3	248	24.1	24.
pН	78	7.9	79	7.8	8.0	7.9	80	79	7.8	7.4	g.0	7.7	8.3
alkalinity	159												
salinity	2070												
	0990												
conductivity	25000												

	15	17	20	22	24	27	28
Day	THURSDAY	SATURDAY	TUES	THURS	SATUROMY	Tues	Wed
Date	012705	012905	020105	020305	020505	708050	0209
rep	B	D	E	A	ß	C	7
DO	5.5 6.3	5.3 6.3	5148	5.3 5.9	5.4 6.0	53 61	<b>4</b> ′. (
Temp °C	24.6 24.9	24.3 24.4	24.1 24.3	24.3 24.7	24.0 25.3	74.7 25.0	24.3
рН	7.6 80	7.9 8.0	78 81	7.0 9.1	7.9 8-1	7.8 8.0	7.7
alkalinity							106
salinity							21/00
ammonia							,523
conductivity							H. 801

Form #: 109a Effective: September 2002

Client CDR Site Patriction Lab#

H20 N2CE Scarry 2000 Sample Date Species Info AgSUI105

Start Date O(1205 End Date O7 PR 05

Test Conditions Sample # 11 = Sample # 10 \Rightarrow CR-C)

	0		1		3		6		8		10		13
Day	W-0	Thur	2	SATI	12044	TU	ESDAY	Thu	sdac	SATI	IRDAY	Tue	
Date	011205	2117	>05	0114	105	011	805	DIZ		0122	υ5	0125	5ن
rep	λ		-	B		D		E		A			
DO	1.3	6.5	6.7	5.6	5,8	5.2	6.3	5.4	16.0	5.6	6.2	6.0	6.1
Temp °C	250	25 2	25 3	24.3	25.3	24.2	246	24.1	124.6	24.3	25.2	24.3	24.6
ρΗ	7.6	7.7	7.9	7.7	7.9	7.8	8.0	7.8	7.9	7.9	B.U	7.7	83
alkalinity	62												
salinity	20%												
ammonia	0.220												
conductivity	380 Oc												

	15	17	20	22	24	27	28
Day	THURS 044	SATURDAY	TUES	THURSDAY	SATURDAY	Tuesday	was
Date	012705	012405	020105	020305	020505	020805	0209
rep	B	D	E	A	В	ن	$\square \mathcal{O}$
DO	5.6 6.3	5.2 6.3	5.5 5.0	4.6 6.3	5.2 6.0	4.9 56	4.8
Temp °C	25.1 24.9	24.6 24.9	241 243	24,2 24.9	24.8 25.0	24.5 25 1	244
pН	7.7 8.1	7.0 80	7681	4.6 81	7.1 8.0	7.4 7.9	7.3
alkalinity				7. 7			95
salinity							24,5%,
ammonia							2.06
conductivity							41.80

Client	COR	Site	Lab#
H₂0	M2(I Scenice	دے/و، Sample Date	Species Info A35 01 1105
Start Date	011205		d Date 020905
Test Condi	tions Sand	2k # 12 - (sample	( I)d ⇒ C-45)

	0	1	3	6	8	10	13
Day	Upo		SATUROM	TUESDAY	Tursday	SATURDAY	Tas
Date	01,205		011505	208110	012005	012205	012505
rep	X	ل	B	Δ	E	A	
DO	1.7	6.4 6.6	6.0 6.1	5.8 6.0	5.7 6.1	5.6 6.9	6.2 6.5
Temp °C	25 2	24.8 25.0	24.5 25.2	24.5 25.3	24.1 24.8	24.2 25.0	24.2 24.6
рН	7.8	74 79	7.7 80	79 80	79 8.0	7.9 8.1	7.4 3.2
alkalinity	143						
salinity	20%						
ammonia	1.04						
conductivity	3260						

	15	17	20	22	24	27	28
Day	THURSDAY	SATURDAY	TUES	THURSDAY	SATURDAY	Tues	Weel
Date	012705	0129 05	020105	020305	020505	070805	0209
rep	<u>a</u>	٥	E	Α	В	C	Δ
DO	5.7 6.5	5.7 6.1	4.7 47	5.1 6.2	5.7 6.1	5.6 6.7	52
Temp °C	24.9 25.2	25.0 25.1	24.5 24.5	24.3 24.6	24.7 24.9	24.5 25.2	247
ρH	7.5 8.1	7.9 8.0	7881	7.6 8.1	7.6 8.1	7.9 8.1	7.6
alkalinity							112
salinity							22%:
ammonia							0.179
conductivity	]						37,100

Form #: 109a Effective: September 2002

Client Kurt Rose Site Patrictions Lab#

H₂0 Nac.1 - Schmix Sample Date Species Info ABSCIIIOS

Start Date 0112=5 End Date 020000

Test Conditions SAMPLE # 13 = Sample TOH -> mG - K7 - (C)

	0	1	3	6	8	10	13
Day	Weil	Thurs	Sut.	TUES	THURS	SATURDAY	TUESDAY
Date		712	715	1/18	012005	012205	012505
rep	A	B	$\Box$	C	E	A	В
DO	3.5	5.0 5.3	5757	5.6 6.4	6.5 10.0	5.8 6.1	5.6 5.9
Temp°C	24.6	241 243	24.6 24.9	25.7 25,2	24.2 24.6	24.2 24.9	24.3 25.1
рH	7. 2_	7.7 7.8	7.6 73	7.8 7.1	74 79	7.5 7.9	7.4 7.9
alkalinity	ICD						
salinity	20%.						
ammonia	1.24						
conductivity	Z7.500						

	15	17	20	22	24	27	28
Day	THURS	5K-	· IUES	Thurs	SAT	Tues	Wal
Date	012705	012905	020105	090305	020505	020805	0708
rep	U	ρ	עו	8	A	C	D
DO	57156	5 2 55	4447	4.7 53	4.615.2	4.4   5.3	5.1
Temp °C	24.21245	24.3 24.7	24.4 24.0	242 245	25. 2 25.3	250 253	24.3
ρН	7.6 19.2	7.7	7479	74 78	7.5 79	7.6 7.8	7.4
alkalinity							113
salinity							22700
ammonia							1.39
conductivity							32,100

				_	Bausi	mile LOVE			
Client	CD	R	Site				Lab#		
H ₂ 0	Nacl	- Swinix 20	, Sample Date			Spec	cies Info	ABSOLLIOF	
Start Date		705			End Date	07.706			
Test Condi	tions	SAMPLE	14 - Va	mole	In it	- C-45			

	0	1	3	6	8	10	13
Day	WED	Thurs	Sat	1362	THURS	SAFURDAY	TUESDAY
Date	011205	011305	011505	011805	012005	012205	012505
rep	Α	13	D	_ C	E	A	ß
DO	1.4	4.5   53	53 53	6.3 6.5	5.7 5.5	5.6 6.0	5.7 61
Temp °C	24.4	24.2 24.3	27.5 24.9		24.0 24.8	24.3 25.1	25.3 25.0
pΗ	7.6	7.5 7.9	0 5.0	7.8 80	7.980	7.4 8.0	7.9 8.0
alkalinity	203						
salinity	2390,						
ammonia	4.20						
conductivity	29 400						

	15	17	20	22	24	27	28
Day	THURS	5,49	TUES	THUES	5~7	Tues	انعون
Date	012705	012965	020\$05	020305	20505	072805	೮೭೮೪
rep	J	Д	E	13	A	d	7
DO	57   57	56 50	4.4.4.9	4458	4.7 5.1	4-6 5.0	¥.5.2
Temp °C	240 247	24.3 24.6	24.5 243	2421346	25. 1 25.3	24.6 25.1	24:1
рН	82 84	3232	7980	8180	9.1 9.3	81 8.0	6.0
alkalinity	<del>'</del>					<del></del>	175
salinity							21%s
ammonia							00791
conductivity							27,800

				$\mathcal{B}^{c}$	نسيديد	<u>carc</u>	
Client	CI	) R	Site	Pedrick for	-جد	Lab#	
H ₂ 0	Nucl-	Slamit	Sample Date			Species Info	ABSDINOS
Start Date	611	205		End Date	020		
Test Cond	itions	SAMPLE	15-0	Sumple JU	#=>	TC-C	
	-		<del></del>				

	0	1	3	6	8	10	13
Day	WED	Thurs	SaiT	TJU	THURS	SATURDAY	TUESDAY
Date	011205	011305	(911505	011805	012005	012205	012505
гер	A	13	Α	C	E	A	B
DO 4.1 +	24.6	4.8 56	5.4 3.5	5.7 5.9	56 56	5.6 5.9	5.7 6.0
Temp °C	24.6	24.1 24.3	21.3 247	24.8 24.6	25.0 25.2	24.2 24.9	24.8 24.9
pН	7.4	7.6 7.3	7.9 79	7, 7 7.4	8.2 8.1	8.0 8.1	80 80
alkalinity	154						
salinity	2100						
ammonia	1.12						
conductivity	27,600						

	15	17	20	22	24	27	28
Day	THURS	545	TUES	THURS	545	Tues	wed
Date	012705	012905	020105	020305	030202	070705	
rep	C	1	تا ا	3	A	C	()
DO	4.4 5.2	53 50	43 5.0	42747	5 > 16 1	5.0 5.9	4.4
Temp °C	24.7 25.3	24.3 24.6	24.8 24.6	2421246	24-1 24.7	24.6 24.9	24.2
pН	79 82	7.7 7.3	7679	7579	7.67.9	7.6 83	7.7
alkalinity				:			176
salinity							30.701
ammonia							1.05
conductivity							27,103

Client	CDR	Site		Lab#	
H ₂ 0	Nacl-seamin	Sample Date		Species Info	ABSOILLOS
Start Date	311305		End Date O	70905	
Test Conditi	ons SAMPLE	16 5 San	ole IOH -	C-7,	
		<del></del>			

	0	1	3	6	8	10	13
Day	WED	760.	SAT	TUES	THURS	SATURDAY	TUESDAY
Date	011205	01305	0/1505	011807	012005	012205	012505
rep	A	Ð	7	C	E	A	ß
DO	4.2	44 4.7	4 46	5.9 6.3	6.4 5.7	5.8 6.2	5.8 6.0
Temp °C	24.8	24.3 24.5	24.7 24.9	25.2 25.1	24.9 250	24.3 25.2	24.6 24.B
рН	7.2	7.5 7.8	7.8 7.9	7.9 7.9	8.0 8.0	7981	7.9 80
alkalinity	197						
salinity	20%						
ammonia	3.63						
conductivity	21 200						

	15	17	20	22	24	27	28
Day	THURS	SIXT	TUES	THURS	221	Tues	weel
Date	012705	012405	020105	020305	10505	020 mos	0209
rep	C	0		B	×	C	0
DO	5.0   5.2	51 50	41 5.1	41 4.4	41.715.1	4.8 5.3	4.6
Temp °C	244 249	24.7 24.4	24.0 24.1	24.11242	25 ( 25)	24.9 24.3	24.0
рН	7.7   8.2	7275	78 30	7.1 7.5	7.7	7.2 7.6	7.6
alkalinity							179
salinity							21900
ammonia							0.327
conductivity							30,200

Client	ior	Site		Lab #	
H ₂ 0	No CL - Kemix	رد/رــــ Sample Date		Species Info A3	2011105
Start Date	011705		End Date	(S) 209 05	
Test Condi	tions Sample	# 17 = Sa	male d	00 => C-33	
	<del></del> _		<u> </u>		
	<del></del> _				<del></del>
				<del></del>	

	0	1	3	6	8	10	13
Day	DEO	THURS	5.5	THES	THURS	SATURDAY	TUES
Date	A120.4	011305	011505	011805	012005	012205	012505
rep	A		3	E	В	A	<b>D</b>
DO	419	57 64	5.9 55	61 62	7.5 7.6	5.5 5.9	5.5 6.1
Temp °C	25.7	25.1 24.2	24.3 24.2	24.0 24.5	24.1 25.0	24.3 25.2	24.0 24.7
рН	7	74 7.9	8079	8.1 8.0	8.1 8.1	80 81	8.3 8.6
alkalinity	152	7. 2 EE					
salinity	2-/00						
ammonia	1.52						
conductivity	28100						

	15	17	20	22	24	27	28
Day	Thurs	Str	TUES	THURS	SAT	1285	المجالب
Date	012705	012905	020105	020305	020505	020105	0209
rep	C	<u>.</u> 3	E	Α	B	J	D
DO	5.5 6.1	5763	5.6 6.2	5.4 6.2	53 62	5.663	4.7
Temp °C	24.2 2511	24.5 24.7	24.6 25.3	24.3 24.8	222 263	24.9 75.3	24.3
рН	8.1 8.2	83103	8.1 8.3	8.2 8.3	31 82	8.1 8.0	80
alkalinity							190
salinity							23%
ammonia							1.23
conductivity						•	3540
	•						3700

Client	COR	Site	Lab #
H ₂ 0	Noll-Scenux	عراري Sample Date	Species Info ABSOLILOS
Start Date	C111205		End Date 020905
Test Condit		# 18 - Juno	4 ID# - C-15)
	· 		

	Ô	1	3	6	8	10	13
Day	ていり	THURS	Six	TUES	THURS	SATURDAY	TUES
Date	011204	011305	011505	011805	012005	012205	012505
rep	4	C	D	E	B	A	72
DO	0.7	44 50	54   53	57 60	69 72	5.5 6.3	6.7 15.9
Temp °C	24.3	24.2 24.2	24. V24.3	24.1 24.3	24.2 25.2	24.2 24.7	24.1 24.3
рH	7.5	79 8.0	02 1	82 81	8.1 8 2	8.0 8.1	8.2 85
alkalinity	317						
salinity	اسان						
ammonia	9.00						
conductivity	31,900						

	15	17	20	22	24	27	28
Day	Thus	8 ~ (	TUES	THURS	Sati	Tues	Wed
Date	012705	012905	020105	020305	020505	020805	0259
rep	С	3	E	A	3	С	<u> </u>
DO	5.1 56	5.7 6.1	5.5 6.0	5.1 6.0	5.2 5.5	5.1 59	4.6
Temp °C	24.1 254	24.4 25.0	24.3 24.9	24.4 24.9	24.5	24.1 24.5	242
рН	79 83	9 31	0.0 8.1	7.8 8.3	77 31	7.6 8.0	78
alkalinity							156
salinity							240/00
ammonia	]						.718
conductivity	}						300
	-						4300

Client	CDR	Site		Lab #	•
H ₂ 0	2CL - Scamm 20	ار Sample Date		Species Info	ABS 011105
Start Date	0112.5		End Date	020905	
Test Conditions	Sample	#19 - (San	ple TO#	M-AB	

	0		1	3	3		6		8		10		13
Day	LED	TH	IRS.	54	<u> </u>	Tue	5	THU	RSDAY	54	T	Tue	\$
Date	01126.1	Oi	1305	4115	۰ ۶	011	805	012	<b>Q</b> 0 5	0122	205	0125	20
rep	人		٦		)	F		B		Δ		3	7
DO	05	5:7	5.8	6.0	5.6	6.0	159	7.3	7.3	5.8	4.9	6.7	6.0
Temp °C	250	24.2	24.0	24.3	24.1	241	124.5	24.3	25.3	24.4	25.2	24.1	24.7
Hq	72	7.5	79	7.	8.0	8.3	18.2	8.3	8.1	8.0	8.1	8.2	86
alkalinity	176												
salinity	2-100												
ammonia	1,32												
conductivity	29,5cc												

	15	17	20	22	24	27	28
Day	Thuas.	5145	TUES	THURSDAY	SAT	Tues	Weil
Date	C12705	012705	020105	020305	020505	020805	0204
rep	C	3	E	A	· · · ·	C	[2]
DO	49 6.2	53 58	5.6 6.0	5.0 6.3	5.3 6.6	5.1 5.8	47
Temp °C	24.2 24.9	24.5 24.4	24.4 25.0	24.3 24.7	25. 1 247	24.3 24.5	243
pН	63 8.2	7.8 7.9	7.4 8.0	7.9 81	7.4 : 2	7.8 8.1	78
alkalinity							132
salinity							22700
ammonia							10
conductivity							3562
	•						33 50

Client	CNR	Site		Lab #	_
H ₂ 0	Nay- seumix 290,	Sample Date		Species Info	A35011155
Start Date	1/12/05		End Date	020905	
Test Condi	tions simple t	20	Control	*	
	<del></del>				
			<del></del>		

	0	1	3	6	8	10	13
Day	Wed	Tos	SATURDAY	TUES	THURS	Six	Tues
Date	1/12	011305	011505	011805	1112005	0.22.0	012505
rep	A	J	B	D	E	<u> </u>	C
DO	4.4	53 65	5.6 6.5	62 62	4.5 5.6	7.6	6.8 6.9
Temp °C	24.4	24.4 21.3	25.9 25.1	24.9 24.8	25.5 759	24.4 24.3	24.1 25.1
рН	7.5	1.5 78	7.2 7.4	7980	7.67.9	7.9 7.9	7.2 3.5
alkalinity	128						
satinity	20 %						
ammonia	1.07						
conductivity	25,80						

	15	17	20	22	24	27	28
Day	Thurs	SATURDAY	Tues	Thors	SATURDAY	Tues	Wed
Date	012705	012705	020205	020>05	020505	020805	0204
rep	D	В	E	A	B	C	7
DO	5.4 5,8	6.8 6.9	5.0 6.1	4.9 4.7	5.2 6.0	5.0 5.8	45
Temp °C	24.5 24.4	24.2 24.9	25.3 253	24.7	24.3 24.8	24.9 25.3	24.2
рН	74 81	7.8 8.2	79 8.C	7.6 7.7	7.7 7.9	7.6 7.8	7.3
alkalinity							113
salinity	i						22/0
ammonia							.767
conductivity							27,30

Client	CDZ	Site		Lab#	
H ₂ 0	Necl - seamix 20%	Sample Date		Species Info	L. Humulosus (A850111
Start Date	1/12/05		End Date	020905	
Test Cond	itions sample #7	1 - Con	to1 2		
	<del></del>			<del></del>	
	<del></del>			· · · · · · · · · · · · · · · · · · ·	<del></del>
	<del></del>			<del></del>	

	0	1	3	6	8	10	13
Day	Wed	かいさ	SATURDAY	TUES	THURS	SA	Tues
Date	VIZ	011705	011505	011805	013005	21225	DIZSOS
rep	_A	J	В	D	E	1	C
DO	4.7	6.4 6.7	4.6 6.5	62 61	61 62	10110	6.5 6.9
Temp °C	24.9	247 245	25.0 25.1	35,1 250	25.2 25.7	14.3 24.4	24.9 25.4
рН	7.3	7.7 7.9	7.5 7.8	78 79	7980	7.9 17.9	7.9 8.6
alkalinity	120						
salinity	20%						
ammonia	1.22						
conductivity	25900						

	15	17	20	22	24	27	28
Day	Thurs	SATURDAY	Tuesday	Thurs	SATURDAY	Tues	wed
Date		012905	020103	020305	020505	020805	0709
rep	D	В	E	A	D	c	0
DO	5.8 6.2	5.9 6.3	52 62	3.3 3.7	3 2 6.0	4.5 5.6	4.8
Temp °C	25.3 25.2	25.2 24.9	24.1 24.9	24.5 24.8	24.9 25.3	24.1 24.8	24.7
рН	78 8.2	7.9 8.2	7.7 7.9	7.5 7.6	7.6 7.8	7 3 7.9	7.4
alkalinity							103
salinity							22/00
ammonia							1.30
conductivity							27,300

Appendix 8 - Number Surviving, Dry Weight Determinations Per Replicate, Sexed Males, and Juvenile Production for the Leptocheirus plumulosus Test

SCG Project No.: 304308

16

Client: CDR Environmental Specialists

Site: Brunswick, Georgia

The SeaCrest Group, LLC

Date: 02/21/2005			_					
Species:Leptoch	eirus p.							
Facility: SeaCres	t Group							
Test: 28 Day Chr								
			Sexed Adults				Dry Wo	eight(mg)
Treatment	Rep	Surviving	(males)	Juvenile production	Pan Weight(g)	Pan + Larvae(g)	Total	Individual
Sediment # 1	а	5	2	1	1.1491	1.1499	0.8000	0.16
04293-C6	b	8	3	1	1.1405	1.1436	3.1000	0.39
	С	11	2	>100	1.1465	1.1524	5.9000	0.54
	d	9	3	1	1.1432	1.1468	3.6000	0.40
	е	4	1	>50	1.1506	1.1523	1.7000	0.43
			Sexed Adults				Dry W	eight(mg)
Treatment	Rep	Surviving	(males)	Juvenile production	Pan Weight(g)	Pan + Larvae(g)	Total	Individual
Sediment # 2	а	4	2	0	1.1387	1.1411	2.40	0.60
04294-MGH7	b	6	2	1	1.1422	1.1445	2.30	0.38
	С	3	1	0	1.1456	1.1471	1.50	0.50
	d	5	1	>20	1.1512	1.1539	2.70	0.54
	е	6	2	1	1.1382	1.1411	2.90	0.48
			Sexed Adults				Dry Wo	ight(mg)
Treatment	Rep	Surviving	(males)	Juvenile production	Pan Weight(g)	Pan + Larvae(g)	Total	Individual
Sediment # 3	a	14	5	5	1.1499	1.1543	4.40	0.31
04299-C103	b	10	4	3	1.1534	1.1569	3.50	0.35
	С	19	5	2	1.1367	1.1388	2.10	0.11
	d	16	5	2	1.1564	1.1581	1.70	0.11
	е	13	3	1	1.1583	1.1618	3.50	0.27

Date: 02/21/2005	<del></del>		<del></del>	<del></del>				<del> </del>
	oigus n	<del>                                     </del>						<del> </del>
Species:Leptoch		<del> </del>						<del> </del>
Facility: SeaCres								
Test: 28 Day Chr	onic			· · · · · · · · · · · · · · · · · · ·				<u> </u>
		<del>    </del>	Sexed Adults				<del></del>	eight(mg)
Treatment	Rep	Surviving	(males)	Juvenile production	Pan Weight(g)	Pan + Larvae(g)	Total	Individual
Sediment # 4	а	6	2	1	1.1411	1.1434	2.30	0.38
04295-A-C	b	6	2	2	1.1537	1.1595	5.80	0.97
	С	9	4	4	1.1508	1.1531	2.30	0.26
	d	5	2	0	1.1486	1.1499	1.30	0.26
	е	7	3	2	1.1440	1.1451	1.10	0.16
			Sexed Adults				Dry W	ight(mg)
Treatment	Rep	Surviving	(males)	Juvenile production	Pan Weight(g)	Pan + Larvae(g)	Total	Individual
Sediment # 5	а	8	3	5	1.1597	1.1622	2.50	0.31
04299-C101	b	12	4	>10	1.1443	1.1489	4.60	0.38
	С	16	10	>20	1.1509	1.1559	5.00	0.31
	d	12	5	>20	1.1577	1.1613	3.60	0.30
	е	7	3	>30	1.1506	1.1523	1.70	0.24
			Sexed Adults				Dry W	eight(mg)
Treatment	Rep	Surviving	(males)	Juvenile production	Pan Weight(g)	Pan + Larvae(g)	Total	Individual
Sediment # 6	<u>-</u>	8	3	>15	1.1445	1.1491	4.6	0.57
04299-C102	b	12	1	>30	1.1435	1.1498	6.3	0.52
	С	9	4	>40	1.1398	1.1433	3.5	0.39
	d	9	5	>40	1.1404	1.1426	2.2	0.24
				L	1			,

Date: 02/21/2005								
Species:Leptoch	eirus p.							
Facility: SeaCres	st Group							
Test: 28 Day Chr	onic							
			Sexed Adults				Dry W	eight(mg)
Treatment	Rep	Surviving	(males)	Juvenile production	Pan Weight(g)	Pan + Larvae(g)	Total	Individual
Sediment # 7	а	0	XX	XX	XX	XX	XX	XX
04299-C105	b	0	XX	XX	XX	XX	XX	XX
	С	0	XX	XX	XX	XX	XX	XX
	d	0	XX	XX	XX	XX	XX	xx
	е	0	XX	XX	XX	XX	XX	XX
			Sexed Adults				· · ·	<u> </u>
		<del>                  _     _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _</del>						eight(mg)
Treatment	Rep	Surviving	(males)	Juvenile production	Pan Weight(g)	Pan + Larvae(g)	Total	Individual
Sediment #8	a	11	5	0	1.1456	1.1473	1.70	0.15
04296-D-C	b	10	4	>15	1.1678	1.1692	1.40	0.14
	С	15	7	5	1.1499	1.1528	2.90	0.19
	d	9	2	>20	1.1417	1.1445	2.80	0.31
	е	13	6	>10	1.1442	1.1492	5.00	0.38
			Sexed Adults				Dry W	eight(mg)
Treatment	Rep	Surviving	(males)	Juvenile production	Pan Weight(g)	Pan + Larvae(g)	Total	Individual
Sediment # 9	<u>а</u>	14	6	>25	1.1522	1.1563	4.10	0.29
04299-C100	b	18	7	>25	1.1164	1.1217	5.30	0.29
	С	15	9	>20	1.1410	1.1452	4.20	0.28
	d	13	2	>50	1.1448	1.1487	3.90	0.30
	e	16	7	>25	1.1496	1.1546	5.00	0.31

D-4 02/24/2005		<del> </del>				——————————————————————————————————————		<del> </del>
Date: 02/21/2005	<del></del>	-						
Species:Leptoch								<u> </u>
Facility: SeaCres	t Group							
Test: 28 Day Chr	onic							
	_ <del>_</del>		Sexed Adults				Dry W	eight(mg)
Treatment	Rep	Surviving	(males)	Juvenile production	Pan Weight(g)	Pan + Larvae(g)	Total	Individual
Sediment # 10	а	10	3	>15	1.1513	1.1547	3.40	0.34
04299-C104	b	13	4	>75	1.1459	1.1502	4.30	0.33
	С	18	9	>30	1.1425	1.1474	4.90	0.27
	d	11	6	>50	1.1427	1.1463	3.60	0.33
	е	14	6	>50	1.1446	1.1489	4.30	0.31
		1	Sexed Adults				Dry W	eight(mg)
Treatment	Rep	Surviving	(males)	Juvenile production	Pan Weight(g)	Pan + Larvae(g)	Total	Individual
Sediment # 11	a	8	3	>50	1.1530	1.1534	0.40	0.05
04295-CR	b	5	1	>100	1.1498	1.1512	1.40	0.28
	С	10	2	5	1.1473	1.1494	2.10	0.21
	d	10	6	>40	1.1420	1.1435	1.50	0.15
	е	7	3	>30	1.1374	1.1388	1.40	0.20
			Sexed Adults				Dry W	eight(mg)
Treatment	Rep	Surviving	(males)	Juvenile production	Pan Weight(g)	Pan + Larvae(g)	Total	Individual
Sediment # 12	a	3	1	0	1.1489	1.1499	1.00	0.33
04295-C45	b	9	4	1	1.1355	1.1400	4.50	0.50
	C	0	XX	XX	XX	XX	XX	XX
	<del></del>	1	5	3	1.1628	1.1641	1.30	0.16
	d	8	ວ	<b>3</b>	1.1020	1.1041	1.30	1 0.10

Date: 02/21/2005								
Species:Leptoch	eirus p.							
Facility: SeaCres	t Group							
Test: 28 Day Chr	onic							
			Sexed Adults				Dry W	eight(mg)
Treatment	Rep	Surviving	(males)	Juvenile production	Pan Weight(g)	Pan + Larvae(g)	Total	Individual
Sediment # 13	а	7	2	0	1.1490	1.1512	2.20	0.31
04294-MGK7	b	5	3	1	1.1419	1.1431	1.20	0.24
	С	2	0	1	1.1611	1.1618	0.70	0.35
	d	14	7	5	1.1442	1.1472	3.00	0.21
	е	13	3	4	1.1451	1.1493	4.20	0.32
			Sexed Adults				Dry W	eight(mg)
Treatment	Rep	Surviving	(males)	Juvenile production	Pan Weight(g)	Pan + Larvae(g)	Total	Individual
Sediment # 14	а	9	3	>15	1.1470	1.1515	4.50	0.50
04293-C5	b	14	4	3	1.1584	1.1635	5.10	0.36
	С	15	7	6	1.1617	1.1673	5.60	0.37
	d	14	5	8	1.1419	1.1467	4.80	0.34
	е	11	3	2	1.1462	1.1509	4.70	0.43
		-	Sexed Adults				Dry W	eight(mg)
Treatment	Rep	Surviving	(males)	Juvenile production	Pan Weight(g)	Pan + Larvae(g)	Total	Individual
Sediment # 15	a	8	3	>25	1.1413	1.1439	2.60	0.32
04295-TC	b	12	5	>25	1.1592	1.1628	3.60	0.30
	C	10	6	>50	1.1408	1.1450	4.20	0.42
	d	5	1	>25	1.1430	1.1447	1.70	0.34
	е	7	2	>25	1.1471	1.1501	3.00	0.43

			<del></del>				<del></del>	· <del> </del>
Date: 02/21/2005								
Species:Leptoch	eirus p.							
Facility: SeaCres	t Group							
Test: 28 Day Chr	onic							
			Sexed Adults				Dry W	eight(mg)
Treatment	Rep	Surviving	(males)	Juvenile production	Pan Weight(g)	Pan + Larvae(g)	Total	Individual
Sediment # 16	а	6	2	0	1.1438	1.1451	1.30	0.22
04293-C7	b	2	1	0	1.1540	1.1548	0.80	0.40
	С	1	0	0	1.1439	1.1443	0.40	0.40
	d	5	2	0	1.1405	1.1422	1.70	0.34
	е	1	1	0	1.1447	1.1456	0.90	0.90
		!	Sexed Adults				Dry W	eight(mg)
Treatment	Rep	Surviving	(males)	Juvenile production	Pan Weight(g)	Pan + Larvae(g)	Total	Individual
Sediment # 17	а	12	5	>50	1.1452	1.1498	4.60	0.38
04295-C33	b	7	2	>30	1.1466	1.1491	2.50	0.36
	С	10	1	>25	1.1503	1.1542	3.90	0.39
	ď	7	3	6	1.1575	1.1588	1.30	0.19
	е	6	2	8	1.1505	1.1531	2.60	0.43
		-	Sexed Adults		·		Dry W	eight(mg)
Treatment	Rep	Surviving	(males)	Juvenile production	Pan Weight(g)	Pan + Larvae(g)	Total	Individual
Sediment # 18	a	0	xx	XX	XX	XX	XX	XX
04294-C15	b	0	XX	XX	xx	XX	XX	xx
	С	2	0	9	1.1475	1.1492	1.70	0.85
	d	1	0	>10	1.1385	1.1389	0.40	0.40
	е	0	XX	XX	XX	XX	XX	<del> </del>

								<del></del>
Date: 02/21/2005							<del></del>	<del> </del>
Species:Leptoch	eirus p.							<del></del>
Facility: SeaCres								<del> </del>
Test: 28 Day Chr	<u>_</u>						<del></del>	
			Sexed Adults				Drv W	eight(mg)
Treatment	Rep	Surviving	(males)	Juvenile production	Pan Weight(g)	Pan + Larvae(g)	Total	Individual
Sediment # 19	<u> а</u>	4	2	0	1.1504	1.1529	2.50	0.62
04295-MAB	b	7	2	3	1.1524	1.1544	2.00	0.29
	С	1	0	0	1.1524	1.1525	0.10	0.10
	d	2	0	1	1.1622	1.1628	0.60	0.30
	е	1	0	0	1.1463	1.1465	0.20	0.20
			Sexed Adults				Dry W	eight(mg)
Treatment	Rep	Surviving	(males)	Juvenile production	Pan Weight(g)	Pan + Larvae(g)	Total	Individual
Sediment # 20	а	18	15	>25	1.1437	1.1487	5.00	0.28
Control 1	b	20	10	>25	1.1391	1.1448	5.70	0.29
	С	20	10	>50	1.1640	1.1699	5.90	0.30
	d	16	5	>20	1.1270	1.1287	1.70	0.11
	е	18	12	>25	1.1364	1.1480	11.60	0.64
			Sexed Adults					
Treatment	Rep	Surviving	(males)	Juvenile production	Pan Weight(g)	Pan + Larvae(g)	Total	Individual
Sediment # 21	а	18	8	>100	1.1516	1.1574	5.80	0.32
Control 2	b	19	8	>25	1.1656	1.1710	5.40	0.28
	С	17	10	>20	1.1740	1.1763	2.30	0.14
	d	17	7	>20	1.1584	1.1623	3.90	0.23
	е	15	11	>100	1.1390	1.1413	2.30	0.15
			Sexed Adults				Dry W	eight(mg)
Treatment	Rep	Surviving	(males)	Juvenile production	Pan Weight(g)	Pan + Larvae(g)	Total	Individual
Pre-Treated	XX	60	N/A	N/A	1.1459	1.1514	5.5	0.09166667

# ^CD_R Appendix

# SKIDAWAY INSTITUTE OF OCEANOGRAPHY (TOXICITY OF SEDIMENT TO GRASS SHRIMP))

#### INTRODUCTION

In the present study juvenile grass shrimp (Palaemonectes pugio) were exposed for 60 days to test sediments collected by Curt Rose and to reference sediments collected by us from the Skidaway River. When juvenile grass shrimp are held in aquaria for 60 days with test sediments the following should occur in the process of normal development: (1) juveniles should grow into adults; (2) adult females should produce large mature ovaries: (3) eggs should be produced and fertilized; (3) embryos should develop and hatch into the free living zoea stage. The developing embryos, enclosed in egg sacs, are attached externally to the abdomen of the female. While attached to the female, embryos go through a 14 day development (at 27° C) followed by hatching into a free swimming zoea stage. The following data were collected over the 60 day exposure period: (1) mortality after 60 days; (2) per cent of females which formed mature ovaries; (3) per cent of females which produced embryos; (4) per cent of embryos which hatched into zoea; (5) amount of DNA strand damage (DNA tail moment) in late stage embryos. Previous work showed that females exposed to high concentrations of certain contaminants did not produce embryos or if embryos were produced there was poor development (low hatching rates) and/or DNA strand damage.

In addition to sediment toxicity tests, a series of tests (embryo hatching and DNA strand damage) were conducted on embryos taken from females collected from the LCP site, Crescent River (Sapelo Sound area), Troop Creek (Brunswick area) and Skidaway River (reference site).

#### **MATERIALS AND METHODS**

#### Sediment exposure

To each aquarium with test sediment (1000g) were added 20 juvenile grass shrimp along with 20 liters of estuarine water and the aquarium was maintained at 27°C (salinity 28 ppt). Sediments from each station was tested in triplicate (n=3). Juvenile grass shrimp for the tests were collected from the Skidaway River. We have collected grass shrimp for many years from this river and found them to show normal reproduction and both the sediments and grass shrimp from this river were found to have very low concentrations of standard contaminants (various metals, organochlorines and polycyclic aromatic hydrocarbons). Grass shrimp in the aquaria were fed Artemia daily and kept under a 12 hour light/12 hour dark regime. Every 5 days the following parameters were determined: (a) number of dead grass shrimp; (b) number of females with mature ovaries: (c) number of females with attached embryos. For the hatching tests, stage 8 embryos were removed by a cut at the stem attaching them to females. One female containing embryos was tested for hatching in each aquarium Forty eight embryos from a single female were transferred to two 24 well polystyrene plates with each well containing 1 embryo and 1.2 ml of estuarine water. Culture plates were kept in the dark at 27°C and per cent of embryos hatching from each female was determined. Hatching generally was completed within 48 hours after transfer to the culture plates. Stage 7 embryos from each aquarium were used to assess DNA strand damage (comet assay).

Hatching Tests and DNA Strand on Embryos from Grass Shrimp Collected at

#### Field Sites

Grass shrimp with embryos were collected with dip nets in October 2004 from a number of sites, including two sites at the LCP canal, Crescent River (sapelo Sound), Troup Creek (Brunswick area) and Skidaway River (reference site). Hatching rates and DNA strand damage (Comet assay) were determined with embryos taken from 3 different females at each collection site.

#### Single-Cell Electrophoresis (SCG) Assays for DNA Strand Damage - Comet Assay

All chemicals were purchased from Sigma or Fisher Scientific. The procedures for the comet assay described by Singh et al. (1988) and Steinert et al. (1998) were used along with a few modifications for grass shrimp embryos (Lee et al., 2000). Prior to the assay, agarose-coasted microscope slides were made by inserting slides into a Coplin jar containing 1% normal melting-point agarose diluted in TAE solution (0.04 M Trisacetate and 1 mM EDTA), wiping the rear side of slide with tissue and then drying in air. Ten to 20 embryos from a single female were used and pooled for each assay. Embryos were ground with a glass homogenizer and left to stand for 5 min to allow heavy materials, e.g embryonic coats, in the extract to settle. The supernantant was transferred to a microcentrifuge tube and centrifuged for 5 min (1000 x g). The supernant was discarded, the precipitate was suspended using 50 µl of 0.65% low melting-point agarose diluted in Kenny's salt solution (0.4 M NaCl, 9 mM KCl, 0.7 mM K₂HPO₄, 2mM NaHCO₃) then added onto the prepared agarose-coated slide, covered with a cover slip, and spread. After gel solidification (3 min at 4°C for 2 hours), slides were soaked three times for 2 min each in cold distilled water in a chilled Coplin jar to remove salt. For DNA strand unwinding, sldies were transferred into chambers filled with electrophoresis and unwinding buffer (0.1N NaOH and 1 mM EDTA, > pH 13). After standing for 15 min, electrophoresis was carried out for 20 min at 25 V and 300 mA. Slides were soaked three times for 2 min each in 0.4 M TRIS (pH 7.5) in a chille3d Coplin jar to neutralize the gels, followed by transfer to ethanol in a Coplin jar for 5 min. The slides were then placed on a paper towel. Preparations were stained with 15 µl of the DNA stain, ethidium bromide (20 ug/ml).

The amount of DNA strand damage was determined in cells using a Nikon Eclipse E400 inverted fluorescent microscope (x200 magnification). Fifty randomly selected cells per slide were used for calculation of DNA tail moments (amount of DNA in tail times tail length). The cell images were projected onto a high-sensitivity CCD camera. The computerized image-analysis system (Komet Version 4.01, Kinetic Imaging Ltd.) was used to determine DNA tail moments.

#### Quality_assurance

At the beginning of each test, positive control experiments were carried out with late stage embryos using 1 µM, 2µM, 5µM and 10 µM 2,4-nitroquinoline-4-oxide m(NQO). This is a known DNA damaging agent and has been shown to effect hatching of grass shrimp embryos (Lee and Steinert, 2003;Lee et al., 2000). The percent of embryos hatching at each concentration of NQO was used to prepared a dose-response curve. Dose-response curve were within one standard deviation of previously prepared dose-response curves. In addition, we included a reference sediment from the Skidaway

River. Earlier work showed that this reference sediment did not affect reproduction, embryo production and embryo hatching rates compared with control shrimp not exposed to sediment.

#### RESULTS

Juvenile grass shrimp exposed to test and reference sediments were followed as they grew into adults and as reproduction took place. Grass shrimp exposed to the reference sediments (Skidaway River sediments) showed good ovary formation, good production of embryos, high hatching rates and very low DNA damage. Grass shrimp exposed with low level of genotoxicants generally have DNA tail moments ranging from 1.2 to 3.0. None of the grass shrimp exposed to the different test sediments showed significant DNA damage relative to grass shrimp exposed to reference sediment. It should be noted that DNA tail moments of 10 to 20 were noted in embryos collected from the LCP canal before and immediately after remediation of this site. There was high mortality of shrimp exposed to C101 and C7 sediments and embryo production was low in females exposed to sediments from stations C105, C33, C7 and C101 (Table 2). Embryo hatching rates were reduced in females exposed to C7, C 33 and MG-K7 sediments (Table 2). Reproduction and embryo production in grass shrimp exposed to sediments from the other stations were in the normal range.

Female grass shrimp with embryos collected from several stations showed normal hatching rates and no significant DNA damage with the exception of embryos from the females in the canal at LCP site which had a mean DNA tail moments of 3.7 and mean hatching rate of 60 (Table 3).

#### REFERENCES

Lee, R.F. and S. Steinert. 2003, Use of the single cell gel electrophoresis/comet assay for detecting DNA damage in aquatic (marine and freshwater) animals. Mutation Research.

Lee, R.F., G.B. Kim, K.A. Maruya, S. A. Steinert and Y. Oshima. 2000. DNA strand breaks (comet assay) and embryo development effects in grass shrimp (*Palaemonetes pugio*) embryos after exposure to genotoxicants. Mar. Environ. Res. 50: 553-557.

Singh, N.P., M.T. McCoy, R.R. Tice and E.L. Schneider. 1988. A simple technique for the quantitation of low levels of DNA damage in individual cells. Experimental Cell Research 175:184-191.

Steinert, S.A., R. Streib-Montee, J.M. Leather and D.B. Chadwick. 1999. DNA damage in mussels at sites in San Diego Bay. Mutation Res. 399: 65-85.

Table 1 - Data for Mortality, Reproduction, Embryo Production, Embryo Hatching and DNA
Damage of Grass Shrimp Exposed to Test Sediments
Study began on October 29,2004 and ended on January 10,2005

Sample ID	Mortality (% mortality over 60 days)	Reproduction (% of females forming mature ovaries)	Embryo Production (% of females producing embryos)
C15	45,30,30	58,43,75	42,36,53
C5	25,35,40	58,57,46	42,21,23
C7	85,65,70	58,60,56	8,0,0
C6	75,55,50	80,78,58	40,33,25
C102	65,55,85	55,56,58	36,22,25
C105	25,35,50	55,63,46	9,25,0
C45	65,55,40	31,63,67	15,27,44
C104	75,50,85	50,64,69	40,54,53
C33	80.55,40	75,80,78	17,10,0
C103	85,60,70	85,78,67	31,33,22
C101	90,80,90	82,78,67	18,11,0
C100	20,25,35	83,78,73	25,33,18
CR-C	10,15,15	85,78,77	38,44,31
A-C	50,40,55	64,67,54	27,33,31
TC-C	15,20,20	85,64,67	38,36,44
M-AB	10,25,15	83,73,78	33,36,33
D-C	35,55,30	73,67,85	18,22,23
MG-K7	35,25,40	79,67,64	14,11,27
MG-H7	15,30,20	82,78,67	45,44,,25
Reference sediment	10,20,10	64,72,78	29,45,33

Table 1, cont.

Study began on October 29,2004 and ended on January 10,2005

Sample ID	Embryo Hatching Test (% hatching into zoea stage)	DNA Strand Damage Test - Comet Assay (DNA tail moment)
C15	85,90,90	2.2,2.4,1.8
C5	90,80,80	2.4,2.2., 2.0
C7	45.35,55*	3.0, 2.4, 5.0*
C6	75,90,80	2.4, 2.7, 2.2
C102	85, 80,95	1.9, 2.3, 2.7
C105	65.50. 80	2.7, 3.4, 2.2
C45	95,85,95	2.1, 1.7, 2.3
C104	95, 80, 80	1.9, 2.2, 2.7
C33	55, 70, 75	2.5, 3.1, 2.2
C103	95, 80, 85	1.6, 2.4, 2.7
C101	50, 75, 65	2.7, 3.4, 3.0
C100	90, 80, 80	2.7, 2.1, 2.2
CR-C	95, 90, 95	2.4, 1.5, 2.0
A-C	95, 95, 85	1.8, 1.7, 2.3
TC-C	75, 60, 85	2.2, 3.1, 2.2
M-AB	85, 80, 90	1.5, 2.4, 1.9
D-C	80, 65, 70	3.7, 2.4, 2.1
MG-K7	65, 75,70	2.4, 1.7, 2.9
MG-H7	85, 90, 70	1.8, 2.4, 2.5
Reference sediment	90, 80, 90	1.7, 2.3, 2.4

Table 2 - Means and Standard Deviations of Mortaity, Reproduction, Embryo Production, Embryo Hatching and DNA Damage of Grass Shrimp Exposed to Test Sediments from Coastal Georgia

Sample ID	(% mortal	ortality lity of grass shrimp days in test s)	Reproducti (% of fema produced r ovaries)	les which	Embryo Development (% of females which produced embryos)		
	Mean	S.D. (n=3)	Mean	S.D.(n=3)	Mean	S.D. (n=3)	
C15	35	9	59	16	44	9	
C5	33	6	<b>68</b> 54	10	2629	11	
C7	73	10	58	2	23	5	
C6	60	13	72	12	33	8	
C102	68	15	56	2	28	7	
C105	37	13	55	9	11	13	
C45	53	13	54	20	29	15	
C104	70	18	61	10	49	8	
C33	58	20	78	3	9	9	
C103	72	13	77	10	29	1	
C101	87	6	76	8	10	9	
C100	27	8	78 78	3	25	8	
CR-C	13	3	80	4	38	7	
A-C	48	8	62	7	26	8	
TC-C	18	3	72	11	39	4	
M-AB	17	8	78	5	34	2	
D-C	40	13	75	9	21	3	
MG-K7	<i>3</i> 63	3 5	70	8	17	9	
MG-H7	22	8	76	8	38	11	
Reference sediment	13	6	71	6	36	8	

CDR ecoccitions

Table 2 - Means and Standard Deviations of Mortaity, Reproduction, Embryo Production, Embryo Hatching and DNA Damage of Grass Shrimp Exposed to Test Sediments from Coastal Georgia, cont.

October, 2005

Sample ID	Embryo Hato (% hatching	ching Test into zoea stage)	DNA Strand Damage Test - Comet Assay (DNA tail moment)				
	Mean S	.D. (n=3)	Mean	S.D. (n=3)			
C15	88	3	2.1	0.3			
C5	<b>88</b> 83	6	2.2	0.2			
C7	45	10	3.5	1.4			
C6	82	8	2.4	0.3			
C102	87	8	2.3	0.4			
C105	65	15	212.8	<b>?</b> 0.6			
C45	92	6	2	0.3			
C104	85	9	2.3	0.4			
C33	67	10	2.6	0.5			
C103	87	8	2.2	0.6			
C101	63	18	3	0.5			
C100	85 83	6	2.3	0.3			
CR-C	93	3	2	0.5			
A-C	92	6	1.9	0.3			
TC-C	73	13	2.5	0.5			
M-AB	85	5	1.9	0.5			
D-C	72	8	2.7	0.9			
MG-K7	70	5	2.3	0.6			
MG-H7	82	10	2.2	0.4			
Reference sediment	87	6	2.1	0.4			

CBR coarreturs

Table 3 - Hatching Tests and DNA Strand Damage Tests (Comet Assay) on Embryos from Grass Shrimp Collected at Various Sites in Coastal Georgia October, 2004

Collection Site	Hatching (% hatchir		oea stage)		DNA Strand Damage Test (Comet Assay) (DNA tail moment)					
	Data	Mean	S.D. (1	n=3)	Data	Mean	S.D. (n=3)			
Canal at LCP site (rock rubble station)	65, 45,70		60	13	4.5,3.4,3.1	3.7	0,7			
LCP canal at a point where the canal empties into Purvis Creek (entrance to Purvis Creek station)	80,90,75		82	8	3.2,2.0,2.1	2.4	0.7			
Crescent River (Sapelo Sound area)	90,75,95		87	10	3.2,3.1,2.2	2.8	0.6			
Troop Creek (Brunswick area)	65,90,80		78	13	1.9,3.0,2.2	2.4	0.6			
Skidaway River (reference site)	95,80,85		87	8	2.1,2.3,2.7	2.4	0.3			

WHITE COPY: Accompanies samples

# The Jeacrest Group

# **Chain of Custody Record**

(enclose with each shipping container)

Durc	ha	se (	Orde	er N	lum	the

1341 Cannon Street • Louisville, Colorado, 80027 303-661-9324 • FAX 303-661-9325

Client: <u>Curt Resid</u> Program/Site: <u>LCP Byo</u>			Cc	ontact:	950				Add	ress:					<b>.</b>			inst. citiy,
Collected by:						A	cute		Ch	ronic	b /	·	· /	These for fi	elds ma eld test	y be use results	d /	
Sample Identification (Efficient, Receiving, Sediment, list other)	Date Sampled	Time	Sam Typ (composite	ie /	Gerio	FH MINDS	Accelerati		FHMP	Acceleration		0 10	_/_				Total Units	Total Volume
104193-05	10/14/04		(comp.	sile	Ga	55 SL	KIMP -	tuxu	y tes			cnout	enul	points	) .		l	
2 04293 · CL	10/15/04																Į	
3 04293- 67	10/14/04	<i></i> .															(	
4 04294 - 615	10/20/04																(	
5 04294 - 46-47(0)	16/20104																	
6 04244-MG-K7(E)	<del> </del>																1	
	10/21/04	T															1	
8 04295 - CR	W/21/04																1	
	12/2/24																(	
	10/20104		J					J									1	
Comments and special testing	ng instruction	ns:							- ·			<del></del>					· · · · · · · · · · · · · · · · · · ·	<u> </u>
			****							-								
1 Five Digit date	uct I	اسارده	٠ <del>١</del> ٢	227 (	<u> </u>	tain e	<u> </u>	Hon	رددي ا	<u> </u>	0.1	c plus	cittic	. Si, n	p14 16	<i>بان جا</i> ر فر	estion	in iga
Relinquished by:	Tiers		Repres	senting	): (	100	Fran	(L1.1.1 v	.t. 1.	To Who	m: <i>D</i>	ich L	٠,		——— Date/T	ime: İ	26/04	15 9 W 41
Relinquished by:										To Who		•			Date/T		• . •	•
Next recipient:			Reling	uished	by:				1	Recid b	y:				Date/T	ime:		

CANARY COPY. Client

# Skidewy Institute of Oceanography (De Dick Lee)

2 12

# The Jeacrest Group

Chain of Custody Record

Purchase Order Number

1341 Cannon Street • Louisville, Colorado 80027 303-661-9324 • FAX 303-661-9325.

Next recipient:

(enclose with each shipping container)

Project Number (lab use only)

Client: Cury Rox Program/Site: LLV 3	رسارامد ، دلم		Contac Phone	:t: : 550	t-97 <u>)</u>	)	S	Addr	ess:								
Collected by:				-	A	cute			ronic	Da /	/ ,	/	These f	ields ma ield test	y be use results	d /	
Sample Identification (Effluent, Receiving, Sediment, list other)	Date Sampled	Time	Sample Type (composite, grah)		FH Min	Accelerate.		FH Minno	4ccelerate	1	5	<u> </u>				Total Units	Total Volume
1 04295-045	10/21/04	/			Gra	1 55 5 h(	ing to	1 except	tcs+(.	5 m	isone M	ent e	12 pur	rts)		(	
204795- A-C	10/21/04						Ţ									1	
304296 D-C	10/22/04															1	
4 04299 - C100	10/25/4	/														)	
504299-0101	10/25/04	/														١	
604299-6102	10/25/04	/														١	
704299-6103	10/25/04	/														l	
804299-6104	10/25/04							1								١	
904299-0105	10/25/4	/	V				1									١	
10																	
Comments and special testi	ing instruction	ns:															
							<u>-</u>										
Relinquished by:	?on		Representi	ng: C	DR E	4000	ncti l	т	o Whoi	m: <i>D</i>	uy L	: (		Date/T	ime: (C	1244	: Sich A
Relinquished by:			·						o Whoi		•			Date/T			

Refinguished by:

Date/Time:

Rec'd by:

	P CHEMECAL'
Break: 4	
Other: V.	31

ECOLOGICAL MONITORING
INVESTIGATION FOR THE ESTUARY
AT THE LCP CHEMICAL SITE
IN BRUNSWICK, GEORGIA

-- 2006 Monitoring Investigation -- Appendices (Laboratory Reports)

## Prepared for:

Honeywell International Inc. 101 Columbia Road Morristown, NJ 07962-1139

# Prepared by:

CDR Environmental Specialists, Inc. Suite 1103 6001 N. Ocean Drive Hollywood, FL 33019

and

Environmental Planning Specialists, Inc. Suite 300 900 Ashwood Parkway Atlanta, GA 30329

April 2007



## **TABLE OF CONTENTS**

A.	CHRONIC	<b>AMPHIPOD</b>	TOXICITY	<b>TESTS</b>

- A.1 SeaCrest Group (Primary Toxicology Laboratory)
  A.2 Aqua Survey (Secondary Toxicology Laboratory)

# **B. TOXICITY IDENTIFICATION EVALUATION (AQUA SURVEY)**

C. APPARENT EFFECTS THRESHOLDS (SEACREST GROUP)

C_{D_R} Appendix

# A. CHRONIC AMPHIPOD TOXICITY TESTS (SEACREST GROUP and AQUA SURVEY)

# A.1 SEACREST GROUP

L

£

L

# RESULTS OF SEDIMENT TESTS CONDUCTED FOR CDR ENVIRONMENTAL SPECIALISTS USING SAMPLES FROM BRUNSWICK, GEORGIA

Prepared for:

Mr. Curt Rose CDR Specialists 6001 N. Ocean Drive Hollywood, Florida 33019

Prepared by:

The SeaCrest Group 1341 Cannon Street Louisville, Colorado 80027-1455 (303) 661-9324

January 19, 2007

## SCG Project No.:306727

# **TABLE OF CONTENTS**

INTRODUCTION
MATERIALS AND METHODS
SAMPLE COLLECTION
SEDIMENT GRAIN SIZE
SIEVING AND HOMOGENIZATION
PORE WATER QUALITY
OVERLYING WATER
TEST ORGANISMS
TEST PROCEDURES
RESULTS
LEPTOCHEIRUS PLUMULOSUS TEST
REFERENCE TOXICANT TEST RESULTS
LEPTOCHEIRUS PLUMULOSUS
REFERENCES
APPENDIX 1 – CHAIN OF CUSTODY FORM
APPENDIX 2 – PORE WATER CHEMISTRY RESULTS1
APPENDIX 3 – WATER BATCH PREPARATION AND WATER QUALITY CHECKS 1
APPENDIX 4 – OBSERVATIONS OF <i>L. PLUMULOSUS</i> 2
APPENDIX 5 – DATA SHEETS CONTAINING DAILY CHEMISTRY READINGS10
APPENDIX 6 – <i>L. PLUMULOSUS</i> HISTORY SHEETS FROM THE SUPPLIER CHESAPEAKE CULTURES AND REFTOX12
APPENDIX 7 – SUMMARY DATA SHEETS REFLECTING RESULTS OF A PLUMULOSUS TESTS13
LIST OF TABLES
Table 1. Test Survival and Weight Results for the Leptocheirus plumulosus sedimer exposures
Table 2. Test Species Sexing and Juvenile Production Results for the Leptocheiru plumulosus sediment exposures

Client: CDR Environmental Specialists

Site: Brunswick, Georgia

SCG Project No.:306727

#### INTRODUCTION

Procedures have been established by the United States Environmental Protection Agency (USEPA)^{1,2} as a means to monitor the potential effects of contamination on aquatic systems. These test procedures can provide a measure of the impact on mortality, reproduction and growth in acute and chronic exposures. The present report details the results of chronic tests on one species of aquatic invertebrate, *Leptoceirus plumulosus* (*L. plumulosus*), from sediments collected from Brunswick, Georgia.

#### **MATERIALS AND METHODS**

#### Sample Collection

Grab samples of sediment were collected at twenty-four sites during October 2006. These samples were placed in clean, plastic containers. Federal Express shipped the samples in three separate coolers on October 17 and 19, 2006 for overnight delivery to the SeaCrest lab. They arrived at approximately 1000 on October 18 and 20, 2006. After delivery, the sediment samples were refrigerated at 4°C, in the dark, in sealed containers with minimal headspace. The Chain of Custody forms documenting sample collection and transfer times are included in Appendix 1.

#### Sediment grain size

L. plumulosus are found in very fine mud and muddy sands and are tolerant of variable grain size. Although sediment grain sizes were not established prior to testing, observations of the sampled sediments suggest a mix of silts and clays with no one sediment characterized as a purely sandy sample.

#### Sieving and Homogenization

The sediment did not require sieving but were thoroughly stirred and all large particles (i.e. branches, stones) were removed manually. Each of the sediments was visually inspected for indigenous organisms, but none were observed prior to test initiation. All sample sediments were treated in the same manner in regards to processing and addition to the test containers

#### Pore water quality

Total ammonia, salinity, temperature and pH of pore water from surrogate containers were taken on days zero and 28. Isolation of interstitial water was accomplished by the centrifugation of 50 ml of each homogenized sample collected. Samples were centrifuged for 30-45 minutes at 4,000 rpm. Results indicate pore water ammonia levels below 2.0 mg/l in all collected sediments. The pore water chemistry results are located in Appendix 2.

Client: CDR Environmental Specialists SCG Project No.:306727

Site: Brunswick, Georgia

#### Overlying Water

Pore water quality determinations for salinity averaged 20 parts per 1,000 for the collected sediments. From this result, deionized water was mixed with the marine mix, Crystal Sea, at a rate of 20 parts per 1,000, in order to create the salt water environment used as the overlying water during the sediment tests.

#### Test Organisms

The tests were conducted with benthic estuarine amphipod Leptocheirus plumulosus purchased from Chesapeake Cultures. The amphipods used in the sediment tests were size selected using a 600 and 250 micron mesh screen method as prescribed by the test procedures. The Leptocheirus plumulosus organisms were tested in reference toxicant tests using copper sulfate to insure their health and test acceptability. Along with the reftox, one set of twenty animals were randomly selected as a pre-weight criterion to compare growth endpoints for the 28 day tests.

#### Test Procedures

The tests followed the procedures outlined in USEPA¹ guidelines EPA600/R-01/020. The *Leptocheirus plumulosus* tests were started on October 22, 2006 (Day -1) with the addition of water over the sediments. Pore water total ammonia was also measured on Day -1 and is included in Appendix 2. Twenty animals were added to each test container on October 23, 2006 (Day 0). The test ran for 28-days, ending on November 20, 2006.

Test containers were 1 L glass jars with a 10 cm inner diameter to which 175 ml of the homogenized sediments were added. To this was added 750 ml of reconstituted salt water. The sediments were tested at the 100% concentration. Five replicates were used for each sediment sample. Two sets of negative controls were run during the testing period.

400 ml of water was replaced in each test container during the change-outs. Change-outs were done three times per week. The test containers were monitored for temperature, dissolved oxygen, pH and salinity before and after the water change-outs. Water used for the change-outs were held in the incubator at test temperature. The containers for the reconstituted salt water were refilled immediately after each change-out so that the water would be at test temperature by the next change-out. The data sheets documenting the water batch preparations are located in Appendix 3.

Test animals were fed three times a week after each water change-out. All Leptocheirus plumulosus test chambers received 1.0 ml of Tetramin solution. Days 0-13 received a 20 mg Tetramin solution and days 14-28 received a 40 mg Tetramin solution. Observations of mortality, feeding regimes and/or effects were made at water change-outs and are located in Appendix 4.

The water over each sediment sample was measured for pH, salinity, alkalinity, conductivity, dissolved oxygen and ammonia at the beginning and at the end of the tests. The data sheets containing the daily readings of temperature and dissolved oxygen, and the water

Client: CDR Environmental Specialists

Site: Brunswick, Georgia

SCG Project No.:306727

quality readings taken at the beginning and end of the tests are located in Appendix 5. The tests were held at temperature of  $25 \pm 2^{\circ}$ C in an incubator with programmed day cycle of 16-hours light and 8-hours dark under a wide spectrum florescent light bank at 700 lux illumination. The daily temperature readings for the incubator are located in Appendix 3. The temperature readings for the incubator were higher than those recorded in the test themselves, as seen on the test data sheets; however, the incubator readings show consistency and adjustments to the temperatures in the incubators were made, as needed.

Dissolved oxygen levels were maintained above 4.0 mg/L, as per the sediment toxicity test guidelines. Any deviations in dissolved oxygen levels were corrected as discovered. All sediments in both tests were aerated from the beginning of the tests due to low initial dissolved oxygen levels.

At the end of the Leptocheirus plumulosus test, water was pulled from each replicate of each sediment test and composited by test sediment for final water quality readings. Each sediment replicate was sieved into a clean plastic pan and searched thoroughly for live animals. Diligent effort was made to account for every test organism, either by retrieving them live or finding a body. The Leptocheirus plumulosus were sexed and present juveniles were counted. Live organisms were euthanized and placed in a drying oven at 70°C for a 24-hour period of drying. The Leptocheirus plumulosus were then weighed on a four-place analytical balance to determine average dry weights. The summary tables containing the dry weight determinations, the number of surviving Leptocheirus plumulosus per replicate for each sample, sexed adults and produced juveniles are located in Appendix 7.

#### RESULTS

Leptocheirus plumulosus Test

The amphipod test was run with all twenty-four collected sediments. A negative control, using purchased control sediment from Chesapeake Cultures, was run along with the twenty-four sediments. Pre-weight animals were collected on Day 0 and are included within Table 1 test results. All tabular data is located in Appendix 7.

Client: CDR Environmental Specialists SCG Project No.:306727

Site: Brunswick, Georgia

TABLE 1. TEST SURVIVAL AND WEIGHT RESULTS FOR THE LEPTOCHEIRUS PLUMULOSUS SEDIMENT EXPOSURES.

Sample	Survival Range	Average .		Average Weight; per animal (mg)
C-103	45-95	80	0.38-0.72	0.58
C-104	70-95	80	0.25-0.43	0.36
C-105	70-90	82	0.34-0.59	0.49
FS-AREA-1	30-50	42	0.28-0.39	0.32
FS-AREA-4	70-95	85	0.25-0.84	0.65
FS-AREA-5	80-95	88	0.38-0.52	0.43
FS-AREA-6	60-90	78	0.24-0.42	0.35
C-45	50-80	60	0.24-0.37	0.34
C-36	70-95	84	0.37-0.48	0.43
C-15	70-95	79	0.39-0.71	0.62
C-29	80-90	84	0.21-0.55	0.38
C-33	45-90	70	0.52-0.88	0.76
C-16	70-100	87	0.29-0.51	0.38
FS-AREA-3	75-95	87	0.26-0.57	0.43
C-5	65-100	87	0.59-0.85	0.71
FS-AREA-2	0-5	Ī	0-0.50	0.10
M-AB	45-100	81	0.21-0.45	0.32
D-C	60-100	87	0.47-0.55	0.53
C-7	80-100	91	0.49-0.61	0.56
C-6	40-90	67	0.41-0.67	0.59
CR-C	65-95	88	0.18-0.48	0.32
TC-C	40-85	72	0.27-0.51	0.40
MG-K7	60-75	71	0.39-0.89	0.74
MG-H7	50-80	66	0.35-0.53	0.46
Control 1	90-100	95	0.60-0.97	0.74
Pre-weight	NA	NA	NA	0.14

The amphipod *Leptocheirus plumulosus* was also tested to measure the fertility and sex ratio responses. Sexed adults and juvenile production for the tests are located in Appendix 7. Table 2 summarizes these test results.

Client: CDR Environmental Specialists

المعام المعاملين

Site: Brunswick, Georgia

-- - ---

TABLE 2. TEST SPECIES SEXING AND JUVENILE PRODUCTION RESULTS FOR THE *LEPTOCHEIRUS PLUMULOSUS* SEDIMENT EXPOSURES.

Sample	Males (ave.)	Females (ave.)	Juvenile, (ave:)
C-103	3	13	2
C-104	5	11	7
C-105	5	- 11	8
FS-AREA-1	3	5	1
FS-AREA-4	7	10	<1
FS-AREA-5	4	15	12
FS-AREA-6	4	12	1
C-45	5	7	0
C-36	6	11	12
C-15	6	10	15
C-29	6	11	3
C-33	5	9	19
C-16	8	10	13
FS-AREA-3	7	10	15
C-5	. 9	9	10
FS-AREA-2	0	<1	0
M-AB	4	12	4
D-C	6	11	8
C-7	5	13	10
C-6	4	9	3
CR-C	5	13	9
TC-C	4	10	1
MG-K7	4	10	2
MG-H7	2	10	3
Control 1	7	12	14

Site: Brunswick, Georgia

#### SCG Project No.:306727

#### REFERENCE TOXICANT TEST RESULTS

Leptocheirus plumulosus

The test organism history sheets from the supplier, Chesapeake Cultures, and reftox are located in Appendix 6. The amphipod animal batches used in the sediment tests were tested against the reference toxicant copper sulfate to determine their health and test acceptability. The Leptocheirus plumulosus test was conducted from October 21, 2006 to October 25, 2006. The test consisted of 2 replicates per concentration, 10 organisms per replicate. The test jars contained salt water and a small amount of sand placed over the bottom. The test was a static, non-renewal; meaning the water was not changed out daily. The animals were fed 1.0 ml of Tetramin on days 0 and 2. The test concentrations ran was 0, 30.5, 61, 122, 244 and 488 ppb copper sulfate.

The LC50 created was 165.98 ppb copper sulfate using the Probit Statistical Method. This method produced acceptable control results and followed methods according to the guidelines.

#### REFERENCES

- 1. USEPA. March 2001. Method for Assessing the Chronic Toxicity of Marine and Estuarine Sediment-associated Contaminants with the Amphipod Leptocheirus plumulosus. First Edition. EPA600/R-01/020.
- 2. **USEPA.** 1994. Methods for Measuring the Toxicity and Bioaccumulation of Sediment-associated Contaminants with Freshwater Invertebrates. EPA600/R-94/024.

Client: CDR Environmental Specialists Site: Brunswick, Georgia

SCG Project No.:306727

APPENDIX 1 - CHAIN OF CUSTODY FORM



# CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

SR#		
CAS Contact	<b>-</b> . ,	

An Employee - Owned Company www.caslab.com 8540 Baycenter Rd. • Jacksonville, FL 32256 • (904) 739-2277 • 800-695-7222 x06 • FAX (904) 739-2011

PAGE	1	OF 2	CAS

																				_				
Project Name LCP CHEMICAL:	Project Number	<del></del>		<del></del>				ANALY	SIS RE	QUES	STED (	include	Meth	od Nu	mber	and C	ontain	er Pre	servati	ive)				
Project Manager	Email Address	<del> </del>	<del></del>		PRE	SERVATI	VE T	T-	T	Τ_	$\top$					_	<u> </u>	<u> </u>						
K. KESS LER							- 1					ļ					<b>)</b>	<u> </u>			<b></b>			
Company/Address 900 ASHWOOD P	ARKWAY, SUIT	E 3	50_		SE SE		Leote Cre L		/ /	/ /	/ /	' /	' /								Preservat 0. NONE 1. HCL	Ē		
ATLANTA, GA	30338				CONTAINERS	/	/ ji/.	× / ×													2. HNO ₃ 3. H ₂ SO 4. NaOH	} ₄		
EPS					97.0	/ / ·	<b>y</b>	<u>3</u> /	/ .	/	/ :	/ /	/ /	' /	/ /	/ /	/ /	/ ,	/ /	′	5. Zn. Ad 6. MeOH	₹		
Phone #	FAX#					فير/ ا	² √ 3√	"/			' /	/	/				/	/			<ol> <li>NaHS</li> <li>Other</li> </ol>	,		
404 - 35 - 9// 3 Sampler's Signature	404 - 315 - 8509 Sampler's Printed Name				NUMBER	20 id													/ A	LTERN	REMARKS/			
CLIENT SAMPLE ID	LAB ID	DATE	IPLING TIME	MATRIX																				
06289-C-103·	306727#1	10/K/UE	1055	SD	1											_		<u> </u>						
OE289-C-104	30672742		1130	SD																				
06289-6-105	306 727#3	10/16/06	1255	SD	П		7																	
06289-FS-AREA-1	306727#4		1447		$\prod_{\cdot}$																			
06289 - FS-AREA - 4	306727#5		1429								1							<u> </u>	<u> </u>					
06289-FS-AREA-5	306727#6	, - <del></del>	61221	SD																				
06289-FS-AREA-6	306727#7	1	6 1400	SD																				
06290-C-45	3:6727#8		1055																					
06290-C-36	30672749		6955																					
06290-C-15	306727410		6 1040																					
SPECIAL INSTRUCTIONS/COMMENTS						TURNAROUND REQUIREMENTS REPORT REQUIREMENTS IN								inv	OICE I	INFORMATI	ION							
Test all 24 samples	sit some time (	Your	all reco	oc ali	24	}-	RU	SH (SUR	CHARGE	ES APPI	LY)		_ i. Resul	ts Only										
samples by Frage	124 20 Pm	. ,			- •	-	ST/	ANDARD					_ II. Resu			aries s require	ed)	PO#						
Controls	20. 20. 109 pa	1514136 1	+ Weget	Wc		R	EQUESTE	D FAX DA	NTE.							alibration		BILL	_TO:					
Con 1( 013 )						-			_				Summa					-						
						A.	EQUESTE	D REPOR	RT DATE				_ IV. Data	Validati	on Repo	ort with f	Raw Data	a						
See QAPP						-						1	_ V. Speid	alized F	orms / (	Custom I	Report	_						
SAMPLE RECEIPT: CONDITION/COO	OLER TEMP:		CU	STODY SEA	LS: Y	′ N						1	Edata		Yes		No							
Ship L. Weller Snop	RECEIVED BY RELINQUISHED							REC	EIVED E	3Y			P	ELINO	UISHE	D BY		1		REC	EIVED BY			
SIGNATURE SOF/3 WEBBR-XAPP	Signature	ture Signature				Si	ignature					Signa	iture					Sign	ature	2				
Printed Name	Printed Name Printed Name					Pr	rinted Nam	e				Printe	d Name				Printed Name							
Firm 0/17/06 1300 Date/Time	Firm	Firm				Firm F					Firm						Firm	the Sa	. C M	est Con				
Date/Time	Date/Time						Date/Time D											Date	Date/Time 10/18/0( - 1353					



# CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

SR#	
	_
CAS Contact	N

SCOC-01/12/06-07

An Employee - Owned Company www.caslab.com 8540 Baycenter Rd. • Jacksonville, FL 32256 • (904) 739-2277 • 800-695-7222 x06 • FAX (904) 739-2011

PAGE	2	OF	2
PAGE		Or	

Project Name <u>2CP</u> CHEMICALS	Project Number				A	NALY	SIS RE	QUES	TED (	nclude	Meth	od Nu	mber	and Co	ontain	er Pre	servati	ve)			
Project Manager  K. KESSLER	Email Address		PRE	SERVAT	IVE																-
Company/Address E.P.S			SE.		/3· /3	<u> </u>	<del>}                                    </del>	7		7			<u> </u>					$\overline{}$	Preserva 0. NON 1. HCL	ΙE	_
900 ASHWOOD I		T€ 350	NUMBER OF CONTAINERS	23 Jan 19 19 19 19 19 19 19 19 19 19 19 19 19	Pilmuless tes	'/													2. HNO 3. H ₂ SO 4. NãO 5. Zn. A	H	
ATCANTA, C	A 30338		9 2 3		9 L8	/ /	/ /	/ /	/ /	/ /	' /		/ /		' /	<i>'</i> /	′ /		<ol> <li>MeO</li> <li>NaH</li> </ol>	H	
<u>404-315-9113</u>	3 404-315-	8509	MBER	1/3	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\														8. Othe	r	
Sampler's Signature	Sampler's Printed Name	· 	Ž	\ <b>5</b> /	(å /	/ .								/	/	_	/Al	TERN	REMARKS	/ RIPTION	
CLIENT SAMPLE ID		SAMPLING TE TIME MATRIX										`									
06290-6-29	306727411 10/1	1/06 1005 SD	1																		
06290-6-33		7/00 910 SD	11													·					_
06290-6-16	306727#13 10/1	7/06 1105 SP	Ш			_		<u> </u>								<u> </u>	L				_
06290-FS-Area-3	306727419 10/1	7/01 839 50				-	<u> </u>										L				
06290-C-5		7/06 1020 50					<u> </u>			<u> </u>											_
06290-FS-Areq-2	306727#16 10/1	7/01/812 50	4																		_
			L_			<u> </u>		<u> </u>								<u> </u>					_
 <del></del>			<u> </u>					<u> </u>								L	<u> </u>				_
·			<u> </u>				<u> </u>														_
																					_
SPECIAL INSTRUCTIONS/COMMENTS				TURNAROUND REQUIREMENTS									OUIRE	MENT	S		INV	OICE I	NFORMAT	ΠΟΝ	
Test all 2	4 samples at 3	same time		}-		•	CHARGE	S APPLY	1	-	_ I. Resul	•									_
القريبة	receive all 24 t. 20. Run po	1 sumples b	C.	}-		NDARD							Summa /MSD as		i)	PO#					
CIOU WIII I	ecene un 21	Strip -	7	)'	REQUESTED	FAX DA	ATE.			-	_ 111. Res	ults + Q	C and Ca	alibration	1	BILL	.TO:				
Friday Oct	t. 20, kun pe	isitive tined	atri	ve							Summa					-					-
controls).					REQUESTED	REPOR	IT DATE				_		ion Repo			' <del> </del>					-
See QAPP				1-						-			Forms / C			<u> </u>					_
SAMPLE RECEIPT: CONDITION/COC	DLER TEMP:	CUSTODY SEA	ALS: Y	N						1	Edata	۰	_ Yes	'	No						_
Sofie & Webs - Sing	RECEIVED BY	RELINQUISHED	BY			REC	EIVED B	Y			F	RELINO	UISHED	BY				REC	EIVED BY		
SOFIE WEBER SUAPE	Signature Signature									Signa	ture					Sigger	ature	1			_
Printed Name	Printed Name Printed Name									Printe	d Name				Printed Name Ustin ). Factor						
Firmaln/a6 1300	Firm	Firm			Firm					Firm						Firm			est Gr		1
Date/Time	Date/Time	Date/Time	Date/Time C						Date/Time							7 1 11/116		al. 10		_	

The SeaCrest Group Louisville, CO	S	ample Receipt F	orm		Effective: Nove	Form ember
Project #:	306727		Sample	#: 1 - 1	Ŀ	
Date:	10/18/06	<del></del>	Initials:	1	<del></del> )	-
Samples Were:	, <del>, , , , , , , , , , , , , , , , , , </del>		•	<del></del>	<del></del>	-
1. Shipped Notes:	Hand Delivered	Messengered	(circle o	ne)		
2. Airbill Present Notes:		Y	N	NA		
3. Chilled to Ship				Ambient	Chilled	(cir
Notes:			(	Ice	Blue Ice	(cir
4. Cooler Receive Notes:	d Broken or Leaking			Υ (	$\widehat{\mathbf{N}}$	NA
5. Sample Receive Notes:	ed Broken or Leaking			Ŷ	N	NA
6. Received Within Notes:	n Holding Times			Y	N	
7. Aeration neces:	sary			Y	N	NA
8. Sample Receive Notes:	ed at Temperature be	tween 0-6°C.	n Cooler	۲ 81	N	NA
	sample (Color, Odor, a					
rec'g	1					
Cond	DO Temp	pH CI	5	Time	DO	
Eff	1 2.5	ļ	<del></del>	<u> </u>	<u> </u>	
Rec'g	12.7	<u> </u>		^ŧ	<u> </u>	<u></u>
COC Tape Was:						
1. Present on Oute	r Package	(Y)	N			
2. Unbroken on Ou	-	• 👸	N	NA		

COC Record Was:

1. Present Upon Receipt of Sample

Y

Ν



# CHAIN OF CUSTODY/LABORATORY ANALYSIS RE

SR#		
CAS Contact		

An Employee - Owned Company www.caslab.com

8540 Baycenter Rd. • Jacksonville, FL 32256 • (904) 739-2277 • 800-695-7222 x06 • FAX (904) 739-2011

REQUEST FURIN	
PAGE OF	CAS Contact

											_			_											
Project Name  LCP CHEMICALS	Project Number							A	NALYS	SIS RE	QUES.	TED (I	nclud	Meth	od Nu	mber	and Co	ontain	er Pre	servat	ive)				
Project Manager	Email Address			<del></del>	PPE	SERV	ATIVE	Γ	Τ	1													<del></del>	_	
K. KESSLER													<u> </u>												
Company/Address EPS	-				(0)			24/	/	/ /	7	_/	/	7	7	7	7	7	/	7	7	0. NON	ative Key IE	,	
900 ASHWOOD PAI	RKWAY, Si	UTE 3	350		NUMBER OF CONTAINERS		Leon Che						/.								./	1. HCL 2. HNC 3. H ₂ S 4. NaO	)3 O4 H		
ATLANTA, 6A Phone # 404-315-9113	•				P. CO		100 m	<b>y</b> /	/ /	/ /	/ /	/	/ /	/ /	/ /	/	/ /	/ /	/	/ /	/	5. Zn. / 6. MeC 7. NaH	Acetate IH		
404-315-9113	FAX#	3/5 - 83	709		BER (	1 6	<b>3 3</b>															8. Othe		_	
Sampler's Signature Sampler's Printed Name					N N	1	7													/ ^	ITERN	REMARKS	/ RIPTION	-	
CLIENT SAMPLE ID	LAB ID	SAN	IPLING TIME	MATRIX	<del>                                     </del>							_									2,2,		<u>, , , , , , , , , , , , , , , , , , , </u>		
0629c-M-AB	306727 #1	19/1/06	1405	SD	1	i	1	† <del></del>				_													
06291- D-C	306727 41	8 1918/06	1041	SD	1	1																			
C6291- C-7	306 117 4	4 19/18/06	1000	SD	1	1														<u> </u>					
06291-6-6		0 10/5/X	0940	52	1	1	<u> </u>			<u> </u>															
06291-CR-C	306 JU +1	1 /18/06	1425	5D_	1		ļ	<u> </u>												<u> </u>					
CE291-TC-C	306 727 HZ	2 10/18/4	1710	SD	1	1			L	<u> </u>										<u> </u>					
06291-MG-K7(M)	306727 #	3 10/5/4	1705	Q2	11		<u> </u>	<u> </u>		<u> </u>				L						ļ					
06291-MG-H7(M)	306 727 W2	1 1/18/00	1659	SD	1	1		ļ	ļ			ļ. <u></u>	<u> </u>							ļ					
			<del> </del>	<del> </del>	<u> </u>	<u> </u>	<u> </u>	ļ	<u> </u>	<u> </u>															
		L		<u> </u>	<u>L_</u> .			<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u></u> _					<u> </u>						
SPECIAL INSTRUCTIONS/COMMENTS	1			,	TURNAROUND REQUIREMENTS RUSH (SURCHARGES APPLY)							}			QUIRE	MENT	S	}	INV	OICE I	NFORMA [*]	rion			
Test all 2	1 samples a	t same	time	(You	will	′				CHANGE	S APPLY	1		_ I. Resu											
receive al	1 24 sample	s by Fi	riday.	Run				STAN					-		uits + OC DUP, MS		aries required	i)	PO						
positive -	l 24 samples f negative	contro	ols).				REQU	ESTED	FAX DA	TE			-	_ III. Res Summa		C and C	alibration		BILL	.TO:					
	•					•	REQU	ESTED	REPOR	T DATE						ion Repo	ort with F	law Data				·			
		٠															Custom F			-					
See QAPP	LED TEND			07001105									-						<u> </u>					_	
SAMPLE RECEIPT: CONDITION/COO RELINQUISHED BY	LER TEMP:			STODY SEA		N	Т		RECE	IVED B	Ý	<u> </u>	+-	F	RELINO	UISHE	D BY		+		REC	IVED BY			
Satis Abother-Son																			}		<u> </u>				
Signature Signature Signature							Şignat	lure					Signa	ture					Sign	ature		-2			
Printed Name	ed Name Printed Name Printed Name					Printed Name F						Printe	d Name					Print	Printeg Name I Water Bark						
Firm 19/02 1600 Firm							Firm						Firm						Firm		Sidh	ist (	www.		
	Date/Time		Date/Time				Date/T	lime					Date/	Time				-	Date	/Time	920				
Distribution, White Bature to Originates Vollage																		SCO	C-01/12/0	6-07					

# **Sample Receipt Form**

Form #: 42 Effective: November 2003

Project #: 306727	Sample	e#: \)-	-54	
Date: 102006	Initials:		$\sim$	-
Samples Were:				_
1 Shipped Hand Delivered Messengered Notes:	) (circle	one)		
2. Airbill Present Y Notes:	N	NA		
3. Chilled to Ship		Ambier	nt Chilled	(circle one)
Notes:		(ce)	Blue Ice	(circle one)
Cooler Received Broken or Leaking     Notes:		Υ	N	NA
5. Sample Received Broken or Leaking Notes:	·	Y	N	NA
6. Received Within Holding Times Notes:		Y	N	
7. Aeration necessary Notes:		Υ	N (	NA
8. Sample Received at Temperature between 0-6° C . Notes:		Ŷ	N	NA
9. Description of Sample (Color, Odor, and/or Presence eff:	e of Particula	ate Matter)	:	
rec'g				
Cond DO Temp pH C	<u> </u>	E Time	DO	pH
Eff 3.6		Aeration		<u> </u>
Rec'g		¥		
COC Tape Was:				
1. Present on Outer Package	N			
2. Unbroken on Outer Package	N ·	NA		
3. Present on Sample Y	(N)			
4. Unbroken on Sample Y	N	NA		
COC Record Was:		~~		
1. Present Upon Receipt of Sample (Y)	N			

Client: CDR Environmental Specialists Site: Brunswick, Georgia SCG Project No.:306727 APPENDIX 2 – PORE WATER CHEMSITRY RESULTS

## **Bulk Sediment Pore Water Total Ammonia**

Project Name: CDR Environmental Specialists

Project Number: 306727

Test Day: 102206 (day-minus 1)

Test Type: 28 day

Bulk Sample (Client Sample ID)	Pore Water Total Ammonia (mg/L)
C-103	0.028
C-104	0.098
C-105	0.022
FS-AREA-1	2.08
FS-AREA-4	0.071
FS-AREA-5	1.69
FS-AREA-6	0.090
C-45	0.045
C-36	0.065
C-15	0.008
C-29	0.170
C-33	0.018
C-16	0.092
FS-AREA-3	0.066
C-5	0.048
FS-AREA-2	0.081
M-AB	0.021
D-C	0.059
C-7	0.073
C-6	0.090
CR-C	0.089
TC-C	0.011
MG-K7(M)	0.037
MG-H7(M)	0.041
Control #1	2.101

Recorder: SP

## **Sediment Pore Water Quality**

Project Name: CDR Environmental Specialists Project Number: 306727

<u>Test Day: 102306 (day-0)</u> <u>Type: 28 day</u>

Bulk Sample (Client Sample ID)	Pore Water Total	Salinity (ppt)	Temperature (Degrees C)	p.H (SI units)	
(enem sample 12)	Ammonia	(ppc)	(Degrees C)	(SI dilits)	
	(mg/L)				
C-103	0.018	21	24.1	7.7	
C-104	0.090	21	24.1	7.7	
C-105	0.021	20	24.3	7.3	
FS-AREA-1	2.00	21	24.3	7.5	
FS-AREA-4	0.061	20	24.6	7.4	
FS-AREA-5	1.60	20	24.0	7.5	
FS-AREA-6	0.090	20	24.2	7.6	
C-45	0.045	21	24.3	7.7	
C-36	0.055	21	24.6	7.8	
C-15	0.008	20	24.2	7.5	
C-29	0.162	20	24.0	7.9	
C-33	0.018	21	24.0	7.6	
C-16	0.090	20	24.1	8.0	
FS-AREA-3	0.069	21	24.0	7.5	
C-5	0.048	21	24.5	7.7	
FS-AREA-2	0.081	20	24.3	7.7	
M-AB	0.021	20	24.0	7.9	
D-C	0.059	20	24.0	7.8	
C-7	0.065	19	24.1	7.5	
C-6	0.090	20	24.3	8.0	
CR-C	0.081	21	24.0	7.9	
TC-C	0.011	20	24.1	8.0	
MG-K7(M)	0.035	20	24.1	8.0	
MG-H7(M)	0.036	20	24.1	7.9	
Control #1	2.042	20	23.6	7.3	

Recorder: SP

## **Sediment Pore Water Quality**

Project Name: CDR Environmental Specialists Project Number: 306727

<u>Test Day: 112006 (day-28)</u> <u>Type: 28 day</u>

Bulk Sample	Pore Water	Salinity	Temperature	p.H
(Client Sample ID)	Total	(ppt)	(Degrees C)	(SI units)
	Ammonia	3		
	(mg/L)			
C-103	0.004	20	25.7	8.0
C-104	0.010	20	24.9	7.6
C-105	0.003	20	24.9	7.9
FS-AREA-1	0.089	21	24.1	7.8
FS-AREA-4	0.006	20	25.9	7.8
FS-AREA-5	0.024,	20	24.2	8.0
FS-AREA-6	0.001	20	25.3	7.9
C-45	ND	21	24.3	7.7
C-36	0.002	21	24.1	7.8
C-15	ND	20	23.7	7.9
C-29	0.037	20	24.6	7.9
C-33	0.010	21	24.1	7.6
C-16	0.090	20	25.2	8.0
FS-AREA-3	0.009	21	25.6	7.9
C-5	0.002	20	25.9	7.7
FS-AREA-2	0.011	20	24.9	8.0
M-AB	ND	20	24.2	7.9
D-C	0.014	20	24.0	7.8
C-7	0.002	20	24.1	8.1
C-6	0.019	20	24.9	8.0
CR-C	0.004	21	23.5	8.0
TC-C	ND	20	25.8	8.0
MG-K7(M)	ND	20	25.5	8.0
MG-H7(M)	ND	20	24.1	7.9
Control #1	0.069	20	23.8	7.7

Recorder: SP

ient: CDR Environmental e: Brunswick, Georgia	Specialists	SCG Project No.:306727
main release sector gate		
	·	
1		
	READINGS FROM I	NCUBATORS
•		

19

The SeaCrest Group Louisville, Colorado

# Saltwater Log

Page #: __

Form #: 29A

Effective: January 2006

Date.	<b>Initials</b> *	Batch#	Quantity DI.	Salt Added	Date	Initials	Sailinity 1	Notes
010306	0	06-001	255-1	2.6 1000	DIAN	9	23/21	
02/406	2	06-007	255-1	2.6 1	D 21506	Ŋ	23/20	
03 1706	D	06-003	Z0501	ont E.Z.	Δ	0	24/20	
<b>95</b> 0506	146	06-004	50gal	5.25 scorps	050600	HG	18:20	Added 0.5 scoops then
11			J				23(1)	checked again
11				,				Added another 0.5 scorps
167006		06-005	505-1	5.2 Scorpe	06 200	D	23/21	
072606	7	06-006	505.1	57 56-081	072606	P	30/20	4 Sgol P (
091506	<u>D</u>	06-007	802581	1 package		,		
101906	<u>D</u>	06-008	A0 5-1		1020de 1020de	<u> </u>	20 21	SEDS TESTING
101706	2	06-009	40321	to 20 cups	102000 1022	AC D	27 20	//
10101	4	06-010	403-1	<del></del>	110706	D	20/20	))
1/1000	D	06-011	405.1	20 eup	111106	Kl V	20/20	//
ļ	· · · · · · · · · · · · · · · · · · ·			13/2 cups				
		<u> </u>			<u> </u>			
	, <u>-</u> , -							

¹Measured in parts per thousand (‰)



The SeaCrest Group Louisville, CO

#### **Incubator 1 Temperature Record**

Page #: (( Form #: 77a

Effective: January 2006 PC678 Incubator Model:

Incubator #: Incubator Make: Dept. of Ag Acceptable Light Range: 50-100 foot candles Acceptable Temperature Range: 24-26°C Date of NIST Correction: NIST Correction: **Light Meter Reading Top:** Initials: Date: **Light Meter Reading Bottom:** Light Meter Reading Middle: Maintenance Temperature Initials **Notes** Date 25.3 HW 101606 AC 101706 25.2 25-0 101806 Kw 25.0 AC 01906 102006 25.3 AC AC 25.3 102106 102266 25-0 MW 102305 24.9 25.0 102406 hu 25.3 AC 102506 25-2 HW 102606 102706 25-3 NΑ 102806 25.4 HC 1.02906 25.5 HW 25.4 (030cb HW 103106 25.1 NA 25.3 110166 *W 25.2 110206 HW 110306 25.2 WA 25.3 AC 110406 75.4 11 0506 Kw 25.7 110606 HW 110706 25.4 AC HW 110806 25-5 AC 110906 25.8 25.7 HW 111006 AC 25.0 11/10/06 111206 25.3 1W

25.3

255

111306 111466 hw

HW



The SeaCrest Group Louisville, CO

#### Incubator 1 Temperature Record

Page #: 12
Form #: 77a
Effective: January 2006

Incubator #: 1 Incubator Make: Dept. of Ag **Incubator Model: PC678** Acceptable Light Range: 50-100 foot candles Acceptable Temperature Range: 24-26°C Date of NIST Correction: NIST Correction: Initials: **Light Meter Reading Top:** Date: **Light Meter Reading Bottom:** Light Meter Reading Middle: Maintenance **Notes** Temperature Initials Date 111506 25.1 HW 25.1 111606 HW 25.2 AC 111706 NA 111806 25.5 25.2 AL 1.11906 AC 112006 25,0 25.3 AC 112106 AC 112206 25.5 112304 25.4 AC NA 112406 25.4 112506 nw 25.3 112606 25.2 MW 25.2 112706 HW 249 112806 HW 25.2 112906 MW 25.1 113006 AC 25.0 AC 120106 120206 25.0 AC 120306 HW 25.0 25.2 120466 HU 120506 25.3 HW 120606 25-0 NN 120716 25.3 HW 120806 25-0 WA 120906 Z5 .4 AC 25.3 Mu 121006 25.2 121106 HW 121215 25.4 HW 25.6 121306 AC 121406 25-3 HW

**"我们是我们的人们的人们的人们** 

The SeaCrest Group Louisville, CO

# **Drying Oven Temperature Record**

Page #: Form #: 77h Effective: January 2006

Drying Oven: Model: **American Scientific** Make: 90-110°C * TURNED DUWN FOR SED TESTS Acceptable Temperature Range: Date of NIST Correction: NIST Correction: Temperature Initials Maintenance **Notes** Date THENED DOWN J 112006 110 HW 112106 73 HW 112206 71 HW LOOK BUCK AT NEW SHEET FOR NEXT TEMP Client: CDR Environmental Specialists SCG Project No.:306727 Site: Brunswick, Georgia

#### APPENDIX 4 – OBSERVATIONS OF L. PLUMULOSUS

Note: This appendix contains daily records of the observations made on amphipods exposed to 24 samples of sediment for 28 days. Because of the voluminous nature of the appendix, it is not included in this report. Please contact CDR Environmental Specialists for a copy of this appendix.

The SeaCrest Group

Client: CDR Environmental Specialists Site: Brunswick, Georgia	SCG Project No.:306727
APPENDIX 5 – DATA SHEETS CONTAINING	DAILY CHEMISTRY READINGS
	•

The SeaCrest Group

100

Client	CDR	Site	06289-C-	/03 Lab#	306727 #1
H ₂ 0	20 0/00	Sample Date	10/16	Species Info	L. Plumulosus
Start Date	1	0/23/06	End Date	11/20/0	06
Test Conditions					

	0	2	4		7	-	9		<u>1</u> 1		14
Day	Mon	Wednesday	Friday	Mo	nday	Wed	nesday	Friday		Monday	
Date	10/23	10/25/06	10/27/06	10/	30/06	11/	01/06	11/0	03/06	11	/06/06
rep	14	। ।	D	7		7	 [	A			3
DO	4.2	6664	6.5 6.8	6.3	(v.i	7.3	17.2	66	6.3	6.8	68
Temp °C	223	23 231	23.2 23.7	24.7	24.8	23.8	23.2	23.3	27.4	27.1	1228
рН	7.8	7.5 7.5	7.6 7.0	16	7.7	7-7	7.7	3.0	8-0	7.9	8.6
salinity	21	21 le	21 20	30	20	21	21	71	170	20	21
alkalinity	87										
ammonia	0.0376										
conductivity	23200										

		16		18	2	21		23	- :	25	28
Day	Wednesday		Friday		Monday		Wednesday		Friday		Mon
Date	1100100		11/10/06		11/13/06		11/15/06		11/17/06		11/20
rep	D		0	-	, E		A		R	-	A
DO	5.9	16.1	60	16,24	6.7	67	49	165	(e.2	168	7.0
Temp °C	247	24 8	22.8	1229	2135	239	23.5	23.8	23.5	247	23.1
рН	7.9	19. a	80	7.9	7.7	7.9	81	8.1	7.7	7.9	€.5
salinity	20	21	10	-22	20	20	77	7	21	w	21
alkalinity											105
ammonia											0 0380
conductivity											21:10

The SeaCrest Group Louisville, CO

## 28-day Leptocheirus Benchsheet

Client	CDR	Site	06289-C-104	Lab#	306727 #72
H ₂ 0	20 o/oo	Sample Date	10/16	Species Info	L. Plumulosus
Start Date	1(	0/23/06	End Date	11/20/0	06
Test Conditions					

	0	2	4			7		9		11		14	
Day	Mon	Wednesday	Frida	Friday		Friday Monday		Wednesday		Friday		Mo	onday
Date	10/23	10/25/06	10/27	10/27/06		10/27/06 10/30/06		11/01/06		11/03/06		11.	/06/06
rep	A	R	E	Ε		D				1	E	3	
DO	4.0	6-1 6-0	6.0	L.B	5.i	3.5	13	17.1	8.1	60	6.6	6-6	
Temp °C	222	22.8 22.8	2.3.4	24.4	25.0	15.60	22.9	23.2	23.C	23.4	24-6	22.1	
pН	1.7	7.4 7.5	٦.5	7.6	7.5	7.6	7.4	7.1	7.3	7.5	7.7	7.9	
salinity	21	21 20	21	20	20	20	22	21	23	27	20	21	
alkalinity	92												
ammonia	0.0678	1											
conductivity	28600	ł											

	16	3		18	T :	21	T	23		25	28
Day	Wednesday Friday		Мо	Monday		nesday	Friday		Mon		
Date	11/08	3/06	11/	10/06	11/13/06		11/15/06		11/17/06		11/20
rep	Ā	$\supset$				2	T Z	(	ì	3	[ ]
DO	6.0	6.1	દ્વ	16.5	6.7	6 પુ	65	166	6.2	67	6.8
Temp °C	241	24.6	22.6	23.0	14.9	252	289	123.9	23.8	724.7	23.0
pН	7.5	7.B	7.3	7.7	7.4	70	79	8.0	77	7.7	7.6
salinity	21	21	22	21	22	20	22	80	21	20	2.1
alkalinity											41
ammonia											0.0723
conductivity											27200

Client	CDR	Site	06289-6-105	Lab#	306727 #3
H ₂ 0	20 0/00	Sample Date	1916	Species Info	L. Plumulosus
Start Date		10/23/06	End Date	11/20/0	06
Test Conditions					· · · · · · · · · · · · · · · · · · ·
ŀ					
				_	

	0	2	4	7	9	11	14
Day	Mon	Wednesday	Friday	Monday	Wednesday	Friday	Monday
Date	10/23	10/25/06	10/27/06	10/30/06	11/01/06	11/03/06	11/06/06
rep	A	3	<u>S</u>	С	Ĕ.	A	В
DO	5.8	63 60	10.W 10.8	5.2 5.4	7.4 7.1	6.2 58	6.2 16.2
Temp °C	22.2	22.9 23.1	23.2 24.6	25.6 25.6	23.2 23.2	23.6 23.4	22.8 22.8
pН	7.3	7575	7.7 1.1	7.6 7.4	7 8 7 8	7.8 7.8	7-1 7.9
salinity	20	22 21	22 21	21 20	20 21	22 2(	20 2
alkalinity	86						
ammonia	0,1/6						
conductivity							

	1	6	18		21		2	23	25		28
Day	Wednesday		Friday		Monday		Wedn	esday	Friday		Mon
Date			11/10/06		11/13/06		11/1	5/06	11/	17/06	11/20
гер	0,			$c^{-}$		Œ,		<del>[</del>	13		1
DO	6.4	5,9	6.0	164	68	66	657	6.7	6.9	69	6-5
Temp °C	24.7	24.9	27.7	27.2	25.2	125.4	279	239	239	24.5	21.5
рН	7.8	7.9	7.7	7.4	7.8	17.9	8.3	280.4	7.7	7.7	8-0
salinity	21	20	21	20	20	$\iota$ ა	V	Ľυ	20	20	21
alkalinity								Ri			99
ammonia											3.0314
conductivity											26700

Client	ent CDR		6289-F5-Area	- l Lab#	306727 #14
H ₂ 0	20 o/oo	Sample Date	10/16	Species Info	L. Plumulosus
Start Date	1	0/23/06	End Date	11/20/0	6
Test Conditions					
	<del></del>			<u> </u>	
		<del></del>		<del></del>	<del></del>
		<del></del>	<del></del>		

	0		2	<u> </u>	4		7		9		11	Ī	14
Da	y Mon	Wedr	nesday	Fr	Friday		Monday		Inesday	Friday		Mo	nday
Dat	e 10/23	10/	25/06	10/27/06		10/30/06		11/01/06		11/	03/06	11/	06/06
rep A	) 天.0		B	7	<u>ک</u>		Ē		D		A	, ,	₩
DO	22.42	7.0	6.5	7.1	17.4	4.4	5.3	5.8	60	5.7	5.4	69	7.0
Temp °C	23/3	22.9	230	24.0	13.3	153	25.7	23.i	72.9	14.0	23.8	24.4	33.7
pH	7.5	7.7	7.7	7.6	77.7	7.0	7.7	7.5	7.5	7.5	17.6	7-6	7.8
salinity .	21	11	760	22	21	20	2-1	20	21	21	22	20	20
alkalinity	119												
ammonia	1.50												
conductivit	y Zaioo												

	16	18	21	23	25	28
Day	Wednesday	Friday	Monday	Wednesday	Friday	Mon
Date	11/08/06	11/10/06	11/13/06	11/15/06	11/17/06	11/20
rep		Ost C	E	Δ:	B	A-
DO	5859	5 4 60	10:64	66 66	6.7 6.6	6.7
Temp ^o C	24.5/26.0	24 6 249	23.21.53.5	23-6 23.1	240 23.9	24:8
pН	7.7 7.8	77 78	77 7.8	7-9 80	フィファ	7.8
salinity	21 21	21 20	24 21	24 21	23 21	25
alkalinity						65
ammonia						2.0151
conductivity						29000

Client	CDR	Site	06289-FS-	Aren . 4 Lab#	306727 #S
H ₂ 0	20 0/00	Sample Date	10/16	Species Info	L. Plumulosus
Start Date	10	/23/06	End Date	11/20/0	)6
Test Condition	ons				

	0	2	4	7	9	11	14
Day	Mon	Wednesday	Friday	Monday	Wednesday	Friday	Monday
Date	10/23	10/25/06	10/27/06	10/30/06	11/01/06	11/03/06	11/06/06
rep Q,	SARA	8	D	С	Ĕ	<b>/</b> ;	(3
DO	4.2	6.0 57	4.3 7.2	5.3 5.4	6.1 6.3	5.6 5.7	4,2 6.0
Temp °C	221	727 23.	239 234	25.7 25.4	23.9 22.1	24.6 24.2	24.9 23-5
pН	74	7-1 7.6	7.0 7.7	7.4 7.7	79 74	73 7.8	7-6 77
salinity	20	2 20	22 21	22 22	21 21	23 22	21 21
alkalinity	88						<del></del>
ammonia	0.0164						
conductivity	28400						

	16	18	21	23	25	28
Day	Wednesday	Friday	Monday	Wednesday	Friday	Mon
Date	11/08/06 11/10/06		11/13/06	11/15/06	11/17/06	11/20
rep		D	E	A	B	
DO	54 5.5	5.0 5.7	5.6 4.1	5 5 6.3	5.4 62	6.6
Temp °C	24.7 24.6	25.0 22.9	744 236	24,4-24,c	243 71-8	244
рН	7.2 7.8	8.0 8.1	78 79	8080	7.9 7.8	ଖ.୬
salinity	22 21	20 20	27 70	20	20 20	11
alkalinity						12/
ammonia						0.3163
conductivity						2820O

Client	CDR	Site	06289-FS-Area-	S Lab#	306727 #6
H ₂ 0	20 o/oo	Sample Date	10/16	Species Info	L. Plumulosus
Start Date	10	0/23/06	End Date	11/20/0	06
Test Conditions					<del></del>

	0	2	4	7	9	11	14
Day	Mon	Wednesday	Friday	Monday	Wednesday	Friday	Monday
Date	10/23	10/25/06	10/27/06	10/30/06	11/01/06	11/03/06	11/06/06
гер	A	વ્ય	E	D	۲ .	<i>/</i> -	13
DO	3.6	6-0 63	1.6 7.3	5.1 5.3	6.5 6.6	5.5 5.7	5.6 6.2
Temp °C	22.2	27.4 23.2	242 =34	2u.6 25.9	24.7 23.8	29.7 27.5	25.3   24.7
pН	7.5	7.9 7.9	7.07 7.8	78 78	8.0	6-1 8.1	19179
salinity	v	20 22	2 21	22 22	22 21	21 21	21 21
alkalinity	87			<u>_</u>			
ammonia	1.18		•				
conductivity	28400						

	16	18	21	23	25	28
Day	Wednesday	Friday	Monday	Wednesday	Friday	Mon
Date	11/08/06	11/10/06	11/13/06	11/15/06	11/17/06	11/20
rep	$ \mathcal{O} $	$\mathcal{O}$	E	/+	43	ت
DO	5758	5.2 5.8	63 63	60 65	64 66	6.2
Temp °C	145 250	25.0 751	24.1 23.7	24.4 84.2	247, 252	248
pН	8.0 8.5	80 80	8.1 8.2	828.7	7.9 7.8	8.0
salinity	22 23	21 0	24 22	20 20.	251 Zu	21
alkalinity					<u> </u>	139
ammonia						0.0174
conductivity					,	27400

Client	CDR	Site	06289-FS-1	Area - 6 Lab#	306727 #7
H ₂ 0	20 o/oo	Sample Date	10/16	Species Info	L. Plumulosus
Start Date	10	0/23/06	End Date	11/20/0	06
Test Conditions					

	0		2		4		7		9		11		14
Day	Mon	Wed	nesday	Fr	iday	Mo	onday	Wed	Inesday	Fri	day	Mo	nday
Date	10/23	10/25/06		10/27/06		10/	10/30/06		/01/06	11/0	03/06	11/06/06	
rep	;A-	्पर	1-2		)		2		<u>F</u>	A	5.4	(2	>
DO	51	43	7.5	4.8	5.3	5.0	5.3	6.8	6.8	6.5	f. tilm	5.3	6.7
Temp °C	72.3	777	23.2	24.6	24.2	25.4	25.6	23.5	23.0	24.3	24.2	24-9	23.8
На	7.6	7-3	7.5	7.8	7.7	7.8	3.1	7.9	73	8.0	(.0	7.5	7.1
salinity	w	23	긴	22	21	21	21	3 i	22	23	22	20	21
alkalinity	95						_						
ammonia	.0411												
conductivity	31500												

	16			18	2	21	2	23	7	25	28
Day			iday	Monday		Wedr	nesday	Fri	Mon		
Date	11/08	/06			11/13/06		11/15/06		11/17/06		11/20
гер	$\Box$			-	ŧ	-	Į.		B		A
DO	5 8	60	6.1	6.0	6. (	64	63	6.6	Q. S	67	6-1
Temp ^o C	24.7 7	15.2	214	124.8	24.3	23.7	24.8	24.2	24.0	24.8	24.7
рН	7.8	7.8	80	8.0	12.6	ن ال	8.1	81	71	7.0	7.8
salinity	23 -	13	21	W	21	Co	21	20	20	<b>でょ</b>	21
alkalinity										7.5	134
ammonia										D55	0.0282
conductivity										V35	27500

Client	CDR	Site	06290-C-45	Lab#	306727 ყვ
H ₂ 0	20 o/oo	Sample Date	10/17	Species Info	L. Plumulosus
Start Date	10	0/23/06	End Date	11/20/0	06
Test Conditions					
			· <del></del>		

	0		2	Ţ	. 4		7		9	1	1	1	14
Day	Mon	Wedr	nesday	Fr	Friday		Monday		Wednesday		day	Monda	
Date	10/23	10/2	25/06	10/27/06		10/30/06		11/01/06		11/03/06		11/06/06	
rep	A-	13					E		<del></del>	. /	+	13	
DO	3.5	4.8	577	7.2	7.0	5.1	5.4	6.9	6.9	3.6	5.5	6.4	6.5
Temp ⁰C	22.2	227	23.1	24.0	24.4	25.4	25.5	27.7	23.5	24.9	24.8	25.2	24.4
рН	7.6	7.6	77	7.7	7.7	7.8	7.8	7-7	2.3	2.7	7.7	7.7	7.8
salinity	21	23	75	20	21	21	22	22	21	24	22	21	21
alkalinity	90								/				
ammonia	0.101												
conductivity	31200												

		16		18	7	21		23		25	28
Day	Wed	nesday	lay Friday		Mo	Monday		Wednesday		iday	Mon
Date	11/	08/06	11/	11/10/06		11/13/06		11/15/06		17/06	11/20
rep	5.7			<u></u>	E		P	A		3	Α
DO	5.7	15.8	6.2	60	51	(20	54	162	5.3	15.9	6.3
Temp °C	247	25.2	24.7	24.7	24.4	239	25.3	24.8	24.9	124,4	25-3
pН	7.0	7.6	7.9	1-7.9	7.7	7:4	8-6	0.0	7.8	7.6	7.9
salinity	23	23	22	75	2.8	7c .	10	20	20	20	21
alkalinity		<del>-</del>									33
ammonia											0.0183
conductivity											2%0O

CDR	Site	06290-2-36	Lab#	306727 #9
20 0/00	Sample Date	10/17	Species Info	L. Plumulosus
- 10	/23/06	End Date	11/20/	06
·				
		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
	20 o/oo	<del></del>	20 o/oo Sample Date 0/17	20 o/oo Sample Date 1 o/17 Species Info

	0	· 2	4	7	9	11	14
Day	Mon	Wednesday	Friday	Monday	Wednesday	Friday	Monday
Date	10/23	10/25/06	10/27/06	10/30/06	11/01/06	11/03/06	11/06/06
rep کرد	\$ <del>\</del> \$	3	E	O	_	Λ	3
DO 5.2	22.8	71 67	7.2 7.0	4.4 5.1	6.3 6.1	2.0 5.9	64 6.5
Temp °C 2	7 8	22.8 23.2	24.7 24.5	25.5 25.4	24.0	24.7 24.7	25.4 24.1
pH	7.8	8.2 8.3	79 79	7.9 7.9	7.9	C.1 8.1	81 81
salinity	21	21 20	21 21	22 22	22 21	22 22	10 21
alkalinity	105	,					
ammonia	0.195						
conductivity						•	

	16	18	21	23	25	28
Day	Wednesday	dnesday Friday		Wednesday	Friday	Mon
Date	11/08/06	11/10/06	11/13/06	11/15/06	11/17/06	11/20
rep	47	<u> </u>	. 6	A	B	$\Box A$
DO	50 60	6.4 6.3	6.2 6.1	64 64	6.3 6.4	59
Temp °C	248 253	24.5 24.9	243 241	25.4 25.2	250 7A.7	74.8
pН	7.8 78	18 7.0	8.0 8.0	5. ( 6.1	79 7,9	છ.(
salinity	23 22	22 21	2 70	W 70	20 20	20
alkalinity			.,			128
ammonia						0.0171
conductivity						27500

CDR	Site	06290-C-15	Lab#	306727 \$10
20 0/00	Sample Date	12/17	Species Info	L. Plumulosus
10	0/23/06	End Date	11/20/0	06
	· <del> </del>			
	<u> </u>			
		·		
	20 o/oo		20 o/oo Sample Date 10 / 17	20 o/oo Sample Date 10 / 17 Species Info

	0		2		4		7		9		11		14
Day	Mon	Wedn	esday	Fr	Friday		Monday		Wednesday		Friday		onday
Date	10/23	10/2	5/06	10/	10/27/06		10/30/06		11/01/06		11/03/06		06/06
rep	<b>A</b> -	· · · · · · · · · · · · · · · · · · ·	3		,	i		Ó		A		4	5
DO	50	6.3	66	7.1	ا ب	5.3	172	7.2	73	C.2	6.0	63	66
Temp °C	22.2	22.9	23.3	11.0	26.4	35.	23.9	24.0	23.5	23.5	23.2	23~	1221
ρΗ	7.9	6.0	7.9	7.7	7.9	7.8	17.9	7.4	7.7	7.4	74	7.6	7.7
salinity	20.	23	21	20	10	22		22	22	23	22	21	il
alkalinity	98			1							-		
ammonia	2.377												
conductivity	21400												

	16	18	21	23	25	28
Day	Wednesday	Friday	Monday	Wednesday	Friday	Mon
Date	11/08/06	11/10/06	11/13/06	11/15/06	11/17/06	11/20
rep	~	C	الله الله	M	B	A
DO	6.0 6	55 59	67 64	6.7 6.6	63 6.5	4.5
Temp °C	24.8 24.6	229 231	747 247	23.4 230	23-6238	24.3
ρН	8.2 8.2	8.1 31	23 63	8382	7.8 7.7	8.1
salinity	22 23	23 21	11 20	U 20	71 70	22
alkalinity		,				195
ammonia						0.0253
conductivity						2.7900

The SeaCrest Group Louisville, CO

## 28-day Leptocheirus Benchsheet

Client	CDR	Site	0690-6-29	Lab#	306727-#11
H ₂ 0	20 o/oo	Sample Date	10/17	Species Info	L. Plumulosus
Start Date .	1	0/23/06	End Date	11/20/0	06
Test Conditions					

		0	2	2		4		7		9	1	11		14
	Day	Mon	Wedn	esday	Friday		Moi	Monday		Wednesday		Friday		nday
C	Date	10/23	10/2	5/06	10/2	10/27/06		0/06	11/01/06		11/03/06		11/06/06	
rep		4	73		D		C		E		.A	<del></del>	4	3
DO		47	5.6	5, 4	5.1	15.2	5.2	<u> </u>	7.2	17.1	6.1	5.9	6.4	48
Temp ℃	3	22.1	278	7.33	27.0	24.7	23.3		23.6	23.5	23.4	23.3	23.0	22.4
рН		7:7	)	7.7	7.6	7.7	1.7		7.4	7.4	7-7	7.8	7.7	7.9
salinity		20	23	21	22	21	22		21	22	22	23	21	7
alkalinity	y [	87			-						_			
ammonia	а	0.0101												
conducti	ivity													

	16	18	21	23	25	28
Day	Wednesday	Friday	Monday	Wednesday	Friday	Mon
Date	11/08/06	11/10/06	11/13/06	11/15/06	11/17/06	11/20
rep	()		1	A	13	A.
DO	6.0 6.2	6 8 6.7	64 64	6.6 6.5	49 5.8	6-C
Temp °C	29 3 24 5	226 233	253 24.8	237 23.2	23.6 23.7	22-3
pH 🤼 i	24-80 8.0	7.8 7.7	6.0 8.1	79 81	7.4 7.5	7-7
salinity	22 23	23 27	21 20	26 20	20 00	21
alkalinity_						132
ammonia						(,)42)
conductivity						21900
	•					27/200

Client	CDR	Site	0690-0-33	Lab#	306727 +12
H ₂ 0	20 0/00	Sample Date	10/17	Species Info	L. Plumulosus
Start Date	10	0/23/06	End Dat∈	11/20/0	06
Test Conditions					

	0		2 .		4		7		9		11		14
Day	Mon	Wedn	esday	Friday		Monday		Wednesday		Friday		Mo	onday
Date	10/23	10/2	10/25/06		10/27/06		10/30/06		11/01/06		03/06	11/	/06/06
гер	A-	62 3	63	ì		1	)	Û	_		Ą:	_ <	₹
DO	4.0	5 6	625.1	4.8	4.1	4.9	5.3	7.0	17.0	6.1	6.0	6.6	65
Temp °C	22.0	23.3	23.3	27.0	24.8	24.1	24.0	23.4	23.4	23.6	23.4	23.0	225
рН	7.5	7.8	7.6	7.5	7.4	7.4	7.7	7.6	7.6	8.2	8.2	8.1	8.1
salinity	21	U	20	21	21	21	20	21	21	21	22	2	21
alkalinity	89												
ammonia	0.503									,	,		
conductivity	30900												

	16	18	21	23	25	28
Day	Wednesday	Friday	Monday	Wednesday	Friday	Mon
Date	11/08/06	11/10/06	11/13/06	11/15/06	11/17/06	11/20
rep	9	C	E	A	CI POR	Ą
DO	51.60	6.5 6.5	6 61	64 65	6.5 6.7	69
Temp °C	24.6 249	27.5 23.6	253 249	237 233	237 23.7	24-7
ρΗ	79 79	7.3 7.9	7.9 7.9	8.2 4.2	7.9 7.9	8.2
salinity	22 21	23 20	21 70	20 20	23 26	20
alkalinity						141 -
ammonia						0,0233
conductivity						27200

Client	CDR	Site	06290-C-16	Lab#	306727 _{≠13}
H ₂ 0	20 0/00	Sample Date	10/17	Species Info	L. Plumulosus
Start Date	1	0/23/06	End Date	11/20/0	06
Test Conditions					
			·	·····	

	0	2	2		4		7		9		11		14
Day	Mon	Wedn	esday	Friday		Monday		Wedr	nesday	Friday		Mo	nday
Date	10/23	10/2	5/06	10/27/06		10/30/06		11/01/06		11/03/06		11/	06/06
rep	A	14	3	i	)	. (		6 E	<u>.</u>	/	7	*	>
DO	3.5	6 8	C.8	0.ن	6.2	3.5	[6.2]	X CA	67	6.2	5.9	68	68
Temp °C	222	229	23.4	23.0	230	24.5	35.1	23.5	27.2	7-7-	24.4	24.5	237
рН	7.9	7.8	7.3	7.8	7.7	7.3	7.7	74	7.4	24.3	17.8	7.8	7-8
salinity	20	21	B	21	21	21	21	zs	72	21	21	20	2(
alkalinity	80												
ammonia	0.037												
conductivity	27500		<i>*</i>										

	1	6	1	8	7	21		23	7	25	28
Day	Wedn	esday	Friday		Monday		Wedi	Wednesday		day	Mon
Date	11/0	8/06	11/1	0/06	11/13/06		11/15/06		11/	17/06	11/20
rep	9	Q				E		+	9	3	A
DO	50.	6.0	63	42	6.6	65	6.6	164	6.7	66	39
Temp °C	25.1	24.4	24.6	24.5	24.0	25.3	23.8	124-1	253	251	255
рН	7.6	7.9	7.8	7.8	80	13	78	7.9	7.8	7,7	7.8
salinity	21	20	21	20	20	دع	10	w	Zo	20	73
alkalinity	•										150
ammonia											0.0231
conductivity											27700

Client	CDR	Site	0629-FS-	Area-3 Lab#	306727 #14
H ₂ 0	20 o/oo	Sample Date	10/7	Species Info	L. Plumulosus
Start Date	10	0/23/06	End Date	11/20/0	06
Test Conditions					

	0	2	4	7	9	11	14
Day	Mon	Wednesday	Friday	Monday	Wednesday	Friday	Monday
Date	10/23	10/25/06	10/27/06	10/30/06	11/01/06	11/03/06	11/06/06
rep	4	$\mathfrak{F}$	C	E	0	A	Ø
DO	3.6	4.2 5.5	5.8 6.0	4.2 6.0	6.6 6.6	54 5.0	6.7 6.8
Temp °C	22.3	230 23	S 234 23 6	35.1 25.5	27.4 23.7	24.8 24.7	24.6  24.1
pΗ	7-0	2.1 7.4	7.3 7.7	7.4 7.8	7.6 7.6	7.4 7.5	7,8 7.9
salinity	21	w 20	21 21	2 2	20 20	20 20	20 21
alkalinity	99						
ammonia	0 396						
conductivity				,			

	16	18	21	23	25	28
Day	Wednesday	Friday	Monday	Wednesday	Friday	Mon
Date	11/08/06	11/10/06	11/13/06	11/15/06	11/17/06	11/20
rep	0		E	A-	, \bar{B}_	C
DO	59 64	51 59	6.5 16.3	66 65	68 68	6.8
Temp °C	24-9:74.9	25 ( 24.5	244 25.6	793 218	LS.4 725.00	24.1
рH	7.2 7.6	7.6 70	78 79	7.8.7.7	7.4 7.6	7.3
salinity	20 20	2, 20	20 20	20 20	20 20	20
alkalinity			<u> </u>			57
ammonia						0,3238
conductivity						27500

Client	CDR	Site	06290-C-S	Lab#	306727 #15
H ₂ 0	20 o/oo	Sample Date	10/17	Species Info	L. Plumulosus
Start Date	1	0/23/06	End Date	11/20/0	06
Test Conditions					
		····			· · · · · · · · · · · · · · · · · · ·
				<del></del>	

	0	2	4	7	9	11	14
Day	Mon	Wednesday	Friday	Monday	Wednesday	Friday	Monday
Date	10/23	10/25/06	10/27/06	10/30/06	11/01/06	11/03/06	11/06/06
rep	A	3	É	D	4	1	B
DO	4.4	67 68	58 65	5.7 5.6	6.8 6.7	5.5 5.4	64 65
Temp °C	221	23.0 234	230 233	25.4 25.5	75.0 24.5	24.9 24.9	247 242
рН	70	80 80	7.8 7.8	18 7.9	8-2 1-2	8-1 5-1	83 81
salinity	21	21 20	22 21	7-2 22	21 21	21 20	21 21
alkalinity	94			<del>.</del>			
ammonia	0.316						
conductivity							

		16		18	2	21	:	23	2	25_	28
Day	Wedr	Wednesday Friday		Moi	nday	Wedi	nesday	Friday		Mon	
Date	11/0	08/06	11/	11/10/06		11/13/06		15/06	11/1	7/06	11/20
rep	<		Cic	<del>ر</del> ک ر		-		7	J.	<u> </u>	A
DO	6.0	6.6	6.3	6.5	6.0	60	6.5	16 4	6.9	6.8	5.8
Temp ^o C	24.9	25.2	251	245	241	25.0	24.4	124.8	248	24.9	238
рН	80	20	7.7	17.8.	81	0.7	80	8.0	78	7.7	7.7
salinity	21	1)	21	70	20	20	20	ري	20	20	21
alkalinity		M. C.	·								162
ammonia											0.0197
conductivity											27200

Client	CDR	Site	06290-F	S-Aren-Zab#	306727-416
H ₂ 0	20 0/00	Sample Date	10/17	Species Info	L. Plumulosus
Start Date	10	0/23/06	End Date	11/20/0	)6
Test Conditions					
		140			
		⁻ न .			

	0		2		4		7		9		11		14				
Day	Mon	Wedr	nesday	Fri	Friday		Monday		Monday		Wednesday		Wednesday		iday	Monda	
Date	10/23	10/2	25/06	10/2	10/27/06		10/30/06		01/06	11/03/06		/06 11/0					
rep	A	<b>प्</b> र		i	<u> </u>	í	5		E	. /	F	1	3				
DO	2.0	6.5	6.6	6.3	نوار	4.9	5.1	7.4	7.2	5.8	7.2	63	6.4				
Temp °C	22.2	22,9	23.2	235	234	25.0	24.9	23.3	23.6	23.4	27.1	25-6	75-6				
рН	7.0	7.9	8.0	8.1	7.9	7.4	7.8	g. 3	3.3	8.2	8.2	182	8.2				
salinity	21.	18	26	20	20	21	21	20	10	14	26	20	10				
alkalinity	148							•									
ammonia	0.741																
conductivity																	

		16	1	18	2	21		23	[ ]	25	28
Day	Day Wednesday		Friday		Moi	Monday		Wednesday		Friday	
Date	11/0	08/06	11/10/06		11/13/06		11/15/06		11/17/06		11/20
rep		<b>7</b>			E		1	-	্ৰ	3	B
DO	36	16.3	68	67	64	66	3.9	161	61	64	(1)
Temp ⁰C	25.2	25.1	257	250	24.4	74.6	246	24.4	25.1	25.1	250
рН	6.35	82	8.6	7.9	4.2	8.1	8.3	18.2	80	83	7.9
salinity	20	2	70	.20	TP	72	6	144	10	70	20
alkalinity					4			<b>N</b>			170
ammonia											5.0153
conductivity											27600

Client	CDR	Site	06290-M-AB	Lab#	306727 #17
H ₂ 0	20 o/oo	Sample Date	10/17	Species Info	L. Plumulosus
Start Date	10	0/23/06	End Dat€	11/20/0	06
Test Conditions			<del></del>		

	0		2		4		7		9		11		14
Day	Mon	Wedr	nesday	Fr	iday	Mo	onday	Wed	nesday	Fr	iday	Мо	nday
Date	10/23	10/2	25/06	10/2	27/06	10/	30/06	11/	01/06	11/	03/06	11/	06/06
rep	A	C.5	33 8.V	ı	<del></del>		C		É	,	4	7	3
DO	4.7	7.0	17:17	6.4	ا نو الو	4.7	4.0	7.1	17.2	5.7	15.9	6.5	63
Temp °C	222	23.0	23.3	24.0	23 W	25.2	25.1	23.G	23.2	24.1	24.5	25.5	247
рН	7.3	7.9	7.5	7.4	7.7	7.8	17.7	8-1	8.1	8.0	80	137	8.1
salinity	20	21	26	20	20	3-1	21	20	26	11	20	20	10
alkalinity	80				-								
ammonia	00928		•										
conductivity	28800			,									

	16	18	21	23	25	28
Day	Wednesday Friday		Monday	Wednesday	Friday	Mon
Date	11/08/06	11/10/06	11/13/06	11/15/06	11/17/06	11/20
rep	4	1	6	<i>/</i> -}	B	A
DO	F4 (5	6667	65 165	6.16	6-( G.4	6.4
Temp °C	256/252	25.8 253	24.6 247	248 247	258 253	23.5
pH	80 81	8 1 8,1	8.3 87	8.2 8.2	80 80	8.0
salinity	25 74	05 21	25 24	22 20	23 20	21
alkalinity		23				173
ammonia		Se,				9.0515
conductivity		1				29200

Client	CDR	Site	06291-D-C	Lab#	306727 418
H ₂ 0	20 0/00	Sample Date	19/18	Species Info	L. Plumulosus
Start Date	10/	23/06	End Date	11/20/0	06
Test Condition	าร				
		-			

	0		2		4		7		9	1	11		14
Day	Mon	Wedi	nesday	Fr	riday	Мо	nday	Wedr	nesday	Fri	day	Mo	nday
Date	10/23	10/:	25/06	10/	27/06	10/	30/06	11/0	01/06	11/0	03/06	11/0	06/06
rep	A		3		Ď	(		2		/	7		3
DO	6.1	7.2	70	5.4	1.3	4.3	4.8	4.3	7.1	5.6	5.3	6.8	165
Temp ^o C	221	22.9	23.3	2.3.5	2.3 9	25.7	25,0	23.4	25.3	24.6	213	28.8	1239
	7.9	7.7	17.8	7.8	7.1	7.3	7.7	7.8	7.4	7.7	7.8	80	Co
salinity	20	20	10	20	20	w	25	21	2(	21_	21	20	21
alkalinity	86						- · · · -			_			
ammonia	0,050												
conductivity	27300												

	16	18	, 21	23	25	28
Day	Wednesday	Friday	Monday	Wednesday	Friday	Mon
Date	11/08/06	11/10/06	11/13/06	11/15/06	11/17/06	11/20
rep	<b>₹</b>	<i>C</i>	E	I_A	93	Α
DO	50 57	68 69	67 66	6665	68167	5.6
Temp °C	249125.4	25.5 25-1	243 24.5	23-3 23.7	25.7 25.1	246
pН	7.8 8.0	7979	7.9 3.0	8181	7.9 7.9	7.6
salinity	2323	22 11	22 21	21 21	21 20	70
alkalinity		7.9				45
ammonia		9,,				0.0249
conductivity		<i>y</i> ((				28400

CDR	Site	06291-C-7	Lab#	306727.419
20 o/oo	Sample Date	10/13	Species Info	L. Plumulosus
10	0/23/06	End Date	11/20/0	06
	· · · · · · · · · · · · · · · · · · ·			
	20 0/00		20 o/oo Sample Date (0/15	20 o/oo Sample Date 10/15 Species Info

	0		2		4		7		9		11		14
Day	Mon	Wedr	nesday	Fri	iday	Mo	nday	Wedr	nesday	Fri	day	Mo	onday
Date	10/23	10/2	25/06	10/2	27/06	10/	30/06	11/0	01/06	11/0	03/06	11/	06/06
rep	A	T I	5	i			9		C	7	}	ि	
DO	5.9	Ca	6.3	5.0	5.2	6.3	i.2	7.4	7-4	5.6	3.5	6-3	63
Temp ^⁰ C	222	228	23.4	Z3 L	24.	24.4	24.8	23.4	23.3	21.7	27.9	260	24.7
рН	7.9	7.5	7.7	7.2	7.6	7.6	7.4	1.8	8-0	71	7.7	8770	17.91
salinity	20	21	70	20	20	21	21	21	21	20	22	20	21
alkalinity-	24												
ammonia	0.042												
conductivity	28100	l					•						

	16	18	21	23	25	28	
Day	Wednesday	Friday	Monday	Wednesday	Friday	Mon	
Date	11/08/06	11/10/06	11/13/06	11/15/06	11/17/06	11/20	
rep	•		= .	<i>[</i> }	रि	A	
DO	5.5 5.3	6016	18 88	70 66	69 68	6.7	
Temp ^o C	249 248	263756	250 247	150 246	259 757	25.8	
рΗ	7.6 7.7	75 76	7.6 7.9	7.9 7.9	7.6 7.8	7.8	
salinity	23 23	23 70	24 23	72 Tu	21 20	20	
alkalinity					· ·	102	
ammonia	·					0.0179	
conductivity						23500	
	•					7 5300	

Client	CDR	Site	06291-6-6	Lab#	306727 p 20
H ₂ 0	20 o/oo	Sample Date	10/18	Species Info	L. Plumulosus
Start Date	10	/23/06	End Date	11/20/	06
Test Conditions					

			<u> </u>						
	0	2	4		7		9 .	11	14
Day	Mon	Wednesday	Friday	M	onday	Wed	nesday	Friday	Monday
Date	10/23	10/25/06	10/27/06	10	/30/06	11/	01/06	11/03/00	6 11/06/06
rep	4	3	<u> </u>		E		D	1	B
DO	49	63 6-2	4.8 5.	0 64	6.1	1/1	1.0	5.6 5	6 62 62
Temp °C	22.2	22.9 23.	5 24.8 24	.5 25.1	25.2	24.5	27.0	23.3 3	5.1 25.8 25.8
рН	7.9	7.7 7.7	7.7 7.0	٦.8	7.7	7.7	7.7	7.6 7	18 78 79
salinity	21	20 20	21 20	2.2	21	21	21	20 20	0 20 21
alkalinity	82								
ammonia	o:3767								
conductivity	28000								

	16	18	21	23	25	28
Day	Wednesday	Friday	Monday	Wednesday	Friday	Mon
Date	11/08/06	11/10/06	11/13/06	11/15/06	11/17/06	11/20
rep	0	C	E	A	85	A
DO	54 56	69 66	0.7 66	70 6.5	68 68	6.4
Temp °C	219 248	262 263	251 24.9	26.6 26.0	754 262	25.4
pH O ₄	2179 78	7.6 7.0	7.7 7.9	81 60	77 7.8	7.4
salinity	71 21	22 21	24 13	22 60	zi ho	21
alkalinity						132
ammonia	i					1.0202-
conductivity						28600

Client	CDR	Site	06241-CR-C	Lab#	306727 <b></b> ₺21
H ₂ 0	20 0/00	Sample Date	12/18	Species Info	L. Plumulosus
Start Date	1(	0/23/06	End Date	11/20/0	06
Test Conditions					
		<u></u>			

	0	2	4	7	9	11	14
Day	Mon	Wednesday	Friday	Monday	Wednesday	Friday	Monday
Date	10/23	10/25/06	10/27/06	10/30/06	11/01/06	11/03/06	11/06/06
rep	A-	R	Ē	D ·	Ĉ	/ŧ	$\mathcal{B}$
DO	4-3	6.9 6.4	5.1 3.9	6.1 6.3	7.1 7.0	5.5 5.6	5.862
Temp °C	222	22.9 234	23.8 25.6	26.0 25.5	23.7 23.7	25.4 25.3	27.0 26.4
pН	7.7	7 5 78	7.8 7.7	1.3 77	7.7 7.7	1.9 7.9	7-371 80
salinity	13	20 Zv	20 20	20 21	21 21	21 21	20 20
alkalinity	83		-				
ammonia	0.035						
conductivity	28100						

	16	18	21	23	25	28
Day	Wednesday	Friday	Monday	Wednesday	Friday	Mon
Date	11/08/06	11/10/06	11/13/06	11/15/06	11/17/06	11/20
rep		C	, E	<i>H</i>	13	A
DO	50 55	64 64	0.5 6.5	28 66	68 68	59
Temp ⁰C	24.9 25.2	265 262	25.3 125.4	26.2 26 4	25.6 263	25.2
pН	8.0 7.9	62 85	79 80	8-1 8.1	7.9 7.9	7.9
salinity	21 21	23 71	22 22	2 2	21 %	30
alkalinity		<del> </del>	<del></del>			113
ammonia						3 Di76
conductivity						29200

CDR	Site	06291-	/ C - C Lab#	306727 \$ 17
20 0/00	Sample Date	10/18	Species Info	L. Plumulosus
10		End Dat∈	11/20/0	)6
	_			
				er .
	20 0/00	<del></del>	20 o/oo Sample Date 10/1 8	20 o/oo Sample Date 10/18 Species Info

	0		2		4	Ţ	7	T	9	1	11		14
Day	Mon	Wed	nesday	Fr	iday	Mo	nday	Wedr	nesday	Fri	iday	М	onday
Date	10/23	10/	25/06	10/	27/06	10/	30/06	11/0	01/06	11/0	03/06	11	/06/06
rep	A	छ	<del></del>	(	<del></del>		$\overline{D}$	Ē		14		(	3
DO	4.6	5:3	5.5	4.7	15.1	6.1	5.2	7.5	9.3	5.6	7.5	5.5	64
	27.3	219	123.3	24.3	73.4	35.8	25.2	23.6	23.1	24.7	24.4	27-0	742
pH	7.6	8,5	4.	7.1	7.8	1.9	7. %	79	77	7.4	1.7	7.6	7.8
salinity	21	20	23	20	20	21	21	21	2/	20	22	20	Zo
alkalinity	100												- "
ammonia	0.438	]											
conductivity	7.8000	1											

	16	18	21	23	25	28
Day	Wednesday	Friday	Monday	Wednesday	Friday	Mon
Date	11/08/06	11/10/06	11/13/06	11/15/06	11/17/06	11/20
rep	42	- C	1	A	5	A
DO	5.3 5.4	7   58	6.(66	6.3 65	GS 6.5	6.0
Temp °C	746 25.2	25.6 25.4	251 25.3	246 234	261 249	24.3
рН	7.8 7.8	79 78	77 78	79 79	7.6 7.7	7.4
salinity	20 70	23 21	20 20	78 Tu	W 20	20
alkalinity						76
ammonia	•					0.0169
conductivity					•	28500

Client	CDR	Site	06291-MC	7-K7(M _{Lab#}	306727 #23
H ₂ 0	20 o/oo	Sample Date	10/19	Species Info	L. Plumulosus
Start Date	10		End Date	11/20/0	06
Test Conditions					,
		· · · · · · · · · · · · · · · · · · ·	<u> </u>		
		<del></del>		<del></del>	

	0	2			4		7	1	9		11		14
Day	Mon	Wedne	esday	Fr	iday	Mo	nday	Wedr	nesday	Fri	iday	Mo	nday
Date	10/23	10/25	5/06	10/	27/06	10/3	30/06	11/0	)1/06	11/0	03/06		06/06
rep	A	V			D	0			Ĺ	/	\	3.	3
DO	4.0	6.3	64	5.5	5.6	6.4	6.4	7.5	7.7	5.6	5.6	5:3	61
Temp °C	22.3 1	17.9	25.2	23.1	24.0	25.2	25.1	23.0	251	23.4	23.8	76,8	125.0
ρН	7.6		. K	7.8	7.8	7.8	7.7	28	7.7	7.8	1.7	7.7	7,9
salinity	21	77	20	21	20	21	21	£ 1	2.1	20	20	20	21
alkalinity	83											_	
ammonia	0.022					•							
conductivity	28200												

	16	18	21	23	25	28
Day	Wednesday	Friday	Monday	Wednesday	Friday	Mon
Date	11/08/06	11/10/06	11/13/06	11/15/06	11/17/06	11/20
rep			E	1-		TH.
DO	4,9 5.5	5.6 5.4	65	63 6.7	C23 66	5.7
Temp °C	749   251	264 256	25. 25.3	26.4 24.5	267 750	24.5
pH Q,	87.97.8	100	80 80 -	3,975	80 7.9	7.4
salinity	27 21	22 15	20 20	21 20	20 20	20
alkalinity				7.9		155
ammonia			PM	•		0.0181
conductivity				))s(		3040 O

Client	CDR	Site	06291-MG-	-H7(M)Lab#	306727 tt2 4
H ₂ 0	20 o/oo	Sample Date	10/18	Species Info	L. Plumulosus
Start Date	10/	23/06	End Dat€	11/20/0	06
Test Conditions					

	0		2		4		7		9	1	1	1	14
Day	Mon	Wed	nesday	Fr	iday	Mo	nday	Wedr	nesday	Fri	day	. Mo	onday
Date	10/23	10/	25/06	10/27/06		10/	10/30/06		11/01/06		3/06	11/06/06	
rep	1	B		ľ	)			2	<u>-</u>	A		(	3
DO	4-1	6	6.6	5.2	5.5	6.4	4.3	7.9	7.5	5.5	56	3.8	6.3
Temp °C	22.3	22.8	24	23.9	24.1	25.3	25.0	23.4	23.3	24.4	24.3	27-1	124.6
рН	7.6	7.8	7.0	7.7	7.8	7.7	ריר	2.3	8.0	7.1	3.9	7.9	7.9
salinity	20	21	20	21	20	22	21	21	21_	2-1	21	20	21
alkalinity	84												
ammonia	3.0195	1											
conductivity	28000												

	1	6 ·		18		21		23		25	28
Day	Wednesday		Friday		Monday		Wed	Wednesday		Friday	
Date	11/08/06		11/10/06		11/13/06		11/15/06		11/4,7/06		11/20
rep	Q		L		٠		A		3		B
DO	5.6	5 8	5.9	6.(	60	64	6.1	6.6	6.4	66	6.6
Temp °C	25.1	25.4	763	25.5	250	25.4	269	24.8	26.7	25.5	24.2
ρΗ	79	7.9	7.7	7.7	7.5	7.9	18.0	ં દ	8. 0	7.9	80
salinity	20	20	21	20	20	20	20	20	70_	20	21
alkalinity											133
ammonia											0. 3341
conductivity											29705

		Control 1	Lab#	306727 \$ Cl
20 o/oo	Sample Date		Species Info	L. Plumulosus
10/23	/06	End Date	11/20/0	06
		· · · · · · · · · · · · · · · · · · ·		
		10/23/06		

	0		2		4		7		9		11		14
Day	Mon	Wed	nesday	Fı	Friday		Monday		Wednesday		Friday		nday
Date	10/23	10/	25/06	10/27/06		10/30/06		11/01/06		11/03/06		11/06/06	
гер	A	B			D	(			E		4	1	3
DO	3.7	7.1	16.9	5.7	16.1	5.4	5.5	7.3	1.5	6.6	15.5	6.2	6-5
Temp ⁰C	22.3	22.6	21.8	230	22.3	23.0	23.1	23.0	23.[	22.9	230	23-0	12Z &
рН	7.5	8.0	74	7.6	7.6	7.8	7.8	7.9	79	7.8	7.3	7.6	7.6
salinity	20	20	20	20	20	20	20	2	21	10	20	20	21
alkalinity	98												_
ammonia	1.38												
conductivity	25000												

	16			23	25	28
Day	Wednesday Friday		Monday	Wednesday	Friday	Mon
Date	11/08/06	11/10/06	11/13/06	11/15/06	11/17/06	11/20
rep			E	A	9	A
DO	63 67	6.6 7.6	6.4 16.5	67.66	6.8 6.8	6.4
Temp °C	244 247	244 24,4	245   24 E	232 23.1	237 1240	23-5
рН	7.5 7.7	7.6 7.7	28 7,9	7979	7. 97.6	7.7
salinity	7.5 20	20 re	to 70	20 70	20 10	20
alkalinity	20					100
ammonia	Per					o 0367
conductivity						26100

Client: CDR Environmental Specialists Site: Brunswick, Georgia SCG Project No.:306727

APPENDIX 6 - L. PLUMULOSUS HISTORY SHEETS FROM THE SUPPLIER, CHESAPEAKE CULTURES AND REFTOX

126 The SeaCrest Group

Chesapeake Cultures	_
P.O. Box 507 Hayes, VA 23072 (804) 693-4046 (804)694-4704 fax www.c-cultures.com e-mail growfish@c-cultures.com	ToLOGG-SP rectued
SEACREST GROUP Shipment Information	pH: 7.3 Do: 25.0 Temp: 23.5
Species <u>Leptochirus plumulosus</u> Date 10/19/06 retainel bitmen  Age/Size 600 and 250 µ sieves P.O. No. 1190	<u>2</u> —
Quanitity 2720+ Invoice No. 5559  + 2L York River Sediment - Homogenize before use	
- Homogenize before use Temperature 240C Salinity 20% pH 7.97	_
Notes * Be sure to heep all debris in	<del>-</del>
shipping jars until all animals are accounted for (no doubt you bnew this!)	
Biologist Joseph Mille	us

* Please inspect shipment and report any problem immediately *

The SeaCrest Group Louisville, CO

#### **Sediment Organism Reftox Benchsheet**

Form #: 108 Effective: January 2006

Salt Used: Caper Sufak Date Made: _ 102106 ີ່ວິໄລ Template #: Dilution Water: 25%, Saur Hab **Dilution Series:** Name, age & source: Lepto p. 15, 72 Selector (les il., Test Start: 102106 - 1255 Test End: 102506 - 1215 **Test Conditions:** NON-RENEWAL 72 24 48 96 0 0 15 ;0 10 10 8 (C) 10 10 . 5 (3) 10 0 10 io . 3 10 122 2012 10 10 DO DO 7.0 7.3 6,6 6.8 **6.3** 6. 7 7.0 6.8 24.9 24.8 24.6 Temp 24.2 25.0 29.1 Temp .4.<u>3</u> 241 24.7 рΗ ρН Bi 3.2-8.2 3.7 8.2 8.2 Cond Cond 10 (4) <del>(1)</del> ; 5 10 Е 10 10 10 10 i 24436 35.5 mb 10 10 10 10 iΟ 8 DO 7.1  $\overline{\mathsf{DO}}$ L.8 J. D 6.8 24.8 6.8 7.0 6.7 6.6 48 24.8 8.2 24.7 24.0 24.2 24. 1 Temp Temp 24.8 <u> 24. F</u> 24.3 pН pН 8.2 8.2 8. I 8.2 8.2 8 2 3.7 Cond Cond 10 10 (5)2 10 10 10 13 10 435.200 10 10 10 <u> Glarb</u> 10 0 DO <u>ن. ۱</u> DO 6. 6 6.6 6.7 7,0 24.8 Temp 24.3 24.9 24.8 24.8 Temp 24.3 <u> 24.7</u> 24.3 24.0 24.2 <u>83</u> pН 3.1 8.Z 8.2 pН 8.2 8.2 8.2 8.3 8.7 Cond Cond Initials 3P food imi Reftox2 Recon #2 1. Exposure Chamber Reftox1 Recon #1 3. Aeration Hardness **Total Capacity:** 30 ml Slow: Alkalinity **Test Solution Surface Area:** cm² Med: Chlorine Test Solution Volume: 15 ml Fast: Ammonia Water Depth (constant): cm 2. Feeding Schedule to cm (cyclic): Not fed: Fed Daily: Day 3, 2 (Inc Tetramin) Fed Irregularly: 0 & 48 hours Food Used: 4. Screened Animal Enclosers Not Used: Used: cm diameter 5. Condition/appearance of surviving organisms at end of test (i.e., alive but immobile; loss of orientation; erratic movement; etc,): 6. Comments:

Page _	
--------	--

******* Version 2.5 *******************

Results calculated using the Summary Method.

Sponsor	:			SEACREST
Species	:		L	EPTOCHEIRUS
Study Number	:			REFTOX
Dates of test	:	102106	to	102506
Test Material	:			CUSO4
Concentration Units	:			PPB
Report run by	:			CW
Date of report	:			01-15-2007

***************

Concentration ( PPB )	Number Exposed	Number Dead	Percent Dead
488.0	20	20	100.0
244.0	20	12	60.0
122.0	20	8	40.0
61.0	20	1	5.0
30.5	20	0	0.0
Control	20	0	0.0

Ļ	-			95% Confid	lence Limits	
1	Method	W	LC50	Lower	Upper	Slope
1	. Method 					
	Binomial		172.53	61.00	488.00	N/A
1	Moving Average Probit		159.19	129.27	201.77	N/A
L	Probit		165,98	132.36	209.37	3.68
`	Logit		171.63	130.94	237.27	5.09
1	-					

Note -- In order to produce this summary report, no warning or diagnostic messages were given (if any occurred). An asterisk appearing next to the method indicates that there was a warning associated with the corresponding method. You should run the full report for this method to determine the problem. This report is intended for informational purposes only.

****** End Of Report ******************

Client: CDR Environmental Specialists Site: Brunswick, Georgia SCG Project No.:306727 APPENDIX 7 – SUMMARY DATA SHEETS RELFECTING RESULTS OF L. **PLUMULOSUS TESTS** 

The SeaCrest Group

ate:12/18/2006				1 -		1			:
pecies:Leptocl	heirus p.								
acility: SeaCres	st Group			}		1	······································		· · · · · · · · · · · · · · · · · · ·
est: 28 Day Chi									
							· · · · · · · · · · · · · · · · · · ·		
					<u> </u>			Dry We	eight(mg)
Treatment	Rep	Surviving	Males_	Females	Juvenile production	Pan Weight(g)	Pan + Larvae(g)	Total	<u>Individual</u>
C-103	а	19	4	15	3	1.1305	1.1393	8.8000	0.46
	b	18	2	16	2	1.1454	1.1579	12.5000	0.69
	С	9	2	7	0	1.1398	1.1463	6.5000	0.72
	d	15	4	11	0	1.1362	1.1459	9.7000	0.65
	е	19	5	14	7	1.1222	1.1295	7.3000	0.38
-						 		Dry We	eight(mg)
Treatment	Rep	Surviving	Males	Females	Juvenile production	Pan Weight(g)	Pan + Larvae(g)	Total	Individual
C-104	а	14	3	11	0	1.1564	1.1612	4.80	0.34
	b	14	6	8	0	1.1385	1.1445	6.00	0.43
	С	19	7	12	11	1.1413	1.1478	6.50	0.34
i	d	18	5	13	13	1.1546	1.1623	7.70	0.43
	е	15	3	12	12	1.1559	1.1596	3.70	0.25
						<u>;                                    </u>	·	Dry W	eight(mg)
Treatment	Rep	Surviving	Males	Females	Juvenile production	Pan Weight(g)	Pan + Larvae(g)	Total	Individual
C-105	a	14	3	11	3	1.1401	1.1482	8.10	0.58
:	b	16	7	9	11	1.1318	1.1413	9.50	0.59
!	С	18	5	13	8	1.1251	1.1345	9.40	0.52
	d	18	7	11	16	1.1638	1.1699	6.10	0.34
	e	16	3	13	0	1,1709	1.1775	6.60	0.41

ate:12/18/2006						!			
pecies:Leptoch	neirus p.						ii		·i
acility: SeaCres	st Group		-			i			of the forms from dealed the court ingreen a same a think or a same
est: 28 Day Chr									
							:	Dry W	eight(mg)
Treatment	Rep	Surviving	Males	Females	Juvenile production	Pan Weight(g)	Pan + Larvae(g)	Total	Individual
FS-Area-1	а	8	4	4	0	1.1524	1.1550	2.6000	0.32
	b	6	2	4	0	1.1371	1.1388	1.7000	0.28
	с	9	2	7	5	1.1732	1.1758	2.6000	0.29
	d	9	6 .	3	0	1.1186	1.1221	3.5000	0.39
	е	10	2	8	0	1.1575	1.1608	3.3000	0.33
							<u>'</u>	Dry W	eight(mg)
Treatment	Rep	Surviving	Males	Females	Juvenile production	Pan Weight(g)	Pan + Larvae(g)	Total	Individual
FS-Area-4	а	17	11	6	1	1.1156	1.1299	14.27	0.84
	b	14	10	4	0	1.1402	1.1489	8.70	0.62
	С	18	6	12	0	1.1680	1.1725	4.50	0.25
	d	17	3	14	0	1.1469	1.1594	12.50	0.74
	е	19	6	13	2	1.1656	1.1808	15.20	0.80
							;	Dry W	eight(mg)
Treatment	Rep	Surviving	Males	Females	Juvenile production	Pan Weight(g)	Pan + Larvae(g)	Total	Individual
FS-Area-5	а	19	7	12	12	1.1531	1.1603	7.20	0.38
	b	16	4	12	17	1.1718	1.1794	7.60	0.48
:	С	16	3	13	4	1.1294	1.1377	8.30	0.52
i	d	18	3	15	18	1.1350	1.1422	7.20	0.40
	е	19	5	14	10	1.1467	1.1533	6.60	0.35

Date:12/18/2006						!		<del></del>	
Species:Leptocl	heirus p.								
acility: SeaCres	st Group			-			i		
Test: 28 Day Chi	ronic					·			1
	<del></del>	-	<del></del>					Dry W	eight(mg)
Treatment	Rep	Surviving	Males	Females	Juvenile production	Pan Weight(g)	Pan + Larvae(g)	Total	Individual
FS-Area-6	а	16	2	14	0	1.1517	1.1556	3.9000	0.24
	b	18	6	12	1	1.1240	1.1304	6.4000	0.36
	С	12	2	10	0	1.1284	1.1324	4.0000	0.33
1	d	18	5	13	0	1.1502	1.1577	7.5000	0.42
	е	14	5	9	6	1.1297	1.1355	5.8000	0.41
<u></u>								Dry W	eight(mg)
Treatment	Rep	Surviving	Males	Females	Juvenile production	Pan Weight(g)	Pan + Larvae(g)	Total	Individual
C-45	а	11	4	7	0	1.1616	1.1657	4.10	0.37
i	b	16	8	8	0	1.1455	1.1507	5.20	0.33
	С	13	3	10	0	1.1557	1.1588	3.10	0.24
	d	10	4	6	0	1.1288	1.1322	3.40	0.34
	е	10	6	4	0	1.1423	1.1465	4.20	0.42
						!	· · · · · · · · · · · · · · · · · · ·	Dry W	eight(mg)
Treatment	Rep	Surviving	Males	Females	Juvenile production	Pan Weight(g)	Pan + Larvae(g)	Total	Individual
C-36	а	19	6	13	0	1.1893	1.1970	7.70	0.41
	b	18	4	14	30	1.1430	1.1503	7.30	0.41
<del></del>	С	16	7	9	10	1.1397	1.1470	7.30	0.46
	d	17	8	9	0	1.1651	1.1732	8.10	0.48
:	e	14	3	11	20	1,1340	1.1392	5.20	0.37

ate:12/118/2006	5	i				!	i		
pecies:Leptoch									
acility: SeaCres	t Group								
est: 28 Day Chr	onic								
<u> </u>						Pan Weight(g)	Pan + Larvae(g)	Dry Weight(mg)	
Treatment	Rep	Surviving	Males	Females	Juvenile production			Total Individua	
C-15	а	16	6	10	j 7	1.1152	1.1262	11.0000	0.69
	b	15	4	11	14	1.1614	1.1717	10.3000	0.69
	С	14	7	7	32	1.1428	1.1482	5.4000	0.39
	d	15	5	10	15	1.1379	1.1485	10.6000	0.71
	е	19	8	11	6	1.1646	1.1763	11.7000	0.62
				<u> </u>				Dry Weight(mg)	
Treatment	Rep	Surviving	Males	Females	Juvenile production	Pan Weight(g)	Pan + Larvae(g)	Total	Individual
C-29	а	18	7	11-	7	1.1433	1.1532	9.90	0.55
	b	16	6	10	0	1.1691	1.1724	3.30	0.21
	С	17	4	13	0	1.1425	1.1476	5.10	0.30
	d	17	5	12	4	1.1319	1.1411	9.20	0.54
	е	16	7	9	4	1.1281	1.1330	4.90	0.31
			<del></del>					Dry Weight(mg)	
Treatment	Rep	Surviving	Males	Females	Juvenile production	Pan Weight(g)	Pan + Larvae(g)	Total	Individua
C-33	<u>,</u>	18	7	11	14	1.153	1.1676	14.60	0.81
	b	18	8	10	28	1.1553	1,1708	15.50	0.86
	С	11	4	7	54	1.1219	1.1297	7.80	0.71
	d	9	3	6	0	1.1337	1.1416	7.90	0.88
	е	14	5	9	0	1.1608	1.1681	7.30	0.52

ate:12/118/2000	5					!			
pecies:Leptoch	neirus p.					!	<del></del>		
acility: SeaCres	st Group								
est: 28 Day Chr									
<u> </u>								Dry W	eight(mg)
Treatment	Rep	Surviving	Males	Females	Juvenile production	Pan Weight(g)	Pan + Larvae(g)	Total	Individual
C-16	a	16	7	9	7	1.1377	1.1446	6.9000	0.43
	b	14	4	10	22	1.1441	1.1482	4.1000	0.29
	С	17	8	9	9	1.1615	1.1702	8.7000	0.51
	ď	20	11	9	15	1.1344	1.1417	7.3000	0.36
	е	20	8	12	11	1.1689	1.1748	5.9000	0.30
								Dry W	eight(mg)
Treatment	Rep	Surviving	Males	Females	Juvenile production	Pan Weight(g)	Pan + Larvae(g)	Total	Individual
FS-Area-3	а	16	5	11	17	1.1542 1.1633		9.10	0.57
	b_	19	8	11	23	1.1326	1.1428	10.20	0.54
	С	18	12	6	28	1.1233	1.1294	6.10	0.34
	d	19	7	12	5	1.1385	1.1469	8.40	0.44
· · · · · · · · · · · · · · · · · · ·	ее	15	3	12	4	1.1150	1.1189	3.90	0.26
				!				Dry W	eight(mg)
Treatment	Rep	Surviving	Males	Females	Juvenile production	Pan Weight(g)	Pan + Larvae(g)	Total	Individual
C-5	а	13	4	9	3	1.1477	1.1554	7.70	0.59
	b	18	11	7	8	1.1265	1.1392	12.70	0.71
	С	20	13	7	12	1.1357	1.1526	16.90	0.85
	d	16	6	10	4	1.1418	1.1540	12.20	0.76
1	e	20	10	10	25	1.1157	1.1287	13.00	0.65

ate:12/18/2006							· · · · · · · · · · · · · · · · · · ·		<del></del>
pecies:Leptoch	eirus p.		<del></del>						
acility: SeaCres	t Group							· — · · · · · · · · · · · · · · · · · ·	
est: 28 Day Chr	onic								
					·	-		Dry W	eight(mg)
Treatment	Rep	Surviving	Males	Females	Juvenile production	Pan Weight(g)	Pan + Larvae(g)	Total	Individual
FS-Area-2	а	0	0	0	0	NA	NA	NA	. NA
	b	0	0	0	0	NA	NA	NA	. NA
	С	0	0	0	0	NA	NA	NA	NA
<u>-</u>	d	0	0	. 0	0	NA	NA	NA	NA
	е	1	0	1	0	1.1593	1.1598	0.5000	0.50
			<del></del>					Dry W	eight(mg)
Treatment	Rep	Surviving	Males	Females	Juvenile production	Pan Weight(g)	Pan + Larvae(g)	Total	Individual
M-AB	а	9	4	5	0	1.1137	1.1170	3.30	0.37
	b	18	3	15	3	1.1053	1.1134	8.10	0.45
	С	20	7	13	16	1.1119	1.1177	5.80	0.29
	d	18	6	12	0	1.1362	1.1410	4.80	0.27
	е	16	2	14	0	1.1209	1.1242	3.30	0.21
						<u> </u>		Dry W	eight(mg)
Treatment	Rep	Surviving	Males	Females	Juvenile production	Pan Weight(g)	Pan + Larvae(g)	Total	Individual
D-C	а	20	4	16	10	1.1166	1.1274	10.80	0.54
	ь	19	10	9	21	1.1370	1.1473	10.30	0.54
	С	12	5	7	0	1.1420	1.1486	6.60	0.55
	d	18	7	11	7	1.1573	1.1675	10.20	0.57
	е	18	Δ	14	0	1.1468	1,1552	8.40	0.47

Date:12/18/2006									
pecies:Leptoch	neirus p.						. · ·		·····
acility: SeaCres	st Group								
est: 28 Day Chr	onic					1			
							<u>.                                    </u>	Dry We	eight(mg)
Treatment	Rep	Surviving	Males	Females	Juvenile production	Pan Weight(g)	Pan + Larvae(g)	Total	Individual
C-7	а	16	5	11	5	1.1274	1.1370	9.6000	0.60
	b	20	9	11	9	1.1178	1.1292	11.4000	0.57
	С	19	4	15	12	1.1351	1.1445	9.4000	0.49
	d	16	2	14	6	1.1472	1.1570	9.8000	0.61
	е	20	4	16	17	1.1268	1.1369	10.1000	0.51
						; ;		Dry We	eight(mg)
Treatment	Rep	Surviving	Males	Females	Juvenile production	Pan Weight(g)	Pan + Larvae(g)	Total	Individual
C-6	а	8	2	6	2	1.1442	1.1496	5.40	0.67
	b	15	8	7	0	1.1107	1.1169	6.20	0.41
	С	14	3	11	. 0	1.1171	1.1248	7.70	0.55
	d	18	5	13	12	1.1581	1.1709	12.80	0.71
	е	12	3	9	0	1.1434	1.1508	7.40	0.62
:				!	<u>.</u>	!		Dry We	eight(mg)
Treatment	Rep	Surviving	Males	Females	Juvenile production	Pan Weight(g)	Pan + Larvae(g)	Total	Individual
CR-C	a	19	3	16	15	1.1359	1.1433	7.40	0.39
	b	13	5	8	7	1.1826	1.1850	2.40	0.18
	С	18	2	16	13	1.1180	1.1223	4.30	0.24
	d	. 19	6	13	6	1.1640	1,1700	6.00	0.32
<del></del>	е	19	8	11	6	1.1458	1.1550	9.20	0.48

Date:12/18/2006	·	1	·	1		· · · · · · · · · · · · · · · · · · ·			1
Species:Leptoc		<u> </u>		<u> </u>	<u> </u>				<u>:</u>
acility: SeaCre									1
Test: 28 Day Ch			<del></del>	-					<u> </u>
est. 20 Day Ch	ronic			<del></del>				·	•
			<del></del>					Dry W	eight(mg)
Treatment	Rep	Surviving	Males	Females	Juvenile production	Pan Weight(g)	Pan + Larvae(g)	Total	Individual
TC-C	а	8	3	5	0	1.1398	1.1420	2.2000	0.27
	b	17	6	11	0	1.1406	1.1493	8.7000	0.51
1	С	16	2	14	0	1.1244	1.1294	5.0000	0.31
-	d	14	2	12	0	1.1113	1.1178	6.5000	0.46
	е	17	77	10	5	1.1552	1.1631	7.9000	0.46
						]		Dry W	eight(mg)
Treatment	Rep	Surviving	Maies	Females	Juvenile production	Pan Weight(g)	Pan + Larvae(g)	Total	Individual
MG-K7	a	16	2	14	2	1.1352	1.1490	13.80	0.86
	b	12	4	8	1	1.1625	1.1716	9.10	0.76
;	С	14	7	7	4	1.1592	1.1707	11.50	0.82
	d	14	3	11	3	1.1176	1.1300	12.40	0.89
-	е	15	3	12	0	1.1162	1.1220	5.80	0.39
						1		Dry W	eight(mg)
Treatment	Rep	Surviving	Males	Females	Juvenile production	Pan Weight(g)	Pan + Larvae(g)	Total	Individual
MG-H7	a	11	4	7	1	1.1627	1.1666	3.90	0.35
	b	14	2	12	0	1.1489	1.1542	5.30	0.38
	c	15	2	13	0	1,1247	1.1326	7.90	0.53
	d	10	2	8	5	1.1727	1.1779	5.20	0.52
	<u>е</u>	16	2	14	11	1,1477	1.1559	8.20	0.51

ate:12/18/2006					1				
pecies:Leptoch	eirus p.	1							:
acility: SeaCres	t Group						:		
est: 28 Day Chr	onic								
								Dry We	eight(mg)
Treatment	Rep	Surviving	Males	Females	Juvenile production	Pan Weight(g)	Pan + Larvae(g)	Total	Individual
Control 1	а	18	6	12	12	1.1720	1.1841	12.1000	0.67
:	b	19	7	12	6	1,1156	1.1287	13.1000	0.69
	С	20	5	15	25	1,1359	1.1479	12.0000	0.60
	d	20	8	12	8	1.1294	1.1488	19.4000	0.97
	е	18	8	10	18	1.1562	1.1700	13.8000	0.77
	<del> </del>			1			!	Dry We	eight(mg)
Treatment	Rep	Surviving	Males	Females	Juvenile production	Pan Weight(g)	Pan + Larvae(g)	Total	Individual
Pre-weight	NA	20	NA	NA	NA	1.1774	1.1802	2.80	0.14

### A.2 AQUA SURVEY

ľ

## Aqua Survey, Inc.

#### **BIOASSAY REPORT**

Chronic Bioassay Using the Amphipod

Leptocheirus plumulosus for Sediments at the LCP Brunswick Site

Prepared for CDR Environmental Specialists, Inc. 6001 N. Ocean Drive Unit 1103 Hollywood, FL 33019-4618

January 19, 2007

ASI Job No. 26-349

469 Point Breeze Road Frembreton N.L. 08822

Etame (IIIV) NS-8700 From (IIIV) NS-9165 III That appartitively com-Neves, appartitively com-



### **Table of Contents**

Signa	ture Page	3
I.	Introduction	4
II.	Summary of Test Results	4
III.	Materials and Methods	4
	A. Sampling	
	B. Sample Preparation	
	C. Toxicity Testing	
IV.	Results and Discussion	6
	Tables	
Table	1 Summary of Survival, Reproduction, and Growth Rate	4
Table		
	Appendices	
Chain	of Custody and Sample Use Forms	A-1
Leptod	cheirus plumulosus Biological and Water Quality Raw Data	B-1
Leptod	cheirus plumulosus Quality Control Raw Data	C-1

#### Signature Page

#### **BIOASSAY REPORT**

#### Chronic Bioassay Using the Amphipod Leptocheirus plumulosus

Prepared for CDR Environmental 6001 N. Ocean Drive Unit 1103 Hollywood, FL 33019-4618

This report, as well as all records and raw data were audited and found to be an accurate reflection of the study. Copies of raw data will be maintained by Aqua Survey, Inc, 469 Point Breeze Road, Flemington, New Jersey, 08822.

Robert m. Fry	1-19-07
Robert M. Fristrom	Date
Quality Assurance Officer	
•	
Dichelle Morras	1-19-07
Michelle Thomas	Date
Laboratory Manager	
•	
0 -	
for Da	1-19-07
Jon Doi, Ph.D.	Date
Executive Vice President	

#### I. INTRODUCTION

Aqua Survey, Inc. conducted a chronic bioassay for CDR Environmental using the amphipod *Leptocheirus plumulosus* for sediments at the LCP/Brunswick site. A 28-day chronic bioassay was conducted from October 31, 2006 through November 28, 2006, with the objective of assessing three endpoints: survival, growth rate and reproduction.

#### II. SUMMARY OF TEST RESULTS

Table 1 summarizes the results of the bioassay by providing the cumulative survival, mean number of young per organism per sample, and the mean growth rate per organism per sample.

Table 1. Summary of Survival, Reproduction, and Growth Rate

Sample	Cumulative Survival	Mean Number of Young per Organism per Sample	Mean Growth Rate per Organism per Sample per Day
	n (%)	'n	mg
Control	95	3.98	0.051
6A	92	3.75	0.060
7A	98	5.07	0.053
CA	94	2.24	0.040

#### III. MATERIALS AND METHODS

Chronic toxicity testing was performed in accordance with the USEPA document Method for Assessing the Chronic Toxicity of Marine and Estuarine Sediment-associated Contaminants with the Amphipod Leptocheirus plumulosus.

#### A. Sampling

Sediment samples were collected by CDR Environmental on October 18, 2006 and received at ASI on October 19, 2006. Upon arrival at ASI, all samples were assigned a unique sample number as listed in Table 2. Samples were received in good condition and were stored in the dark at 2-4° C prior to testing. The Chain of Custody and Sample Use Forms are located in Appendix A.

Table 2. Sample Identification

Sample	ASI Sample ID No.
Control	20061285
06291-C-6A	20061264
06291-C-7A	20061265
06291-CR-CA*	20061266

^{*}Reference Sediment

#### B. Sample Preparation

Because indigenous organisms/predators were present, the test sediments were press-sieved through a 0.5 mm screen and then through a .25 mm screen. The control sediment was sieved through a 290 micron screen by the organism supplier, Aquatic Research Organisms.

Twenty four hours prior to test initiation, five 175 ml replicates of each sample and control sediment were set out in one liter glass beakers and approximately 725 ml of overlay water was added to each beaker. The following day the test was initiated when individual organisms were randomly selected and placed directly into each replicate until there was a total of 20 organisms in each exposure chamber.

#### C. Toxicity Testing

Whole sediment toxicity was assessed through a 28-day exposure with the amphipod *L. plumulosus*. Toxicity testing was conducted from October 31, 2006 to November 28, 2006.

The *L. plumulosus* used in testing were obtained from Aquatic Research Organisms, Hampton, NH. At test initiation, the organisms were neonates retained between a 0.25 mm and a 0.6 mm sieve. The *L. plumulosus* were fed 3 times weekly after water renewal. Per test chamber, the diet consisted of 20 mg of TetraMin® slurry on Days 0-13 and 40 mg on Days 14-28.

Sea water from the Manasquan inlet, Manasquan, NJ was used as the overlay water. This was conducted as a static renewal bioassay. Three times per week, 400 ml of water was siphoned and replaced in each test chamber. Water quality parameters including temperature, salinity, dissolved oxygen, and pH were monitored daily prior to water renewal. The test temperature was  $25^{\circ}\text{C} \pm 3^{\circ}\text{C}$ . The photoperiod was 16 hours light/8 hours dark, with illumination of 500 to 1000 lux.

#### IV. RESULTS AND DISCUSSION

The mean control organism survival was 95% (individual replicate survival of 90%, 95%, 100%), which meets the acceptance criteria of at least 80%, with no single replicate having less than 60% survival. It should be noted that 2 of the 5 control replicates, Chamber 17 (0% survival) and Chamber 18 (10% survival), were not used in the survival calculations, because these two replicates had unexplained and isolated toxicity that was not present in the other 3 control replicates nor any of test sediments. For this reason, the 2 control replicates with high mortality were deemed outliers and were not use in the control survival calculations.

The mean number of young per organism in the control was 3.98 (mean number of young per organism per replicate of 4.89, 3.79, and 3.25). Chamber 17 (3.50 mean young per organism) and Chamber 18 (0 mean young per organism) were considered outliers and were not used in the calculations.

The mean growth rate per control organism was 0.051 mg per day (mean growth rate per organism per replicate of 0.054, 0.046, and 0.053 mg per day). Chamber 17 (0.003 mg per day mean growth rate) and Chamber 18 (0 mg per day mean growth rate) were considered outliers and were not used in the calculations.

A standard reference toxicant (SRT) test was performed using cadmium chloride. The reference toxicant data were entered into a program based on currently accepted methods for calculating an LC₅₀. The results of this SRT test can be found in the quality control raw data section along with the control chart. The LC₅₀ for the *L. plumulosus* fell within the 95 percent confidence limits of the control chart.

Survival, growth rate, and reproduction can be found in Tables 3 through 5. Biological and water quality raw data can be found in Appendix B. Quality control raw data can be found in Appendix C.

Table 3

28-Day Live Counts

28-Day Sedimer	ıt Exposure	Study	Species: L. plumulosus			
Initial Live Cou	nt 20		Job #: 26-349			
Sample ID	Code #	Chamber #	28-Day Live Count	% Survival		
Control	1.1	17*	2			
20061269	1.2	15	18			
	1.3	5	19			
'	1.4	12	20			
	1.5	18*	0	95		
6A .	2.1	14	20			
20061264	2.2	6	17			
	2.3	3	19			
	2.4	8	16	·		
	2.5	2	20	92		
7A	3.1	19	20			
20061265	3.2	11	20			
	3.3	. 4	20			
	3.4	10	18-			
	3.5	1	20	98		
CA	4.1	9	18			
20061266	4.2	. 7	19			
	4.3	16	18			
	4.4	13	19			
	4.5	20	20	94		

^{*} Chambers 17 and 18 were considered outliers, therefore were not included in the % survival calculation. (See Results and Discussion section for explanation.)

H

Table 4

#### 28-Day Summary of Reproduction

28-Day Sedime Initial Live Cou	_	re Stury			Species: L. plumu. Job #: 26-349	losus
Sample	Code	Chamber	Total # Young Day 28	Live Count	Mean # Young per Surviving Adult	Mean
Control	1.1	17*	7	2	3.50	
20061269	1.2	15	88	18	4.89	
	1.3	5	72	19	3.79	
	1.4	12	65	20	3.25	
	1.5	18*	11	0		3.98
6A	2.1	14	76	20	3.80	
20061264	2.2	6	30	17	1.76	
	2.3	3	100	19	5.26	
	2.4	8	69	16	4.31	
	2.5	2	72	20	3.60	3.75
. 7A	3.1	19	16	20	0.80	
20061265	3.2	11	140	20	7.00	
į	3.3	4	125	20	6.25	
	3.4	10	119	18	6.61	
·	3.5	1	94	20	4.70	5.07
CA	4.1	9	33	18	1.83	
20061266	4.2	7	32	19	1.68	
	4.3	16	65	18	3.61	
	4.4	13	35	19	1.84	
	4.5	20	45	20	2.25	2.24

^{*} Chambers 17 and 18 were considered outliers, therefore were not included in the mean calculation. (See Results and Discussion section for explanation.)

B

28-Day Sediment	Fynosu	re Study				<del></del>	Species:	L plumulosus	
20-Day Sediment	Exposa	i C Study					•	26-349	
			E D	P+ O	·	<del></del>	Job #:	*Growth Rate	Mean
Sample	Code	Chamber	Empty Pan Wt.(mg)	Pan + Org. Dry Wt. (mg)	Dry Wt. of Org.	No. Org.	Wt. (mg) per	(mg/Org./Day)	1
Control	1.1	17*	1121.27	1121,63	0.36	2	0.180	0.003	
20061269	1.2	15	1131.75	1160.87	29.12	18	1.618	0.054	
	1.3	5	1138.87	1165.28	26.41	19	1.390	0.046	
	1.4	12	1132.90	1164.66	31.76	20	1.588	0.053	
	1.5	18*		_			_		0.051 ,
6A	2.1	14	1132.04	1163.07	31.03	20	1.552	0.052	
20061264	2.2	6	1140.23	1172.94	32.71	17	1.924	0.065	
	2.3	3	1136.88	1171.59	34.71	19	1.827	0.061	
	2.4	8 [	1129.46	1153.23	23.77	16	1.486	0.049	
	2.5	2	1131.66	1173.95	42.29	20	2.115	0.072	0.060
7A .	3.1	19	1134.34	1171.01	36.67	20	1.834	0.062	,
20061265	3.2	11	1138.50	1174.45	35.95	20	1.798	0.060	
	3.3	4	1123.12	1148.19	25.07	20	1.254	0.041	
	3.4	10	1145.63	1175.59	29.96	18	1.664	0.056.	
	3.5	1	1133.38	1160,14	26.76	20	1.338	0.044	0.053
CA	4.1	9	1143.61	1160.62	17.01	18	0.945	0.030	
20061266	4.2	. 7	1123.62	1146.11	22.49	19	1.184	0.038	
	43	16	1123.24	1147.91	24.67	18	1.371	0.045	
	4.4	13	1135.62	1160,17	24.55	19 -	1.292	0.042	
L	4.5	20	1139.93	1167.65	27.72	20	1.386	0.046	0.040

^{*}Growth Rate = mean adult dry weight - mean neonate dry weight (0.106mg)/28

H

^{**} Chambers 17 and 18 were considered outliers, therefore were not included in the mean growth rate calculation. (See Results and Discussion section for explanation.)

Appendix A

Chain of Custody and Sample Use Forms



# Columbia Analytical Services M. An Employee - Untiled Contractory An Employee - United Contractory

SR#		

www.caslab.cnm	<u> </u>		- P- 1			N.	*		fart t		e 1.												
Project Name  Yzerrywick LCP	Project Number	Salay in a Fig. 1841			1 (	1	4			_		ED (Ir	nclude	Metho	od Nu	mber :	and Co	ntain	er Pre	servati	ve)		
Project Manager	Email Address		يان إلى . إ	101	PRE	SERVA	TIVE	3.		,					i			:				- 1	
Company/Address CAN Evioria. Martin				( 177) 11 (17)	s		_/	L'(1)	*/	$\overline{}$		_/	_/	7	• /	$\overline{}$			/	/-/	/	reserva NONE	<b>≘</b> ′
	- (************************************		:/= :::::::::::::::::::::::::::::::::::		CONTAINERS			\ \u00e4"/					/: .		/.		/				/	1. HCL 2. HNO 3. H ₂ SC	ا ا
				7.1 4 Kg	F CON		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	/3	/ /	/::./	/ /	/ /	/	/ /	/ _ /	/ ,	/ • /	/ ,	/	//	/	4. NãOH 5. Zn. A 6. MeOH	cetate -I
Phone 954-577-1165	FAX®	·. <del>-</del>	Ž,		IBER O	/.		<i>y</i> / <i>y</i>		: /												7. NeHS 8. Other	
Samples's Signature	Sampler's Printed Name	j.	The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon		NON.	1.3	//	<del>"</del> /		<u>/.                                    </u>		<u>/_</u> ,	_		_				[-	/_^	H LTERNA	EMARKS/ TE DESCI	RIPTION
CLIENT SAMPLE ID	LAB ID	- SAMP	LING TIME	MATRIX					ia. In In		27 19 L												
06291-C-6A		10/18/0	<b>i.</b>	30	Li		2			ε							[ • ]						
06291-C-7A	1	0118/61	Ţ.	315		J.	2		-24	1.													
06291-CR-CA		19/11/1		30		1				-			: •						-				
	7		\$50.0			Ţ	~					,	:						-				
			1 . s	11-00			T	\$ -	عدا						$I^-$		$\Box$		-	<del>                                     </del>			
				Court	HIG.	)		60	, 1 51	7861									1	1			
			- Dr	TREETH RE		1		_												<u> </u>			
	<del></del>		i in the		7,					rin Tin					1	1							
			ig.	la da da		11.	$\vdash$		<del>  -</del>		<u> </u>			:			† · · · ·	$\vdash$	1				
			[ ]	1	-		-		14.	18.7				<del> </del>		1		-	1	+-			
SPECIAL INSTRUCTIONS/COMMENTS  () For each of 3 sections  comptipers texts -> Mix Columbia Later for these	nto be evel	مرزية يرب	May 5.	132 3	.52		i .	URNAR Rusi							DRT Ri		EMENT	S	T	iN	OICE II	NFORMAT	TON
Grantagen touts -> Mix	thouse his -	Sens	1.1		1. 1		·	٠	1 (SURC IDARD	HANGE	o ar <b>ru</b> i	' .' 	-			C Summ	arios		PO				
Columbia Laha les there	ucal mullion			1725	3	11-	DEC::	- ·					1	(LCS, I	DUP, ME	S/MSD a	e tednjte:	d)	ا	7 17			
(3) For each of 2 sevenie	. / "		rij'		i	跳、		HESTED	FAX UAI	-			1.	III. Aes Summ		C and C	Calibration	1	Bil	LTO:			
-) Company the 2 5	21 1. u.1 =				:		REQU	JESTED	REPORT	DATE			_	_ IV. Det	a Validat	ilon Rep	ort with F	Rew Dal	ta				
See CAPP - Comback TIE	auch Chronic	ا المكاملة الأماري. المجاملة الأمارية	riybera alyses	~~ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				-	•					_V. Spei	icalized l	Forms /	Custom I	Report					
SAMPLE RECEIPT: CONDITION/COOLER TE				STODY SEA	LS: V	· IIN	ــــــــــــــــــــــــــــــــــــــ				 !		1	Edat	a	Yes		No .	Γ				
RELINQUISHED BY	RECEIVED BY	1		LINQUISHED	BY				RECE	IVED B	Ÿ.				RELINC	QUISHE	D BY		$\top$	· · · · · ·	REC	IVED BY	
Signature Signature		Sig	malure			F. F.	Signal	lure			<del></del>		Signa	iture			_		Sig	nature			
Printed Name (2) (Sign Conduct )	me .	Pil	Inted Name				1	d Name	<del></del>		-		Print	d Name						nted Nam	<u> </u>		
Firm Firm	<del></del>	Fli	w.			¥.	Firm			<u> </u>			Firm		١ //			<del></del>	Fir	m			
Date/Time Date/Time		Da	ile/Time	<u></u>			Date/	Time	-				Date	Time		<del></del>			DA	te/Time			

Job #: <u>26</u> -	349 Client: C	CDR	ASI :	Sample #:	20061264	Sample ID:	06291-C-
SEDIMENT	CHARACTERIZ				A		
Odo	r. wore	·		Color	Lur	m	
Cons	sistency (sandy, si	lty, clayey):	sity	w/ o	ymir d	m elsis	<del></del>
HO	MOGENIZATIO	N/ COMPOSITING	G/ AMENDING	3			
•	Method Used	: Drill mixer	<u> </u>	Duration of	Mixing: ~5	mins	<u> </u>
		list all constituent at the amount of each			er of cores)	·	
	•						
					-		
	Total Sample	e Volume:	elleen	Date/ Init	ials: <u>10//9</u>	106 T)	·
ELUTRIATI	E PREPARATIO	N .					
	Water used: s	ite dilution other	: <u>N</u> /	'A	·		·
	Water Volume	Used: <u>N/A</u>		Sediment	Volume Used:	<u>N/A</u>	
	Mixing Durati	on: <u>N/A</u>		Date/ Init	ials:	N/A	
RECORD OI	F SAMPLE USE				•		
DATE	AMOUNT	AMOUNT					
10/19/06	USED	REMAINING	USED FOR Chemistry				
10/ /06		<u> </u>	Testing				
10/ /06			Archive				
		•			·		
	<del></del>	<del></del>					
	_					_	

Job #:	-349 Client: <u>C</u>	CDR	ASI S	Sample #:	2006 /265	Sample ID:	06291-C-71
SEDIMENT	CHARACTERIZ	ZATION			•		
Ode	r. Mme			, Color:	In	m	
Con	sistency (sandy, sil	lty, clayey):	ilty	organ	in muth	u	
НО	MOGENIZATIO	N/ COMPOSITING	/ AMENDING	ì			
	Method Used	: Drill mixer	<del></del> -	Duration of M	Mixing: ~5 m	ins	
		list all constituent A			of cores)		
	÷						
			,				
ELUTRIAT	Total Sample	e Volume: <u>/gn</u>	<u>l</u>	Date/ Initia	lls: <u>10//</u> 9 /	06 70	<u> </u>
	Water used: s	ite dilution other:	N/	<u>A</u>	<del> </del>		<del></del>
	Water Volume	e Used: <u>N/A</u>		Sediment \	/olume Used:	<u>N/A</u>	
	Mixing Durati	on: <u>N/A</u>	<del></del>	Date/ Initia	ıls:	<u>N/A</u>	
RECORD O	F SAMPLE USE						
DATE	AMOUNT USED	AMOUNT REMAINING	USED FOR				INITIAL:
10/19/06	11_	3	Chemistry				10
	<del></del> '	<del></del>	Testing Archive			<del>-</del>	
10/ /06							
10/ /06 10/ /06						<del></del>	

Job #:	-349 Client: <u>C</u>	CDR	ASI S	ample #:	2006 1266	_ Sample ID:	06291-CR-CA
SEDIMENT	CHARACTERIZ	ZATION			Ŋ		
Odo	r:	<u> </u>		Color: _	lvo	m	
Con	sistency (sandy, si	lty, clayey):	solty	very	- fine s	and	
		N/ COMPOSITING					
	Method Used	: Drill mixer		Duration of N	14 dixing: <u>~5 m</u>	nins	·
		list all constituent A the amount of each		f the number	of cores)		
	Total Sample	e Volume: / ga	lun	Date/ Initia	ls:10//9	/06 TD	
ELUTRIAT)	E PREPARATIO	N					
	Water used: s	site dilution other:	N/A	1			· · · · · · · · · · · · · · · · · · ·
	Water Volume	e Used: <u>N/A</u>		Sediment V	olume Used: _	<u>N/A</u>	<del></del>
	Mixing Durati	ion: <u>N/A</u>		Date/ Initia	ls:	N/A	<del></del>
RECORD O	F SAMPLE USE					•	
DATE	AMOUNT USED	AMOUNT REMAINING	USED FOR				INITIAL:
	14	-3L	Chemistry				
10/19/06			Testing				
10/ /06							
			Archive				
10/ /06							
10/ /06							
10/ /06							
10/ /06							
10/ /06							

<u>.s</u>
_
_
_
_
_
<u>L</u>

## Appendix B

Leptocheirus plumulosus Biological and Water Quality Raw Data

## Aqua Survey, Inc. Special Studies Department Live Count/ Reproduction

Job #: 26-349 Client: CDR Organism: Test Start Date: L. plumulosus 10/31/06

Day →	0	28			
Chamber ↓	Live Count	Live Count	Reproduction		
1	20	20	94		
2	Lo	20	72		
3	Lo	19	100		
4	го	20	125		
5	w	19	72		
6	20	17	_30		
7	ಬ	19	32		
8	ιο	16	69		
9	20	18	33		
10	lo	18_	119		
11	20	20	140		
12	lo	20	65		
13	20	19	35		
14	Lo	20	76		
15	20	18,	88		
16	w	18	105		
17	lo	2	7		
18	20	0			
19	lo	20	16		
20	که 💮	20	45		
Initials/ Date		SH 11/28/06 -	>		

#### Aqua Survey, Inc. Special Studies Department

#### **Water Quality**

_Job #:	26-349	·
---------	--------	---

Organism: L. plumulosus

CDR CDR

Test Start Date: 10/31/06

Porew	ater
-------	------

	<u> </u>		1	NITIAL (Day	0)		FINAL (Day 28)			
	Sample	ASI#	Temperature •C	Salinity ppt	pН	NH ₃ mg/L	Temperature •C	Salinity ppt	рН	NH ₃ mg/L
	Control	#2006/269	25.0°C	14.0	74	39.9	25.0	20.4	7.4	1.68
	CA	ADULILLE	24.9°C	24.0	78	4.52	24.9	20.5	7,2	20.50
, ,	6 A	2006/264	250C	26.5	7.3	9.33	24.5	20.3	7.1	20.50
_	7A	2001/31/5	25.0°C	26.5	7.4	4.78	24.9	20.5	7.1	60.50
	<u>.</u>		·							
,										
-										
	Initials/ Date	M 10 1/0c	1 x 31/0c	10/31/26	718 1/31/cc	)( 10/31/06	11/24/66	11/29/06	ار ۱۱/28/24 ا	الع الع الديان الع الع الديان

Overlay

	T	1	NITIAL (Day	0)		FINAL (Day 28)			
Sample	ASI#	Temperature ∘C	Salinity ppt	pН	NH ₃ mg/L	Temperature •C	Salinity ppt	рН	NH ₃ mg/L
Control	200412109	<i>34.</i> 9	19.0	7.9	4.64	24.60	20.6	7.8	6.50
СА	2000 i Bloke	25.1	20.1	8.0	Lo.50	27.9	20.6	7.8	(0.50
GA	20061264	<i>34</i> .8	20.4	7.9	1.36	249	20.4	7.8	Co.50
7A	201:121.5	248	20.6	7.9	0.85	25.0	20.5	7.8	C0.53
Initials/ Date	18/31/06	18/3 pc	) 	1/3/06	10 10]31]06	11 25/04	11/28/00	11/24/06	)1 1127/00

## Aqua Survey, Inc. Special Studies Department Feeding and Exchanges

Job#:	26-349	
Client:	CDR	

Organism: L. plumulosus
Test Start Date: 10/31/06

To be performed Monday, Wednesday, and Friday ONLY

Day	Date	Exchanges	Feeding	Notes
ł		Manasquan- 20±3ppt (400mL)	Tetramin Slurry (1mL Days 0-13-20m)	
		, ,	12mL Days 14-28) 4Ста	awahan rak / both top chick
		(Time/ Initials)	(Time/ Initials)	
0	10/31/06			n
1	111.100	1530 10	1545 36	M
2	11/2/00	_		G .
3	االغص	1720 PM	1736 PM	À
4	11/4/00	_	_	7
5	11/5/06	_		n
6	11/6/26	1700 26	1710 JC	H
7	11/2/26			H
8	11/5/66	1340 30	1400 sc.	nd
9	14/5/66		<del>-</del>	H
10	Mida	1545 A	jU100 ml	H
11	1111106		_/	M .
12	11/12/5		<u> </u>	
13	1113/24	1330 Je	1340 Je	JC
14	गानाव			JC
15	111.5106	1415 16	1436 JC	JC .
16	liliulou			N C)C
17	11/17/04	0945 26	0950 A	<u>η</u> c
18	11118/26			JL
	11/17/26			JC
20	11/20/08	1100 75	1110 90	JC
21	112166	1000 -		JC
22	11/22/06	1000 35	1015 16	) د
23	11123106			<b>)</b> c
	1115/10t	1850 JC	1110 16	٥(
25	1125/26			JC .
26	17/26/16			١.
27	11/27/00	1130 22	1135 #1	f9t B-3

#### Aqua Survey, Inc. Solid Phase Readings Bioaccumulation Study

Job #: 26-349 Client: CDR Test Start Date: ____ 10/31/06

Parameter: Observations

Organi

Organism: L. plumulosus

	Key	:	D=	≈ Dead			S= Surfa	ice/Swimn	ning		N= N	Nothing U	nusual	
Day ⇒ Chamber ∜	15	16	17	18	19	20	21	22	23	24	25	26	27	28
1	N	N	N	N	N.	N	D	$\mathcal{N}$	N	$\sim$	N	N	N	N
2	N	N	N	N	N	N	N	N	N	N	N	N	.N	N
3	N	N	N	N	N	N	N	N	V	N	$\mathcal{N}$	N	N	N
4	N	N	N	N	$\mathcal{N}$	N	N	N	N	N	N	N	N	~
5	1/	N	N	N	N	N	N	N	N	N	N	N	N	N
6	N	N	N	N.	N	1/	N	N	N	N	N	N	N	$\sim$
7	N	N	N	N	N	N	N	N	N	N	V	N	N	N
8	W	N	N	N	N	1	N	N	N	N	N	N	N	N
9	N	N	N	N'	N	N	N	N	N	N	N	N	N	N
10	N	N	N	N	N	V	N	N	N	N	N	N	N	~
	10/	N	N	N	N	N	U	N	N	N	1	N	N	N
12	N	N	N	N	N	N	N	N	N	$\mathcal{N}$	N	N	N	N
13	N	N	N	N	N	N	12	N	N	N	N	N	N	N
14	\ <u>\</u>	N	N	N	N	N	N	N	N	N	N	N	N	$\sim$
15	$\mathcal{N}$	N	N	N	N	N.	N	N	$\sim$	N	N	N	N	N
16	1	N	N	N	N	N	N	N	$\sim$	N	N	N	N	N
17	N	N	N	N	N	N	N	N	N	$\mathcal{N}$	N	N	N	N
18	N	N	1	N	N	$\mathcal{N}$	N	N	N	N	N	N	N	N
19	N	N	N	N	N	N,	12	N	$\sim$	N	$\nu$	N	N	~
20	N	N	N	N	N	N	~	N	N	N	$\sim$	N	N	N
Initials/ Date	11.5/26	Amila	36/17/26	11/1/8	1/19	المال المال	1/21/2	"Lala	ادر ۱۶۶ ^{۱ود}	11/1/1/26	11/25/06	1/24/-7	SP Hizt	11/54/

#### Aqua Survey, Inc. Special Studies Department

#### Observations

Job #: 26-349 Organism: L. plumulosus

Client: CDR Initial # of Organisms: 20 Test Start Date: 10/31/06

Obeservations Key: D= Dead S=Surface/ Swimming N= Nothing Unusual

			<u> </u>												
Day →	0	.1	2	3	4	5	6	7	8	9	10	11	12	13	14
Chamber ↓	<u> </u>	<u> </u>	ļ	<u> </u>	<u> </u>	<u> </u>	1	<u> </u>		<u> </u>	<u> </u>	<u> </u>	1	<u> </u>	<u> </u>
1	N	N	N	N	N	N_	N	\ <u>\</u>	M	N	N	1	N	W	N
2	N	N	LN_	LN	N	N	N	N	N	N	N	N	N	N	N
3	N	N	N	N_	N		N	N	N	N	N	N	N	<i>N</i>	N
4	N	N	N.	N_	N	I N	1/	~	N	N	N	N	N	N	N
5	N	N	N	N	N	N	11/	N	N	N	N	N	M	N	N
6	N	N	N		N	N	N	N	N	N	N	M.	N	W	N
7	N	N	N	N.	N	N	N	N	N	N	N	N	N	W	N
8	N	N	N	N	N.	N_	N	N	N	N	N	N	N	N	N
9 .	N	N	N	N	N	N	N	N	N	N	N	N,	W	N	N
10	N	N	N.	N	N	N	W,	N	N	N	N	N,	N	N	N
11	N	N	IN	N_	N	N	1	N	N	N	N.	Ν	$\mathcal{N}$	N	N
12	N	N	N	N	N	N	N	N	1/	N	N	$\mathcal{N}$	$\mathcal{N}$	N	$\mathcal{N}$
13	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
14	N	N	N	N	N	N	1/	N	\ <u>\</u>	N	N	N	$\mathcal{N}$	لبر	N
15	N	N	N	N	N	N	N	N	N	N	N	at	$\Lambda_{L}$	N	N
16	V	N		N	N	N	N,	N	N	N	N	N	N	M	N
17	N	N	N	N	N	N	N	N	1	N	N	N	M	M	N
18	N	N	N	N	N	N	N	N	N	N	N	$\mathcal{N}$	<i>'N</i> ,	N	$\mathcal{N}$
19	$\mathcal{N}$	N	N	N	N	N	N	7	$\mathcal{N}$	N	N	$N_{\star}$	$N_{i}$	N	N
20	~	N	N	N	Ŋ	N	N	~	N	N	N	N	N	~	~
Initials/	٥٤	Jc	Ħ.,,	7	Di Gu	M	الماري الماري	1)1 6 ^L	VI Aler	Tiplou	Mulph	PM 11/1/100	PM	人	اد ان
Date	10/11/10	Milch	<b>町20</b> 6	11/300	11/4/12	11/300	111,		[u] ''	טטוף ויי	النا	171111	11/12/45	יוניוןיי	111.20

#### Aqua Survey, Inc. Special Studies Department

#### Weight Data Form (Day 28)

Job #: 26-349	Client:				Test Dates: 10/31-11/28/04		
Organism: L. plu	mulosus Age of (	Organism: Ketaured	bruen 0.25 Ch mm		#/ Rep: 20		
Weigh Date: 11/27	10 11 3 d Oven: =		Oven Temp (°C):	70 Drying	Time (hr): 24		
	774.000	Wt. Of Pan +	D : 1774 06	,, ,	Mean Wt. Per		
	Wt. Of Oven Dried Pan	Oven Dried Organisms	Dried Wt. Of Organisms	Number of Surviving	Surviving Organisms		
Chamber #	(mg)	(mg)	(mg)	Organisms	(mg)		
1	1133,38	1160.14	\	20	\		
2	1131.66	1173.95		20			
3	1136.88	1171.59		19			
4	1193.12	1143.19		20			
5	1138.87	1165.28		19			
6	1140.23	1172.94		17			
7	1123.62	1146.11	~\	19			
8	1129.46	1153.23	\0	lυ	10		
9	1143.61	1160.62	\	18			
10	1146.63	1175.59	\	18	\		
11	1138,50	1174.45		20	\		
12	1132.90	1164.66	\	20			
13	1135.62	1160.17		19			
14	1132.04	1163.07		20			
15	1131.75	1160.87		18	\		
16	1123.24	1147,91	\	18			
17	1121.27	1121.63		2			
18	1136.44			0			
19	11.34.34	1171.01		20	\		
20	1139.93	1167.65		20	\		
Initials/ Date	20 11/28/06	20H 11/30/06	N.A.	And 11/28/26	N.A.		

Rel A 1141.27 1141.17 (1) See tuble 5 in report.

B 1134.53 1134.42

C 1119.29 1119.22

2911/28/26 292 1/30/06

#### AQUA SURVEY, INC.

#### CULTURE ORGANISM DISTRIBUTION FORM

DATE: <u>10/31/d</u>	
TEST JOB #: <u>26-349</u>	CLIENT: CDC
TEST LOCATION: IN-LAB [   ]	FIELD[ ]
TEST SPECIES: L plumulosus	
TOTAL NUMBER ORGANSIMS TRANSFER	RRED: 900+
AQUA SURVEY, INC. CULTURE LAB INVI	estigators:
2. RECEIVING LOG #:	
. 2. SALINITY: <u>α</u>	10.7 ppl
3. WATER SOURCE:	Manasquan
B. <u>TRANSFER CUSTODY &amp; TRANS</u>	<u>FER</u>
1. LIVESTOCK RELINQUISHME	DATE: 10/31/06 TIME: 1370 BY:
2. LIVESTOCK RECEIVING	DATE: 10/31/26 TIME: 1300 BY: 4
3. CULTURE SUPERVISOR OR S	SENIOR TECH. INITIALS:
REMARKS:	

AQUA SURVEX CULTURE DEPAR	•
Organism Receiving	
Receiving Log #: 26 - 188	Date: 18/27/01
Shipping Carrier: <u>Fid</u> EX	
Species: L plumulavis	Number Shipped:
Livestock Source/ Shipper: ARO	
ASI Order Ref. Date:	ASI Order Ref. Initials:
Age/Characteristics Retained between a 0.25.0.6 mm &	in
Taxonomic Verification Log #: <u>\$\mathcal{U} \mathcal{O} \mathcal{R}\mathcal{Q}\$</u>	Date: 10/27/06
D.O: Salinity Hardness 17.2 ppt  Water- Clear Cloudy  ICE: YN  Observation Condition of Livestock: Appear and	NH ₃ /NO ₂ : 0/0 pH: 75  Alkalinity: /20  Container Size: (1) Igillon Cubolairor  Type of Packing: Syntoam Box.
Receiving Tech. Initials:	Supervisors Initials:

#### AQUA SURVEY, INC. **CULTURE DEPARTMENT**

plumy Josus Log #: <u>26-077</u> Client: <u>CBR</u> Culture [ ]

Test Job #:

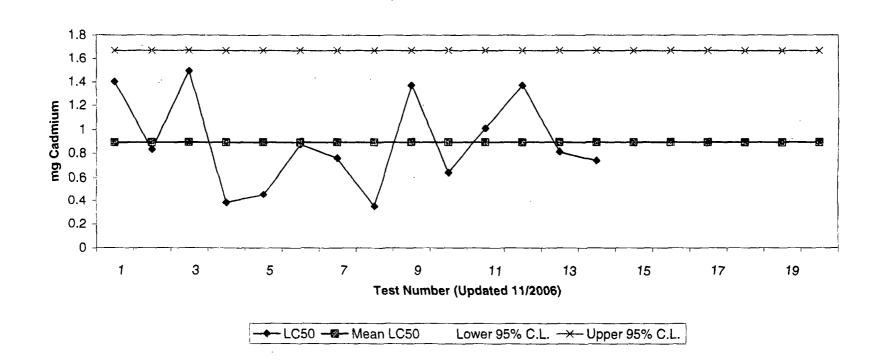
Dates: 10/27/100 - 10/31/00 Initial Stock @: 900+ Food Type: Gill Yum

Food Type:

•	<u> </u>	Day Number	T/DO	NH ₂ /NO ₂	-77	(Sal) Hardness	1 4 10 - 12 - 14 -	Martita	J. Bornela/Vitable
	Date		Temp/DO		рH	Savinardness	Alkalinity	Mortality	Started acclumation
	1427/06	1 1130	25.8	0/0	7.5	17.2	120	Ø	OFER A
	10/27/00	1 1630	11.0.6/_		_	_	_	· .	Á
	1929/06	2	M-8°2/8.1	%	8.0	18.6	116	Ø	Fed Gerp Slury 751. 140 Suchan CO)
	10/29/06	3	18.4%/7.3	0/0	8.1	20.81	120	Ø	Ly
	10/34/06	4	Z18.8°C/ 16.3	1.0/0	7.6	20.8	120	Ø	75% waker Exchange
	10/31/01,	5	218.0/64	0.50/0	7.7	20.7	112	Ø	To kst 4
									^
									_
						·			
-									
-									
L		<u></u>							B-9



## Aquatic Research Organisms


#### DATA SHEET

I.	Organism l	- · · · · · · · · · · · · · · · · · · ·
	Species:	Leptochirus plumubosus
	Source:	Lab reared Hatchery reared Field collected
		Hatch date 09/06 Receipt date
		Lot number 102606 LP Strain_
		Brood Origination Chespenke Bay VA
II.	Water Qua	•
		Temperature 23 °C Salinity 15-16 ppt DO Soft
		pH_8.0 Hardness NA ppm
III.	Culture Co	•
		System: SW Static renewal
		Diet: Flake Food V Phytoplankton Trout Chow V
		Brine Shrimp Rotifers Other
		Prophylactic Treatments:
		Comments: <600; >300 mm
IV.	Shipping In	formation
		Client: Aqua Surva # of Organisms: 900 +
		Client: $Aqva$ Surva # of Organisms: $900 +$ Carrier: $Fcd$ $Ex$ Date Shipped: $10/26/06$
Biolo	ogist:	Ve; 1 Sarage

### Appendix C

Leptocheirus plumulosus Quality Control Raw Data

#### Control Chart LC50 Values, Acute SRT With L. plumulosus (ASI Organisms)



#### **SRT**

Prep sheet for Saltwater amphipod SRTs

#### **Stock Solution**

Add 250 milligrams of Cadmium chloride to 500 mL of Manasquan water. This will give you a 250 mg Cadmium/L stock solution.

3 replicates per concentration 250 mL per replicate 10 organisms per replicate

<b>A</b> mpe	lisca	abdita
--------------	-------	--------

, till bolloon == =			
Concentration (mg/L)	Stock (mL)	Total (mL)	
0	0	750	
0.24	0.72	750	Salinity 28 +/- 2 ppt
0:48	1.44	750	Temp. 20 +/- 2 C
0.86	2. <b>5</b> 8	750	•
1.5	4.5	750	
2.8	8.4	750	
2.0	<b>∪.</b> - <del>1</del>	100	

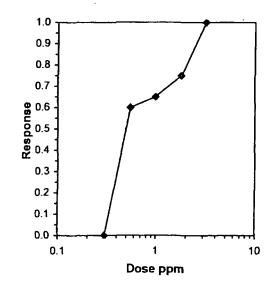
#### Eohaustorius estuarius

Concentration (mg/L)	Stock (mL)	Total (mL)	·	
0	0	750		
2.5	7.5	750	Salinity	20 +/- 2 ppt
4.5	13.5	750	Temp.	15 +/- 2 C
8	24	750		
14.4	<b>43.2</b> .	750		
26	. 78	750		

#### Leptocheirus plumulosus

Concentration (mg/L)	Stock (mL)	Total (mL)		
0	0	750		
0.3	Q. <b>9</b>	750	Salinity	20 +/- 2 ppt
0.55	1.65	<b>75</b> 0	Temp.	25 +/- 2 C
· 1	3	750		
1.8	5.4	750		
3.2	9.6	750		•

#### Rhepoxinius abronius


Concentration (mg/L)	Stock (mL)	Total (mL)	
0	0	7 <b>5</b> 0 ′	
1.2	3.6	750	Salinity 28 +/- 2 ppt
2.2	6-6	750	Temp. 15 +/- 2 C
4	12	750	·
7.2	21,6	750	
13	39	750	· C-2

				Acute Amphipod	1-96 Hr Survival	
Start Date:	11/15/2006		Test ID:	26-349	Sample ID:	REF-Ref Toxicant
End Date:	11/29/2006	· 1	Lab ID:	ASI-Aqua Survey Inc.	Sample Type:	CDCL-Cadmium chloride
Sample Date:		1	Protocol:	EPAA 91-EPA Acute	Test Species:	LP-Leptocheirus plumulosus
Comments:			_	_		
Conc-ppm	1	2				
Control	1.0000	1.0000				
0.3	1.0000	1.0000				
0.55	0.4000	0.4000				
-1	0.2000	0.5000				
1.8	0.3000	0.2000				
3.2	0.0000	0.0000				

Transform: Arcsin Square Root					Number	r Total			
Conc-ppm	Mean	N-Mean	Mean	Min	Max	CV%	N	Resp	Number
Control	1.0000	1.0000	1.4120	1.4120	1.4120	0.000	2	0	20
0.3	1.0000	1.0000	1.4120	1.4120	1.4120	0.000	2	C	20
0.55	0.4000	0.4000	0.6847	0.6847	0.6847	0.000	2	12	2 20
1	0.3500	0.3500	0.6245	0.4636	0.7854	36.430	2	13	3 20
1.8	0.2500	0.2500	0.5216	0.4636	0.5796	15.723	2	15	5 20
3.2	0.0000	0.0000	0.1588	0.1588	0.1588	0.000	2	20	20

Auxiliary Tests	Statistic	Critical	Skew	Kurt
Normality of the data set cannot be confirmed		<del></del>		
Equality of variance cannot be confirmed				
Trim	med Spearman-Karber			

Trim Level	EC50	95%	CL	
0.0%	0.7355	0.5934	0.9116	
5.0%	0.7137	0.5632	0.9044	
10.0%	0.6901	0.5315	0.8961	
20.0%	0.6342	0.4594	0.8755	
Auto-0.0%	0.7355	0.5934	0.9116	



# Aqua Survey, Inc. 96-Hour Reference Toxicant Test

Client: (DR Z6-349

Start Date:

10/20/06

Toxicant:

Cadmium Chloride

Start Time:

1630

Species:

End Time:

1580

Test Volume: 250 ml

Water Bath:

2

Sample		<del></del>	Live Counts		<del></del>
Concentration (mg/L)	0 hours	24 hours	48 hours	72 hours	96 hours
Control A	10	10	10	10	10
Control B	10	10	/0	10	10
Control C	·				
0.3 A	/0	10	10	10	/0
B	10	10	10	1.0	10
0.55 A	/0	10	10	91	45
B	10	10	10	16	46
1.0 A	/0	10	10	J.&	d
- 13	/0	10	10	64	5'
1.8 A	./0	10	10	55	32
B	10	10	10	46	22
3.2 A	10	10	10	010	
B	/0	9'	9	O9	
i					
(			·		 
Date/Initials	10/31/06 /	11/100	11/2/06	11/3/06	11/4/00/1

# AQUA SURVEY, INC.

# CULTURE ORGANISM DISTRIBUTION FORM

DATE: joj31/d	
TEST JOB #: <u>26-349</u>	CLIENT: <u>CDC</u>
TEST LOCATION: IN-LAB [ ]	FELD[ ]
TEST SPECIES: L. plumulosus	
TOTAL NUMBER ORGANSIMS TRANSFERRED	: <u>900+</u>
AQUA SURVEY, INC. CULTURE LAB INVESTIG	ATORS:
A. ORGANISMS  1. ASI CULTURE/ HOLDING UNIT:	11 10 gallon tank
2. RECEIVING LOG #: 26 - O	•
3. CULTURE LOG #:	108
4. AGE/ SIZE INFORMATION: <u>L</u>	faired between a D. 25. D. 6 mm sour
B. HOLDING [ ] CULTURE	[ ] <u>WATER PARAMETERS</u>
1. TEMPERATURE: <u>2d.8℃</u>	
2. SALINITY: <u>20.7</u>	ol
3. WATER SOURCE: Mana	squan
B. TRANSFER CUSTODY & TRANSFER	
1. LIVESTOCK RELINQUISHMENT	DATE: 10/31/06 TIME: 1370 BY:
2. LIVESTOCK RECEIVING	DATE: 10/31/05 TIME: 1500 BY: #
3. CULTURE SUPERVISOR OR SENIO	R TECH. INITIALS:
REMARKS:	<i>/</i> ·

CULTURE DEPA	
Organism Receivi	ng Form
Receiving Log #: 26 · 188	Date: 10/27/06
Shipping Carrier: <u>Fid</u> EX	, ,
Species: L. plumu lavis	Number Shipped: 9001
Livestock Source/ Shipper:	
ASI Order Ref. Date:	ASI Order Ref. Initials:
Age/Characteristics Retained between a 0.25.0.6 mm	sin "
Taxonomic Verification Log #: 2008	Date: 10/2-106
Receiving Water Qualit	y Parameters
D.O: <u>35.8 m/l</u> Temp.: <u>81°C</u>	$NH_3/NO_2$ : 0/0 pH: 75
Salinity Hardness 17. 2 ppt	Alkalinity:/20
Water- Clear) Cloudy	Container Size: (1) Igillon Cubolainer
ICE: YAN	Container Size: (1) Igullon Cuberager  Type of Packing: Styntoan Box
Observation/ Condition of Livestock: Appear and	
Receiving Tech. Initials:	Supervisors Initials:



# Aquatic Research Organisms

# DATA SHEET

I.	Organism !	
	Species:	Leptochiros plumubosus
٠	Source:	Lab reared Field collected
		Hatch date 09/06 Receipt date
		Lot number 102606 LP Strain_
		Brood Origination Chesapeake Bay VA
II.	Water Qua	lity
		Temperature 23 °C Salinity 15-16 ppt DO Soft
		pH_8.0 Hardness_NA ppm
III.	Culture Co	•
		System: SW Static renewal
		Diet: Flake Food \( \sqrt{\text{Phytoplankton}} \) Phytoplankton \( \text{Trout Chow} \( \sqrt{\text{Phytoplankton}} \)
		Brine Shrimp Rotifers Other
		Prophylactic Treatments:
		Comments: <600; >300 mm
IV.	Shipping In	formation
		Client: Aqua Surva # of Organisms: 900 +
		Carrier: Fed Ex Date Shipped: 10/26/06
n: :		No. 1 Savage
Riole	ogist:/	Ne:1 Sarage

# AQUA SURVEY, INC. **CULTURE DEPARTMENT**

Client: CDR

Dates: 10/27/12/0- 10/31/00
Initial Stock @: 910+
Food Type: Giff Stury Food Type:

Date	Day Number	Temp/DO	NH ₃ /NO ₂	рН	(Sal) Hardness	Alkalinity	Mortality	Remarks/ Initials
14/27/06		8.00/25.8	0/0	7.5	17.2	120	Ø	Started occumation
10/27/01	1 1630	11.0.6/_		_		-	-	Á
10/24/06	2	11.86/8.1	0/0	8.0	18.6	116	Ø	Fed Geop Slung 751. 140 Exchange 20
10/29/06	3	18.4%/7.3	0/0	8.1	20.81	120	Ø	Ly
10/3406	7	218.8°C/	1.0/0	7.0	20.8	120	Ø	75% waker Exchange
10/3/10.	5	22.8.0/6.4	0.50/0	77	20.7	112	Ø	Tokst 4
								,
		·		-				
				· _				
					·			
								·- · · · · · · · · · · · · · · · · · ·
								<del></del>
								<u> </u>
		·						
					-			C-8

# **SRTLP-0.DAT**

	DateTime	Temp	SpCond	Salinity	DO Conc	рН
	M/D/Y	С	uS/cm	ppt	mg/L	
0	10/31/06 16:18:27	24.74	32008.0	19.95	6.84	7.80
1	10/31/06 16:19:54	25.01	32145.0	20.04	6.88	7.84
2	10/31/06 16:20:37	25.21	32041.0	19.96	6.61	7.85
3	10/31/06 16:21:04	25.24	32108.0	20.01	6.62	7.86
4	10/31/06 16:21:33	25.32	32148.0	20.04	6.51	7.86
5	10/31/06 16:22:05	25.35	32132.0	20.02	6.43	7.86

Project #: Test type: Bioaccumulation Dolid Phase DSPP OTHER: ACU	
Species:   A. abdita   M. bahia   M. beryllina   M. nasuta   N. virens   OTHER:	umulosusDay of Study: 0
OPERATIONAL RANGE: Check if OK	Meter Used:
Temperature: $\Box 12-14  ^{\circ}  \Box 18-22  ^{\circ}  \Box  \underline{d3}  -\underline{d7}  ^{\circ}  ^{\circ}$	Blue 🗆
Salinity: □ 26-30 ppt □ 28-32 ppt □ 18 - 22 ppt	Red 🗆
Dissolved Oxygen: □ >4.0 mg/L  \( \frac{1}{12} \) > \( \frac{3}{12} \) mg/L	Green
pH:	
Actions taken:	

Tue Oct 31 16:23:17 2006 See deviation summary sheet □

# SRTLP24.DAT

	DateTime	Temp	SpCond	Salinity	DO Conc	рН
	M/D/Y	С	uS/cm	ppt	mg/L	
0	11/01/06 09:34:09	25.15	32242.0	20.10	6.01	7.96
1	11/01/06 09:34:58	25.21	32437.0	20.24	6.21	7.96
2	11/01/06 09:35:17	25.24	32418.0	20.22	6.02	7.96
3	11/01/06 09:35:45	25.25	32433.0	20.23	5.98	7.96
4	11/01/06 09:36:29	25.22	32486.0	20.27	5.84	7.96
5	11/01/06 09:37:06	25.22	32496.0	20.28	5.84	7.95

Project #: SPT	Test type: ☐ Bioaccumulation ☐ Solid Phase ☐ SPP ☐ OTHER: _4	cte Date: 1/1/1/8
Species:   A. aba	lita 🗆 M. bahia 🗆 M. beryllina 🗆 M. nasuta 🗀 N. virens 🗅 OTHER:	Day of Study: 24L/
OPERATIONAL	RANGE: Check if OK	Meter Used:
Temperature:	12-14°C 118-22°C 124-26°C	Blue □
Salinity:	□ 26 -30 ppt □ 28 -32 ppt ⊅ 18 - 22 ppt	Red □
Dissolved Oxyge	n: Ø >4.0 mg/L	Green 🗹
рН:	☑ 7.3 to 8.3 □6.0 to 9.0 □ to	
Actions taken:		
<u> </u>		
See deviation sym Wed Nov 01 10	:35:00 2006	Patjels of 1 x C-10

# SRTLP-48.DAT

	DateTime	Temp	SpCond	Salinity	DO Conc	рН
	M/D/Y	С	uS/cm	ppt	mg/L	
0	11/02/06 09:27:23	24.30	32375.0	20.21	6.39	7.95
1	11/02/06 09:28:26	24.82	32595.0	20.35	6.44	7.95
2	11/02/06 09:29:20	25.06	32512.0	20.29	6.37	7.96
3	11/02/06 09:29:59	25.22	32437.0	20.24	6.33	7.96
4	11/02/06 09:30:32	25.29	32570.0	20.33	6.32	7.97
5	11/02/06 09:31:05	25.25	32568.0	20.33	6.33	7.96

Project #: <u>SRT</u>	Test type: □ Bioaccumulation □ Solid Phase □ SPP □ OTHER: 1	cute	Date: 11/2/06
Species: □ A. aba	lita □ M. bahia □ M. beryllina □ M. nasuta □ N. virens □ OTHER: L	- plumulo Day	y of Study: 48 hus
OPERATIONAL	RANGE: Check if OK	Meter	Used:
	□ 12 -14 °C □ 18 -22 °C ₺ <u>23</u> - <u>27</u> °C	Blue	
Salinity:	□ 26 –30 ppt □ 28 –32 ppt □ 18 – å2 ppt	Red	
Dissolved Oxyger	n: □ >4.0 mg/L	Green	<b>b</b>
рН:	□ 7.3 to 8.3 □6.0 to 9.0 □ 7 to 9		
Actions taken:			

# SRTLP72.DAT

	DateTime	Temp	SpCond	Salinity	DO Conc	рН
	M/D/Y	С	uS/cm	ppt	mg/L	
0	11/03/06 12:24:52	24.34	33493.0	20.98	6.71	7.97
1	11/03/06 12:25:43	24.57	33280.0	20.83	6.68	8.00
2	11/03/06 12:26:04	24.66	32982.0	20.62	6.71	8.01
3	11/03/06 12:26:38	24.66	32859.0	20.54	6.68	8.01
4	11/03/06 12:27:13	24.65	32995.0	20.63	6.68	8.00
5	11/03/06 12:27:37	24.68	32621.0	20.37	6.63	7.97

Project #: SKT	Test type: □ Bioaccumulation □ Solid Phase □ SPP ▼ OTHER: Acu	Le Date: 1][5]170
Species: □ A. aba	dita DM. bahia DM. beryllina DM. nasuta DN. virens DOTHER: 4	Day of Study: 72hw
OPERATIONAL	RANGE: Check if OK	Meter Used:
Temperature:	12-14 °C 18-22 °C 1 24 - 26 °C	Blue 🗆
Salinity:	□ 26 –30 ppt □ 28 –32 ppt □ 18 – 20 ppt	Red □
Dissolved Oxyger	n: □ >4.0 mg/L	Green 1
pH:	$\Box$ 7.3 to 8.3 $\Box$ 6.0 to 9.0 $\Box$ 7 to $\Box$ 9	
Actions taken:		
		<del></del>

Bages 1 of 1 /

C-12

See deviation summary sheet Tue Nov 07 14:39:22 2006

# SRTLP96.DAT

	DateTime	Temp	SpCond	Salinity	DO Conc	рН
	M/D/Y	С	uS/cm	ppt	mg/L	
0	11/04/06 11:59:01	25.10	33626.0	21.06	6.45	7.95
]1	11/04/06 11:59:54	25.22	33305.0	20.83	6.64	7.94
2	11/04/06 12:00:13	25.34	33397.0	20.90	6.47	7.93
3	11/04/06 12:00:38	25.33	33239.0	20.79	6.35	7.92
4	11/04/06 12:01:09	25.21	33260.0	20.80	6.35	7.90
5	11/04/06 12:01:36	25.19	33524.0	20.99	6.33	7.89

					d other: Acute		
Species: □ A. aba	lita 🗆 M. bahid	ı □M beryllir	na 🗆 M. nasuta	□ N. virens	other: L.p.	Day	of Study: <u>Alphy</u>
OPERATIONAL	RANGE: Che	ck if OK			•	Meter l	Used:
Temperature:	□ 12 –14 °C	□ 18 –22 °C	1 24 - de	_℃		Blue	
Salinity:	□ 26 –30 ppt	□ 28 –32 ppt	6 18 - 22	. ppt		Red	
Dissolved Oxyger						Green	Ь
pH:	□ 7.3 to 8.3	0 to 9.0	□ to	<u>-</u>			
Actions taken:		<i>(</i> 1					
Sun Nov 05 10:1	12:13 2006	<del></del>	<del></del>			—Р	age 1 of 1
See deviation sum							Initials:
							7

^CD_R Appendix

# B. TOXICITY IDENTIFICATION EVALUATION (AQUA SURVEY)

# Aqua Survey, Inc.

#### Volume I

## TOXICITY IDENTIFICATION EVALUATION REPORT

TIE Study using Leptocheirus plumulosus On Pore Waters from Sediments from the LCP Chemical Site in Brunswick, Georgia

### Prepared for

CDR Environmental Specialists, Inc. 6001 N. Ocean Drive Unit 1103 Hollywood, FL 33019-4618

Prepared by

Aqua Survey, Inc. 469 Point Breeze Road Flemington, NJ 08822

February 16, 2007

ASI Job No. 26-349

469 Point Breeze Road Flemington, NJ - 08822

Plane: 908-788-8700 Fax 908-788-9165 mailwaquasurvey com www.aquasurvey com



# **Table of Contents**

Signa	ure Page	
I.	Executive Summary	5
II.	Prologue	
III.	Introduction	6
IV.	Source of Sediment and Dilution Water	8
	A. Sediment	
	B. Dilution Water	
V.	Test Methods	9
٧.	A. Methods	, 9
	B. Sample Preparation	
	C. Test Parameters	
	C. Test I d'ameters	
VI.	Test Organism	11
	A. Leptocheirus plumulosus	
VII.	Test Procedures	11
V 4.1.	A. Solid Phase	
	B. Pore Water	
VIII.	Quality Assurance	11
¥ 111.	Standard Reference Toxicant Test Results	
	Standard Reference Toxicant Test Results	1 1
IX.	Results	12
	Summary of Results	
	Solid Phase 10-day Acute L. plumulosus Toxicity Results	
	Pore Water TIE L. plumulosus Toxicity Results	
х.	Discussion	16
IX.	Conclusions	17
	Figures	
Figure	TIE Testing Procedure	_
riguic	1 1 1 1 Coming 1 10 Coduit	/

# **Tables**

Table 1	Sample Identification	9
Table 2	Summary of Solid Phase 10 Day Acute Temperature and Salinity Readings	
Table 3	TIE Pore Water Tests Temperature and Salinity Readings	
Table 4	Acute SRT Test Results	
Table 5	Results of 10-day Acute L. plumulosus Test on LCP Sediments	12
Table 6	Results of TIE Study on Pore Waters from LCP Sediments - No Treatment	
Table 7.	Results of TIE Study on Pore Waters from LCP Sediments - After Thiosulfate	13
Table 8	Results of TIE Study on Pore Waters from LCP Sediments - After EDTA	14
Table 9	Results of TIE Study on Pore Waters from LCP Sediments - After Filtering	14
Table 10	Results of TIE Study on Pore Waters from LCP Sediments - After C-18	14
Table 11	Results of TIE Study on Pore Waters from LCP Sediments – After pH 7	15
Table 12	Results of TIE Study on Pore Waters from LCP Sediments - After pH 9	15
Table 13	Results of TIE Study on Pore Waters from LCP Sediments - After Ulva	15
Table 14	Dilution Factors Associated with Organic Chemical Analysis Results	16
Table 15	Chemical Analysis of Bulk Sediment	18
Table 16	Grain Size Distribution	
Table 17	Chemical Analysis of Pore Water	21
	Appendices	
Appendix	A: Chains of Custody	A-1
	B: Manasquan Water Receiving Forms and Chemical Analysis Raw Data	
	C: Leptocheirus plumulosus Acute Raw Data Sheets	
	D: TIE Raw Data Sheets	
- 1		

# Volume II

Alpha Woods Hole Chemical Analysis of Sediment

# Volume III

Alpha Woods Hole Chemical Analysis of Pore Water

## Signature Page

TIE Study using Leptocheirus plumulosus On Pore Waters from Sediments from the LCP Chemical Site in Brunswick, Georgia

#### Prepared for

CDR Environmental Specialists, Inc. 6001 N. Ocean Drive Unit 1103 Hollywood, FL 33019-4618

This report, as well as all records and raw data were audited and found to be an accurate reflection of the study. Copies of raw data will be maintained by Aqua Survey, Inc, 469 Point Breeze Road, Flemington, New Jersey, 08822.

Ret m Fint	2/16/09
Robert M. Fristrom	Date
Quality Assurance Officer	
Michelle Storner	2/14/07
Michelle Thomas	Dáte
Laboratory Manager	
Jon Doi	2-16-07
Jon Doi, Ph.D.	Date
Executive Vice President	

#### I. EXECUTIVE SUMMARY

A toxicity identification evaluation (TIE) study was conducted on pore waters produced from sediments from the LCP Chemical Site in Brunswick, Georgia.

The results of the 10-day *Leptocheirus plumulosus* acute test on the two sediment samples from the LCP site, C-6 and C-7, showed no statistical difference in survival or reburial rates when compared to the control sediment. All endpoints fell within 86.0% to 93.0% for all sediments (tests and control) tested.

Pore waters produced from the two LCP sediment samples in the TIE study were evaluated with *L. plumulosus* in toxicity tests that ran from 4 to 10 days. The results from Day 4 showed there was no difference in toxicological response between the two LCP pore water samples compared to the control water. This was true for both the 25% and 100% pore water concentrations. Up to Day 7, there was still little difference in toxicological response between the two LCP pore waters and the control water. On Day 8 there appears to be a slight difference in toxicological response between the two LCP 100% pore waters and the control water. By Day 9 there was significant mortality in the control water.

The TIE treatments on the two LCP pore water samples yielded little useful information, because the untreated pore water samples were basically non-toxic. The TIE treatments are designed to remove toxicity from the untreated water, but if the untreated water is basically non-toxic, then there is nothing to remove. This turned out to be a fortunate occurrence, because the first TIE treatment in a series of five treatments (thiosulfate followed by EDTA, filtering, passage through C-18, and treatment with ulva / pH manipulations) had considerable control mortality. All subsequent treatments showed the same high control mortality, because manipulations were carried out in a serial fashion.

The conclusion of this TIE study is that neither the two LCP sediment samples nor the pore waters produced from these sediments showed acute toxicity to the amphipod, Leptocheirus plumulosus.

Chemical analysis of both the LCP sediment samples and subsequently-produced pore waters were conducted. Evaluation of the analytical results is beyond the scope of our work and is left up to the client.

#### II. PROLOGUE

During the fall of 2006 an ecological investigation was planned for the estuary at the LCP Chemical Site in Brunswick, Georgia. This investigation was designed to serve as a continuation of the annual monitoring program that has been conducted at the LCP Site since 2002 and, additionally, to resolve specific issues that have been raised during previous monitoring investigations and/or by various parties regarding environmental conditions in the estuary.

The major unresolved issue in previous monitoring investigations is the cause of toxicity of surface sediment to organisms (amphipods and grass shrimp) tested for toxicity in the laboratory (e.g. CDR Environmental Specialists and MWH Americas, 2006). None of LCP Chemical Site's chemicals of potential concern (COPC) – mercury, Aroclor 1268, lead, and PAHs – have been statistically associated with observed toxicity. However, various chemical and biological sources of variation may confound identification of such relationships. Conversely, statistical evaluations of the results of "field" toxicity tests with indigenous grass shrimp have unambiguously indicated the absence of COPC-related (or other) toxicity.

The parties whose environmental concerns are being addressed in this document are the Natural Resource Damage Assessment (NRDA) Trustees for the LCP Site, Region 4 of the U. S. Environmental Protection Agency (EPA), and Stakeholders involved with the site.

#### III. INTRODUCTION

Aqua Survey, Inc. (ASI) conducted a Toxicity Identification Evaluation (TIE) study on pore waters from sediments from the LCP chemical site in Brunswick, Georgia using the amphipod, *Leptocheirus plumulosus*.

The TIE was employed in several ways to address the causes of toxicity in the LCP sediment samples. First, the bulk sediment samples was evaluated for the usual chemical constituents (grain size, TOC, and COPC [total mercury, Aroclor 1268, lead, and total PAHs]), 21 secondary metals and also for SEM/AVS.

L. plumulosus were then exposed in the laboratory under static conditions to sediments from two stations — Site Stations C-6 and C-7 in the Eastern Creek from the LCP chemical site in Brunswick, Georgia and a control sediment for a period of ten days. Measurement endpoints are survival and, secondarily, reburial of surviving amphipods.

L. plumulosus acute bioassay tests with pore waters from the two test sediments and control sediment were conducted from 4 to 10 days. The measurement endpoint is survival.

Eight treatments (manipulations) of each sample of pore water (including baseline tests) were conducted with amphipods as illustrated in **Figure 1**. Each pore-water treatment (and a negative control) was conducted, after appropriate salinity adjustments, under static conditions from 4 to 10 days. Both 100% and 25% pore water concentrations were tested. The measurement endpoint is survival.

The following chemical/physical measurements were taken on a daily basis for each pore-water treatment: temperature, salinity, dissolved oxygen and pH. In addition, each batch of pore water (baseline and treated batches) was analyzed for COPC (total



mercury, Aroclor 1268, lead, and total PAHs), 21 secondary metals, total ammonia, total sulfides, total organic carbon (TOC) and dissolved organic carbon (DOC).

The TIE is interpreted by comparing concentrations of chemicals in baseline batches of pore water to established water quality criteria to assist in identifying bioavailable toxic agents (agents not sequestered by variable site-specific sediment characteristics such as TOC and/or AVS). In addition, the TIE differentiates among toxicity caused by metals, nonpolar organic chemicals, and ammonia-type groups; and, together with the above-referenced SEM/AVS measurements, addresses differential toxicity of mercury and lead.

#### IV. SOURCE OF SEDIMENT AND DILUTION WATER

#### A. Sediment Samples

Two sediment samples from the LCP chemical site were collected by CDR Environmental Specialists personnel on October 18, 2006. The samples were shipped overnight following chain of custody procedures. The samples were received at ASI in good condition. The chains of custody can be found in Appendix A.

#### B. Dilution Water

The dilution water used both for acclimation and testing, was from the Manasquan Inlet in New Jersey. Sample Receiving Forms and chemical analysis raw data is found in Appendix B.

#### V. TEST METHODS

#### A. Methods

The test method used for the marine sediment 10-day acute bioassay study was the Method for Assessing Toxicity of Sediment Associated Contaminants with Estuarine and Marine Amphipods, EPA 600/R-94-025, June 2004. Each sediment test consisted of five replicates. In each replicate, 20 amphipods were exposed to 2 cm of sediment and 800 ml of control water in a 1-liter glass beaker. The endpoints were survival and reburial rate.

The test method used for the pore water TIE study was the methodology described in Region 9; SOP 1003, as supplemented by procedures identified by Adams et al. (Adams, W. J., W. J. Berry, G. A. Burton Jr., K. Ho, D. MacDonald, R. Scroggins, and P. V. Winger. 2001. Summary of a SETAC technical workshop – pore water toxicity testing: biological, chemical, and ecological considerations with a review of methods and applications, and recommendations for future areas of research. Edited by R. S. Carr and M. Nipper. SETAC Publication. 24 pp.) and

SAIC (Science Applications International. 2003. Guide for planning and conducting sediment pore water toxicity identification evaluations to determine causes of acute toxicity at Navy aquatic sites. User's Guide UG-2052-ENV. March 2003. Naval Facilities Engineering Service Center. Port Hueneme, CA. 6 sections). The *Marine Toxicity Identification Evaluation (TIE) Phase I Guidance Document*, fifth edition, September 1996, EPA/600/R-96-054 was also used as reference. Eight treatments (manipulations) of each sample of pore water (including baseline tests) were conducted with amphipods as illustrated in Figure 1. Each pore-water treatment (and a negative control) was conducted, after appropriate salinity adjustments, under static conditions from 4 to 10 days; and each treatment consisted of two concentrations of pore water (100 and 25% pore water), with three replicates per concentration. Each replicate consisted of 10 amphipods placed in a 9 ounce polyethylene container containing 100 ml of test material. Measurement endpoint was survival. A positive control test was conducted with cadmium chloride.

#### B. Sample Preparation

Upon arrival at the laboratory, the LCP Chemical Site sediment samples were logged in and unique ASI numbers were assigned. The pore waters were separated from the sediments by centrifuging and were also assigned unique ASI numbers.

Table 1 provides sample identification numbers.

Table 1. Sample Identification

Sample Name	ASI#	Sample Type
C7-A	20061298	sediment
C6-A	20061299	sediment
C6-A pore water	20061301	pore water
C7-A pore water	20061300	pore water

#### C. Test Parameters

The Solid Phase Acute 10 day test was started on November 3, 2006 and terminated on November 13, 2006. The TIE tests were started on November 3, 2006 and terminated on November 13, 2006. All tests were conducted with a photoperiod of 16 hours light and 8 hours dark.

For the Solid Phase Acute 10 Day test, the chambers were 1-L glass beakers. Overlay water was Manasquan inlet water. There were 20 organisms per chamber and 5 replicates per sediment and control.

All water quality parameters (temperature, salinity, dissolved oxygen and pH) were monitored daily. The temperature and salinity recorded for the tests are listed in Table 2. Complete water quality readings can be found in Appendix C.

Table 2. Summary of Solid Phase Acute 10 Day Test Temperature and Salinity Readings

Sample	Temperature °C	Salinity ppt
Control mean	24.3	24.8
Control range	24.2-24.5	24.4-25.3
C-6 mean	24.4	23.6
C-6 range	24.0-24.8	10.6-25.4
C-7 mean	24.4	24.5
C-7 range	24.0-24.9	24.1-25.0

For the TIE tests, the test chambers were made of polyethylene terephthalate (PETE). The chamber size was 9 oz. and the test solution volume was 100 ml per chamber. There were 10 organisms per chamber and 3 replicates per treatment. The tests were each run with a dilution water control and test concentrations of 25 and 100 percent.

Water quality parameters (temperature, salinity, dissolved oxygen and pH) were monitored at 0 hours for all manipulations. The temperature and salinity recorded for the tests are listed in Table 3.

Table 3. TIE Pore Water Tests Temperature and Salinity Readings

Sample	Temperature °C	Salinity ppt
Control mean	24.3	24.8
Control range	24.2-24.5	24.4-25.3
C-6 25% mean	24.4	25.1
C-6 25% range	24.0-24.8	24.5-25.4
C-6 100% mean	24.4	24.4
C-6 100% range	24.1-25.2	24.2-25.2
C-7 25% mean	24.3	25.0
C-7 25% range	24.0-24.7	24.6-25.3
C-7 100% mean	24.4	24.5
C-7 100% range	24.0-24.9	24.1-25.0

#### VI. TEST ORGANISMS

#### A. Leptocheirus plumulosus

The Leptocheirus plumulosus used in testing were obtained from Aquatic Research Organisms, Hampton, NH. The taxonomic key use for species identification was Shallow Water Gammaridean Amphipoda of New England, Bousfield, 1970. The organisms were acclimated for 48 hours at a mean temperature of 20.8 °C (range 14.6 °C to 25.0 °C). The mean salinity was 21.0 ppt (range 18.5 ppt to 24.5 ppt).

#### VII. TEST PROCEDURES

#### A. Solid Phase 10-day Acute L plumulosus Bioassay Test

The solid phase 10-day acute *Leptocheirus plumulosus* bioassay test was run according to the test method described in Section V.

#### B. Pore Water TIE L. plumulosus Bioassay Tests

The pore water TIE Leptocheirus plumulosus bioassay test was run according to the test method described in Section V. It is important to note that unlike the US EPA TIE guidance manual, this study followed the EPA, Region 9; SOP 1003 methodology in which TIE manipulations (shown in Figure 1) were run in consecutive fashion, i.e., each TIE manipulation in order was run on the same sample as the previous manipulation. In the US EPA TIE guidance manual, each TIE manipulation is run as a separate test.

#### VIII. QUALITY ASSURANCE

#### **Standard Reference Toxicant Tests**

A standard reference toxicant (SRT) test was conducted for each test/species according to the EPA method, *Marine Toxicity Identification Evaluation (TIE) Phase I Guidance Document*, fifth edition, September 1996, EPA/600/R-96-054.

The reference toxicant used was cadmium chloride (CdCl) supplied by Sigma-Aldrich, and the dilution water used was Manasquan water. The SRT test was initiated on November 3, 2006 and terminated on November 7, 2006.

The results are listed in Table 4.

Table 4. Acute SRT Test Results

Species	LC ₅₀	Lower Control Limit	Upper Control Limit
L. plumulosus (Cd mg/L)	0.98	0.16	1.6

#### IX. RESULTS

#### **Summary of Results**

The 10-day acute *Leptocheirus plumulosus* test results for the two LCP sediment samples are summarized in Table 5. An ANOVA statistical analysis was run comparing the sediments to a control for both survival and reburial. There was no statistical difference for either endpoint. The raw data associated with these toxicity tests can be found in Appendix C.

The 4-10 day acute *Leptocheirus plumulosus* test results for the pore waters generated from the two LCP sediments in the TIE study are summarized in Tables 6 - 14. The raw data associated with these pore water TIE toxicity tests can be found in Appendix D.

The bulk sediment chemical results for the two sediment samples from the LCP site are summarized in Table 15. Grain size distribution results for the two sediment samples from the LCP site are summarized in Table 16. The complete analytical data package can be found in Volume II.

The pore water chemical results from the two LCP sediment samples are summarized in Tables 17. The complete analytical data package can be found in Volume III.

#### Solid Phase 10-day Acute L. plumulosus Toxicity Results

Table 5. Results of 10-day Acute L. plumulosus Test on LCP Sediments

Sediment Identification	Average Percent Survival	Average Percent Reburial	
Control	91 %	91 %	
6A	93 %	92 %	
7A	88 %	86 %	

#### Pore Water TIE L. plumulosus Toxicity Results

The following tables show the results from the TIE Study following the schematic in Figure 1. Note that the "No Treatment" toxicity data was reported from Days 4-10, the "Thiosulfate Treatment" from Days 2-10 and the remaining TIE treatments from Days 1-4.

## Pore Water 4-10 day Acute L. plumulosus Bioassay Results - No Treatment

Table 6. Results of TIE Study on Pore Waters from LCP Sediments - No Treatment

SediAID	Average Percent Survival						
Sediment ID	Day 4	Day 5	Day 6	Day 7	Day 8	Day 9	Day 10
Control	96.7	93.3	93.3	93.3	93.3	53.3	23.3
C-6; 25% pore water	100	86.7	86.7	86.7	76.7	70.0	63.3
C-6; 100% pore water	96.7	93.3	93.3	93.3	86.7	83.3	80.0
C-7; 25% pore water	100	100	100	100	86.7	73.3	53.3
C-7; 100% pore water	93.3	80.0	80.0	80.0	73.3	70.0	60.0

## Pore Water 2-10 day Acute L. plumulosus Bioassay Results - Thiosulfate Treatment

Table 7. Results of TIE Study on Pore Waters from LCP Sediments - After Thiosulfate

Sediment ID	Average Percent Survival								
Seamlent ID	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Day 8	Day 9	Day 10
Control	93.3	73.3	60.0	46.73	10.0	0.00	0.00	0.00	0.00
C-6; 25% pore water	93.3	86.7	86.7	86.7	83.3	80.0	80.0	73.3	53.3
C-6; 100% pore water	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C-7; 25% pore water	90.0	66.7	66.7	63.3	63.3	63.3	60.0	53.3	43.3
C-7; 100% pore water	86.7	16.7	0.00	0.00	0.00	0.00	0.00	0.00	0.00

## Pore Water 1-4 day Acute L. plumulosus Bioassay Results - EDTA Treatment

Table 8. Results of TIE Study on Pore Waters from LCP Sediments - After EDTA

Sediment ID	Average Percent Survival							
	Day 1	Day 2	Day 3	Day 4				
Control	100	100	60.0	10.0				
C-6; 25% pore water	100	63.3	13.3	0.00				
C-6; 100% pore water	100	3.33	0.00	0.00				
C-7; 25% pore water	100	73.3	13.3	0.00				
C-7; 100% pore water	100	80.0	10.0	0.00				

# Pore Water 1-4 day Acute L. plumulosus Bioassay Results - Filtering Treatment

Table 9. Results of TIE Study on Pore Waters from LCP Sediments - After Filtering

Sediment ID	Average Percent Survival							
	Day 1	Day 2	Day 3	Day 4				
Control	100	96.7	46.7	0.00				
C-6; 25% pore water	100	93.3	50.0	0.00				
C-6; 100% pore water	100	76.7	0.00	0.00				
C-7; 25% pore water	, 100	93.3	73.3	50.0				
C-7; 100% pore water	100	93.3	53.3	0.00				

## Pore Water 1-4 day Acute L. plumulosus Bioassay Results - C-18 Treatment

Table 10. Results of TIE Study on Pore Waters from LCP Sediments - After C-18

Sediment ID	Average Percent Survival						
	Day 1	Day 2	Day 3	Day 4			
Control	100	96.7	53.3	10.0			
C-6; 25% pore water	100	100	46.7	3.33			
C-6; 100% pore water	100	90.0	6.67	0.00			
C-7; 25% pore water	100	100	43.3	33.3			
C-7; 100% pore water	100	93.3	43.3	6.67			

## Pore Water 1-4 day Acute L. plumulosus Bioassay Results - pH Treatments

Table 11. Results of TIE Study on Pore Waters from LCP Sediments - After pH 7

Sediment ID	Average Percent Survival							
	Day 1	Day 2	Day 3	Day 4				
Control	100	100	63.3	6.67				
C-6; 25% pore water	100	100	63.3	3.33				
C-6; 100% pore water	100	93.3	0.00	0.00				
C-7; 25% pore water	100	96.7	56.7	36.7				
C-7; 100% pore water	100	100	53.3	23.3				

Table 12. Results of TIE Study on Pore Waters from LCP Sediments - After pH 9

Sediment ID	Average Percent Survival						
	Day 1	Day 2	Day 3	Day 4			
Control	100	100	56.7	0.00			
C-6; 25% pore water	100	96.7	36.7	3.33			
C-6; 100% pore water	100	100	6.67	0.00			
C-7; 25% pore water	100	66.7	36.7	36.7			
C-7; 100% pore water	100	50.0	0.00	0.00			

# Pore Water 1-4 day Acute L. plumulosus Bioassay Results - Ulva Treatment

Table 13. Results of TIE Study on Pore Waters from LCP Sediments - After Ulva

Sediment ID	Average Percent Survival						
	Day 1	Day 2	Day 3	Day 4			
Control	100	63.3	20.0	3.33			
C-6; 25% pore water	100	73.3	33.3	10.0			
C-6; 100% pore water	100	53.3	26.7	0.00			
C-7; 25% pore water	100	76.7	40.0	13.3			
C-7; 100% pore water	100	56.7	26.7	0.00			

#### Summary of Chemical and Physical Analysis Results of Test Sediments

Table 15 on page 18 shows the chemical analysis results for the two LCP sediment samples, C-6 and C-7. Table 16 on page 20 shows the grain size distribution for the two LCP sediment samples, C-6 and C-7.

#### Summary of Chemical Analysis Results of Pore Waters from Test Sediments

Tables 17 on pages 21-23 show the chemical analysis results for the pore waters from the two LCP sediment samples C-6 and C-7 before and taken through the TIE process.

The dilution factors associated with organic chemical analysis on the pore waters is shown in Table 14. There is a "Sample Size Dilution" factor, because less than 1000 ml of pore water was available to the analytical laboratory and a "Dilution from Interference" factor, because there was a sulfur interference in the PCB Aroclor analyses, which cause the analytical laboratory to dilute the samples by a factor of 5.

Table 14. Dilution Factors Associated with Organic Chemical Analysis Results

Sample	Analyte Class	Sample Size Dilution	Dilution from Interference	Total Dilution
C7-A pore water	PAHs	2.2	1	2.2
C7-A after C-18	PAHs	37	1	37
C6-A pore water	PAHs	1.1	1	1.1
C6-A after TIE manipulations	PAHs	1.4	1	1.4
C7-A pore water	PCB Aroclors	2.2	1	2.2
C7-A after C-18	PCB Aroclors	27	5	185
C6-A pore water	PCB Aroclors	1.1	1	1.1
C6-A after TIE manipulations	PCB Aroclors	1.43	5	7.1

#### X. DISCUSSION

The results of the 10-day *Leptocheirus plumulosus* acute test on the two sediment samples from the LCP site, C-6 and C-7, showed no statistical difference in survival or reburial rates when compared to our control sediment. All endpoints fell within 86.0% to 93.0% for all sediments (tests and control) tested.

Pore waters produced from the two LCP sediment samples in the TIE study were evaluated with L. plumulosus in toxicity tests that ran from 4 to 10 days. The results from

Day 4 showed there was no difference in toxicological response between the two LCP pore water samples, C-6 and C-7, compared to the control water. This was true for both the 25% and 100% pore water concentrations. Up to Day 7, there was still little difference in toxicological response between the two LCP pore waters and the control water. On Day 8 there appears to be a slight difference in toxicological response between the two LCP 100% pore waters and the control water. By Day 9 there was significant mortality in the control water.

The TIE treatments, adding thiosulfate, adding EDTA, filtering through a 0.45 µm filter, passing through a C-18 column, adjusting the pH to values of 7 and 9, and adding ulva to the effluent, carried out sequentially on the two LCP pore water samples yielded little useful information, because the untreated pore water samples, C-6 and C-7, were basically non-toxic. The TIE treatments are designed to remove toxicity from the untreated water, but if the untreated water is non-toxic, then there is nothing to remove. This turned out to be fortunate, because the first TIE treatment in a series of five treatments (thiosulfate) had considerable control mortality. All subsequent treatments showed the same high control mortality, because manipulations were carried out in a sequential fashion. It is believed that the high control mortality in the thiosulfate manipulation occurred, because although the volume of thiosulfate to be added to the pore water samples was stated in the SAIC document, the concentration of the thiosulfate was not. The concentration used in the TIE manipulation came from the US EPA Marine TIE Guidance Manual. However, the volume added in EPA guidance manual was much lower than stated in the SAIC document. For this reason, we believe that the volume of thiosulfate added in this TIE manipulation step at the concentration used was too high and caused the excess control mortality. Once the pore water was toxic due to high thiosulfate concentration, it remained toxic for the rest of the manipulations done sequentially. That is why the TIE manipulations in Tables 8-13 were shown only to Day 4, because by then, the controls were mostly deceased.

Chemical analysis of both the LCP sediment samples and subsequently-produced pore waters before and after TIE manipulations were conducted. Evaluation of the analytical results is beyond the scope of our work and is left up to the client.

#### XI. CONCLUSIONS

The results of the 10-day *Leptocheirus plumulosus* acute test on the two sediment samples from the LCP site, C-6 and C-7, showed no statistical difference in survival or reburial rates when compared to the control sediment.

The pore waters generated from the two sediment samples from the LCP site, C-6 and C-7, showed no acute toxicity through Day 7.

Chemical analysis of both the LCP sediment samples and subsequently-produced pore waters were conducted. Evaluation of the analytical results is beyond the scope of our work and is left up to the client.

Table 15

#### Semivolatile Analysis of Bulk Sediment

ASI Job #26-349	Sediment (Units: ug/kg)			
ASI ID#	- 20061298		20061299	
Laboratory ID #	0611050-01		0611050-02	
Sample ID #	C7-A	Q	C6-A	Q
Naphthalene	12	ND	12	ND
2-Methylnaphthalene	12	ND	12	ND
1-Methylnaphthalene	12	ND	12	ND
Biphenyl	12	ND	12	ND
2,6-Dimethylnaphthalene	33		43	
Acenaphthylene	24		15.	
Acenaphthene	12	ND	12	ND
Fluorene	12	ND	12	ND
2,3,5-Trimethylnaphthalene	12	ND	12	ND
Phenanthrene	29		26	
Anthracene	67		56	
1-Methylphenanthrene	12	ND	12	ND
Fluoranthene -	170		150	
Ругепе	160		310	
Benz[a]anthracene	96		120	
Chrysene	100		150	
Benzo[b]fluoranthene	120		180	
Benzo[k]fluoranthene	230		380	
Benzo[e]pyrene	130		70	
Benzo[a]pyrene	94		180	
Perylene	55		50	
Indeno[1,2,3-cd]pyrene	64		120	
Dibenz[a,h]anthracene	21		72	
Benzo[g,h,i]perylene	71		190	

# PCB/Aroclor Analysis of Bulk Sediment

ASI Job #26-349	Sediment (Units:ug/kg)			
ASI ID#	20061298		20061299	
Laboratory ID #	0611050-01		0611050-02	
Sample 1D #	C7-A	Q	C6-A	Q
Aroclor 1016	120	ND	120	ND
Aroclor 1221	120	ND	120	ND
Aroclor 1232	120	ND	120	ND
Aroclor 1242	120	ND	120	ND
Aroclor 1248	. 120	ND	120	ND
Aroclor 1254	120	ND	120	ND
Aroclor 1260	120	ND	120	ND
Aroclor 1262	120	ND	120	ND
Aroclor 1268	13,000		28,000	
Total Arochlor(SUM)	13,960		28,960	

PS

#### Table 15 continued

#### Metal Analysis of Bulk Sediment

ASI Job #26-349	Sediment (Units:mg/kg)		Sediment (Units:mg/kg)		Sediment (Units:mg/kg)	
ASI ID#	20061298		20061298 dup		20061299	
Laboratory ID #	0611050-01		0611050-01 dup		0611050-02	
Sample ID #	C7-A	Q	C7-A dup	Q	C6-A	Q
Aluminum	17,000		19,000		16,000	
Antimony	0.11	ND	0.11	ND	0.1	ND
Arsenic	14		13		12	
Barium	25		25		. 21	
Beryllium	1.5		1.6		1.5	
Cadmium	0.23		0.20		0.2	
Calcium	7,600		8,000		4,600	
Chromium	_53		. 55		46	
Cobalt	7.3		7.4		6	
Copper	13		13		12	
Iron	26,000		27,000		22,000	
Lead	. 22		21		24	
Magnesium	8,000		8,200		6,900	
Manganese	470		470		310	
Mercury	3.7				13	
Nickel	12		13		11	
Potassium	3800		4,000		3400	
Selenium	2.5		2.5		2.2	
Silver	0.20		0.20		0.19	
Sodium	24,000		24,000		23,000	
Thallium	0.23		0.18		0.28	
Vanadium	57		59		47	
Zinc	83		81		68	

#### AVS and SEM Analysis of Bulk Sediment

ASI Job #26-349	Sediment (Units:umol/g)		Sediment (Units:umol/g)		Sediment (Units:umol/g)	
ASI ID#	20061298		20061298 dup		20061299	
Laboratory ID #	. 0611050-01		0611050-01dup		0611050-02	
Sample ID #	C7-A	Q	C7-A	Q	C6-A	Q
SEM/AVS	0.020				0.014	
Sulfide	45		44	_	51	
Соррет	0.073		0.045		0.030	
Cadmium	0.0016		0.0013		0.0015	
Nickel	0.084		0.050		0.041	
Lead	0.063		0.062		0.060	
Zinc	0.66		0.65		0.58	

# TOC Analysis of Bulk Sediment

ASI Job #26-349	Sediment (Units: %)		Sediment (Units: %)	
ASI ID#	20061298		20061299	
Laboratory ID #	0611050-01		0611050-02	
Sample ID #	C7-A	Q	. C6-A	Q
Total Organic Carbon (Run 1)	3.6		3.9	
Total Organic Carbon (Run 2)	3.8		3.9	

AT

Table 16

### Grain Size Distribution

ASI Job #26-349	% Gravel		% Sand			% Fines	
ASI ID #, Laboratory ID #, Sample #	Coarse	Medium	Coarse	Medium	Fine	Silt	Clay
20061298, 0611050-01, C7-A	0.0	0.0	4.7	9.2	5.1	55.7	25.1
20061299, 0611050-02, C6-A	0.0	0.0	8.0	7.4	12.8	49.4	21.7



Table 17 Sem

# Semivolatile Analysis of Pore Water by Selective Ion Monitoring (SVOC-SIM)

ASI Job #26-349	Pore V	Units: ng/L )	Pore Water (Units: ng/L )					
ASI ID#		2006	1300		,	2006	1301	
Laboratory ID #	0611051-01		0611051-02		0611051-03		0611051-04	
Sample ID #	C7-A	Q	· C-7A *	Q	C6-A	Q	C6-A *	Q
Naphthalene	22	ND	370	ND	11	ND	14	ND
2-Methylnaphthalene	22	ND	370	ND	11	ND.	14	ND
1-Methylnaphthalene	22	ND	370	ND	11	ND	14	ND
Biphenyl	22	ND	370	ND	11	ND	14	ND
2,6-Dimethylnaphthalene	22	ND	370	ND	11	ND	14	ND
Acenaphthylene	. 22	ND	370	ND	11	ND	14	ND
Acenaphthene	22	ND	370	ND	11	ND	14	ND
Fluorene	22	ND	370	ND	11	ND	14	ND
2,3,5-Trimethylnaphthalene	22	ND	370	ND	11	ND	14	ND
Phenanthrene	22	ND	370	ND	11	ND	14	ND
Anthracene	22	ND	370	ND	11	ND	14	ND
1-Methylphenanthrene	22	ND	370	ND	11	ND	14	ND
Fluoranthene	22	ND	370	ND	18		14	ND
Pyrene	22	ND	370	ND	11	ND	14	ND
Benz[a]anthracene	22	ND	370	ND	22		14	ND
Chrysene	22	ND	370	ND	. 28	T - 1	14	ND
Benzo[b]fluoranthene	22	ND	370	ND	16		14	ND
Benzo[k]fluoranthene	22	ND	370	ND	11	ND	14	ND
Benzo[e]pyrene	. 22	ND	370	ND	38	$\Gamma$	14	ND
Benzo[a]pyrene	22	ND	370	ND	23		14	ND
Perylene	22	ND	370	ND	11	ND	14	ND
Indeno[1,2,3-cd]pyrene	22	ND	370	ND	11		14	ND
Dibenz[a,h]anthracene	22	ND	370	ND	11	ND	14	ND
Benzo[g,h,i]perylene	22	ND	370	ND	19		. 14	ND

#### PCB/Aroclor Analysis of Pore Water

ASI Job #26-349	Pore Water (Units: ug/L )				Pore Water (Units: ug/L)				
ASI ID#	_	2006	1300	$\neg \uparrow$		2006	1301		
Laboratory ID #	0611051-01	T	0611051-02		0611051-03		0611051-04	T	
Sample ID#	C7-A	Q	C-7A *	Q	C6-A	Q	C6-A *	Q	
Aroclor 1016	0.044	ND	3.7	ND	0.022	ND	0.14	ND	
Aroclor 1221	0.044	ND	3.7	ND	0.022	ND	0.14	ND	
Aroclor 1232	0.044	ND	3.7	ND	0.022	ND	0.14	ND	
Aroclor 1242	0.044	ND	3.7	ND	0.022	ND	0.14	ND	
Aroclor 1248	0.044	ND	3.7	ND	. 0.022	ND	0.14	ND	
Aroclor 1254	0.044	ND	3.7	ND	0.022	ND	0.14	ND	
Aroclor 1260	0.044	ND	3:7	ND	0.022	ND	0.14	ND	
Aroclor 1262	0.044	ND	3.7	ND	0.022	ND	0.14	ND	
Aroclor 1268	0.650	T	3.7	ND	1.0		0.14	ND	
Total Arochlor(SUM)	1.002		33.3	ND	1.18		1.26	ND	

^{*} After manipulations

H

Table 17 continued

#### Total Metal Analysis of Pore Water

ASI Job #26-349	Pore Water (U	Pore Water (Units: ug/L) 20061300				
ASI ID#	20061300					
Laboratory ID #	0611051-01		0611051-03			
Sample ID #	C-7A	Q	C6-A	Q		
Aluminum	1,500		900			
Алтітопу	4.9		2.5	ND		
Arsenic	14		19			
Barium	54		43			
Beryllium	1.0	ND	1.0	ND		
Cadmium	1.0	ND	1.0	ND		
Calcium	370,000	370,000				
Chromium	3.2	3.2				
Cobalt	1.0	ND	1.0	ND		
Соррег	2.2		2.0	ND		
lron	11,000		19,000			
Lead	1.3		1.0	ND		
Magnesium	1,200,000		1,000,000	1		
Manganese	13000		9100			
Mercury	0.20	ND	0.20	ND		
Nickel	3.7		3.5			
Potassium	330,000		280,000	1.		
Selenium	0.56	ND	0.56	ND		
Silver	0.50	ND	0.50	ND		
Sodium	8,500,000		9,100,000	T		
Thallium	0.5	ND	0.50	ND		
Vanadium	20	ND	20	ND		
Zinc	20	ND	20	ND		

## Dissolved Metal Analysis of Pore Water

ASI Job #26-349	Pore Water (U ug/L)	Pore Water (Units: ug/L)				
ASI ID#	20061300		20061301			
Laboratory ID #	0611051-01	T	0611051-03			
		Q		Q		
Aluminum	. 250	ND	250	ND		
Antimony	2.8		2.5	ND		
Arsenic	4.1		4			
Barium	70		31	$\Gamma$		
Beryllium	1.0	ND	1	ND		
Cadmium	1.0	ND	1	ND		
Calcium	340,000		330,000			
Chromium	1.0	ND	]	ND		
Cobalt	1.0	ND	1	ND		
Copper	4.0		4.2			
lron	100	ND	100	ND		
Lead	1.0	ND	1 .	ND		
Magnesium	1,000,000		1,000,000			
Manganese	12,000		9,000			
Мегсигу	0.20	ND	0.2	ND		
Nickel	2.0	ND	2	ND		
Potassium	300,000		270,000			
Selenium	0.56	ND	0.56	ND		
Silver	0.50	ND	0.5	ND		
Sodium	8,300,000		8,200,000			
Thallium	0.50	ND	0.5	ND		
Vanadium	20	ND	20	ND		
Zinc	90		20	ND		

A

#### Table 17 continued

#### Inorganic Analysis of Pore Water

ASI Job #26-349		Pore Water 20061300				Pore Water				
ASI ID#						20061301				
Laboratory ID #	0611051-01		0611051-02		0611051-03		0611051-04	Γ		
Sample ID #	C7-A	Q	C7-A *	Q	C6-A	Q	C6-A *	Q		
Eh	51 (mV)		of White	4	49 (mV)		A STATE OF THE	<b>建</b>		
pН	7.5 (S.U.)			地	7.4 (S.U.)		<b>建筑</b> 在1988年	游漫		
Salinity	25 (%)			1	24 (%)			112%		
Sulfide	0.83 (mg/L)	ND	型的建筑	190	0.45 (mg/L)	ND	0.80 (mg/L)	ND		
Solids, total	12112112		28,200 (mg/L)		STATE AND A STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE	5.2	27,100 (mg/L)			

#### **TOC Analysis of Pore Water**

ASI Job #26-349	Pore W	(Units: mg/L)	Pore Water (Units: mg/L)					
ASI ID#	<u> </u>	61300	20061301					
Laboratory ID #	L0616131-01				L0616131-02		L0616131-03	
Sample ID #	C7-A	Q	C7-A *	Q	C6-A	Q	C6-A *	Q
Total Organic Carbon	14		PERMIT	35%	20		500	
Dissolved Organic Carbon	14			TELL	20		510	

ASI Job #26-349	Pore Water (Units: mg/L)								
ASI ID#	20061300								
Laboratory ID #	L0616202-01		1.0616202-02	L0616202-03					
Sample ID#	C7-A	Q	C6-A	C6-A *	Q				
Nitrogen, Ammonia	3.30		5.98	4.98					

^{*} After manipulations

H

# APPENDIX A

**Chains of Custody** 

· 4	<b>7</b> 7	
	Columbia	
	Analytical Services	τ.
	OUI VICES	

## CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

	SR#		
-			

An	Employee - Usstad Co.
	www.casiab.com

8540 Baycenter Rd. • Jacksonville, FL 32256 • (904) 739-2277 • 800-695-7222 x06 FAX (904) 739-2011

PAGE	1	OF	1	
, - AUL		_ 🔾		

CAS Contact		

www.casieb.com	<del></del>		P	1		17			A														
Project Name	YSICMINING LCP							. Al	IALYS	IS HE	QUEST	ED (li	clud	Meth	od Nu	mber	and Co	ontain	er Pre	servati	ve)		_
Project Manager	Email Address COV 11 1/5 C 4	] h = 11 40	عد إلى . _[.]	er 🐉	PRES	SERVA	TIVE.	1	•	j.													
Company/Address LNR EVILLIAND			· · · · · · · · · · · · · · · · · · ·	149. 1149.			7.	rs/	12/	7	7	1	-/		$\overline{}$	$\overline{}$		$\neg$	-/	7	/ P	reservative Ke . NONE . HCL	<i>_</i>
		·		12 134 175 175	BER OF CONTAINERS		/5			./	/		/			/					/ 2 3	NONE  HCL HNO3  H2604  N804	
		· 		,	S		/ <u>*</u>	(ند./ ا	′ /	/ /	/ /	′ /	' /	/ /	' /	/ /	/ /	/ /	/	/ /	6	. Zn. Acelale . MeOH . NaHSO4	
Phone 1954-927-1165	FAXU			, i.	IBER C				/.	` /:					./							. Other	-
Sampler's Signature	Sampler's Printed Name			- 14 i	Š	(%)	//	<u> </u>		_	<u>/: ::                                  </u>	<u> </u>	_	_	<u> </u>	_	_	_	_	/_^	RE TERNAT	MARKS/ E DESCRIPTION	<u>-</u>
CLIENT SAMPLE ID	LAB ID		TIME	MATRIX	1				-1							 				<u> </u>		· · · · · · · · · · · · · · · · · · ·	
06291-C-6A		10/18/01	( <b>,</b> -	30	111	1	2	<b>.</b>		} .	\	'		}	1	1	1	1	1	1		•	- 1
106291-C-7A		10/18/61	- 1	312		1	2												ľ				
06291-CR-CA		0 (14 Jel.		20	1	16.												1		1			
				77		<b>1</b>	7					-			-					1			
				Heran			IT.	इ-	.74	Ţ			<u> </u>				1	$\Box$	$I^-$	1			$\neg$
			7	Count	1.11/-	,)		Cu	1961	180 1	<u> </u>				<u> </u>							·····	
			·13		-	1		-	=			-								\ <del></del>			$\neg$
			ig.			1			-						T			<b>†</b>					
			/L	1111		J.		$\Box$		-	_					extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  extstyle  ext	1			†			
			150	17	-	Fig.				$\top$								1				<del></del>	
SPECIAL INSTRUCTIONS/COMMENTS			10 mm	1/3		4	π	URNAF	OUND	REQU	HEME	NTS	Τ	REP	ORT R	EQUIA	EMENT	rs	T	INV	OICE IN	FORMATION	
SPECIAL INSTRUCTIONS/COMMENTS  (1) For each of 3 se,  angle, products ->  Columbia Lines for	DIVIDAL TO DE CHA	المرازاة فإما ا	1 -7	100			ļ,	_ RVSI	1 (SUR	CHARGE	S APPLY	()	1-	_ I. Res	ulla Only								ļ
a why ben jests -	ישר לומיטילא א Mix לומיטילי	> 3 84 3/	(3)	Lift X	1 20	幣		STAP	IDARD				-		rylle + Q		181193 IS require	ed)	PC	1			-
			••					EBTED	FAX DA	TE			1				Calibrallo	•	GII	LTO.			
3 For each of 2 se	warrants to he en	value 100	Ju 71	اس کا	Chr	Th'	1.00						-	Sumn		(U BHU (	J07010110	""	-				
-> Combine the	2 5-a-1 continue	X 4 4 0	41	A.C. Metas		7	REQU	ESTED	REPOR	T DATE			-	IV. Da	ia Valide	ilon Rep	oort with	Rew Do	· L				
See OAPP - Canquista	TIE and Charan	ر میلیدی زیران چ	:: 1 '61'0' :: 1 '61'0'			一年 一日 一日 一日 日本日 日本日 日本日 日本日 日本日 日本日 日本日 日本	-						-	V. Spe	icalized	Forms /	Custom	Report	L				
SAMPLE RECEIPT: CONDITION/COO				TODY SEA	ALS: Y	/ N							1_	Eda	' <u> </u>	Yes		No					
RELINQUISHED BY RECEIVED BY RELINQUIS									RECI	EIVED E	i¥				RELING	OUISHE	O BY				RECE	IVED BY	
Signature Signature Signature						ji F	Signal	lure	-	_			Sign	slure					6)(8	nakire			
Printed Name Printed Name Printed Name					ii.	_1	emaN b					nh۹	ied Nam	•				Pri	nted Nam	,			
Flim Flim					4	Firm	<del></del>				Firm						Firm						
Date/Time Date/Time						7	Date	Time					Del	// lme					Da	emil/el	-		
the the thirty. Date of Oderstee William Lab Court Blob. Determed to Other							<del> </del>															SCOC-01/1	2/03-07

Distribution; White - Return to Originator; Yellow - Lab Copy; Pink - Retained by Cilent

ΔLPHA	СНА	IN OF CU	STOD	Y PAGE	·0	F	Dat	e Rec	c'd in	Lab:		-				AL	РНА	Job#:
	RAYNHAM,MA TEL: 508-822-9300	Project	Informatio	n			Re	port	Infor	matic	on - D	ata [	Deliver	able	5	Bil	lling I	nformation
	FAX: 508-822-3288	Project Na	ame: CV	<u> </u>	· · T	15-		FAX			□ EM				1	□ s	ame a	as Client info PO #:
lient Informatio	n	Project L	ocation: إل	oneywe	1) L.C	5		ADEX					liverabl Report l					
lient: AQ	in Survey	Project #	210-	349	<del></del>			e /Fec		11	eme	ILS/IN		iteria	5			·
ddress: L\V	9 PA Green	e Ru Project M	anager:	Jon.	Doi		Otali			grain								
Florina	ton N2 c	PPZZ ALPHA C	Quote #:				MA	MCP	PRE	SUMI	PTIVE	CEF	RTAINT	Ύ(	CTR	EAS	ONA	BLECONFIDENCEPROTOCOLS
hone:	908 758		round Time	9			۵,		□ No				nalytics					ī
ax:	708 7889	U _o 5 □ Standa	rd C	RUSH (onl)	confirmed if p	re-approved!)	<u> </u>	res	□ No		Are C	TRC	P (Reas	onabl	e Co	nfide	nce P	rotocols) Required?
These samples ha	O O O O O O O O O O O O O O O O O O O	zed by Alpha	e:		Time:			SIS	IJ/					/ /	/	/ /	/ /	SAMPLE HANDLING Filtration
Other Project Sp	pecific Requireme	nts/Comments/Det	ection Lim	its:			ANA	/ځ	(100 / Pro	7 C. /	//	//	/ /	//	//	/· /	/	Done  Not needed  Lab to do  Preservation  Lab to do  (Please specify below)
ALPHA Lab ID (Lab Use Only)	Sam	nple ID	Collect Date	tion Time	Sample Matrix	Sampler's Initials						//						Sample Specific Comments
	C-7A Se	2006 1295	113/6		Sed	·Ut	K.	Ý.	À,									2 Jars 4 1 ban
	•	PPSI JOOS THAM The	11/16/16		Sod.	Med	4	X	Х		-							PART I F LINES
																		)
		·			-													
												_		+-	_			
												_						
	<u> </u>					<del> -</del>								+-				<u> </u>
	<del></del>						-						_	+	-			
						-				— <del>-</del> -			+	+				
PLEASE ANSWER	QUESTIONS ABOVE		L		Conta	ainer Type												Please print clearly, legibly and
IS YOUR F	DPO IECT		· · · · · ·		Pre	eservative												completely. Samples can not be logged in and turnaround time clock
	or CT RCP?	1—————————————————————————————————————	ished By:		+	e/Time	-		Re	ceive	d By:			-	Date	/Time	<del>-</del>	will not start until any ambiguities are resolved. All samples submitted are
JRM NO: 01-01 (rev. 10-00		A. Warney	<u> </u>	57	11/4	2   \=								-				subject to Alpha's Payment Terms. See reverse side.

1

i

,

Δίρη _Α CHAIN C	F CU	STOD	Y PAG	·,0	F	Date	Rec'	d in L	.ab:					Ā	LPH	A Job#:
WESTBORO, MA RAYNHAM,MA TEL: 508-898-9220 TEL: 508-822-9300	Project	Informatio	n			Rep	ort Ir	nform	atio	n - Dat	a Deli	verat	oles	E	Billing	Information
TEL: 508-898-9220 TEL: 508-822-9300 FAX: 508-898-9193 FAX: 508-822-3288	Project N	ame: CD	R -	- T	IE	□ F				EMAI				0	Same	as Cllent info PO#:
Client Information	Project L	ocation:	Honer	veil -	LCP		DEx			Add'l						
Slient: ARMS SURVEY FIRE.	Project #		- 340						ľ	ment	s/Rep					
Address: 469 Pt. Bicere Rd	Project M	lanager.	JON -	₽o'i		State	/Fea	Progr	am	-		Crite	na ···			
Fleminton NIS 08822	ALPHA (					MAN	ICPP	RES	JMP	TIVE	ERTA	INTY	C	TREA	SON	ABLE CONFIDENCE PROTOCOLS
Phone: 508 7888700	Turn-A	round Tim	е			Y€	es C	□ No	A	re MC	P Anal	∕tical N	/lethc	ds Re	quired	?
Fax: 908 788 9165	— □ Standa	ed [	RUSH (on			□ Ye	es C	⊒ Ņo								Protocols) Required?
Email: Doi @ @@www.rvcy.co  These samples have been previously analyzed by Alp	ر Date Du	e: <u>}</u>		Time:	rg-approved()		[2]	<u></u>	P. S. P. S. P.	الع العالم				¥/	\ \frac{1}{2}	SAMPLE HANDLING Filtration
Other Project Specific Requirements/Con	nments/De	tection Lim	its:			Arod ANALYSIS	/	. 1		Z/ 0	Tolal Suren		10/10/10/10/10/10/10/10/10/10/10/10/10/1		104. S.Il Maria	Filtration Done Not needed Lab to do Preservation Lab to do (Please specify below)
ALPHA Lab ID Sample ID		Colle	ction Time	Sample Matrix	Sampler's Initials	$\backslash A$	/ /	/ [\$]	7 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			/ 4	7 J= /		17	Sample Specific Comments s
Clo-A Pore un	61301	1166	1	W	su	3	てメ	2	V	1 1		À	7	.2 \		
S O A (OIC WE)		Merce			3404	×	$\stackrel{\wedge}{+}$	$\Rightarrow$		X / /			<del>\</del>			
							<u> </u>	ase	17 10	6	+	2		1	<u> </u>	
원용 중요한 현실 - 12 - 12 - 12 - 12 - 12 - 12 - 12 - 1											-			Mar.	عادج تد	livas
								_			-					
									•							
C6-A Porcuator		11/3/6				Χŀ	_		_	_	-		_			Hold for Junipoi
																appronl
	_													_		
PLEASE ANSWER QUESTIONS ABOVE				Conta	ainer Type											Please print clearly, legibly and
IS YOUR PROJECT				Pro	eservative											completely. Samples can not be logged in and turnaround time clock
PAN MOD as OT DODO		ished By:	الاس ۵		e/Time			Rec	eived	Ву:				ate/Ti	me	will not start until any ambiguities are resolved. All samples submitted are
WITH MOR OF CITACLE	Homby	·	AJIB	1116	1 17ac	1					<u></u>					subject to Alpha's Payment Terms. See reverse side.
FORM NO: 01-01 (rev. 10-OCT-05)			•													

MIPHA	CHAI	N OF CU	STODY	.GEOF	— Dat	e Rec'd i	n Lab:				AL	РНА	Job #:	
WESTBORO, MA	RAYNHAM,MA	Project	Information		Re	port Info	rmatio	on - Dat	a Deliv	erables	Bi	llingl	Information	
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	Project Na	ame: CDR	-TIE		FAX		□ EMAI	-		o s	ame a	as Client info PO #:	
Client Information	on	Project L	ocation: Honcyu		<u> </u>	ADEx		□ Add'l						
Olient: Awa	Survey Irc.	Project #	· ·			ulatory F	1							
	Pt-Bretze Re	. Project M			State	e/Fed Pr	ogram ———			Criteria		<u> </u>		-
	mongton NJ		Quote #:		AM	MCPPR	SŲMI	PTIVEC	ERTAI	ITYC	TREAS	ANO	BLECONFIDENCEPROTOCOLS	
Phone: 908 7			round Time		·	Yes □ N	lo	Are MCI	P Analyti	cal Metho	ods Requ	uired?		
Fax: Qoy	1889165	□ Standa	rd D.RUSH.	only confirmed if pre-approved		res □ N	lo .	Are CT F	RCP (Re	asonable	Confide	nce P	rotocols) Required?	
These samples h	@ A GUALUVUY lave been previously analyz	Cひへ ed by Alpha	<b>9:</b> 9	Time:	0.25	ALL	hasth			Caffie Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried	after Con		SAMPLE HANDLING Filtration	T O T A L
Other Project S	pecific Requiremen	ts/Comments/Det	ection Limits:					ائتى ك	104. Suiffellist	7			Done Not needed Lab to do Preservation Lab to do	# B O T
ALPHA Lab ID (Lab Use Only)	Samp	ile ID	Collection Date Time	Sample Samp Matrix Initia	er's			;/	+ / 17 / 18 / 19 / 19 / 19 / 19 / 19 / 19 / 19				(Please specify below)  Sample Specific Comments	L E S
	C7-A T	2000 1300			XX X	文文	×	* 4	X1	(K)				
	1 - 10	THE WHEN W	(1)=1.4				<del></del>		1					$\dashv$
						PASO	1100	-						$\dashv$
	<u> </u>						+-+		++					-
							-							
			·							-				_
									1-1		<del></del>			_
							+			$\dashv$				-
						·	<u> </u>							$\dashv$
								-						_
	:   													
PLEASE ANSWE	RQUESTIONS ABOVE			Container Ty					<u> </u>				Please print clearly, legibly and	
IS YOUR	PROJECT I		<u>-</u>	Preservat		<u> </u>				_			completely. Samples can not be logged in and turnaround time cloc	
MA MCP	or CT RCP?	Relinqu	ished By: heyer As	Date/Time		F	Receive	ed By:			Date/Tim	θ	will not start until any ambiguities a resolved. All samples submitted a subject to Alpha's Payment Terms	re
ORM NO: 01-01 (rev. 10-0	OCT-05)	<del></del>			_			· · · · · · · · · · · · · · · · · · ·	·				See reverse side.	

.

1

:

## APPENDIX B

Manasquan Inlet Water Chemical Analysis and Receiving Forms

## **MAN1027.DAT**

	DateTime	Temp	SpCond	Salinity	DO Conc	рН
	M/D/Y	С	uS/cm	ppt	mg/L	
0	10/27/06 16:56:43	14.23	46006.0	29.85	8.51	7.85

P	age	of	
	_		

#### ASI, INC. SAMPLE RECEIVING FORM

CI	Client: Various Job#: Various											
Sh	ipped via: Q	elity Ca	riers		# of	Shipping Contai						
Ty	pe of Shipping C	container:	Custody Sea						ing Containers:			
5	tainless tani	ter	Present	Absen		Broken	Acceptab	nacceptable				
L	ASI#	Sample ID	Type of Container	Numbe Contai		Condition of Samples [†]	Temp °C	Ice +	Type of Sample*			
1.	20061279	Manageon H20	talter	1		A	17.2		W			
2.		·		<u> </u>								
3.												
4.		,										
5.												
NC	TES: (Discrepan	cies between S	Sample Label	and COC	Reco	ord)						
•					·							
		·										
Ор	ened/Received B	y:					Date	/ Time:				
1.	1M (2.	2					10/2	2/02 1	700			
2.	7											
3.	·											
4.												
5.		· · · · · · · · · · · · · · · · · · ·				•						
								<del></del>				

S= Soil
SD= Sediment
SL=Shidge
W= Water
E= Effluent

· •	
A= Acceptable	
U= Unusable or Conta	minated

I= Ice
B= Blue Ice
D= Dry Ice
N= None

## **MAN1116.DAT**

·	DateTime	Temp	SpCond	Salinity	DO Conc	рН
	M/D/Y	С	uS/cm	ppt	mg/L	
0	11/16/06 09:15:26	14.97	37390.0	23.74	7.45	7.77

Th		- c	
Page		nt.	
ı	,	VΙ	

ASI, INC.
SAMPLE RECEIVING FORM

	·	ΥΜΑΤΙ Ι		T A TT A	O LOVIM			
Client: V	larious			Job i	#: V<	איבין-		
	lity (ar			# of	Shipping Contai		1	
Type of Shipping C		Custody Sea						ing Containers:
Stainless tank	· er	Present	Absen		Broken	Acceptab	le 🗸 U	nacceptable
ASI#	Sample ID	Type of Container	Numbe Contai		Condition of Samples †	Temp °C	Ice +	Type of Sample*
1. 20061365	H20	tenter	1		A	14.5		W
2.								
3.								
4.								
5.								
NOTES: (Discrepan	cies between	Sample Label	and COC	Reco	ord)			
								•
						<del></del>		
Opened/Received B	y:	····				Date	Time:	
1. / III	Cham					0	915 11	16/06
2.							•	
3.	<u> </u>							
4.								
5.								

S= Soil SD= Sediment SL= Sludge W= Water

E= Effluent

A= Acceptable U= Unusable or Contaminated I= Ice
B= Blue Ice
D= Dry Ice
N= None

QUALITY CARRIERS, INC. 380	2 CORPOREX P	ARK DRIVE, SUITE	200 TAM	IPA, FL 33619	) s	CAC-QLYC		
DRIVER 1: Jone De Ale	L.	DRIVER NO.: 77)	137	ORDER NUMBER				
DRIVER 2:	: , , , , , , , , , , , , , , , , , , ,	DRIVER NO.: ~ 777		772	335	187		
DRIVER 3:		DRIVER NO.:		0 0 0	0 0 0	0 0 0		
TRAILER/CHASSIS NUMBER: 73/8	CONTAINER	NUMBER:			1 1 (			
SHIPPER NAME/CITY/STATE:	<del></del>	TRACTOR N	JMBER	2 2 <b>2</b> 3 3 3				
ATLANTIC O		LOAD 2/4	26/	<b>4 4 4</b>	4 4			
MANGSQUAN		UNLOAD 199	<u> (66/</u>	5 5 5	5 5 5			
CONSIGNEE NAME/CITY/STATE:	NOY	LINEHAUL A		6 6 6 2 7 7	6 6 6			
AGUA SULVE 479 Km T BREE	· X	RELAY 1		8 8 8	8 8 8			
479 Keer Skee	ded of	RELAY 2		9 9 9	9 9 9	9 9		
<u> </u>	Company of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the contro	RELAY 3		in contract so	ist Netherland			
C H/M COMMODITY AND HAZARDOUS MA (MUST AGREE WITH DESCRIPTION		QUANTITY	TARE	GROSS	NET	TEMP		
SEALWATER	· · · · · · · · · · · · · · · · · · ·	5 LULANS			<u> </u>	<del> </del>		
.			<u>.</u>	<u> </u>				
	17 / (2/5/ 6/2		V 0111	7011 5755				
		R OTHER EMERGENC GENCY RESPONSE H				·. <del></del>		
COMPLETE AS REQUIRED; INTRANSIT HEAT	TRAILER STEAMING	TRAILER CLEANI	_	DEAD HEAD MIL		· ·		
CANCELLED SHIPMENT U	REJECTED SHIPMENT  UNLOADING IN	RECONSIGNED SHIPM  ORMATION (MILITARY TIME):	ENI O	5 93 % T 44 6	LL OF LADING NU	MBER		
APPOINTMENT: DT 1/1/- TIME 1300	APPOINTMENT: DT_	11/4/2_TIME	_   }	HACKS	272	47		
ARRIVAL TIME: DTTIME	ARRIVAL TIME: DT	///% TIME / 12	<u> </u>			est in the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the secon		
START TIME: DT /// TIME /3/00	START TIME: DT	TIME CONTRACTOR						
FINISH TIME: DT TIME 134	FINISH TIME: DT DEPART TIME: DT	TIME / A		HAVE CHECK FOR THIS SHI				
LATE PICKUP REASON:	LATE DELIVERY REASON	l: /		THAT THE	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s			
SHIPPER O DISPATCH O EQUIPMENT O DRIVER O WEATHER/ROAD CONDITIONS O		R/ROAD CONDITIONS O		HIPMENT AN				
PUMP © COMPRESSOR O BLOWER O		ESSOR (2) BLOWER  SPOTTED TRL	$\stackrel{\circ}{\circ}$	BEEN MADE	E TO THE P AGE FACILI			
RAIL TRANSFER O SCALE \$ US O CAN O	1 _	SCALE \$ US O CA	-1111	NSIGNEE'S SIGNATUR				
HOSE 2" FT 3" FT 4" FT	HOSE 2"FT	FT 4"	FT X	1. 1/10	<u></u>	· .·		
REASON FOR LOADING DELAY:	REASON FOR UNLOADIN	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		CONSIGNEE YO FOR UNLOAD	and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s			
	J. J. Salar	alle from his	<u>                                     </u>	ASSIGNED T	O YOU BY S			
+ Just	I made		-	GOOD ORDE				
. 14		;	<u> </u>	FROM THE TE				
4 / / /			<u> </u>	PRODUCT IS	VISABLE ON TRAI	LER WALLS		
t A				OTRAILER		IN REMAIN IN THE		
SHIPPER'S SIGNATURE:	CONSIGNEE'S SIGN	IATURE:		APPROX	GAL REMA			
X	x - A-	<u>.</u>		O RETAIN	P			

acknowledge that the current rate for the specific load referenced in this delivery receipt may be higher or lower than the compensation percentage indicated in my contractor agreement. I have been advised of and understand the rate for this specific movement and indicate my acceptance by my initials below. Further, I understand that this document becomes an addendum to my independent contractor agreement.

B-3

Pennsylvania Location: 1605 Benjamin Franklin Highway Douglassville, PA 19518 Phone: (610) 327-8196 Fax: (610) 327-6864

> NJ DEP Cert #PA925 NY LAB ID NO.: 11828 PA DEP Cert #06-409

LABORATORIES Professional testing for the critical decision

- CERTIFICATE OF ANALYSIS -

New Jersey Location: 261 U.S. Hwy. 130 Bordentown, NJ 08505 Phone: (609) 298-5255 Fax: (609) 298-4225

NJ DEP Cert #03018 ·

LAB #: 47212-1

Client: Aqua Survey, Inc.

469 Point Breeze Road Flemington, NJ 08822

Attn: Bob Fristrom

Project: Manasquan Water

Sample Type: Surface Water

Sample ID: Manasquan Inlet Sea Water

Collected By: Client

Collected: 12/22/05 9:15

Source:

Print Date: April 12, 2006

Received: 12/22/2005	_		F	Report Date:	February 15		(Rev 0)
Abstract Test	Result Qis	Units	LOQ	LOD	Method	Init Ar	ialysis Date
Mercury 245.1-aq		•				•	
Mercury	see attached	ng/L	0.1000	0.200000	245.1	Env Labs-D	12/15/05 12:51
Metals WW-aq					•		
Cadmium	< 0.020	ug/L	0.020	4.00000	200.8	KJP-DV	1/4/06 11:16
Chromium	0.400	ug/L	0.020	7.00000	200.8	KJP-DV	1/4/06 11:16
Copper	0.160	ug/L	0.020	3.00000	200.8	KJP-DV	1/4/06 11:16
Lead	< 0.020	ug/L	0.020	4.00000	200.8	KJP-DV	1/4/06 11:16
Nickel	0.440	ug/L	0.020	5.00000	200.8	KJP-DV	1/4/06 11:16
Silver	< 0.020	ug/L	0.020	39.0000	200.8	KJP-DV	1/4/06 11:16
Zinc	1.480	υg/L	0.020	6.00000	200.8	KJP-DV	1/4/05 11:15
Pest-608-aq		•					·
4,4-DDD	< 0.0016	ug/L	0.0016	0.0016	608	JLO-DV	1/6/06 18:47
4,4-DDE `	< 0.0016	ug/L	0.0016	0.0016	608	JLO-DV	1/6/06 18:47
4,4-DDT	< 0.0016	ug/L	0.0016	0.0016	608	JLO-DV	1/6/06 18:47
а-ВНС	< 0.0008	ug/L	0.0008	0.0008	608	JLO-DV	1/6/06 18:47
a-Chlordane	< 0.0008	ug/L	0.0008	0.0008	608	JLO-ĐV	1/6/06 18:47
Aldrin	< 0.0008	ug/L	0.0008	0.0008	· 608	JLO-DV	1/6/06 18:47
b-BHC	< 0.0016	ug/L	0.0016	0.0016	608	JLO-DV	1/6/06 18:47
d-BHC	< 0.0016	ug/L	0.0016	0.0016	608	JLO-DV	1/6/06 18:47
Dieldrin	< 0.0008	ug/L	0.0008	0.0008	608	JLO-DV	1/6/06 18:47
Endosulfan I	< 0.0008	ug/L	0.0008	0.0008	608	JLO-DV	1/6/06 18:47
Endosulfan II	< 0.0016	ug/L	0.0016	0.0016	608	JLO-DV	1/6/06 18:47
Endosulfan sulfate	< 0.0016	ug/L	0.0016	0.0016	608	JLO-DV	1/6/06 18:47
Endrin	< 0.0016	ug/L	0.0016	0.0016	608	JLO-DV	1/6/06 18:47
Endrin aldehyde	< 0.0016	ug/L	0.0016	0.0016	608	JFÓ-DA	1/6/06 18:47
Endrin ketone	< 0.0016	ug/L	0.0016	0.0016	608	JLO-DV	1/6/06 18:47
g-BHC (Lindane)	< 0.0008	ug/L	0.0008	0.0008	608	JLO-DV	1/6/06 18:47
g-Chlordane	< 0.0008	ug/L	0.0008	0.0008	608	JLO-DV	1/6/06 18:47
Heptachlor	< 0.0008	ug/L	0.0008	0.0008	608	JLO-DV	1/6/06 18:47
Heptachlor epoxide	< 0.0008	ug/L	0.0008	8000.0	608	JLO-DV	1/6/06 18:47

Pennsylvania Location: 1605 Benjamin Franklin Highway Douglassville, PA 19518 Phone: (610) 327-8196 Fax: (610) 327-6864

> NJ DEP Cert #PA925 NY LAB ID NO.: 11828 PA DEP Cert #06-409

Blue Marsh

LABORATORIES . IN .

Professional testing for the critical decision

- CERTIFICATE OF ANALYSIS -

New Jersey Location: 261 U.S. Hwy. 130 Bordentown, NJ 08505 Phone: (609) 298-5255 Fax: (609) 298-4225

NJ DEP Cert #03018

LAB #: 47212-1

Client: Aqua Survey, Inc.

469 Point Breeze Road Flemington, NJ 08822

Attn: Bob Fristrom

Project: Manasquan Water

Received: 12/22/2005

Sample Type: Surface Water

Sample ID: Manasquan Inlet Sea Water

Collected By: Client

Collected: 12/22/05 9:15

Source:

Print Date: April 12, 2006

Report Date: February 15, 2006

(Rev 0)

Abstract Test Result Qls Units LOQ LOD Method Init Analysis Date

trans-Nanochlor

trans-Nanochlor

< 0.0016

ug/L

0.0016 0.0016

608

JLO-DV

1/6/06 18:47

Reviewed and Approved by;

Debbie Wanner Laboratory Manager

2/13/2006

< - indicates the result was non-detect or a result below the laboratories reporting detection limit

E - indicates an estimated value outside of the calibration range of the analysis

J - indicates that the analyte was detected, but below the limit of quantitation

B - indicates that the analyte was found in the method blank at a concentration equal to or greater than the reporting limit

T - indicates that the sample was analyzed out of hold

I - indicates that there was matrix interference and matrix spike and/or matrix spike duplicate failed acceptance criteria

Q - indicates that the sample was analyzed without all quality control being in compliance

H - exceeds applicable regulatory limit

5 - indicates surrogate recovery outside method acceptance criteria

DV - in the 'Init' column indicates that the sample was analyzed at our Douglassville, PA facility

BT - in the 'Init' column indicates that the sample was analyzed at our Bordentown, NJ facility

SB - in the 'Init' column Indicates that the sample was analyzed at a sub-contracted laboratory

Results reported with the units "ug/kg" and "mg/kg" are calculated on a dry weight basis

LOD is the "Level of Detection", also known as the MDL LOQ is the "Level of Quantitation", also known as the PQL

Method Blank ID

manus quan Intel Z

Pace Analytical Services, Inc. 1700 Elm Street - Suite 200 Minneapolis, MN 55414

> Tet 612-607-1700 Fax: 612- 607-6444

#### Method 1668A Polychlorobiphenyl Sample Analysis Results

Client - Blue Marsh Laboratories, Inc.

Page 1 of 7

Client's Sample ID 2610-01 106567001 Lab Sample ID Filename CVS Injected By 977 mL **Total Amount Extracted** % Moisture NA NA Dry Weight Extracted ICAL Date CCal Filename(s)

M50207B_6 02/07/2005 M50207B_1

Matrix Water Dilution NA Collected 01/11/2005 Received 01/21/2005 Extracted 01/30/2005 Analyzed 02/07/2005 22:43

PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Internal Standards			·			
13C-2-MoCB	1			2.0	ND	
13C-4-MoCB	3	<del></del>	_	2.0	ND	_
13C-2,2'-DiCB	4			2.0	· ND	
13C-4,4'-DiCB	15		_	2.0	ND	
13C-2,2',6-TrCB	19			2.0	ND	
13C-3,4,4'-TrCB	37		-	. 2.0	ND	
13C-2,2',6,6'-TeCB	54	_	_	2.0	ND	
13C-3,4,4',5-TeCB	81	33.261	0.74	2.0	0.102	5 P
13C-3,3',4,4'-TeCB	77	33.907	0.81	2.0	0.153	8 P
13C-2,2',4,6,6'-PeCB	104	24.302	1.69	2.0	0.0221	. 1 P
13C-2,3,3',4,4'-PeCB	105	37.655	1.53	2.0	0.123	- 6 P
13C-2,3,4,4',5-PeCB	114	36.951	1.50	2.0	0.121	6 P
13C-2,3',4,4',5-PeCB	118	36.402	1.61	2.0	0.124	1 P 6 P 6 P 6 IP
13C-2,3',4,4',5'-PeCB	123	36.058	1.29	2.0	0.112	6 IP
13C-3,3',4,4',5-PeCB	126	40. <del>9</del> 51	1.56	2.0	0.144	PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP
13C-2,2',4,4',6,6'-HxCB	155	30.745	1.15	2.0	0.0917	5 P
13C-HxCB (156/157)	156/157	44.119	1.28	4.0	0.301	8 P
13C-2,3',4,4',5,5'-HxCB	167	42.912	1.22	2.0	0.150	7 P
13C-3,3',4,4',5, <b>5'-</b> HxCB	169	47.519	1.43	2.0	0.143	7 P
13C-2,2',3,4',5,6,6'-HpCB	188	36.934	1.03	2.0	0.128	6 P
13C-2,3,3',4,4',5,5'-HpCB	189	50.140	1.00	2.0	0.220	11 P
13C-2,2',3,3',5,5',6,6'-OcCB 13C-2,3,3',4,4',5,5',6-OcCB	202	42.623	0.87	2.0	0.216	11 P B P
13C-2,3,3',4,4',5,5',6-OcCB	205	52.808	0.85	2.0	D.159	8 P 9 P 9 P
13C-2,2',3,3',4,4',5,5',6-NoCB	206	54.607	0.80	2.0	0.186	9 P
13C-2,2,3,3',4,5,5',6,6'-NoCB	208	49.606	0.71	2.0	0.190	9 P
13C-DeCB	209	56.248	0.74	2.0	0.220	11 P
Cleanup Standards						
13C-2,4,4'-TrCB	28	21.055	0.90	2.0	0.150	9 8
13C-2,3,3',5,5'-PeCB	111	33.958	1.58	2,0	. 1.68	84
13C-2,2',3,3',5,5',6-HpCB	178	40.195	1.09	2.0	1.84	92
Recovery Standards				_		
13C-2,5-DiCB	9	12.281	1.48	2.0	NA	NA
13C-2,2',5,5'-TeCB	52	23.248	0.80	2.0	NA	NA
13C-2,2',4,5,5'-PeCB	101	31.000	1.59	2.0	ŊA	NA
13C-2,2',3,4,4',5'-HxCB	138	39.715	1.25	2.0	NA	NA -
13C-2,2',3,3',4,4',5,5'-OcCB	194	52.314	0.90	2.0	NA	NA

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

P = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

• = See Discussion

1 = Outside QC Limits

RT = Retention Time

I = Interference

ng's = Nanograms

Report No....106567

#### REPORT OF LABORATORY ANALYSIS

Pace Analytical Services, Inc. 1700 Elm Street - Suite 200 Minneapolis, MN 55414

> Tel: 612-507-1700 Fax: 612- 607-5444

#### Method 1668A Polychlorobiphenyl Sample Analysis Results

Page 2 of 7

Client Sample ID Lab Sample ID Filename 2610-01 106567001 M50207B_6

riidianic	A stations	RT	Ratio	Concentration ng/L	EMPC ng/L	EML ng/L
IUPAC	Co-elutions		178610			
1				ND	-	0.512
;	•	· <del></del>	-	ND		0.512
2 3 4				ND ·	<del></del>	0.512
3				ND	<del></del> ·	0.512
			_	ND		0.512
5				ND		0.512
5 6 7				ND	_	0.512
/	•			ND		0.512
, 8 9				ND		0.512
9	•	_		ND		0.512
10			_	ND		0.614
11			_	ND		0.512
12	12/13		_	ND		0.512
13	12/13		· —	. ND	<b></b>	0.512
14			Ξ	ND		0.512
15			_	ND	_	0.512
16	•	<del></del>		ND .		0.512
17			_	ND	_	0.512
18	18/30			ND	<b>—</b>	0.512
19	10,00			ND	<u></u>	0.512
20	20/28			· ND		0.614
20	20/20	·	_	ND	_	0.512
21	21/33	· <u> </u>	·	ND		0.512
22	• •	· ·		ND .		0.512
23		-		ND		0.512
24 25 26	·	. <del>-</del>	· —	ND	•	0.512
25			_	, ND	_	0.512
26	26/29			ND		0.512
27	•			ND		0.512
28	20/28		_	ND		0.614
29	26/29	. —		ND		0.512
รถ	18/30		_	ND	· <del></del>	0.512
30 31	15.55	-		ND	_	0.512
33				ND	. <del></del> ·	0.512
32	21/33			ND	-	0.512
33	21/33	<del></del> .		ND	_	0.512
32 33 34 35 36 37 38		<del></del>		ND		0.512
35	•	· <del></del>	_	. ND		0.512
35				ND		0.512
37		•	_	. ND	<del></del> .	0.512
38		<del>-</del>				0.512
39		خبيت .	_	ND		0.512 0.512
40	40/41/71			ND		0.512
41	40/41/71	<del></del>		ND		0.512
42				ND	_	0.512

Conc = Concentration

EMIL =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

P = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
= See Discussion
I = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Report No.....106567

### REPORT OF LABORATORY ANALYSIS



Pace Analytical Services, Inc. 1700 Elm Street - Suite 200 Minneapolls, MN 55414

> Tet 612-507-1700 Fax 612-607-6444

#### Method 1668A Polychlorobiphenyl Sample Analysis Results

Page 3 of 7

Client Sample ID Lab Sample ID Filename 2610-01 106567001 M50207B_6

	•			Concentration	EMPC	EML	
IUPAC	Co-elutions	RT	Ratio	ng/L	ng/L	ng/L	
 -43				ND		0:512	
44	44/47/65			ND		0.614	
45	45/51			ND	_	0.512	
46		·		ND		0.512	
47	44/47/65			ND	~~	0.614	
48	1 1/1/100			ND	-	0.512	
49	49/69			ND ·		0.512	
50	50/53	•~		ND	_	0.512	
50 51	45/51			ND	_	0.512	
52				ND	_	0.512	
53	50/53	_		ND		0.512	
54		<del></del>	_	ND	_	0.512	
55				ND		0.512	
56				ND		0.512	
55 56 57 58 59		_	_	ND		0.512	
58		***	_	ND	_	0.512	
59	59/62/75			ND		. 0.512	
60			_	ND	_	0.512	
61	61/70/74/76			ND.	_	0.512	
62	59/62/75	_		ND	-	0.512	
63	00.0010			ND	<del></del>	0.512	
64				ND		0.512	
65	44/47/65	_		ND		0.614	
66	***************************************	·		ND		0.512	
66 67				ND	<del></del>	0.512	
68				ND		0.512	
68 69	49/69	· ·	_	ND		0.512	
70	61/70/74/78			ИD		0.512	
71	40/41/71	_		ND		0.512	
72				· ND		0.512	
73			<b>→</b>	ИD	***	0.512	
74	61/70/74/76	_		ND		0.512 0.512	
75	59/62/75	<u> </u>		ND	,	0.512	•
76	61/70/74/76	_	<del></del> .	ND		0.512	
77	* *			ND	-	0.512	
78		•		ND		0.512	
79				ND		0.512 0.512	
80		_	-	ND		0.512	
81		_	_	ND		0.512	
82		· <del></del>		ND		0.512	
83				ND	-	0.512	
84		_	_	ND		0.512	_

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

P = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

*= See Discussion

! = Outside QC Limits

RT = Retention Time

I = Interference

ng's = Nanograms

Report No.....106567

#### REPORT OF LABORATORY ANALYSIS



Pace Analytical Services, Inc. 1700 Elm Street - Suite 200 Minneapolis, MN 55414

> Tel: 612-607-1700 Fax: 612- 607-6444

#### Method 1668A Polychlorobiphenyl Sample Analysis Results

Page 4 of 7

Client Sample ID Lab Sample ID Filename 2610-01 106567001 M50207B 6

IUPAC	Co-elutions	RT	Ratio	Concentration ng/L	EMPC ng/L	EML ng/L
85	85/116/117			ND		0.614
36	86/87/97/108/119/125			ND		1.02
87	86/87/97/108/119/125			ND	~	1.02
88	88/91		_	ND		0.512
89				ND		0.512
9D	90/101/113	31.034	1.05	0.512 1	-	0.512
91	88/91			ND		0.512
92				ND.		0.512
93	93/98/100/102	***		ND		D.768
94	Q0,00 (00,100			ND	·	0.512
95				ND		0.512
96			_	ND		0.512
97	86/87/97/108/119/125			ND		1.02
98	93/98/100/102	·		ND		0.768
99	00/04 (00)	· —		ND		0.512
100	93/98/100/102		_	ND		0.768
101	90/101/113	31.034	1.05	(0.512)		0.512
102	93/98/100/102	~		ND		0.768
103	93/30/100/102			ND		0.512
104	•			ND		0.512
105				ND		0.512
106		-		ND		0.512
107	107/124	,		ND		0.512
108	86/87/97/108/119/125			ND		1.02
109	80/01/9771087119/128			ND	_	0.512
110	110/115	_	_	ND		0.512
111	110/113			ND		0.512
112				ND		0.512
113	90/101/113	31.034	1.05	(0.512) 1		0.512
114	90/101/13	31.034		(0.512) I		0.512
	1107115	<del></del>		ND		0.512
116	- 85/116/117			ND .		0.614
117	85/116/117	_	_	ND		0.614
118	93/1/0/1/1/			ND		0.512
119	86/87 <b>/</b> 97/108/119/125			ND		1.02
120	60/6/19// (00/119/129 )		_	ND		0.512
121				ND ND	_	0.512
122				DND	_	0.512 0.512
123	•			ND		0.512 0.512
123	407/424			ND DN	<del>_</del>	0.512 0.512
124	107/124	_		ND UND		1.02
125	86/87/97/108/119/125		_		_	
126				ND		0.512

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

P = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

*≈ See Discussion

! = Outside QC Limits

RT = Retention Time I = Interference

ng's = Nanograms

Report No....106567

#### REPORT OF LABORATORY ANALYSIS



Pace Analytical Services, Inc. 1700 Elm Street - Suite 200 Minneapolis, MN 55414

> Tel: 612-607-1700 Fax: 612-607-6444

#### Method 1668A Polychlorobiphenyl Sample Analysis Results

Page 5 of 7

Client Sample ID Lab Sample ID Filename 2610-01 106567001 M50207B_6

1 1101101111	•					
IUPAC	Co-elutions	RT	Ratio	Concentration ng/L	EMPC ng/L	EML ng/L
127				ND		0.512
128	128/166			· ND		1.02
129	129/138/163	· <u></u> ·	· <del></del>	ND		0.512
130	123 100 102			ND		0.512
131	•			ND		0.512
132	•	· —	· —	ND		0.512
133				ND		0.512
134	134/143	<del></del>	_	ND		0.512
135	135/151			ND	_	0.522
136	134 101	_	_	ND		0.512
137		_		ND		0.512
138	129/138/163			ND	_	0.512
139	139/140	· _		ND		0.512
140	139/140		_	ND		0.512
141	15511-0			. ND		0.512
142		',,,,,,		ND	·	0.512
143	134/143		_	ND	_	0.512
143	134/143			ND		0.512
144	•	<del>-</del>		ND		0.512
145		_		ND	_	0.512
146	1.47/4.40	<del>-</del> .	_	ND .		0.512
147 148	147/149	, . <del></del>		ND		0.512
149	4.47/4.40	<del>-</del>	_	ND		0.512
150	147/149			ND		0.512
150	425454	<del>-</del>		DN DN		0.522
151	135/151		_	ND		0.512
152	453400				_	0.512
153	153/168			ND ND	_	0.614 0.512
154	•	<del></del> .				9.512
155	4884831	_	_	ND		0.512
156	156/157		_	ND	-	0.512
157	156/157			ND		0.512
158				ND	-	0.512 0.512
159		. <del>-</del>	-	ND		U.512
160				ND		0.512
161		. —	_	ND	_	0.512
152	40044004400			ND	_	0.512
163	129/138/163	· <del></del>		ND		0.512
164		<del></del>	_	ND	_	0.512
165			<del></del>	ND		0.512
166	128/166		_	ND		1.02
167				ND		0.512
168	153/168		_	ND	_	0.614

Conc = Concentration

EML =Mathod Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

P = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

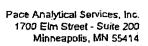
ND = Not Detected

NA = Not Applicable

NC = Not Calculated

"= See Discussion

I = Outside QC Limits


RT = Retention Time

1 = Interference

ng's = Nanograms

Report No....106567

#### REPORT OF LABORATORY ANALYSIS



Tel: 612-607-1700 Fax: 612-607-6444

# Pace Analytical™

## Method 1668A Polychlorobiphenyl Sample Analysis Results

Page 6 of 7

Client Sample ID Lab Sample ID Filename 2610-01 106567001 M50207B 6

IUPAC	Co-elutions	Co-elutions RT Ratio ng/L		Concentration ng/L	EMPC ng/L	EML ng/L
169		_		ND		0.512
170	•	~~		ND		0.512
171	171/173		• •••	ND	<del></del>	0.512
172		***		ИD		0.512
173	171/173			ND		0.512
174				ND		0.512
175	4			ΝĎ		0.512
176				ND		0.512
177		·		ND	· <del></del>	0.512
178				ND		0.512
179				ND		0,512
179 180	180/193			ND		0.512
181		*** '		ND		0.512
182		•		ND		0.512
183	183/185			ND		0.512
184				ND		0.512
185	183/185		·	ND	_	0.512
186				ND		0.512
187	•			ND		0.512
188		~~		ND		0.512
189				ND		0.512
190				ND		0.512
191				ND		0.512
191 192		<del></del> ·	_ `	ND		0.512
193	180/193			ND		0.512
194			_	ND		0.512
195				ND		0.512
196				ND		0.717
197	197/200			ND		2,56
198	198/199			ND		0.512
199	198/199			ND	. —	0.512 0.512
200	197/200		_	ND		2.56
201				ND		0.512
202				ND		0.512
203		·		ND		0.512
204				ND	_	0.512
205	•		_	ND		0.512
206				ND	***	0.512
207				ND		0.512
208	-			ND		0.512
209				ND		0.512

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

P = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

"= See Discussion

! = Outside QC Limits

RT = Retention Time

i = Interference

ng's ≃ Nanograms

Report No.....106567

#### REPORT OF LABORATORY ANALYSIS



Pace Analytical Services, Inc. 1700 Elm Street - Suite 200 Minneapolis, MN 55414

> Tel: 612-607-1700 Fax: 612- 607-6444

#### Method 1668A Polychlorobiphenyl Sample Analysis Results

Page 7 of 7

Client Sample ID Lab Sample ID Filename 2610-01 106567001 M50207B_6

Total Monochloro Biphenyls ND Total Dichloro Biphenyls ND Total Trichloro Biphenyls ND Total Tetrachloro Biphenyls ND Total Pentachloro Biphenyls 0.512 Total Hexachloro Biphenyls ND	
Total Trichloro Biphenyls ND  Total Tetrachloro Biphenyls ND  Total Pentachloro Biphenyls 0.512	
Total Tetrachloro Biphenyls ND  Total Pentachloro Biphenyls 0.512	
Total Pentachloro Biphenyls 0.512	
Total Hexachloro Biphenyls ND	
Total Heptachloro Biphenyls ND	•
Total Octachloro Biphenyls ND	
Total Nonachloro Biphenyls ND	
Decachloro Biphenyls ND	
Total PCBs 0.512	

ND = Not Detected

Report No....106567

#### REPORT OF LABORATORY ANALYSIS



L. plumulosus Acute Raw Data Sheets

26-349 CDR 10 Day L. plumulosus- STATIC

<b>.</b>	Chamber	Sample	Code
	6	Control	1.1
_	2		1.2
	9		1.3
	8		1.4
	5		1.5
_	13	6A	2.1
1	14		2.2
	7		2.3
ır	11		2.4
F	4		2.5
	3	7A	3.1
	1		3.2
ø	10		3.3
L	12		3.4
	15		3.5
	<del></del>		

* Reburia

Test: AA-Acute Amphipod

Species: LP-Leptocheirus plumulosus

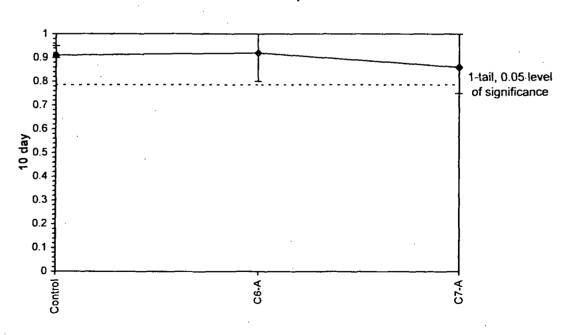
Sample ID: sediment

Protocol: EPAM 01 EPA Manne

Sample Type: SED sediment

Start	Date:	11/3/2	2006 End	d Date: 11	/13/2006		Lab ID: ASI-Aqua Survey Inc.				
Pos	D	Rep	Group	Start	24 hrs	48 hrs	72 hrs	96 hrs	10 days	Notes	
	1	1	Control	20					18		
	2	2	Control	20					18		
	3	3	Control	20					18		
	4	4	Control	. 20					19		
	5_	5	Control	20					18		
	6	<u>, 1</u> .	C6-A	20					20		
	7	2	C6-A	20					16		
	8	3	C6-A	20					19		
	9	4	C6-A	20					20		
	10	5	C6-A	20					17		
	11	1	C7-A	20					15		
	12	2	C7-A	20					16		
	13	3	C7-A	20					20		
	14	4	C7-A	20					17		
	15	5	_C7-A	20					18		

Comments:


* Reburial *

					Acute Amphi	ipod-10 dáy	
Start Date:	11/3/2006		Test ID:	26-349		Sample ID:	sediment
End Date:	11/13/2006		Lab ID:	ASI-Aqua	Survey Inc.	Sample Type:	SED sediment
Sample Date:			Protocol:	EPAM 01	EPA Marine	Test Species:	LP-Leptocheirus plumulosus
Comments:						·	
Conc-%	1	2	3	4	5		
Control	0.9000	0.9000	0.9000	0.9500	0.9000		
C6-A	1.0000	0.8000	0.9500	1.0000	0.8500		
C7-A	0.7500	0.8000	1.0000	0.8500	0.9000		

		· _	Tr	ansform:	Arcsin So	uare Roo	t		1-Tailed		
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	
Control	0.9100	1.0000	1.2683	1.2490	1.3453	3.393	5				
C6-A	0.9200	1.0110	1.3086	1.1071	1.4588	12.404	5	-0.477	2.110	0.1785	
C7-A	0.8600	0.9451	1.2070	1.0472	1.4588	13.217	5	0.724	2.110	0.1785 ⁻	

Auxiliary Tests	Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates normal distribution (p > 0.01)	0.96707		0.835		0.32498	-0.1168
Bartlett's Test indicates equal variances (p = 0.06)	5.49747		9.21034			
Hypothesis Test (1-tail, 0.05)	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test indicates no significant differences	0.12528	0.13748	0.01308	0.01788	0.50162	2, 12
Treatments vs Control						

#### Dose-Response Plot



#### Aqua Survey, Inc. Solid Phase Readings

Job #:26-349Test Start Date:11/3/06Parameter:Live Count/ ObservationsClient:CDRSTATICOrganism:L. plumulosus

	Key	:	Γ	)= Dead	i		S= 5	Surface	/Swimn	ning	N= No	thing Unusual Reburd	
Day ⇒ Chamber ↓	0	1	2	3	4	5	6	7	8	9	Day 10 Final Count	Day 11 Final Count	Day 12 Final Count
1	Nao	N	N	N	N	N	N	N	N	N	16	14	NJA
2	N 30	N	N	N	N	N	N	N	N.	N	18	18	
3	N 20	N	N	N	N	N	N.	N	$\mathcal{N}_{i}$	1	16	15	
4	Nao	N	N	N	N	N	N	N	N	M_	17	17	
5	Nao	N	N	N	N	N	N	N	N	N	18	18	
. 6	N 20	N	N	N	N	N	N	N	N	$\mathcal{N}$	18	18	
7	N 20	N	N	N	N	N	N	N	N	W,	19	19	
. 8	N 20	N	N	N	N	N	N	N	N	N	19	19	
9	1/20	N	N	N		N	N	N	N	M	18	18	
10	100	N	N	N	N	N	N	<i>V</i> ₁	N,	N	20	20	
11	N 20	N-	N	N	N	N	N	N	N	N.	20	20	
12	N 20	N	N	N	N	N	N	N	$\mathbb{N}$	N	/8	17	
13	N 20	N	N	N	N	N	N	N	M_	V,	20	20	
14	N/30	N	N	N	N	N	N	N	Ν,	$N_{\perp}$	17	16	
15	N/20	N	Ŋ	Λ ⁱ	$\checkmark$	N	N	N	$\mathbb{N}$	N	18	18	
Initials/ Date	71/3kg	71/1/4/V	MISH	11/1/4	عد ۱۱/۲/۱۲	ير 1118/16	Hiller	A Cirlician	7 M	PM 11/12/06	में गिशियः	Mulislaw	4

## Aqua Survey, Inc. Solid Phase Readings

Job #: <u>26-349</u> Client: <u>CDR</u>

Test Start Date:

11/3/06

Parameter:

Ammonia-N

STATIC

Organism:

L. plumulosus

Day ⇒	0	1	2	3	4	5	6	7	8	9	10
Chamber ↓											
	250	0.79	0.99	1.22	1.58	1.60	1.74	105	0.64)	20,50	60.50
2	4.68	9.95	i30	16.0	14.8	19.6	19,6	18.0	12.5	11.	le,46
3	9.59	0.88	1.14	1.41	1.12	1.90	1.74	143	1,30	0.71	298
4	0.73	130	173	1.05	2 23	2.24	2,11	188	1,31	0.69	0.69
5	5,43								ļ :		21.1
6	5.49			<u>.                                    </u>	<del></del> _			<b>65</b> \			14:1
7	0.95	171	2.21	2.92	3.10	3.20	3.20	3.19	1,94	0.72	0.56
8	233									,	14.6
9	5,22									/	12.9
10	0.56	0.78	0.94	1.19	1.35	1.36	1.05		0,56		
11	୦.୫୮	171	221	2.8.4	3.17	3.30	3.30		2.28		
12	0.55	0.77	0.99	1.32	1.55	1.59	1.42		1,04	0,64	0.58
13	0.75	144	1.88	2.42	2.09	3.22	3.73	2.90	226	0,849	1.56
14	0,81	141	1.87	201	2.16	2.13	2.10	1.68	0.969	c0,50	(O.D)
15	0.54	0.78	094	1.11	1.33	137	1.42	0.84		CO,Š0	
Initials/ Date	PM 11/3/06	ते ग्रीमीवर	મ ! ધી.કીપા	11/6/86	ار المرادي	عن ۱۲/مد	PM 1 (/3) °C	Milliofa.	PM IIIII/06	PM 11/12/00	*}\

OJ.60 Anlieke

#### Aqua Survey, Inc. Solid Phase Readings

Job #: Client: 26-349 CDR

Test Start Date:

<u>Static</u>

11/3/06

Parameter:

Overlay/ Porewater

Organism: L. plumulosus

Sample Con	Day 0	Day 10
OVERLAY	NIA	
Temperature (°C)		24.4
Salinity (ppt)		21.0
D.O. (mg/L)		6.9
рН		78
NH ₃ (mg/L)		13.8
POREWATER	1	
Temperature (°C)		
Salinity (ppt)		
D.O. (mg/L)		_
рН		.—
NH ₃ (mg/L)		27.6
Initials/ Date	911/2/00	27U CHII/Isla

Sample 6A	Day 0	Day 10
OVERLAY		
Temperature (°C)	242	24.4
Salinity (ppt)	21.0	21.0
D.O. (mg/L)	6.0	6.7
рН	78	7.8
NH ₃ (mg/L)	0.84	0.92
POREWATER		
Temperature (°C)	_	
Salinity (ppt)	_	
D.O. (mg/L)		
рН	<b> </b>	
NH ₃ (mg/L)	5.10	1.44 LH 11/13/26
Initials/ Date	2/1/3/00	LH 1/18/4

Sample 7A	Day 0	Day 10
OVERLAY		
Temperature (°C)	24.3	24.4
Salinity (ppt)	210	26.8
D.O. (mg/L)	6.6	6.5
рН	78	7.8
NH ₃ (mg/L)	40.50	0.60
POREWATER		
Temperature (°C)		_
Salinity (ppt)	_	_
D.O. (mg/L)	-	. —
рН	_	_
NH ₃ (mg/L)	3.81	2.57
1113 (1115/2)	i	u ,

Sample	Day 0	Day 10
OVERLAY		
Temperature (°C)		
Salinity (ppt)		
D.O. (mg/L)		
pН		
NH ₃ (mg/L)		
POREWATER	-	
Temperature (°C)		
Salinity (ppt)		
D.O. (mg/L)		
рН		
NH ₃ (mg/L)		,
Initials/ Date		

## **349LPS0.DAT**

	DateTime	Temp	SpCond	Salinity	DO Conc	рН
	M/D/Y	С	uS/cm	ppt	mg/L	
0	11/03/06 12:00:44	24.48	33285.0	20.83	6.90	7.91
1	11/03/06 12:02:32	24.48	30911.0	19.20	4.82	7.47
2	11/03/06 12:03:51	24.41	33232.0	20.80	6.55	7.76
3	11/03/06 12:04:27	24.40	33397.0	20.91	6.73	7.82
4	11/03/06 12:05:08	24.43	30734.0	19.08	6.54	7.77
5	11/03/06 12:05:45	24.44	30788.0	19.12	6.68	7.91
6	11/03/06 12:06:44	24.46	33609.0	21.06	6.65	7.91
7	11/03/06 12:07:24	24.36	30817.0	19.14	6.55	7.83
8	11/03/06 12:07:55	24.51	30832.0	19.15	6.64	7.86
9	11/03/06 12:08:18	24.41	33338.0	20.87	6.66	7.87
10	11/03/06 12:08:49	24.47	33525.0	21.00	6.64	7.81
11	11/03/06 12:09:25	24.45	33335.0	20.87	6.71	7.86
12	11/03/06 12:10:17	24.33	33182.0	20.77	6.49	7.75
13	11/03/06 12:10:46	24.47	33445.0	20.94	6.42	7.73
14	11/03/06 12:11:34	24.49	33171.0	20.76	6.52	7.74

·		•
Project #: <u>24.349</u> Test type:   Bioaccumulation   Solid Phase   SPP OTHER: <u>100</u>	luy States	Date: 11/3/00
Species:   A. abdita   M. bahia   M. beryllina   M. nasuta   N. virens   OTHER:	J <u>ymulosy</u> Day	of Study: 0
OPERATIONAL RANGE: Check if OK	Meter I	
Temperature: $\Box 12-14 ^{\circ}C \Box 18-22 ^{\circ}C \Box 24 - 26 ^{\circ}C$ Salinity: $\Box 26-30 \text{ ppt} \Box 28-32 \text{ ppt} \Box 17 - 22 ^{\circ}ppt$	Blue	
	Red	
Dissolved Oxygen: $\square > 4.0 \text{ mg/L}$ $\stackrel{1}{\square} > 3.1 \text{ mg/L}$	Green	1
pH:		
Actions taken:		

– Prage Initia

Friedverial of Timenary Sheep ...

## **349LPS1.DAT**

	DateTime	Temp	SpCond	Salinity	DO Conc	рН
	M/D/Y	C	uS/cm	ppt	mg/L	<del></del>
0	11/04/06 11:45:33	24.43	35042.0	22.05	6.73	7.94
1	11/04/06 11:47:36	24.93	31226.0	19.41	6.75	8.20
2	11/04/06 11:48:24	24.80	34719.0	21.82	6.65	8.05
3	11/04/06 11:49:36	24.74	34849.0	21.91	6.67	8.03
4	11/04/06 11:50:50	24.77	31000.0	19.26	6.49	8.03
5	11/04/06 11:51:34	24.77	31227.0	19.41	6.71	8.19
6	11/04/06 11:52:25	24.84	35313.0	22.23	6.60	8.08
7	11/04/06 11:53:24	24.81	31194.0	19.39	6.69	8.14
8	11/04/06 11:54:02	24.80	31217.0	19.41	6.60	8.11
9	11/04/06 11:54:44	24.71	34888.0	21.94	6.58	8.02
10	11/04/06 11:55:24	24.78	35259.0	22.20	6.58	8.03
11	11/04/06 11:56:05	24.65	34940.0	21.98	6.49	7.93
12	11/04/06 11:56:37	24.66	34963.0	21.99	6.43	7.88
13	11/04/06 11:57:11	24.54	34911.0	21.96	6.43	7.88
14	11/04/06 11:57:42	24.59	34768.0	21.86	6.47	7.88

Project #: 2/1/3	49 Test type	: □ Bioaccumulation ② Solid Phase □ SPP □ OTHER:		Date: 11/4/06
Species: □ A. aba	lita □M. bahid	□ M. beryllina □ M. nasuta □ N. virens □ OTHER: Lolu	mulousDay	y of Study:
OPERATIONAL	, RANGE: Che	ck if OK	Meter	Used:
Temperature:	□ 12 –14 °C	□18-22 °C b 14 - 21 °C	Blue	
Salinity:	□ 26 –30 ppt	□ 28 –32 ppt	Red	
Dissolved Oxyger	n: □ >4.0 mg/L	t > 3. [1] mg/L	Green	ф
рН:	□ 7.3 to 8.3	106.0 to 9.0		
Actions taken:				
Sun Nov 05 10:	12:01 2006		F	age 1 of 1
See deviation sum	mary sheet []			Initials: r
				C-8

## **349LPS2.DAT**

	DateTime	Temp	SpCond	Salinity	DO Conc	рН
	M/D/Y	C	uS/cm	ppt	mg/L	
0	11/05/06 09:58:40	25.26	35352.0	22.25	6.82	8.01
1	11/05/06 09:59:47	25.38	31091.0	19.31	6.86	8.18
2	11/05/06 10:00:21	25.27	34990.0	22.00	6.68	8.00
3	11/05/06 10:01:08 ⁻	25.26	35205.0	22.15	6.68	8.00
4	11/05/06 10:01:44	25.26	30646.0	19.01	6.72	8.12
5	11/05/06 10:02:14	25.18	30776.0	19.10	6.81	8.22
6	11/05/06 10:03:06	25.10	35650.0	22.46	6.65	8.03
7	11/05/06 10:03:38	25.18	30906.0	19.19	6.76	8.16
8	11/05/06 10:04:29	25.19	30817.0	19.13	6.72	8.18
9	11/05/06.10:05:03	25.07	35085.0	22.07	6.68	8.07
10	11/05/06 10:05:33	25.10	35626.0	22.45	6.69	8.05
11	11/05/06 10:06:02	24.99	34977.0	22.00	6.43	7.91
12	11/05/06 10:06:34	24.96	35039.0	22.04	6.49	7.90
13	11/05/06 10:07:10	24.88	35011.0	22.02	6.52	7.91
14	11/05/06 10:07:33	24.85	34911.0	21.95	6.57	7.91

Project #: 21-329 Test type: Bioaccumulation Solid Phase SPP OTHER:	Date: 11/5/06
Species:   A. abdita   M. bahia   M. beryllina   M. nasuta   N. virens   OTHER:	LIMILIPSUS Day of Study: 2
OPERATIONAL RANGE: Check if OK	Meter Used:
Temperature: □ 12 - 14 °C □ 18 - 22 °C □ <u>d</u> <u>4</u> - <u>1</u> <u>1</u> °C	Blue 🛘
Salinity: □ 26-30 ppt □ 28-32 ppt □ 1 2 ppt → 2 ppt →	Red □
Dissolved Oxygen: 🗓 >4.0 mg/L 🗆 > mg/L	Green D
pH:   □ 7.3 to 8.3  □ 6.0 to 9.0 □ to to	
Actions taken:  *\Snunty plightly high due to &diment of Sun Nov 05 10:15:04:2006	·
Sun Nov 05 10:15:04:2006	Page 1 of 1
See deviation summary sheet []	Initials:

C-9

## **349LPS3.DAT**

	DateTime	Temp	SpCond	Salinity	DO Conc	рН
	M/D/Y	С	uS/cm	ppt	mg/L	
0	11/06/06 10:23:38	24.26	35871.0	22.63	6.67	8.03
1	11/06/06 10:25:14	24.70	31229.0	19.42	6.66	8.20
2	11/06/06 10:26:54	24.83	35228.0	22.17	6.61	7.99
3	11/06/06 10:27:41	24.96	35418.0	22.30	6.68	8.03
4	11/06/06 10:28:43	24.92	30346.0	18.81	6.76	8.15
5	11/06/06 10:29:11	25.02	30735.0	19.07	6.87	8.28
6	11/06/06 10:30:02	24.88	35944.0	22.67	6.87	8.18
7	11/06/06 10:30:21	24.96	30397.0	19.19	6.97	8.24
8	11/06/06 10:31:21	24.87	30868.0	19.17	6.94	8.30
9	11/06/06 10:32:16	24.79	35534.0	22.39	6.84	8.05
10	11/06/06 10:33:07	24.80	36076.0	22.77	6.82	8.09
11	11/06/06 10:33:34	24.77	35195.0	22.15	6.69	8.00
12	11/06/06 10:34:28	24.69	35377.0	22.28	6.39	7.90
13	11/06/06 10:35:04	24.71	35255.0	22.20	6.77	7.99
14	11/06/06 10:35:46	24.60	35208.0	22.16	6.81	7.94

Project #: 20349 Test type:  Bioaccumulation Solid Phase SPP OTHER:	Date: 11/6/04
Species:   A. abdita   M. bahia   M. beryllina   M. nasuta   N. virens   OTHER:   Lp.	Day of Study:3
OPERATIONAL RANGE: Check if OK	Meter Used:
Temperature: $\Box 12-14 ^{\circ}\text{C}  \Box 18-22 ^{\circ}\text{C}  \dot{\Box}  \underline{\cancel{24}} - \underline{\cancel{34}} ^{\circ}\text{C}$	Blue · 🗆
Salinity: $\Box$ 26 -30 ppt $\Box$ 28 -32 ppt $\Box$ $\cancel{1}$ - $\cancel{2}$ ppt	Red 🗆
Dissolved Oxygen: 1 >4.0 mg/L   > mg/L	Green
pH:	
Actions taken:	•

See deviation summary sheet 06 Mon Nov 06 10:45:33 2006

Paigels of 1 m

## 349LPS4.DAT

	DateTime	Temp	SpCond	Salinity	DO Conc	рН
	M/D/Y	С	uS/cm	ppt	mg/L	
0	11/07/06 11:18:50	24.65	36977.0	23.40	6.42	7.95
1	11/07/06 11:20:15	25.31	31606.0	19.66	6.33	8.22
2	11/07/06 11:21:14	25.26	35618.0	22.44	6.24	7.95
3	11/07/06 11:21:46	25.28	35844.0	22.60	6.33	8.04
4	11/07/06 11:22:35	25.29	30322.0	18.79	5.94	7.97
5	11/07/06 11:23:06	25.28	30786.0	19.10	6.24	8.24
6	11/07/06 11:23:52	25.27	36301.0	22.91	6,39	8.12
7	11/07/06 11:24:23	25.24	30842.0	19.14	6.56	8.22
8	11/07/06 11:24:57	25.30	30983.0	19.24	6.56	8.27
9	11/07/06 11:25:32	25.25	35896.0	22.63	6.38	8.01
10	11/07/06 11:26:14	25.19	36518.0	23.07	6.39	8.06
11	11/07/06 11:26:53	25.19	35329.0	22.24	6.24	7.88
12	11/07/06 11:27:48	25.13	35675.0	22.48	5.39	7.84
13	11/07/06 11:28:27	25.11	35496.0	22.36	5.98	7.97
14	11/07/06 11:29:11	25.05	35489.0	22.35	6.35	7.88

Project #: 26 349 Test type:   Bioaccumulation  Solid Phase  SPP  OTHER:	
Species:   A. abdita   M. bahia   M. beryllina   M. nasuta   N. virens   OTHER:	Day of Study: 4
OPERATIONAL RANGE: Check if OK	Meter Used:
Temperature: $\Box 12-14 ^{\circ}C \Box 18-22 ^{\circ}C \Box 44-40 ^{\circ}C$	Blue 🗆
Salinity: $\Box$ 26 –30 ppt $\Box$ 28 –32 ppt $\Box$ $\boxed{1}$ – $\boxed{2}$ ppt	Red 🗆
Dissolved Oxygen: © >4.0 mg/L $\square$ > mg/L	Green b
pH:	
Actions taken:	

## **349LPS5.DAT**

<u> </u>	DateTime	Temp	SpCond	Salinity	DO Conc	рН
	M/D/Y	С	uS/cm	ppt	mg/L	·
0	11/08/06 10:09:41	25.52	37128.0	23.49	6.56	8.12
1	11/08/06 10:10:44	25.71	31686.0	19.71	6.59	8.36
2	11/08/06 10:11:31	25.55	35754.0	22.53	6.38	8.04
3	11/08/06 10:12:01	25.55	36049.0	22.73	6.47	8.17
4	11/08/06 10:12:52	25.60	30376.0	18.82	6.54	8.27
5	11/08/06 10:13:13	25.57	30903.0	19.18	6.58	8.37
6	11/08/06 10:14:08	25.58	36969.0	23.38	6.46	8.25
7	11/08/06 10:14:31	25.60	30984.0	19.23	6.67	8.32
8	11/08/06 10:15:07	25.57	30991.0	19.24	6.73	8.34
9	11/08/06 10:15:43	25.51	35989.0	22.69	6.55	8.15
10	11/08/06 10:16:27	25.41	36912.0	23.34	6.25	8.13
11	11/08/06 10:17:08	25.41	35546.0	22.38	6.09	7.95
12	11/08/06 10:17:51	25.45	. 35811.0	22.57	6.37	8.05
13	11/08/06 10:18:27	25.36	35540.0	22.38	6.37	8.12
14	11/08/06 10:19:16	25.37	35614.0	22.43	6.41	7.99

Project #: 4 Solid Phase SPP OTHER:	Date: _//8/00
Species:   A. abdita   M. bahia   M. beryllina   M. nasuta   N. virens   OTHER:   Lp	Day of Study: 5
OPERATIONAL RANGE: Check if OK	Meter Used:
Temperature: □ 12 - 14 °C □ 18 - 22 °C □ 14 - 16 °C	Blue 🗆
Salinity:   \[ \price 26 - 30 \text{ ppt } \price 28 - 32 \text{ ppt } \]	Red 🗆
Dissolved Oxygen: 0 >4.0 mg/L 0 > mg/L	Green D
pH:	
Actions taken:	

See de Vistion 8 "TV" 47: 28 2006

Braingles 1 of 1 /

## 349LPS6.DAT

	DateTime	Temp	SpCond	Salinity	DO Conc	рН
	M/D/Y	С	uS/cm	ppt	mg/L	
0	11/09/06 08:35:01	25.41	37283.0	23.60	6.69	8.15
1	11/09/06 08:36:03	25.70	31841.0	19.82	6.71	8.42
2	11/09/06 08:36:59	25.55	35850.0	22.59	6.60	8.10
3	11/09/06 08:38:03	25.53	36037.0	22.72	6.63	8.20
4	11/09/06 08:39:15	25.62	30356.0	18.80	6.70	8.31
5	11/09/06 08:39:53	25.61	30875.0	19.16	6.76	8.41
6	11/09/06 08:40:36	25.64	37057.0	23.44	6.73	8.30
7	11/09/06 08:41:17	25.62	30866.0	19.15	6.87	8.36
8	11/09/06 08:42:09	25.73	31066.0	19.29	6.79	8.37
9	11/09/06 08:42:50	25.57	36268.0	22.89	6.66	8.14
10	11/09/06 08:43:34	25.52	37143.0	23.50	6.65	8.25
11	11/09/06 08:44:10	25.50	35642.0	22.45	6.28	7.97
12	11/09/06 08:44:49	25.53	35888.0	22.62	6.53	8.09
13	11/09/06 08:45:10	25.41	35630.0	22.44	6.54	8.13
14	11/09/06 08:45:59	25.38	35686.0	22.48	6.58	8.03

Project #: 16-249 Test type:   Bioaccumulation Solid Phase SPP OTHER:	Date: 1/9/00
Species:   A. abdita   M. bahia   M. beryllina   M. nasuta   N. virens   OTHER:	Day of Study:
OPERATIONAL RANGE: Check if OK	Meter Used:
Temperature: □ 12 - 14 °C □ 18 - 22 °C □ 34 - 34 °C	Blue 🗆
Salinity: $\Box 26-30 \text{ ppt } \Box 28-32 \text{ ppt } \Box \boxed{1} - 22 \text{ ppt}$	Red
Dissolved Oxygen: 🖸 >4.0 mg/L 🖸 > mg/L	Green N
pH:	
Actions taken:	

See deviations 43:03:33 2006

Parties of 1 /

## 349LPS7.DAT

	DateTime	Temp	SpCond	Salinity	DO Conc	рН
	M/D/Y	C	uS/cm	ppt	mg/L	
0	11/10/06 10:55:32	24.61	37437.0	23.72	6.10	8.04
1	11/10/06 10:56:52	25.20	31817.0	19.81	6.23	8.44
2	11/10/06 10:57:36	25.12	35754.0	22.54	6.08	8.16
3	11/10/06 10:58:00	25.18	36193.0	22.84	6.11	8.21
4	11/10/06 10:58:44	25.24	30453.0	18.88	6.19	8.33
5	11/10/06 10:59:17	25.20	30912.0	19.19	6.26	8.42
6	11/10/06 11:00:03	25.27	36884.0	23.32	6.03	8.32
7	11/10/06 11:00:39	25.22	30991.0	19.24	6.22	8.36
8	11/10/06 11:01:27	25.31	31056.0	19.29	6.20	8.40
9	11/10/06 11:02:01	25.14	36029.0	22.73	6.05	8.20
10	11/10/06 11:02:36	25.09	37024.0	23.42	5.97	8.25
11	11/10/06 11:03:09	25.04	35677.0	22.48	5.49	8.03
12	11/10/06 11:04:12	25.01	35959.0	22.68	5.85	8.16
13	11/10/06 11:04:31	24.91	35692.0	22.50	5.91	8.22
14	11/10/06 11:05:07	24.93	35593. <b>0</b>	22.43	5.92	8.07

Project #: <u>Jl</u> 31	Test type: 🗆 Bioaccumulation 🗓 Solid Phase 🗆 SPP 🗆 OTHER:	<del></del>	Date: 11/10/06
Species: □ A. abo	dita DM. bahia DM. beryllina DM. nasuta DN. virens DOTHER Leptum	ulsuDa	y of Study: 7
OPERATIONAL	RANGE: Check if OK	Meter	Used:
Temperature:	□ 12-14°C □ 18-22°C □ 34 - 11 °C	Blue	
Salinity:	□ 26 –30 ppt □ 28 –32 ppt □ <u>                                   </u>	Red	
Dissolved Oxyge	n: 🛈 >4.0 mg/L 🖸 > mg/L	Green	Ь
рН:	□ 7.3 to 8.3 □6.0 to 9.0 □ to		
Actions taken:			

## **349LPS8.DAT**

	DateTime	Temp	SpCond	Salinity	DO Conc	рН
	M/D/Y	С	uS/cm	ppt	mg/L	
0	11/11/06 09:55:45	24.88	36852.0	23.31	7.10	8.21
1	11/11/06 09:59:04	25.50	32086.0	19.99	6.83	8.53
2	11/11/06 10:00:04	25.23	35825.0	22.58	6.76	8.23
3	11/11/06 10:00:32	25.38	36311.0	22.92	6.64	8.28
4	11/11/06 10:02:22	25.44	30437.0	18.86	6.77	8.38
5	11/11/06 10:03:07	25.44	31089.0	19.31	6.86	8.46
6	11/11/06 10:04:47	25.48	37122.0	23.48	6.41	8.38
7	11/11/06 10:05:14	25.52	31138.0	19.34	6.84	8.41
8	11/11/06 10:05:43	25.62	31370.0	19.50	6.94	8.43
9	11/11/06 10:06:41	25.43	36479.0	23.04	6.78	8.24
10	11/11/06 10:07:52	25.38	37186.0	23.53	4.78	8.34
11	11/11/06 10:08:50	25.35	35638.0	22.45	6.09	8.16
12	11/11/06 10:09:36	25.34	35946.0	22.67	6.51	8.25
13	11/11/06 10:10:48	25.26	35675.0	22.48	6.77	8.34
14	11/11/06 10:11:47	25.28	35724.0	22.51	6.69	8.13

Project #: 26-349 Test type: DB	ioaccumulation ∉ Solid P	hase 🗆 SPP 🗆 OTHEF	e: shhi	Date: 1/11/0	В
Species: □ A. abdita □ M. bahia □ M.	1. beryllina 🗆 M. nasuta	□ N. virens OTHER	:Da <u>: کونوار و مالم ما</u>	y of Study: <b>\(\)</b>	}
OPERATIONAL RANGE: Check if	ок	,	Meter	Used:	
Temperature: □ 12 -14 °C □ 18	8-22°C € 24 _ 26	_℃	Blue		
Salinity: □ 26-30 ppt □ 28	8-32 ppt 4 15 _ 12	_ ppt	Red	ם	
Dissolved Oxygen: \$\sqrt{2} > 4.0 mg/L \$\sqrt{2} >	3.6 mg/L		Green		
pH: □ 7.3 to 8.3 <b>2</b> 6.0	) to 9.0 to	_			
Actions taken:					
See deviation summary sheet				Prairies of 1	_

## 349LPS9.DAT

	DateTime	Temp	SpCond	Salinity	DO Conc	рН
	M/D/Y	С	uS/cm	ppt	mg/L	<del></del>
0	11/12/06 09:16:49	25.34	37207.0	23.55	7.10	8.12
1	11/12/06 09:19:50	25.69	32435.0	20.23	6.63	8.46
2	11/12/06 09:21:03	25.53	35905.0	22.63	6.73	8.23
3	11/12/06 09:22:01	25.70	35813.0	22.57	6.70	8.29
4	11/12/06 09:23:12	25.70	30622.0	18.98	6.75	8.34
5	11/12/06 09:23:44	25.64	31183.0	19.37	6.85	8.41
6	11/12/06 09:24:46	25.70	37464.0	23.72	6.66	8.37
7	11/12/06 09:25:16	25.74	31430.0	19.54	6.86	8.39
8	11/12/06 09:26:06	25.79	31382.0	19.50	6.81	8.41
9	11/12/06 09:27:44	25.61	36704.0	23.19	6.63	8.20
10	11/12/06 09:28:13	25.56	37457.0	23.72	6.66	8.32
11	11/12/06 09:28:55	25.58	35781.0	22.55	6.59	8.20
12	11/12/06 09:29:25	25.52	35964.0	22.67	6.65	8.30
13	11/12/06 09:30:01	25.44	35753.0	22.53	6.78	8.42
14	11/12/06 09:30:45	25.43	35894.0	22.63	6.68	8.24

Project #: <u>U '3'</u>	17 Test type	: □ Bioaccumı	ılation ⊅ Solid P	hase □ SPP	らしてHER: <mark>オル</mark>	ں I	Date: 4/12/06
Species:   A. abd	ita 🗆 M. bahia	☐ M. beryllin	na 🗆 M. nasuta	□ N. virens	OTHER: L. piv-	انن ^{ون} Day	of Study: 9
OPERATIONAL	RANGE: Che	ck if OK			•	Meter l	Used:
Temperature:	□ 12 –14 °C	□ 18-22°C	0 27 - 26	_℃		Blue	
Salinity:	□ 26 –30 ppt	□ 28 –32 ppt	8 18 - 22	_ ppt	•	Red	
Dissolved Oxyger	n: □ >4.0 mg/L	1 > <u>3.6</u> mg	y/L			Green	₫′
рН:	□ 7.3 to 8.3	\$\overline{1}\delta 6.0 to 9.0	to	·			
Actions taken:							

Sun Nov 12 10:05:43 2006 See deviation summary sheet □

## 349LPS10.DAT

	DateTime	Temp	SpCond	Salinity	DO Conc	рН
	M/D/Y	C	uS/cm	ppt	mg/L	
0	11/13/06 09:00:06	24.79	37823.0	23.99	6.29	8.24
1	11/13/06 09:01:13	25.38	32682.0	20.40	6.21	8.45
2	11/13/06 09:02:11	25.29	35943.0	22.66	6.29	8.15
3	11/13/06 09:02:54	25.45	36339.0	22.94	6.32	8.32
4	11/13/06 09:03:49	25.47	30511.0	.18.91	6.48	8.36
5	11/13/06 09:04:19	25.44	31301.0	19.45	6.58	8.43
6	11/13/06 09:05:27	25.37	37600.0	23.82	6.37	8.40
7	11/13/06 09:06:03	25.50	31184.0	19.37	6.53	8.39
8	11/13/06 09:06:45	25.52	31459.0	19.56	6.53	8.38
9	11/13/06 09:07:27	25.39	36848.0	23.29	6.46	8.21
10	11/13/06 09:08:15	25.36	37692.0	23.89	6.50	8.40
11	11/13/06 09:08:56	25.33	35677.0	22.48	6.39	8.17
12	11/13/06 09:09:49	25.22	35901.0	22.64	6.46	8.42
13	11/13/06 09:10:11	25.19	35743.0	22.53	6.58	8.55
14	11/13/06 09:11:21	25.12	35768.0	22.55	6.47	8.25

Project #: 26-34	1' Test type: ☐ Bioaccumulation ☐ Solid Phase ☐ SPP ☐ OTHER	R: st-t.c Date: 1/13/06
Species: □ A. aba	dita □ M. bahia □ M. beryllina □ M. nasuta □ N. virens ☑ OTHEI	R: Lohandows Day of Study: 16
OPERATIONAL	RANGE: Check if OK	Meter Used:
Temperature:	□ 12-14°C □ 18-22°C \$\frac{124}{24} - \frac{16}{24} \cdot \cdot \frac{1}{2} \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \	Blue 🗆
Salinity:	□ 26 -30 ppt □ 28 -32 ppt □ 18 - 22 ppt	, Red □
Dissolved Oxyge	en: □ >4.0 mg/L Ø > <u>3 6</u> mg/L	Green ⊿
pH:	□ 7.3 to 8.3 □6.0 to 9.0 ☑ 7.0 to 9.0	
Actions taken:		
Mon Nov 13 13:1	13:51-2006	Page 1 of 1
See deviation sun		mitials: Ji

Organism Receiving Form	
Receiving Log #: 26-089	
Shipping Carrier: Fed EL	• •
Species: Lplumulosus	Number Shipped: 330+
Livestock Source/ Shipper:	
ASI Order Ref. Date: 10/3/100	ASI Order Ref. Initials:
Age/ Characteristics 24 mm	
Taxonomic Verification Log #: <u>26 (</u>	Date: ////06
	Receiving Water Quality Parameters
D.O: 40.1 mg/L	Temp.: 146. NH ₃ /NO ₂ : 0/0 pH: 6.9
Salinity/ Hardness/8.5ppt	Alkalinity: 140
Water- Clear/ Cloudy	Container Size: (3) - Igallan Cubitaines
ICE: YN	Container Size: (3) Igallan Cubetains  Type of Packing: Stynofoam Box
Observation/ Condition of Livestock:	lgallon Sed provided for holding
Receiving Tech. Initials:	Supervisors Initials:
•	
•	

#### AQUA SURVEY, INC. **CULTURE DEPARTMENT GENERAL SPECIES STATUS LOG**

Species:	L.plamilosus
----------	--------------

Initial Stock @:

Receiving [1] Culture [ ] Log #: 21-089

Test Job #: 21-349 Client: CDR

Food Type: grap Stury

								J' J
Date	Day Number	Temp/DO	NH ₃ /NO ₂	рН	Sal) Hardness	Alkalinity	Mortality	Remarks/Initials
11/106	1 1150	14-15° / 40 lm/l	0/0	6.9	18.5pt	140	Ø	Started acclimation
11/1/06	1 1600	18.00/		_		_	-	<i>M</i>
1/2/06	2 03:30	1990/6.8	0/0	7.8	18.600t	120	Ø	Continued Occlum.
11/3/06	.3 heso	22.98/71	0/0	7.8	20 Oppt	120		continued acc. of
11/3/00		25.0%/_	1/2	7.9	18.6ppt 20.0ppt 23.2ppt 24.5ppt	120	В	continued acc. of To ket of TIE/SET Fed gorp Slumy of TIE: UNO TO ket of
11/4/06	4	2416/72	0/0	7.8	int Knot	120	Ø	The who
	<u> </u>	1/2	0 10	7 · 3	4.0ppc	iac		10 ACST M
							<del></del>	
				· · ·				
				<u> </u>				
			-					
	·	•						
								·
						<del></del>		C-19



# Aquatic Research Organisms

### **DATA SHEET**

1.	Organism	History
	Species:	LEPTO Chierus plumulasus
	Source:	Lab reared Hatchery reared Field collected
		Hatch date 10/06 Receipt date
		Lot number 1231064 Strain_
		Brood Origination Chesapeate By VA
II.	Water Qua	ılity
		Temperature 2/°C Salinity 20 ppt DO 597
		pH_8.0 Hardness ppm
III.	Culture Co	onditions
		System: Sou STATIC renewa
		Diet: Flake Food Phytoplankton Trout Chow
		Brine Shrimp Rotifers Other GORP!
		Prophylactic Treatments:
		Comments: SEDMENT 4L
	•	2-4 mm
IV.	Shipping In	
		Client: AQUA URUS # of Organisms: 2300 + Carrier: FEO EX Date Shipped: 10/31/06
		Carrier: FEO EX Date Shipped: 10/31/06
Biolo	ogist:	Lan Sintski

# AQUA SURVEY, INC. Taxonomic Verification Form

TAXONOMIC VERIFICATION LOG#	: DATE:
SPECIES: L. plumulosus	RECEIVING #/ CULTURE LOT #: 26-089
LIVESTOCK SOURCE: ARO	
JOB #: 26-349/SRT	CLIENT: CDR
TAXONOMIC KEYS/ SOURCES USED	Shallow Water Gammaridean Amphipoda of New Engla
	Bousfield, 1970
DISTIC	GUISHING CHARACTERISTICS:
distally  - Head, anterior stout, usually edissimilar in many  - Coxal plates 1 urosome with a paraeopods 5-7 coxal broad,	-4, moderately deep, setose below; clusters of dorsal setae and or spines; d, bases broadly expanded vertical; coax 5, anterior lobe margins opod 3, rami with few posterior spines and
AQUA SURVEY INVESTIGATOR (S): SUPERVISORS INITIALS:	——————————————————————————————————————
	/

#### DeviceNum 810765 - ExportDate 11_14_06 17_01_58.txt

```
Series: Temperature (*C)
                                     Information specific to the logger HOBO Water Temp Pro [H20-001] 810765
Logger Info
  Model
  Serial Number
                                     32768
  Memory Size (Bytes)
                                     37
  Deployment
                                     Information about the data in the series
Series Info
  Points Used
  First Point
                                     11/03/06 13:23:13.0
                                     11/14/06 16:23:13.0
  Last Point
                                     11 Days 03:00:00.0
  Duration
                                     Calculated from the series
Stats
  Wrap Count
 Max Value
Min Value
                                     26.50
                                     21.91
  Avg Value
                                     24.95
Launch Parameters
                                     11/03/2006 18:23:11 GMT 11/03/2006 18:23:13 GMT
                                                                    11/03/2006 13:23:11 Local 11/03/2006 13:23:13 Local
  Load Time
  Launch Time
                                     11/03/2006 18:23:13 GMT
                                                                    11/03/2006 13:23:13 Local
  Logging Time
  Sampling Interval
                                     3600
  Wrap
                                     0 = (FALSE/OFF/OPEN/TYPE 0)
0 = (FALSE/OFF/OPEN/TYPE 0)
  Stealth Enable
                                     0x320_00
  End of Data
  Wrap Count
                                     26-349 Lp static bath 6
  Description String
  Time Zone
                                     GMT-300 Minutes TZ set on Launch
```

```
DeviceNum 810765
                                                     ExportDate 11_14_06 17_02_06.txt
Date, Time, Temperature (*C)
 11/03/06,13:23:13.0,23.809
11/03/06,14:23:13.0,24.581
11/03/06,15:23:13.0,24.653
11/03/06,16:23:13.0,24.726
 11/03/06, 17:23:13.0, 24.363
 11/03/06, 18:23:13.0, 24.219
 11/03/06,19:23:13.0,24.436
 11/03/06,20:23:13.0,24.508
 11/03/06,21:23:13.0,24.653
11/03/06,22:23:13.0,24.677
11/03/06,23:23:13.0,24.605
11/04/06,00:23:13.0,24.557
11/04/06,01:23:13.0,24.412
11/04/06,02:23:13.0,24.315
 11/04/06,03:23:13.0,24.219
 11/04/06,04:23:13.0,24.146
 11/04/06,05:23:13.0,24.074
 11/04/06,06:23:13.0,24.026
 11/04/06,07:23:13.0,24.05
 11/04/06,08:23:13.0,24.146
11/04/06,09:23:13.0,24.146
11/04/06,10:23:13.0,24.219
11/04/06,11:23:13.0,24.074
11/04/06, 12:23:13.0, 24.195
11/04/06,13:23:13.0,24.291
11/04/06,14:23:13.0,24.339
11/04/06,15:23:13.0,24.46
11/04/06,16:23:13.0,24.508
11/04/06,17:23:13.0,24.557
11/04/06, 18:23:13.0, 24.557
11/04/06,19:23:13.0,24.532
11/04/06,20:23:13.0,24.508
11/04/06,21:23:13.0,24.412
11/04/06,22:23:13.0,24.315
11/04/06,23:23:13.0,24.219
11/05/06,00:23:13.0,24.171
11/05/06,01:23:13.0,24.122
11/05/06,02:23:13.0,24.146
11/05/06,03:23:13.0,24.122
11/05/06,04:23:13.0,24.122
11/05/06,05:23:13.0,24.074
11/05/06,06:23:13.0,24.122
11/05/06,07:23:13.0,24.122
11/05/06,08:23:13.0,24.291
11/05/06,09:23:13.0,24.60
11/05/06, 10:23:13.0, 24.629
11/05/06,11:23:13.0,24.895
11/05/06,12:23:13.0,24.968
11/05/06,13:23:13.0,25.065
11/05/06,14:23:13.0,25.113
11/05/06,15:23:13.0,25.113
11/05/06,16:23:13.0,25.065
11/05/06,17:23:13.0,25.016
11/05/06,18:23:13.0,24.968
11/05/06,19:23:13.0,24.919
11/05/06,20:23:13.0,24.847
11/05/06,21:23:13.0,24.798
11/05/06,22:23:13.0,24.702
11/05/06,23:23:13.0,24.677
11/06/06,00:23:13.0,24.677
11/06/06,01:23:13.0,24.653
11/06/06,02:23:13.0,24.581
```

```
DeviceNum 810765
                                                    ExportDate 11_14_06 17_02_06.txt
 11/06/06,03:23:13.0,24.581
 11/06/06,04:23:13.0,24.557
11/06/06,05:23:13.0,24.532
11/06/06,06:23:13.0,24.581
11/06/06,07:23:13.0,24.653
11/06/06,08:23:13.0,24.677
11/06/06,09:23:13.0,24.726
11/06/06, 10:23:13.0, 24.823
11/06/06, 11:23:13.0, 24.823
11/06/06,12:23:13.0,24.919
11/06/06,13:23:13.0,24.968
11/06/06,14:23:13.0,25.016
11/06/06,15:23:13.0,25.016
11/06/06,16:23:13.0,25.016
11/06/06,17:23:13.0,25.016
11/06/06, 18:23:13.0, 25.089
11/06/06, 19:23:13.0, 25.04
11/06/06,20:23:13.0,25.016
11/06/06,21:23:13.0,24.992
11/06/06,22:23:13.0,24.944
11/06/06,23:23:13.0,24.968
11/07/06,00:23:13.0,24.968

11/07/06,01:23:13.0,24.968

11/07/06,02:23:13.0,24.944

11/07/06,03:23:13.0,24.919

11/07/06,04:23:13.0,24.919

11/07/06,05:23:13.0,24.919
11/07/06,06:23:13.0,24.944
11/07/06,07:23:13.0,24.992
11/07/06,08:23:13.0,24.992
11/07/06,09:23:13.0,24.919
11/07/06, 10:23:13.0, 25.089
11/07/06,11:23:13.0,25.21
11/07/06,12:23:13.0,25.234
11/07/06,13:23:13.0,25.258
11/07/06,14:23:13.0,25.258
11/07/06,15:23:13.0,25.283
11/07/06,16:23:13.0,25.307
11/07/06,17:23:13.0,25.331
11/07/06,18:23:13.0,25.331
11/07/06,19:23:13.0,25.331
11/07/06,20:23:13.0,25.331
11/07/06,21:23:13.0,25.337
11/07/06,22:23:13.0,25.331
11/07/06,23:23:13.0,25.283
11/08/06,00:23:13.0,25.258
11/08/06,01:23:13.0,25.258
11/08/06,02:23:13.0,25.258
11/08/06,03:23:13.0,25.307
11/08/06,04:23:13.0,25.355
11/08/06,05:23:13.0,25.307
11/08/06,06:23:13.0,25.331
11/08/06,07:23:13.0,25.38
11/08/06,08:23:13.0,25.355
11/08/06,09:23:13.0,25.428
11/08/06,10:23:13.0,25.404
11/08/06,11:23:13.0,25.428
11/08/06,12:23:13.0,25.404
11/08/06,13:23:13.0,25.428
11/08/06,14:23:13.0,25.428
11/08/06,15:23:13.0,25.404
11/08/06, 16:23:13.0, 25.404
11/08/06,17:23:13.0,25.428
```

```
DeviceNum 810765 -
                                                       ExportDate 11_14_06 17_02_06.txt
 11/08/06,18:23:13.0,25.428
11/08/06,19:23:13.0,25.428
11/08/06,20:23:13.0,25.404
11/08/06,21:23:13.0,25.38
 11/08/06,22:23:13.0,25.404
 11/08/06,23:23:13.0,25.404
 11/09/06,00:23:13.0,25.404
11/09/06,01:23:13.0,25.428
11/09/06,02:23:13.0,25.38
11/09/06,03:23:13.0,25.38
11/09/06,04:23:13.0,25.355
11/09/06,05:23:13.0,25.404
11/09/06,06:23:13.0,25.428
11/09/06,07:23:13.0,25.477
11/09/06,08:23:13.0,25.477
11/09/06,09:23:13.0,25.428
11/09/06, 10:23:13.0, 25.453
11/09/06,11:23:13.0,25.428
11/09/06,11:23:13.0,25.426
11/09/06,12:23:13.0,25.428
11/09/06,13:23:13.0,25.428
11/09/06,14:23:13.0,25.453
11/09/06,15:23:13.0,25.477
11/09/06,17:23:13.0,25.477
11/09/06,17:23:13.0,25.453
11/09/06, 18:23:13.0, 24.823
11/09/06, 19:23:13.0, 24.195
11/09/06,20:23:13.0,23.785
11/09/06,21:23:13.0,23.4
11/09/06,22:23:13.0,23.184
11/09/06,23:23:13.0,23.04
11/10/06,00:23:13.0,22.944
11/10/06,01:23:13.0,22.848
11/10/06,02:23:13.0,22.776
11/10/06,03:23:13.0,22.753
11/10/06,04:23:13.0,22.705
11/10/06,05:23:13.0,22.633
11/10/06,06:23:13.0,22.633
11/10/06,07:23:13.0,22.633
11/10/06,08:23:13.0,22.896
11/10/06,09:23:13.0,24.267
11/10/06, 10:23:13.0, 24.823
11/10/06,11:23:13.0,25.162
11/10/06,12:23:13.0,25.307
11/10/06,13:23:13.0,25.38
11/10/06,14:23:13.0,25.38
11/10/06,15:23:13.0,25.404
11/10/06, 16:23:13.0, 25.331
11/10/06,17:23:13.0,25.234
11/10/06, 18:23:13.0, 25.331
11/10/06, 19:23:13.0, 25.38
11/10/06,20:23:13.0,25.501
11/10/06,21:23:13.0,25.38
11/10/06,22:23:13.0,25.404
11/10/06,23:23:13.0,25.38
11/11/06,00:23:13.0,25.355
11/11/06,01:23:13.0,25.307
11/11/06,02:23:13.0,25.283
11/11/06,03:23:13.0,25.307
11/11/06,04:23:13.0,25.283
11/11/06,05:23:13.0,25.307
11/11/06,06:23:13.0,25.307
11/11/06,07:23:13.0,25.355
11/11/06,08:23:13.0,25.38
```

```
DeviceNum 810765
                                                           ExportDate 11_14_06 17_02_06.txt
 11/11/06,09:23:13.0,25.404
 11/11/06, 10:23:13.0, 25.404
 11/11/06, 11:23:13.0,25.453
11/11/06, 12:23:13.0,25.477
11/11/06, 13:23:13.0,25.501
11/11/06, 14:23:13.0,25.501
 11/11/06,15:23:13.0,25.55
 11/11/06,16:23:13.0,25.598
 11/11/06,17:23:13.0,25.574
 11/11/06, 18:23:13.0, 25.525
 11/11/06,19:23:13.0,25.55
11/11/06, 20:23:13.0, 25.55
11/11/06, 21:23:13.0, 25.525
11/11/06, 22:23:13.0, 25.525
11/11/06, 23:23:13.0, 25.574
11/12/06, 00:23:13.0, 25.55
 11/12/06,01:23:13.0,25.525
11/12/06,02:23:13.0,25.525
 11/12/06,03:23:13.0,25.574
 11/12/06,04:23:13.0,25.55
 11/12/06,05:23:13.0,25.598
 11/12/06,06:23:13.0,25.623
 11/12/06,07:23:13.0,25.647
11/12/06,08:23:13.0,25.647
11/12/06,09:23:13.0,25.671
11/12/06,10:23:13.0,25.647
11/12/06,11:23:13.0,25.598
11/12/06,12:23:13.0,25.598
11/12/06,13:23:13.0,25.574
11/12/06,14:23:13.0,25.598
11/12/06,15:23:13.0,25.598
11/12/06,16:23:13.0,25.55
11/12/06,17:23:13.0,25.55
11/12/06,18:23:13.0,25.55
11/12/06, 19:23:13.0,25.55
11/12/06, 20:23:13.0,25.501
11/12/06, 21:23:13.0,25.453
11/12/06, 22:23:13.0,25.453
11/12/06,23:23:13.0,25.477
11/13/06,00:23:13.0,25.525
11/13/06,01:23:13.0,25.501
11/13/06,02:23:13.0,25.525
11/13/06,03:23:13.0,25.501
11/13/06,04:23:13.0,25.501
11/13/06,05:23:13.0,25.501
11/13/06,06:23:13.0,25.623
11/13/06,07:23:13.0,25.598
11/13/06,08:23:13.0,25.598
11/13/06,09:23:13.0,25.598
11/13/06,10:23:13.0,25.574
11/13/06,11:23:13.0,26.256
11/13/06,12:23:13.0,26.5
11/13/06,13:23:13.0,26.475
11/13/06,14:23:13.0,26.134
11/13/06,15:23:13.0,25.939
11/13/06,16:23:13.0,25.647
11/13/06,17:23:13.0,25.501
11/13/06,18:23:13.0,25.38
11/13/06,19:23:13.0,25.331
11/13/06,20:23:13.0,25.355
11/13/06,21:23:13.0,25.428
11/13/06,22:23:13.0,25.404
11/13/06,23:23:13.0,25.283
```

```
DeviceNum 810765 - ExportDate 11_14_06 17_02_06.txt  
11/14/06,00:23:13.0,25.331  
11/14/06,01:23:13.0,25.385  
11/14/06,03:23:13.0,25.38  
11/14/06,05:23:13.0,25.355  
11/14/06,06:23:13.0,25.355  
11/14/06,06:23:13.0,25.428  
11/14/06,08:23:13.0,25.428  
11/14/06,09:23:13.0,25.404  
11/14/06,09:23:13.0,25.404  
11/14/06,10:23:13.0,25.477  
11/14/06,11:23:13.0,25.477  
11/14/06,11:23:13.0,23.328  
11/14/06,11:23:13.0,22.585  
11/14/06,13:23:13.0,22.585  
11/14/06,15:23:13.0,21.963  
11/14/06,15:23:13.0,21.915  
11/14/06,16:23:13.0,22.154
```

# APPENDIX D

L. plumulosus TIE Raw Data Sheets

Test Description: Ba	eline	Species: L. plumulosus	
		Age: 2-4mm	
Test Start Date & Tin	ne: 11/3/06; 2130	Animal Source: ARO	
Client: CDR	Job #: 26-349	Test Volume: 100mL	Test Temp: 25±1°C
Sample Information of	or ID:	Dilution Water: Manasquan	

Conc							Counts					
% Effluent	0	(i) 24	(2) 48	(#) 72	(4) 96	120	(6) 144	168	(g) 192	(9) 214	240	
hon A	10	10	10	10	q'	8'	8	8	8	7'	34	
В	10	10	10	10	10	10	10	10	10	6+	33	
С	10	10	10	10	10	10	10	10	10	37	12	
C 6 251. A	10	10	10	10	10	g2	8	8	8	8	8	
В	10	10	10	10	10	10	10	10	802	8	7'	
C	10	10	10	10	10	82	8	8	7'	52	4	
-6 1001. A	10	10	10	10	10	10	10	10	10	10	9'	
В	10	10	10	10	9'	9	9	9.	72	6'	6	
C	10	10	10	10	10	9'	9	9	9	q	9	
7 251. A	1.0	10	10	10	10	10	10	10	9'	8'	53	
B	10	10	10	10	10	10	10	10	9'	81	62	L
С	10	10	10	10	10	10	10	10	82	62	5/1	
C·7  wj.A	10	10	10	10	82	7'	7	7	7	7	6	
В	10	10	10	10	10	82	8	8	l ²	5'	4'	
С	10	10	10	10	10	9'	9	9	9	9	8'	
Initials/ Date	11/3/06	A 11/4/00	Trojas	Lulida	711/7/d	11/8/06	11/4/00	In/10/00	Tululow	PMIM	Anlister	

# 349B0.DAT

	DateTime	Temp	SpCond	Salinity	DO Conc	рН
	M/D/Y	С	uS/cm	ppt	mg/L	
ocon	11/03/06 15:29:40	24.16	39686.0	25.32	6.65	8.03
166251.	11/03/06 15:30:29	24.09	39531.0	25.21	6.61	7.97
	11/03/06 15:31:16	24.11	39439.0	25.14	6.55	7.86
3C-7251	11/03/06 15:33:22	24.01	39417.0	25.13	6.56	7.80
407 ice1.	11/03/06 15:37:05	24.91	39187.0	24.95	6.28	7.39

Project #: 26.34	Test type: ☐ Bioaccumulation ☐ Solid Phase ☐ SPP ☐ OTHER: 118	Date: 11/3/06
Species:   A. abd	lita 🛮 M. bahia 🗘 M. beryllina 🗘 M. nasuta 🗘 N. virens 🖢 OTHER: 🗘 🔎	Day of Study:
	RANGE: Check if OK	Meter Used:
Temperature:	□ 12-14°C □ 18-22°C 1 24 - W °C	Blue 🗆
Salinity:	□ 26 –30 ppt □ 28 –32 ppt 位 <u>33 – 27</u> ppt	Red 🗆
Dissolved Oxyger	n: 0 >4.0 mg/L	Green D
pH:	□ 7.3 to 8.3 □6.0 to 9.0 □ to	
Actions taken:		
-a.Nov.03.17.02	2:51:2006 -	Page 1 of 1

Test Description: 7	Trio	Species: L. plumulosus	
		Age: 2-4mm	
Test Start Date & Tin	ne: 11/3/06; 2145	Animal Source: ARO	
Client: CDR	Job #: 26-349	Test Volume: 100mL	Test Temp: 25±1°C
Sample Information of	or ID:	Dilution Water: Manasqua	າກ

Conc				<del></del>	•	Daily	Counts					
Effluent	0	(1)	(2)	(යි) 72	(4) 96	(5) 120	144	168	(6) 192	(A) 2/4	(10) 240	
con A	10	10	10	730	52	32	03	-	- / FX	·-	-	
В	10	10	q'	9.	8,	7	3+	03	_	_	_	
С	10	10	q'	630	5'	4	04	_	_	_	_	
251. A	10	10	q'	9	9	9	8'	g	8	8	7'	
<b>L</b> B	_10	10	q'	8'	g	8	8	7'	7	52	32	
С	10	10	10	q'	9	9	9	9	9	9	$\dot{y}^3$	
100/. A	10	0'0									_	
В	10	19	0'								_	
C	10	19	0'								_	
1-7 251. A	10	10	q'	. 9	9	9	9	9	9	72	6	
В	Jυ	10	9'	1 ³	b	6	U_	6	5'	5	4'	
С	10	10	9'	540	5	4	4	4	4	4	3'	
?.7/001. A	10	10	9'	$\theta^q$	-			<u> </u>		_	_	
B	10	10	9'	36	_0°						-	
С	10	10	82	26	02							
Initials/ Date	ने गर्ने वर्ष	Aulita	Hilsla	<i>Antofow</i>	21/1/0	7.48/06	Tupke	Anfrofou	And Mac	Tulista	Inlista	

ONO bedus prisent may have digraded a later of whole to a Orly I dead body present of 1/h/do

# 349T0.DAT

	DateTime	Temp	SpCond	Salinity	DO Conc	рН
	M/D/Y	С	uS/cm	ppt	mg/L	
own .	11/03/06 16:11:00	24.21	39296.0	25.04	6.71	8.04
10625/	11/03/06 16:11:42	24.25	39474.0	25.16	6.66	7.96
2 100/	11/03/06 16:12:44	24.16	39260.0	25.01	6.34	7.79
3 ^{C7} 25 ⁻ /	11/03/06 16:15:14	24.01	39293.0	25.04	6.61	7.86
4 1007	11/03/06 16:16:40	24.06	38979.0	24.82	6.51	7.51

		-Thio	i i
Project #: db 34	Test type: ☐ Bioaccumulation ☐ Solid Phase ☐ SPP ☐ OTHER:	<u>.                                    </u>	Date: 11306
Species:   A. aba	lita 🛮 M. bahia 🗘 M. beryllina 🗘 M. nasuta 🗘 N. virens 🖢 OTHER: 📙 🧘	Day	y of Study:
OPERATIONAL	RANGE: Check if OK	Meter	Used:
Temperature:	□ 12 - 14 ° □ 18 - 22 ° □ □ <u>14 - 16</u> °	Blue	
Salinity:	$\Box$ 26 –30 ppt $\Box$ 28 –32 ppt $\dot{\Box}$ $\dot{\Box}$ $\dot{\Box}$ $\dot{\Box}$ ppt	Red	
Dissolved Oxyger	n: 🖸 >4.0 mg/L   🖸 > mg/L	Green	b
pH:	□ 7.3 to 8.3 □6.0 to 9.0 □ to		
Actions taken:			
Fri Nov:03 17:0	2:35.2006		Page 1 of 1,

Test Description: EDTA						
		Age: 2-4mm				
Test Start Date & Time: 11	13/06; 2200 2150 H	Animal Source: ARO				
Client: CDR	Job #: 26-349	Test Volume: 100mL	Test Temp: 25±1°C			
Sample Information or ID:		Dilution Water: Manasquan				

Conc						Daily	Counts	 			
% Effluent	0	(1)	(2)	(3) 72	(4) 96	(S) /20					
3on A	10	10	10	ist.	00	_					
В	10	10	10	64	15	0'					
С	10	10	10	64	24	02					
1-6 25/ A	10	. 10	73	ju	0'	<u> </u>					
В	10	10	4	24	02	_					
CC	10	10	64	15	0'	<del> </del>			<u> </u>		
100% A	10	10	0'0								
В	10	10	010								
C	10	10	19	0'							
37 25/ A	10	10	73	25	02	_				-	
B	10	10	82	17	0'		· 	 }			:
C	10	10	73	14	0'						
?.7 1001. A	10	10	64	24	12			 			
B	10	10	10	0'0				 <u> </u>		*	
С	10	10	82	17	0'			<u></u>			
Initials/ Date	71/2/06	Ald How	711406	Milidou	Ant pla	Antolor					

### 349E0.DAT

	DateTime	Temp	SpCond	Salinity	DO Conc	рН
	M/D/Y	С	uS/cm	ppt	mg/L	
0	11/03/06 16:21:12	24.30	38541.0	24.50	6.74	3.94
1	11/03/06 16:24:15	24.32	39227.0	24.99	6.83	6.28
2	11/03/06 16:25:48	24.28	38075.0	24.18	6.63	4.47
3	11/03/06 16:28:22	24.28	39102.0	24.90	6.91	5.95
4	11/03/06 16:29:41	24.22	37918.0	24.07	6.68	4.26

pH ordjust ments.

Con 49 drops NaOH = pH 8.2; adjusted of ~5drops HCL > pH 7.9

Con 49 drops NaOH > pH 7.8

1001 - 24 drops NaOH > pH 7.8

C-7 251 - 3 drops NaOH > pH 8.0

0-7 251 - 3 drops Na OH -> PH 8.0 1001 - 33 drops Na OH -> PH 7.6 of 1/406

¥

Project #:	Test type: ☐ Bioaccumulation ☐ Solid Phase ☐ SPP ☐ OTHER:	Date:
Species: □ A. aba	lita 🗆 M. bahia 🗆 M. beryllina 🗅 M. nasuta 🗀 N. virens 🗆 OTHER:	Day of Study:
OPERATIONAL	RANGE: Check if OK	Meter Used:
Temperature:	□ 12 –14 °C □ 18 –22 °C □ – °C	Blue 🗆
Salinity:	□ 26 –30 ppt □ 28 –32 ppt □ ppt	Red □
Dissolved Oxyge	n: □ >4.0 mg/L □ > mg/L	Green 🗆
pH:	□ 7.3 to 8.3 □6.0 to 9.0 □ to	
Actions taken:		
	·	

Fri Standev 2a0 9n 2s4 non ag 9 street 🗆

Pagitials of 1

# 349E20.DAT

	DateTime	Temp	SpCond	Salinity	DO Conc	рН
	M/D/Y	С	uS/cm	ppt	mg/L	
00	ይባ 11/03/06 21:10:26	24.32	38638.0	24.57	6.32	7.85
10	^l 25 / 11/03/06 21:16:30	24.04	39677.0	25.31	6.31	7.24
2	/0º/. 11/03/06 21:17:12	24.13	38828.0	24.71	6.29	7.77
$3^{C}$	^{.7} <i>251</i> . 11/03/06 21:18:32	24.11	39601.0	25.26	6.30	7.98
4	/@/11/03/06 21:19:22	24.10	38553.0	24.52	6.37	7.60

70	EDTA
Project #: <u>M-349</u> Test type: □ Bioaccumulation □ Solid Phase □ SPP ☑ OTHER: <u>77</u> E	Date: <u>///3/06</u>
Species:   A. abdita   M. bahia   M. beryllina   M. nasuta   N. virens   OTHER:   Lp.	Day of Study:
OPERATIONAL RANGE: Check if OK	Meter Used:
Temperature: □ 12 -14 °C □ 18 -22 °C □ 24 - 20 °C	Blue 🛘
Salinity: $\Box$ 26 –30 ppt $\Box$ 28 –32 ppt $\dot{\Box}$ $\dot{\Box}$ 23 – $\dot{\Box}$ ppt	Red □
Dissolved Oxygen: 🖰 >4.0 mg/L 🖂 > mg/L	Green
pH:   □ 7.3 to 8.3 □6.0 to 9.0 □ to to	
Actions taken:	
Sat Nov 04 10:57:15 2006	Page 1 of 1 ,

Test Description:	0.45	Species: L. plumulosus				
		Age: 2-4mm				
Test Start Date & Tin	ne: 11/3/06; 2230 2200 M	Animal Source: ARO				
Client: CDR	Job #: 26-349	Test Volume: 100mL	Test Temp: 25±1°C			
Sample Information o	r ID:	Dilution Water: Manasqua	n			

Conc			· · · ·	· · · · · ·		Daily	Counts			 ·	
% Effluent	0	24	48	72	96	120	ifit		} }	 	
700 A	. 10	10	10	46	0+	_					
В В	10	10	10	55	05						
С	10	10	q'	5-67	0.5		_				
C.6 25! A	10	10	10	55	15	_					
В	10	10	10	55	05		_				
C	10	10	82	53	05		_				
1.6 /00/. A	10	10	73	07							
B	10	10	10	010							
·C	10	10	64	00						 	
7 d5/ A	10	10	9'	72	52	1+	0'				
. в	10	10	9'	8'	4+	22	02	<u> </u>			
C	10	10	10	73	6	24	02		! !		
07/01 A	10	10	10	37	13						
В	10	10	10	82	08		_			 	
C	10	10	82	53	0.5						
nitials/ Date	Infact	Adda	Antofol	11/1/06	1/11/06	11/8/04	Tulalei				

### 349450.DAT

	DateTime	Temp	SpCond	Salinity	DO Conc	рН
	M/D/Y	С	uS/cm	ppt	mg/L	
0	11/03/06 16:37:40	24.51	38547.0	24.50	6.56	3.93
1	11/03/06 16:39:27	24.47	39206.0	24.97	6.95	6.01
2	11/03/06 16:40:32	24.35	38229.0	24.28	6.45	4.41
3	11/03/06 16:42:50	24.22	38951.0	24.80	6.86	5.76
4	11/03/06 16:44:48	24.30	38044.0	24.15	6.07	4.23

pH adjust nerts:

Con - 55 drops NaOH -> pH 82, adjusted w/ 5drops HCL -> pH 7.7

Col 25/ - 3 drops NaOH -> pH 8.0

1001. - 19 drops NaOH -> pH 7.8

Con - 55 drops NaOH -> pH 7.8

Con - 55 drops NaOH -> pH 7.6

1001. - 29.5 drops NaOH -> pH 7.4

Mulsia

Project #:	Test type: □ Bioaccumulation □ Solid Phase □ SPP □ OTHER:	Date:
Species: \( \sigma A. \ above	dita 🗆 M. bahia 🗆 M. beryllina 🗆 M. nasuta 🗆 N. virens 🗆 OTHER:	Day of Study:
OPERATIONAL	L RANGE: Check if OK	Meter Used:
Temperature:	□ 12 –14 °C □ 18 –22 °C □ – °C	Blue □
Salinity:	□ 26 –30 ppt □ 28 –32 ppt □ ppt	Red □
Dissolved Oxyge	en: □ >4.0 mg/L □ > mg/L	Green 🗆
рН:	□ 7.3 to 8.3 □6.0 to 9.0 □ to	
Actions taken:		

Fri \$\frac{1}{20}\text{in} = \frac{1}{20}\text{in} \frac{1}{20} = \frac{1}{20}\text{in} \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}

Planteals: of 1

# 4520.DAT

DateTime	Temp	SpCond	Salinity	DO Conc	рН
M/D/Y	С	uS/cm	ppt	mg/L	
o (en 11/03/06 21:25:07	24.24	39014.0	24.84	6.25	7.73
<b>1</b> % 25 1 11/03/06 21:28:17	24.37	39821.0	25.41	6.24	7.84
<b>2</b> (% 10% 11/03/06 21:29:24	24.33	38892.0	24.75	6.15	7.90
<b>3</b> 67 ²⁵ 1. 11/03/06 21:30:29	24.31	39724.0	25.34	6.13	7.72
407 1001-11/03/06 21:31:12	24.34	38380.0	24.39	6.17	7.79

•	·
Project #: <u>11-349</u> Test type:   Bioaccumulation   Solid Phase   SPP  OTHER:   OTHER:	E- 0.45 Date: 11/3/50
Species:   A. abdita   M. bahia   M. beryllina   M. nasuta   N. virens   OTHER:   L	
OPERATIONAL RANGE: Check if OK	Meter Used:
Temperature: □ 12 -14 °C □ 18 -22 °C □ <u>14 - 16 °</u> C	Blue 🗆
Salinity: $\Box$ 26 -30 ppt $\Box$ 28 -32 ppt $\Box$ $\underline{23}$ - $\underline{27}$ ppt	Red 🗆
Dissolved Oxygen: 🗓 >4.0 mg/L 🖂 > mg/L	Green 🖞
pH:	
Actions taken:	
Sat Nov 04 10:56:42 2006.	Page 1 of 1 4
See de Varion Summary sheet	matrais:

D-9

Test Description: C-	/8	Species: L. plumulosus	
,		Age: 2-4mm	
Test Start Date & Tim	ne: 11/3/06; 2245	Animal Source: ARO	·
Client: CDR	Job #: 26-349	Test Volume: 100mL	Test Temp: 25±1°C
Sample Information o	r ID:	Dilution Water: Manasqua	an

Conc						Daily	Counts	 <del></del>		
% Effluent	0	(1)	(2)	(ය) 72	(4) 96	(5) KLO	(U) 144			
Jon A	10	/0	10	82	08		_			
В	10	10	10	46	22	02	-			
С	10	10	9'	45	10	0'	_			
25/. A	10	10	10	64	10		-		,	
В	10	10	10	55	15		-			
C	10	10.	10	37	A512	0'				
C-6 1001. A	10	10	9'	27	12	· <del>-</del>				
<b>■</b> B	10	10	9'	09						
c	10	10	9'	19						
1-7 251. A	10	10	10	55	F	1+	0'			
В	10	10	10	37	2'	02	_	 		
C	10	10	10	55	32	03				
27/01. A	10	10	10	28	12		_	 		
ВВ	10	10	9'	15	0+		. –	 		
С	10	10	9'	72	25	02				
Initials/ Date	Ansja	11/4/06	Mulda	71/4/06	मृता-निष	7.1/8/x	11/9/12			

### 349C180.DAT

DateTime	Temp	SpCond	Salinity	DO Conc	рН
M/D/Y	С	uS/cm	ppt	mg/L	
<b>o</b> Con 11/03/06 22:01:16	24.33	38755.0	24.65	6.34	7.82
106 251 11/03/06 22:02:49	24.19	39454.0	25.15	6.33	7.92
<b>2</b> C-ს l [®] I 11/03/06 22:03:26	24.25	38693.0	24.61	6.28	7.68
3 C-7351. 11/03/06 22:05:12	24.11	39238.0	25.00	6.37	8.00
407 1001-11/03/06 22:06:10	24.23	38146.0	24.23	6.37	7.70

pH adjust nexts: made prior to mix out

Con: initial pH = 3.9, added 50 drops NaOH > pH 8.2, readjusted with HCL >pH;

Con: initial pH = 44, added 215 drops NaOH > pH 7.7

C-7 - initial pH = 4.2, added 21 drops NaOH > pH 7.7

Mil/3/06

Project #: <u> </u>	49 Test type: □ Bioaccumulation □ Solid Phase □ SPP ₺ OTHER: 🗍	E- Date: 11/2/17.
	dita 🛮 M. bahia 🗘 M. beryllina 🗘 M. nasuta 🗘 N. virens 🖟 OTHER: 📙	
OPERATIONAL	RANGE: Check if OK	Meter Used:
Temperature:	□ 12-14°C □ 18-22°C 10 <u>24</u> - <u>Ale</u> °C	Blue 🗆
Salinity:	□ 26 – 30 ppt □ 28 – 32 ppt	Red □
Dissolved Oxyge	m: D >4.0 mg/L D > mg/L	Green 🖟
pH:	□ 7.3 to 8.3 □6.0 to 9.0 □ to	
Actions taken:		•
Sat Nov 04 10 5	55:35 2006 ninary sheet D	Page 1 of 1

D-11

Test Description: DI	17	Species: L. plumulosus	
/		Age: 2-4mm	
Test Start Date & Tin	ne: 11/3/06; 2330	Animal Source: ARO	
Client: CDR	Job #: 26-349	Test Volume: 100mL	Test Temp: 25±1°C
Sample Information of	r ID:	Dilution Water: Manasqua	ນາ

Conc					<del></del>		Counts	 		 
% Effluent	0	(1) 24	(2)	(3) 72	(4) 96	120				
30M A	10	10	10	3	14	0'			<u> </u>	
В	10	10	10	10	19	0'				
С	10	10	10	46	1 pt					
2.6 25! A	10	10	10	73	07	_				
В	10	10	10	46	04					
С	10	10	10	82	17	0'				! L
C.6 1001. A	10	10	82	D8	_					
В	10	10	10	010				 		 
cc	10	10	10	010						
27 15/ A	10	10	10	15	42	04		 		
B	10	10	9'	54	4	0+				
C	10	10	10	64	33	03		 		
?7/101. A	10	10	10	46	13	0'		 		 
ВВ	10	10	10	64	1/2	04		 		
С	10	10	10	64	2+	02				
Initials/ Date	¶n/s/a	11/4/12	7/1/2/16		1/1/1/00	74/8/04				

# 349PH70.DAT

	DateTime	Temp	SpCond	Salinity	DO Conc	рН
	M/D/Y	С	uS/cm	ppt	mg/L	
0 0	²⁰⁷ 11/03/06 22:56:54	24.49	38660.0	24.58	6.62	7.31
1-	<del>11/03/06 22:57:19</del>	24.55	18009.0	10.64	7.08	7.30
200	ل لا ما ما 1/03/06 22:58:29	25.22	39359.0	25.06	6.42	7.77
300	, /@ [/] . 11/03/06 22:59:55	24.26	38688.0	24.61	6.66	7.08
4 C.	7 - 25/11/03/06 23:01:11	24.84	39057.0	24.86	6.23	7.84
5 C	7 / <i>\alpha</i> /11/03/06 23:03:18	24.46	38413.0	24.41	6.56	7.32

O Diongard; remad Chamber of 11/3/06

	PH7
Project #: <u>Ab 349</u> Test type: □ Bioaccumulation □ Solid Phase □ SPP □ OTHER: <u>TlE</u>	Date: 11/3/00
Species:   A. abdita   M. bahia   M. beryllina   M. nasuta   N. virens   OTHER:   OTHER:	Day of Study:
OPERATIONAL RANGE: Check if OK	Meter Used:
Temperature: □ 12 – 14 °C □ 18 – 22 °C □ <u>34 – 26 °</u> C	Blue 🗆
Salinity: $\Box$ 26 –30 ppt $\Box$ 28 –32 ppt $\dot{\Box}$ $\underline{23}$ – $\underline{27}$ ppt	Red □
Dissolved Oxygen: 🗓 >4.0 mg/L 🗆 > mg/L	Green 🖞
pH:	
Actions taken:	

Test Description: 0/	19	Species: L. plumulosus	
7		Age: 2-4mm	
Test Start Date & Tin	ne: 11/3/06; 2350	Animal Source: ARO	
Client: CDR	Job #: 26-349	Test Volume: 100mL	Test Temp: 25±1°C
Sample Information of	т ID:	Dilution Water: Manasqua	ın

Conc	·	<del></del>	<del></del>			Daily	Counts				<del></del>	
% Effluent	<u> </u>	(1)	(2)	(3)	(4)	(5)	144	T	T	Ţ	T	Γ
· '	0	24	48	72	96	120	144			<u> </u>		
Con A	10	10	10	64	00			<u> </u>			<u> </u>	
В	10	10	10	55	05	-			_	1		
C	10	10	10	6+	10	_						
?.6 25/. A	10	10	9'	36	12	0'						
В	10	10	10	19	0'	_						
С	10	10	10	73	07	_		_				
06 1001 A	10	10	10	19	0'	_	_					
В	10	10	10	010	_	_						
C	10	10	10	19	0'		_					
2-7 25/ A	10	10	82	44	4	اخرا	0'	·				
В	10	10	82	62	U	00						
С	10	10	16	13	. /	0'	_					
27 /0/A	10	10	46	04	_	_						
В	10	10	73	07								
С	10	10	14	Ot		_	_					
Initials/ Date	त्री <i>।।[सु</i> व्य	Author	Justa	1114r	11/1/20	Tulsfor	11/9/26					

# 349PH90.DAT

DateTime	Temp	SpCond	Salinity	DO Conc	рН
M/D/Y	С	uS/cm	ppt	mg/L	
<b>o</b> Con 11/03/06 23:05:34	24.19	38372.0	24.39	6.42	8.91
<b>1</b> Cb 25/ 11/03/06 23:06:58	24.79	39359.0	25.07	6.17	8.24
<b>2</b> Cu /07, 11/03/06 23:07:42	24.12	38548.0	24.51	6.53	8.92
<b>3</b> (-7 25). 11/03/06 23:08:47	24.58	39336.0	25.06	6.16	8.20
4 ( 7 l∞l 11/03/06 23:09:42	24.03	38415.0	24.42	6.54	8.82

Project #: <u> </u>	Test type:  Bioaccumulation  Solid Phase  SPP OTHER:	- ph 9 Date: <u>11/3/8V</u>
	lita $\Box$ M. bahia $\Box$ M. beryllina $\Box$ M. nasuta $\Box$ N. virens $\Box$ OTHER: $\bot \rho$ .	•
	RANGE: Check if OK	Meter Used:
Temperature:	□12-14°C □18-22°C □ <u>14</u> - <u>16</u> °C	Blue · □
Salinity:	$\square$ 26 –30 ppt $\square$ 28 –32 ppt $\square$ $25$ – $27$ ppt	Red □
Dissolved Oxyger	n: 🗓 >4.0 mg/L 🖸 > mg/L	Green 🖟
pH:	□ 7.3 to 8.3 □6.0 to 9.0 □ to	
Actions taken:		
Sat Nov: 04.10:5	6:21.2006 ₁	Page 1 of 1.

Test Description: ///	Va.	Species: L. plumulosus			
		Age: 2-4mm			
Test Start Date & Tin	ne: <del>11/3/06;</del> 11/4/06; 1440	Animal Source: ARO			
Client: CDR	Job #: 26-349	Test Volume: 100mL	Test Temp: 25±1°C		
Sample Information of	от ID:	Dilution Water: Manasqua	n		

Conc	ļ					Daily	Counts	 			
_   % Effluent	0	(1) 24	(2)	(3) 72	(4) 96	(5) 120					
1 700 A	10	10	82	44	04	-			<del> </del>	<u> </u>	
В	10	10	14	15	0.	_					
C	10	10	55	1+	/	0'					
10.6 A	10	10	82	53	14	0'				· · · · · · · · · · · · · · · · · · ·	
В	10	10_	73	34	03	_		·			
С	10	10	73	25	2	02					
1001.A	10	10	64	42	0+	_					
В	10	10	16	22	02	_					
<u> </u>	10	10	6+	2#	02						
25:1. A	10	10	73	43	22	02					
B	10	10	82	.4	0+	_					
С	10	10	82	44	22	02					
2.7 /(0). A	10	10	6	24	D2						
В	10	10	82	53	05			 			
С	10	10	37	/-	0'						
Initials/ Date	Anha.	Antolog	71/466	211/100	71/8/06	11/9kg					

### 349U0.DAT

DateTim	e Temp	SpCond	Salinity	DO Conc	рН
M/D/Y	С	uS/cm	ppt	mg/L	
<b>o</b> Con 11/04/06 16:		20 39452.0	25.15	5.35	7.33
104/06 16:	28:05 24.	74 39163.0	24.94	6.33	7.79
26.4 1001. 11/04/06 16:	29:18 24.8	39541.0	25.20	5.74	7.34
<b>3</b> <i>(</i> ?7 <i>35)</i> . 11/04/06 16:	30:40 24.	71 39089.0	24.88	6.15	7.79
407/01/11/04/06 16:	32:15 24.8	38935.0	24.77	6.28	7.52

pH adjustments: adjustments made prior to mix oud

Con - initial pH = 3.9; added 83 drops NaOH > pH 7.3

C-6 - initial pH = 4.4; added 20 drops NaOH > pH 7.3

C-7 - initial pH = 4.4; added 20 dops NaOH > pH. 7.5

Augustments:

adjustments made prior to mix oud

Augustments

adjustments

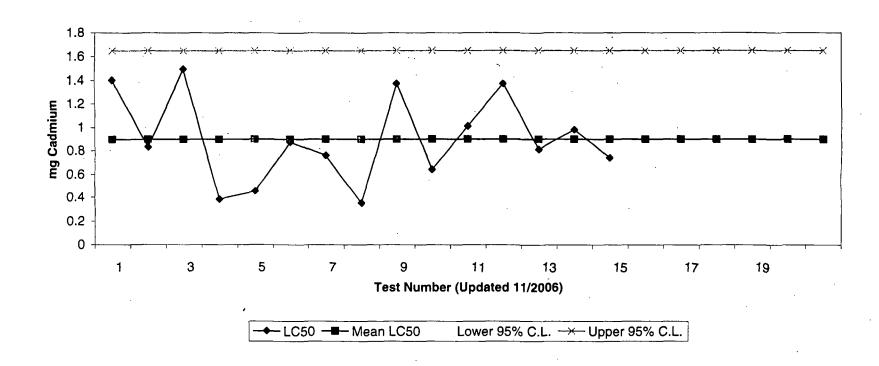
adjustments

made prior to mix oud

Augustments

pH 7.3

C-6 - initial pH = 4.4; added 20 dops NaOH > pH. 7.5


Augustments

adjustments

adjustmen

Project #: 26.349 Test type:   Bioaccumulation   Solid Phase   SPP   OTHER: 178-	UlVa_ Date: 11/4/06
Species:   A. abdita   M. bahia   M. beryllina   M. nasuta   N. virens   OTHER:   L. p.	
OPERATIONAL RANGE: Check if OK	Meter Used:
Temperature: □ 12 -14 °C □ 18 -22 °C □ <u>J</u> <u>J</u> <u>J</u> <u>U</u> °C	Blue 🗆
Salinity: □ 26 -30 ppt □ 28 -32 ppt □ <u>25</u> - <u>27</u> ppt	Red 🗆
Dissolved Oxygen: D >4.0 mg/L D > mg/L	Green b
pH:	·
Actions taken:	
Sun Nov 05 10:15:37 2006	Page 1 of 1
See deviation summary sheet	Initials: n/

### Control Chart LC50 Values, Acute SRT With L. plumulosus



Test: AC-Acute Fish Test

Species: LP-Leptocheirus plumulosus

Sample ID: REF-Ref Toxicant

Test ID: 26-349

Protocol: EPAA 91-EPA Acute

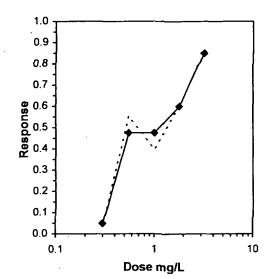
Sample Type: CDCL-Cadmium chloride

Complete No. 10.							cample Type. Obol Guarman Guoride			
Start Date: 11/3/2006 End Date: 11/7/2006					<i>171</i> 2006		Lab ID: ASI-Aqua Survey Inc.			
Pos	ID	Rep	Group	Start	24 hrs	48 hrs	72 hrs	96 hrs	Notes	
	1	1	Control	10	10	10	10	10	· · · · · · · · · · · · · · · · · · ·	
	2	2	Control	10	10	10	10	. 10		
	3	1	0.3	10	10	10	10	9		
	4	2	0.3	10	10	10	10	10		
	5	1	0.55	10	10	10	10	4		
	6	2	0.55	10	10	10	10	5		
	7	1	1.0	. 10	10	10	10	6		
	8	2	1.0	10	10	10	10	6		
	9	1	1.8	10	10	10	9	5		
	10	2	1.8	10	10	10	9	3		
	11	1	3.2	10	10	7	4	2		
	12	2	3.2	10	10	5	4	1		

Comments:

Reviewed by:

Page 1


				Acute Fish Test	-96 Hr Survival	
Start Date:	11/3/2006		Test ID:	26-349	Sample ID:	REF-Ref Toxicant
End Date:	11/7/2006		Lab ID:	ASI-Aqua Survey Inc.	Sample Type:	CDCL-Cadmium chloride
Sample Date:			Protocol:	EPAA 91-EPA Acute	Test Species:	LP-Leptocheirus plumulosus
Comments:				<u> </u>		
Conc-mg/L	1	2				
Control	1.0000	1.0000				
0.3	0.9000	1.0000		•		
0.55	0.4000	0.5000				
1	0.6000	0.6000				
1.8	0.5000	0.3000				
3.2	0.2000	0.1000		·		

Transform: Arcsin Square Root							Number	Total	
Conc-mg/L	Mean	N-Mean	Mean	Min	Max	CV%	N	Resp	Number
Control	1.0000	1.0000	1.4120	1.4120	1.4120	0.000	2	0	20
0.3	0.9500	0.9500	1.3305	1.2490	1.4120	8.661	2	1	20
0.55	0.4500	0.4500	0.7351	0.6847	0.7854	9.685	2	11	20
1	0.6000	0.6000	0.8861	0.8861	0.8861	0.000	2	8	20
1.8	0.4000	0.4000	0.6825	0.5796	0.7854	21.317	2	12	20
3.2	0.1500	0.1500	0.3927	0.3218	0.4636	25.550	2	. 17	20

Auxiliary Tests	Statistic	Critical	Skew	Kurt
Normality of the data set cannot be confirmed				
Face Physics and an experience of the second				

Equality of variance cannot be confirmed

Tri Lovel	EC50	0.59/	CI	Trimmed Spearman-Karber
Trim Level	EC50	95%	CL	<del></del>
0.0%				
5.0%				
10.0%				1.0
20.0%	0.9704	0.6685	1.4088	·
Auto-15.0%	0.9802	0.7049	1.3629	0.9



#### SRT

Prep sheet for Saltwater amphipod SRTs

#### **Stock Solution**

Add 250 milligrams of Cadmium chloride to 500 mL of Manasquan water. This will give you a 250 mg Cadmium/L stock solution.

3 replicates per concentration250 mL per replicate10 organisms per replicate

Ampelisca abdita
------------------

Concentration (mg/L)	Stock (mL)	Total (mL)		
0	0	750		
0.24	0.72	750	Salinity	28 +/- 2 ppt
0:48	1.44	750	Temp.	20 +/- 2 C
0.86	2.58	750		
1.5	4.5	750		
2.8	8.4	750		

### Eohaustorius estuarius

Concentration (mg/L)	Stock (mL)	Total (mL)	·
0	0	750	
2.5	7.5	750	Salinity 20 +/- 2 ppt
4.5	13.5	750	Temp. 15 +/- 2 C
8	24	750	
14.4	43. <b>2</b> .	750	
26	78	750	

### Leptocheirus plumulosus

Concentration (mg/L)	Stock (mL)	Total (mL)		
0	0	750		
0.3	<b>0.9</b>	750	Salinity	20 +/- 2 ppt
0.55	1.65	<b>750</b>	Temp.	25 +/- 2 C
1	3	750		
1.8	5.4	750		
3.2	9,6	750		

### Rhepoxinius abronius

Concentration (mg/L)	Stock (mL)	Total (mL)		
0	0	750		
1.2	3.€	750	Salinity	28 +/- 2 ppt
2.2	6-6	750	Temp.	15 +/- 2 C
4	12:	750		
7.2	21.6	750		
13	39	750	•	

### Aqua Survey, Inc. 96-Hour Reference Toxicant Test

Client: <u>26-349</u>

Start Date:

Toxicant:

Cadmium Chloride

Start Time:

Species:

Lplumulesus

End Time:

1700

Test Volume: 750mL

Water Bath:

Sample		Live Counts	Counts			
Concentration (mg/L)	0 hours	24 hours	48 hours	72 hours	96 hours	
Control A	10	10	10	10	10	
Control B	10	10	10	. ( )	10	
Control C			·			
03 A	10	- 10	10	10	9	
<u>B</u>	10	10	10	10	10	
.55 A	10	10	10	10	46	
B	/0	10	10	10	55	
10 1	10	10	10	10	64	
В	10	10	10	10	6	
189	10	10	10	9'	54	
. 3	10	10	10	9'	3,8	
3.2.4	10	10	73	ų 3	2~	
В	10	10	53	4'	13	
- v						
Date/Initials	11/3/a. M	11/4/00 pf	11/5/04 M	ulthor	11/2/01/	

### AQUA SURVEY, INC.

# CULTURE ORGANISM DISTRIBUTION FORM

DATE: 11/3/06
TEST JOB #: 24 349 /SRT CLIENT: CDR
TEST LOCATION: IN-LAB [   ] FIELD [ ]
TEST SPECIES: L. plumulosus
TOTAL NUMBER ORGANSIMS TRANSFERRED: 2300+
AQUA SURVEY, INC. CULTURE LAB INVESTIGATORS:
A. <u>ORGANISMS</u>
1. ASI CULTURE/HOLDING UNIT: (1) 76 ty 10 gallon tank
2. RECEIVING LOG #: 21-189
3. CULTURE LOG #: <u>26 - 0/09</u>
4. AGE/ SIZE INFORMATION: 2-4 mm
B. HOLDING [ ] CULTURE [ ] WATER PARAMETERS
1. TEMPERATURE: 25,0°C
2. SALINITY: <u>13 2ppt</u>
3. WATER SOURCE: <u>Manasquan</u>
B. TRANSFER CUSTODY & TRANSFER
1. LIVESTOCK RELINQUISHMENT DATE: 11/3/06 TIME: 1500 BY: 4
2. LIVESTOCK RECEIVING  DATE:  III SOD  BY:  III SOD
3. CULTURE SUPERVISOR OR SENIOR TECH. INITIALS:
REMARKS:
· · · · · · · · · · · · · · · · · · ·

### AQUA SURVEY, INC. CULTURE DEPARTMENT GENERAL SPECIES STATUS LOG

Species: Lolamu locus Receiving [1] Culture [ ] Log	•	Dates: 11/1/06 - 11/4/06
Receiving [1] Culture [ ] Log	#: <u>U-089</u>	Initial Stock @: 2300+
Test Job #: 24-349	Client: CAR	Food Type: Qorp Stury
<del></del>		, 7 7 1

Date	Day Number	Temp/DO	NH ₂ /NO ₂	рН	(Sál) Hardness	Alkalinity	Mortality	Remarks/Initials
11/06	1 1150	14-6°C   40 Imple	0/0	6.9	18.5ppl	140	Ø	Started accumption
11/1/06	1 1600	18.0%/-		_				d
1/2/06	2 1930	1996/6.8	0/0	78	18.6ppt	120	Ø	Continued Occlum.
11/3/00	3 1850	22.98/7.1	0/0	7.8	20 Oppt 23 2ppt 24 5ppt	120		continued acc. of To ket of TIE/SET
11/3/06	2	25.08/_	0/0	7.9	23.2ppt	120	Ø	To ket of TRISET Fed gorp Sluny of TIE WAS
11/4/06	4	2414/72	0/0	7.8	24.5ppt	120	0	To kst of
	·							/'
	· .		·	· .				
						·		
							·	
				,				

#### AQUA SURVEY, INC. CULTURE DEPARTMENT

· COLICIE DELA	
Organism Receivi	ing Form
Receiving Log #: 26-189	Date:
Shipping Carrier: Fed EL	
Species: Lplumulosus	Number Shipped:
Livestock Source/ Shipper:	<u> </u>
ASI Order Ref. Date: 10/3/10/	ASI Order Ref. Initials:
Age/ Characteristics 24mm	
Taxonomic Verification Log #: 26 089	Date:
:	
Receiving Water Quality	ty Parameters
D.O: 40.1 mg/L Temp.: 146C	NH ₃ /NO _{2:} <u>0/0</u> pH: <u>6.9</u>
Salinity/ Hardness/8.5ppt	Alkalinity: 140
Water- Clear/ Cloudy	Container Size: (3) lallon Cubitaines
ICE: (YAN	Type of Packing: Synfoam Box
Observation/ Condition of Livestock: 1 gallon Sid	
Receiving Tech. Initials:	Supervisors Initials:



## Aquatic Research Organisms

### DATA SHEET

I.	Organism I	History
	Species:	Lepto chierus plunulasus
	Source:	Lab reared Hatchery reared Field collected
		Hatch date 10/06 Receipt date
		Lot number 103106 P Strain_
		Brood Origination Chesapeate Bay VA
II.	Water Qua	lity
		Temperature 2/°C Salinity 20 ppt DO S9T
		pH_8.0 Hardness ppm
III.	Culture Co	nditions
		System: So STATIC renewa
	·	Diet: Flake Food Phytoplankton Trout Chow
		Brine Shrimp Rotifers Other_GORP''
		Prophylactic Treatments:
		Comments: SEDMENT 4L
		2-4 mm
IV.	Shipping In	formation
		Client: AUAS URUSA # of Organisms: 2300
		Client: AQUAS URUSA # of Organisms: 2300 + Carrier: FED EX Date Shipped: 10/31/06
n: •	<b>' - 4</b> -	The taki
D1010	ogist:	GOYN SUMMER

1 - 800 - 927 - 1650

## SRT2LP0.DAT

	DateTime	Temp	SpCond	Salinity	DO Conc	рН
	M/D/Y	С	uS/cm	ppt	mg/L	
0	11/03/06 21:48:45	24.63	32955.0	20.60	6.33	7.93
1	11/03/06 21:49:24	24.50	32854.0	20.54	6.39	7.92
2	11/03/06 21:50:16	24.48	32904.0	20.57	6.50	7.91
3	11/03/06 21:50:37	24.44	32842.0	20.53	6.42	7.90
4	11/03/06 21:50:59	24.44	32850.0	20.53	6.38	7.90
5	11/03/06 21:51:18	24.41	32844.0	20.53	6.38	7.89

Project #: SKT	Test type: ☐ Bioaccumulation ☐ Solid Phase ☐ SPP ☐ OTHER: ————————————————————————————————————	<u> </u>	Date: 11/3/00
Species: □ A. abd	lita 🗆 M. bahia 🗆 M. beryllina 🗅 M. nasuta 🗀 N. virens 🗀 OTHER: Lf.	Day	y of Study:
	RANGE: Check if OK	Meter	
Temperature:	□12-14°C □18-22°C □14 - 16°C	Blue	d
Salinity:	□ 26 –30 ppt □ 28 –32 ppt □ <u>                                    </u>	Red	
Dissolved Oxyger	1: □ >4.0 mg/L $\Box$ > $\frac{3.6}{1.0}$ mg/L $\Box$ 7.3 to 8.3 $\Box$ 6.0 to 9.0 $\Box$ $\frac{7}{1.0}$ to $\frac{9}{1.0}$	Green	
pH:	$\Box$ 7.3 to 8.3 $\Box$ 6.0 to 9.0 $\Box$ 7 to 9		
Actions taken:			

## SRT2LP24.DAT

	DateTime	Temp	SpCond	Salinity	DO Conc	рН
	M/D/Y	С	uS/cm	ppt	mg/L	
0	11/04/06 12:03:42	25.23	33594.0	21.03	6.17	7.97
1	11/04/06 12:04:24	25.35	33546.0	21.00	6.25	7.97
2	11/04/06 12:04:45	25.35	33592.0	21.03	6.32	7.97
3	11/04/06 12:05:15	25.34	33578.0	21.02	6.34	7.97
4	11/04/06 12:05:47	25.32	33562.0	21.01	6.38	7.96
5	11/04/06 12:06:06	25.21	33489.0	20.96	6.42	7.96

	,		
Project #: <u>SR</u>	Test type: □ Bioaccumulation □ Solid Phase □ SPP □	OTHER: Acut 1	Date: 11/4/06
Species: □ A. aba	lita 🗆 M. bahia 🗆 M. beryllina 🗅 M. nasuta 🗇 N. virens 🕻	OTHER: Lp. Day	of Study His
	RANGE: Check if OK	Meter l	
Temperature:	□ 12 - 14 °C □ 18 - 22 °C □ <u>14</u> - <u>10</u> °C	Blue	
Salinity:	□ 26 –30 ppt □ 28 –32 ppt □ <u>          </u>	Red	0
Dissolved Oxyger	$a: \Box > 4.0 \text{ mg/L } \Box > 3 \psi \text{ mg/L}$	Green	2
pH:	□ 7.3 to 8.3 □ 0.0 to 9.0 □ to		
Actions taken:			
Sun Nov 05 10:	12:25 2006	P	age 1 of 1
See deviation sum	mary sheet []		Initials: //
			$D-\frac{C}{28}$

## SRT2L48.DAT

	DateTime	Temp	SpCond	Salinity	DO Conc	рН
	M/D/Y	С	uS/cm	ppt	mg/L	
0	11/05/06 10:08:51	25.01	33576.0	21.03	6.64	7.97
1	11/05/06 10:09:48	25.17	33414.0	20.91	6.53	7.99
2	11/05/06 10:10:10	25.24	33478.0	20.95	6.53	7.99
3	11/05/06 10:10:26	25.26	33467.0	20.95	6.53	7.99
4	11/05/06 10:10:40	25.25	33445.0	20.93	6.52	7.99
5	11/05/06 10:10:53	25.22	33399.0	20.90	6.54	7.99

OAT		, ,
Project #: <u>SRT</u>	Test type: □ Bioaccumulation □ Solid Phase □ SPP DOTHER:	C Date: 11500c
Species: □ A. abd	lita 🗆 M. bahia 🗆 M. beryllina 🗆 M. nasuta 🗆 N. virens 🗘 OTHER: 🗘	Day of Study: 48/u,3
OPERATIONAL	RANGE: Check if OK	Meter Used:
Temperature:	12-14° 18-22° 624-110°	Blue 🛘
Salinity:	$\square$ 26 –30 ppt $\square$ 28 –32 ppt $\square$ $\square$ $\square$ $\square$ $\square$ ppt	Red 🗆
Dissolved Oxygen	n: □ >4.0 mg/L ☑ > <u>.3.U</u> mg/L	Green 🛈
pH:	□ 7.3 to 8.3 □ 6.0 to 9.0 □ to to	
Actions taken:		
Sun Nov 05 10:1	15:29 2006	Page 1 of 1
See deviation sum	mary sheet	Initials:
		D-29

## SRT2LP72.DAT

	DateTime	Temp	SpCond	Salinity	DO Conc	рН
	M/D/Y	С	uS/cm	ppt	mg/L	
0	11/06/06 16:59:16	24.46	33669.0	21.10	9.06	7.71
1	11/06/06 17:00:13	25.09	33347.0	20.87	8.60	7.81
2	11/06/06 17:00:37	25.29	33411.0	20.91	8.47	7.85
3	11/06/06 17:00:57	25.38	33408.0	20.90	8.22	7.87
4	11/06/06 17:01:20	25.40	33405.0	20.90	7.96	7.88
5	11/06/06 17:01:41	25.41	33397.0	20.89	, 7.74	7.89

Project #: SRT Test type: □ Bioaccu	mulation 🗆 Solid Phase 🗆 SPP 👈 OTHER: 🕰 📆	<u>e</u> 1	Date: 11/6/06
Species:   A. abdita   M. bahia   M. bery	llina IM. nasuta IN. virens IOTHER: Lp	Day	of Study: <u>12/w</u>
OPERATIONAL RANGE: Check if OK		Meter	Used:
Temperature: □ 12 -14 °C □ 18 -22 °	c <u> 14 - 24 °</u> c	Blue	
Salinity: □ 26 –30 ppt □ 28 –32 p	ppt <u>                                     </u>	Red	0
Dissolved Oxygen: □ >4.0 mg/L □ >	mg/L	Green	d
pH: □ 7.3 to 8.3 □ 6.0 to 9.0	$\frac{1}{\sqrt{2}}$ to $\frac{9}{\sqrt{2}}$		
Actions taken:			

## SRT2LP96.DAT

	DateTime	Temp	SpCond	Salinity	DO Conc	рН
	M/D/Y	С	uS/cm	ppt	mg/L	
0	11/07/06 11:31:45	25.06	34171.0	21.44	6.13	7.93
1	11/07/06 11:32:46	25.35	33805.0	21.18	5.68	7.94
2	11/07/06 11:33:21	25.39	33721.0	21.12	5.83	7.94
3	11/07/06 11:33:45	25.41	33664.0	21.08	5.88	7.94
4	11/07/06 11:34:09	25.43	33785.0	21.16	5.84	7.93
5	11/07/06 11:34:33	25.34	34012.0	21.32	5.91	7.92

Project #: SRT						_	• •
Species:   A. abdit	ta 🗆 M. bahia	□ M. beryllin	a $\square$ M. nasuta	□ N. virens	OTHER: Lp	Day	of Study: 96kg
OPERATIONAL I	RANGE: Chec	ck if OK	•			Meter V	Used:
Temperature:	□ 12 –14 °C	□ 18 –22 °C	6 24 - 20	_°C		Blue	o .
Salinity:	□ 26 –30 ppt	□ 28 –32 ppt	18 - 22	ppt		Red	0
Dissolved Oxygen	: 🖸 >4.0 mg/L	□ > mg	/L			Green	₫
pH:	□ 7.3 to 8.3	□6.0 to 9.0	1 to 9				
Actions taken:							· .

#### DeviceNum 810765 ~ ExportDate 11_14_06 17_01_58.txt

```
Series: Temperature (*C)
Logger Info
                                    Information specific to the logger
  Model
                                    HOBO Water Temp Pro [H20-001]
  Serial Number
                                    810765
                                    32768
  Memory Size (Bytes)
  Deployment
                                    37
Series Info
                                    Information about the data in the series
  Points Used
                                    268
                                    11/03/06 13:23:13.0
11/14/06 16:23:13.0
  First Point
  Last Point
                                    11 Days 03:00:00.0
  Duration
Stats
                                    Calculated from the series
  Wrap Count
  Max Value
                                    26.50
  Min Value
                                    21.91
  Avg. Value
                                    24.95
Launch Parameters
                                    11/03/2006 18:23:11 GMT
11/03/2006 18:23:13 GMT
11/03/2006 18:23:13 GMT
                                                                  11/03/2006 13:23:11 Local 11/03/2006 13:23:13 Local
  Load Time
  Launch Time
                                                                  11/03/2006 13:23:13 Local
  Logging Time
  Sampling Interval
                                    3600
                                    0 = (FALSE/OFF/OPEN/TYPE 0)
  Wrap
  Stealth Enable
                                    0 = (FALSE/OFF/OPEN/TYPE 0)
  End of Data
                                    0x320_00
  Wrap Count
  Description String
                                    26-349 Lp static bath 6
  Time Zone
                                    GMT-300 Minutes TZ set on Launch
```

```
DeviceNum 810765
                                                           ExportDate 11_14_06 17_02_06.txt
Date, Time, Temperature (*C)
11/03/06,13:23:13.0,23.809
11/03/06,14:23:13.0,24.581
11/03/06, 15:23:13.0, 24.653
11/03/06, 16:23:13.0, 24.726
11/03/06,17:23:13.0,24.363
11/03/06, 18:23:13.0, 24.219
11/03/06, 19:23:13.0,24.436
11/03/06, 20:23:13.0,24.508
11/03/06, 21:23:13.0,24.653
11/03/06, 22:23:13.0,24.677
11/03/06, 23:23:13.0,24.665
11/04/06,00:23:13.0,24.557
11/04/06,01:23:13.0,24.412
11/04/06,02:23:13.0,24.315
11/04/06,03:23:13.0,24.219
11/04/06,04:23:13.0,24.146
11/04/06,05:23:13.0,24.074
11/04/06,06:23:13.0,24.026
11/04/06,07:23:13.0,24.05
11/04/06,08:23:13.0,24.146
11/04/06,09:23:13.0,24.146
11/04/06,10:23:13.0,24.219
11/04/06,11:23:13.0,24.074
11/04/06, 12:23:13.0, 24.195
11/04/06,13:23:13.0,24.291
11/04/06,14:23:13.0,24.339
11/04/06,15:23:13.0,24.46
11/04/06,16:23:13.0,24.508
11/04/06,17:23:13.0,24.557
11/04/06,18:23:13.0,24.557
11/04/06,19:23:13.0,24.532
11/04/06,20:23:13.0,24.508
11/04/06,21:23:13.0,24.412
11/04/06,22:23:13.0,24.315
11/04/06,23:23:13.0,24.219
11/05/06,00:23:13.0,24.171
11/05/06,01:23:13.0,24.172
11/05/06,02:23:13.0,24.146
11/05/06,03:23:13.0,24.122
11/05/06,04:23:13.0,24.122
11/05/06,05:23:13.0,24.074
11/05/06,06:23:13.0,24.122
11/05/06,07:23:13.0,24.122
11/05/06,08:23:13.0,24.291
11/05/06,06:23:13:0,24:291

11/05/06,09:23:13:0,24:46

11/05/06,10:23:13:0,24:629

11/05/06,11:23:13:0,24:895

11/05/06,12:23:13:0,24:968

11/05/06,13:23:13:0,25:065

11/05/06,14:23:13:0,25:113
11/05/06,15:23:13.0,25.113
11/05/06,16:23:13.0,25.065
11/05/06,17:23:13.0,25.016
11/05/06,18:23:13.0,24.968
11/05/06,19:23:13.0,24.919
11/05/06,20:23:13.0,24.847
11/05/06,21:23:13.0,24.798
11/05/06,22:23:13.0,24.702
11/05/06,23:23:13.0,24.677
11/06/06,00:23:13.0,24.677
11/06/06,01:23:13.0,24.653
11/06/06,02:23:13.0,24.581
```

Page 1

```
DeviceNum 810765
                                                                  ExportDate 11_14_06 17_02_06.txt
11/06/06,03:23:13.0,24.581
11/06/06,04:23:13.0,24.557
11/06/06,05:23:13.0,24.532
11/06/06,06:23:13.0,24.581
11/06/06,07:23:13.0,24.653
11/06/06,07.23.13.0,24.633

11/06/06,08:23:13.0,24.677

11/06/06,09:23:13.0,24.726

11/06/06,10:23:13.0,24.823

11/06/06,11:23:13.0,24.823

11/06/06,12:23:13.0,24.919
11/06/06,13:23:13.0,24.968
11/06/06,14:23:13.0,25.016
11/06/06,15:23:13.0,25.016
11/06/06,16:23:13.0,25.016
11/06/06,10:23:13:0,23:016

11/06/06,17:23:13:0,25:016

11/06/06,18:23:13:0,25:089

11/06/06,19:23:13:0,25:016

11/06/06,20:23:13:0,24:992

11/06/06,22:23:13:0,24:944
11/06/06,23:23:13.0,24.968
11/07/06,00:23:13.0,24.968
11/07/06,01:23:13.0,24.968
11/07/06,02:23:13.0,24.944
11/07/06,03:23:13.0,24.919
11/07/06,04:23:13.0,24.919
11/07/06,05:23:13.0,24.919
11/07/06,06:23:13.0,24.944
11/07/06,07:23:13.0,24.992
11/07/06,08:23:13.0,24.992
11/07/06,09:23:13.0,24.919
11/07/06,10:23:13.0,25.089
11/07/06,10:23:13:0,25:21
11/07/06,11:23:13:0,25:234
11/07/06,13:23:13:0,25:258
11/07/06,14:23:13:0,25:258
11/07/06,15:23:13:0,25:283
11/07/06,16:23:13.0,25.307
11/07/06,17:23:13.0,25.331
11/07/06,18:23:13.0,25.331
11/07/06,19:23:13.0,25.331
11/07/06,20:23:13.0,25.331
11/07/06,21:23:13.0,25.307
11/07/06,22:23:13.0,25.331
11/07/06,23:23:13.0,25.283
11/08/06,00:23:13.0,25.258
11/08/06,01:23:13.0,25.258
11/08/06,02:23:13.0,25.258
11/08/06,03:23:13.0,25.307
11/08/06,04:23:13.0,25.355
11/08/06,05:23:13.0,25.307
11/08/06,06:23:13.0,25.331

11/08/06,07:23:13.0,25.38

11/08/06,08:23:13.0,25.355

11/08/06,09:23:13.0,25.428

11/08/06,10:23:13.0,25.404
11/08/06,11:23:13.0,25.428
11/08/06,12:23:13.0,25.404
11/08/06,13:23:13.0,25.428
11/08/06,14:23:13.0,25.428
11/08/06,15:23:13.0,25.404
11/08/06,16:23:13.0,25.404
11/08/06,17:23:13.0,25.428
```

```
DeviceNum 810765
                                                              ExportDate 11_14_06 17_02_06.txt
11/08/06, 18:23:13.0, 25.428
11/08/06,19:23:13.0,25.428
11/08/06,20:23:13.0,25.404
11/08/06,20:23:13.0,25.404

11/08/06,21:23:13.0,25.404

11/08/06,23:23:13.0,25.404

11/09/06,00:23:13.0,25.404

11/09/06,01:23:13.0,25.428
11/09/06,02:23:13.0,25.38
11/09/06,03:23:13.0,25.38
11/09/06,04:23:13.0,25.355
11/09/06,05:23:13.0,25.404
11/09/06,06:23:13.0,25.428
11/09/06,07:23:13.0,25.477
11/09/06,08:23:13.0,25.477
11/09/06,09:23:13.0,25.428
11/09/06,10:23:13.0,25.458
11/09/06,11:23:13.0,25.428
11/09/06,12:23:13.0,25.428
11/09/06,13:23:13.0,25.428
11/09/06,14:23:13.0,25.453
11/09/06, 15:23:13.0, 25.477
11/09/06,16:23:13.0,25.477
11/09/06,17:23:13.0,25.453
11/09/06,18:23:13.0,24.823
11/09/06,19:23:13.0,24.195
11/09/06,20:23:13.0,23.785
11/09/06,21:23:13.0,23.4
11/09/06,22:23:13.0,23.184
11/09/06,23:23:13.0,23.04
11/10/06,00:23:13.0,22.944
11/10/06,01:23:13.0,22.848
11/10/06,02:23:13.0,22.776
11/10/06,03:23:13.0,22.753
11/10/06,04:23:13.0,22.705
11/10/06,05:23:13.0,22.633
11/10/06,06:23:13.0,22.633
11/10/06,07:23:13.0,22.633
11/10/06,08:23:13.0,22.896
11/10/06,09:23:13.0,24.267
11/10/06, 10:23:13.0, 24.823
11/10/06,10:23:13:0,24:825

11/10/06,11:23:13:0,25:162

11/10/06,12:23:13:0,25:307

11/10/06,13:23:13:0,25:38

11/10/06,14:23:13:0,25:38

11/10/06,15:23:13:0,25:404
11/10/06, 16:23:13.0, 25.331
11/10/06,17:23:13.0,25.234
11/10/06, 18:23:13.0, 25.331
11/10/06,18:23:13.0,25.331

11/10/06,19:23:13.0,25.38

11/10/06,20:23:13.0,25.38

11/10/06,21:23:13.0,25.38

11/10/06,22:23:13.0,25.38

11/10/06,03:23:13.0,25.35

11/11/06,01:23:13.0,25.35

11/11/06,01:23:13.0,25.307
11/11/06,02:23:13.0,25.283
11/11/06,03:23:13.0,25.307
11/11/06,04:23:13.0,25.283
11/11/06,05:23:13.0,25.307
11/11/06,06:23:13.0,25.307
11/11/06,07:23:13.0,25.355
11/11/06,08:23:13.0,25.38
```

Page 3

```
DeviceNum 810765
                                                                      ExportDate 11_14_06 17_02_06.txt
11/11/06,09:23:13.0,25.404
11/11/06,10:23:13.0,25.404
11/11/06,11:23:13.0,25.453
11/11/06,11:23:13.0,25.435

11/11/06,12:23:13.0,25.477

11/11/06,13:23:13.0,25.501

11/11/06,14:23:13.0,25.501

11/11/06,16:23:13.0,25.558

11/11/06,17:23:13.0,25.578
11/11/06, 18:23:13.0, 25.525
11/11/06,19:23:13.0,25.55
11/11/06,20:23:13.0,25.55
11/11/06,20:23:13.0,25.53

11/11/06,21:23:13.0,25.525

11/11/06,22:23:13.0,25.525

11/11/06,23:23:13.0,25.574

11/12/06,00:23:13.0,25.55

11/12/06,02:23:13.0,25.525

11/12/06,02:23:13.0,25.525
11/12/06,03:23:13.0,25.574
11/12/06,04:23:13.0,25.55
11/12/06,05:23:13.0,25.598
11/12/06,06:23:13.0,25.623
11/12/06,07:23:13.0,25.647
11/12/06,08:23:13.0,25.647
11/12/06,09:23:13.0,25.671
11/12/06,10:23:13.0,25.647
11/12/06,11:23:13.0,25.598
11/12/06,12:23:13.0,25.598
11/12/06,13:23:13.0,25.574
11/12/06,14:23:13.0,25.598
11/12/06,15:23:13.0,25.598
11/12/06, 16:23:13.0, 25.55
11/12/06,10:23:13:0,25:55
11/12/06,18:23:13:0,25:55
11/12/06,19:23:13:0,25:55
11/12/06,20:23:13:0,25:50
11/12/06,21:23:13:0,25:453
11/12/06,22:23:13.0,25.453
11/12/06,23:23:13.0,25.477
11/13/06,00:23:13.0,25.525
11/13/06,01:23:13.0,25.501
11/13/06,02:23:13.0,25.525
11/13/06,03:23:13.0,25.501
11/13/06,04:23:13.0,25.501
11/13/06,05:23:13.0,25.501
11/13/06,06:23:13.0,25.623
11/13/06,07:23:13.0,25.598
11/13/06,08:23:13.0,25.598
11/13/06,09:23:13.0,25.598
11/13/06, 10:23:13.0, 25.574
11/13/06, 10:23:13.0,25.374

11/13/06, 11:23:13.0,26.256

11/13/06, 12:23:13.0,26.5

11/13/06, 13:23:13.0,26.475

11/13/06, 14:23:13.0,26.134

11/13/06, 15:23:13.0,25.939

11/13/06, 16:23:13.0,25.647
11/13/06,17:23:13.0,25.501
11/13/06,18:23:13.0,25.38
11/13/06,19:23:13.0,25.331
11/13/06,20:23:13.0,25.355
11/13/06,21:23:13.0,25.428
11/13/06,22:23:13.0,25.404
11/13/06,23:23:13.0,25.283
```

Page 4

# ^CD_R Appendix

## C. APPARENT EFFECTS THRESHOLDS (SEACREST GROUP)

Appendix C.__ Chemical data employed to generate apparent effects thresholds (AETs) for sediment at LCP Site ^a

Sampling location	n	Chemical concentration (mg/kg, dry wt)									
(From headwater	s Total	Aroclor		Total							
to mouth)	Mercury	1268	Lead	PAHs	Cadmium	Copper	Nickel	Silver	Zino		
			N	IAIN CAN	AL						
MC50	0.37	1.5	3.9	0.229	0.032	1.29	1.26	0.016	8		
MC49	0.40	1.5	4.4	0.429	0.037	1.58	1.31	0.016	9		
MC48	0.20	1.0	5.8	0.104	0.036	1.76	1.85	0.015	9.9		
MC47	29	54	42	0,714	0.233	28.2	20.2	0.291	106		
MC46	35	280	42	0.955	0.296	20	20.2	0.22	88.5		
MC45	29	140	29	0.744	0.182	15.9	12.9	0.206	71.4		
MC44	6.2	55	41	0.454	0.244	18.8	21	0.188	76.9		
MC43	1.2	8.1	68	16.683	0.137	11.2	12.7	0.079	58		
MC42	13	18	31	0.396	0.2	20.1	15.8	0.323	93		
MC41	22	9.2	32	0.420	0.201	19.4	16	0.256	95		
MC40	8.9	19	33	0.371	0.21	14.3	14.1	0.246	84.8		
MC39	5.3	37	31	0.517	0.219	13.1	13.1	0.199	79.6		
MC38	4.3	21	29	0.435	0.184	12.7	14.5	0.169	84.3		
MC37	5.3	76	31	0.769	0.228	13.9	15.3	0.16	79.3		
MC36	6.7	150	40	0.849	0.28	16.2	17.7	0.134	36.3		
MC35	8.3	11	30	0.457	0.199	18.8	16.7	0.245	56.3		
MC34	8.0	10	30	0.405	0.193	14.8	17.1	0.218	81.3		
MC33	11	12	31	0.541	0.197	18.5	15.1	0.275	79		
MC32	5.8	16	34	0.657	0.202	13.6	14	0.172	90		
MC31	5.6	23	29	0,633	0.218	14.6	14.6	0.233.	87		
MC30	40	32	24	0.394	0.168	10.1	10.2	0.125	91.4		
MC29	1.5	4.8	12	0.184	0.095	5.63	6.57	0.064	77.1		
MC28	12	20	28	0.630	0.193	14	13.2	0.297	74.5		
MC27	9.4	34	35	0.642	0.248	17.3	17.8	0.354	66.8		
MC26	7.6	68	33	0.858	0.222	13.8	15.5	0.202	71.6		
MC25	6.3	18	41	0.729	0.218	13.9	14.4	0.178	80.5		
MC24	22	570	34	3.764	0.255	14.8	10.7	0.229	67.6		
MC23 .	4.7	28	28	0.501	0.206	12.4	13.6	0.179	75.3		
MC22	10	110	32	0.658	0.246	14.3	15.9	0.188	75.3		
MC21	3.0	18	24	0.589	0.203	11.3	11.9	0.127	71.1		
MC20	18	360	38	2.238	0.266	16.4	12.5	0.215	76.4		
MC19	24	33	29	0.569	0.237	20.7	13.5	0.309	78.9		
MC18	4.6	30	14	0.719	0.107	5.45	5.32	0.071	31.8		
MC17	8.4	14	14	0.391	0.099	5.82	7.09	0.066	35.1		
MC16	3.0	19	13	0.433	0.078	5.06	6.12.	0.065	32.4		
MC15	3.1	26	25	0.599	0.211	10.4	12.3	0.133	59.1		
MC14	9.0	39	27	0.363	0.251	12.4	11.6	0.238	70.3		
MC13	13	32	41	0.648	0.156	11.6	10.8	0.183	57.4		
MC12	3.6	13	29	0.525	0.246	14.6	16.4	0.274	77		
MC11	28	15	30	0.612	0.224	19.1	15.7	0.277	78.3		
MC10	1.3	4.1	21	0.389	0.198	12.1	13.3	0.142	85.5		
MC9	2.6	11	22	0.516	0.179	10.9	12.1	0.147	75		
MC8	3.0	11	23	0.859	0.2	12	12.8	0.15	78.7		
MC7	3.6	21	24	0.761	0.207	11.7	12.4	0.143	80.8		
MC6	0.77	1.8	25	0.343	0.21	12.8	15.1	0.146	97.		
MC5	2.1	8.3	23	0.479	0.212	12	12.2	0.141	77.2		
MC4	2.8	20	22	1.010	0.168	9.29	8.64	0.105	59.2		
MC3	1.7	8.2	42	0.490	0.181	10.7	11.9	0.118	73.		
MC2	2.6	15	25	0.682	0,175	10.5	10.6	0.122	67.		
MC1	3.4	20	27	0.761	0.189	10.6	10.4	0.131	71.		
	ean: 9.21	50.95	28.4	0.982	0.192	13.01	12.72	0.176	69.7		

Appendix C.__ Continued

	ition												
(From headwa	ters	Total	Aroclor		Total								
to mouth)		Mercury	1268	Lead	PAHs	Cadmium	Copper	Nickel	Silver	Zine			
				EAS	STERN CR	EEK							
EC50		2.5	1.7	5.7	0.126	0.054	2.38	2.85	0.027	14.5			
EC49		5.6	2.9	240	38.458	0.16	17.3	14.8	0.095	79.			
EC48		28	26	100	1.100	0.304	18.9	17.6	0.184	75.			
EC47		4.5	4.0	25	0.728	0.17	10	11.1	0.12	51.			
EC13		11	3.7	34	0.318	0.178	11.5	10.6	0.125	51.			
EC46		0.26	0.27	16	0.060	0.114	6.01	11.5	0.066	47.			
EC12		0.044	0.0074	14	0.0065	0.141	5.64	10.2	0.046	33			
EC45		0.28	0.15	13	0.037	0.103	4.71	8.6	0.054	38.			
EC11		1.5	1.9	16	0.986	0.121	5.52	8.25	0.053	30.			
EC44		13	43	27	0.351	0.183	11.6	8.74	0.262	64.			
EC10		26	120	40	0.588	0.255	16.3	13.4	0.257	81.			
EC43		2.4	9.5	9.1	0.240	0.074	3.28	3.14	0.052	22.			
EC9		13	26	43	0.626	0.182	15	16.6	0.233	90.			
EC8		61	59	39	0.648	0.102	25.3	17	0.233	96.			
EC42		11	28	27	2.534	0.164	9.92	10.4	0.337	56. 56.			
EC7		76		33	0.575								
			150			0.196	20.1	14.3	0.338	86.			
EC41		17	38	27	0.608	0.187	13.8	9.35	0.299	71.			
EC6		110	420	45	1.243	0.285	19.9	18	0.463	98.			
EC5		42	380	48	3,735	0.28	21.8	16.1	0.412	92.			
EC40		140	24	37	0.538	0.239	17	13.9	0.364	71.			
EC4		6.5	19	25	0.616	0.198	11.9	11.5	0.152.	79.			
EC3		19	17	28	0.473	0.183	13.1	13.5	0.193	90.			
EC39		6.8	28	27	0.359	0.184	12.2	12.2	0.158	67			
EC2		74	16	23	0.566	0.143	9.66	10.3	0.164	58.			
EC38		6.2	15	21	0.474	0.136	9.16	10.1	0,1	50.			
EC37		110	44	38	0.715	0.221	16.8	14.4	0.413	73.			
EC36		4.3	39	23	0.809	0.151	9.02	10.2	0.143	5€			
EC35		20	30	34	0.420	0.243	17	13.3	0.357	89.			
EC1		21	90	49	0.997	0.263	19	17.7	0.154	61.			
EC34		50	11	52	0.750	0.177	13.6	11.7	0.202	63			
EC33		14	120	36	0.636	0.253	15.6	14.8	0.306	85			
EC32		30	330	32	0.883	0.226	14.9	13.9	0.198	72			
EC31		8.7	36	26	0.638	0.177	9.84	8.97	0.141	57.			
EC30		5.1	11	30	0.483	0.176	13.3	14.9	0.14	70.			
EC29		4.1	13	25	0.546	0.188	11.3	13.8	0.106	63			
EC28		5.3	12	27	0.305	0.162	12.1	14	0.143	62.			
EC27		3.5	14	11	0.420	0.059	3.94	4.48	0.047	22			
EC26		17	110	36	0.878	0.244	18.1	14.3	0.224	65			
EC25		11	44	- 15	0.343	0.094	5.27	5.34	0.063	24			
EC25		2.6	15	13	0.568	0.054	4.3	4.66	0.038	20			
EC23		13	130	36	0.910	0.265	16	15.6	0.030	64			
EC23		4.5	17	57	5.560	0.203	12.9	12.6	0.131	60			
			16		0.507	0.775	12.9	14.3	0.131	83			
EC21		3.0		26 21	0.434	0.219			0.127	75			
EC20		6.4	11	31			14.2	14.8					
EC19		4.7	110	28	1.527	0.191	11.8	11.8	0.151	53			
EC18		4.6	20	18	1.335	0.08	4.95	5.19	0.064	26			
EC17		0.79	15	8.7	0.380	0.052	2.69	2.5	0.03	15			
EC16		0.77	12	28	0.774	0.163	9.41	11.1	0.092	44			
EC15		5.0	12	34	0.670	0.184	14.9	14.2	0.185	76			
EC14		5.6	17	31	0.555	0.238	15.9	14.4	0.225	88			
20,4													

Appendix C.__ Continued

Sampling locat	ion	Chemical concentration (mg/kg, dry wt)										
(From headwat to mouth)	ers Tot Merc			Total PAHs	Cadmium	Copper	Nickel	Silver	Zino			
,				·								
		•	WESTE	RN CREEK	COMPLEX							
WC1	1.2	2 0.6	52 26	6.197	0.209	15.4	13.7	0.144	77.3			
WC2	1.3	3 0.6	63 24	1.509	0.208	14.4	14.8	0.155	76			
WC3	1.4			11.376	0.248	16	15.8	0.158	78.8			
WC4	4.8			0.896	0.295	14.7	13.5	0.147	70.9			
WC50	16			1.324	0.32	17.7	14.1	0.239	85.7			
WC5	3.8			0.659	0.336	17.3	14.8	0.178	78.5			
WC49	0.2			1.103	0.213	13.7	11.2	0.137	69.2			
WC48	5.9			7.813	0.302	15	12.5	0.151	70.3			
WC47	0.8			0.449	0.169	15.4	15.6	0.135	77.9			
WC46	0.0			0.878	0.148	15.2	16.1	0.118	72.4			
WC45	7.8			0.428	0.255	18.8	18.4	0.287	88.7			
WC44	0.3			0.525	0.157	15	16.1	0.119	79			
WC43	,15			0.629	0.251	17.8	15.6	0.26	78.9			
WC42	3.8			0.230	0.376	18.2	18.5	0.192	93.8			
WC41	12		.2 33	0.354	0.245	16.5	15.4	0.21	81			
WC40	0.5			0.400	0.277	19.1	21.9	0.13	70.7			
WC39	1.		.5 42	0.151	0.288	19.9	25.6	0.174	79.5			
WC38	13			0.414	0.236	18.4	22.1	0.171	65.9			
WC37	5.:			0.428	0.201	18.7	21.8	0.158	69.3			
WC36	2.3			0.242	0.261	17.5	23.2	0.175	83.2			
WC35	13			0.586	0.259	16.6	17.8	0.192	68.6			
WC34	12			0.413	0.294	18.8	17.9	0.179	61.2			
WC33	1.3			0.162	0.208	15.6	18.4	0.182	88.			
WC32	1.			0.183	0.17	15.4	18.2	0.146	77.9			
WC31	2.6			0.253	0.3	17.8	19.6	0.22	72.			
WC30	4.			0.242	0.196	12.2	12.5	0.195	77.0			
WC29	1.			0.138	0.213	15.3	16.6	0.17	79.7			
WC28	2.			0.289	0.252	14.5	15.7	0.223	79.			
WC27	1.0			0.207	0.201	15.2	17.2	0,172	83.			
WC26	2.			0.515	0,2	13.4	15.2	0.191	71			
WC25	1.5			0.318	0.22	13.1	13.4	0.192	74.			
WC24	3.3			0.404	0.264	13.7	12.7	0.272	70.9			
WC23	2.0			0.424	0.266	14.4	16.2	0.17	75.0			
WC22	1.9			0.400	0.251	13.5	15.1	0.141	69.			
WC21	1.			0.340	0.359	18.4	19.9	0.16	<b>63</b> .			
WC20	1.			0.268	0.242	13.1	14	0.181	67			
WC19	1.			0.287	0.255	13.2	13.3	0.28	73.			
WC18	1.			0.294	0.239	15.5	18.4	0.158	77.			
WC17	6.			0.314	0.363	22.4	25.1	0.142	74.:			
WC16	2.			0.396	0.279	16.6	19.9	0.17	76.			
WC15	1.3		.5 36	0.317	0.262	16.8	20.3	0.294	87.			
WC14	1.		.2 25	0.310	0.153	11.8	14	0.176	59			
WC13	0.9		.2 31	0.246	0.238	15.2	18.9	0.155	79.			
WC12	. 1.1		.4 28	0.360	0.229	13.9	16.5	0.295	77.3			
WC11	0.5		75 25	0.276	0.209	13.1	16	0.155	84.0			
WC10	1.;		.4 24	0.272	0.211	11.9	13.3	0.141	72.			
WC9	1.3		.7 26	0.318	0.223	12.9	15.1	0.164	85.:			
WC8	1.		.0 34	0.360	0.362	14.5	15.2	0.142	80.			
WC6	2.		.9 27	0.323	0.229	13.9	16.4	0.237	81.			
WC7	0.9	95 1.	.8 27	0.365	0.195	13.7	16.3	0,157	82.			
	Mean: 3.5								76.3			

^aThese three sampling areas at the LCP Site — Main Canal, Eastern Creek, and Western Creek Complex — were selected to generate chemical data (to be associated with toxicological data) for the AET evaluations because it was anticipated that they would generate a range of data suitable for derivation of AETs. It was anticipated that the lowest concentrations of chemicals of potential concern (COPC) would occur in the Western Creek Complex.

#### APPENDIX D

**DEVELOPMENT OF SEDIMENT EFFECT CONCENTRATIONS** 

(On CD Only)

#### **Appendix D**

The amphipod toxicity test results and associated sediment COPC concentrations were used to develop several sediment effect concentrations (SECs) for prediction of toxicity to the amphipod (Files: Amphipod Tox Analysis_02212011.xls and Grass Shrimp Tox Analysis_02212011.xls). The SECs consist of the following:

- Effects Range-Low (ER-L): 10th percentile of the sediment concentration distribution for the effects data (Long and Morgan, 1990).
- Effects Range-Median (ER-M): Median of the sediment concentration distribution for the effects data (Long and Morgan, 1990).
- Threshold Effect Level (TEL): The geometric mean of the 15th percentile of the concentration distribution for the no-effects data (MacDonald et al., 1996).
- Probable Effects Level (PEL): Geometric mean of the ER-M and the 85th percentile of the concentration distribution for the no-effects data (MacDonald et al., 1996).
- Apparent Effects Threshold (AET): The sediment concentration above which a particular adverse biological effect (e.g., survival rate, embryo development rate) is always toxic relative to appropriate reference conditions (WSDE, 1997).

The effects data set for each COPC is defined as those stations at which the biological effect is observed (statistically different from controls) (Files: *Amphipod Controls.xls* and *Grass Shrimp Controls.xls*) and the associated COPC concentration is greater than or equal to twice the mean concentration of the no-effect stations. It is desirable for both the effects and no-effects distributions to include at least 20 data entries (MacDonald et al., 1996).

All of the amphipod and grass shrimp toxicity test endpoint results (e.g., survival, reproductive response, growth) were paired with the COPC concentrations in the test sediment samples (Files: **Amphipod Tox and Sediment data.xls** and **Grass Shrimp Tox and Sediment data.xls**). The data were sorted by those samples that were considered toxic (significantly differently from the mean controls at p=0.05 and represented in red color). The effects data sets were then generated (the "Y" represents those samples

greater than twice the mean and the "b" represents concentrations below it). Then the SECs were calculated per their definitions above.

To assess the accuracy with which the various sets of SECs predict the presence or absence of toxic effects to amphipods, the following performance criteria were also calculated:

- False Positives (Type I Error): The percentage of stations predicted to have effects (based on exceedance of a SEC) that actually had no observed effects.
- False Negatives (Type II Error): The percentage of stations predicted to have no effects (based on exceedance of a SEC) that actually had observed effects.
- Overall Accuracy: The percentage of all samples that were correctly predicted to have effects or not to have effects based on the SEC.

The error results are shown on the worksheets and in the Tab entitled "Summary"

APPENDIX D - Am	phipod Toxicit	y Response and Sediment Concentrations							Total			
			Reproductive	Average Survival	Survivor's Average				Organic Carbon		A-1268	PAHs OC
Location MG-B7(C)	Year 2000	Domain  Domain 1	Response NA	Rate 31	Weight NA	Aroclor-1268 15.000	Lead 28	Mercury 6.6	(TOC)* 32000	Total PAHs 0.562		Norm 0.1757
MG-D9(C)	2000	Domain 1	NA	39	NA	1.400	28	2.28	33700	0.234	0.415	0.0694
MG-H7(C) MG-K7(C)	2000 2000	Domain 1  Domain 1	NA NA	15 0	NA NA	17.000 0.330	50 47		40700 34700	0.204 11.726	4.177 0.095	0.0501 3.3793
MG-N2(C)	2000	North South Tributary Domain	NA	49	NA	0.630	29	12.3	62000	0.564	0.102	0.0910
TC-C C-15	2000 2002	Crescent River Reference Western Creek Complex	NA 0.47	29 77	NA 0.70	0.045 2.800	12 32		23200 43000	0.810 0.060		0.3491 0.0140
C-45 C-5	2002 2002	East of domain 4  LCP Ditch Domain	0.29 0.07	71 54	0.60 0.42	1.900 19.000	18 21		44000 44000	0.140 1.110		0.0317 0.2522
C-6	2002	North South Tributary Domain	0	48	0.51	19.000	20	48	27000	4.363	7.037	1.6159
C-7 CR-C	2002 2002	North South Tributary Domain Removal Crescent River Reference	0.1	56 53	0.43 0.47	430.000 0.190	36 12		55000 34000	0.454 0.060	78.182 0.056	0.0825 0.0177
D-C MG-H7(C)	2002 2002	West of domain 4	0 0.01	63 80	0.61	1.200	18	0.55	50000	0.087	0.240	0.0174
MG-K7(C)	2002	Domain 1 Domain 1	0	68	0.46 0.46	64.000 92.000	29 27	46	52000 38000	1.060 0.828	12.308 24.211	0.2039 0.2179
TC-C C-15	2002 2003	North St Simons Sound Domain Western Creek Complex	0.025 0.024	80 61	0.63 0.170	0.025 0.790	14 28		26000 35000	0.060 0.446	0.010 0.226	0.0232 0.1274
C-45	2003	East of domain 4	0.088	50	0.102	0.700	17	0.62	30000	0.180	0.233	0.0600
C-5 C-6	2003 2003	LCP Ditch Domain  North South Tributary Domain	0.148 0.21	37 35	0.110 0.080	24.000 19.000	24 47		32000 37000	2.553 0.811	7.500 5.135	0.7978 0.2192
C-7	2003	North South Tributary Domain Removal	0	1	0.020	3.700	43	4.1	31000	11.782	1.194	3.8006
CR-C D-C	2003 2003	Crescent River Reference West of domain 4	0.048 0.052	76 62	0.370 0.168	0.100 0.870	7.5 22		11000 32000	0.084 0.243	0.091 0.272	0.0760 0.0759
MG-H7(C) MG-K7(C)	2003 2003	Domain 1 Domain 1	0.19 0.034	30 54	0.094 0.150	2.200 24.000	21 26		30000 33000	0.222 5.042	0.733 7.273	0.0740 1.5279
TC-C	2003	North St Simons Sound Domain	0.078	69	0.350	0.100	9.4	0.044	13000	0.061	0.077	0.0471
C-33 CR-C	2004 2004	Domain 3  Crescent River Reference	1.94 5.31	42 40	0.350 0.178	0.031 0.060	8.9 2.2		4800 1700	0.441 0.090	0.064 0.353	0.9188 0.5294
M-AB	2004	Domain 1 Removal	0.079	15	0.302	2.100	15	2.5	17000	7.290	1.235	4.2882
TC-C C-101	2004 2004	North St Simons Sound Domain  Domain 3	3.23 1.59	42 25	0.362 0.308	0.032 0.970	8 20		18000 35000	0.468 1.067	0.018 0.277	0.2600 0.3049
C-105 C-5	2004 2004	Domain 5 LCP Ditch Domain	0 0.469	0 63	0 0.400	0.260 12.000	12 28		30000 40000	0.632 2.350	0.087 3.000	0.2107 0.5875
MG-H7(C)	2004	Domain 1	0.550	24	0.500	12.000	34	0.82	40000	4.945	3.000	1.2363
MG-K7(C) A-C	2004 2004	Domain 1 East of domain 4	0.211 0.205	15 33	0.286 0.406	10.000 1.300	46 16		33000 43000	1.684 0.477	3.030 0.302	0.5103 0.1109
C-100	2004	Domain 3	1.605	76	0.294	3.600	23	3.3	47000	1.820	0.766	0.3872
C-102 C-104	2004 2004	West of domain 4  Domain 5	2.873 3.006	17 66	0.398 0.316	0.720 0.670	15 23	0.51	47000 46000	0.788	0.146	
C-15 C-45	2004 2004	Western Creek Complex East of domain 4	1.45 0.12	3 23	0.250 0.264	2.800 0.960	28 13		42000 43000	1.360 0.625		0.3238 0.1452
C-7	2004	North South Tributary Domain Removal	0	15	0.452	20.000	29	18	47000	3.550	4.255	0.7553
D-C C-103	2004 2004	West of domain 4  Domain 5	0.741 0.148	58 72	0.234 0.230	0.880 0.180	27 3.9		43000 85000	1.044 0.630		0.2428 0.0741
C-6	2004	North South Tributary Domain	2.848	37	0.384	41.000	27	11	52000	11.510	7.885	2.2135
CR-C TC-C	2005 2005	Crescent River Reference North St Simons Sound Domain	0.85 0.77	36 34	0.282 0.272	0.012 0.015	12.4 16.6	0.0921	29000 28800	0.136 0.112		0.0469 0.0387
C-5 C-36	2005 2005	LCP Ditch Domain  North Purvis Creek Domain	0.6 0.26	62 65	0.39 0.408	4.200 3.700	25.8 29.1	1.1 1.92	37200 40000	1.067 1.189	1.129 0.925	0.2868 0.2973
C-29	2005	North Purvis Creek Domain	0	0	0	2.200	25.4	1.05	48700	0.826	0.452	0.1696
C-16 C-6	2005 2005	South Purvis Creek Domain  North South Tributary Domain	0 0.95	7 42	0.45 0.39	3.600 69.000	5.85 42.1	0.572 86.6	6870 45800	0.274 1.484	5.240 15.066	0.3988 0.3240
C-7 C-15	2005 2005	North South Tributary Domain Removal Western Creek Complex	0	0	0	82.000 6.800	52 25.3		56800 44800	6.072 1.015	14.437	1.0689 0.2266
MG-K7(M)	2005	Domain 1	0.39	45	0.532	16.000	29.5	5.68	34400	0.876	4.651	0.2547
MG-H7(M) C-33	2005 2005	Domain 1  Domain 3	0.67 0.23	29 32	0.512 0.29	36.000 0.013	28.8 419		50400 43300	1.296 0.649		0.2571 0.1499
D-C	2005	West of domain 4	0	3	0.14	3.900	35.5	1.87	56800	0.794	0.687	0.1398
C-45 C-103	2005 2005	East of domain 4  Domain 5	0	12 14	0.34 0.26	0.610 0.560	20.3 24.2		33300 54400	0.725 0.492	0.183 0.103	0.2177 0.0903
C-104 C-105	2005 2005	Domain 5  Domain 5	0 0.38	4 36	0.25 0.302	0.044 0.390	25.7 22.9		36800 64900	1.647 0.565		0.4476 0.0871
C-200	2005	Domain 3	0	23	0.326	8.200	154	4.43	40900	1.365	2.005	0.3337
C-201 C-202	2005 2005	South Turtle River Domain  North Turtle River Domain	0	0 19	0 0.528	0.940 0.210	16.3 17.2		25800 27200	1.166 0.442	0.364 0.077	0.4519 0.1623
C-203	2005	South Turtle River Domain	0	16	0.438	0.820	60.1	0.88	48200	0.980	0.170	0.2032
FS-AREA1 FS-AREA2	2005 2005	Domain 3	0	0	0.1	1.300 2.300	32 387	2.17	34800 58600	0.490 5.097	0.374 0.392	0.1407 0.8698
FS-AREA3 FS-AREA4	2005 2005	Domain 3 LCP Ditch Domain	0 0.32	0 26	0 0.208	0.520 7.000	1190 15.4		38500 28000	52.800 0.561	0.135 2.500	13.7142 0.2004
FS-AREA5	2005	LCP Ditch Domain	0	6	0.55	12.000	27.2	3.32	33900	1.394	3.540	0.4112
FS-AREA6 C-103	2005 2006	Domain 2  Domain 5	0.54 0.082	39 80	0.334 0.58	5.800 0.190	27.6 26.80		76900 54800	0.608 0.273		0.0791 0.0498
C-104	2006	Domain 5	0.292	80	0.358	0.210	17.30	0.276	34700	0.228	0.061	0.0657
C-105 C-15	2006 2006	Domain 5 Western Creek Complex	0.358 0.86	82 79	0.488 0.62	0.340 1.000	18.10 25.80		23600 42200	0.149 0.434		0.0630 0.1028
C-16 C-29	2006 2006	South Purvis Creek Domain  North Purvis Creek Domain	0.656 0.142	87 84	0.378 0.382	1.200 0.980	6.55 25.70		9600 52300	2.560 0.515	1.250 0.187	2.6664 0.0985
C-33	2006	Domain 3	1.18	70	0.756	0.059	27.80	0.097	16300	0.975	0.036	0.5982
C-36 C-45	2006 2006	North Purvis Creek Domain East of domain 4	0.508	84 60	0.426 0.34	1.400 0.790	28.90 26.40		46600 49200	0.563 0.558		0.1208 0.1134
C-5	2006	LCP Ditch Domain	0.61	87	0.712	31.000	40.90	7.030	47200	2.154	6.568	0.4563
C-6 C-7	2006 2006	North South Tributary Domain  North South Tributary Domain Removal	0.126 0.356	67 91	0.592 0.556	25.000 13.000	31.90 27.90	3.270	65600 57500	0.372 0.473		0.0568 0.0822
CR-C D-C	2006 2006	Crescent River Reference West of domain 4	0.364 0.36	88 87	0.322 0.534	0.001 0.640	4.29 23.30		6700 52100			0.0225 0.0554
FS-AREA1	2006	Domain 3	0.072	41	0.322	0.920	44.20	1.070	24300	0.224	0.379	0.0921
FS-AREA2 FS-AREA3	2006 2006	Domain 3	0.906	1 87	0.1 0.43	0.850 2.000	275.00 177.00		76900 77100		0.111 0.259	0.3191 0.1234
FS-AREA4	2006	LCP Ditch Domain	0.032	85	0.65	5.800	14.90	1.340	25300	0.292	2.292	0.1153
FS-AREA5 FS-AREA6	2006 2006	LCP Ditch Domain Domain 2	0.464 0.074	88 78	0.426 0.352	11.000 3.100	29.70 28.60	2.030	43500 59500			0.4034 0.0403
M-AB MG-H7(M)	2006 2006	Domain 1 Removal  Domain 1	0.144 0.154	81 66	0.318 0.458	0.069 4.100	2.53 27.20		4100 58100			0.1067 0.0492
MG-K7(M)	2006	Domain 1	0.112	74	0.744	4.600	30.00	2.360	44200	0.247	1.041	0.0560
TC-C	2006	North St Simons Sound Domain	0.05	72	0.402	0.026	17.40	0.074	30000	0.042	0.009	0.0138

APPENDIX D - Ar	mphipod Toxicity I	Response and Sediment Concentrations							Total			
				Average	Survivor's				Total Organic			
			Reproductive	_	Average				Carbon		A-1268	PAHs OC
Location	Year	Domain	Response	Rate	Weight	Aroclor-1268	Lead	Mercury	(TOC)*	Total PAHs	OC Norm	Norm
SDEC-AET-1	2006	Eastern Creek	0	55	0.310	90.00	48.60	20.60		0.994		
SDEC-AET-10 SDEC-AET-11	2006 2006	Eastern Creek Eastern Creek	0	0 20	0 0.250	120.00 1.90	39.90 16.50	25.60 1.46	NA NA	0.585 0.986		
SDEC-AET-12	2006	Eastern Creek	0	70	0.330	0.01	13.90	0.04		0.006		
SDEC-AET-13	2006	Eastern Creek	0.269	75	0.410	3.70	33.60	11.30	NA	0.315		
SDEC-AET-14	2006	Eastern Creek	0	80	0.440	17.00	30.70			0.553		
SDEC-AET-15 SDEC-AET-16	2006 2006	Eastern Creek Eastern Creek	0	70 0	0.450 0	12.00 12.00	33.90 27.80	5.02 0.77		0.668 0.773		
SDEC-AET-17	2006	Eastern Creek	0	50	0.320	15.00	8.72	0.79		0.773		
SDEC-AET-18	2006	Eastern Creek	0	75	0.340	20.00	17.70	4.64	NA	1.333		
SDEC-AET-19	2006	Eastern Creek	0	75	0.350	110.00	27.70	4.68		1.525		
SDEC-AET-2 SDEC-AET-20	2006 2006	Eastern Creek Eastern Creek	0 0.389	50 80	0.290 0.200	16.00 11.00	23.30 30.80	74.00 6.39		0.563 0.433		
SDEC-AET-21	2006	Eastern Creek	0.309	25	0.500	16.00	25.80	3.05		0.433		
SDEC-AET-22	2006	Eastern Creek	0	30	0.180	17.00	56.70	4.48	NA	5.551		
SDEC-AET-23	2006	Eastern Creek	0	55	0.610	130.00	36.20	13.00		0.908		
SDEC-AET-24 SDEC-AET-25	2006 2006	Eastern Creek Eastern Creek	0.35 1.38	85 80	0.440 0.290	15.00 44.00	13.30 14.60	2.55 10.70		0.566 0.342		
SDEC-AET-26	2006	Eastern Creek	0	85	0.290	110.00	35.70	17.30		0.342		
SDEC-AET-27	2006	Eastern Creek	0	85	0.410	14.00	11.00	3.50	NA	0.419		
SDEC-AET-28	2006	Eastern Creek	0	0	0	12.00	27.00	5.30		0.304		
SDEC-AET-29 SDEC-AET-3	2006 2006	Eastern Creek Eastern Creek	0 2.58	100	0 0.460	13.00 17.00	25.40 27.90	4.06 19.00		0.545 0.471		
SDEC-AET-30	2006	Eastern Creek	0	50	0.450	11.00	29.50	5.10		0.471		
SDEC-AET-31	2006	Eastern Creek	0.125	75	0.350	36.00	25.60	8.72	NA	0.635		
SDEC-AET-32	2006	Eastern Creek	0.727	85	0.350	330.00	31.90	30.10		0.881		
SDEC-AET-33 SDEC-AET-34	2006 2006	Eastern Creek	0.0769	55 70	0.640 0.330	120.00	36.20	13.60 50.20		0.634 0.746		
SDEC-AET-34 SDEC-AET-35	2006	Eastern Creek Eastern Creek	0.0769	80	0.560	11.00 30.00	51.80 33.80	19.50		0.746		
SDEC-AET-36	2006	Eastern Creek	0.45	60	0.370	39.00	23.30	4.33	NA	0.808		
SDEC-AET-37	2006	Eastern Creek	0	80	0.590	44.00	38.30	105.00	NA	0.710		
SDEC-AET-38 SDEC-AET-39	2006 2006	Eastern Creek Eastern Creek	0	40 75	0.400 0.610	15.00 28.00	20.60 26.70	6.23 6.81		0.473 0.358		<del></del>
SDEC-AET-39 SDEC-AET-4	2006	Eastern Creek Eastern Creek	2.06	90	0.610	19.00	25.40	6.81		0.358		
SDEC-AET-40	2006	Eastern Creek	0	50	0.690	240.00	37.30	145.00	NA	0.535		
SDEC-AET-41	2006	Eastern Creek	0	20	0.480	38.00	27.10	17.30		0.607		
SDEC-AET-42 SDEC-AET-43	2006 2006	Eastern Creek	1.88	90	0.530 0.350	28.00 9.50	26.90 9.13	11.20 2.44		2.533 0.239		
SDEC-AET-43 SDEC-AET-44	2006	Eastern Creek Eastern Creek	0	100	0.350	43.00	26.90	12.60		0.239		
SDEC-AET-45	2006	Eastern Creek	0	35	0.690	0.15	12.60			0.037		
SDEC-AET-46	2006	Eastern Creek	1.56	90	0.430	0.27	15.90			0.060		
SDEC-AET-47	2006	Eastern Creek	0	10	0.150	4.00	25.10	4.49		0.727		
SDEC-AET-48 SDEC-AET-49	2006 2006	Eastern Creek Eastern Creek	0	10 0	0.200	26.00 2.90	99.80 238.00	27.60 5.62		1.097 38.448		
SDEC-AET-5	2006	Eastern Creek	0	65	0.710	380.00	48.20	41.60		3.729		
SDEC-AET-50	2006	Eastern Creek	0.2308	80	0.330	1.70	5.74	2.53		0.126		
SDEC-AET-6 SDEC-AET-7	2006 2006	Eastern Creek	0	60	0.470	420.00	44.80	109.00 75.70		1.238		
SDEC-AET-7 SDEC-AET-8	2006	Eastern Creek Eastern Creek	0	75	0.300	150.00 59.00	32.60 38.80	61.40		0.572 0.646		
SDEC-AET-9	2006	Eastern Creek	0	65	0.190	26.00	42.90			0.623		
SDMC-AET-1	2006	Main Canal	0.269	85	0.390	20.00	26.60	3.41		0.758		
SDMC-AET-10	2006	Main Canal	0.167	75	0.340	4.10	21.30	1.29		0.388		
SDMC-AET-11 SDMC-AET-12	2006 2006	Main Canal Main Canal	0	80 65	0.310 0.680	15.00 13.00	30.50 29.10	28.20 3.60		0.610 0.524		
SDMC-AET-13	2006	Main Canal	0	80	0.340	32.00	40.90	12.60		0.647		
SDMC-AET-14	2006	Main Canal	0	15	0.300	39.00	27.20	8.97	NA	0.362		
SDMC-AET-15	2006	Main Canal	0	75	0.410	26.00	24.80	3.14		0.597		
SDMC-AET-16 SDMC-AET-17	2006 2006	Main Canal Main Canal	0.9 0.375	85 55	0.560 0.550	19.00 14.00	12.80 13.70	3.01 8.39		0.431 0.391	1	
SDMC-AET-18	2006	Main Canal	0.373	60	0.480	30.00	14.00	4.63		0.719		
SDMC-AET-19	2006	Main Canal	0	50	0.390	33.00	29.40	23.80		0.568		
SDMC-AET-2	2006	Main Canal	0	80	0.440	15.00	25.10			0.680		
SDMC-AET-20 SDMC-AET-21	2006 2006	Main Canal Main Canal	0 0.375	55 80	0.270 0.510	360.00 18.00	37.90 24.50	17.80 2.99		2.233 0.588		
SDMC-AET-22	2006	Main Canal	0.611	80	0.240	110.00	32.30	10.20		0.656		
SDMC-AET-23	2006	Main Canal	0	35	0.490	28.00	28.00	4.66		0.500		
SDMC-AET-24 SDMC-AET-25	2006	Main Canal	0	15 65	0.270 0.370	570.00 18.00	34.10 41.20	22.10 6.32		3.760 0.726		
SDMC-AET-25 SDMC-AET-26	2006 2006	Main Canal Main Canal	0	55	0.370	68.00	32.80			0.726		
SDMC-AET-27	2006	Main Canal	0.167	75	0.570	34.00	34.60	9.45	NA	0.640		
SDMC-AET-28	2006	Main Canal	0.654	95	0.440	20.00	27.50	12.40		0.628		
SDMC-AET-29	2006	Main Canal	0	50	0.330	4.80	12.50	1.47		0.184		
SDMC-AET-30	2006 2006	Main Canal Main Canal	0	65 70	0.390 0.440	8.20 32.00	42.30 24.30	1.74 39.60		0.489 0.393		
SDMC-AET-31	2006	Main Canal	0	55	0.430	23.00	28.70			0.631		
SDMC-AET-32	2006	Main Canal	0.6	75	0.330	16.00	34.30	5.79		0.655		
SDMC-AET-33	2006	Main Canal	0	45	0.190	12.00	31.30	11.40		0.539		
SDMC-AET-34 SDMC-AET-35	2006 2006	Main Canal Main Canal	0 1.625	5 85	0.200 0.450	10.00 11.00	29.70 30.40	7.95 8.28		0.404 0.456		
SDMC-AET-36	2006	Main Canal	0	25	0.660	150.00	39.90	6.74		0.430		
SDMC-AET-37	2006	Main Canal	0	65	0.310	76.00	30.90			0.766		
SDMC-AET-38	2006	Main Canal	0.15	70	0.380	21.00	28.60	4.26		0.433		
SDMC-AET-39 SDMC-AET-4	2006 2006	Main Canal Main Canal	0.688	75 65	0.330 0.250	37.00 20.00	30.90 21.90	5.34 2.78		0.515 1.008		
SDMC-AET-40	2006	Main Canal	0	5	0.300	19.00	32.80	8.94		0.370		
SDMC-AET-41	2006	Main Canal	0	35	0.510	9.20	31.50	21.70	NA	0.419		
SDMC-AET-42	2006	Main Canal	0	60	0.340	18.00	30.90			0.395		
SDMC-AET-43 SDMC-AET-44	2006 2006	Main Canal Main Canal	0	5 15	0.300 0.530	8.10 55.00	67.90 40.50			16.679 0.452		
SDMC-AET-44 SDMC-AET-45	2006	Main Canal	0	15 50	0.530	140.00	40.50 28.80			0.452		
SDMC-AET-46	2006	Main Canal	0	55	0.570	280.00	41.50	35.10	NA	0.952		
SDMC-AET-47	2006	Main Canal	0	0	0	54.00	41.90	29.00	NA	0.712		
SDMC-AET-48	2006 2006	Main Canal	0	75	0.430	1.00 1.50	5.75			0.158 0.356		
SDMC-AET-49 SDMC-AET-5	2006	Main Canal Main Canal	0.25	75 15	0.430	8.30	4.36 22.90			0.356		
SDMC-AET-50	2006	Main Canal	0.909	100	0.530	1.50	3.90	0.37	NA	0.229		
SDMC-AET-6	2006	Main Canal	0	35	0.440	1.80	25.20	0.77	NA	0.342		
SDMC-AET-7	2006	Main Canal	0	35	0.330	21.00	23.80			0.759		
SDMC-AET-8 SDMC-AET-9	2006 2006	Main Canal Main Canal	0.8 1.04	80 100	0.430 0.580	11.00 11.00	22.50 21.90			0.858 0.530		
350 /\L1-3	2000	mail Odilai	1.04	100	0.000	11.00	۷۱.۵0	2.04	1.47.1	0.550		

APPENDIX D - Amphipod Toxicity Response and Sediment Concentrations

APPENDIX D - AI	npnipod roxicity	Response and Sediment Concentrations										
									Total			
				Average	Survivor's				Organic			
			Reproductive		Average				Carbon		A-1268	PAHs OC
Location	Year	Domain	Response	Rate	Weight	Aroclor-1268	Lead	Mercury	(TOC)*	Total PAHs	OC Norm	Norm
SDWC-AET-1	2006	Western Creek Complex	0.833	100	0.400	0.62	26.50	1.23		6.192		
SDWC-AET-10	2006	Western Creek Complex	3.64	90	0.570	1.40	24.30	1.22		0.271		
SDWC-AET-11	2006	Western Creek Complex	0.938	100	0.680	0.75	25.30	0.52		0.275		
SDWC-AET-12	2006	Western Creek Complex	0.5	70	0.450	2.40	27.70	1.59		0.358		
SDWC-AET-13	2006	Western Creek Complex	0	85	0.490	2.20	31.20	0.92		0.245		
SDWC-AET-14	2006	Western Creek Complex	1.733	90	0.440	5.20	25.30	1.50		0.308		
SDWC-AET-15	2006	Western Creek Complex	0.2	80	0.410	2.50	35.60	1.85	NA	0.317		
SDWC-AET-16	2006	Western Creek Complex	0	75	0.310	20.00	40.30	2.76		0.394		
SDWC-AET-17	2006	Western Creek Complex	0	65	0.410	25.00	51.60	6.72	NA	0.312		
SDWC-AET-18	2006	Western Creek Complex	1.682	100	0.730	2.10	29.60	1.14		0.293		
SDWC-AET-19	2006	Western Creek Complex	0.083	80	0.430	1.80	27.10	1.49	NA	0.286		
SDWC-AET-2	2006	Western Creek Complex	0.556	65	0.750	0.63	24.50	1.33	NA	1.508		
SDWC-AET-20	2006	Western Creek Complex	1.111	85	0.460	2.40	29.90	1.53	NA	0.267		
SDWC-AET-21	2006	Western Creek Complex	0.571	80	0.390	4.80	47.00	1.71	NA	0.338		
SDWC-AET-22	2006	Western Creek Complex	1.571	95	0.510	6.90	31.00	1.89	NA	0.397		
SDWC-AET-23	2006	Western Creek Complex	0.792	100	0.650	3.80	32.40	1.99	NA	0.421		
SDWC-AET-24	2006	Western Creek Complex	2.833	100	0.430	4.50	27.20	3.28	NA	0.402		
SDWC-AET-25	2006	Western Creek Complex	0.643	90	0.570	3.10	26.40	1.78	NA	0.317		
SDWC-AET-26	2006	Western Creek Complex	2.25	75	0.800	1.70	29.30	2.01	NA	0.511		
SDWC-AET-27	2006	Western Creek Complex	0	75	0.550	2.10	29.50	1.61	NA	0.206		
SDWC-AET-28	2006	Western Creek Complex	0.708	95	0.350	3.50	28.90	2.08	NA	0.288		
SDWC-AET-29	2006	Western Creek Complex	0.5	85	0.310	2.00	27.80	1.48	NA	0.137		
SDWC-AET-3	2006	Western Creek Complex	0.818	85	0.380	0.78	26.70	1.39		11.367		
SDWC-AET-30	2006	Western Creek Complex	0	0	0	4.30	23.70	3.99	NA	0.240		
SDWC-AET-31	2006	Western Creek Complex	0.778	100	0.480	2.40	34.10	2.64		0.251		
SDWC-AET-32	2006	Western Creek Complex	1.91	100	0.490	1.00	24.80	1.12	NA	0.182		
SDWC-AET-33	2006	Western Creek Complex	0	30	0.350	1.70	27.30	1.75		0.161		
SDWC-AET-34	2006	Western Creek Complex	0	25	0.280	0.76	39.70	12.20		0.409		
SDWC-AET-35	2006	Western Creek Complex	0.5	85	0.410	4.90	32.50	12.70	NA	0.580		
SDWC-AET-36	2006	Western Creek Complex	0.917	80	0.490	2.40	37.20	2.27		0.241		
SDWC-AET-37	2006	Western Creek Complex	0	75	0.420	0.35	38.40	5.24		0.425		
SDWC-AET-38	2006	Western Creek Complex	0	90	0.410	0.33	36.60	13.20		0.410		
SDWC-AET-39	2006	Western Creek Complex	0	30	0.130	2.50	41.50	1.67	NA	0.150		
SDWC-AET-4	2006	Western Creek Complex	2.27	100	0.600	4.10	33.30	4.84		0.894		
SDWC-AET-40	2006	Western Creek Complex	0	50	0.300	2.50	45.30	0.50		0.398		
SDWC-AET-41	2006	Western Creek Complex	1.42	90	0.620	4.20	33.00	12.20		0.351		
SDWC-AET-42	2006	Western Creek Complex	0	10	0.150	5.50	36.10	3.77		0.229		
SDWC-AET-43	2006	Western Creek Complex	2.17	85	0.350	13.00	34.50	14.70		0.623		
SDWC-AET-44	2006	Western Creek Complex	0	55	0.350	0.16	39.40	0.35		0.524		
SDWC-AET-45	2006	Western Creek Complex	0	40	0.460	2.20	33.60	7.83		0.426		
SDWC-AET-46	2006	Western Creek Complex	0	45	0.360	0.01	51.80			0.876		
SDWC-AET-47	2006	Western Creek Complex	0	5	0.200	0.02	35.00	0.88		0.445		
SDWC-AET-48	2006	Western Creek Complex	0	85	0.560	4.30	35.70			7.799		
SDWC-AET-49	2006	Western Creek Complex	0.962	85	0.440	1.00	34.60	0.20		1.098		$\vdash$
SDWC-AET-5	2006	Western Creek Complex	0	50	0.510	15.00	38.40	3.81		0.656		$\vdash$
SDWC-AET-50	2006	Western Creek Complex	1.625	95	0.390	11.00	33.80	16.30		1.319		
SDWC-AET-6	2006	Western Creek Complex	0	80	0.240	1.90	27.00			0.322		
SDWC-AET-7	2006	Western Creek Complex	0	55	0.330	1.80	27.10	0.95		0.365		
SDWC-AET-8	2006	Western Creek Complex	0	5	0.200	7.00	34.20	1.02		0.358		$\vdash$
SDWC-AET-9	2006	Western Creek Complex	0	60	0.290	1.70	25.90	1.29	NA	0.317		$\vdash$
			240	240	240							

Key: Toxic

Significantly less than mean controls (p=0.05) Not significant from mean controls Test not within acceptability limits Nontoxic

#### APPENDIX D - Grass Shrimp Toxicity Response and Sediment Concentrations

Red formatting in these columns is hard-wired in. Will not change when data moves from one row to another upon sorting.

						sorting.									
Landin	Marta	V	Power!	DNA strand	Embryo Development	_	Ovary Maturation		A I 4000	Lead		Total Organic Carbon		PAHs OC	Aroclor- 1268 OC
Location C-16	Matrix Grass Shrimp	Year 2000	Domain South Purvis Creek Domain	damage NA	Rate 44	Rate 76	Rate 61	Rate 72	Aroclor-1268 0.600	3.70	Mercury 0.279	(TOC)* 24500	Total PAHs 0.107	norm 0.0435	norm 0.2449
C-16	Grass Shrimp	2000	Domain 3	NA NA	36	39	76	84	0.000	17.00	0.279	16600	0.107	0.0435	0.0090
C-5	Grass Shrimp	2000	LCP Ditch Domain	NA	11	0	20	80	3.700	36.00	11.5	40100	0.270	0.0673	0.9227
C-7	Grass Shrimp	2000	North South Tributary Domain Removal	NA	11	0	32	77	23.000	38.00	30.5	49100	0.229	0.0466	4.6843
CR-C(S)	Grass Shrimp	2000	Crescent River Reference	NA	73	96	73	92	0.022	2.00	0.014	17100	0.080	0.0468	0.0129
MG-B7(C)	Grass Shrimp	2000	Domain 1	NA	48	92	57	93	15.000	28.00	6.60	32000	0.562	0.1757	4.6875
MG-D9(C)	Grass Shrimp	2000	Domain 1	NA	55	88	63	83	1.400	28.00	2.28	33700	0.234	0.0694	0.4154
MG-H7(C) MG-K7(C)	Grass Shrimp	2000	Domain 1	NA NA	0	0	48 60	89 76	17.000 0.330	50.00	4.16	40700 34700	0.204 11.726	0.0501 3.3793	4.1769 0.0951
MG-N2(C)	Grass Shrimp Grass Shrimp	2000	Domain 1  North South Tributary Domain	NA NA	45	0 85	64	76	0.630	47.00 29.00	3.10 12.30	62000	0.564	0.0910	0.1016
TC-C(S)	Grass Shrimp	2000	North St Simons Sound Domain	NA	44	84	52	88	0.035	12.00	0.052	23200	0.810	0.3491	0.0192
C-15	Grass Shrimp	2002	Western Creek Complex	2.1	74	89	93	87	2.80	32.0	1.30	43000	0.060	0.0140	0.6512
C-45	Grass Shrimp	2002	East of domain 4	2.3	25	84	39	40	1.90	18.0	0.24	44000	0.140	0.0317	0.4318
C-5	Grass Shrimp	2002	LCP Ditch Domain	4.3	21	61	40	57	19.00	21.0	11.0	44000	1.110	0.2522	4.3182
C-6	Grass Shrimp	2002	North South Tributary Domain	3.6	16	50	32	15	19.00	20.0	48.0	27000	4.363	1.6159	7.0370
C-7 CR-C	Grass Shrimp Grass Shrimp	2002	North South Tributary Domain Removal Crescent River Reference	3.9 2.2	18 53	77 88	38 73	23 73	430.00 0.19	36.0 12.0	14.0 0.03	55000 34000	0.454 0.060	0.0825 0.0177	78.1818 0.0559
D-C	Grass Shrimp	2002	West of domain 4	2.3	28	88	57	67	1.20	18.0	0.03	50000	0.080	0.0177	0.0559
MG-H7(C)	Grass Shrimp	2002	Domain 1	3.8	8	65	36	20	64.00	29.0	62.00	52000	1.060	0.2039	12.3077
MG-K7(C)	Grass Shrimp	2002	Domain 1	NA	0	0	0	48	92.00	27.0	46.00	38000	0.828	0.2179	24.2105
TC-C	Grass Shrimp	2002	North St Simons Sound Domain	2.1	77	90	85	87	0.03	14.0	0.04	26000	0.060	0.0232	0.0096
C-15	Grass Shrimp	2003	Western Creek Complex	1.9	21	87	73	58	0.790	28.0	2.80	35000	0.446	0.1274	0.2257
C-45	Grass Shrimp	2003	East of domain 4	1.7	45	88	78	85	0.700	17.0	0.62	30000	0.180	0.0600	0.2333
C-5	Grass Shrimp	2003	LCP Ditch Domain	2.7	28	88	72	85	24.000	24.0	10.00	32000	2.553	0.7978	7.5000
C-6 C-7	Grass Shrimp Grass Shrimp	2003	North South Tributary Domain  North South Tributary Domain Removal	2.2 1.9	32 30	88 93	78 78	72 77	19.000 3.700	47.0 43.0	80.00 4.10	37000 31000	0.811 11.782	0.2192 3.8006	5.1351 1.1935
CR-C	Grass Shrimp	2003	Crescent River Reference	1.7	29	97	73	87	0.100	7.5	0.01	11000	0.084	0.0760	0.0909
D-C	Grass Shrimp	2003	West of domain 4	1.8	29	87	74	83	0.870	22.0	0.56	32000	0.243	0.0759	0.2719
MG-H7(C)	Grass Shrimp	2003	Domain 1	3.6	9	35	33	27	2.200	21.0	6.80	30000	0.222	0.0740	0.7333
MG-K7(C)	Grass Shrimp	2003	Domain 1	2.2	15	87	71	83	24.000	26.0	22.00	33000	5.042	1.5279	7.2727
TC-C	Grass Shrimp	2003	North St Simons Sound Domain	2.4	50	82	83	83	0.100	9.4	0.04	13000	0.061	0.0471	0.0769
C-33	Grass Shrimp	2004	Domain 3	2.6	9	67	78	42	0.0305	8.9	0.044	4800	0.441	0.9188	0.0635
CR-C	Grass Shrimp	2004	Crescent River Reference	2	38	93	80	87	0.0600	2.2	0.010	1700	0.090	0.5294	0.3529
M-AB TC-C	Grass Shrimp Grass Shrimp	2004	Domain 1 Removal North St Simons Sound Domain	1.9 2.5	34 39	85 73	78 72	83 82	2.1000 0.0320	15.0 8.0	2.500 0.026	17000 18000	7.290 0.468	4.2882 0.2600	1.2353 0.0178
C-101	Grass Shrimp	2004	Domain 3	3	10	63	76	13	0.9700	20.0	0.530	35000	1.067	0.3049	0.2771
C-105	Grass Shrimp	2004	Domain 5	2.8	11	65	55	63	0.2600	12.0	0.200	30000	0.632	0.2107	0.0867
C-5	Grass Shrimp	2004	LCP Ditch Domain	2.2	29	83	54	67	12.0000	28.0	2.100	40000	2.350	0.5875	3.0000
MG-H7(C)	Grass Shrimp	2004	Domain 1	2.2	38	82	76	78	12.0000	34.0	0.820	40000	4.945	1.2363	3.0000
MG-K7(C)	Grass Shrimp	2004	Domain 1	2.3	17	70	70	67	10.0000	46.0	3.000	33000	1.684	0.5103	3.0303
A-C	Grass Shrimp	2004	East of domain 4	1.9	26	92	62	52	1.3000	16.0	0.790	43000	0.477	0.1109	0.3023
C-100 C-102	Grass Shrimp Grass Shrimp	2004 2004	Domain 3 West of domain 4	2.3	25 28	83 87	78 56	73 32	3.6000 0.7200	23.0 15.0	3.300 0.730	47000 47000	1.820 0.612	0.3872 0.1302	0.7660 0.1532
C-102 C-104	Grass Shrimp	2004	Domain 5	2.3	49	85	61	30	0.7200	23.0	0.730	46000	0.612	0.1302	0.1552
C-15	Grass Shrimp	2004	Western Creek Complex	2.1	44	88	59	65	2.8000	28.0	1.200	42000	1.360	0.3238	0.6667
C-45	Grass Shrimp	2004	East of domain 4	2	29	92	54	47	0.9600	13.0	0.300	43000	0.625	0.1452	0.2233
C-7	Grass Shrimp	2004	North South Tributary Domain Removal	3.5	3	45	58	27	20.0000	29.0	18.000	47000	3.550	0.7553	4.2553
D-C	Grass Shrimp	2004	West of domain 4	2.7	21	72	75	60	0.8800	27.0	0.680	43000	1.044	0.2428	0.2047
C-103	Grass Shrimp	2004	Domain 5	2.2	29	87	77	28	0.1800	3.9	0.160	85000	0.630	0.0741	0.0212
C-6 CR-C	Grass Shrimp Grass Shrimp	2004	North South Tributary Domain Crescent River Reference	2.4 1.8	33 56.3	82 86.7	72 75.7	40 76.7	41.0000 0.012	27.0 12.4	11.000 0.0952	52000 29000	11.510 0.136	2.2135 0.0469	7.8846 0.0041
TC-C	Grass Shrimp	2005	North St Simons Sound Domain	2.23	30.7	90	77.3	83.3	0.012	16.6	0.0932	28800	0.130	0.0403	0.0052
C-5	Grass Shrimp	2005	LCP Ditch Domain	2.2	29.3	80	66	65	4.200	25.8	1.1000	37200	1.067	0.2868	1.1290
C-36	Grass Shrimp	2005	North Purvis Creek Domain	1.9	38.7	80	79	73.3	3.700	29.1	1.9200	40000	1.189	0.2973	0.9250
C-29	Grass Shrimp	2005	North Purvis Creek Domain	1.9	22	85	63.7	71.7	2.200	25.4	1.0500	48700	0.826	0.1696	0.4517
C-16	Grass Shrimp	2005	South Purvis Creek Domain	2.1	28.3	85	66.7	71.7	3.600	5.8	0.5720	6870	0.274	0.3988	5.2402
C-6	Grass Shrimp	2005	North South Tributary Domain	1.63	37	83.3	69.3	73.3	69.000	42.1	86.6000	45800	1.484	0.3240	15.0655
C-7 C-15	Grass Shrimp Grass Shrimp	2005 2005	North South Tributary Domain Removal Western Creek Complex	3.67 2.07	8.7 27	46.7 85	50.3 75.7	36.7 76.7	82.000 6.800	52.0 25.3	80.4000 2.1100	56800 44800	6.072 1.015	1.0689 0.2266	14.4366 1.5179
MG-K7(M)	Grass Shrimp	2005	Domain 1	2.07	31.7	76.7	83.3	81.7	16.000	29.5	5.6800	34400	0.876	0.2547	4.6512
MG-H7(M)	Grass Shrimp	2005	Domain 1	1.87	31.7	88.3	79.7	73.3	36.000	28.8	4.3100	50400	1.296	0.2571	7.1429
C-33	Grass Shrimp	2005	Domain 3	1.7	52.3	90	83.7	83.3	0.013	419.0	0.2430	43300	0.649	0.1499	0.0030
D-C	Grass Shrimp	2005	West of domain 4	2	18	85	63.7	56.7	3.900	35.5	1.8700	56800	0.794	0.1398	0.6866
C-45	Grass Shrimp	2005	East of domain 4	4.43	12	23.3	21.3	25	0.610	20.3	0.2450	33300	0.725	0.2177	0.1832
C-103	Grass Shrimp	2005	Domain 5	1.97	34.7	90	60.3	78.3	0.560	24.2	1.9900	54400	0.492	0.0903	0.1029
C-104	Grass Shrimp Grass Shrimp	2005	Domain 5  Domain 5	1.7 2.07	27.7	86.7	66	71.7	0.044	25.7	1.9000	36800	1.647 0.565	0.4476	0.0120 0.0601
C-105 C-200	Grass Shrimp Grass Shrimp	2005 2005	Domain 3	1.8	28.3 46.7	81.7 86.7	68 72.3	83.3 81.7	0.390 8.200	22.9 154.0	0.0396 4.4300	64900 40900	1.365	0.0871 0.3337	2.0049
C-200	Grass Shrimp	2005	South Turtle River Domain	2.13	28.7	88.3	68	83.3	0.940	16.3	1.0100	25800	1.166	0.3537	0.3643
C-202	Grass Shrimp	2005	North Turtle River Domain	1.67	47.3	83.3	70.7	80	0.210	17.2	0.2180	27200	0.442	0.1623	0.0772
C-203	Grass Shrimp	2005	South Turtle River Domain	1.9	24.7	86.7	63.7	76.7	0.820	60.1	0.8800	48200	0.980	0.2032	0.1701
FS-AREA1	Grass Shrimp	2005	Domain 3	2.23	29	86.7	76.3	83.3	1.300	32.0	0.6860	34800	0.490	0.1407	0.3736
FS-AREA2	Grass Shrimp	2005		1.87	56.3	81.7	75.3	78.3	2.300	387.0	2.1700	58600	5.097	0.8698	0.3925
FS-AREA3	Grass Shrimp	2005	Domain 3	1.9	3.7	8.3	70.3	76.7	0.520	1190.0	0.7600	38500	52.800	13.7142	0.1351
FS-AREA4 FS-AREA5	Grass Shrimp Grass Shrimp	2005 2005	LCP Ditch Domain LCP Ditch Domain	2.07	37.7 34	85 81.7	68.7 77.3	81.7 76.7	7.000 12.000	15.4 27.2	1.1600 3.3200	28000 33900	0.561 1.394	0.2004 0.4112	2.5000 3.5398
FS-AREA6	Grass Shrimp	2005	Domain 2	1.87	22.3	81.7	66.7	71.7	5.800	27.6	8.7900	76900	0.608	0.4112	0.7542
. 5 / IIIL/IU	Craco Crimin	2000	20.11U11 E	1.07	22.0	01.1	50.7	, 1.7	J.000	21.0	0.7000	, 0000	0.000	0.0131	0.1042

^{*} Total Organic Carbon (TOC) was not measured in 2000. Therefore, it was estimated from the average of TOC measured at the same stations in monitoring years 2002-2006.

Key: Toxic Nontoxic

Significantly less than mean controls (p=0.05) Not significant from mean controls

#### **2000 Amphipod Toxicity Data Controls**

	2 " .		Mean Weight	2		
Sample	Replicate	to start	per Survivor	Survival, %		
Control	1	15	0.62	75	Average Control Survival =	71.0
	2	12	0.41	60	Standard Deviation =	12.4
	3	12	0.69	60	N =	5
	4	14	0.64	70		
	5	18	0.36	90		

Not within Test acceptability crit Needs to be ≥ 80% mean surviva

#### 2002 Amphipod Toxicity Data Controls

				Juvenile		Reproductive	Survival
Control	Rep	Surviving	Sexed males	Production	Avg Weight	Response	Rate
	а	21	(	6 2	0.66	0.067	105
	b	16	•	7 30	0.94	1.667	80
	С	19		9 50	0.97	2.500	95
	d	16		5 20	0.82	0.909	80
	е	15	1:	2 4	0.57	0.667	75
			Survivor's				
		Survival	Average	Reproductive			
Control		Rate	Weight	Response			
	Mean	87	0.792	1.16			
	Variance	157.5	0.030	0.889			
	N	5	5	5			
	Std Dev	12.55	0.17	0.94			
					]		

#### **2003 Amphipod Toxicity Data Controls**

Treatment	Rep	Number Surviving	Survivor's Avg Weight	Survival Rate	Reproductive Response
Control 1	а	20	0.31	100	0.04
	b	16	0.36	80	0.15
	С	15	0.33	75	0.00
	d	20	0.27	100	0.04
	е	15	0.29	75	0.06
			Survivor's		
		Survival	Average	Reproductive	
Control		Rate	Weight	Response	
	Mean	86	0.312	0.058	
	Variance	167.5	0.00122	0.003	
	N	5	5	5	
	Std Dev	12.9	0.0349	0.0559	

Not within Test acceptability criteria Needs to have response in all control replicates

Note: One of the controls was unable to yield a non-zero reproductive response in 2003. The reproductive response in controls failed to meet minimum test acceptability requirements.

#### **2004 Amphipod Toxicity Data Controls**

						Survivor's	
		No.		Juveniles	Reproductive	Average	Survival
Control 1	Rep	Surviving	No. Females	Produced	Response	Weight	Rate
	а	18	3	25	4.17	0.28	90
	b	20	10	25	1.25	0.29	100
	С	20	10	50	2.50	0.3	100
	d	16	11	20	0.91	0.11	80
	е	18	6	25	2.08	0.64	90
Control 2	а	18	10	100	5.00	0.32	90
	b	19	11	25	1.14	0.28	95
	С	17	7	20	1.43	0.14	85
	d	17	10	20	1.00	0.23	85
	е	15	4	100	12.50	0.15	75
Mean		17.8			3.20	0.274	89
Variance		1.86			12.63	0.02	65.56
N		10			10	10	10
Std Dev		1.62			3.55	0.15	8.10

#### 2005 Amphipod Toxicity Data Controls

		Number	Survivor's Avg		Reproductive	
Treatment	Rep	Surviving	Weight	Survival Rate	The second second second second second second second second second second second second second second second se	
Control 1	а	14	0.44	70	1.33	
	b	16	0.31	80	1.57	
	С	17	0.36	85	1.30	
	d	16	0.35	80	3.62	
	е	19	0.34	95	3.25	
				Average		
				Percent		Survivor's
				Survival in	Reproductive	Average
Control		Survival		Controls	Response	Weight
	Mean	16.4	_	82	2.21	(
	Variance	3.3		82.5	1.27	0.0
	N	5		5	5	

#### 2006 AVS Amphipod Toxicity Data Controls

1.82

Std Dev

		No.		Juveniles	Reproductive	Survivor's Average	Survival
Control	Rep	Surviving	No. Females	Produced	Response	Weight	Rate
	а	18	12	12	0.5	0.67	90
	b	19	12	6	0.25	0.69	95
	С	20	15	25	0.833	0.6	100
	d	20	12	8	0.333	0.97	100
	е	18	10	18	0.9	0.77	90
Mean		19			0.563	0.74	95
N		5			5	5	5
Std Dev		1.0			0.29	0.14	5.0
Variance		1.0			0.085	0.0202	25.0

9.08

1.13

0.048

2006 AET Toxicity Data

							Survivor's	
		No.		Juveniles		Reproductive	Average	Survival
Control	Rep	Surviving	No. Females	Produced		Response	Weight	Rate
1	а	20	13	2	25	0.962	0.32	100
	b	20	8	3	33	2.063	0.51	100
	С	20	11	7	70	3.182	0.33	100
	d	19	11	2	47	2.136	0.52	95
	е	20	11	1	12	0.545	0.6	100
2	а	18	13	3	38	3.385	0.41	90
	b	20	17	3	30	0.882	0.46	100
	С	20	12	1	17	0.708	0.4	100
	d	18	11	3	33	1.500	0.55	90
	е	20	9	5	54	3.000	0.34	100
Mean						1.84	0.444	97.5
Variance						1.2	0.0098	18.1
N						10	10	10
Std Dev						1.1	0.0990	4.2

Note that the 2006 AET data were based on a single replicate at each location, except for controls which results in considerable uncertainty in the 2006 AET data because there was only one replicate.

#### APPENDIX D - Grass Shrimp Controls

#### Data for the Reference Sediment Station on the Skidaway River

#### Year 2000

		Embryo		Ovary	
	DNA strand	Development	Embryo	Maturation	Survival Rate,
Replicate	damage	Rate	Hatching Rate	Rate	%
1	NA	80	96	76	96
2	NA	52	96	84	92
3	NA	76	88	60	92
Mean		69.3	93.3	73.3	93.3
Std Dev		15.1	4.62	12.2	2.3
N		3	3	3	3

#### Year 2002

Teal 2002					
		Embryo		Ovary	
	DNA strand	Development	Embryo	Maturation	Survival Rate,
Replicate	damage	Rate	Hatching Rate	Rate	%
1	1.3	83	94	83	90
2	2.4	57	85	100	80
3	2.9	43	96	71	90
Mean	2.2	61.0	91.7	84.7	86.7
Std Dev	0.8	20.3	5.9	14.6	5.8
N	3	3	3	3	3

#### Year 2003

	DNA strand	Embryo Development	Embryo	Ovary Maturation	Survival Rate,
Replicate	damage	Rate	Hatching Rate	Rate	%
1	0.9	38	95	79	80
2	1.7	42	100	92	90
3	1.3	40	85	70	75
Mean	1.3	40.0	93.3	80.3	81.7
Std Dev	0.4	2.0	7.6	11.1	7.6
N	3	3	3	3	3

#### Year 2004

		Embryo		Ovary	
	DNA strand	Development	Embryo	Maturation	Survival Rate,
Replicate	damage	Rate	Hatching Rate	Rate	%
1	1.7	29	90	64	90
2	2.3	45	80	72	80
3	2.4	33	90	78	90
Mean	2.1	35.7	86.7	71.3	86.7
Std Dev	0.4	8.3	5.8	7.0	5.8
N	3	3	3	3	3

#### Year 2005

		Embryo		Ovary	
	DNA strand	Development	Embryo	Maturation	Survival Rate,
Replicate	damage	Rate	Hatching Rate	Rate	%
1	1.9	55	95	82	85
2	2.3	57	90	79	90
3	1.5	50	90	83	70
Mean	1.9	54.0	91.7	81.3	81.7
Std Dev	0.4	3.6	2.9	2.1	10.4
N	3	3	3	3	3

#### Sediment Effect Concentrations Summary - Amphipod

			Me	ercury				Aroclor 1268						OC-	normaliz	ed Arock	or 1268	
			Reproduc	tive Respor	nse	Total # of		Reproductive Response						Reproductive Response  Total # of				
	ER-L	ER-M	TEL	PEL	AET	samples	ER-L	ER-M	TEL	PEL	AET	samples	ER-L	ER-M	TEL	PEL	AET	samples
	11.8	21.9	4.9	15.5	19	230	19	35	6.5	24.7	44	230	3.0	4.9	1.0	3.3	7.9	80
Number of Type 1 Errors	4	0	10	2	0		4	2	11	4	0		2	2	4	2	0	
Number of Type 2 Errors	156	174	123	167	171		116	142	75	129	149		50	56	40	51	59	
Number predicted correctly	70	56	97	61	59		110	86	144	97	81	-	28	22	36	27	21	
Overall Reliability (%)	30%	24%	42%	27%	26%	30%	48%	37%	63%	42%	35%	45%	35%	28%	45%	34%	26%	34%
			Surv	rival Rate					Survi	val Rate					Surv	ival Rate		
						Total # of						Total # of						Total # of
	ER-L	ER-M	TEL	PEL	AET	samples	ER-L	ER-M	TEL	PEL	AET	samples	ER-L	ER-M	TEL	PEL	AET	samples
	11.3	21.7	4.2	15.4	62	240	16.0	32	6.2	20.3	64	240	3.0	5.2	0.9	3.5	12.3	90
Number of Type 1 Errors	7	1	12	3	0		7	2	12	4	0		2	2	6	2	0	
Number of Type 2 Errors	150	167	104	161	184		120	153	86	139	169		50	57	41	51	63	
Number predicted correctly	83	72	124	76	56		113	85	142	97	71		38	31	43	37	27	
Overall Accuracy (%)	35%	30%	52%	32%	23%	34%	47%	35%	59%	40%	30%	42%	42%	34%	48%	41%	30%	39%
		:	Survivors A	Average We	eiaht				Survivors A	verage Wei	aht			:	Survivors /	Average We	eiaht	
	l					Total # of					•	Total # of						Total # of
	ER-L	ER-M	TEL	PEL	AET	samples	ER-L	ER-M	TEL	PEL	AET	samples	ER-L	ER-M	TEL	PEL	AET	samples
	21.6	38.1	8.1	21.9	145	240	61.0	110	19.4	61	420	240	5.0	7.5	1.9	5.6	15.1	90
Number of Type 1 Errors	10	6	31	9	0		11	8	36	11	0		5	2	15	4	0	
Number of Type 2 Errors	93	100	77	93	109		96	101	82	96	107		39	42	36	40	45	
Number predicted correctly	137	134	132	138	131		133	131	122	133	133		46	46	39	46	45	
Overall Accuracy (%)	57%	56%	55%	58%	55%	56%	55%	55%	51%	55%	55%	54%	51%	51%	43%	51%	50%	49%

Total Polycyclic Aromatic Hydrocarbons					I	OC-normalized PAHs					Lead							
			Reproduc	tive Respon	nse	Total # of		Reproductive Response  Total # of					Reproductive Response  Total # of				Total # of	
	ER-L	ER-M	TEL	PEL	AET	samples	ER-L	ER-M	TEL	PEL	AET	samples	ER-L	ER-M	TEL	PEL	AET	samples
	3.1	5.6	1.4	3.1	12	230	2.2	4.3	0.9	1.9	2.7	80	66.3	238	44.8	88.7	177	230
Number of Type 1 Errors	1	1	6	1	0		2	0	2	2	0		1	0	1	1	0	
Number of Type 2 Errors	182	188	174	182	194		62	62	59	62	62		189	192	177	190	192	
Number predicted correctly	47	41	50	47	36		16	18	19	16	18		40	38	52	39	38	
Overall Reliability (%)	20%	18%	22%	20%	16%	19%	7%	8%	8%	7%	8%	8%	17%	17%	23%	17%	17%	18%
			Average	Survival Ra	nte				Average S	Survival Rat	е				Average	Survival Ra	ite	
						Total # of						Total # of						Total # of
	ER-L	ER-M	TEL	PEL	AET	samples	ER-L	ER-M	TEL	PEL	AET	samples	ER-L	ER-M	TEL	PEL	AET	samples
	1.5	4.4	0.8	2.1	6	240	0.6	1.0	0.2	0.6	2.7	90	59.8	196	40.8	88.4	177	240
Number of Type 1 Errors	6	1	10	4	0		1	1	4	1	0		1	0	2	1	0	
Number of Type 2 Errors	168	179	127	171	184		53	59	34	53	64		183	187	161	185	187	
Number predicted correctly	66	60	103	65	56		36	30	52	36	26		56	53	77	54	53	
Overall Accuracy (%)	28%	25%	43%	27%	23%	29%	15%	13%	22%	15%	11%	15%	23%	22%	32%	23%	22%	24%
		,	Survivor's	Average We	eight	Total # of			Survivor's A	verage Wei	ght	Total # of		8	Survivor's A	Average We	eight	Total # of
	ER-L	ER-M	TEL	PEL	AET	samples	ER-L	ER-M	TEL	PEL	AET	samples	ER-L	ER-M	TEL	PEL	AET	samples
	2.5	5.1	1.2	2.5	12	240	1.0	1.6	0.5	1.0	4.3	90	87.0	238	52.0	94	419.0	240
Number of Type 1 Errors	9	5	22	8	0		3	2	8	3	0		2	1	3	2	0	
Number of Type 2 Errors	97	102	91	97	105		41	44	38	41	46		103	105	101	103	108	
Number predicted correctly	134	133	127	135	135		46	44	44	46	44		135	134	136	135	132	
Overall Accuracy (%)	56%	55%	53%	56%	56%	55%	19%	18%	18%	19%	18%	19%	56%	56%	57%	56%	55%	56%
2 . 2 . 2	2370	2370	2570	2070	2070		1070	. 570	. 570	. 370	. 570		0070	2370	2.70	2370	2370	2370

Reproductive Response 5.31 3.23 2.87 3.01 2.85 0.86 0.656 1.18 0.508 0.61 0.906 0.464 2.58 2.06 1.88 1.56 1.625 3.64 1.733 1.682 1.571 2.833 2.25 1.91 2.27 2.17 1.625 1.94 1.59 1.61 1.45 1.38 1.42 0.47 0.29 0.07 0 0.1 0 0.01 0 0.025 0.079 0 0.47 0.55 0.21 0.21 0.12 0 0.47 0.15 0.85 0.77 0.6 0.26 0 0 0.74 0.15 0.85 0.77 0.6 0.26 0 0 0.38 0 0 0 0 0.38 0 0 0 0 0.38 0 0 0 0 0.38 0 0 0 0 0.32 0 0 0 0.38 0 0 0 0 0.39 0.67 0.23 0 0 0 0.39 0.67 0.23 0 0 0 0.39 0.67 0.23 0 0 0 0.39 0.67 0.23 0 0 0 0.39 0.67 0.23 0 0 0 0.39 0.67 0.23 0 0 0 0.39 0.67 0.23 0 0 0 0.39 0.67 0.23 0 0 0 0.39 0.67 0.23 0 0 0 0.39 0.67 0.23 0 0 0 0.39 0.67 0.23 0 0 0 0.39 0.67 0.23 0 0 0 0.39 0.67 0.23 0 0 0 0.39 0.67 0.23 0 0 0 0.39 0.67 0.23 0 0 0 0.39 0.67 0.23 0 0 0 0.39 0.67 0.23 0 0 0.39 0.67 0.23 0 0 0 0.39 0.67 0.23 0 0 0 0.39 0.67 0.23 0 0 0 0.39 0.67 0.23 0 0 0 0.39 0.67 0.23 0 0 0 0.38 0 0 0 0 0.38 0 0 0 0 0.38 0 0 0 0 0.38 0 0 0 0 0.38 0 0 0 0 0 0.38 0 0 0 0 0 0.38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	b Mercury b 0.01 2x mean NOEC b 0.026 Median NOEC b 0.73 b 0.51 Y ER-M b 0.456 TEL b 0.186 TEL b 0.097 85th Percentile NE pell b 7.03 AET b 6.53 b 11.2 Feffects Data N b 1.22 662 b 1.14 189 b 1.89 866 b 3.28 80.4 b 1.12 256.6 b 1.14 189 866 b 3.28 80.4 b 1.12 256.6 b 1.14 113 b 16.3 Y 774 b 16.3 Y 313 b 0.044 10.7 b 10.53 173 b 1.2 156 b 14.84 11.3 b 10.54 11.3 b 10.55 175 b 10.55 109 c 12.2 Y 19.5 c 13.3 10.5 c 10.5 10.9 c 12.2 Y 19.5 c 13.3 10.5 c 10.7 Y 50.2 c 12.6 14.6 c 14 Y 27.6 c 0.55 109 c 22 12.6 c 14 0.038 12.7 c 15.7 19.8 c 16.8 39.6 c 17.7 5.7 75.7 c 16.9 12.2 12.6 c 17.9 12.2 12.6 c 18.8 3 10.2 c 19.8 4 10.2 c 19.8 4 10.2 c 19.8 4 10.2 c 19.8 5 10.2 c 19.8 5 10.2 c 19.8 5 10.2 c 19.8 5 10.2 c 19.8 5 10.2 c 19.8 5 10.2 c 19.8 5 10.2 c 19.8 5 10.2 c 19.8 5 10.2 c 19.8 5 10.2 c 19.8 5 10.2 c 19.8 5 10.2 c 19.8 5 10.2 c 19.8 5 10.2 c 19.8 5 10.2 c 19.8 5 10.2 c 19.8 5 10.2 c 19.8 5 10.2 c 19.8 5 10.2 c 19.8 5 10.2 c 19.8 5 10.2 c 19.8 5 10.2 c 19.8 5 10.2 c 19.8 5 10.2 c 19.8 5 10.2 c 19.8 5 10.2 c 19.8 5 10.2 c 19.8 5 10.2 c 19.8 5 10.2 c 19.8 5 10.2 c 19.8 5 10.2 c 19.8 5 10.2 c 19.8 5 10.2 c 19.8 5 10.2 c 19.8 5 10.2 c 19.8 5 10.2 c 19.8 5 10.2 c 19.8 5 10.2 c 19.8 5 10.2 c 19.8 5 10.2 c 19.8 5 10.2 c 19.8 5 10.2 c 19.8 5 10.2 c 1	9.1 1.9 11.8 21.9 12.6 4.9 11.0 15.5 19 53 46	T1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		T2         T2           T2         T2           T2         T2           T2         T2           T2         T2           T2         T2           T2         T2           T2         T2           T2         T2           T2         T2           T2         T2           T2         T2           T2         T2           T2         T2           T2         T2           T2         T2           T2         T2           T2         T2           T2         T2           T2         T2           T2         T2           T2         T2           T2         T2           T2         T2           T2         T2           T2         T2           T2         T2           T2         T2           T2         T2           T2         T2           T2         T2           T2         T2           T2         T2           T2         T2           T2         <	Average Survival Rete b Meccury	TO A PART OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF T	T1	T1	TOTAL
0 0.125	5.1 8.72		1 T2 1 T2	T2 - T2 -	T2 T2 T2 T2	75 11.3 Y 80 5.59	1 - 1 T2	T2 2 T2 2 T2 2 T2 2 T2 2 T2 2 T2 2 T2 -	- T2	2 T2 2 T2 2 T2 2 T2 2 T2 2 T2 2 T2 2 T2

Reproductive Response 0 0 0	b Mercury 6.81 145 Y 17.3 Y 2.44	Actual Effects	Average Survival Rate  25 3.0 4.48 55 13 Y 85 2.55	Actual Effects
1.0 0 0 0 0 0 0.2308 0 0 0	12.6 Y 0.277 4.49 27.6 Y 5.62 41.6 Y 2.53 109 Y 75.7 Y 61.4 Y 12.7 Y 3.41	1     -     T2     -     T2     T2     T2       1     T2     T2     T2     T2     T2     T2       1     T2     T2     T2     T2     T2     T2       1     T2     T2     T2     T2     T2     T2       1     -     -     -     -     -     -       1     T2     T2     T2     T2     T2     T2       1     -     -     -     -     -     -       1     -     T2     T2     T2     T2       1     T2     T2     T2     T2     T2       1     T2     T2     T2     T2     T2	80	1     T2     T2     -     T2     T2       1     -     T2     -     -     T2       1     T2     T2     T2     T2     T2       1     T2     T2     T2     T2     T2       1     T2     T2     T2     T2     T2       1     T2     T2     -     T2     T2       1     T2     T2     -     T2     T2       1     -     -     -     -     T2       1     -     -     -     T2       1     -     T2     -     T2       1     T2     T2     -     T2
0.167 0 0 0 0 0 0 0.9 0.375 0 0	1.29 28.2 Y 3.6 12.6 Y 8.97 3.14 3.01 8.39 4.63 23.8 Y 2.57 17.8 Y	1 T2 T2 T2 T2 T2 1 1 T2 T2 T2 T2 T2 1 - T2 T2 T2 T2 1 - T2 - T2 T2 1 T2 T2 T2 T2 1 T2 T2 T2 T2 1 T2 T2 T2 T2 1 T2 T2 T2 T2 1 T2 T2 T2 T2 1 T2 T2 T2 T2 1 T2 T2 T2 T2 1 T2 T2 T2 T2 1 T2 T2 T2 T2 1 T2 T2 T2 T2 1 T2 T2 T2 T2 1 T2 T2 T2 T2 1 T2 T2 T2 T2 1 T2 T2 T2 T2 1 T2 T2 T2 T2 1 T2 T2 T2 T2 1 T2 T2 T2 T2 1 T2 T2 T2 T2	80	1
0.375 0.611 0 0 0 0 0.167 0.654 0 0	2.99 10.2 Y 4.66 22.1 Y 6.32 7.57 9.45 Y 12.4 Y 1.47 1.74 39.6 Y 5.57	1 T2 T2 T2 T2 T2 1 T2 T2 T2 T2 1 T2 T2 T2 T2 1 T2 T2 T2 T2 1 T2 T2 T2 T2 1 T2 T2 T2 T2 1 T2 T2 T2 T2 1 T2 T2 T2 T2 1 T2 T2 T2 T2 1 T2 T2 T2 T2 1 T2 T2 T2 T2 1 T2 T2 T2 T2 1 T2 T2 T2 T2 1 T2 T2 T2 T2 1 T2 T2 T2 T2 1 T2 T2 T2 T2 1 T2 T2 T2 T2 1 T2 T2 T2 T2 1 T2 T2 T2 T2 1 T2 T2 T2 T2 1 T2 T2 T2 T2 1 T2 T2 T2 T2	60	1
0.6 0 0 0 0 0.15 0.688 0 0	5.79 11.4 Y 7.95 6.74 5.3 4.26 5.34 2.78 8.94 21.7 Y 13.4 Y 1.24	1 T2 T2 - T2 T2 1 T2 T2 - T2 T2 1 T2 T2 - T2 T2 1 T2 T2 - T2 T2 1 T2 T2 - T2 T2 1 T2 T2 - T2 T2 1 T2 T2 - T2 T2 1 T2 T2 - T2 T2 1 T2 T2 T2 T2 T2 1 T2 T2 T2 T2 T2 1 T2 T2 T2 T2 T2 1 T2 T2 T2 T2 T2 1 T2 T2 T2 T2 T2 1 T2 T2 - T2 T2 1 T2 T2 - T2 T2 1 T2 T2 - T2 T2 1 T2 T2 - T2 T2 1 T2 T2 T2 T2 T2 1 T2 T2 T2 T2 T2	55 8.39 60 4.63 50 23.8 Y 80 2.57 55 17.8 Y 80 2.99 80 10.2 Y 35 4.66 15 22.1 Y 65 6.32 55 7.57 75 9.45 Y	1 T2 T2 - T2 T2 1 T2 T2 - T2 T2 1 T2 T2 - T2 T2 1 T2 1 T2 T2 T2 T2 T2 1 - T2 T2 T2 T2 1 T2 T2 T2 T2 T2 1 T2 T2 T2 T2 T2 1 T2 T2 - T2 T2 1 T2 T2 - T2 T2 1 T2 T2 - T2 T2 1 T2 T2 - T2 T2 1 T2 T2 - T2 T2 1 T2 T2 - T2 T2 1 T2 T2 - T2 T2 1 T2 T2 - T2 T2 1 T2 T2 - T2 T2 1 T2 T2 - T2 T2 1 T2 T2 - T2 T2
0 0 0 0 0.25 0 0.909 0 0 0.8	6.17 29.2 Y 35.1 Y 29 Y 0.196 0.397 2.14 0.367 0.772 3.61 3 2.64	1       T2       T2       -       T2       T2         1       -       -       -       -       -         1       -       -       -       -       -         1       -       -       -       -       -         1       T2       T2       T2       T2       T2	50	1     T2     T2     T2     T2     T2       1     T2     T2     T2     T2     T2       1     -     -     -     -     T2       1     T2     T2     -     T2     T2       1     T2     T2     -     T2     T2       1     -     T2     -     T2     T2       1     T2     T2     -     T2     T2
0.833 0.938 0.5 0 0.2 0 0 0.083 0.556 1.111 0.571	1.23 0.518 1.59 0.921 1.85 2.76 6.72 1.49 1.33 1.53 1.71 1.99	1     T2     T2     T2     T2     T2     T2       1     T2     T2     T2     T2     T2     T2       1     T2     T2     T2     T2     T2     T2       1     T2     T2     T2     T2     T2     T2       1     T2     T2     T2     T2     T2     T2       1     T2     T2     T2     T2     T2     T2       1     T2     T2     T2     T2     T2     T2       1     T2     T2     T2     T2     T2     T2       1     T2     T2     T2     T2     T2     T2       1     T2     T2     T2     T2     T2     T2       1     T2     T2     T2     T2     T2     T2       1     T2     T2     T2     T2     T2     T2       1     T2     T2     T2     T2     T2     T2	65	1     T2     T2     T2     T2     T2       1     T2     T2     -     T2     T2       1     -     -     -     -     T2       1     -     T2     T2     T2     T2       1     T2     T2     T2     T2     T2       1     T2     T2     T2     T2     T2       1     -     -     -     T2       1     -     -     -     T2       1     T2     T2     T2     T2
0.643 0 0.708 0.5 0.818 0 0.778 0 0 0.5 0.917	1.78 1.61 2.08 1.48 1.39 3.99 2.64 1.75 12.2 Y 12.7 Y 2.27 5.24	1     T2     T2     T2     T2     T2       1     T2     T2     T2     T2     T2       1     T2     T2     T2     T2     T2       1     T2     T2     T2     T2     T2       1     T2     T2     T2     T2     T2       1     T2     T2     T2     T2     T2       1     T2     T2     T2     T2     T2       1     T2     T2     T2     T2     T2       1     -     T2     -     T2     T2       1     -     T2     -     T2     T2       1     T2     T2     T2     T2	35 0.772 35 3.61 80 3 70 1.59 85 0.921 80 1.85 75 2.76 65 6.72 80 1.49 65 1.33 85 1.53 80 1.71	1     T2     T2     T2     T2     T2       1     T2     T2     T2     T2     T2       1     T2     T2     T2     T2     T2       1     T2     T2     T2     T2     T2       1     T2     T2     T2     T2     T2       1     T2     T2     T2     T2     T2       1     T2     T2     T2     T2     T2       1     T2     T2     T2     T2     T2       1     T2     T2     T2     T2     T2       1     T2     T2     T2     T2     T2       1     T2     T2     T2     T2     T2       1     T2     T2     T2     T2     T2       1     T2     T2     T2     T2     T2       1     T2     T2     T2     T2     T2       1     T2     T2     T2     T2     T2
0 0 0 0 0 0 0 0 0 0 0	13.2 Y 1.67 0.501 3.77 0.35 7.83 0.089 0.882 5.49 0.203 3.81 2.1	1     -     T2     -     T2     T2     T2       1     T2     T2     T2     T2     T2     T2	75	1     T2     T2     T2     T2     T2       1     T2     T2     T2     T2     T2       1     T2     T2     T2     T2     T2       1     T2     T2     T2     T2     T2     T2       1     T2     T2     T2     T2     T2     T2       1     T2     T2     T2     T2     T2     T2       1     -     T2     -     T2     T2     T2       1     -     T2     -     T2     T2     T2       1     T2     T2     T2     T2     T2     T2
0 0 0	2.1 0.954 1.02 1.29	1 T2 T2 T2 T2 T2 T2 1 T2 T2 T2 T2 T2 1 T2 T2 T2 T2 T2 1 T2 T2 T2 T2 T2 1 T2 T2 T2 T2 T2 1 T2 T2 T2 T2 1 T2 T2 T2 T2 197 4 0 10 2 0 230 156 174 123 167 171 160 174 133 169 171	50 0.501 10 3.77 85 14.7 Y 55 0.35 40 7.83 45 0.089 5 0.882 85 5.49 85 0.203 50 3.81 80 2.1 55 0.954 5 1.02	1     T2     T2     T2     T2     T2       1     T2     T2     T2     T2     T2       1     -     T2     -     T2     T2       1     T2     T2     T2     T2     T2
			60 1.29	1 T2 T2 T2 T2 T2 T2  192 7 1 12 3 0  240 150 167 104 161 184  157 168 116 164 184

0.37   b   0.01   2 mean NGC   17.7   0     -   0.30   0     -   0.30   0     -   0.30   0   -   -   -   0.30   0   -   -   -   0.30   0   0   -   -   -   0.30   0   0   0.30   0   0.030   0   0.030   0   0.031   0.30   0   0.030   0   0.031   0.30   0   0.030   0   0.031   0.30   0.000   0   0.021   0.000   0   0.022   0.000   0   0.023   0.000   0   0.023   0.000   0   0.023   0.000   0   0.000   0   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000								5			
0.37   b   0.01   2. mean NGEC   7.7   0						ffects	fects ER-L	fects ER-N	fects TEL	fects PEL	Pred. Effects AET
0.37   b   0.01   2. mean NGEC   7.7   0	Survivor's					tual E	d. Ef	d. Ef	d. Ef	d. Ef	jd. Ef
0.350   b   0.04				2x mean NOEC	17.7	o Ac			- F		- P
0.362   b   2.5   ER-L   21.6   0   -   -	0.35	b	0.04			0	-	-	-	-	-
0.038   0	0.302	b	2.5			0	-	-	-		-
0.500       0.82	0.308	b	0.53	15th Percentile E	22.1	0	-		-		-
0.066   b	0.500	b	0.82	85th Percentile NE	12.7	0	-	-	-	-	-
0.386   D		-					-	-	-	-	-
0.250   b					31		-	-	-		-
0.454   b		-		Effects Data N	18		-	-	-	-	-
0.384	0.264	b	0.3			0	-	-		-	-
0.460	0.384	b	11	62		0			T1		-
0.99	0.408	b	1.92	80		0	-	-	-	-	-
0.512	0.39										-
0.228		-					-	-	-	-	-
0.55	0.528	b	0.218				-	-	-	-	-
0.712	0.55	b	3.32	30.1		0	-	-	-		-
0.440	0.712	b	7.03	28.2		0	-	-	-	-	-
0.500   b   3.05   20.6   0   -   -   -   -   -   -   -   -   -	0.440	b	5.59	25.6		0	-	-	-		-
0.440   b   2.55   0   -   -   -   -   -   -   -   -   -		-					-	-	-		-
0.450   b		-		17.8			-	-			-
0.640   b   13.6   0   T1   T1   T1   0.590   b   19.5   Y   0   T1   T1   T1   T1   T1   T1   T1		-					-	-			-
0.590	0.640	b	13.6			0			T1		-
0.650	0.590	b	105 Y			0	T1	T1	T1	T1	-
0.480 b 17.3 0 - T1 - 0.480 b 17.3 0 - T1 - 0.480 b 12.6 0 - T1 - 0.480 b 12.6 0 - T1 - 0.480 b 12.6 0 - T1 - 0.480 b 12.6 0 - T1 - 0.480 b 12.6 0 - T1 - 1 - 0.480 b 12.6 0 - T1 - 1 - 0.480 b 12.6 0 - T1 - 1 - 0.480 b 10.277 0 0.711 b 14.6 Y 0 T1 T1 T1 T1 T1 T1 0.470 b 10.9 Y 0 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1	0.550	b	6.53			0	-	-	-	-	-
0.480 b 12.6 0 - T1 - 0.680 b 0.277 0 0.710 b 41.6 Y 0 T1 T1 T1 T1 T1 0.470 b 10.9 Y 0 T1 T1 T1 T1 T1 T1 0.680 b 3.6 0 0.680 b 3.01 0		b	17.3			0	T1 -		T1		-
0.430 b 0.257		-					-	-		-	-
0.710 b 41.6 Y 0 71 71 71 71 71 0.40 0.470 b 109 Y 0.710 0.680 b 3.6 0 0 0 0 0 0 0 0 0.50 0.580 b 3.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		-									-
0.680 b 3.6	0.710	b	41.6 Y			0					-
0.550 b 8.39 0 - 11 - 10 - 0.00	0.680	b	3.6			0	-	-	-	-	-
0.440 b 2.57 0 0.50 0.40 b 4.66 0 0.50 0.490 b 4.66 0 0.50 0.490 b 4.66 0 0.50 0.570 b 9.45 0 11 - 0.50 0 b 5.57 0 11 - 0.430 b 5.57 0 0.50 0 b 5.57 0	0.550	b	8.39			0					-
0.490 b		-					-	-		-	-
0.570 b 9.45 0 - T1 - T1 - C1 - C1 - C1 - C1 - C1 - C1		b	2.99								-
0.440 b 33.6 Y 0 TI TI TI TI TI Q.330 b 5.57 0	0.570	b	9.45			0					-
0.450 b 8.28 0 - T1 - 0.506 b 6.74 0 0.510 b 6.74 0 0.510 b 6.74 0 0.510 b 6.74 0 0.510 b 6.17 0 0.570 b 35.1 Y 0 T1 - T1 T1 T1 0.530 b 0.367 0	0.440	b	39.6 Y			0	T1	T1	T1	T1	-
0.510 b 21.7 Y 0 11 11 - 11 - 0.530 b 6.17 0	0.450	b	8.28			0					-
0.570 b 35.1 Y 0 1T1 T1 T1 0.530 b 0.38F 0.540 b 0.38F 0.570 b 1.22 0.570 b 1.22 0.570 b 1.22 0.570 b 1.22 0.570 b 1.22 0.570 b 1.25 0.680 b 0.518 0.450 b 1.59 0.490 b 0.921 0.440 b 0.773 b 1.14 0.750 b 1.33 0.750 b 1.33 0.550 b 1.49 0.750 b 1.33 0.510 b 1.89 0.550 b 1.89 0.430 b 3.28 0.570 b 1.78 0.800 b 0.500 b 1.71 0.400 b 1.51 0.550 b 1.61 0.400 b 1.52 0.400 b 1.52 0.400 b 1.53 0.500 b 1.61 0.400 b 1.78 0.800 b 1.12 0.400 b 1.12 0.400 b 1.12 0.400 b 1.112 0.400 b 1.300 0.510 b 1.300 0.510 b 1.300 0.510 b 1.300 0.510 b 1.300 0.510 b 1.300 0.510 b 1.300 0.510 b 1.300 0.510 b 1.300 0.510 b 1.300 0.510 b 1.300 0.510 b 1.300 0.510 b 1.300 0.510 b 1.500		-									-
0.440 b 0.0772 0 0		-									-
0.430 b 3 0.580 b 2.64 0 0	0.530	b	0.367			0	-		-	-	-
0.570 b 1.22 0 0 0 0 0 0 0 0 0 0 0	0.430	b	3			0	-	-		-	-
0.450 b 0.921 0.490 b 0.921 0.440 b 1.5 0.730 b 1.14 0.730 b 1.14 0.750 b 1.33 0.460 b 1.53 0.570 b 1.33 0.510 b 1.99 0.430 b 1.99 0.430 b 1.99 0.430 b 1.99 0.430 b 1.99 0.430 b 1.99 0.430 b 1.89 0.650 b 1.99 0.430 b 1.61 0.550 b 1.61 0.480 b 2.01 0.550 b 1.61 0.480 b 2.64 0.490 b 1.12 0.490 b 2.27 0.420 b 5.24 0.600 b 4.84 0.620 b 1.22 0.460 b 7.83 0.560 b 5.49 0.440 b 0.203 0.550 b 1.3 0.560 b 5.49 0.440 b 0.203 0.550 b 1.3 0.550 b 1.3 0.550 b 1.3 0.560 b 5.49 0.440 b 0.203 0.5510 b 0.66 0.592 b 0.372 0.655 b 1.34 0.0565 b 1.34 0.0565 b 1.34 0.0565 b 1.35 0.0565 b 1.35 0.0565 b 1.34 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.070 b 1.3 0.	0.570	b	1.22			0	-	-	-	-	-
0.440 b 1.15 0.730 b 1.14 0.430 b 1.149 0.750 b 1.33 0.460 b 1.53 0.510 b 1.89 0.650 b 1.99 0.430 b 3.28 0.570 b 1.78 0.800 b 2.01 0.550 b 1.61 0.480 b 2.64 0.490 b 1.12 0.490 b 2.27 0.420 b 5.24 0.600 b 4.84 0.620 b 12.2 0.460 b 7.83 0.560 b 5.49 0.440 b 0.203 0.5510 b 3.81 0.70 b 1.3 0.550 b 5.49 0.440 b 0.203 0.5510 b 5.49 0.440 b 0.203 0.5510 b 3.81 0.70 b 1.3 0.234 b 0.68 0.230 b 0.16 0.58 b 0.372 0.662 b 0.456 0.592 b 8.75 0.555 b 1.34 0.410 b 3.5 0.370 b 1.3 0.410 b 3.5 0.370 b 1.3 0.410 b 3.5 0.370 b 6.32 0.390 b 7.57 0.390 b 7.57 0.390 b 7.57 0.390 b 1.71 0.410 b 1.85 0.410 b 1.85 0.410 b 1.85 0.410 b 1.85 0.410 b 1.85 0.410 b 1.85 0.410 b 1.85 0.410 b 1.85 0.410 b 1.85 0.410 b 1.85 0.410 b 1.85 0.410 b 1.85 0.410 b 1.85 0.410 b 1.85 0.410 b 1.85 0.410 b 1.85 0.410 b 1.85 0.410 b 1.85 0.410 b 1.85 0.410 b 1.85 0.410 b 1.85 0.410 b 1.85 0.410 b 1.85 0.410 b 1.85 0.410 b 1.85 0.410 b 1.85 0.410 b 1.85 0.410 b 1.85 0.410 b 1.32 0.410 b 1.35 0.410 b 1.85 0.410 b 1.35 0.410 b 1.35 0.410 b 1.35 0.410 b 1.35 0.410 b 1.35 0.410 b 1.35 0.410 b 1.35 0.410 b 1.35 0.410 b 1.37 0.410 b 1.35 0.410 b 1.32 0.410 b 1.32 0.410 b 1.32 0.410 b 1.32 0.410 b 1.32 0.410 b 1.32 0.410 b 1.32	0.450	b	1.59			0			-	-	-
0.430 b 1.49 0 0.750 b 1.33 0 0.510 b 1.89 0 0.510 b 1.89 0 0.570 b 1.78 0 0.570 b 1.78 0 0.550 b 1.61 0 0.550 b 1.61 0 0.550 b 1.61 0 0.550 b 1.61 0 0.420 b 5.24 0 0.420 b 5.24 0 0.620 b 1.22 0 0.620 b 1.22 0							-	-	-		-
0.460 b 1.53 0 0.050 b 1.89 0 0.050 b 1.89 0 0.050 b 1.99 0 0.050 b 1.99 0 0.050 b 1.99 0 0.050 b 1.78 0 0.050 b 1.61 0 0.050 b 1.61 0 0.050 b 1.61 0 0.050 b 1.61 0 0.050 b 1.61 0 0.050 b 1.61 0 0.050 b 1.61 0 0.050 b 1.61 0 0.050 b 1.61 0 0.050 b 1.61 0 0.050 b 1.62 0 b 1.12 0 0.050 b 1.62 0 b 1.83 0 0.050 b 1.81 0 0.050 b 1.81 0 0.050 b 1.81 0 0.050 b 1.81 0 0.050 b 1.81 0 0.050 b 1.81 0 0.050 b 1.81 0 0.050 b 1.34 0 0.050 b 1.34 0 0.050 b 1.34 0 0.050 b 1.34 0		-					-	-	-		-
0.510 b 1.89 0 0.0650 b 1.99 0 0.0650 b 1.99 0 0.0650 b 1.99 0 0.0650 b 1.78 0 0 0.0650 b 1.61 0 0 0.0650 b 1.61 0 0 0.0650 b 1.61 0 0 0.0650 b 1.61 0 0 0.0650 b 1.61 0 0 0.0650 b 1.61 0 0 0.0650 b 1.61 0 0 0.0650 b 1.61 0 0 0.0650 b 1.61 0 0 0.0650 b 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									-		-
0.430         b         3.28           0.570         b         1.78         0         -         -         -           0.800         b         2.01         0         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -	0.510	b	1.89			0	-	-	-	-	-
0.800         b         2.01           0.550         b         1.61         0         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -	0.430	b	3.28			0	-			-	-
0.480         b         2.64           0.490         b         1.12           0.490         b         2.27           0.420         b         5.24           0.600         b         4.84           0.620         b         12.2           0.460         b         7.83           0.560         b         5.49           0.440         b         0.203           0.510         b         3.81           0.70         b         1.3           0.234         b         0.68           0.230         b         0.16           0.58         b         0.372           0.62         b         0.456           0.592         b         3.27           0.65         b         1.34           0.410         b         3.5           0.370         b         17.3           0.410         b         3.5           0.370         b         4.33           0.400         b         6.23           0.390         b         3.41           0.390         b         3.41           0.390         b	0.800	b	2.01			0			-	-	-
0.490         b         2.27           0.420         b         5.24           0.600         b         4.84           0.620         b         12.2           0.460         b         7.83           0.560         b         5.49           0.440         b         0.203           0.510         b         3.81           0.70         b         1.3           0.234         b         0.68           0.230         b         0.16           0.230         b         0.16           0.58         b         0.372           0.62         b         8.75           0.556         b         3.27           0.65         b         3.27           0.65         b         1.34           0.410         b         11.3           0.370         b         17.3           0.410         b         3.5           0.370         b         4.33           0.440         b         6.23           0.390         b         3.41           0.410         b         3.14           0.390         b	0.480	b	2.64			0		-	-		-
0.600         b         4.84         0	0.490		2.27			0					-
0.620         b         12.2         0         -         T1         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -		-						-	-		-
0.560         b         5.49         0         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -<	0.620	b	12.2			0	-	-			-
0.510         b         3.81         0	0.560	b	5.49			0			-	-	-
0.234         b         0.68         0         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -<	0.510	b	3.81			0	-	-	-	-	-
0.58         b         0.372         0         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -<	0.234	b	0.68			0				-	-
0.592         b         8.75           0.556         b         3.27           0.65         b         1.34           0.410         b         11.3           0.370         b         17.3           0.410         b         3.5           0.370         b         4.33           0.400         b         6.23           0.390         b         3.41           0.390         b         3.44           0.390         b         3.14           0.390         b         7.57           0.390         b         7.57           0.390         b         7.57           0.390         b         4.26           0.410         b         1.85           0.410         b         1.85           0.410         b         6.72           0.390         b         1.71           0.390         b         1.85           0.410         b         1.85           0.410         b         1.85           0.410         b         6.72           0.390         b         1.71           0.380         b	0.58	b	0.372			0		-	-		-
0.65         b         1.34         0         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td>-</td> <td>-</td>							-	-		-	-
0.410         b         11.3         0         -         T1         -         0         -         T1         -         0         -         T1         -         0         -         T1         -         0         -         -         T1         -         0         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         <							-	-	-	-	-
0.410         b         3.5         0         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - </td <td>0.410</td> <td>b</td> <td>11.3</td> <td></td> <td></td> <td>0</td> <td>-</td> <td></td> <td></td> <td></td> <td>-</td>	0.410	b	11.3			0	-				-
0.400         b         6.23         0         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -<	0.410	b	3.5			0			-	-	-
0.410         b         3.14         0         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -<	0.400	b	6.23			0	-	-	-	-	-
0.370         b         6.32         0         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -<	0.410	b	3.14			0	-			-	-
0.390         b         1.74         0         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -<	0.370	b	6.32			0	-		Γ1 -	-	-
0.380         b         4.26           0.430         b         0.397         0         -         -         -           0.410         b         1.85         0         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -		-					-	-	-		-
0.410     b     1.85       0.410     b     6.72       0.390     b     1.71       0.380     b     1.39       0.410     b     12.7       0.410     b     13.2       0.360     b     0.089	0.380	b	4.26			0		-	-		-
0.390         b         1.71         0         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -<	0.410	b	1.85			0	-	-	-	-	-
0.410     b     12.7       0.410     b     13.2       0.360     b     0.089         0     -     -     T1     -       0     -     -     T1     -       0     -     -     -     -	0.390	b	1.71			0		-			-
0.360 b 0.089 0	0.410	b	12.7			0			T1		-
	0.360	-	0.089				-		-		-
	0.390	b b	16.3			0 0	- T1		T1 T1	- T1	-
0.400 b 1.230 0 0.282 b 0.0952 0	0.400	b	1.230			0	-	-			-
							-	-	-	-	-

Survivor's	Al I ENDI		- Amphipod		WICIO
Average Weight   D					
Average Weight   D					
Average Weight   D	Survivor's				
0.302   b   0.0396     0.326   b   4.43     0.334   b   8.79     0.60   0.24     0.42   11     0.51   48   Y     0.47   0.025     0.61   0.55     0.46   62   Y     0.47   0.025     0.46   62   Y     0.46   62   Y     0.46   65   Y     0.47   0.038     0.038   0.038     0.17   2.8     0.10   0.62     0.11   10     0.08   80   Y     0.09   6.8     0.15   22   Y     0.091   0.56     0.09   0.8     0.15   22   Y     0.0178   0.01     0   0.2     0.272   0.0921     0   0.10     0   0.2     0.21     0.14   1.87     0.26   1.99     0.25   1.9     0   1.01     0.11   0.686     0   2.17     0   0.76     0.208   1.16     0.358   0.276     0.348   0.395     0.378   0.186     0.382   0.0729     0.534   1.22     0.322   0.0129     0.534   1.22     0.322   0.0129     0.534   1.22     0.322   0.0742     0.310   0.566     0.250   1.46     0.350   0.426     0.350   0.426     0.330   0.0437     0   0.767     0.200   6.39     0.402   0.0742     0.310   0.767     0.200   6.39     0.406   0.350   4.68     0.290   74   Y     0.200   6.39     0.406   0.350   4.68     0.290   7.76     0.200   7.95     0.310   0.256     0.250   1.46     0.350   3.01     0.350   3.75     0.350   3.17     0.350   3.49     0.340   4.64     0.350   3.77     0.350   3.77     0.350   3.77     0.350   3.77     0.350   3.77     0.350   3.77     0.350   3.77     0.350   3.77     0.350   3.77     0.350   3.77     0.350   3.77     0.350   3.77     0.350   3.77     0.350   3.77     0.350   3.77     0.350   3.77     0.350   3.77     0.350   3.77     0.350   3.77     0.350   3.77     0.350   3.77     0.350   3.77     0.350   3.77     0.350   3.77     0.350   3.77     0.350   3.77     0.350   3.77     0.350   3.77     0.350   3.77     0.350   3.77     0.350   3.77     0.350   3.77     0.350   3.77     0.350   3.77     0.350   3.77     0.350   3.77     0.350   3.77     0.350   3.77     0.350   3.77     0.350   3.77     0.350   3.77     0.350   3.77     0.350   3.77     0.350	Average Weight				
0.334		b	0.0396		
0.42	0.334	b			
0.43 0.47 0.047 0.025 0.661 0.55 0.661 0.55 0.46 62 Y 0.63 0.038 0.17 2.8 0.10 0.02 0.11 10 0.08 80 Y 0.02 0.17 0.56 0.8 0.15 22 Y 0.178 0.01 0 0.2 0.272 0.0921 0 0 0.22 0.272 0.0921 0 0 1.05 0 80.4 Y 0 0 2.11 0.14 1.87 0.26 1.99 0.25 1.9 0 0 1.01 0.11 0.686 0 0 1.01 0.11 0.686 0 0 1.01 0.11 0.686 0 0 1.01 0.11 0.686 0 0 0.766 0.208 1.16 0.358 0.378 0.188 0.385 0.378 0.188 0.385 0.378 0.188 0.382 0.426 1.09 0.34 0.566 0.322 0.0129 0.534 1.22 0.322 0.0129 0.534 1.22 0.322 0.0129 0.534 1.22 0.322 0.0129 0.534 1.22 0.332 0.0129 0.534 1.22 0.332 0.0129 0.534 1.22 0.332 0.0129 0.534 1.22 0.332 0.0129 0.534 1.22 0.332 0.0129 0.534 1.82 0.426 4.54 0.355 2.03 0.318 0.0561 0.458 1.82 0.402 0.0742 0.310 0.464 0.350 0.767 0.320 0.794 0.340 0.464 0.350 0.794 0.340 0.767 0.320 0.794 0.340 0.464 0.350 0.794 0.340 0.464 0.350 0.794 0.340 0.767 0.320 0.794 0.340 0.464 0.350 0.794 0.340 0.466 0.290 0.767 0.320 0.794 0.340 0.466 0.290 0.767 0.320 0.794 0.340 0.200 0.6.99 0.180 0.406 0.350 0.350 0.406 0.350 0.757 0.300 0.501 0.406 0.350 0.350 0.350 0.350 0.360 0.350 0.360 0.377 0.360 0.360 0.377 0.390 0.190 0.196 0.330 0.300 0.501 0.310 0.300 0.501 0.310 0.300 0.501 0.310 0.320 0.350 0.350 0.350 0.350 0.350 0.350 0.350 0.360 0.350 0.360 0.377 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.39	0.42		11	Υ	
0.46 0.46 0.46 46 Y 0.063 0.038 0.038 0.17 2.8 0.10 0.10 0.08 0.09 0.88 0.07 0.17 0.56 0.09 0.89 0.15 0.2 0.178 0.01 0 0.2 0.272 0.0921 0 0 1.05 0 0 2.11 0.14 1.87 0.26 1.99 0.25 1.9 0 1.01 0.1 0.1 0.686 0 0 2.17 0 0.686 0 0 2.17 0 0.76 0.208 1.16 0.358 0.276 0.488 0.395 0.378 0.186 0.382 0.673 0.426 1.09 0.334 0.566 0.332 0.0129 0.534 1.22 0.322 1.07 0.1 1.107 0.43 3.57 0.426 4.54 0.352 2.03 0.318 0.0561 0.458 1.82 0.402 0.0742 0.310 0.206 0.320 0.767 0.320 0.767 0.320 0.767 0.320 0.767 0.320 0.767 0.330 0.0437 0 0.767 0.320 0.767 0.320 0.767 0.320 0.767 0.320 0.767 0.320 0.767 0.320 0.767 0.320 0.767 0.320 0.767 0.320 0.767 0.320 0.767 0.320 0.767 0.320 0.767 0.320 0.767 0.320 0.767 0.320 0.767 0.320 0.767 0.320 0.767 0.320 0.767 0.320 0.767 0.320 0.767 0.320 0.767 0.320 0.767 0.320 0.767 0.320 0.767 0.320 0.767 0.320 0.767 0.320 0.767 0.330 0.406 0.290 74 Y 0.200 6.39 0.180 4.48 0.290 10.7 0.562 0.330 0.196 0.330 0.190 0.196 0.330 0.190 0.114 0.200 7.95 0.310 0.260 0.377 0.129 0.310 0.282 0.278 0.330 0.190 0.190 0.196 0.330 0.501 0.196 0.330 0.501 0.196 0.330 0.501 0.196 0.330 0.501 0.196 0.330 0.501 0.196 0.330 0.501 0.196 0.330 0.501 0.196 0.330 0.501 0.196 0.330 0.501 0.196 0.330 0.501 0.196 0.330 0.501 0.196 0.330 0.501 0.196 0.330 0.501 0.196 0.330 0.501 0.196 0.330 0.501 0.196 0.330 0.502 0.280 0.196 0.300 0.501 0.196 0.330 0.501 0.196 0.330 0.501 0.196 0.330 0.501 0.196 0.330 0.501 0.196 0.330 0.501 0.196 0.330 0.501 0.196 0.330 0.501 0.196 0.330 0.501 0.196 0.330 0.501 0.196 0.330 0.501 0.196 0.330 0.501 0.196 0.330 0.501 0.196 0.330 0.501 0.196 0.330 0.501 0.196 0.330 0.502 0.299 0.196 0.300 0.501	0.43				
0.46				Υ	
0.10	0.46			Υ	
0.08 0.02 4.1 0.17 0.56 0.09 6.8 0.15 22 Y 0.178 0.01 0 0 0.2 0.272 0.0921 0 1.05 0 0 1.05 0 0 80.4 Y 0 1.05 0 0 1.05 0 0 1.05 0 0 1.05 0 0 1.01 0.14 1.87 0.26 1.99 0.25 1.9 0 0 1.01 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.					
0.17				Υ	
0.15					
0 0.272 0.0921 0 1.05 0 80.4 Y 0 2.11 0.144 1.87 0.26 1.99 0.25 1.9 0 0.76 0.208 1.16 0.358 0.276 0.488 0.395 0.378 0.186 0.382 0.673 0.426 1.09 0.334 0.566 0.332 0.0129 0.534 1.22 0.322 1.07 0.1 1.07 0.43 3.57 0.426 4.54 0.355 2.03 0.318 0.0561 0.458 1.82 0.402 0.0742 0.310 20.6 Y 0 25.6 Y 0 25.6 Y 0 25.6 Y 0 25.6 Y 0 25.0 1.46 0.330 0.0437 0 0.767 0.320 0.794 0.340 4.64 0.350 4.68 0.290 74 Y 0.200 6.39 0.180 4.48 0.290 10.7 0.320 0.794 0.340 4.64 0.355 3.0 0.794 0.340 4.64 0.355 3.0 0.794 0.340 4.64 0.355 3.0 0.794 0.340 4.64 0.355 3.0 0.794 0.340 4.64 0.355 3.0 0.794 0.340 4.64 0.355 3.0 0.794 0.340 4.64 0.355 3.0 0.794 0.340 1.29 0.310 2.290 774 Y 0.200 6.39 0.180 4.48 0.290 774 Y 0.200 6.39 0.180 4.48 0.290 10.7 0.90 5.3 0 4.06 0.355 3.0 0 75.7 Y 0.300 8.72 0.350 30.1 Y 0.330 50.2 Y 0.350 30.1 Y 0.330 5.2 Y 0.350 3.310 2.53 0 75.7 Y 0.300 61.4 Y 0.200 7.95 0.310 1.47 0.330 5.79 0.270 17.8 Y 0.240 10.2 0.270 17.8 Y 0.240 10.2 0.270 17.8 Y 0.240 10.2 0.270 17.8 Y 0.290 1.76 0.330 8.97 0.270 17.8 Y 0.290 1.76 0.330 1.47 0.330 1.47 0.330 1.47 0.330 1.47 0.330 1.47 0.330 1.47 0.330 1.47 0.330 1.47 0.330 1.47 0.330 1.47 0.330 1.53 0.200 1.48 0.000 3.99 0.355 1.75 0.280 1.22 0.130 1.67 0.300 0.501 0.350 0.355 0.208 0.310 1.48 0.000 3.99 0.355 1.75 0.280 1.22 0.130 1.67 0.300 0.501 0.350 0.355 0.200 0.882 0.200 1.02				Υ	
0					
0					
0.26         1.99           0.25         1.9           0         1.01           0.1         0.686           0         2.17           0         0.76           0.208         1.16           0.358         0.276           0.488         0.395           0.378         0.186           0.379         0.426           1.09         0.34           0.566         0.322           0.0129         0.534           1.22         0.322           0.322         0.0129           0.534         1.22           0.322         0.0129           0.534         1.22           0.322         0.0129           0.534         1.22           0.322         0.0129           0.534         1.22           0.322         0.0129           0.534         1.22           0.322         0.0129           0.331         1.07           0.446         4.54           0.340         1.06           0.330         0.0437           0         0.256         Y           0.290				Υ	
0					
0.1 0.686 0 2.17 0 0 0.76 0.208 1.16 0.358 0.276 0.488 0.395 0.378 0.186 0.322 0.673 0.426 1.09 0.344 0.566 0.322 0.0129 0.534 1.22 0.322 1.07 0.1 1.07 0.43 3.57 0.426 4.54 0.352 2.03 0.318 0.0561 0.488 1.82 0.402 0.0742 0.310 20.6 Y 0 25.6 Y 0.250 1.46 0.330 0.0437 0 0.767 0.320 0.794 0.340 4.64 0.355 4.68 0.290 74 Y 0.200 6.39 0.180 4.48 0.290 10.7 0 5.3 0 4.06 0.350 8.72 0.350 30.1 Y 0.330 50.2 Y 0.350 30.1 Y 0.330 50.2 Y 0.350 30.1 Y 0.330 50.2 Y 0.350 30.1 Y 0.330 50.2 Y 0.350 30.1 Y 0.330 50.2 Y 0.350 4.68 0.290 7.76 Y 0.330 61.4 Y 0.200 27.6 Y 0 5.62 0.330 2.53 0 75.7 Y 0.300 61.4 Y 0.190 12.7 0.340 1.29 0.340 1.29 0.340 1.27 0.340 1.29 0.340 1.29 0.340 1.29 0.340 1.29 0.340 1.29 0.340 1.29 0.340 1.29 0.340 1.29 0.340 1.29 0.330 5.79 0.190 11.7 0.340 1.29 0.330 5.79 0.190 11.4 0.200 7.95 0.330 5.34 0.250 2.78 0.330 5.34 0.250 2.78 0.330 3.99 0.350 1.75 0.280 1.2.2 0.330 0.501 0.150 3.77 0.355 1.75 0.280 1.2.2 0.330 0.501 0.150 3.77 0.350 1.75 0.280 1.2.2 0.330 0.501 0.150 3.77 0.355 1.75 0.280 1.2.2 0.330 0.501 0.150 3.77 0.355 1.75 0.280 1.2.2 0.330 0.501 0.150 3.77 0.355 1.75 0.280 1.2.2 0.330 0.954 0.200 0.882 0.200 0.882 0.200 0.882 0.200 0.954 0.200 1.02	0.25		1.9		
0 0.76 0.208 1.16 0.358 0.276 0.488 0.395 0.378 0.186 0.382 0.673 0.426 1.09 0.34 0.566 0.322 0.0129 0.534 1.22 0.322 1.07 0.1 1.07 0.43 3.57 0.426 4.54 0.352 2.03 0.318 0.0561 0.458 1.82 0.402 0.0742 0.310 20.6 Y 0 25.6 Y 0.250 1.46 0.330 0.0437 0 0.767 0.320 0.794 0.340 4.64 0.355 4.68 0.290 74 Y 0.200 6.39 0.180 4.48 0.290 10.7 0 5.3 0 4.06 0.350 3.01 Y 0.330 50.2 Y 0.350 3.01 Y 0.330 50.2 Y 0.350 3.01 Y 0.330 50.2 Y 0.350 2.44 0.150 4.49 0.200 27.6 Y 0 5.62 0.330 50.2 Y 0.350 30.1 Y 0.300 61.4 Y 0.190 12.7 0 5.62 0.330 12.7 0.350 30.1 Y 0.330 50.2 Y 0.350 30.1 Y 0.330 50.2 Y 0.350 30.1 Y 0.330 50.2 Y 0.350 30.1 Y 0.330 50.2 Y 0.350 30.1 Y 0.330 50.2 Y 0.350 30.1 Y 0.330 50.2 Y 0.350 30.1 Y 0.330 50.2 Y 0.350 30.1 Y 0.330 50.2 Y 0.350 30.1 Y 0.330 50.2 Y 0.350 30.1 Y 0.330 50.2 Y 0.350 30.1 Y 0.330 50.2 Y 0.350 30.1 Y 0.330 50.2 Y 0.350 30.1 Y 0.330 50.2 Y 0.350 30.1 Y 0.330 50.2 Y 0.350 30.1 Y 0.330 50.2 Y 0.350 30.1 Y 0.330 50.2 Y 0.350 30.1 Y 0.330 50.2 Y 0.350 30.1 Y 0.330 50.2 Y 0.350 30.1 Y 0.330 50.2 Y 0.340 1.29 0.330 1.27 0.330 1.47 0.330 5.37 0.290 7.95 0.310 5.3 0.330 5.34 0.220 7.95 0.330 1.47 0.330 1.48 0.300 0.501 0.150 3.77 0.350 1.47 0.330 1.48 0.300 0.501 0.150 3.77 0.350 1.47 0.350 0.355 0.200 0.882 0.240 2.1 0.330 0.954 0.200 1.02	0.1		0.686		
0.488         0.395           0.378         0.186           0.322         0.673           0.426         1.09           0.34         0.566           0.322         0.0129           0.534         1.22           0.322         1.07           0.1         1.07           0.43         3.57           0.426         4.54           0.352         2.03           0.318         0.0561           0.458         1.82           0.402         0.0742           0.310         20.6 Y           0         25.6 Y           0.250         1.46           0.330         0.0437           0         0.767           0.330         0.0437           0         0.767           0.330         0.0437           0         0.767           0.330         0.0437           0         0.767           0.330         0.0437           0         0.767           0.330         0.0437           0         0.340           0.468         0.290           0.449         0.290					
0.382					
0.34					
0.534         1.22           0.322         1.07           0.1         1.07           0.43         3.57           0.426         4.54           0.352         2.03           0.352         2.03           0.352         2.03           0.458         1.82           0.402         0.0742           0.310         20.6 Y           0         25.6 Y           0.250         1.46           0.330         0.0437           0         0.767           0.320         0.794           0.340         4.68           0.290         74 Y           0.200         6.39           0.180         4.48           0.290         74 Y           0.200         6.39           0.180         4.48           0.290         74 Y           0.300         8.72           0.350         8.72           0.350         30.1 Y           0.350         2.44           0.150         4.49           0.200         2.62           0.330         2.53           0         0.562 <th></th> <th></th> <th></th> <th></th> <th></th>					
0.1					
0.426         4.54           0.352         2.03           0.318         0.0561           0.458         1.82           0.402         0.0742           0.310         20.6 Y           0         25.6 Y           0.250         1.46           0.330         0.0437           0         0.767           0.320         0.794           4.64         0.355           4.68         0.290           74 Y         74 Y           0.290         74 Y           0.290         10.7           0         5.3           0.290         10.7           0         5.3           0.350         8.72           0.350         30.1 Y           0.350         2.44           0.150         4.49           0.200         27.6 Y           0         5.62           0.330         2.53           0         75.7 Y           0.330         2.53           0         75.7 Y           0.340         1.29           0.340         1.29           0.340         1.29 <tr< th=""><th></th><th></th><th></th><th></th><th></th></tr<>					
0.318         0.0561           0.458         1.82           0.402         0.0742           0.310         20.6 Y           0         25.6 Y           0.250         1.46           0.330         0.0437           0         0.767           0.320         0.794           0.340         4.64           0.350         74 Y           0.290         10.7           0         6.39           0.180         4.48           0.290         10.7           0         5.3           0         4.06           0.350         8.72           0.350         30.1 Y           0.350         2.44           0.150         4.49           0.200         27.6 Y           0         5.62           0.330         2.53           0         75.7 Y           0.330         61.4 Y           0.190         12.7           0.340         12.9           0.340         12.6           0.330         1.47           0.340         12.4           0.270         22.1 Y					
0.402         0.0742           0.310         20.6 Y           0         25.6 Y           0.250         1.46           0.330         0.0437           0         0.767           0.320         0.794           4.64         0.350         4.68           0.290         74 Y           0.290         10.7           0         5.3           0.180         4.48           0.290         10.7           0         5.3           0.290         10.7           0         5.3           0.350         8.72           0.350         30.1 Y           0.350         2.44           0.150         4.49           0.200         27.6 Y           0         5.62           0.330         2.53           0         75.7 Y           0.330         2.53           0         75.7 Y           0.340         1.29           0.340         1.29           0.340         12.6           0.340         12.6           0.270         17.8 Y           0.240         10.2					
0 25.6 Y 0.250 1.46 0.330 0.0437 0 0 7.767 0.320 0.794 0.340 4.64 0.350 4.68 0.290 74 Y 0.200 6.39 0.180 4.48 0.290 10.7 0 4.06 0.350 8.72 0.350 30.1 Y 0.330 50.2 Y 0.350 2.44 0.150 4.49 0.200 27.6 Y 0 5.62 0.330 2.53 0 75.7 Y 0.300 61.4 Y 0.190 12.7 0.340 12.6 0.340 12.6 0.340 12.6 0.330 8.97 0.270 17.8 Y 0.240 10.2 0.270 22.1 Y 0.330 8.94 0.340 13.4 0.200 7.95 0.310 5.3 0.330 5.34 0.250 2.78 0.300 8.94 0.340 13.4 0.300 1.24 0.29 Y 0.340 13.4 0.300 1.24 0.250 2.78 0.330 3.61 0.340 1.24 0.29 Y 0.340 13.4 0.330 3.5 5.34 0.250 2.78 0.330 3.61 0.340 13.4 0.300 1.24 0.29 Y 0 0 0.196 0.330 3.61 0.310 2.76 0.330 3.99 0.350 1.75 0.280 1.22 0.130 1.47 0.350 0.350 0.35 0.200 0.882 0.200 0.882 0.200 0.882 0.200 0.882 0.200 0.882 0.200 0.882 0.200 0.882 0.200 0.882 0.200 0.882 0.200 0.882 0.200 0.882 0.200 0.882 0.200 0.882 0.200 0.882 0.200 0.882 0.200 0.882 0.200 0.882			0.0742		
0.330	0		25.6	Y Y	
0.320         0.794           0.340         4.64           0.350         4.68           0.290         74 Y           0.200         6.39           0.180         4.48           0.290         10.7           0         5.3           0         4.06           0.350         8.72           0.350         30.1 Y           0.330         50.2 Y           0.350         2.44           0.150         4.49           0.200         27.6 Y           0         5.62           0.330         2.53           0         75.7 Y           0.300         61.4 Y           0.190         12.7           0.340         1.29           0.310         28.2 Y           0.340         12.6           0.330         1.78 Y           0.240         10.2           0.270         22.1 Y           0.330         5.79           0.190         11.4           0.200         7.95           0.310         5.3           0.330         3.94           0.340         13.4 <th>0.330</th> <th></th> <th>0.0437</th> <th></th> <th></th>	0.330		0.0437		
0.350         4.68           0.290         74 Y           0.200         6.39           0.180         4.48           0.290         10.7           0         5.3           0         4.06           0.350         8.72           0.350         30.1 Y           0.350         2.44           0.150         4.49           0.200         27.6 Y           0         5.62           0.330         2.53           0         75.7 Y           0.300         61.4 Y           0.190         12.7           0.340         1.29           0.340         12.9           0.340         12.9           0.340         12.9           0.340         12.4           0.270         17.8 Y           0.240         10.2           0.270         17.8 Y           0.330         5.79           0.190         11.4           0.200         7.95           0.310         5.3           0.330         5.34           0.250         2.78           0.330         3.61	0.320		0.794		
0.200         6.39           0.180         4.48           0.290         10.7           0         5.3           0         4.06           0.350         8.72           0.350         2.44           0.150         4.49           0.200         27.6 Y           0.330         2.53           0         75.7 Y           0.300         61.4 Y           0.190         12.7           0.340         1.29           0.310         28.2 Y           0.340         12.6           0.330         8.97           0.270         17.8 Y           0.240         10.2           0.270         22.1 Y           0.330         5.79           0.190         11.4           0.200         7.95           0.310         5.3           0.330         5.34           0.250         2.78           0.300         8.94           0.340         13.4           0.250         2.78           0.330         2.14           0.330         2.14           0.330         2.14 <th>0.350</th> <th></th> <th>4.68</th> <th></th> <th></th>	0.350		4.68		
0.290         10.7           0         4.06           0.350         8.72           0.350         30.1 Y           0.350         2.44           0.150         4.49           0.200         27.6 Y           0         5.62           0.330         2.53           0         75.7 Y           0.300         61.4 Y           0.190         12.7           0.340         1.29           0.310         28.2 Y           0.340         12.6           0.330         8.97           0.270         17.8 Y           0.240         10.2           0.270         17.8 Y           0.330         5.79           0.190         11.4           0.200         7.95           0.310         5.3           0.330         5.34           0.250         2.78           0.330         8.94           0.340         13.4           0.330         5.34           0.250         2.78           0.330         5.34           0.250         2.78           0.330         3.61     <	0.200		6.39	Y	
0         4.06           0.350         8.72           0.350         30.1 Y           0.350         2.44           0.150         4.49           0.200         27.6 Y           0         5.62           0.330         2.53           0         75.7 Y           0.300         61.4 Y           0.190         12.7           0.340         1.29           0.310         28.2 Y           0.340         12.6           0.300         8.97           0.270         17.8 Y           0.240         10.2           0.270         22.1 Y           0.330         5.79           0.190         11.4           0.200         7.95           0.310         5.3           0.330         5.34           0.250         2.78           0.300         8.94           0.340         13.4           0.300         8.94           0.340         13.4           0.300         2.14           0.330         2.14           0.330         2.14           0.330         2.14     <	0.290		10.7		
0.350         30.1 Y           0.330         50.2 Y           0.350         2.44           0.150         4.49           0.200         27.6 Y           0         5.62           0.330         2.53           0         75.7 Y           0.300         61.4 Y           0.190         12.7           0.340         1.29           0.310         28.2 Y           0.340         12.6           0.330         8.97           0.270         17.8 Y           0.240         10.2           0.270         22.1 Y           0.330         5.79           0.190         11.4           0.200         7.95           0.310         5.3           0.330         5.34           0.250         2.78           0.300         8.94           0.340         13.4           0.340         13.4           0.330         5.34           0.250         2.78           0.300         8.94           0.340         13.4           0.330         2.14           0         29 Y	0		4.06		
0.350         2.44           0.150         4.49           0.200         27.6 Y           0         5.62           0.330         2.53           0         75.7 Y           0.300         61.4 Y           0.190         12.7           0.340         1.29           0.310         28.2 Y           0.340         12.6           0.300         8.97           0.270         17.8 Y           0.240         10.2           0.270         22.1 Y           0.330         5.79           0.190         11.4           0.200         7.95           0.310         5.3           0.330         5.34           0.250         2.78           0.300         8.94           0.340         13.4           0.300         8.94           0.340         13.4           0.300         2.14           0.330         2.14           0.330         2.14           0.330         2.14           0.330         2.14           0.350         2.08           0.310         2.76	0.350		30.1		
0.200         27.6 Y           0         5.62           0.330         2.53           0         75.7 Y           0.300         61.4 Y           0.190         12.7           0.340         12.9           0.340         12.6           0.300         8.97           0.270         17.8 Y           0.240         10.2           0.270         22.1 Y           0.330         1.47           0.330         5.79           0.190         11.4           0.200         7.95           0.310         5.3           0.330         5.34           0.250         2.78           0.300         8.94           0.340         13.4           0.300         1.24           0         29 Y           0         0.196           0.330         2.14           0.330         3.61           0.350         2.08           0.310         1.48           0.000         3.99           0.350         1.75           0.280         12.2           0.130         1.67	0.350		2.44	Y	
0.330         2.53           0         75.7 Y           0.300         61.4 Y           0.190         12.7           0.340         1.29           0.310         28.2 Y           0.340         12.6           0.300         8.97           0.270         17.8 Y           0.240         10.2           0.270         22.1 Y           0.330         5.79           0.190         11.4           0.200         7.95           0.310         5.3           0.330         5.34           0.250         2.78           0.300         8.94           0.340         13.4           0.300         12.4           0         29 Y           0         0 196           0.330         2.14           0.330         2.14           0.330         2.14           0.350         2.08           0.310         1.48           0.000         3.99           0.280         12.2           0.130         1.67           0.350         0.501           0.150         3.77 <th>0.200</th> <th></th> <th>27.6</th> <th>Υ</th> <th></th>	0.200		27.6	Υ	
0.300         61.4 Y           0.190         12.7           0.340         1.29           0.310         28.2 Y           0.340         12.6           0.300         8.97           0.270         17.8 Y           0.240         10.2           0.270         22.1 Y           0.330         1.47           0.330         5.79           0.190         11.4           0.200         7.95           0.310         5.3           0.330         5.34           0.250         2.78           0.300         8.94           0.340         13.4           0.300         1.24           0         29 Y           0         0.196           0.330         2.14           0.330         3.61           0.310         1.48           0.000         3.99           0.350         1.75           0.280         12.2           0.130         1.67           0.350         0.501           0.150         3.77           0.350         0.35           0.200         0.882	0.330		2.53	V	
0.340         1.29           0.310         28.2 Y           0.340         12.6           0.300         8.97           0.270         17.8 Y           0.240         10.2           0.270         22.1 Y           0.330         5.79           0.190         11.4           0.200         7.95           0.310         5.3           0.330         5.34           0.250         2.78           0.300         8.94           0.340         13.4           0.300         12.4           0         29 Y           0         0.196           0.330         2.14           0.330         3.61           0.330         2.76           0.350         2.08           0.310         1.48           0.000         3.99           0.350         1.75           0.280         12.2           0.130         1.67           0.350         0.501           0.150         3.77           0.350         0.82           0.200         0.882           0.240         2.1 <th>0.300</th> <th></th> <th>61.4</th> <th></th> <th></th>	0.300		61.4		
0.340         12.6           0.300         8.97           0.270         17.8 Y           0.240         10.2           0.270         22.1 Y           0.330         1.47           0.330         5.79           0.190         11.4           0.200         7.95           0.310         5.3           0.330         5.34           0.250         2.78           0.300         8.94           0.340         13.4           0.300         1.24           0         29 Y           0         0.196           0.330         2.14           0.330         3.61           0.310         2.76           0.350         2.08           0.310         1.48           0.000         3.99           0.350         1.75           0.280         12.2           0.130         1.67           0.350         0.501           0.150         3.77           0.350         0.35           0.200         0.882           0.240         2.1           0.330         0.954 <th>0.340</th> <th></th> <th>1.29</th> <th>V</th> <th></th>	0.340		1.29	V	
0.270         17.8 Y           0.240         10.2           0.270         22.1 Y           0.330         1.47           0.330         5.79           0.190         11.4           0.200         7.95           0.310         5.3           0.330         5.34           0.250         2.78           0.300         8.94           0.340         13.4           0.300         1.24           0         29 Y           0         0.196           0.330         3.61           0.330         3.61           0.330         3.61           0.350         2.08           0.310         2.76           0.350         2.08           0.310         1.48           0.000         3.99           0.350         1.75           0.280         12.2           0.130         1.67           0.350         14.7           0.350         0.35           0.200         0.882           0.240         2.1           0.330         0.954           0.200         1.02	0.340		12.6	1	
0.270         22.1 Y           0.330         1.47           0.330         5.79           0.190         11.4           0.200         7.95           0.310         5.3           0.330         8.94           0.300         8.94           0.340         13.4           0.300         1.24           0         29 Y           0         0.196           0.330         2.14           0.330         3.61           0.310         2.76           0.350         2.08           0.310         1.48           0.000         3.99           0.280         12.2           0.130         1.67           0.350         0.501           0.150         3.77           0.350         0.35           0.200         0.882           0.240         2.1           0.330         0.954           0.200         1.02	0.270		17.8	Υ	
0.330         5.79           0.190         11.4           0.200         7.95           0.310         5.3           0.330         5.34           0.250         2.78           0.300         8.94           0.340         13.4           0.300         1.24           0         29 Y           0         0.196           0.330         2.14           0.330         3.61           0.350         2.08           0.310         2.76           0.350         2.08           0.310         1.48           0.000         3.99           0.350         1.75           0.280         12.2           0.130         1.67           0.300         0.501           0.150         3.77           0.350         0.35           0.200         0.882           0.240         2.1           0.330         0.954           0.200         1.02	0.270		22.1	Υ	
0.200         7.95           0.310         5.3           0.330         5.34           0.250         2.78           0.300         8.94           0.340         13.4           0.300         1.24           0         29 Y           0         0.196           0.330         2.14           0.330         3.61           0.350         2.08           0.310         1.48           0.000         3.99           0.350         1.75           0.280         12.2           0.130         1.67           0.301         0.501           0.150         3.77           0.350         0.35           0.200         0.882           0.240         2.1           0.330         0.954           0.200         1.02	0.330		5.79		
0.330         5.34           0.250         2.78           0.300         8.94           0.340         13.4           0.300         1.24           0         29 Y           0         0.196           0.330         3.61           0.310         2.76           0.350         2.08           0.310         1.48           0.000         3.99           0.350         1.75           0.280         12.2           0.130         1.67           0.300         0.501           0.150         3.77           0.350         0.35           0.200         0.882           0.240         2.1           0.330         0.954           0.200         1.02	0.200		7.95		
0.300         8.94           0.340         13.4           0.300         1.24           0         29 Y           0         0.196           0.330         2.14           0.3310         2.76           0.350         2.08           0.310         1.48           0.000         3.99           0.350         1.75           0.280         12.2           0.130         1.67           0.300         0.501           0.150         3.77           0.350         14.7           0.350         0.35           0.200         0.882           0.240         2.1           0.330         0.954           0.200         1.02	0.330		5.34		
0.300         1.24           0         29 Y           0.330         2.14           0.330         3.61           0.310         2.76           0.350         2.08           0.310         1.48           0.000         3.99           0.350         1.75           0.280         12.2           0.130         1.67           0.300         0.501           0.150         3.77           0.350         14.7           0.350         0.35           0.200         0.882           0.240         2.1           0.330         0.954           0.200         1.02	0.300		8.94		
0         0.196           0.330         2.14           0.330         3.61           0.310         2.76           0.350         2.08           0.310         1.48           0.000         3.99           0.350         1.75           0.280         12.2           0.130         1.67           0.300         0.501           0.150         3.77           0.350         14.7           0.350         0.35           0.200         0.882           0.240         2.1           0.330         0.954           0.200         1.02	0.300		1.24	Υ	
0.330         3.61           0.310         2.76           0.350         2.08           0.310         1.48           0.000         3.99           0.350         1.75           0.280         12.2           0.130         1.67           0.300         0.501           0.150         3.77           0.350         14.7           0.350         0.35           0.200         0.882           0.240         2.1           0.330         0.954           0.200         1.02	0		0.196	•	
0.350         2.08           0.310         1.48           0.000         3.99           0.350         1.75           0.280         12.2           0.130         1.67           0.300         0.501           0.150         3.77           0.350         14.7           0.350         0.35           0.200         0.882           0.240         2.1           0.330         0.954           0.200         1.02	0.330		3.61		
0.000         3.99           0.350         1.75           0.280         12.2           0.130         1.67           0.300         0.501           0.150         3.77           0.350         14.7           0.350         0.35           0.200         0.882           0.240         2.1           0.330         0.954           0.200         1.02	0.350		2.08		
0.280         12.2           0.130         1.67           0.300         0.501           0.150         3.77           0.350         14.7           0.350         0.35           0.200         0.882           0.240         2.1           0.330         0.954           0.200         1.02	0.000		3.99		
0.300     0.501       0.150     3.77       0.350     14.7       0.350     0.35       0.200     0.882       0.240     2.1       0.330     0.954       0.200     1.02	0.280		12.2		
0.350     14.7       0.350     0.35       0.200     0.882       0.240     2.1       0.330     0.954       0.200     1.02	0.300		0.501		
0.200     0.882       0.240     2.1       0.330     0.954       0.200     1.02	0.350		14.7		
0.330 0.954 0.200 1.02	0.200		0.882		
	0.330		0.954		

o o o Actual Effects	T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T		T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T	- Pred. Effects PEL	T2T T2T T2T T2T T2T T2T T2T T2T T2T T2T
0 1	- - - T2 T2	- - - T2 T2	- T1 T2 -	- - - T2 T2	- - T2 T2
1 1 1 1	T2 T2 T2	T2 T2 T2	- - T2 T2	T2 T2 T2	T2 T2 T2 T2
1 1 1 1	- T2 T2	- T2 T2 T2	- T2 T2	- T2 T2	T2 T2 T2 T2
1 1 1 1 1	T2 - T2	T2 - T2	- - T2	T2 - T2	T2 T2 T2
1 1 1 1	T2 - T2 T2	T2 - T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2	T2 - T2 T2	T2 - T2 T2 T2 - T2 - T2 T2 T2	T2 T2 T2
1 1 1 1 1	T2 T2 -	T2 T2 T2 - T2 T2	T2 T2 -	T2 T2 T2 - T2 T2	T2 T2 T2
1 1 1 1 1	T2 T2 T2 T2	T2 T2 T2 T2 T2	T2 T2 T2 T2	T2 T2 T2 T2 T2	T2 T2 T2 T2
1 1 1 1 1	T2 T2 T2 T2 T2 T2	T2 T2 T2 T2 T2	T2 T2 T2 T2 T2	T2 T2 T2 T2 T2	T2 T2 T2 T2
1 1 1 1	T2 T2 T2 T2	T2 T2 T2 T2	T2 T2 T2 T2	T2 T2 T2 T2	T2 T2 T2 T2
1 1 1 1	T2 T2 T2 T2	T2 T2 T2 T2	T2 T2 T2 T2 T2	T2 T2 T2 T2	T2 T2 T2 T2
1 1 1 1	T2 T2 T2 T2	T2 T2 T2 T2	T2 T2 T2 T2	T2 T2 T2 T2	T2 T2 T2 T2 T2
1 1 1	T2 T2 T2 T2	T2 T2 T2 T2	T2 T2 T2 T2	T2 T2 T2 T2	T2 T2 T2 T2
1 1 1 1	T2 - T2 T2	T2 T2 T2 T2	- T2 T2	T2 - T2 T2	T2 T2 T2 T2
1 1 1 1	T2 T2 T2 T2 T2	T2 T2 T2 T2	T2 T2 T2 T2 T2	T2 T2 T2 T2	T2 T2 T2 T2 T2 T2
1 1 1 1	T2 T2 T2 T2 T2	- T2 T2 T2 T2	T2 T2 - T2	- T2 T2 T2 T2	T2 T2 T2 T2
1 1 1	T2 T2 -	T2 T2 T2 T2	T2 - - - T2	T2 T2 - - T2	T2 T2 T2
1 1 1 1	T2 T2 - T2	T2 T2 T2 T2	T2 T2 - T2	T2 T2 - T2	T2 T2 T2 T2
1 1 1 1	T2 - - T2	T2 - - T2	T2 - -	T2 - - T2	T2 T2 T2 T2
1 1 1 1	T2 - T2 T2	T2 T2 T2 T2	T2	T2 - T2 T2	T2 T2 T2 T2
1 1 1	T2 T2 - T2	T2 T2 T2 T2	- - - T2	T2 T2 - T2	T2 T2 T2 T2
1 1 1	T2 T2 T2 T2	T2 T2 T2 T2	T2 - T2 T2	T2 T2 T2 T2	T2 T2 T2 T2
1 1 1 1	T2 T2 T2 T2 T2	T2 T2 T2 T2 T2	T2 T2 - - T2	T2 T2 T2 T2	T2 T2 T2
1 1 1	- T2 T2	T2 T2 T2 T2 T2	- T2 T2 T2	T2 - T2 T2 T2	T2 T2 T2
1 1 1 1	T2 T2 T2 T2 T2	T2 T2 T2 T2	T2 T2 T2 T2 T2	T2 T2 T2 T2	T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T
1 1 1 1	T2 T2 T2 T2 T2	T2 T2 T2 T2 T2	T2 - T2 T2	T2 T2 T2 T2 T2	T2 T2 T2 T2
1 1 1 1	T2 T2 T2 T2 T2	T2 T2 T2 T2 T2	T2 - T2 T2	T2 T2 T2 T2 T2	T2 T2 T2 T2
1 1 1	T2 T2 T2	T2 T2 T2	T2 T2 T2	T2 T2 T2	T2 T2

109 10 6 31 9 0 240 93 100 77 93 109 103 106 108 102 109

Reproductive Response 5.31 3.23 2.87 3.01 2.85 0.86 0.656 1.18 0.508 0.61 0.906 0.464 2.58 2.06 1.88 1.56 1.625 3.64 1.733 1.682 1.571 2.833 2.25 1.91 2.27 2.17 1.625 1.94 1.59 1.61 1.45 1.38 1.42 0.47 0.29 0.07 0 0.11 0 0.025 0.079 0.47 0.55 0.21 0.11 0.12 0 0.74 0.15 0.85 0.77 0.6 0.26 0 0 0 0.39 0.67 0.23 0 0 0 0 0.39 0.67 0.23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Aroclor b 1268 b 0.06	35 20 6.5 177 25 44 72 66 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	T T T T T T T T T T T T T T T T T T T		T1		Average Survival Part	T1 T1 T1 T1 - T1	T1	TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TERMINATION TO THE TOTAL TO THE TOTAL TOTAL TOTAL TOTAL TOTAL TO THE TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TO	T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T
0.126 0.356 0.364 0.36 0.072 0 0.032 0.074 0.144 0.154 0.112 0.05 0 0 0 0.269	25 Y 13 0.00125 0.64 0.92 0.85 5.8 3.1 0.069 4.1 4.6 0.026 90 Y 120 Y 1.9 0.0074 3.7		1	T2 2 T2 2 T2 2 T2 2 T2 2 T2 2 T2 2 T2 2	- T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2	T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T	42 69 Y 140 0 82 Y 280 0 6.8 54 45 16 Y 21 29 36 Y 20 32 0.013 25 3 3.9 18 12 0.61 15 14 0.56 4 0.044 36 0.39 23 8.2 0 0.94 19 0.21 16 0.82 2 1.3 0 2.3	T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T	T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T		T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T

Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Sect	Reproductive Response b 0 0 0 1.0 0 0 0 0 0.0 0 0.0 0 0.0 0.0 0	28 Y 240 Y 38 Y 9.5 43 Y 0.15 4 26 Y 2.9 380 Y 1.7	T2   T2   T2   T2   T2   T2   T2   T2	Average Survival Rate b 1268  25	Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effects   Actual Effets   Actual Effects   Actual Effects   Actual Effects   Actual Effets   Actual E
0	0 0 0 0.269 0.167 0 0 0 0 0 0.9 0.375 0	150 Y 59 Y 26 Y 20 Y 4.1 15 13 32 Y 39 Y 26 Y 19 Y 14 30 Y 33 Y 15 360 Y	1	55 120 Y 70 11 80 30 Y 60 39 Y 80 44 Y 40 15 Y 75 28 Y 50 240 Y 20 38 Y 10 9.5 35 0.150 10 4 10 26 Y 0 2.9 65 380 Y 80 1.7	1 - T2 1 1 1 T2 T2 - T2 1 - T2 1 - T2 1 1 T2 T2 - T2 1 T2 T2 T2 T2 1 T2 T2 T2 T2 1 T2 T2 T2 T2 1 T2 T2 T2 T2 1 T2 T2 T2 T2 1 T2 T2 T2 T2 1 T2 T2 T2 T2
0.88	0.611 0 0 0 0.167 0.654 0 0 0 0	110 Y 28 Y 570 Y 18 Y 68 Y 34 Y 20 Y 4.8 8.2 32 Y 23 Y 16 12 10 150 Y	1	0 150 Y 75 59 Y 65 26 Y 85 20 Y 75 4.1 80 15 Y 65 13 80 32 Y 15 39 Y 75 26 Y 85 19 Y 60 30 Y 50 33 Y 80 15 Y	1 - T2 - T2 1 T2 T2 T2 T2 1 T2 T2 - T2 1 T2 T2 - T2 1 T2 T2 - T2 1 1 - T2 - T2 1 - T2 - T2 1 - T2 - T2 1 - T2 - T2 1 - T2 - T2 1 - T2 - T2 1 - T2 - T2 1 - T2 - T2 1 - T2 - T2 1 - T2 - T2 1 T2 T2 - T2
0.8	0.15 0.688 0 0 0 0 0 0 0 0 0 0 0 0 0	21 Y 37 Y 20 Y 19 Y 9.2 18 Y 8.1 55 Y 140 Y 280 Y 54 Y 1 1.5 8.3 1.5	1 - T2 - T2 T2 1 - T2 - T2 1 - T2 - T2 1 - T2 - T2 1 - T2 - T2 1 - T2 - T2 1 T2 T2 - T2 1 T2 T2 - T2 1 T2 T2 - T2 1 T2 T2 - T2 1 T2 T2 - T2 1 T2 T2 - T2 1 T2 T2 - T2 1 T2 T2 - T2 1 T2 T2 T2 1 T2 T2 T2 1 T2 T2 T2 1 T2 T2 T2 T2 1 T2 T2 T2 T2 1 T2 T2 T2 T2 1 T2 T2 T2 T2 1 T2 T2 T2 T2 1 T2 T2 T2 T2 1 T2 T2 T2 T2 1 T2 T2 T2 T2 1 T2 T2 T2 T2 1 T2 T2 T2 T2 1 T2 T2 T2 T2 1 T2 T2 T2 T2	80	1 - T2 - T2 1 1 - T2 1 - T2 1 - T2 1 - T2 - T2 1 1 T2 T2 T2 T2 1 T2 T2 T2 1 1 T2 T2 - T2 1 - T2 - T2 1 - T2 - T2 1 T2 T2 - T2 1 T2 T2 - T2 1 T2 T2 - T2 1 T2 T2 - T2
0.708       3.5       1       T2	0.8 1.04 0.833 0.938 0.5 0 0.2 0 0.083 0.556 1.111 0.571 0.792	21 Y 11 11 0.62 0.75 2.4 2.2 2.5 20 Y 25 Y 1.8 0.63 2.4 4.8 3.8 3.1	1       -       T2       -       T2       T2         1       T2       T2       -       T2       T2         1       T2       T2       T2       T2       T2         1       T2       T2       T2       T2       T2       T2         1       T2       T2<	65 76 Y 70 21 Y 75 37 Y 65 20 Y 5 19 Y 35 9.2 60 18 Y 5 8.1 15 55 Y 50 1440 Y 55 280 Y 0 54 Y 0 1 75 1.5 15 8.3 35 1.8	1
0 4.3 1 T2 T2 T2 T2 T2 80 2.4 1 T2 T2 T2 T2 T2	0.708 0.5 0.818 0 0.778 0 0 0.5 0.017 0 0 0 0 0	3.5 2 0.78 4.3 2.4 1.7 0.76 4.9 2.4 0.35 0.33 2.5 2.5 5.5 0.16 2.2 0.0079 0.023	1         T2         T2 </td <td>80 11 70 2.4 85 2.2 80 2.5 75 20 Y 65 25 Y 80 1.8 65 0.63 85 2.4 80 4.8 75 1.7 75 2.1 85 2 85 0.78 0 4.3 30 1.7 25 0.76 85 4.9</td> <td>1       T2       T2       -       T2         1       T2       T2       T2       T2       T2         1       T2       T</td>	80 11 70 2.4 85 2.2 80 2.5 75 20 Y 65 25 Y 80 1.8 65 0.63 85 2.4 80 4.8 75 1.7 75 2.1 85 2 85 0.78 0 4.3 30 1.7 25 0.76 85 4.9	1       T2       T2       -       T2         1       T2       T2       T2       T2       T2         1       T2       T

					Actual Effects	Pred. Effects ER-L	Pred. Effects ER-M	Pred. Effects TEL	Effects PEL	Pred. Effects AET
Survivor's Average Weight	b	Aroclor 1268			Actual	Pred. E	Pred. E	Pred. E	Pred. E	Pred. E
0.37 0.35	b b	0.10 0.10	2x mean NOEC Median NOEC	52.1 5.8	0	- -	-	-	-	-
0.350 0.302	b	0.03 2.10	ER-L	61	0	-	-	-	-	-
0.362 0.308	b	0.03 0.97	ER-M 15th Percentile E	110 65	0	- -	-	-	-	-
0.400 0.500 0.286	b b	12.0 12 10	TEL 85th Percentile NE PEL	19 34	0 0 0	-	-	-	-	
0.406 0.294	b	1.30 3.60	AET	61 420	0	-	-	-	-	-
0.398 0.316	b	0.72 0.670	Effects Data N	27 15	0	-	-			-
0.250 0.264	b	2.8 0.96	Effects Data Set	10	0	-	-	-	-	-
0.452 0.384	b	20 41	430		0	- -	-	T1 T1	-	-
0.39 0.408	b b	4.2 3.7	92 82		0	- -	-	-	-	-
0.45 0.39	b b	3.6 69 Y	90 120		0	- T1	-	- T1	- T1	-
0.532 0.512	b b	16 36	110 330		0	-	-	- T1	-	-
0.528 0.438	b	0.210 0.820	150 59		0	-	-	-	-	-
0.55 0.756	b	12.0 0.1	360 110		0	- -	-	- -	-	-
0.712 0.744	b	31.0 4.6	570 76		0	-	-	T1 -	-	-
0.440 0.450 0.500	b	17.0 12.0 16.0	54		0 0 0	-	-	-	-	-
0.610 0.440	b b	130 Y 15.0			0	T1	T1	T1	T1	-
0.460 0.450	b	17.0 11.0			0	-	-	-	-	-
0.350 0.640	b b	36.0 120 Y			0	- T1	- T1	T1 T1	- T1	-
0.560 0.590	b b	30.0 44.0			0	- -	-	T1 T1	-	-
0.610 0.550	b b	28.0 19.0			0	- -	-	T1 -	-	-
0.690 0.480	b b	240 Y 38.0			0	T1 -	T1 -	T1 T1	T1 -	-
0.530 0.480	b	28.0 43.0			0	- -	-	T1 T1	-	-
0.690 0.430	b	0.15 0.27			0	- -	-,	- -	- 	-
0.710 0.470	b	380 Y 420 Y			0 0 0	T1 T1 -	T1 T1 -	T1 T1	T1 T1	-
0.680 0.560 0.550	b b	13.0 19.0 14.0			0	-	-	-	-	-
0.480 0.440	b	30.0 15.0			0	- -	-	T1	-	-
0.510 0.490	b	18.0 28.0			0	- -	-	- T1	-	-
0.570 0.440	b	34.0 20.0			0	- -	-	T1 T1	-	-
0.440 0.430	b b	32.0 23.0			0	- -	-	T1 T1	-	-
0.450 0.660	b	11 150 Y			0	- T1	- T1	- T1	- T1	-
0.510 0.530 0.570	b b	9.2 55 Y 280 Y			0 0 0	- - T4	- - T1	- T1 T1	- - T1	-
0.430 0.530	b	1.50 1.50			0	T1 - -	T1 - -	-	T1 - -	-
0.440 0.430	b	1.80 11.00			0	-	-	-	-	-
0.580 0.570	b	11.00 1.40			0	- -	-	-	-	-
0.680 0.450	b b	0.75 2.40			0	- -	-	-	-	-
0.490	b	2.20 5.20			0	- -	-	-	-	-
0.730 0.430	b	2.10 1.80			0	-	-	-	-	-
0.750 0.460 0.510	b b b	0.63 2.40 6.90			0 0 0	-	-	-		-
0.650 0.430	b	3.80 4.50			0	-	-	-	-	-
0.570 0.800	b b	3.10 1.70			0	- -	-	-	-	-
0.550 0.480	b b	2.10 2.40			0	- -	-		-	-
0.490 0.490	b	1.00 2.40			0	-	-	-	-	-
0.420 0.600	b	0.35 4.10			0	-	-		-	-
0.620 0.460 0.560	b b	4.20 2.20 4.30			0	-	-	-	-	-
0.560 0.440 0.510	b b	4.30 1.00 15.00			0 0 0	-	-		-	-
0.510 0.70 0.234	b	2.8 0.9			0	-	-	•	-	-
0.230 0.58	b	0.18 0.190			0	-	-	-	-	-
0.62 0.592	b b	1 25.000			0	- -	-	- T1	-	-
0.556 0.65	b b	13.000 5.800			0	-				
0.410 0.370	b b	3.700 110.000 Y			0	- T1	-	- T1	- T1	-
0.410 0.370	b	14.000 39.00			0	- -	-	- T1	-	-
0.400 0.390	b	15.00 20.00			0	-	-	- T1		-
0.410 0.390	b	26.00 33.00			0	-	-	T1 T1	-	-
0.370 0.390	b	18.00 68.00 Y			0	- T1 -	-	- T1 T1	- T1	-
0.380 0.400 0.400	b b b	21.00 140.00 Y 0.62			0 0 0	- T1 -	- T1 -	T1 -	- T1 -	-
0.410 0.410	b	2.50 25.00			0	-	-	- - T1		-
0.390 0.380	b	4.80 0.78			0	-	-	-		-
0.410 0.410	b	4.90 0.33			0	-	-	-		-
0.360 0.390	b	0.01 11.00			0	-	-		-	-
0.550										

Survivor's	L	Aroclor	
Average Weight 0.34	b	1268 0.610	
0.302 0.326	b b	0.390 8.200	
0.334	b	5.800	
0.60 0.42	Н	1.9 19.0	
0.51		19	
0.43 0.47	Н	430 Y 0.19	
0.61 0.46		1.2 64 Y	
0.46		92 Y	
0.63 0.17	$\vdash$	0.03 0.79	
0.10 0.11		0.70 24	
0.08		19	
0.02 0.17	Н	3.70 0.87	
0.09		2.20	
0.15 0.178		24.00 0.06	
0 0.272	-	0.3 0.015	
0		2.2	
0		82.000 Y 6.800	
0.14		3.900 0.560	
0.26 0.25		0.044	
0.1		0.94 1.3	
0		2.3	
0 0.208		0.52 7.000	
0.358 0.488	Í	0.210 0.34	
0.378		1.2	
0.382 0.426		0.980 1.400	
0.34 0.322	$\Box$	0.790 0.001	
0.534		0.640	
0.322 0.1	Н	0.920 0.850	
0.43 0.426		2.000 11.000	
0.352		3.100	
0.318 0.458	$\vdash$	0.069 4.100	
0.402		0.026	
0.310		90.000 Y 120.000 Y	
0.250 0.330	$\blacksquare$	1.900 0.007	
0		12.000	
0.320 0.340	$\vdash$	15.000 20.000	
0.350 0.290		110.000 Y 16.000	
0.200		11.000	
0.180 0.290	Н	17.000 44.000	
0		12.00 13.00	
0.350		330.00 Y	
0.330 0.350	$\vdash$	11.00 9.50	
0.150 0.200		4.00	
0		26.00 2.90	
0.330		1.70 150.00 Y	
0.300 0.190		59.00 Y 26.00	
0.340		4.10	
0.310 0.340		15.00 32.00	
0.300	Í	39.00	
0.270 0.240		110.00 Y	
0.270 0.330		570.00 Y 4.80	
0.390		8.20	
0.330 0.190		16.00 12.00	
0.200 0.310	$\vdash$	10.00 76.00 Y	
0.330 0.250		37.00	
0.300		20.00 19.00	
0.340 0.300	Н	18.00 8.10	
0		54.00 Y	
0.330		1.00 8.30	
0.330 0.310	Í	21.00 20.00	
0.350		3.50	
0.310 0.000		2.00 4.30	
0.350		1.70	
0.280 0.130		0.76 2.50	
0.300 0.150		2.50 5.50	
0.350		13.00	
0.350 0.200		0.16 0.02	
0.240 0.330		1.90 1.80	
0.200		7.00	
0.290		1.7	

	Pred. Effects ER-L	Pred. Effects ER-M	1. Effects TEL	1. Effects PEL	1. Effects AET
	- Pred	· Pred	· Pred	- Pred	. Pred
) ) )	- - T2 T2 T2	- - T2 T2 T2	Pred. Effects TEL	12 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	-	-	-	-	-
	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
	- - T2	T2 T2 T2 T2	- - T2	T2	T2 T2 T2
	T2 T2	T2 T2 T2 T2	T2 -	T2 T2 T2	T2 T2
	T2 T2 T2	T2 T2 T2 T2 T2 T2 T2	T2 T2 T2	T2 T2 T2	T2 T2 T2
	T2	T2	-	T2	T2
	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
	T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2	T2 T2 T2 T2 T2 T2 T2 T2 T2 T2	T2	T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T	T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T
	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
	T2 T2 T2	T2 T2 T2	T2 T2 T2 T2 T2 T2 T2	T2 T2 T2	T2 T2 T2
	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
	T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2	T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T	T2 T2 T2 T2 T2 T2 T2 T2 T2 T2	T2 T2 T2	T2 T2 T2
	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
	T2 T2 -	T2 T2 T2	T2 T2 -	T2 T2 -	T2 T2 T2 T2
	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
	T2	T2	-	T2	T2
	-	-	-	-	T2
	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
	T2	T2	-	T2	T2
	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
	-	-	-	-	T2
	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
	T2	T2	-	T2	T2
	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
	- T2 T2	- T2 T2	-	- T2 T2	T2 T2 T2
	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
	T2	T2	-	T2	T2
	T2	T2	-	T2	T2
	-	-	-	-	T2
	-	-	-	-	T2
	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
	-	T2	-	-	T2
	T2	T2	-	T2	T2
	T2	T2	-	T2	T2
	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
	T2	T2	-	T2	T2
	T2	T2	T2	T2	T2
	T2 T2 T2	T2 T2 T2	T2 -	T2 T2 T2	T2 T2 T2
	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
	T2 T2 T2 T2	T2 T2 T2	T2 T2 T2	T2 T2 T2 T2	T2 T2 T2 T2
ıα	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2

109 11 8 36 11 0 240 96 101 82 96 107 107 109 118 107 107

3.23 b 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				Actual Effects	Pred. Effects ER-L	Pred. Effects ER-M	ts TEL	Pred. Effects PEL	Pred. Effects AET
Response   b   norm   5.31   3.23   b   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.				Effe	ffec	ffec	Pred. Effects	ffec	ffec
Response         b         norm           5.31         b         0           3.23         b         0           2.87         b         0           3.01         b         0           2.85         b         7           0.86         b         0           0.656         b         1           1.18         b         0           0.508         b         0           0.61         b         6           0.906         b         0           0.464         b         2           1.94         b         0           1.59         b         0           1.61         b         0           0.47         0         0           0.47         0         0           0.47         0         0           0.01         0         0           0.025         0.079         1           0         0.47         0           0.47         0         0           0.47         0         0           0.47         0         0           0.47         0				Ta Ta	ы Ш	<u>Б</u>	ы Ш	ы Ш	ы Ш
5.31 b 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				Ç	ē	ē	ē	ē	ē
3.23 b 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.353	2x mean NOEC	2.7	0	<u>.</u>	-	-	-	-
2.87 b 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.018	Median NOEC	0.29	0	-	-	-	-	_
3.01 b 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	153		-	0	-	-	-	-	_
0.86         b         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0	146	ER-L	3.0	0	-	-	-	-	-
0.656 b 1 1.18 b 0.508 0.61 b 6 0.508 b 0.61 0.906 b 0.906 b 0.906 b 0.906 0.464 b 22 1.94 b 0.007 0.159 b 0.07 0 0 78 0.17 0 0 0 78 0.11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.885 Y	ER-M	4.9	0	T1	T1	T1	T1	-
1.18	.237	15th Percentile E	3.2	0	-	-	-	-	-
0.508         b         0.61           0.906         b         0.61           0.906         b         0.00           0.464         b         2           1.59         b         0           1.61         b         0           1.45         b         0           0.47         0.29         0           0.07         0         0           0.1         0         0           0.01         0         0           0.025         0.079         0           0.079         0         0           0.21         0.21         0           0.74         0.15         0           0.85         0.77         0           0.85         0.77         0           0.85         0         0           0.95         15         0           0         0         0           0.39         0         0           0         0         0           0.39         0         0           0         0         0           0         0         0           0         0	250	TEL	1.0	0	-	-	T1	-	-
0.61         b         6           0.906         b         0           0.464         b         2           1.94         b         0           1.59         b         0           1.61         b         0           1.45         b         0           0.47         0         0           0.07         0         7           0         0.01         0           0.01         0         0           0.025         0         0           0.079         0         0           0         0.47         3           0.079         0         0           0.074         0         0           0.12         0         0           0.74         0         0           0.74         0         0           0.85         0         0           0.77         0         0           0.85         0         0           0.77         0         0           0.85         0         0           0.77         0         0           0.85         0         0	.036	85th Percentile NE	2.2	0	-	-	-	-	-
0.906         b         0           0.464         b         2           1.94         b         0           1.59         b         0           1.61         b         0           1.45         b         0           0.47         0.29         0           0.07         0         7           0         0.1         0           0.01         0         0           0.01         0         0           0.025         0         0           0.079         0         0           0         0.47         0           0.55         0.21         0           0.21         0.12         0           0.74         0.15         0           0.85         0         0           0.77         0.6         1           0.26         0         0           0         0         5           0.95         15           0         0         0           0.39         4         0           0         0         0           0         0         0	.300	PEL	3.3	0	<u>-</u> .		<u>-</u> .	<u>-</u> .	-
0.464         b         2           1.94         b         0           1.59         b         0           1.61         b         0           1.45         b         0           0.47         0         0           0.07         0         7           0         0         0           0.01         0         0           0.01         0         0           0.01         0         0           0.025         0         0           0.079         0         0           0         0.47         0           0.21         0         0           0.21         0         0           0.21         0         0           0.221         0         0           0.85         0         0           0.77         0         0           0.85         0         0           0.77         0         0           0.85         0         0           0.77         0         0           0.85         0         0           0.77         0         0	.568 Y	AET	7.9	0	T1	T1	T1	T1	-
1.94       b       0         1.59       b       0         1.61       b       0         1.45       b       0         0.47       0       0         0.07       0       0         0       0       0         0.01       0       0         0.01       0       0         0.01       0       0         0.025       0       0         0.079       0       0         0       0.47       0         0.55       0       0         0.21       0       4         0.74       0       0         0.12       0       0         0.85       0       0         0.77       0       0         0.85       0.77       0         0.85       0       0         0.95       15       0         0       0       0         0.39       4       0         0       0       0         0       0       0         0       0       0         0       0       0	259		18	0	-	-	- T1	-	-
1.59 b 0 1.61 b 0 1.45 b 0 0.47 0.29 0.07 0 77 0 0 78 0 0 78 0 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.064	Effects Data N	16	0	-	-	-	-	-
1.61 b 0 0 0 1.45 b 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.004	Ellecis Dala N	10	0	_				
1.45         b         0           0.47         0         0           0.29         0         0           0.07         0         7           0         0         0           0.1         0         0           0.01         0         0           0         0.01         0           0         0.079         0           0         0.47         3           0.21         0         0           0.21         0         0           0.74         0         0           0.75         0         0           0.77         0         0           0.85         0         0           0.77         0         0           0.85         0         0           0.95         15         0           0         0         0           0.95         15         0           0         0         0           0         0         0           0         0         0           0         0         0           0         0         0	766	Effects Data Set		0					
0.47 0.29 0.07 0 0.78 0.1 0 0.01 0 0.01 0 0.01 0 0.079 0 0.47 0.55 0.21 0.21 0.12 0 0 0.74 0.15 0.85 0.77 0.6 1 0.26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.667	4.318		0					_
0.29 0.07 0 0.07 0 0 0.07 0 0 0.01 0 0.01 0 0.025 0.079 0 0.47 0.55 0.21 0.21 0.12 0 0 0.47 0.15 0.85 0.77 0.6 0.15 0.85 0.77 0.6 0.26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.651	7.037		1	T2	T2	T2	T2	T2
0.07 0 0 0 0.1 0 0.01 0 0.01 0 0.025 0.079 0 0 0.47 0.55 0.21 0.21 0.12 0 0.47 0.15 0 0.85 0.77 0.6 0.26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.432	78.182		1	T2	T2	T2	T2	T2
0	.102 .318 Y	12.308		1	-	T2	-	-	T2
0	.037 Y	24.211		1	-	-		-	T2
0 0 0 0 0 12 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	182 Y	3.000		1	-	-	-	-	-
0.01 0 0.025 0.079 0 0.47 0.55 0.21 0.12 0 0 0.44 0.74 0.15 0.85 0.77 0.6 0.26 0 0 0 0 0.95 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.056	3.000		1	T2	T2	T2	T2	T2
0 0 24 0.025 0.079 0 0 0 0 0.47 0.55 0.21 0.21 0.12 0 0 44 0.74 0.15 0.85 0.77 0.6 0.26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	240	3.030		1	T2	T2	T2	T2	T2
0.025 0.079 0 0.47 0.55 0.21 0.21 0.12 0 0.45 0.74 0.15 0.85 0.77 0.6 0.26 0 0 0 0 0.95 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.308 Y	4.255		1	-	-	- 1	-	-
0.079 0 0.47 0.55 0.21 0.21 0.12 0 0 0.45 0.74 0.15 0.85 0.77 0.6 0.26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.211 Y	5.240		1		-	-		
0 0 0.47 0.55 0.21 0.21 0.012 0 0 4 0.74 0.15 0.85 0.77 0.6 0.26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.010	15.066		1	T2	T2	T2	T2	T2
0.47         3           0.55         3           0.21         0           0.21         0           0.12         0           0         4           0.74         0           0.15         0           0.85         0           0.77         0           0.6         1           0.26         0           0         0           0.95         15           0         1           0.39         4           0.67         7           0.23         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0	235	14.437		1	T2	T2	- T0	T2	T2
0.55 0.21 0.21 0.21 0.12 0 4 0.74 0.15 0.85 0.77 0.6 1 0.26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.087	4.651		1	T2	T2	T2	T2	T2
0.21 0.21 0.21 0.12 0 0 4 0.74 0.15 0.85 0.77 0.6 0.6 1 0.26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.000 Y	7.143		1	T2 T2	T2 T2	-	T2 T2	T2 T2
0.21 0.12 0 0.12 0 0 4 0.74 0.15 0.85 0.77 0.6 1 0.26 0 0 0 0 5 0.95 15 0 0 14 0 0 1 0.39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.000 Y .030 Y	3.540		1	-	T2		T2	T2
0.12 0 0 4 0.74 0.15 0.85 0.77 0.6 0.26 0 0 0 0 5 0.95 15 0 0 14 0 0 1 0.39 0.67 0.23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.302	3.011		1	- T2	T2	- T2	T2	T2
0	.223			1	T2	T2	T2	T2	T2
0.74 0.15 0.85 0.77 0.6 0.26 0 0 0 0 0.95 15 0 0.95 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.255 Y			1	-	T2	-	-	T2
0.15 0.85 0.77 0.6 0.77 0.6 0.15 0.26 0 0 0 0 0 0 0 0 14 0 0 1 0.39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	205			1	T2	T2	T2	T2	T2
0.85 0.77 0.6 0.77 0.6 0.26 0 0 0 0 5 0.95 15 0 0 14 0 0 1 0.39 0.67 7 0.23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.021			1	T2	T2	T2	T2	T2
0.77 0.6 0.26 0 0 0 0 5 0.95 15 0 0 14 0 0 1 0.39 0.67 0.23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.004			1	T2	T2	T2	T2	T2
0.6 0.26 0 0 0 0 0 5 0.95 15 0 14 0 0 1 0.39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.005			1	T2	T2	T2	T2	T2
0 0 0 0 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1	129			1	T2	T2	-	T2	T2
0 55 0.95 15 0 14 0 1 0.39 4 0.67 7 0.23 00 0 0 00 0 0 00 0 0 00 0 0 00 0 0 00 0 0 00 0 0 00 0 0 00 0 0 00 0 0 00 0 0 00 0 0 00 0 0 00 0 0 00 0 0 00 0 0 00 0 0 00 0 0 00 0 0 00 0 0 00 0 0 00 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.925			1	T2	T2	T2	T2	T2
0.95 0 15 0 14 0 1 0.39 0.67 7 0.23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	452			1	T2	T2	T2	T2	T2
0 14 0 0 1 0.39 4 0.67 7 0.23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.240 Y			1	-	-	-	-	T2
0 1 0.39 4 0.67 7 0.23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.066 Y			1	-	-	-	•	-
0.39 0.67 0.23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	437 Y			1	-	-	-	-	-
0.67 0.23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	518			1	T2	T2	-	T2	T2
0.23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.651 Y .143 Y			1	-	T2	-	-	T2 T2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.003			1	- T2	- T2	- T2	- T2	T2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.687			1	T2	T2	T2	T2	T2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	183			1	T2	T2	T2	T2	T2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	103			1	T2	T2	T2	T2	T2
0.38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.012			1	T2	T2	T2	T2	T2
0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.060			1	T2	T2	T2	T2	T2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.005			1	T2	T2	-	T2	T2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	364			1	T2	T2	T2	T2	T2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.077			1	T2	T2	T2	T2	T2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	170			1	T2	T2	T2	T2	T2
0 0.32 2 2 2 0 0 3 3 0.54 0.082 0 0.292 0 0.358 0 0.142 0 0 0 0.126 0.356 0.364 0 0.36 0 0.072 0 0 0.032 0 0.074 0 0	374			1	T2	T2	T2	T2	T2
0.32 0 0.54 0.082 0.292 0.358 0.142 0 0.126 0.356 0.364 0.364 0.072 0 0.072 0 0.032 0.074	.392			1	T2	T2	T2	T2	T2
0 33 0.54 00 0.082 00 0.292 00 0.358 00 0.142 00 0 00 0.126 33 0.356 20 0.364 00 0.364 00 0.072 00 0 00 0 00 0 00 0 00 0 00 0 00 0 0	.135			1	T2	T2	T2	T2	T2
0.54 0.082 0.292 0.358 0.142 0 0.126 0.356 0.364 0.36 0.072 0 0.032 0.074	.500 .540 Y			1 1	T2 -	T2 T2	-	T2 -	T2 T2
0.082 0.292 0.358 0.142 0 0.126 0.356 0.364 0.364 0.072 0 0 0.072 0 0.032 0.074	.540 Y .754			1	- T2	T2	- T2	- T2	T2
0.292 0.358 0.142 0 0.126 0.356 0.364 0.366 0.072 0 0 0.032 0.074	.754 .035			1	T2	T2	T2	T2	T2
0.358 0 0.142 0 0 0 0.126 3 0.356 2 0.364 0 0.36 0 0.072 0 0 0 0.032 2 0.074 0	.061			1	T2	T2	T2	T2	T2
0.142 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	144			1	T2	T2	T2	T2	T2
0 0.126 33 0.356 22 0.364 0.36 0.072 0 0.032 0.074 00	187			1	T2	T2	T2	T2	T2
0.126 3 0.356 2 0.364 0 0.36 0 0.072 0 0 0 0.032 2 0.074 0	.161			1	T2	T2	T2	T2	T2
0.356 2 0.364 0 0.36 0 0.072 0 0 0 0.032 2 0.074 0	.811 Y			1	-	T2	-	-	T2
0.36 0.072 0 0.032 0.074	261			1	T2	T2	-	T2	T2
0.072 0 0 0 0.032 2 0.074 0	.002			1	T2	T2	T2	T2	T2
0 0.032 2 0.074	.123			1	T2	T2	T2	T2	T2
0.032 2 0.074 0	.379			1	T2	T2	T2	T2	T2
<b>0.074</b> 0	.111			1	T2	T2	T2	T2	T2
	.292			1	T2	T2		T2	T2
	.521			1	T2	T2	T2	T2	T2
	168			1	T2	T2	T2	T2	T2
	706			1	T2	T2	T2	T2	T2
	.041 .009			1	T2 T2	T2 T2	- T2	T2 T2	T2 T2
0.00	.009				12	12	12	12	12
				64	2	2	4	2	0

Average Survival Rate 87 91 88 87 87 87 88 77 71 80 76 69 76 72 80 80 82 79 84 84 85 78 81 54 48 56 53 63 68 80 61 50 37 37 35 48 48 50 50 50 50 50 50 50 50 50 50 50 50 50	b   b   b   b   b   b   b   b   b   b	Aroclor 1268 OC normlzd 1.250 6.568 2.261 0.002 0.123 0.259 2.529 0.651 0.091 0.077 0.766 0.021 0.035 0.061 0.144 0.237 0.300 2.292 0.521 0.168 4.318 7.037 78.182 0.056 0.240 24.211 0.010 0.226 0.233 7.500 5.135 1.194 0.272 0.773 3.7273	Y Y Y Y Y Y Y Y	2x mean NOEC Median NOEC  ER-L ER-M 15th Percentile E TEL 85th Percentile NE PEL AET  Effects Data N  Effects Data Set 4.318 7.037 78.182 24.211 7.500 5.135 7.273 3.000 3.000 3.030 4.255 7.885 5.240 15.066 14.437 4.651 7.143 3.54 3.811	2.7 0.26 3.0 5.2 3.4 0.9 2.3 3.5 12.3 21	1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0	T 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		T1	T1	T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T
77 71 80 76 69 76 72 80 80 80 82 79 84 84 85 78 81 54 48 56 53 63 68 80 61 50 37 35 1 62 30 54 42 40 15 42	b b b b b b b b b b b b	0.651 0.432 12.308 0.091 0.077 0.766 0.021 0.035 0.061 0.144 0.237 0.187 0.300 2.292 0.521 0.168 4.318 7.037 78.182 0.056 0.240 24.211 0.010 0.226 0.233 7.500 5.135 1.194 0.272 0.733 7.273 0.064 0.353 1.235 0.018	YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY	85th Percentile NE PEL AET  Effects Data N  Effects Data Set  4.318  7.037  78.182  24.211  7.500  5.135  7.273  3.000  3.000  3.030  4.255  7.885  5.240  15.066  14.437  4.651  7.143  3.54	2.3 3.5 12.3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		- T1	T1 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2		
42 25 0 63 24 15 33 17 66 3 23 15 58 37 36 34 62 65 0 7 42 0 0 45 29 32 3 12 14 4 36 23 10 10 10 10 10 10 10 10 10 10 10 10 10		0.277 0.087 3.000 3.000 3.030 0.302 0.153 0.146 0.667 0.223 4.255 0.205 7.885 0.004 0.005 1.129 0.925 0.452	Y Y Y Y				T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T	T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T	T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T	T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T	T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T
0 26 6 39 70 60 67 41 1 66 74 72		0.135 2.500 3.540 0.754 0.036 0.161 3.811 0.379 0.111 0.706 1.041 0.009				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	T2 T2 - T2 T2 T2 - T2 - T2 T2 T2	T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T	T2	T2 T2 - T2 T2 T2 - T2 T2 T2 T2	T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2

0.25       0.012       1       T2       T2	Survivor's Average Weight 0.37 0.35 0.350 0.302 0.362 0.308 0.400 0.500 0.286 0.406 0.294 0.398 0.316 0.250 0.264 0.452 0.384 0.39 0.408 0.45 0.39 0.532 0.512 0.528 0.438 0.55 0.756 0.712 0.744 0.70 0.234 0.234 0.230 0.58 0.62 0.592 0.302 0.326 0.334 0.34 0.47 0.61 0.43 0.47 0.61 0.44 0.70 0.11 0.08 0.042 0.51 0.43 0.47 0.61 0.46 0.46 0.46 0.46 0.46 0.46 0.47 0.61 0.46 0.46 0.46 0.46 0.47 0.61 0.47 0.61 0.48 0.47 0.61 0.49 0.272 0 0 0 0.17 0.10 0.11 0.10 0.11 0.08 0.0272 0 0 0.17 0.19 0.178 0 0.272 0 0 0 0.14	b b b b b b b b b b b b b b b b b b b	Aroclor 1268 OC normlzd 0.091 0.077 0.064 1.235 0.018 0.277 3.000 3.030 0.302 0.766 0.153 0.146 0.667 0.223 4.255 Y 7.885 Y 1.129 0.925 5.240 Y 15.066 Y 4.651 Y 7.143 Y 0.077 0.170 3.540 0.036 6.568 Y 1.041 0.651 0.205 0.021 0.035 0.237 3.811 2.261 2.292 0.004 0.003 0.060 2.005 0.754 0.183 0.432 4.318 Y 7.037 Y 78.182 Y 0.056 0.240 12.308 Y 24.211 Y 0.010 0.226 0.233 7.500 Y 5.135 Y 1.194 0.272 0.733 7.273 0.087 0.005 0.452 14.437 Y 1.518 0.687 0.045	2x mean NOEC Median NOEC  ER-L ER-M 15th Percentile E TEL 85th Percentile NE PEL AET  Effects Data Set 4.318 7.037 78.182 12.308 24.211 7.500 5.135 7.273 14.437	3.9 0.67 5.0 7.5 5.5 1.9 4.1 5.6 15.1 16 9	Tensor of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the stat	T1	T1	T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T	T1	T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T
	0.02 0.17 0.09 0.15 0.178 0 0.272 0 0 0.14 0.26 0.25 0 0.1 0 0.208 0.358 0.488 0.378 0.382 0.426 0.34 0.322 0.534 0.322 0.1 0.43 0.426 0.352 0.1		1.194 0.272 0.733 7.273 Y 0.353 0.087 0.005 0.452 14.437 Y 1.518 0.687 0.103 0.012 0.364 0.374 0.392 0.135 2.500 0.061 0.144 1.250 0.187 0.300 0.161 0.002 0.123 0.379 0.111 0.259 2.529 0.521 0.168 0.706			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T	T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T	T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T	T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T	T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T

3.23 2.87 3.01 2.85 0.86 0.656 1.18 0.508 0.61 0.906 0.464 2.58 2.06 1.88 1.56 1.625 3.64 1.733 1.682 1.571 2.833 1.91 2.27 2.17 1.625 1.94 1.59 1.61 1.45 1.38 1.42	b		Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total         Total <th< th=""><th>95 b 0.628   Effects Data N 2   2   100 b 0.229   100 b 0.530   100 b 0.530   100 b 0.275   11.782   90 b 0.308   5.042   100 b 0.223   95 b 0.397   2.350   100 b 0.421   100 b 0.421   100 b 0.421   100 b 0.421   100 b 0.225   11.864   90 b 0.317   3.550   100 b 0.225   1.844   100 b 0.225   1.844   100 b 0.182   6.072   90 b 0.311   1.510   100 b 0.894   5.097   90 b 0.351   52.80   95 b 1.319   7.7 b 0.060   7.1 b 0.140   1.525   80 b 0.060   38.448   71 b 0.140   1.525   80 b 0.060   38.448   72 b 0.630   1.566   82 b 0.149   72 b 0.630   1.508   82 b 0.149   72 b 0.630   1.508   82 b 0.149   72 b 0.630   1.508   83 b 0.0228   11.367   82 b 0.149   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.</th><th>4 0 0 0 5 0 4 0 6 0 8 0 1 0 1 0 9 0 0 3 0</th><th>T11         -         T11         T1         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -</th></th<>	95 b 0.628   Effects Data N 2   2   100 b 0.229   100 b 0.530   100 b 0.530   100 b 0.275   11.782   90 b 0.308   5.042   100 b 0.223   95 b 0.397   2.350   100 b 0.421   100 b 0.421   100 b 0.421   100 b 0.421   100 b 0.225   11.864   90 b 0.317   3.550   100 b 0.225   1.844   100 b 0.225   1.844   100 b 0.182   6.072   90 b 0.311   1.510   100 b 0.894   5.097   90 b 0.351   52.80   95 b 1.319   7.7 b 0.060   7.1 b 0.140   1.525   80 b 0.060   38.448   71 b 0.140   1.525   80 b 0.060   38.448   72 b 0.630   1.566   82 b 0.149   72 b 0.630   1.508   82 b 0.149   72 b 0.630   1.508   82 b 0.149   72 b 0.630   1.508   83 b 0.0228   11.367   82 b 0.149   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.799   7.	4 0 0 0 5 0 4 0 6 0 8 0 1 0 1 0 9 0 0 3 0	T11         -         T11         T1         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -
0.072 0 0.032 0.074 0.144 0.154 0.112 0.05 0 0 0 0 0	0.224 2.454 Y 0.292 0.240 0.044 0.286 0.247 0.042 0.994 0.585 0.986 0.006 0.315 0.553 0.668 0.773	1         T2         T2 </td <td>  T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2</td> <td>29</td> <td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td> <td>T2         T2         -         T2         T2<!--</td--></td>	T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2	29	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	T2         T2         -         T2         T2 </td

Reproductive Response b PAHs 0.473 0.358 0.535 0.607 0.239 1 0.350 0.037 0.727 0.097 0.38.448 Y 0.3729 Y	THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE PROOF OF THE P	Average Survival Rate	T2   T2   T2   T2   T2   T2   T2   T2
0.2308       0.126         0       1.238         0       0.572         0       0.646         0       0.623         0.269       0.758         0.167       0.388         0       0.610         0       0.524         0       0.647         0       0.362         0       0.431         0.375       0.391         0       0.719         0       0.680         0       2.233         0.375       0.588	1       T2	75 0.635 85 0.881 55 0.634 70 0.746 80 0.458 60 0.808 80 0.710 40 0.473 75 0.358 50 0.535 20 0.607 10 0.239 35 0.037 10 0.727 10 1.097 0 38.448 Y 65 3.729 Y 80 0.126 60 1.238	1       T2       T2
0.611	1       T2	0 0.572 75 0.646 65 0.623 85 0.758 75 0.388 80 0.610 65 0.524 80 0.647 15 0.362 75 0.597 85 0.431 55 0.391 60 0.719 50 0.568 80 0.680 55 2.233 Y 80 0.588 80 0.656 35 0.500 15 3.760 Y	1       T2       T2
0 0.419 0 0.395 0 16.679 Y 0 0.452 0 0.741 0 0.952 0 0.712 0 0.158 0.25 0.356 0 0.478 0.909 0.229 0 0.342 0 0.759 0.8 0.858 1.04 0.530 0.833 6.192 Y 0.938 0.275 0.395 0 0.245	1       T2	65 0.726 55 0.854 75 0.640 50 0.184 65 0.489 70 0.393 55 0.631 75 0.655 45 0.539 5 0.404 85 0.456 25 0.844 65 0.766 70 0.433 75 0.515 65 1.008 5 0.370 35 0.419 60 0.395	1       T2       T2
0.2	1       T2	5	1 T2 T2 T2 T2 T2 1 T2 T2 T2 T2 T2 1 T2 T2 T2 T2 T2 1 T2 T2 T2 T2 T2 1 T2 T2 T2 T2 T2 1 T2 T2 T2 T2 T2 1 T2 T2 T2 T2 T2 1 T2 T2 T2 T2 T2 1 T2 T2 T2 T2 T2 1 T2 T2 T2 T2 T2 1 T2 T2 T2 T2 T2 1 T2 T2 T2 T2 T2 1 T2 T2 T2 T2 T2 1 T2 T2 T2 T2 T2 1 T2 T2 T2 T2 T2 1 T2 T2 T2 T2 T2 1 T2 T2 T2 T2 T2 1 T2 T2 T2 T2 T2 1 T2 T2 T2 T2 T2 1 T2 T2 T2 T2 T2 1 T2 T2 T2 T2 T2 1 T2 T2 T2 T2 T2 1 T2 T2 T2 T2 T2 1 T2 T2 T2 T2 T2 1 T2 T2 T2 T2 T2 1 T2 T2 T2 T2 T2 1 T2 T2 T2 T2 T2 1 T2 T2 T2 T2 T2 1 T2 T2 T2 T2 T2 1 T2 T2 T2 T2 T2 1 T2 T2 T2 T2 T2 1 T2 T2 T2 T2 T2 1 T2 T2 T2 T2 T2 1 T2 T2 T2 T2 T2 1 T2 T2 T2 T2 T2 1 T2 T2 T2 T2 T2 1 T2 T2 T2 T2 T2 1 T2 T2 T2 T2 T2 1 T2 T2 T2 T2 T2 1 T2 T2 T2 T2 T2 1 T2 T2 T2 T2 T2 1 T2 T2 T2 T2 T2 1 T2 T2 T2 T2 T2
0 0.410 0 0.398 0 0.229 0 0.524 0 0.426 0 0.876 0 0.445 0 7.799 Y 0.962 0 0.656 0 0.322 0 0.358 0 0.317	1     T2     T2     T2     T2     T2     T2       1     T2     T2     T2     T2     T2     T2       1     T2     T2     T2     T2     T2     T2       1     T2     T2     T2     T2     T2     T2       1     T2     T2     T2     T2     T2     T2       1     T2     T2     T2     T2     T2     T2       1     T2     T2     T2     T2     T2     T2       1     T2     T2     T2     T2     T2     T2     T2       1     T2     T2 <t< td=""><td>75 0.206 85 0.137 85 11.367 Y 0 0.240 30 0.161 25 0.409 85 0.580 80 0.241 75 0.425 30 0.150 50 0.398 10 0.229 85 0.623 55 0.623 55 0.524 40 0.426 45 0.876</td><td>1       T2       T2</td></t<>	75 0.206 85 0.137 85 11.367 Y 0 0.240 30 0.161 25 0.409 85 0.580 80 0.241 75 0.425 30 0.150 50 0.398 10 0.229 85 0.623 55 0.623 55 0.524 40 0.426 45 0.876	1       T2       T2
	230 182 188 174 182 194 183 189 180 183 194	5 0.445 85 7.799 Y 85 1.098 50 0.656 80 0.322 55 0.365 5 0.358 60 0.317	1 T2 T2 T2 T2 T2 T2 1

					Actual Effects	Pred. Effects ER-L	Effects ER-M	Effects TEL	Pred. Effects PEL	Effects AET
Survivor's Average Weight	b	Total PAHs			ctual	red. El	Pred. E	Pred. El	red. El	Pred. El
0.37 0.35	b	0.084 0.061	2x mean NOEC Median NOEC	2.1 0.6	0	-	-	-	- -	- -
0.350 0.302	b b	0.441 7.290 Y	ER-L	2.5	0	- T1	- T1	- T1	- T1	-
0.362 0.308	b	0.468 1.067	ER-M 15th Percentile E	5.1 2.5	0	-	-	-	-	-
0.400 0.500	b	2.350 Y 4.945 Y	TEL 85th Percentile NE	1.2 1.3	0	- T1	-	T1 T1	- T1	-
0.286 0.406 0.294	b b	1.684 0.477 1.820	PEL AET	3 11.5	0 0 0	-	-	T1 - T1	-	-
0.398 0.316	b	0.612 0.788	Effects Data N	25 14	0	-	-	-	-	-
0.250 0.264	b b	1.360 0.625	Effects Data Set		0	-	-	T1 -	-	-
0.452 0.384	b b	3.550 Y 11.510 Y	4.363 2.553		0	T1 T1	- T1	T1 T1	T1 T1	-
0.39 0.408	b	1.067 1.189	11.782 5.042		0	- -	-	- T1	-	-
0.45 0.39	b	0.274 1.484	6.072 5.097		0	-	-	- T1	-	-
0.532 0.512 0.528	b b	0.876 1.296 0.442	52.80 2.560 2.454		0 0 0	-	-	T1	-	-
0.438 0.55	b	0.980 1.394	5.551 38.448		0	-	-	- - T1	-	-
0.756 0.712	b b	0.975 2.154 Y	2.233 3.760		0	-	-	- T1	-	-
0.744 0.440	b b	0.247 0.553	16.679		0	-	-	-	-	-
0.450 0.500	b	0.668 0.506			0	- -	-	-	- -	- -
0.610 0.440	b	0.908 0.566			0	-	-	-	-	-
0.460 0.450 0.640	b b	0.471 0.483 0.634			0 0 0	-	-		-	-
0.560 0.590	b b	0.458 0.710			0	-	-	-	-	-
0.610 0.550	b b	0.358 0.614			0	-	-	-	-	-
0.690 0.480	b b	0.535 0.607			0	- -	-	- -	- -	- -
0.530 0.480	b	2.533 Y 0.350			0	T1 -	-	T1 -	-	-
0.690 0.430	b	0.037 0.060			0	- - T1	-	- - T1	- - T1	-
0.710 0.470 0.680	b b	3.729 Y 1.238 0.524			0 0 0	T1 - -	-	T1 T1	T1 -	-
0.560 0.550	b b	0.431 0.391			0	-	-	-	-	-
0.480 0.440	b b	0.719 0.680			0	-	-	-	-	-
0.510 0.490	b b	0.588 0.500			0	-	-	-	-	-
0.570 0.440	b b	0.640 0.628			0	-	-	-	-	-
0.440 0.430	b	0.393 0.631			0	-	-	-	-	-
0.450 0.660 0.510	b b	0.456 0.844 0.419			0 0 0	-	-	-	-	-
0.530 0.570	b	0.452 0.952			0	-	-	-	-	-
0.430 0.530	b b	0.356 0.229			0	-	-	-	-	-
0.440 0.430	b b	0.342 0.858			0	-	-	-	-	-
0.580 0.570	b	0.530 0.271			0	- -	-	-	- -	-
0.680 0.450 0.490	b b	0.275 0.358 0.245			0 0 0	-	-	-	-	-
0.440 0.730	b	0.243 0.308 0.293			0	-	-	-	-	-
0.430 0.750	b b	0.286 1.508			0	-	-	- T1	-	-
0.460 0.510	b b	0.267 0.397			0	-	-	-	-	-
0.650 0.430	b b	0.421 0.402			0	-	-	-	-	-
0.570 0.800	b	0.317 0.511			0	-	-	-	-	-
0.550 0.480 0.490	b b	0.206 0.251 0.182			0 0 0	-	-	-	-	•
0.490 0.420	b b	0.241 0.425			0	-	-	-	-	-
0.600 0.620	b b	0.894 0.351			0	- -	-	-	-	-
0.460 0.560	b	0.426 7.799 Y			0	- T1	- T1	- T1	- T1	-
0.440 0.510	b	1.098 0.656			0	-	-	-	-	-
0.70 0.234 0.230	b b	0.060 1.044 0.630			0 0 0	-	-	-	-	-
0.58 0.62	b b	0.273 0.434			0	-		-	-	
0.592 0.556	b b	0.372 0.473			0	-	-	-	-	-
0.65 0.410	b b	0.292 0.315			0	- -	-	-	-	-
0.370 0.410	b	0.876 0.419			0	-	-	-	-	-
0.370 0.400	b b	0.808 0.473 0.758			0					
0.390 0.410 0.390	b b	0.758 0.597 0.568			0 0 0		-	-	-	-
0.390 0.370 0.390	b b	0.726 0.854			0				-	
0.390 0.380	b b	0.489 0.433			0	-				
0.400 0.400	b b	0.741 6.192 Y			0	- T1	- T1	- T1	- T1	
0.410 0.410	b b	0.317 0.312			0	-	-	-	-	
0.390 0.380	b	0.338 11.367 Y			0	- T1	- T1	- T1	- T1	-
0.410 0.410 0.360	b b	0.580 0.410 0.876			0 0 0	-	-	- - -	-	-
0.390 0.282	b b	0.876 1.319 0.136			0	-	-	- T1 -		
	ات	21.00								

ľ.				O Actual Effects	Pred. Effects ER-L	Pred. Effects ER-M	Effects TEL	Pred. Effects PEL	
Survivor's verage Weight	h	Total PAHs		ctua	red.	red.	Pred.	red.	3
0.29	b	0.649			-	-	-	-	
0.34	b	0.725 0.565		0	-	-	-	-	
0.326	b	1.365		0	-	-	T1	-	
0.334 0.60	b	0.608 0.140		0	- T2	- T2	- T2	- T2	1
0.42		1.110		1	T2	T2	T2	T2	i
0.51 0.43	H	4.363 Y 0.454		1	- T2	T2 T2	- T2	- T2	7
0.47		0.060		1	T2	T2	T2	T2	i
0.61 0.46		0.087 1.060		1	T2 T2	T2 T2	T2 T2	T2 T2	1
0.46		0.828		1	T2	T2	T2	T2	i
0.63		0.060		1	T2	T2	T2	T2	1
0.17 0.10	Н	0.446 0.180		1	T2 T2	T2 T2	T2 T2	T2 T2	T T
0.11		2.553 Y		1	-	T2	-	-	1
0.08 0.02	Н	0.811 11.782 Y		1	T2 -	T2 -	T2 -	T2 -	1
0.17		0.243		1	T2	T2	T2	T2	1
0.09 0.15	Н	0.222 5.042 Y		1	T2 -	T2 T2	T2 -	T2 -	1
0.178		0.090		1	T2	T2	T2	T2	1
0 0.272	H	0.632 0.112		1	T2 T2	T2 T2	T2 T2	T2 T2	1
0		0.826		1	T2	T2	T2	T2	Ţ
0		6.072 Y 1.015		1	- T2	- T2	- T2	- T2	T
0.14		0.794		1	T2	T2	T2	T2	T
0.26		0.492		1	T2	T2	T2	T2	Ţ
0.25 0		1.647 1.166		1	T2 T2	T2 T2	- T2	T2 T2	T
0.1		0.490		1	T2	T2	T2	T2	Т
0		5.097 Y 52.800 Y		1	-	-	-	-	T
0.208		0.561		1	T2	T2	T2	T2	Т
0.358 0.488		0.228 0.149		1	T2 T2	T2 T2	T2 T2	T2 T2	T
0.378		2.560 Y		1	-	T2	-	-	Т
0.382 0.426		0.515 0.563		1	T2 T2	T2 T2	T2 T2	T2 T2	T T
0.34		0.563		1	T2	T2	T2	T2	T
0.322		0.015		1	T2	T2	T2	T2	T
0.534 0.322	$\vdash$	0.289 0.224		1	T2 T2	T2 T2	T2 T2	T2 T2	T
0.1		2.454 Y		1	T2	T2	- T0	T2	Ţ
0.43 0.426	Н	0.951 1.755		1	T2 T2	T2 T2	T2 -	T2 T2	T T
0.352		0.240		1	T2	T2	T2	T2	Т
0.318 0.458	Н	0.044 0.286		1	T2 T2	T2 T2	T2 T2	T2 T2	T
0.402		0.042		1	T2	T2	T2	T2	Т
0.310 0	Н	0.994 0.585		1	T2 T2	T2 T2	T2 T2	T2 T2	T
0.250		0.986		1	T2	T2	T2	T2	Т
0.330 0	Н	0.006 0.773		1	T2 T2	T2 T2	T2 T2	T2 T2	T
0.320	Н	0.773		1	T2	T2	T2	T2	T
0.340		1.333		1	T2	T2	-	T2	T
0.350 0.290	Н	1.525 0.563		1	T2 T2	T2 T2	- T2	T2 T2	T
0.200		0.433		1	T2	T2	T2	T2	T
0.180 0.290	$\vdash$	5.551 Y 0.342		1	- T2	- T2	- T2	- T2	T
0		0.304		1	T2	T2	T2	T2	Т
0 0.350	Н	0.545 0.635		1	T2 T2	T2 T2	T2 T2	T2 T2	T
0.350		0.881		1	T2	T2	T2	T2	Т
0.330 0.350	Н	0.746 0.239		1	T2 T2	T2 T2	T2 T2	T2 T2	T
0.150		0.727		1	T2	T2	T2	T2	Ť
0.200		1.097		1	T2	T2	T2	T2	Т
0 0.330		38.448 Y 0.126		1	- T2	- T2	- T2	- T2	T
0 0.300		0.572		1	T2 T2	T2 T2	T2	T2 T2	T
0.300		0.646 0.623		1	T2 T2	T2 T2	T2 T2	T2	I T
0.340		0.388		1	T2	T2	T2	T2	Т
0.310 0.340		0.610 0.647		1	T2 T2	T2 T2	T2 T2	T2 T2	T T
0.300		0.362		1	T2	T2	T2	T2	T
0.270 0.240		2.233 Y 0.656		1	T2 T2	T2 T2	- T2	T2 T2	T
0.270		3.760 Y		1	-	T2	-	-	T
0.330 0.330		0.184 0.655		1	T2 T2	T2 T2	T2 T2	T2 T2	T
0.190		0.539		1	T2	T2	T2	T2	Т
0.200		0.404		1	T2	T2	T2	T2	T
0.310 0.330		0.766 0.515		1	T2 T2	T2 T2	T2 T2	T2 T2	T
0.250		1.008		1	T2	T2	T2	T2	Т
0.300 0.340		0.370 0.395		1	T2 T2	T2 T2	T2 T2	T2 T2	T
0.300		16.679 Y		1	-	-	-	-	
0		0.712 0.158		1	T2 T2	T2 T2	T2 T2	T2 T2	T
0.330		0.478		1	T2	T2	T2	T2	T
0.330 0.310		0.759 0.394		1	T2 T2	T2 T2	T2	T2 T2	T
0.310 0.350		0.394 0.288		1	T2 T2	T2 T2	T2 T2	T2	T
0.310		0.137		1	T2	T2	T2	T2	Т
0.000 0.350		0.240 0.161		1	T2 T2	T2 T2	T2 T2	T2 T2	T
0.280		0.409		1	T2	T2	T2	T2	Т
0.130 0.300		0.150 0.398		1	T2 T2	T2 T2	T2 T2	T2 T2	T T
0.150		0.398		1	T2	T2	T2	T2	T
0.350 0.350		0.623 0.524		1	T2 T2	T2 T2	T2 T2	T2 T2	T T
0.350		0.524 0.445		1	T2	T2	T2	T2	T
0.240		0.322		1	T2	T2	T2	T2	Т
0.000		0.365 0.358		1	T2 T2	T2 T2	T2 T2	T2 T2	T
0.330 0.200									
		0.317		1	T2	T2	T2	T2	T

	0.35 0.36 0.07 0 0.03 0.07 0.14 0.15 0.11	Reprodu Respo 5.31 3.25 2.87 3.01 3.05 0.86 0.65 1.18 0.50 0.66 1.94 1.55 1.61 1.48 0.47 0.22 0.07 0 0.01 0.01 0.02 0.07 0.02 0.07 0.04 0.02 0.07 0.05 0.02 0.07 0.05 0.02 0.07 0.05 0.02 0.07 0.05 0.02 0.07 0.05 0.02 0.07 0.05 0.05 0.05 0.05 0.05 0.05 0.05
	4 5 2 2 4 4 4 4	nse
	0.082 0.023 0.055 0.092 0.319 0.115 0.040 0.107 0.049 0.056 0.014	OC Norm PAHs 0 0.529 0 0.260 0 0.130 0 0.171 0 2.213 0 0.103 0 0.598 0 0.121 0 0.456 0 0.598 0 0.121 0 0.456 0 0.305 0 0.305 0 0.387 0 0.324 0.014 0.032 0.252 1.616 0.082 0.018 0.017 0.204 0.218 0.023 4.288 0.211 0.588 1.236 0.510 0.111 0.145 0.755 0.243 0.074 0.047 0.039 0.287 0.297 0.170 0.399 0.287 0.297 0.170 0.399 0.324 1.069 0.227 0.255 0.255 0.257 0.150 0.140 0.041 0.079 0.394 0.047 0.039 0.324 1.069 0.227 0.255 0.257 0.150 0.140 0.218 0.090 0.448 0.087 0.394 0.090 0.448 0.087 0.397 0.170 0.399 0.324 1.069 0.227 0.255 0.255 0.257 0.150 0.140 0.218 0.090 0.448 0.087 0.374 0.047 0.039 0.324 1.069 0.227 0.255 0.255 0.257 0.150 0.140 0.218 0.090 0.448 0.087 0.391 0.371 0.391 0.391 0.391 0.391 0.391 0.391 0.391 0.391 0.391 0.391 0.391 0.391 0.391 0.391 0.391 0.391 0.391 0.391 0.391 0.391 0.391 0.391 0.391 0.391 0.391 0.391 0.391 0.391 0.391 0.391 0.391 0.391 0.391 0.391
		2x mean NOEC Median NOEC Y ER-L Y ER-M 15th Percentile E Y TEL 85th Percentile NE PEL AET  Effects Data Set 1.62 4.29 13.71 Y
	1 1 1 1 1 1 1 1 1 1 1 6 2	1.2 0.4 0.0 2.2 4.3 0.9 0.8 0.9 0.8 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
	T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2	
	T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2	T2         T2           T2         T2           T2         T2           T2         T2           T2         T2           T2         T2           T2         T2           T2         T2           T2         T2           T2         T2           T2         T2           T2         T2           T2         T2           T2         T2           T2         T2           T2         T2           T2         T2           T2         T2           T2         T2           T2         T2           T2         T2           T2         T2           T2         T2           T2         T2           T2         T2           T2         T2           T2         T2           T2         T2           T2         T2           T2         T2           T2         T2           T2         T2           T2         T2           T2         T2           T2         <
	14 4 36 23 0 19 16 2 0 0 26 6 6 39 70 60 67 41 1 66 74 72	Average Survival Rate  87 87 87 91 88 88 77 71 11 80 76 69 76 72 80 80 80 82 79 84 84 84 85 78 81 54 48 56 53 63 63 63 63 63 63 64 80 61 50 37 35 1 62 30 54 42 40 15 42 25 0 63 24 15 58 37 36 34 62 65 0 7 7 42 0 0 0 45 29 32 33 12
	0.090 0.448 0.087 0.334 0.452 0.162 0.203 0.141 0.870 Y 13.714 0.200 0.411 0.079 0.598 Y 0.113 0.057 0.092 0.319 0.049 0.056 0.014	DC Norm
		ER-L ER-M 15th Percentile E TEL 85th Percentile NE PEL AET  Effects Data N  Effects Data Set 1.616 0.798 3.801 1.528 0.919 0.529 4.288 0.588 1.236 0.510 0.755 2.213 1.069 0.870 13.714 0.6
90	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.5 0.1 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
	53	T-2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2
59 60		T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T
		T1 T1
	1 53	T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T
	T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T	T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T

						굯	ER-M	ی		h
					ects	Pred. Effects ER-L	Effects EF	cts TEL	Pred. Effects PEL	Pred. Effects AET
Our invada		00 No			Actual Effects	J. Effe	J. Effe	J. Effects	J. Effe	J. Effe
Survivor's Average Weight	b	OC Norm PAHs				Prec	Pred.	Pred.	Prec	Prec
0.37 0.35	b	0.076 0.047	2x mean NOEC Median NOEC	0.8 0.2	0	-	-	-	-	-
0.350	b	0.047 0.919 Y	Median NOEC	0.2	0			- T1		-
0.302	b	4.288 Y	ER-L	1.0	0	T1	T1	T1	T1	-
0.362	b	0.260	ER-M	1.6	0	-	-	-	-	-
0.308	b	0.305 0.588	15th Percentile E TEL	1.0 0.5	0	-	-	- T1	-	-
0.500	b	1.236 Y	85th Percentile NE	0.5	0	- T1	-	T1	- T1	-
0.286	b	0.510	PEL	1	0	-	-	T1	-	-
0.406	b	0.111	AET	4.3	0	-	-	-	-	-
0.294 0.398	b	0.387 0.130		11	0	-	-	-	-	-
0.316	b	0.130	Effects Data N	7	0	-	-	-	-	-
0.250	b	0.324			0	-	-	-	-	-
0.264 0.452	b	0.145 0.755	Effects Data Set 1.616		0	-	-	- T1	-	-
0.384	b	2.213 Y	3.801		0	- T1	- T1	T1	T1	-
0.39	b	0.287	1.528		0	-	-	-	-	-
0.408	b	0.297	1.069		0	-	-	-	-	-
0.45	b	0.399 0.324	0.870 13.714		0	-	-	-		-
0.532	b	0.255	2.666		0	-	-	-	-	-
0.512	b	0.257			0		- 1	- 1	- 1	- 1
0.528 0.438	b	0.162 0.203			0	-	-	-	- 1	-
0.438	b	0.203			0					
0.756	b	0.598			0	- 1	-	T1	-	-
0.712	b	0.456			0	-	-	- 1	-	-
0.70 0.234	b	0.014 0.243			0					
0.230	b	0.243			0		-	-	-	- 1
0.58	b	0.050			0	- 1	-	- 1	-	-
0.62 0.592	b	0.103 0.057			0	-	-	-	-	-
0.556	b	0.037			0	-		-		-
0.65	b	0.115			0	-	-	-	-	-
0.744	b	0.056			0	-	-	-	-	-
0.282	b	0.047 0.150			0	-	-	-	-	
0.29	b	0.130			0	-				-
0.302	b	0.087			0	-	-	-	-	-
0.326	b	0.334			0	-	-	-	-	-
0.334 <b>0.60</b>	b	0.079 0.032			0 1	- T2	- T2	- T2	- T2	- T2
0.42		0.032			1	T2	T2	T2	T2	T2
0.51		1.616 Y			1	-	T2	-	-	T2
0.43		0.082			1	T2	T2	T2	T2	T2
0.47 0.61		0.018 0.017			1 1	T2 T2	T2 T2	T2 T2	T2 T2	T2 T2
0.46		0.204			1	T2	T2	T2	T2	T2
0.46		0.218			1	T2	T2	T2	T2	T2
0.63 0.17		0.023 0.127			1 1	T2 T2	T2 T2	T2 T2	T2 T2	T2 T2
0.17		0.127			1	T2	T2	T2	T2	T2
0.11		0.798			1	T2	T2	-	T2	T2
0.08		0.219			1	T2	T2	T2	T2	T2
0.02 0.17		3.801 Y 0.076			1 1	- T2	- T2	- T2	- T2	T2 T2
0.09		0.074			1	T2	T2	T2	T2	T2
0.15		1.528 Y			1		T2	-		T2
0.178 0		0.529 0.211			1 1	T2 T2	T2 T2	- T2	T2 T2	T2 T2
0.272		0.211			1	T2	T2	T2	T2	T2
0		0.170			1	T2	T2	T2	T2	T2
0		1.069 Y			1	-	T2	-	-	T2
0 0.14		0.227 0.140			1 1	T2 T2	T2 T2	T2 T2	T2 T2	T2 T2
0.14		0.140			1	T2	T2	T2	T2	T2
0.25		0.448			1	T2	T2	T2	T2	T2
0		0.452			1	T2	T2	T2 T2	T2	T2
0.1 0		0.141 0.870 Y			1 1	T2 T2	T2 T2	-	T2 T2	T2 T2
0		13.714 Y			1	-	-	-	-	-
0.208		0.200			1	T2	T2	T2	T2	T2
0.358 0.488		0.066 0.063			1 1	T2 T2	T2 T2	T2 T2	T2 T2	T2 T2
0.378		2.666 Y			1	-	-	-	-	T2
0.382		0.099			1	T2	T2	T2	T2	T2
0.426		0.121			1	T2	T2	T2	T2	T2
0.34 0.322		0.113 0.023			1 1	T2 T2	T2 T2	T2 T2	T2 T2	T2 T2
0.534		0.025			1	T2	T2	T2	T2	T2
0.322		0.092			1	T2	T2	T2	T2	T2
0.1 0.43		0.319 0.123			1 1	T2 T2	T2 T2	T2 T2	T2 T2	T2 T2
0.43 0.426		0.123			1	T2	T2	T2	T2	T2
0.352		0.040			1	T2	T2	T2	T2	T2
0.318 0.458		0.107			1	T2	T2	T2	T2	T2
0.458 0.402		0.049 0.014			1 1	T2 T2	T2 T2	T2 T2	T2 T2	T2 T2
		3.017								
	1				47 90	3 41	2 11	8 38	3 41	0 46
	-				90	41 44	44 46	38 46	41 44	46 46
										-
	-									
	1									
	-									
	1									

Reproductive Response 5.31 b 3.23 b 3.23 b 5.31 b 5.31 b 5.31 b 5.31 b 5.31 b 5.31 b 5.31 b 5.31 b 5.32 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5.36 b 5	Lead  2.2 8 15 23 27 25.8 6.55 27.8 28.9 40.9 177 27.9 25.4 26.9 15.9 30.4 24.3 25.3 29.6 31.1 27.2 29.3 24.8 33.3 34.5 33.8 8.9 20 23 24.8 33.3 34.5 33.8 8.9 20 21 22.1 23 28 14.6 33 23.3 23.3 24.8 25.3 28.8 41.6 6 33 29.1 12.4 16.6 25.8 29.1 12.4 16.6 25.8 29.1 25.4 26.6 27 3.9 12.4 16.6 28.8 34 46 16 16 13 29 27 14 15 12 28 34 46 16 16 13 29 27 14 15 12 28 34 46 16 16 13 29 27 14 15 12 28 34 46 16 16 13 29 27 14 15 12 28 34 46 16 16 13 29 27 14 15 12 28 34 46 16 16 13 29 27 14 15 12 28 34 46 16 16 13 29 27 14 15 12 28 34 46 16 16 13 29 27 3.9 12.4 16.6 25.8 29.1 25.4 27 27 28 34 36 36 37 39 39 31 39 31 30 30 30 30 30 30 30 30 30 30 30 30 30	2x mean NOEC Median NOEC ER-L ER-M 15th Percentile E TEL 85th Percentile NE PEL AET  Effects Data N  Effects Data Set 419 154 354 71190 275 99.8 68 60.1	58.1 27.0 66.3 238.0 74.3 44.8 33.1 10 9			Average Rate  87     b    6.65     87     b    40.9     91     b    27.9     88     b    42.9     87     b    23.3     87     b    177     88     b    22.9     90     b    22.9     90     b    26.9     90     b    26.3     100     b    29.6     90     b    26.9     90     b    24.3     100     b    29.6     90     b    26.9     90     b    33.9     90     b    33.	Median NOEC	53.5 26.4 59.8 196.0 62.8 40.8 39.9 88.4 177 11 10	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			**************************************	T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	----------------------------------------------------------------------------------------------------------------------------------------------------------	------------------------------------------------------------------	--	--	--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-------------	----------------------------------------------------------------------------------	---------------------------------------	--	--	----------------------------------------	------------------------------------------

	-	
	0.083 0.556 1.111 0.571 0.792 0.643 0 0.708 0.5 0.818 0 0.7778 0 0 0.5 0.917 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Reproductive Response b  0 0 0 0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0
	27.1 24.5 29.9 47 32.4 26.4 29.5 28.9 27.8 26.7 23.7 34.1 27.3 39.7 32.5 37.2 38.4 36.6 41.5 45.3 36.1 39.4 33.6 51.8 35.7 34.6 38.4 27 27.1 34.2 25.9	Lead  37.3 27.1 9.13 26.9 12.6 25.1 99.8 Y 238 Y 48.2 5.74 44.8 32.6 38.8 42.9 26.6 21.3 30.5 29.1 40.9 27.2 24.8 12.8 13.7 14 29.4 25.10 37.9 24.5 32.3 28.7 34.1 41.2 32.8 34.6 27.5 12.5 42.3 28.7 34.3 31.3 29.7 39.9 30.9 21.90 3.9 21.90 3.9 21.90 3.9 21.90 3.9 21.90 3.9 21.90 3.9 25.2 23.8 24.5 41.9 5.75 4.36 22.90 3.9 25.2 23.8 22.5 21.9 26.5 25.3 27.7 31.2 35.6 40.3 51.6
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Page 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T	**************************************
	T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T	T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T
	T2	T2 1 T2 1 T2 T T2 T T2 T T2 T T2 T T2 T
60	55 0 0 75 15 35 35 80 70 85 80 75 65 80 65 80 65 80 75 75 85 80 75 75 85 80 75 85 80 75 85 80 75 85 80 80 85 80 85 80 85 80 85 85 86 86 86 86 86 86 86 86 86 86 86 86 86	Average Survival Rate 30 55 85 80 85 85 80 0 0 75 85 55 70 80 60 80 40 75 50 20 10 0 65 80 60 0 75 65 85 75 80 65 80 80 85 85 75 80 80 85 85 85 85 85 85 85 85 85 85 85 85 85
25.9	41.5 41.9 5.75 4.36 22.9 25.2 23.8 22.5 27.7 31.2 35.6 40.3 51.6 27.1 24.5 29.9 47 29.3 29.5 27.8 26.7 23.7 27.3 39.7 32.5 37.2 38.4 41.5 45.3 36.1 34.5 39.4 33.6 35.6 35.6 36.1 36.7 37.2 38.4 41.5 45.3 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37	b Lead  56.7 Y  36.2 13.3 14.6 35.7 11 27 25.4 29.5 25.6 31.9 36.2 51.8 33.8 23.3 38.3 20.6 26.7 37.3 27.1 9.13 12.6 25.1 99.8 Y 238 Y 48.2 5.74 44.8 32.6 38.8 42.9 26.6 21.3 30.5 29.1 40.9 27.2 24.8 13.7 14 29.4 25.1 37.9 27.1 24.8 13.7 14 29.4 25.1 37.9 27.2 24.8 12.8 13.7 14 29.4 25.1 37.9 24.5 32.3 28 34.1 41.2 32.8 34.6 12.5 42.3 28.7 34.3 31.3 29.7 30.4 39.9 30.9 28.6 30.9 21.9 32.8 31.5 30.9 67.9 Y 40.5 28.8
1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Steel and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the stat
12	T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T	ERAL STREET TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TOTAL TOTAL TOTAL TO THE TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL
	T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T	T 12 12 12 12 12 12 12 12 12 12 12 12 12
	- T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2	794d - 72 72 72 72 72 72 72 72 72 72 72 72 72
	T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T	Effects
T2	T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T	T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T

					fects	Pred. Effects ER-L	ects ER-M	Effects TEL	Pred. Effects PEL	ects AET
Survivor's erage Weight	b	Lead			Actual Effects	red. Eff	Pred. Effects	Pred. Eff	red. Eff	Pred. Effects
0.37 0.35	b	7.5 9.4	2x mean NOEC Median NOEC	63.6 28.0	0	-	-	-	-	-
0.350	b	8.9			0	-	-	-	-	-
0.302	b	15	ER-L ER-M	87.0 238.0	0	-	-	-	-	-
0.308 0.400	b	20 28	15th Percentile E TEL	96.6 52.0	0	-	-	-	-	-
0.500 0.286	b b	34 46	85th Percentile NE PEL	37.3 94	0	-	-	-	-	-
).406 ).294	b b	16 23	AET	419	0	-	-	-	-	-
.398	b	15	E#sats Data N	9	0	-	-	-	-	-
0.316 0.250	b	23 28	Effects Data N	7	0	-	-	-	-	-
264 452	b	13 29	Effects Data Set 387		0	-	-	-	-	-
0.384	b b	27 25.8	1190 275		0	-	-	-	-	-
0.408	b	29.1 5.85	177 99.8		0	-	-	-	-	-
.39	b	42.1	238		0	-	-	-	-	-
.532 .512	b	29.5 28.8	67.9		0	-	-	-	-	-
.528 .438	b b	17.2 60.1			0	-	-	- T1	-	-
.55 756	b b	27.2 27.8			0	-	-	-	-	-
712	b	40.9			0	-	-	-	-	-
'44 I40	b	30 30.7			0	-	-	-	-	-
150 500	b b	33.9 25.8			0		-	-	-	-
610 440	b	36.2 13.3			0	-	-	-	-	-
460	b	27.9			0	-		-	-	-
450 640	b	29.5 36.2			0				-	-
60 590	b b	33.8 38.3			0	- -		-	-	-
610 550	b b	26.7 25.4			0	-	-	-	-	-
90 80	b	37.3			0		-	-	-	-
30	b	27.1 26.9			0		-	-	-	-
30 90	b	26.9 12.6			0	-	-	-	-	-
30 10	b b	15.9 48.2			0			-	-	-
0	b	44.8 29.1			0	-	-	-	-	-
0	b	12.8 13.7			0	-	-	-	-	-
0	b	14			0	-	-	-	-	-
)	b	25.1 24.5			0	- -	-	-	-	-
)	b b	28 34.6			0	- -		-	-	-
	b	27.5 24.3			0	-	-	-	-	-
	b	28.7			0	-	-	-	-	-
	b	30.4 39.9			0	-	-	-	-	-
	b	31.5 40.5			0	-	-	-	-	-
	b b	41.5 4.36			0	-	-	-	-	-
	b	3.9 25.2			0	-	-	-	-	-
	b	22.5 21.9			0	-	-	-	-	-
	b	24.3			0	-	-	-	-	-
	b	25.3 27.7			0	-	-	-	-	-
)	b	31.2 25.3			0	-	-	-	-	-
30 30	b b	29.6 27.1			0	-	-	-	-	-
i0 i0	b	24.5 29.9			0	-	-	-	-	-
0 0 0	b	31			0	-	-	-	-	-
	b	32.4 27.20			0	-		-	-	-
) )	b b	26.4 29.3			0	-	-	-	-	-
0	b	29.5 34.1			0	-	-	-	-	-
90 90	b	24.800 37.2			0	-	-	-	-	-
20 20	b	38.4			0	-	-	-	-	-
0	b	33.3 33			0	-	-	-	-	-
60 60	b b	33.6 35.7			0	- -	-	-	-	-
10 10	b b	34.6 38.4			0	-	-	-	-	-
0 B	b	32 26.8			0	-	-	-	-	-
2	b	25.8			0	-	-	-	-	-
6 6	b	31.9 27.9			0	-	-	-	-	-
10 70	b	33.6 35.7			0	-		-	-	-
10 70	b b	11 23.3			0	-	-	-	-	-
00 90	b	20.6 26.6			0	-	-	-	-	-
10	b	24.8			0	-		-	-	-
90 70	b	29.4 41.2			0	-		-	-	-
390 390	b b	32.8 42.3			0	-	-	-	-	-
400 410	b	28.8 35.6			0		-	-	-	-
.410	b	51.6 47			0	-	-	-	-	-
0.390	b	32.5			0					-
.410	b	36.6 33.8			0					-
.234 .230	b	27 3.9			0	-	-	-	-	-
.65 380	b	14.9 28.6			0	-	-	-	-	-
400 380	b	26.5 26.7			0	-	-	-	-	-
80 60	b	51.8			0	-	-	-	-	-
32	b	12.4			0	-	-	-	-	-

Survivor's	
Average Weight 0.302	b Lead b 22.9
0.326	b 154 Y
0.334	b 27.6
0.60 0.42	18
0.51	20
0.43	36
0.47	12
0.61	18
0.46	29
0.46	27
0.63	14 28
0.17	17
0.10	24
0.11	47
0.02	43 22
0.09	21
0.15	26
0.178	2.2
0.272	16.6 25.4
0	52 25.3
0.14	35.5
0.26	24.2
0.25	25.7
0	16.3
0.1	32
0	387 Y
0	1190 Y
0.208	15.4
0.358	17.3
0.488	18.1
0.378	6.55
0.382	25.7
0.426	28.9
0.34	26.4
0.322	4.29
0.534	23.3
0.322	44.2
0.1	275 Y
0.43	177 Y
0.426	29.7
0.352	28.6
0.318	2.53
0.458	27.2
0.402	17.4
0.310	48.6
0	39.9
0.250	16.5
0.330	13.9
0	27.8
0.320	8.72
0.340	17.7
0.350	27.7
0.290	23.3
0.200	30.8
0.180	56.7
0.290	14.6
0	27 25.4
0.350	25.6
0.350	31.9
0.330	51.8
0.350	9.13
0.150	25.1
0.200	99.8 Y
0	238 Y 5.74
0	32.6 38.8
0.190	42.9
0.340	21.3
0.310	30.5
0.340	40.9
0.300	27.2
0.270	37.9
0.240	32.3
0.270	34.1
0.330	12.5
0.330	34.3
0.190	31.3
0.200	29.7
0.310	30.9
0.330	30.9
0.250	21.9
0.300	32.8
0.340	30.9
0.300	67.9 Y 41.9
0.330	5.75 22.9
0.330	23.8
0.310	40.3
0.350	28.9
0.310	27.8
0.000	23.7
0.350	27.3
0.280	39.7
0.130	41.5
0.300	45.3
0.150	36.1
0.350	34.5
0.350	39.4
0.200	35
0.240	27
0.330	27.1
0.200	34.2
0.290	25.9

1 1 0 0 0 Actual Effects	T1 - 12 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2	T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T	T1 - T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2	T1 - T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2	T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T
0 <b>A</b> C	<u>.</u>	<u>.</u>	-	- -	- -
0	T1 -	-	T1 -	T1 -	-
1	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
1 1 1	T2 T2	T2 T2	T2 T2	T2 T2	T2 T2
1	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
1	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
1	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
1	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
1	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
1	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
1	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
1	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
1	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
1	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
1	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
1	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
1	-	-	-	-	T2 -
1	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
1	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
1	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
1	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
1	T2 T2	T2	T2	T2	T2 T2
1	-	T2 T2 T2 T2 - T2 T2 T2 T2 T2 T2 T2 T2 T2 T2	-	-	T2 T2
1	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
1 1	T2 T2	T2	T2 T2	T2	T2 T2
1 1	T2 T2	T2	T2 T2	T2	T2 T2
1 1	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
1	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
1	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
1	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
1 1	T2 T2	T2 T2	T2	T2 T2	T2 T2
1	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
1	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
1	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
1	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
1	-	T2	-	-	T2 T2
1	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
1	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
1	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
1	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
1	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
1	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
1	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
1	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
1	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
1	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
1	T2	T2	-	T2	T2
	T2	T2	T2	T2	T2
1 1	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
1	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
1 1	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
1 1	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
1	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
1	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
1	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
1	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
1	T2	T2	T2	T2	T2
	T2	T2	T2	T2	T2
1	T2	T2	T2	T2	T2

109 2 1 3 2 0 240 103 105 101 103 108 105 106 104 105 108

# **Sediment Effect Concentrations Summary - Grass Shrimp**

			Me	rcury					Arocl	or 1268				OC-	normaliz	ed Aroclo	r 1268	
			Embryo D	evelopmer)	nt	Total # of			Embryo D	evelopmen	it	Total # of			Embryo [	Developme	nt	Total # of
Number of Type 1 Errors Number of Type 2 Errors Number predicted correctly Overall Reliability (%)	ER-L 3.2 2 30 45 58%	ER-M 10.5 1 40 36 47%	TEL 1.4 5 21 51 66%	PEL 4.8 1 35 41 53%	AET 11.0 0 40 37 48%	samples 77	ER-L 12.0 1 35 41 53%	ER-M 20.0 1 43 33 43%	TEL 3.2 5 26 46 60%	PEL 10.7 2 35 40 52%	AET 41.0 0 48 29 38%	samples 77	ER-L 3.5 1 35 41 53%	ER-M 5.2 1 43 33 43%	TEL 1.0 6 31 40 52%	PEL 2.9 2 33 42 55%	AET 7.9 0 48 29 38%	samples 77
			Embryo	Hatching					Embryo	Hatching					Embrye	o Hatching		
Number of Type 1 Errors Number of Type 2 Errors Number predicted correctly Overall Accuracy (%)	ER-L 13.5 3 13 61 79%	ER-M 46.0 2 16 59 77%	TEL 3.9 12 9 56 73%	PEL 15.4 3 14 60 78%	AET 86.6 0 20 57 74%	Total # of samples 77	ER-L 18.6 6 12 59 77%	ER-M 23.0 5 15 57 74%	TEL 5.0 15 10 52 68%	PEL 16.6 6 11 60 78%	AET 69.0 0 17 60 78%	Total # of samples 77	ER-L 4.2 9 12 56 73%	ER-M 7.0 5 15 57 74%	TEL 1.3 15 10 52 68%	PEL 5.4 5 15 57 74%	AET 15.1 0 18 59 77%	Total # of samples 77
			Ovary I	Maturation					Ovary N	<b>Maturation</b>					Ovary l	Maturation		
Number of Type 1 Errors Number of Type 2 Errors Number predicted correctly Overall Accuracy (%)	ER-L 13.0 4 16 57 74%	ER-M 46.0 2 18 57 74%	7EL 3.4 13 12 52 68%	PEL 17.3 4 17 56 73%	AET 86.6 0 22 55 71%	Total # of samples 77	ER-L 18.4 7 15 55 71%	ER-M 43.5 1 18 58 75%	TEL 4.8 16 13 48 62%	PEL 25.3 3 18 56 73%	AET 69.0 0 19 58 75%	Total # of samples 77	ER-L 3.9 10 14 53 69%	ER-M 7.0 5 17 55 71%	TEL 1.2 17 13 47 61%	PEL 5.7 5 17 55 71%	AET 15.1 0 20 57 74%	Total # of samples 77
			Survi	val Rate					Survi	val Rate					Survi	val Rate		
Number of Type 1 Errors Number of Type 2 Errors Number predicted correctly Overall Accuracy (%)	ER-L 16.4 3 26 48 62%	ER-M 46.0 2 28 47 61%	TEL 4.3 8 20 49 64%	PEL 14.8 3 26 48 62%	AET 86.6 0 32 45 58%	Total # of samples 77	ER-L 19.0 4 22 51 66%	ER-M 41.0 1 26 50 65%	TEL 5.8 14 20 43 56%	PEL 27.9 2 26 49 64%	AET 69.0 0 28 49 64%	Total # of samples 77	ER-L 4.3 7 22 48 62%	ER-M 7.5 2 26 49 64%	TEL 1.3 13 19 45 58%	PEL 5.7 4 25 48 62%	AET 15.1 0 29 48 62%	Total # of samples 77
			DNA Stra	ınd Damagı	e	T			DNA Stra	nd Damage	•	T			DNA Stra	and Damag	е	T
Number of Type 1 Errors Number of Type 2 Errors Number predicted correctly Overall Accuracy (%)	ER-L 10.8 3 12 49 77%	ER-M 22.0 2 15 47 73%	TEL 3.5 7 9 48 75%	PEL 8.5 4 11 49 77%	AET 86.6 1 20 43 67%	Total # of samples 64	ER-L 19.0 4 12 49 75%	ER-M 24.0 4 16 44 68%	TEL 6.2 12 12 40 62%	PEL 16.3 4 12 48 74%	AET 69.0 1 19 44 68%	Total # of samples 65	ER-L 4.3 11 19 35 54%	ER-M 7.3 5 20 39 60%	TEL 1.4 15 18 31 48%	PEL 4.7 9 19 36 55%	AET 15.1 1 21 42 65%	Total # of samples 65

# **Sediment Effect Concentrations Summary - Grass Shrimp**

	т	otal Poly	cyclic Ar	omatic H	ydrocarb	oons		c	OC-norm	alized PA	Hs				L	ead		
			Embryo [	Developmer	nt	T-1-1# - 5			Embryo D	evelopmen	nt	T-1-1# -f			Embryo [	evelopme	nt	T-1-1# - f
Number of Type 1 Errors Number of Type 2 Errors Number predicted correctly Overall Reliability (%)	ER-L 4.0 4 47 26 34%	ER-M 6.1 2 50 25 32%	TEL 1.6 4 41 32 42%	PEL 4.5 4 48 25 32%	AET 11.5 0 50 27 35%	Total # of samples 77	ER-L 1.3 2 48 27 35%	ER-M 2.5 1 50 26 34%	TEL 0.5 6 43 28 36%	PEL 1.4 2 48 27 35%	AET 4.3 0 52 25 32%	Total # of samples 77	ER-L 1190 0 52 25 32%	ER-M 1190 0 52 25 32%	TEL 139 3 52 22 29%	PEL 198 2 52 23 30%	AET 419 0 52 25 32%	Total # of samples 77
			Embryo	) Hatching					Embryo	Hatching					Embryo	Hatching		
Number of Type 1 Errors Number of Type 2 Errors Number predicted correctly Overall Accuracy (%)	ER-L 3.9 6 16 55 71%	ER-M 6.1 3 18 56 73%	TEL 1.6 10 14 53 69%	PEL 3.3 6 15 56 73%	AET 11.8 0 19 58 75%	Total # of samples 77	ER-L 1.0 5 16 56 73%	ER-M 1.6 3 18 56 73%	TEL 0.4 11 13 53 69%	PEL 0.9 5 15 57 74%	AET 4.3 0 19 58 75%	Total # of samples 77	ER-L 1190 0 19 58 75%	ER-M 1190 0 19 58 75%	TEL 174 2 19 56 73%	PEL 204 2 19 56 73%	AET 419 0 19 58 75%	Total # of samples 77
			Ovary I	Maturation		T			Ovary I	Maturation		T 0.111 6			Ovary I	Maturation		T
Number of Type 1 Errors Number of Type 2 Errors Number predicted correctly Overall Accuracy (%)	ER-L 6.1 5 21 51 66%	ER-M 6.1 5 21 51 66%	TEL 2.0 10 19 48 62%	PEL 4.6 8 21 48 62%	AET 52.8 0 22 55 71%	Total # of samples 77	ER-L 1.6 5 22 50 65%	ER-M 1.6 5 22 50 65%	TEL 0.6 11 20 46 60%	PEL 1.2 7 21 49 64%	AET 13.7 0 22 55 71%	Total # of samples 77	ER-L NA 0 0 77 100%	ER-M NA 0 0 77 100%	TEL NA 0 0 77 100%	PEL NA 0 0 77 100%	AET 1190 0 22 55 71%	Total # of samples 77
			Survi	val Rate					Survi	val Rate					Survi	val Rate		
Number of Type 1 Errors Number of Type 2 Errors Number predicted correctly Overall Accuracy (%)	ER-L 7.2 3 29 45 58%	ER-M 11.5 2 29 46 60%	TEL 2.1 7 25 45 58%	PEL 4.8 6 28 43 56%	AET 52.8 0 31 46 60%	Total # of samples 77	ER-L 1.7 3 29 45 58%	ER-M 2.2 3 29 45 58%	TEL 0.6 7 25 45 58%	PEL 1.1 5 28 44 57%	AET 13.7 0 31 46 60%	Total # of samples 77	ER-L NA 0 0 0 0	ER-M NA 0 0 0 0	TEL NA 0 0 0 0	PEL NA 0 0 0 0	AET 1190 0 31 46 60%	Total # of samples 77
			DNA Stra	and Damage	•				DNA Stra	nd Damage	•				DNA Stra	ınd Damag	e	
Number of Type 1 Errors Number of Type 2 Errors Number predicted correctly Overall Accuracy (%)	ER-L 6.6 4 21 40 62%	ER-M 8.8 3 21 41 63%	TEL 2.3 7 16 42 65%	PEL 3.9 6 18 41 63%	AET 52.8 1 22 42 65%	Total # of samples 65	ER-L 1.5 4 19 42 65%	ER-M 1.6 4 20 41 63%	7EL 0.6 9 15 41 63%	PEL 0.9 6 17 42 65%	AET 13.7 1 21 43 66%	Total # of samples 65	ER-L NA 0 0 65 0%	ER-M NA 0 0 65 0%	TEL NA 0 0 65 0%	PEL NA 0 0 65 0%	AET 1190 0 22 43 66%	Total # of samples 65

					Actual Effects	Effects ER-L	Effects ER-M	Effects TEL	Effects PEL	Effects AET		
Embryo					E	Effe	Effe	Effe	Effe	Effe		E
Development					tua	Pred.	Pred.	Pred.	Pred.	Pred.		H
Rate	b	Mercury										
73 74	b	0.0135 1.3	2x mean NOEC Median NOEC	2.6 0.56	0	-	-	-	-	-		
53	b	0.025	Wicdian NOLO	0.50	0	_	_	_	_	_		
77	b	0.038	ER-L	3.2	0	-	-	-	-	-		
45	b	0.62	ER-M	10.5	0	-	-	-	-	-		
50	b	0.044	15th Percentile E	3.3	0	-	-	-	-	-		
38	b	0.01	TEL OSIL Described	1.4	0	-	-	-	-	-		
34	b	2.5 0.026	85th Percentile NE PEL	2.2 4.8	0			T1				
38	b	0.82	AET	11	0	_	_	_	_	_		
49	b	0.51			0	-	-	-	-	-		
44	b	1.2		28	0	-	-	-	-	-		
33	b	11	Y Effects Data N	26	0	T1	T1	T1	T1	-		
56.3 52.3	b b	0.0952 0.243	Effects Data Set		0	-	-	-	-	-		
56.3	b	2.17	30.5		0		-	T1	-	-		
55	b	2.28	6.6		0	-	-	T1	-	-		
28	b	0.73	4.16		0	-	-	-	-	-		
29	b	0.3	3.1		0	-	-	-	-	-		
29 46.7	b	0.16 4.43	12.3 Y 11		0	- T1	-	- T1	-	-		
47.3	b	0.218	48		0	- ' '		- ''	-	-		
37.7	b	1.16	14		0	-	-	-	-	-		
29.3	b	1.1	62		0	-	-	-	-	-		
29		2.1	46		1	T2	T2		T2	T2		
36	$\blacksquare$	0.279 0.0787	2.8		1	T2 T2	T2 T2	T2 T2	T2 T2	T2 T2		
11		11.5			1	-	-	-	-	-		
11		30.5	Y 4.1		1	-	-	-	-	-		
48		6.6			1	-	T2	-	-	T2		
0		4.16	Y 22		1	-	T2	-	T2	T2		
0 45		3.1 12.3	Y 3.0 Y 3.3		1 1	T2 -	T2	-	T2 -	T2 -		
44	$\blacksquare$	0.052	18		1	- T2	- T2	- T2	- T2	- T2		
25		0.24	86.6		1	T2	T2	T2	T2	T2		
21		11	Y 80.4		1	-	-	-	-	-		
16		48	Y 5.68		1	-	-	-	-	-		
18 28		14 0.55	Y 4.31 3.32		1	- T2	- T2	- T2	- T2	- T2		
8	$\equiv$	62	Y 8.79		1	-	-	-	-	-		
0		46	Υ		1	-	-	-	-	-		
21		2.8	Υ		1	T2	T2	-	T2	T2		
28		10 80	Y		1	-	T2 -	-	-	T2		
32	$\blacksquare$	4.1	Y Y		1	-	- T2	-	- T2	- T2		
29		0.01			1	T2	T2	T2	T2	T2		
29		0.56			1	T2	T2	T2	T2	T2		
9		6.8			1	-	T2	-	-	T2		
15 9	$\vdash$	0.044	Y		1	- T2	- T2	- T2	- T2	- T2		
10		0.53			1	T2	T2	T2	T2	T2	I.	
11		0.2			1	T2	T2	T2	T2	T2		
17			Υ		1	T2	T2		T2	T2		
26		0.79 3.3	V		1	T2 -	T2 T2	T2 -	T2 T2	T2 T2		
25 3	$\vdash$	3.3 18			1	-	-	-	-	-		
21		0.68	•		1	T2	T2	T2	T2	T2		
30.7		0.0921			1	T2	T2	T2	T2	T2		
38.7		1.92			1	T2	T2	-	T2	T2		
22 28.3		1.05 0.572			1	T2 T2	T2 T2	T2 T2	T2 T2	T2 T2		
37	$\blacksquare$	86.6			1	-	-	-	-	_		
8.7		80.4			1	-	-	-	-	-		
27		2.11			1	T2	T2	-	T2	T2		
31.7		5.68			1	-	T2	-	- T0	T2		
31.7 18	$\blacksquare$	4.31 1.87	Y		1	- T2	T2 T2	-	T2 T2	T2 T2		
12	$\equiv$	0.245			1	T2	T2	T2	T2	T2		
34.7		1.99			1	T2	T2	-	T2	T2		
27.7		1.9			1	T2	T2	-	T2	T2		
28.3		0.0396			1	T2	T2	T2	T2	T2		
28.7 24.7		1.01 0.88			1	T2 T2	T2 T2	T2 T2	T2 T2	T2 T2		
24.7		0.686			1	T2	T2	T2	T2	T2		
3.7		0.76			1	T2	T2	T2	T2	T2		
34		3.32			1	-	T2	-	T2	T2		
22.3		8.79	Υ		1	-	T2	-	-	T2		
					53	2	1	5	1	0		
					77	30	40	21	35	40		

Embryo Hatching Rate 96 92 88	b b b	Mercury 0.0135 6.6 2.28		2x mean NOEC Median NOEC	10.5 1.0	O O O Actual Effects	· · · Pred. Effects ER-L	· · · Pred. Effects ER-M	. ☐ · Pred. Effects TEL	· · · Pred. Effects PEL	· · · Pred. Effects AET
89	b	1.3		ER-L	13.5	0	-	-	-	-	-
88 88	b	0.025 0.55		ER-M 15th Percentile E	46.0 14.8	0	-	-	-	-	-
90 87	b	0.038 2.8		TEL 85th Percentile NE	3.9 5.2	0	-	-	-	-	-
88	b	0.62		PEL	15.4	0	-	-	-	-	-
88 88	b	10 80	Υ	AET	87	0	- T1	- T1	T1 T1	- T1	-
93	b	4.1	•		14	0	-	-	T1	-	-
97 87	b	0.01 0.56		Effects Data N Effects Data Set	9	0	-	-	-	-	-
87	b	22	Υ	14		0	T1	-	T1	T1	-
93 85	b	0.01 2.5		11.5 30.5		0	-	-	-	-	-
92	b	0.79		48		0	-	-	-	-	-
87 85	b	0.73 0.51	-	62		0	-	-	-	-	-
88	b	1.2	L	18		0	-	-	-	-	-
92 87	b	0.3 0.16		86.6 80.4		0	-	-	-	-	-
86.7	b	0.0952		00.4		0	-	-	-	-	-
90 88.3	b	0.0921 4.31				0	-	-	- T1	-	-
90	b	0.243				0	-	-	-	-	-
90 86.7	b	1.99 1.9				0				-	-
86.7	b	4.43				0	-	-	T1	-	-
88.3 86.7	b	1.01 0.88				0	-	-	-	-	-
86.7	b	0.686				0	-	-	-	-	-
85 84	b	12.3 0.052	Υ			0	-	-	T1	-	-
84	b	0.032				0	-	-	-	-	-
82 83	b	0.044 2.1				0	-	-	-	-	-
82	b	0.82				0	-	-	-	-	-
83 82	b	3.3 11	Υ			0	-	-	- T1	-	-
80	b	1.1	'			0	-	-	-	-	-
80	b	1.92				0	-	-	- T4	-	-
76.7 81.7	b	5.68 0.0396				0	-	-	T1 -	-	-
83.3 81.7	b	0.218 2.17				0	-	-	-	-	-
81.7	b	3.32				0	-	-	-	-	-
81.7 76	b	8.79 0.279				0	-	-	T1 -	-	-
73	b	0.279				0	-	-	-	-	_
85	b	1.05				0	-	-	-	-	-
85 83.3	b b	0.572 86.6	Υ			0	- T1	- T1	- T1	- T1	-
85	b	2.11				0	-	-	-	-	-
85 85	b	1.87 1.16				0	-	-	-	-	-
77		14	Υ			1 1	- T0	T2	- T0	T2	T2
39 0		0.0787 11.5	Υ			1	T2 T2	T2 T2	T2 -	T2 T2	T2 T2
0		30.5	Υ			1	- T2	T2 T2	-	- T2	T2 T2
0 0		4.16 3.1				1	T2	T2	T2	T2	T2
61		11 48				1	T2	T2	-	T2	T2 T2
50 65		62				1	-	-	-	-	T2
0		46	Υ			1	- T2	- T2	-	- T2	T2
35 67		6.8 0.044				1	T2 T2	T2 T2	- T2	T2 T2	T2 T2
63 65		0.53				1	T2	T2	T2	T2	T2
65 70		0.2 3				1	T2 T2	T2 T2	T2 T2	T2 T2	T2 T2
45 72		18 0.68	Υ			1	- T2	T2 T2	- T2	- T2	T2 T2
46.7		80.4	Υ			1	-	-	-	-	T2
23.3 8.3		0.245 0.76				1	T2 T2	T2 T2	T2 T2	T2 T2	T2 T2
0.0		0.70									
						20 77	3 13	2 16	12 9	3 14	0 20

					O Actual Effects	Pred. Effects ER-L	Effects ER-M	Effects TEL	Pred. Effects PEL	Pred. Effects AET
DNA Strand Damage	b	Mercury			Actua	Pred.	Pred.	Pred.	Pred.	Pred.
2.1	b	1.3	2x mean NOEC	7.3	0	T1	T1	T1	T1	T1
2.3	b	0.24	Median NOEC	1.0	0	-	-	-	-	-
2.2	b	0.03			0	-	-	-	-	-
2.3	b	0.6	ER-L	10.8	0	-	-	-	-	-
2.1	b b	0.04 0.0	ER-M 15th Percentile E	22.0 11.6	0					-
1.9	b	2.5	TEL	3.5	0		-	-		
2.2	b	2.1	85th Percentile NE	3.3	0	-	_	-	_	-
2.2	b	0.8	PEL	8.5	0	-	-	-	-	-
2.3	b	3.0	AET	86.6	0	-	-	-	-	-
1.9	b	0.8			0	-	-	-	-	-
2.3	b	3.3		12	0	-	-	-	-	-
2.3	b	0.73	Effects Data N	9	0	-	-	-	-	-
2.3	b	0.51	Effects Data Set		0	-	-	-	-	-
2.1	b	1.2	11.0		0	-	-	-	-	-
2.0	b b	0.3	48.0		0	-				-
1.8	b	0.16 0.10	14.0 62.0		0		-		-	-
1.0	b	1.92	10.0		0		-	-		
1.9	b	1.05	80.0		0	-	-	-	-	-
1.6	b		Y 22.0		0	T1	T1	T1	T1	-
2.1	b	2.11	18.0		0	-	-	-	-	-
2.0	b	5.68	80.4		0	-	-	T1	-	-
1.9	b	4.31			0	-	-	T1	-	-
1.7	b	0.24			0	-	-	-	-	-
2.0	b	1.87			0	-	-	-	-	-
2.0	b	1.99			0	-	-	-	-	-
1.7 2.1	b b	1.9 0.0396			0	-	-	-	-	-
1.8	b	4.43			0	-	-	- T1	-	-
1.7	b	0.22			0	-	_	- '-'	_	_
1.9	b	0.88			0	-	-	-	-	
1.9	b	2.17			0	-	-	-	-	-
1.9	b	0.76			0	-	-	-	-	-
2.1	b	1.16			0	-	-	-	-	-
1.7	b	3.32	.,		0	-	-			-
1.9 2.4	b b		Y		0	- T1	-	T1 T1	T1 T1	-
2.4	b	11.00 0.09	ī		0	- ' '		'''	'''	
2.2	b	1.10			0	-	_	_	_	_
2.1	b	0.57			0	-	-	-	-	-
2.1	b	1.01			0	-	-	-	-	-
2.2	b	0.69			0	-	-	-	-	-
2.5	b	0.026			0	-	<u>-</u> .	-	-	
4.3			Y		1	-	T2	-	-	T2
3.6 3.9		48 1 14	Y		1	-	- T2		-	T2 T2
3.8		62			1	-	-	-	-	T2
1.9		2.8	•		1	T2	T2	T2	T2	T2
1.7		0.62			1	T2	T2	T2	T2	T2
2.7		10	Υ		1	T2	T2	-	-	T2
2.2		80	Υ		1	-	-	-	-	T2
1.9		4.1			1	T2	T2	-	T2	T2
1.7		0.01			1	T2	T2	T2	T2	T2
1.8		0.56			1	T2	T2	T2	T2	T2
3.6 2.2		6.8 22.0	V		1	T2 -	T2 -	-	T2 -	T2 T2
2.4		0.044	•		1	- T2	- T2	- T2	- T2	T2
2.6		0.044			1	T2	T2	T2	T2	T2
3.0		0.5			1	T2	T2	T2	T2	T2
2.8		0.2			1	T2	T2	T2	T2	T2
3.5		18.0	Υ		1	-	T2	-	-	T2
2.7		0.68			1	T2	T2	T2	T2	T2
3.67		80.40	Υ		1	- T0	- T0	- T0	- T0	T2
4.43		0.25			1	T2	T2	T2	T2	T2
					20	3	2	7	4	1
					64	12	15	9	11	20

Embryo Development Rate	b	Aroclor 1268				○ Actual Effects
73	b	0.02	2x mean N		7.3	0
74	b	2.8	Median N	OEC	0.71	0
53	b	0.19				0
77	b	0.03		ER-L	12.0	0
45	b	0.7		ER-M	20.0	0
50	b	0.10	15th Perce		14.1	0
38	b b	0.06 2.1	OFth Daves	TEL	3.2	0
34 39	b	0.03	85th Percen	PEL	5.7 10.7	0
38	b	12 Y		AET	41	0
49	b	0.67		ALI	71	0
44	b	2.8			22	0
33	b	41 Y	Effects I	Data N	19	0
56.3	b	0.01	Effects Da	ta Set		0
52.3	b	0.01		12		0
56.3	b	2.3		23		0
37.7	b	7.0		15		0
55	b	1.4		17		0
28	b	0.72		19		0
29	b	0.96		19		0
29 46.7	b b	0.18 8.2 Y		430 64		0
47.3	b	0.21		92		0
29.3	b	4.2		24		0
29		12 Y		19		1
44		0.60		24		1
36		0.02		10		1
11		3.7		20		1
11		23 Y		69		1
48		15 Y		82		1
0		17 Y		16		1
0 45		0.33 0.63		36		1
45		0.03		12		1
25		1.9				1
21		19 Y				1
16		19 Y				1
18		430 Y				1
28		1.2				1
8		64 Y				1
0 21		92 Y 0.79				1
28		24 Y				1
32		19 Y				1
30		3.7				1
29		0.10				1
29		0.87				1
9		2.2				1
15		24 Y				1
9 10		0.03 0.97				1
10		0.97				1
17		0.26 10 Y				1
26		1.3				1
25		3.6				1
3		20 Y				1
21		0.88				1
30.7		0.02				1
38.7		3.7				1
22		2.2				1
28.3		3.6				1
37		69 Y				1
8.7 27		82 Y 6.8				1
31.7		16 Y				1
31.7		36 Y				1
18		3.9				1
12		0.61				1
34.7		0.56				1
27.7		0.04				1
28.3		0.39				1
28.7		0.94				1
24.7 29		0.82 1.3				1
3.7		0.52				1
						1
34		12 Y				

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T	T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T			· · · · · · · · · · · · · · · · Pred. Effects AET
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1		T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T	2 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T	T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	T2	T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T	T2 - T2 T2 - T2 - T2 - T2 - T2 - T2 T2	T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T	T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T	T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T	- - - - T2 T2 T2 T2 T2 T2 T2 T2 T2	T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T	T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T
53	1	1 43	5	2	0

Embryo Hatching Rate	b	Aroclor 1268		
96	b	0.02		2x mean NOEC
92	b	15	Υ	Median NOEC
88 89	b	1.4 2.8		ER-L
88	b	0.19		ER-M
88	b	1.2		15th Percentile E
90 87	b	0.03 0.79		TEL
88	b	0.79		85th Percentile NE PEL
88	b	24	Υ	AET
88	b	-	Υ	
93 97	b	3.7 0.10		Effects Data N
87	b	0.10		Effects Data Set
87	b	24	Υ	23
93	b	0.06 2.1		17
85 92	b	1.3		19 19
87	b	0.72		430
85	b	0.67		64
88 92	b	2.8 0.96		92 20
87	b	0.30		82
86.7	b	0.01		
90	b	0.02	V	
88.3 90	b	0.01	1	
90	b	0.56		
86.7	b	0.04		
86.7 88.3	b	8.2 0.94		
86.7	b	0.82		
86.7	b	1.3		
76 85	b	0.6 0.63		
84	b	0.03		
84	b	1.9		
82 73	b	0.10		
83	b	0.03		
82	b	12		
83	b	3.6		
82 80	b	41	Υ	
80	b	3.7		
85	b	2.2		
85 83.3	b	3.6 69	<b>v</b>	
85	b	6.8	'	
76.7	b	16	Υ	
85	b	3.9		
81.7 83.3	b	0.39 0.21		
81.7	b	2.3		
85	b	7.0		
81.7 81.7	b	12 5.8		
39		0.02		
0		3.7	.,	
0 0		23 17		
0		0.33	1	
61		19		
50		19		
77 65		430 64		
0		92		
35		2.2		
67 63		0.03		
63 65		0.97 0.26		
70		10		
45		20	Υ	
72 46.7		0.88 82	Υ	
23.3		0.61		
8.3		0.52		

	○ ○ Actual Effects	Pred. Effects ER-L	Pred. Effects ER-M	· · · · ☐ · Pred. Effects TEL	Pred. Effects PEL	· · · · · Pred. Effects AET
12.6 1.3	0	-	- - -	- T1	-	-
18.6	0	- -	- -	-	-	-
23.0 19.0	0	- -	- -	-	-	-
5.0 12.0	0	-	-	-	-	-
16.6 69	0	- - - T1	- T1	- - T1	- - T1	-
17	0	T1		T1	T1	-
9	0	T1 - - - T1	- - - - T1	- - - T1	- - - T1	-
	0	- T1				-
	0	- - - -	- - - -	-	-	-
	0	- -	-	-	-	-
	0	-	-	-	-	-
	0	-	-	-	-	-
	0	-	- - T1	-	-	-
	0	- - T1 -	T1	- - T1	- - T1	-
	0	- -	-	- - - T1	-	-
	0	-	-	- T1	-	-
	0	-	-	-	-	-
	0	-	-	-	-	-
	0	-	-	-	-	-
	0	-	-	-	-	-
	0	-	-	-	-	-
	0	- -	-	T1 T1	-	-
	0	- T1	- T1	- T1	- T1	-
	0	-	-	-	-	-
	0	- -	-	-	-	-
	0	T1	T1	T1	T1	-
	0	-	-	T1 T1	-	-
	0	- -	-	- - -	-	-
	0	- -	- -	_	-	
	0	-	-	T1 T1	-	-
	0	- T2	- T2	T1 T2	- T2	- T2
	1	T2	T2	T2	T2	T2
	1	- T2	- T2	-	-	T2 T2
	1 1	T2 -	T2 T2	T2 -	T2 -	T2 T2
	1	- - -	T2 -	- - -	- - -	T2 -
	1 1	- -	- - -	- -	- -	T2 -
	1	T2 T2	T2 T2	T2 T2	T2 T2	T2 T2
	1 1	T2	T2	T2	T2	T2
	1	T2 T2	T2 T2	T2 - -	T2 T2	T2 T2
	1	- T2	T2 T2	T2	- T2	T2 T2
	1	- T2	- T2	- T2	- T2	- T2
	20	T2 6	T2 5	T2 15	T2 6	T2 0
	77	12	15	10	11	17

	Ovary Maturation Rate  76 73 93 85 78 78 78 78 83 78 80 78 78 77 72 76 76 70 78 75 77 72 83.3 83.7 61 57 60 64 52 73 73 73 73 72 73 61 59 58 75.7 77.3 79 75.7 79.7 68 72.3 68 70.7 76.3 75.3 70.3 68.7 77.4 71 66.7 69.3 68 70.7 74 71 66.7 69.3 68 70.7 74 71 66.7 69.3 68 70.7 74 71 66.7 69.3 68 70.7 74 71 66.7 69.3 68 70.7 74 71 66.7 69.3 68 70.7 74 71 66.7 69.3 68 70.7 74 71 66.7 69.3 68 70.7 74 71 66.7 69.3 68 70.7 74 71 66.7 69.3 68 70.7 74 71 66.7 69.3 68 70.7 74 71 66.7 69.3 68 70.7 74 71 66.7 69.3 68 70.7 74 71 66.7 69.3 68 70.7 74 71 66.7 69.3 68 70.7 74 71 66.7 69.3 68 70.7 74 71 66.7 69.3 68 70.7 74 71 66.7 69.3 68 70.7 74 71 66.7 69.3 68 70.7 74 71 66.7 69.3 68 70.7 74 71 66.7 69.3 68 77.3 66.7 77 74 71 66.7 69.3 68 70.7 77 70.3 68 70.3 68.7 77 70.3 68.7 77 71 68 70.3 68.7 77 71 71 66.7 69.3 68 70.7 70 70 70 70 70 70 70 70 70 70 70 70 70
	Aroclor b 1268 b 0.02 b 0.03 b 0.03 b 0.06 b 0.03 b 0.06 b 0.03 b 0.06 b 0.03 b 0.06 b 0.03 b 0.07 b 10 b 0.03 b 0.08 b 0.08 b 0.18 b 10 b 0.01 b 0.60 b 15 b 0.33 b 0.63 b 0.63 b 0.04 b 0.19 b 0.79 b 0.10 b 0.67 b 0.37 b 0.10 b 0.67 c 0.88 c 0.88 c 0.88 c 0.88 c 0.88 c 0.88 c 0.88 c 0.88 c 0.88 c 0.88 c 0.88 c 0.88 c 0.88 c 0.88 c 0.89 c 0.18 c 0.18 c 0.18 c 0.18 c 0.18 c 0.18 c 0.18 c 0.19 c 0.10 c 0.67 c 0.80 c 0.10 c 0.67 c 0.80 c 0.10 c 0.67 c 0.80 c 0.10 c 0.67 c 0.80 c 0.10 c 0.67 c 0.80 c 0.10 c 0.67 c 0.80 c 0.10 c 0.67 c 0.80 c 0.10 c 0.67 c 0.80 c 0.10 c 0.67 c 0.80 c 0.10 c 0.67 c 0.80 c 0.10 c 0.67 c 0.80 c 0.10 c 0.67 c 0.80 c 0.10 c 0.67 c 0.80 c 0.10 c 0.67 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80 c 0.80
	2x mean NOEC Median NOEC  ER-L ER-M 15th Percentile E TEL 85th Percentile NE PEL AET  Effects Data N Effects Data Set 23 17 19 19 430 64 92 82
	13.3 1.2 18.4 43.5 19.0 4.8 14.7 25.3 69 17 8
22 7 77 15	
	T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T
6 3 3 18	11
0 19	T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T
	Survival Rate  92  93  89  88  87  87  85  85  87  83  83  83  87  76.7  83.3  76.7  81.7  83.3  81.7  83.3  80  76.7  81.7  83.3  78.3  80  76.7  81.7  71.7  71.7  71.7  71.7  71.7  71.7  71.7  71.7  71.7  71.7  71.7  71.7  71.7  71.7  71.7  71.7  71.7  71.7  71.7  71.7  71.7  71.7  71.7  71.7  71.7  71.7  71.7  71.7  71.7  71.7  71.7  71.7  71.7  71.7  71.7  71.7  71.7  71.7  71.7  71.7  71.7  71.7  71.7  71.7  71.7  71.7  71.7  71.7  71.7  71.7  71.7  71.7  71.7  71.7  71.7  71.7  71.7  71.7  71.7  71.7  71.7  71.7  71.7  71.7  71.7  71.7  71.7  71.7  71.7  72.3  73.3  73.3  74.9  65  60  67  67  62  40  57  65  67  67  62  40  57  65  67  67  62  40  57  65  67  67  67  62  60  60  60  60  60  60  60  60  60
	Aroclor b 1268 b 0.022 b 15.000 c 17.000 c 0.045 c 0.025 c 0.0025 c 0.0100 c 0.060 c 0.0102 c 0.015 c 0.060 c 0.012 c 0.015 c 0.0013 c 0.060 c 0.013 c 0.013 c 0.060 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0.010 c 0
	2x mean NOEC Median NOEC  ER-L ER-M 15th Percentile E REL 85th Percentile NE PEL AET  Effects Data N Effects Data Set 23 19 19 430 64 92 20 41 82
	13.4 1.8 19.0 41.0 19.2 5.8 19.0 27.9 69.0 17 9
	T T T T T T T T T T T T T T T T T T T
4 1 2 26	Total Till Till Till Till Till Till Till Ti
14 2 20 26	T1
0 28	

DNA Strand Damage  2.1 2.3 2.2 2.3 2.1 2.0 1.9 2.2 2.2 2.3 1.9 2.3 2.3 2.1 2.0 2.2 2.3 2.3 2.1 2.0 2.2 1.8 1.9 1.9 1.63 2.07 2.0 1.87 1.70 2.0 1.97 1.7 2.07 1.8 1.67 1.9 1.87 1.9 2.07 1.8 2.07 2.0 1.87 1.77 2.07 1.8 1.67 1.9 2.07 1.7 2.07 1.8 1.67 1.9 2.07 1.7 2.07 1.8 1.67 1.9 2.07 1.7 2.07 1.8 1.67 1.9 2.07 1.7 2.07 1.8 1.67 1.9 2.07 1.7 1.87 2.4 2.23 2.2 2.1 2.13 2.23 2.5 4.3 3.6 3.9 3.8 1.9 1.7 2.7 2.2 2.1 2.13 2.23 2.2 2.1 2.13 2.23 2.2	b b b b b b b b b b b b b b b b b b b	6.8 16	Y Y Y Y Y Y Y	12.7 2.0 19.0 24.0 19.0 6.2 11.1 16.3 69.0 13 9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	T1	T1 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2	T1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	T1 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2	T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T
					21 65	4 12	4 16	12 12	4 12	1 19

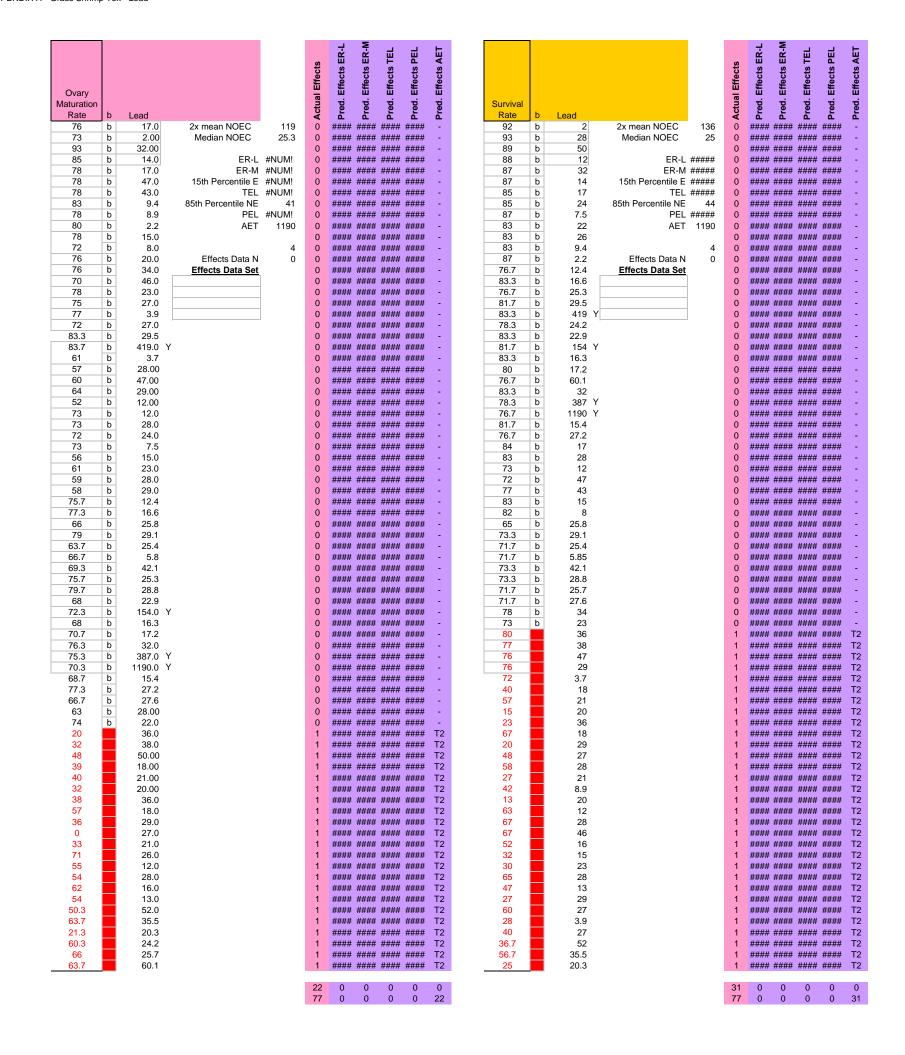
73 74 53 77 45 50 38 34 39 38 49 44 33 56.3 52.3	Aroclor 1268 b OC normIzd b 0.051 b 0.0551 b 0.050 b 0.010 b 0.233 b 0.077 b 0.353 b 1.235 b 0.018 b 0.018 b 0.0667 b 0.6667 b 7.885 b 0.004 b 0.003 b 0.392	2x mean NOEC Median NOEC  ER-L ER-M 15th Percentile E TEL 85th Percentile NE PEL AET  Effects Data N Effects Data Set 3.00 4.68	0.23 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (	Pred. Effects ER-L			 · · · · · · · · · · · · · Pred. Effects AET	Embryo Hatching Rate  96  92  88  89  88  89  87  88  88  90  87  88  88  88  93  97  87  87  93	Aroclor 1268 b OC normlzd b 0.013 b 4.688 b 0.415 b 0.651 b 0.056 b 0.240 b 0.026 b 0.233 b 7.500 b 5.135 b 1.194 b 0.091 b 0.272 b 7.273 b 0.353	2x mean NOEC Y Median NOEC ER-L ER-M 15th Percentile E TEL 85th Percentile NE PEL Y AET Y  Effects Data N Effects Data Set Y 4.684	3.29 0.37 4.2 7.0 4.3 1.3 4.2 5.4 15.1	o o o o o o o o o o o o o o o o o o o	11 11 11 11 11 11 11 11 11 11 11 11 11	T1	Pred. Effects PEL	· · · · · · · · · · · · · Pred. Effects AET
29 46.7 47.3 37.7	b 0.223 b 0.021 b 2.005 b 0.077 b 2.500 y 1.129 3.000 0.245 0.009 0.923 4.684 4.177 0.095 0.102 0.019 0.432 4.318 7.037 78.182 0.240 12.308 24.211 0.226 7.500 7.500 7.500 7.500 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.750 7.7	4.32 7.04 78.18 12.31 24.21 7.50 5.135 7.273 3.030 4.26 5.24 15.07 14.44 4.65 7.14 3.54	5	0	T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T	6	 	87 85 88 92 87 86.7 90 88.3 90 90 86.7 86.7 86.7 76 86.7 76 85 84 84 84 82 73 83 82 82 80 80 80 80 81 85 85 85 81.7 81.7 81.7 81.7 81.7 81.7 81.7 81.7	b 0.153 b 0.146 b 0.667 b 0.0223 b 0.0221 b 0.025 b 0.025 b 0.025 b 0.0364 b 0.036 b 0.130 b 0.130 b 0.130 b 0.130 b 0.130 b 0.146 b 0.037 b 0.364 b 0.170 b 0.374 b 0.045 b 0.170 b 0.374 b 0.045 b 0.170 b 0.374 b 0.048 b 0.170 b 0.374 b 0.048 b 0.170 b 0.374 b 0.048 b 0.170 b 0.048 b 0.077 b 0.048 b 0.076 b 0.050 b 0.050 b 0.050 b 0.050 b 0.050 b 0.050 b 0.050 b 0.050 b 0.050 b 0.050 b 0.050 b 0.050 b 0.050 b 0.050 b 0.050 b 0.050 b 0.050 b 0.050 b 0.050 b 0.077 b 0.095 b 0.092 c 0.092 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0.093 c 0	12.308 24.211 4.255 14.437		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T	T2	T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T	

Ovary Maturation Rate 76 73 93 85 78 78 78 83 78 80 78 80 78 72 76 76 76 76 70 78 75 77 72 83.3 83.7 61 57 63 64 52 73 74 56 61 59 58 75,7 66.7 69.3 75,7 66.7 69.3 75,7 66.7 69.3 75,7 66.7 69.3 75,7 66.7 69.3 75,7 66.7 69.3 75,7 66.7 69.3 75,7 66.7 69.3 75,7 66.7 69.3 75,7 66.7 71 77,3 79,7 60 79 20 32 48 39 40 32 38 36 0 33 555 54 662 54 666 63,7 50,3 68,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 66,7 77,3 67,9 77,3 67,9 77,9 77,9 77,9 77,9 77,9 77,9 77,9	Aroclor 1268 b OC normlzd b 0.009 b 0.013 b 0.651 b 0.010 c 0.233 c 0.5135 c 0.651 c 0.0077 c 0.651 c 0.0077 c 0.651 c 0.0064 c 0.064 c 0.055 c 0.018 c 0.0277 c 0.018 c 0.0277 c 0.018 c 0.0277 c 0.018 c 0.0277 c 0.0205 c 0.0205 c 0.030 c 0.030 c 0.045 c 0.019 c 0.026 c 0.019 c 0.026 c 0.019 c 0.026 c 0.036 c 0.036 c 0.040 c 0.040 c 0.056 c 0.040 c 0.056 c 0.040 c 0.056 c 0.040 c 0.056 c 0.040 c 0.056 c 0.040 c 0.056 c 0.040 c 0.056 c 0.040 c 0.056 c 0.040 c 0.056 c 0.040 c 0.056 c 0.040 c 0.056 c 0.056 c 0.056 c 0.056 c 0.056 c 0.056 c 0.056 c 0.056 c 0.056 c 0.056 c 0.056 c 0.056 c 0.056 c 0.057 c 0.004 c 0.056 c 0.057 c 0.004 c 0.004 c 0.007 c 0.004 c 0.007 c 0.005 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c 0.007 c	7.0	Survival Rate  92     b     0.013     93     b     4.688     89     b     4.177     88     b     0.019     87     b     0.651     87     b     0.651     87     b     0.091     83     b     0.272     83     b     0.273     83     b     0.272     83     b     0.077     87     b     0.353     76.7     b     83.3     b     0.005     76.7     b     81.7     b     83.3     b     0.103     83.3     b     0.003     78.3     b     0.103     83.3     b     0.003     78.3     b     0.103     83.3     b     0.006     81.7     b     83.3     b     0.077     83.3     b     0.003     78.3     b     0.103     83.3     b     0.006     81.7     b     0.353     81.7     b     0.004     83.3     b     0.003     78.3     b     0.004     83.3     b     0.000     83.3     b     0.000     83.3     b     0.040     80     b     0.077     76.7     b     0.170     83.3     b     0.364     80     b     0.077     76.7     b     0.135     81.7     b     0.245     84     b     0.009     83     b     0.415     77     b     1.194     83     b     0.245     84     b     0.018     73.3     b     0.766     73.3     b     0.766     73.3     b     0.766     73.3     b     0.056     65     b     1.129     80     0.0925     71.7     b     0.452     71.7     c     0.012     0.754     4.684     76     0.095     76     0.102     40     0.432     0.766     0.102     40     0.432     0.766     0.102     40     0.432     0.064     13     0.0766     0.102     40     0.432     0.064     13     0.0767     0.0923     78.182     0.240     0.0923     77     4.684     0.0093     78.85     0.183	Y Median NOEC Y Median NOEC Y ER-L RER-M T.5 15th Percentile E 4.4 TEL 1.3 Y 85th Percentile NE 4.3 PEL 5.7 AET 15.1 Y Effects Data N Effects Data Set 4.684 4.318 Y 7.037 78.182 12.308 24.211 5.135 4.255 7.885 14.437  Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-----	---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	--

DNA Strand Damage 2.1 2.3 2.2 2.3 2.1 2.0 1.9 2.2 2.3 1.9 2.3 2.3 2.3 2.3 2.3 2.1 2.0 2.2 1.8 1.9 1.63 2.07 1.7 2.07 1.87 1.97 1.7 2.07 1.87 1.99 1.87 1.99 1.87 1.99 1.87 1.99 1.87 1.99 1.87 1.99 1.87 1.99 1.87 1.99 1.87 1.99 1.87 1.99 1.87 1.99 1.87 1.91 1.87 1.92 1.87 1.92 1.87 1.93 1.87 1.93 1.87 1.93 1.87 1.94 1.95 1.95 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97	b   b   b   b   b   b   b   b   b   b	Aroclor 1268 OC normlzd  0.65 0.4318 0.06 0.2 0.01 0.353 1.24 3.00 3.030 0.302 0.77 0.15 0.146 0.667 0.2233 0.021 0.00 0.9250 0.45 15.07 1.518 4.6512 7.14 0.0030 0.687 0.103 0.012 0.0601 2.0049 0.077 0.170 0.39 0.14 2.500 3.540 0.754	Y	3.16 0.412 4.3 7.3 4.5 1.4 3.0 4.7 15.1 15 9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		LT LT	LILLILLILLILLILLILLILLILLILLILLILLILLIL		L1
2.23 2.2 2.13 2.23 2.4 2.1	b b b b	0.005 1.129 0.3643 0.374 7.885 5.24			0 0 0 0 0	- T1 T1 - -	T1	- T1 T1 - -	T1 T1 -	-
2.1 4.3 3.6 3.9 3.8 1.9 1.7 2.7 2.2 1.9 1.7 1.8 3.6 2.2 2.4 2.6 3.0 2.8 3.5 2.7 3.67 4.43		4.32 7.037 78.182 12.3 0.226 0.23 7.5000 5.1 1.2 0.09 0.27 0.73 7.3 0.077 0.064 4.255 0.20 14.437 0.183	Y Y Y Y Y		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	T2 - T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2	T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T	T2 - T2 T2 T2 T2 T2 - T2 - T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T	T2 - T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T	T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T

Embryo   Development   Rate   b   PAHs   PAHs   Development   Rate   b   PAHs   Development   Development   PAHs   Development   Development   PAHs   Development   Deve
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Ovary Maturation Rate         b           76         b           73         b           93         b           85         b           78         b           76         b           76         b           76         b           70         b           78         b           70         b           78         b           76         b           76         b           76         b           76         b           77         b           78         b           79         b           60         b           64         b           73         b           72         b           83.3         b           72         b           83.3         b           73         b           64         b	Total PAHs  0.0857	6.1 0	Survival Rate   Depth   PAHs   11.5	
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	--------------------	-------	------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	------


7 0 0 0	1 b 0.0603 2x mean NOEC 5.11 0 T1 T1 T1 T1		3 b 0.0870 ER-L 6.6 0								3 b 0.7880 <u>Effects Data Set</u> 0											7 b 0.4915 0																								6 0.22 1 T2 T2 T2 T2						5 3.55 1 T2 T2 T2 T2		7 1.044 1 T2 T2 - T2
red. Effects TEL		-	-	-		T1		T1			-	- 1				-	-	-	-		-	-	-	-		_					T2				-	-										T2						14		-
red. Effects ER-M	T1		-			-	-	-		-	-	-	-	-		-	-	-	-	- [	-	-				_	-				T2				-	-										T2					T2			T2
red. Effects ER-L	T1		-	-	-	T1	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	_	-				T2				-	-										T2					T2			T2
ctual Effects											0						0					0																								1								1
		0.791	6.6					52.8	5																																													
		Median NOEC						AET		Effects Data N	Effects Data Set		6.1															Y				Υ											V	'										Y
	PAHs 0.0603										0.7880						1.484					0.4915														0.4895										0.22						3.50		1.044
	b		b	_		_					b	-	_	_	_	-	b						_	_	_		_				b		_	_	_	b																		
NA Strand	Damage 2.1	2.3	2.3	2.1	2.0 1.9	2.2	2.2	2.3	1.9 2.3	2.3	2.3	2.1	2.0	2.2 1.8	1.0	1.9	1.63	2.07	2.0 1.87	1.7	2.0	1.97	1.7	2.07 1.8	1.67	1.9	1.87	1.9	2.07 1.7	1.87	2.5	2.4	2.23	2.20 2.1	2.13	2.23	4.3	3.6 3.9	3.8	1.9	1.7	2.7	2.2 1.9	1.7	1.8	3.6	2.2	2.4	2.6 3.0	2.8		3.5	3.5 2.7	

Embryo   Development   Rate   b   PAHs - OC   PAHs -
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Ovary Maturation Rate 61 76 63 73 57 63 60 60 64 52 93 85 60 64 52 93 85 73 85 73 85 73 85 74 85 78 80 78 80 78 80 78 80 78 80 78 80 78 80 78 80 78 80 78 80 78 80 78 80 78 80 78 80 78 80 78 80 78 80 78 80 78 80 78 80 78 80 78 80 78 80 78 80 78 80 78 80 78 80 78 80 78 80 78 80 78 80 78 80 78 80 78 80 78 80 78 80 80 80 80 80 80 80 80 80 80 80 80 80	0.043	1.52 0.227 1.6 1.6 0.6 0.9 1.2 13.7 7 1		Pred. Effects ER-M	T1	Survival Rate 84 92 93 83 83 89 88 88 87 73 87 85 85 85 72 77 87 87 83 83 83 83 87 83 83 87 73 76.7 81.7 71.7 71.7 73.3 76.7 81.7 73.3 83.3 83 81.7 83.3 83 81.7 83.3 85 85 72 78 73 76.7 81.7 71.7 71.7 71.7 71.7 71.7 71.7 71	Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description	### 1.616	1.47 0.211 1.7 2.2 1.8 0.6 0.6 1.1 13.7 7 3	T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	T1	T1 T1 T1 . T1	T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T
72.3 b 68 b 70.7 b 76.3 b 75.3 b 70.3 b 68.7 b	0.087 0.334 0.452 0.162 0.141 0.870 13.714 Y 0.200 0.411		0 - 0 - 0 - 0 - 0 - 0 - 0 T1 0 - 0 -		T1	71.7 72 80 77 76 76 76 40 57 15 23 67 20 48 58 27 42 13 63 67 67 52 32 30 65 47 27 60 28 40 36.7 56.7 25	b 0.079 0.043 0.067 0.047 3.379 Y 0.091 0.032 0.252			1 T2 1 T2 1 T2 1 T2 1 T2 1 T2 1 T2 1 T2	T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T	T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T	T2 T2 T2 T2 - T2 T2 T2 T2 T2 T2 T2 T2 T2

DNA Strand Damage 2.1 2.3 2.2 2.3 2.1 2.0 1.9 2.5 2.2 2.3 1.9 2.3 2.3 2.1 2.0 2.2 2.4 1.8 2.23 2.2 1.9 1.9 2.1 1.63 2.07 2 1.87 1.7 2.07 1.8 2.13 1.67 1.9 2.23 1.87 1.9 2.10 1.87 1.7 2.07 1.8 2.13 1.67 1.9 2.13 1.67 1.9 2.13 1.87 1.9 2.10 1.9 2.11 1.87 1.9 2.13 1.87 1.9 2.13 1.87 1.9 2.13 1.87 1.9 2.13 1.87 1.9 2.13 1.87 1.9 2.13 1.87 1.9 2.13 1.87 1.9 2.13 1.87 1.9 2.13 1.87 1.9 2.13 1.87 1.9 2.13 1.87 1.9 2.13 1.87 1.9 2.13 1.87 1.9 2.13 1.87 1.9 2.13 1.87 1.9 2.13 1.87 1.9 2.13 1.87 1.9 2.13 1.87 1.9 2.13 1.87 1.9	b   b   b   b   b   b   b   b   b   b	PAHs - OC  0.014 0.032 0.018 0.017 0.023 0.529 4.288 0.260 0.588 1.236 0.510 0.111 0.384 0.145 0.074 2.213 0.047 0.039 0.287 0.297 0.170 0.399 0.324 0.227 0.255 0.257 0.150 0.140 0.090 0.448 0.087 0.334 0.452 0.162 0.203 0.141 0.870 13.714 0.870 13.714 0.870 13.714 0.200 0.411 0.079 0.252 1.616 0.082 0.204 0.127	Y	1.40 0.215 1.5 1.6 0.6 0.5 0.9 13.7 6 3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	T 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	T1 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2	T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T	T1	T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T
1.9 2.07 1.7 1.87 4.3 3.6 3.9	b b b	13.714 0.200 0.411 0.079 0.252 1.616 0.082	Y		0 0 0 0 1 1	- T1 T2 T2 T2	T1 T2 T2 T2	T1 T1 T2 T2 T2	T1 T2 T2 T2	- T2 T2 T2

Embryo Development Rate 73 74 53 77 45 53 77 45 50 38 34 39 38 49 44 56.3 55.3 56.3 55.3 56.3 55.2 28 29 29 29 46.7 47.3 33 37.7 29.3 29 44 36 11 11 48 0 0 0 45 44 25 21 16 18 28 8 0 0 21 28 32 30 29 29 9 15 9 15 9 10 11 17 26 25 3 31 31.7 31.7 31.7 31.7 31.7 31.7 31.7	b Lead b 2.0	16.2 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	0	Proof of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the contro	96 92 88 89 98 88 89 88 88 90 87 87 87 87 87 87 87 87 93 85 88 92 87 86.7 90 88.3 90 90 86.7 86.7 86.7 76 85 84 84 84 82 83 82 83 82 83 82 83 85 76.7 85 85 85 85 85 81.7 81.7	b Lead b 2.00 b 28.00 b 28.00 b 32.00 ER-L ER-M 15th Percentile NE B 43.0 b 43.0 b 43.0 b 43.0 b 43.0 b 43.0 b 7.5 b 22.0 b 15.0 b 16.0 b 15.0 b 23.0 b 12.4 b 16.6 b 28.8 b 419.0 b 12.4 b 16.6 b 28.8 b 419.0 b 12.00 b 16.3 b 60.1 b 32.0 b 16.3 b 60.1 b 32.0 b 12.00 b 18.00 b 12.00 b 15.0 b 23.0 b 16.3 b 60.1 b 32.0 b 15.0 b 15.0 b 23.0 b 16.3 b 60.1 b 32.0 b 15.0 b 15.0 b 15.0 b 15.0 b 23.0 b 16.3 b 60.1 b 32.0 b 15.0 b 15.0 b 15.0 b 25.8 b 41.0 b 25.8 b 29.0 b 17.0 b 25.8 b 29.1 b 25.4 b 5.8 b 42.1 b 25.3 b 29.5 b 36.5 b 25.7 b 22.9 b 17.2 b 387.0 Y b 15.4 b 27.6 b 36.0 17.0 36.0 38.0 50.00 47.00 21.00 20.00 29.0 27.0 21.0 29.0 27.0 21.0 29.0 27.0 21.0 29.0 27.0 21.0 29.0 27.0 21.0 29.0 27.0 21.0 29.0 27.0 21.0 29.0 27.0 21.0 29.0 27.0 21.0 29.0 27.0 21.0 20.0 29.0 27.0 21.0 20.0 21.00 20.00 29.0 27.0 21.0 20.00 29.0 27.0 21.0 20.00 29.0 27.0 21.0 20.00 29.0 27.0 21.0 20.00 29.0 27.0 21.0 20.00 29.0 27.0 21.0 20.00 29.0 27.0 21.0 20.00 29.0 27.0 21.0 20.00 29.0 27.0 21.0 20.00 29.0 27.0 21.0 20.00 29.0 27.0 21.0 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.	77 25.3 1190 1190 174 35 204 419 4 1		T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T	T1 T'	######################################
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	--------------	--------------------------------------------	---	------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-----------------------------------------------------------------	--	------------------------------------------	-------	----------------------------------------



2.23       b       16.6       0       ### ### ### ### ### ### - 2       2.1       0       ### ### ### ### ### ### - 2       2.1       0       ### ### ### ### ### ### - 2       0       ### ### ### ### ### - 2       0       ### ### ### ### ### - 2       0       ### ### ### ### ### - 2       0       ### ### ### ### ### ### - 2       0       ### ### ### ### ### ### ### ### ### ##								_			
DNA Strand   Damage   DNA Strand   Damage   DNA Strand   Damage   DNA Strand   DN							금	<u> </u>	ᇳ	ቯ	ᇦ
2.1						cts	ST III	S III	Ts.	S. P	ts A
2.1						Ę	ect	ect	ect	ect	ect
2.1						Ш	ᇤ	ᇤ	<b>=</b>	Ξ.	Ш
2.1	DNA Strand					tra	-ba	bg.	bg.	bg.	ed.
2.2   b   18   2.2   b   12   2.2   b   12   2.3   b   18   2.1   b   14   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4	Damage	b	Lead				ď.	4			
2.2   b		-									-
2.3		-		Median NOEC	25	-					-
2.1		-		EDI	#NII IN/II	-					-
15th Percentile E #NUM!   15th   15		-				_					
19						_					_
2.2   D   34		b	15			0	####	####	####	####	-
2.3   b   46	2.2	b	28	85th Percentile NE	39	0	####	####	####	####	-
1.9		-				0					-
2.3		_		AET	1190						-
2.3   b   23   Effects Data N   0   0		-				-					-
2.3   b   28   Effects Data Set   0   #### #### #### #### #### #### ##		_		Effects Data N	•						-
2.1   b   28		-			U	-					
2.0   b   3.9   0				Lifects Data Set		_					
1.8		-				-					
1.9						-	####	####	####	####	-
1.9	1.8	b				0					-
1.63		-				-					-
2.07   b   25.3   0   ### ### ### ### ### ###   1.87   5   28.8   0   ### ### ### ### ### ### ###   1.70   b   419 Y   0   ### ### ### ### ### ###   1.70   b   35.5   0   ### ### ### ### ### ###   1.70   b   35.5   0   ### ### ### ### ### ###   1.70   b   24.2   0   ### ### ### ### ###   2.07   b   22.9   0   ### #### ### ### ###   1.87   2.07   b   22.9   0   ### ### ### ### ###   1.88   b   154 Y   0   ### ### ### ### ###   1.87   b   387 Y   0   ### ### #### #### ###   1.87   b   387 Y   0   ### ### #### #### ###   1.90   b   1.90 Y   0   ### #### #### #### #### ####   2.07   b   1.54   0   ### #### #### #### ####   2.07   b   1.87   b   27.2   0   ### #### #### #### ####   2.07   b   1.54   0   ### #### #### #### ####   2.07   b   1.87   b   27.6   0   ### #### #### #### ####   2.07   0   ### #### #### ####   2.07   0   ### #### #### ####   2.07   0   ### #### #### ####   2.07   0   ### #### #### #### ####   2.07   0   ### #### #### #### ####   2.07   0   ### #### #### #### ####   2.07   0   ### #### #### #### ####   2.07   0   ### #### #### #### ####   2.07   0   ### #### #### #### #### #### ##						_					-
2.0   b   29.5   0   ### ### ### ### ###   1.87   b   28.8   0   ### ### ### ### ###   1.70   b   419   Y   0   ### ### ### ### ###   1.77   b   2.0   b   35.5   0   ### ### ### ### ###   1.97   b   24.2   0   ### ### ### ### ###   1.97   b   22.9   0   ### ### ### ### ###   1.67   b   17.2   0   ### ### ### ### ###   1.67   b   17.2   0   ### ### ### ### ###   1.87   b   387   Y   0   ### ### ### ### ###   1.99   b   60.1   0   ### ### ### ### ###   1.99   b   1190   Y   0   ### ### ### ### ###   1.90   b   1190   Y   0   ### ### ### ### ###   1.87   b   27.6   0   ### ### ### ### ###   1.87   b   27.6   2.23   b   2.2   2   b   25.8   2.1   3   b   16.3   2.23   b   3.2   2.3   b   3.2   3.3   3.6   2.0   3.9   3.6   3.9   3.6   3.8   2.9   1   ### ### ### ### ###   1.77   1.77   1.77   1.77   1.77   1.77   2.77   2.44   2.24   4.77   1.77   4.77   4.75   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77   4.77		-				-					-
1.87		-									
1.70 b 35.5 0 ### #### #### #### #### 1.70 b 35.5 0 ### #### #### #### #### #### ####		-				_					-
2.0   b   35.5   0   #### #### #### ### ###   1.77   b   24.2   0   #### #### #### ###   1.77   b   24.2   0   #### #### #### ####   1.77   b   22.9   1.8   b   15.4   Y   0   #### #### #### ####   1.87   b   38.7   Y   0   #### #### #### ####   1.9   b   60.1   0   #### #### #### ####   1.9   b   1190   Y   0   #### #### #### ####   1.7   b   27.2   0   #### #### #### ####   1.87   b   27.6   0   #### #### #### ####   1.88   b   27   2.23   b   16.6   2.24   b   2.7   2.23   b   2.58   2.11   b   5.8   2.13   b   16.3   2.23   b   3.2   2.5   b   8   4.3   2.1   3.6   2.0   3.9   36   3.8   2.9   3.6   3.8   2.9   3.6   3.8   2.9   3.6   3.8   2.9   3.6   3.8   2.9   3.6   3.8   2.9   3.6   3.8   2.9   3.6   3.8   2.9   3.6   3.8   2.9   3.6   3.8   2.9   3.6   3.6   2.1   3.6   2.2   2.6   2.7   2.7   2.4   3.6   2.7   2.7   2.4   3.6   2.7   2.8   3.6   2.1   3.6   2.7   2.7   2.8   3.6   2.1   3.6   3.6   2.1   3.6   3.6   2.1   3.6   3.6   2.1   3.6   3.6   2.1   3.6   3.6   2.1   3.6   3.6   2.1   3.6   3.6   2.1   3.6   3.6   2.1   3.6   3.6   2.1   3.6   3.6   2.1   3.6   3.6   2.1   3.6   3.6   2.1   3.6   3.6   2.1   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6		-				-					
1.97		-				-					
1.7		-				-					-
1.8       b       154 Y       0       #### #### #### #### #### ####		b	25.7			0	####	####	####	####	-
1.67       b       17.2       0       #### #### #### #### #### - 0       1.87       b       60.1       0       #### #### #### #### #### - 0       0       #### #### #### #### #### - 0       1.87       b       387 Y       0       #### #### #### #### #### - 0       0       #### #### #### #### #### - 0       0       #### #### #### #### #### - 0       0       #### #### #### #### #### - 0       0       #### #### #### #### #### - 0       0       #### #### #### #### - 0       0       #### #### #### #### - 0       0       #### #### #### #### - 0       0       #### #### #### #### - 0       0       #### #### #### #### - 0       0       #### #### #### #### #### - 0       0       #### #### #### #### #### - 0        0       #### #### #### #### #### - 0        0       #### #### #### #### #### #### - 0       0       #### #### #### #### #### #### - 0       0       #### #### #### #### #### #### #### ##	2.07	b	22.9			0	####	####	####	####	-
1.9 b 387 Y 0 ### #### #### ###		b				0					-
1.87         b         387 Y         0         #### #### #### #### #### - 2.07         b         1190 Y         0         #### #### #### #### #### - 2.07         0         #### #### #### #### #### #### - 2.07         0         #### #### #### #### #### #### - 2.02         0         #### #### #### #### #### #### - 2.02         0         #### #### #### #### #### #### #### ##		-				-					-
1.9       b       1190 Y       0       #### #### #### #### #### - 12.20       0       #### #### #### #### #### - 12.20       0       #### #### #### #### #### - 12.20       0       #### #### #### #### #### - 12.22       0       #### #### #### #### #### - 12.23       0       #### #### #### #### #### #### - 12.23       0       #### #### #### #### #### #### #### - 12.23       0       #### #### #### #### #### #### #### ##						-					-
15.4		-				-					
1.77       b       27.2         1.87       b       27.6         2.4       b       27         2.23       b       16.6         2.2       b       25.8         2.1       b       5.8         2.13       b       16.3         2.13       b       16.3         2.23       b       32         2.5       b       8         4.3       21         3.6       20         3.9       36         3.8       29         1.7       17         2.7       24         1.9       43         1.7       1,9         4.3       21         3.8       29         1.7       1,7         1.9       28         1.7       1,7         1.9       43         1.7       1,7         1.8       22         2.4       1         2.1       1         3.6       21         2.7       2.4         3.6       21         2.1       1         3.6       21 </td <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td>		-				-					
1.87         b         27.6         0         #### #### #### #### #### TZ         2.2         b         27.6         1         #### #### #### #### ### TZ         2.2         b         2.5         0         #### #### #### #### #### TZ         2.2         b         2.5.8         0         #### #### #### #### #### #### #### ##		-				_					_
2.23       b       16.6       0       ### ### ### ### ### ### - 2       2.1       0       ### ### ### ### ### ### - 2       2.1       0       ### ### ### ### ### ### - 2       0       ### ### ### ### ### - 2       0       ### ### ### ### ### - 2       0       ### ### ### ### ### - 2       0       ### ### ### ### ### ### - 2       0       ### ### ### ### ### ### ### ### ### ##		b				0	####	####	####	####	-
2.2       b       25.8       0       ### ### ### ### ### ### -       -         2.13       b       5.8       0       ### ### ### ### ### -       -         2.23       b       32       0       ### ### ### ### ### -       -         2.5       b       8       0       ### ### ### ### ### T2       -         3.6       20       1       ### ### ### ### ### T2       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -        -       -       -       -       -       -       -       -       -       -       -       -       -       -       -        -       -       -       -       -       -       -       -       -       -       -       -       -       -       -        -       -       -       -       -       -       -       -       -       -       -       -       -       -       -        -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -	2.4	b	27			1	####	####	####	####	T2
2.1       b       5.8       0       ### ### ### ### ### ### -       -         2.13       b       16.3       0       ### ### ### ### ### -       -         2.23       b       32       0       ### ### ### ### ### -       -         2.5       b       8       0       ### ### ### ### ### T2       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -        -       -       -       -       -       -       -       -       -       -       -       -       -       -       -        -       -       -       -       -       -       -       -       -       -       -       -       -       -       -        -       -       -       -       -       -       -       -       -       -       -       -       -       -       -        -       -       -       -       -       -       -       -       -       -       -       -       -       -       -        -       -       -       -       -       -       -       -       -       -       - <td< td=""><td></td><td>-</td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td><td>-</td></td<>		-				0					-
2.13       b       16.3       0       ### ### ### ### ### ### - 2       2.23       b       32       0       ### ### ### ### ### ### - 2       0       ### ### ### ### ### ### - 2       0       ### ### ### ### ### ### ### ### ### ##		-				-					-
2.23       b       32       0       ### ### ### ### ### ### -       -         2.5       b       8       0       ### ### ### ### ### -       -         3.6       20       1       ### ### ### ### ### T2       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -        -       -       -       -       -       -       -       -       -       -       -       -       -       -       -        -       -       -       -       -       -       -       -       -       -       -       -       -       -       -        -       -       -       -       -       -       -       -       -       -       -       -       -       -       -        -       -       -       -       -       -       -       -       -       -       -       -       -       -       -											-
2.5 b 8 4.3 21 1 ### ### ### ### T2 3.6 20 1 ### ### ### ### T3 3.8 29 1 ### ### ### ### T3 1.7 17 17 17 1 ### ### ### ### T2 2.7 24 21 1 ### ### ### ### T3 1.9 43 1 ### ### ### ### T3 1.7 7.5 1 ### ### ### ### T3 1.8 22 1 ### ### ### ### T3 1.8 22 2 2 26 1 ### ### ### ### T3 2.6 8.9 1 ### ### ### ### T3 2.8 12 1 ### ### ### ### T3 3.6 20 1 ### ### ### ### T3 3.7 20 1 ### ### ### ### T3 3.8 29 1 ### ### ### ### T3 3.8 29 1 ### ### ### ### T3 3.8 29 1 ### ### ### ### T3 3.8 29 1 ### ### ### ### T3 3.8 29 1 ### ### ### ### T3 3.8 20 20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	-	-				-					
4.3       21       1       #### #### #### #### #### T2         3.6       20       1       #### #### #### #### T2         3.8       29       1       #### #### #### #### T2         1.9       28       1       #### #### #### #### T2         1.7       17       1       #### #### #### #### T2         2.7       24       1       #### #### #### #### T2         2.9       43       1       #### #### #### #### T2         1.9       43       1       #### #### #### #### T2         1.0       43       1       #### #### #### #### T2         2.0       2       4       1       #### #### #### #### T2         3.6       2.1       1       #### #### #### #### #### T2         2.6       8.9       1       #### #### #### #### T2         3.0       20       1       #### #### #### #### #### T2						_					
3.6       20       1       #### #### #### #### #### T2         3.9       36       1       #### #### #### #### T2         1.9       28       1       #### #### #### #### T2         1.7       17       1       #### #### #### #### T2         2.7       24       1       #### #### #### #### T2         2.2       47       1       #### #### #### #### T2         1.7       7.5       1       #### #### #### #### T2         3.6       21       1       #### #### #### #### T2         3.6       21       1       #### #### #### #### T2         2.2       26       1       #### #### #### #### T2         2.6       8.9       1       #### #### #### #### T2         3.0       20       1       #### #### #### #### T2         2.8       12       1       #### #### #### #### T2         3.5       29       1       #### #### #### #### T2         3.67       52       1       #### #### #### #### #### #### T2         4.43       20.3       1       #### #### #### #### #### #### #### T2	-					-					T2
3.9       36       1       #### #### #### #### TZ         1.9       28       1       #### #### #### #### TZ         1.7       17       1       #### #### #### #### TZ         2.7       24       1       #### #### #### #### TZ         2.2       47       1       #### #### #### #### TZ         1.9       43       1       #### #### #### #### TZ         1.7       7.5       1       #### #### #### #### TZ         3.6       21       1       #### #### #### #### TZ         2.2       26       1       #### #### #### #### TZ         2.4       9.4       1       #### #### #### #### TZ         2.6       8.9       1       #### #### #### #### TZ         3.0       20       1       #### #### #### #### TZ         3.5       29       1       #### #### #### #### TZ         3.67       52       1       #### #### #### #### #### TZ         4.43       20.3       1       #### #### #### #### #### #### TZ											T2
1.9       28       1       #### #### #### #### TZ         1.7       17       1       #### #### #### #### TZ         2.7       24       1       #### #### #### #### TZ         2.2       47       1       #### #### #### #### TZ         1.9       43       1       #### #### #### #### TZ         1.7       7.5       1       #### #### #### TZ         1.8       22       1       #### #### #### ### TZ         3.6       21       1       #### #### #### #### TZ         2.2       26       1       #### #### #### #### TZ         2.6       8.9       1       #### #### #### #### TZ         3.0       20       1       #### #### #### #### TZ         2.8       12       1       #### #### #### #### TZ         3.5       29       1       #### #### #### #### TZ         3.67       52       1       #### #### #### #### #### TZ         4.43       20.3       1       #### #### #### #### #### #### TZ	3.9					1					T2
1.7       17       1       #### #### #### #### #### T2         2.7       24       1       #### #### #### #### T2         2.2       47       1       #### #### #### #### T2         1.9       43       1       #### #### #### #### T2         1.7       7.5       1       #### #### #### #### T2         3.6       21       1       #### #### #### #### T2         2.2       26       1       #### #### #### #### T2         2.4       9.4       1       #### #### #### #### T2         2.6       8.9       1       #### #### #### #### T2         3.0       20       1       #### #### #### #### T2         2.8       12       1       #### #### #### #### T2         3.5       29       1       #### #### #### #### T2         3.67       52       1       #### #### #### #### #### T2         4.43       20.3       1       #### #### #### #### #### #### #### T2         22       0       0       0       0											T2
2.7       24       1       #### #### #### #### TZ         1.9       43       1       #### #### #### #### TZ         1.7       7.5       1       #### #### #### #### TZ         3.6       21       1       #### #### #### #### TZ         2.2       26       1       #### #### #### #### TZ         2.6       8.9       1       #### #### #### #### TZ         3.0       20       1       #### #### #### #### TZ         2.8       12       1       #### #### #### #### TZ         3.5       29       1       #### #### #### #### TZ         3.67       52       1       #### #### #### #### TZ         4.43       20.3       1       #### #### #### #### #### #### TZ											T2
2.2       47       1       #### #### #### #### #### T2         1.9       43       1       #### #### #### #### T2         1.7       7.5       1       #### #### #### #### T2         1.8       22       1       #### #### #### #### T2         3.6       21       1       #### #### #### #### T2         2.2       26       1       #### #### #### #### T2         2.4       9.4       1       #### #### #### #### T2         2.6       8.9       1       #### #### #### #### T2         3.0       20       1       #### #### #### #### T2         2.8       12       1       #### #### #### #### T2         3.5       29       1       #### #### #### #### T2         2.7       27       1       #### #### #### #### T2         4.43       20.3       1       #### #### #### #### #### #### T2											T2
1.9       43       1       #### #### #### #### TZ         1.7       7.5       1       #### #### #### #### TZ         3.6       21       1       #### #### #### #### TZ         2.2       26       1       #### #### #### #### TZ         2.4       9.4       1       #### #### #### #### TZ         2.6       8.9       1       #### #### #### #### TZ         3.0       20       1       #### #### #### #### TZ         2.8       12       1       #### #### #### #### TZ         3.5       29       1       #### #### #### #### TZ         2.7       27       1       #### #### #### #### TZ         3.67       52       1       #### #### #### #### #### TZ         4.43       20.3       1       #### #### #### #### #### #### #### TZ											
1.7       7.5       1       #### #### #### #### TZ         3.6       21       1       #### #### #### #### TZ         2.2       26       1       #### #### #### #### TZ         2.4       9.4       1       #### #### #### #### TZ         3.0       20       1       #### #### #### #### TZ         3.0       20       1       #### #### #### #### TZ         3.5       29       1       #### #### #### #### TZ         2.7       27       1       #### #### #### #### TZ         3.67       52       1       #### #### #### #### #### TZ         4.43       20.3       20       0       0       0											T2
1.8       22         3.6       21         2.2       26         2.4       9.4         2.6       8.9         3.0       20         2.8       12         3.5       29         2.7       27         3.67       52         4.43       20.3											T2
3.6       21       1       #### #### #### #### ### TZ         2.2       26       1       #### #### #### #### TZ         2.4       9.4       1       #### #### #### #### TZ         2.6       8.9       1       #### #### #### #### TZ         3.0       20       1       #### #### #### #### TZ         2.8       12       1       #### #### #### #### TZ         3.5       29       1       #### #### #### #### TZ         2.7       27       1       #### #### #### #### TZ         3.67       52       1       #### #### #### #### #### TZ         4.43       20.3       1       #### #### #### #### #### #### #### TZ											T2
2.4       9.4       1       #### #### #### #### TZ         2.6       8.9       1       #### #### #### #### TZ         3.0       20       1       #### #### #### #### TZ         2.8       12       1       #### #### #### #### TZ         3.5       29       1       #### #### #### #### TZ         2.7       27       1       #### #### #### #### TZ         3.67       52       1       #### #### #### #### TZ         4.43       20.3       1       #### #### #### #### #### TZ			21			1	####	####	####	####	T2
2.6       8.9       1       #### #### #### #### TZ         3.0       20       1       #### #### #### #### TZ         2.8       12       1       #### #### #### #### TZ         3.5       29       1       #### #### #### #### TZ         2.7       27       1       #### #### #### #### TZ         3.67       52       1       #### #### #### #### TZ         4.43       20.3       1       #### #### #### #### #### TZ											T2
3.0 2.8 12 3.5 29 1 #### #### #### #### T2 2.7 2.7 2.7 2.7 2.7 3.67 4.43 20.3 1 #### #### #### #### #### T2 2.0 0 0 0 0 0 0											T2
2.8       12       1 #### #### #### #### Tz         3.5       29       1 #### #### #### Tz         2.7       27       1 #### #### #### Tz         3.67       52       1 #### #### #### #### Tz         4.43       20.3       1 #### #### #### #### #### Tz											T2
3.5 2.7 2.7 3.67 4.43 2.0 3.6 29 1 #### #### #### #### Tz 1 #### #### #### #### Tz 2.1 1 #### #### #### #### Tz 2.2 2.3 2.3 2.4 2.5 2.5 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7											T2
2.7 27 1 ### #### #### T2 3.67 52 1 #### #### ### T2 4.43 20.3 1 #### #### #### T2 22 0 0 0 0 0 0											
3.67 4.43 52 1 #### #### #### T2 20.3 22 0 0 0 0 0 0											T2
4.43 20.3 1 #### #### #### T2  22 0 0 0 0 0											T2
											T2
	,										
65 0 0 0 0 22											0
						65	U	U	U	U	22

# **APPENDIX E**

# LIFE HISTORIES OF SELECTED FOOD ITEMS EMPLOYED IN FINFISH AND WILDLIFE FOOD-WEB EXPOSURE MODELS FOR ESTUARY AT LCP SITE

- E.1 Cordgrass
- E.2 Fiddler Crabs
- E.3 Blue Crab
- E.4 Mummichog
- E.5 Silver Perch

#### Appendix E

# Life Histories of Selected Food Items Employed in Fish and Wildlife Food - Web Exposure Models for Estuary at LCP Chemicals Superfund Site

Appendix E reviews relevant aspects of the life histories and vital statistics of five aquatic species at the LCP Chemicals Superfund Site (Site); cordgrass, fiddler crabs, blue crabs, mummichogs, and silver perch. These organisms are food items in the diet of higher-trophic-level fish and wildlife which are modeled for potential hazard associated with uptake of chemicals of potential concern (COPC) from the estuary. Only insects, employed as a food item for two avian species (the red-winged blackbird and clapper rail), are not addressed in this appendix.

### E.1 Cordgrass (Spartina alterniflora)

The salt marsh in Georgia consists of four basic zones: 1) the levee, which is the area along the banks of the tidal creeks; 2) the low marsh, the area just behind the levee; 3) the high marsh, just inland of the low marsh; and 4) the border, located between the low marsh and the transitional area, which blends into the uplands (Univ. of Georgia, 2000).

Smooth cordgrass occurs in all of the above-identified marsh zones, in great part because of its special adaptations that allow it to live where few other plants could survive. These adaptations include a tough and well-anchored root system, as well as narrow, tough blades and special glands that secrete excess salt, permitting it to withstand high heat and daily exposure to salt water.

Smooth cordgrass grows tallest (up to about 3 meters [m]) on the levee because the frequent movement of water across the creek bank prevents sediment in this zone from becoming anaerobic or having high salt concentrations. In the low marsh, which is characterized by anaerobic sediment, a shorter variety of cordgrass is found, reaching a height of between about 0.5 to 1 m. Cordgrass in the high marsh, which typically contains a sandy sediment high in salt content, is either absent or stunted, often reaching a height of just 10 centimeters (cm). In the less salty border zone, a variety of plants successfully compete against smooth cordgrass.

Smooth cordgrass provides habitat, protection, and food to a variety of biota. Fiddler crabs (typically the mud fiddler), mud snails, marsh periwinkles, ribbed mussels, and Eastern oysters are found among the cordgrass in the low marsh, while sand fiddlers occur in the high marsh. Birds, such as the red-winged blackbird, feed on insects and seeds in the marsh. Other birds, such as herons and egrets, forage on fiddler crabs in the marsh. The clapper rail roosts on the marsh surface within the protective cover of cordgrass. Perhaps most importantly, decomposition of cordgrass results in formation of detritus, which is the base of the ecological food web in southeastern estuaries.

#### E.2 Fiddler Crabs (*Uca spp.*)

Three species of fiddler crabs inhabit the marsh at the Site: 1) the mud fiddler (*Uca pugnax*); 2) the sand fiddler (*U. pugilator*); and 3) the red-jointed fiddler (*U. minax*). The three species differ in terms of preferred habitat, with, as their common names imply, the mud and sand fiddlers preferring substrates of different textures, and the red-jointed fiddler being found on either substrate but at some distance from water of high salinity (Williams, 1965). In addition, the mud and sand fiddlers are generally smaller (carapace length of males: 15-17 millimeters [mm]) than the red-jointed fiddler (carapace length of males: 25 mm).

The males of all three species of fiddler crabs are characterized by one large cheliped with (mud and red-jointed fiddlers) or without (sand fiddler) an oblique tuberculate ridge on the inner surface of the palm extending upward from the lower margin. In addition, the red-jointed fiddler is so named because of red leg joints on the large cheliped. In this investigation, the easily identified red-jointed fiddler was often the primary species encountered at the two reference locations (Troup Creek and the Crescent River), while a combination of the less easily identified mud and sand fiddlers characterized the Site.

The mud fiddler (Pearse, 1914) lives primarily on intertidal flats of mud or clay among the roots of cordgrass, with the maximum number of burrows found about 2 feet (ft) below the high-tide mark. These burrows, which often extend to 2 ft in depth, are typically constructed during falling tides; on rising tides, mud fiddlers hasten to plug their burrows with mud, which keeps the water out and a small amount of air inside. When the tide is out, mud fiddlers feed on bacteria, algae, and detritus that cover the surface of the tidal flats. Mud fiddlers, in turn, are preyed upon by a variety of fishes,

reptiles, birds, and mammals. Mud fiddlers spawn during the summer, producing eggs attached to the abdomens of the females, and hibernate in their burrows during the winter.

The sand fiddler and red-jointed fiddler display, in their preferred habitats, most of the characteristics described above for the mud fiddler. However, several differences exhibited by the red-jointed fiddler are its burrows, the openings of which are often considerably above the high-tide level, and the sometimes observed (Teal, 1958) predation on the two smaller fiddler crab species. Based on studies of red-jointed fiddlers by Teal (1958), it appears that fiddler crabs exhibit fidelity to their environment, with usually just one crab inhabiting a single burrow.

#### **E.3** Blue Crab (*Callinectes sapidus*)

Blue crabs inhabit the upper (landward) part of the estuary from the megalopal stage to adulthood. Mating of crabs then typically occurs during all but the coldest months of the year. After mating, male crabs usually remain in the upper estuary, while females migrate to higher salinity water in the lower estuary or ocean to ensure egg development. Spawning of eggs (onto the ventral surface of the abdomen of the female, which is then termed a "sponge crab") usually occurs several months after mating. Eggs hatch in about two weeks and pass through a number of larval stages before reaching the megalopal stage, which then begins shoreward movement to the estuarine nursery grounds.

Blue crabs feed on a variety of plant and animal materials, both alive and dead. Blue crabs may live for as many as three years, but most die within a year (Sea Science, 2000). Tagging studies have documented that female crabs can migrate 800 kilometers (km) (500 miles) in 100 days (Sea-Stats, 2000).

The general restriction of male blue crabs to the upper estuary throughout their lives has resulted in their selection for analyses of chemical body burdens in this investigation. By this restriction, a conservative estimate of chemical contamination can be obtained for a key prey species with the capability of reflecting or "integrating" contamination over a moderately extensive geographical area.

#### **E.4** Mummichog (*Fundulus heteroclitus*)

The mummichog is a cyprinodont fish that occurs from Labrador to Mexico, and which prefers brackish water (Perlmutter, 1961). It may reach up to about five (5) years in age and achieve a total length of approximately 100 mm (Abraham, 1985). Mummichogs are euryhaline and eurythermal.

Mummichogs are relatively stationary fish. Fish over 60 mm in length maintain a summer home range of 36-38 m along one bank of a tidal creek, although some may move as much as 375 m (Lotrich, 1975). In winter, fish may burrow 150-200 mm into the mud (Chidester, 1920; Hardy, 1978) or migrate to the mouth of the tidal channel where they have been living (Butner and Brattstrom, 1960). Spring migration back up the tidal channel occurs when the water temperature reaches about 15 degrees Celsius (°C) (Hardy, 1978).

Mummichogs become sexually mature and spawn as early as their first year (Hardy, 1978). Spawning generally occurs during the spring and summer in shallows containing heavy growths of vegetation, with eight or more spawning peaks per season during high spring tides (Taylor and DiMichele, 1980). Eggs, which typically number several hundred per spawning episode, are sometimes deposited inside the outer dead leaves of smooth cordgrass (Taylor and DiMichele, 1980). The eggs normally incubate in the air and are not submerged until the next spring tide after they are laid (Taylor and DiMichele, 1980). Eggs hatch in about 7-8 days at a temperature of 22-34°C (Taylor et al., 1977).

Mummichogs are one of the more abundant estuarine fish species, with fish longer than 40 mm exhibiting a density ranging from 0.35 to 6.04 individuals / m² in the summer (Kelso, 1979). Mummichogs feed throughout the water column and in the sediment on a variety of food items, including fiddler crabs; however, they cannot subsist on a diet of plant material or detritus (Katz, 1975). Mummichogs, in turn, are commonly preyed upon by numerous species of larger fishes (including red drum; Peterson and Peterson, 1979), wading birds (e. g., green herons), and mammals.

#### E.5 Silver Perch (Bairdiella chrysoura)

The silver perch is a member of the drum family, Sciaenidae that occurs along the Atlantic coast and Gulf of Mexico from New York to Texas (Perlmutter, 1961). These

fish may reach up to about six (6) years in age and achieve a total length of approximately 30 cm (Perlmutter, 1961).

Adult silver perch are typically "shore" fishes that only appear to migrate offshore during colder months (Breder, 1928). Adult fish (like red drum and spotted seatrout) generally spawn in shallow estuarine areas and young recruits appear to "settle and stay" in their nursery habitats (Rooker et al., 1997).

Silver perch become sexually mature by their second or third year (at a length of about 15 cm). Spawning generally occurs during the spring through early fall. Eggs are buoyant and generally hatch in less than 2 days (Breder, 1928).

Silver perch feed on a variety of annelid worms, crustaceans, and smaller fishes (Perlmutter, 1961). They are preyed upon by larger fishes, wading birds, and mammals such as the river otter.

#### References

Abraham, B. 1985. Species profiles: life histories and environmental requirements of coastal fishes and invertebrates - mummichog and striped killifish. Biological Report 82 (11.40). Hampton Univ. Hampton, VA. 23 pp.

Breder, C. M., Jr. 1928. Field book of marine fishes of the Atlantic coast. Putnam Nature Books. 330 pp.

Butner, A., and Brattstrom, B. 1960. Local movement in *Menidia* and *Fundulus*. *Copeia* 1960 (2): 139-141.

Chidester, F. 1920. The behavior of *Fundulus heteroclitus* in the salt marshes of New Jersey. *Am. Nat.* 54: 244-245.

- Hardy, J. D., Jr. 1978. Development of fishes of the mid-Atlantic Bight: an atlas of egg, larval, and juvenile stages. Vol 2. Anguillidae through Syngnathidae. FWS/OBS-78/12. Biol. Ser. Program, U.S. Fish Wildlife. Ser. 458 pp.
- Katz, L. 1975. Laboratory studies on diet, growth, and energy requirements of *Fundulus heteroclitus* (Linnaeus). Ph. D. thesis. Univ. Delaware. 81 pp.
- Kelso, W. 1979. Predation on soft-shell clams, *Mya arenaria*, by the common mummichog, *Fundulus heteroclitus*. Estuaries 2 (4): 249-254.
- Lotrich, V. 1975. Summer home range and movements of *Fundulus heteroclitus* (Pisces, Cyprinodontidae) in a tidal creek. *Ecology* 56 (1): 191-198.
- Pearse, A. 1914. On the habits of *Uca pugnax* (Smith) and *U. pugilator* (Bosc). *Trans. Wiscon. Acad. Sci. Arts Letters* 17: 791-802.
- Perlmutter, A. 1961. Guide to marine fishes. New York University Press, New York, NY. 431 pp.
- Peterson, C., and Peterson, N. 1979. The ecology of intertidal flats of North Carolina: a community profile. FWS/OBS-79/39. Biol. Ser. Program, U.S. Fish Wildlife Service. 73 pp.
- Rooker, J., Holt, S., Holt, G., and Soto, M. 1997. Utilization of subtropical seagrass meadows by newly settled sciaenids. Presented at 1997 mid-year meeting of the Southern Division of the American Fisheries Society. San Antonio, TX.
- Sea Science. 2000. Blue crabs. Marine Resources Division, South Carolina Department of Natural Resources. Internet. 9 pp.
- Sea-Stats. 2000. No.4: Blue crab a summary of information and statistics on the marine organisms common in Florida waters. Florida Marine Research Institute; Florida Department of Natural Resources. Internet. 11 pp.

- Taylor, M., and DiMichele, L. 1980. Ovarian changes during the lunar spawning cycle of *Fundulus heteroclitus. Copeia* 1980 (1): 118-125.
- Taylor, M., DiMichele, L., and Leach, G. 1977. Egg stranding in the life cycle of the mummichog *Fundulus heteroclitus*. *Copeia* 1977 (2): 397-399.
- Teal, J. 1958. Distribution of fiddler crabs in Georgia salt marshes. Ecology 39: 185-193.
- University of Georgia. 2000. Dynamics of the salt marsh. Internet. Museum of Natural History. Numerous sections.
- Williams, A. 1965. Marine decapod crustaceans of the Carolinas. Fish. Bull. 65: 1-298.

#### APPENDIX F

RELATIONSHIPS BETWEEN BODY BURDENS OF TOTAL MERCURY AND METHYLMERCURY IN FOOD ITEMS EMPLOYED IN FISH AND WILDLIFE FOOD-WEB EXPOSURE MODELS FOR ESTUARY AT LCP SITE

#### **Appendix F**

# RELATIONSHIPS BETWEEN BODY BURDENS OF TOTAL MERCURY AND METHYLMERCURY IN FOOD ITEMS EMPLOYED IN FISH AND WILDLIFE FOOD-WEB EXPOSURE MODELS FOR ESTUARY AT LCP SITE

Body-burden relationships between total mercury and methylmercury in major food items of modeled fish and wildlife are presented in Table 1. The relationship between the two forms of mercury and cordgrass (*Spartina alterniflora*), the sole food item for the marsh rabbit (*Sylvilagus palustris*), is addressed in Table 10 of the main body of this document. The last food item employed in wildlife modeling was insects, which were collected in 2000. Body burdens of total mercury and methylmercury in these insects were, respectively, 0.032 and 0.018 mg/kg (dw), which generates a methylmercury/total mercury ratio of 56%

Table 1.__Relationships between body burdens of total mercury and methylmercury in selected food items of modeled fish and wildlife for estuary at LCP Site (2000, 2005, and 2007 data)

•	otal mercury	Methylm		Sample identifier	Total mercury	Methylm	
	(mg/kg, dw)		% of total	(Sampling station)	(mg/kg, dw)	(mg/kg, dw)	
<u>Fidder</u>	r Crabs (Uca	<u>spp.)</u>		Mummiche	ogs (Fundulus	heteroclitus	1
M-AB	2000 1.07	0.611	E7	Crescent River	2000	0.027	100
	1.07	0.611	57		0.025	0.027	108
M-25/NOAA 4	0.74	0.350	47	Troup Creek	0.041	0.040	98
M-28/NOAA 10	0.16	0.118	74	C-6	0.433	0.413	95
Crescent River	0.018	0.013	72	C-9 C-13	0.777	0.790	102 111
Troup Creek	0.031	0.028	90	C-13 C-33	0.327	0.363 0.407	110
Crescent River	2005 0.054	0.042	78	U-33	0.370	0.407	110
				0	<u>2005</u>		
Troup Creek	0.069	0.051	74	Crescent River	0.092	0.050	54
M-25/NOAA 4	0.543	0.448	82	Troup Creek	0.101	0.095	94
M-NOAA 5	0.233	0.120	52	C-5	0.249	0.256	103
M-NOAA 3	0.186	0.167	90	C-6	0.660	0.533	81
M-NOAA 6	0.211	0.117	56	C-9	0.429	0.422	98
M-NOAA 7	0.234	0.169	72	C-13	0.209	0.174	83
M-NOAA 8	0.128	0.066	52	C-100	0.268	0.254	95
M-NOAA 9	0.211	0.114	54	C-204	0.441	0.389	88
M-AB	0.949	0.565	60	C-39	0.398	0.396	99
M-100	0.254	0.178	70	C-33	0.453	0.412	91
M-101	0.172	0.133	77	C-102	0.261	0.246	94
M-204	0.278	0.249	90	C-D	0.179	0.181	101
M-102	0.194	0.134	69	C-C	0.211	0.217	103
M-37	0.200	0.114	57	C-45	0.269	0.279	104
M-103	0.213	0.173	81	C-103	0.127	0.097	76
M-104	0.135	0.022	16	C-104	0.146	0.127	87
M-108	0.083	0.066	80	C-105	0.141	0.125	89
M-107	0.095	0.105	110	C-200	0.393	0.441	112
M-106	0.154	0.048	31	C-201	0.070	0.058	83
M-200	0.206	0.084	41	C-202	0.396	0.443	112
M-201	0.185	0.141	76		2007		
M-202	0.072	0.036	50	C-5	0.497	0.343	69
M-203	0.094	0.058	62	C-9	0.910	0.673	74
	<u>2007</u>			C-33	0.327	0.203	62
M-NOAA 5	0.233	0.183	79	C-39	0.523	0.380	73
M-NOAA 3	0.447	0.327	73				
M-NOAA 8	0.147	0.130	88			Mean:	92
M-AB	0.960	0.793	83				
,	0.000	Mean:	68				
			00				
Blue crabs	(Callinecte	s sapidus)		Silver Pe	rch (Bairdiella	chrysoura)	
	<u>2000</u>				<u>2000</u>		
Crescent River	0.078	0.085	109	Troup Creek	0.151	0.17	113
Troup Creek	0.069	0.073	106	Purvis Creek	2.12	2.21	104
Upper Purvis Creek	1.714	1.93	113		2005		
ower Purvis Creek	1.723	1.70	99	Crescent River	0.134	0.165	123
1 GIVIO OTOOK	2005		00	Troup Creek	0.269	0.322	120
O	0.138	0.143	104	Purvis Creek			
	0.130		11/14				101
Crescent River				i uivis Cieek	0.993	1.000	101
Troup Creek	0.193	0.220	114	i divis Creek	0.993		
Troup Creek Upper Purvis Creek				i divis creek	0.993	1.000 <b>Mean:</b>	
Troup Creek Upper Purvis Creek	0.193	0.220	114	T UIVIS CIEEK	0.993		
Troup Creek Upper Purvis Creek	0.193 1.390	0.220 1.240	114 89	T divis cleek	0.993		
Troup Creek Upper Purvis Creek ower Purvis Creek	0.193 1.390 0.878	0.220 1.240 0.884 <b>Mean:</b>	114 89 101			Mean:	
Troup Creek Upper Purvis Creek ower Purvis Creek	0.193 1.390 0.878 (Sciaenops	0.220 1.240 0.884 <b>Mean:</b>	114 89 101		Orum ( <i>Pogonia</i>	Mean:	
Troup Creek Upper Purvis Creek ower Purvis Creek  Red Drum	0.193 1.390 0.878 (Sciaenops 2005	0.220 1.240 0.884 Mean:	114 89 101 <104	Black [	Orum ( <i>Pogonia</i> 2000	Mean: as cromis)	<112
Troup Creek Upper Purvis Creek ower Purvis Creek  Red Drum  Crescent River	0.193 1.390 0.878 (Sciaenops 2005 0.217	0.220 1.240 0.884 Mean: ocellatus)	114 89 101 <b>&lt;104</b>		<u>Orum (<i>Pogonia</i> 2000</u> 0.925	Mean:	
Troup Creek Upper Purvis Creek ower Purvis Creek  Red Drum  Crescent River Troup Creek	0.193 1.390 0.878 (Sciaenops 2005 0.217 0.553	0.220 1.240 0.884 Mean: ocellatus) 0.192 0.422	114 89 101 <104 88 76	<u>Black I</u> Purvis Creek	<u> 2000</u> 2.025 2.005	Mean: as cromis) 0.92	<b>&lt;112</b>
Troup Creek Upper Purvis Creek ower Purvis Creek  Red Drum  Crescent River	0.193 1.390 0.878 (Sciaenops 2005 0.217	0.220 1.240 0.884 Mean: ocellatus)	114 89 101 <b>&lt;104</b>	Black I Purvis Creek Crescent River	Orum ( <i>Pogonia</i> 2000 0.925 2005 0.065	Mean: as cromis) 0.92 0.055	<b>&lt;112</b> 99 85
Troup Creek Upper Purvis Creek ower Purvis Creek  Red Drum  Crescent River Troup Creek	0.193 1.390 0.878 (Sciaenops 2005 0.217 0.553	0.220 1.240 0.884 <b>Mean:</b> 0.192 0.492 0.758	114 89 101 <104 88 76 104	Black [ Purvis Creek Crescent River Troup Creek	Orum ( <i>Pogonia</i> 2000 0.925 2005 0.065 0.082	Mean:  as cromis)  0.92  0.055 0.075	<b>&lt;112</b> 99 85 91
Troup Creek Upper Purvis Creek ower Purvis Creek  Red Drum  Crescent River Troup Creek	0.193 1.390 0.878 (Sciaenops 2005 0.217 0.553	0.220 1.240 0.884 Mean: ocellatus) 0.192 0.422	114 89 101 <104 88 76	Black I Purvis Creek Crescent River	Orum ( <i>Pogonia</i> 2000 0.925 2005 0.065	Mean:  0.92  0.055 0.075 0.823	99 85 91 89
Troup Creek Upper Purvis Creek ower Purvis Creek  Red Drum  Crescent River Troup Creek	0.193 1.390 0.878 (Sciaenops 2005 0.217 0.553	0.220 1.240 0.884 <b>Mean:</b> 0.192 0.492 0.758	114 89 101 <104 88 76 104	Black [ Purvis Creek Crescent River Troup Creek	Orum ( <i>Pogonia</i> 2000 0.925 2005 0.065 0.082	Mean:  as cromis)  0.92  0.055 0.075	<b>&lt;112</b> 99 85 91
Troup Creek Upper Purvis Creek ower Purvis Creek  Red Drum  Crescent River Troup Creek	0.193 1.390 0.878 (Sciaenops 2005 0.217 0.553 0.728	0.220 1.240 0.884 Mean: ocellatus) 0.192 0.422 0.758 Mean:	114 89 101 <104 88 76 104 89	Purvis Creek Crescent River Troup Creek Purvis Creek	Orum ( <i>Pogonia</i> 2000 0.925 2005 0.065 0.082	Mean:  0.92  0.055  0.075  0.823  Mean:	99 85 91 89
Troup Creek Upper Purvis Creek ower Purvis Creek  Red Drum  Crescent River Troup Creek Purvis Creek	0.193 1.390 0.878 (Sciaenops 2005 0.217 0.553 0.728	0.220 1.240 0.884 Mean: ocellatus) 0.192 0.422 0.758 Mean:	114 89 101 <104 88 76 104 89	Purvis Creek Crescent River Troup Creek Purvis Creek	Orum ( <i>Pogonia</i> 2000 0.925 2005 0.065 0.082 0.923	Mean:  0.92  0.055  0.075  0.823  Mean:	99 85 91 89
Troup Creek Upper Purvis Creek ower Purvis Creek  Red Drum  Crescent River Troup Creek Purvis Creek	0.193 1.390 0.878 (Sciaenops 2005 0.217 0.553 0.728	0.220 1.240 0.884 Mean: ocellatus) 0.192 0.422 0.758 Mean:	114 89 101 <104 88 76 104 89	Purvis Creek Crescent River Troup Creek Purvis Creek	Drum ( <i>Pogonia</i> 2000 0.925 2005 0.065 0.082 0.923 Mullet ( <i>Mugil</i>	Mean:  0.92  0.055  0.075  0.823  Mean:	99 85 91 89
Troup Creek Upper Purvis Creek ower Purvis Creek  Red Drum  Crescent River Troup Creek Purvis Creek  Spotted Seatro	0.193 1.390 0.878 (Sciaenops 2005 0.217 0.553 0.728	0.220 1.240 0.884 Mean: ocellatus) 0.192 0.422 0.758 Mean:	114 89 101 <104 88 76 104 89	Purvis Creek Crescent River Troup Creek Purvis Creek	Drum ( <i>Pogonia</i> 2000 0.925 2005 0.065 0.082 0.923  Mullet ( <i>Mugil</i> 2005	Mean: 0.92 0.055 0.075 0.823 Mean:	99 85 91 89 <b>91</b>
Troup Creek Upper Purvis Creek ower Purvis Creek  Red Drum  Crescent River Troup Creek Purvis Creek  Spotted Seatro	0.193 1.390 0.878 (Sciaenops 2005 0.217 0.553 0.728 out (Cynosciae)	0.220 1.240 0.884 Mean: ocellatus) 0.192 0.422 0.758 Mean:	114 89 101 <104 88 76 104 89	Purvis Creek Crescent River Troup Creek Purvis Creek Striped Crescent River	2005 0.925 2005 0.065 0.082 0.923 Mullet (Mugil 2005 0.017	Mean:  0.92  0.055 0.075 0.823  Mean:  cephalus)  0.004	99 85 91 89 <b>91</b>
Troup Creek Upper Purvis Creek ower Purvis Creek  Red Drum  Crescent River Troup Creek Purvis Creek  Spotted Seatro  Purvis Creek	0.193 1.390 0.878 (Sciaenops 2005 0.217 0.553 0.728 out (Cynosciae 2000 0.64 2005	0.220 1.240 0.884 Mean: 0cellatus) 0.192 0.422 0.758 Mean:	114 89 101 <b>&lt;104</b> 88 76 104 <b>89</b> 156	Purvis Creek Crescent River Troup Creek Purvis Creek  Striped Crescent River Troup Creek	Drum ( <i>Pogonia</i> 2000 0.925 2005 0.065 0.082 0.923  Mullet ( <i>Mugil</i> 2005 0.017 0.179	Mean:  0.92 0.055 0.075 0.823 Mean:  cephalus) 0.004 0.079	99 85 91 89 <b>91</b>
Troup Creek Upper Purvis Creek ower Purvis Creek  Red Drum Crescent River Troup Creek Purvis Creek  Spotted Seatro Purvis Creek Crescent River	0.193 1.390 0.878 (Sciaenops 2005 0.217 0.553 0.728 out (Cynosc 2000 0.64 2005 0.117	0.220 1.240 0.884 Mean:  ocellatus)  0.192 0.422 0.758 Mean:  ion nebulosu  1.0 0.116	114 89 101 <104 88 76 104 89	Purvis Creek Crescent River Troup Creek Purvis Creek  Striped Crescent River Troup Creek	Drum ( <i>Pogonia</i> 2000 0.925 2005 0.065 0.082 0.923  Mullet ( <i>Mugil</i> 2005 0.017 0.179	Mean:  0.92 0.055 0.075 0.823 Mean:  cephalus) 0.004 0.079	99 85 91 89 <b>91</b>

#### APPENDIX G

LIFE HISTORIES OF FINFISH AND WILDLIFE EVALUATED IN FOOD-WEB EXPOSURE MODELS FOR ESTUARY AT LCP SITE

- G.1 Red Drum
- G.2 Diamondback Terrapin
- G.3 Red-Winged Blackbird
- G.4 Clapper Rail
- G.5 Green Heron
- G.6 Marsh Rabbit
- G.7 Raccoon
- G.8 River Otter

#### Appendix G

## Life Histories of Finfish and Wildlife Evaluated in Food - Web Exposure Models for Estuary at LCP Chemicals Superfund Site

Appendix G reviews relevant aspects of the life histories and vital statistics of the red drum and seven species of wildlife at the LCP Chemicals Superfund Site (Site) – diamondback terrapin, red-winged blackbird, clapper rail, green heron, marsh rabbit, raccoon, and river otter – employed as predator species evaluated (modeled) for potential hazard associated with uptake of chemicals of potential concern (COPC) from the estuary.

#### G.1 Red Drum (Sciaenops ocellatus)

The red drum is a member of the drum family, Sciaenidae, which ranges in the Atlantic Ocean from Massachusetts to Key West and throughout the Gulf of Mexico (Sea-Stats, 2000). The fish is both euryhaline and eurythermal, although younger fish are best able to tolerate freshwater conditions and can withstand a substantial range in temperature (from about 2 to 33 degrees Celsius (°C).

Red drum may reach up to about 25-35 years in age and weigh as much as about 45 kilograms (kg) (100 lb).

Red drum matures at about 2 years (males) and 4 years (females) of age (Sea-Stats, 2000). Most fish are fall spawners, and move out of the estuary to inlets and passes for this activity. The fertilized eggs are about 1 millimeter (mm) in diameter and contain small oil globules, which keep the eggs afloat as they are transported shoreward by tidal currents. The eggs hatch after about 20 to 30 hours, and the yolk sac is completely absorbed after about three days. The young larvae then feed mostly on plankton as they continue their journey into the estuarine nursery areas.

Inside the estuary, juvenile red drum settles in shallow water along the edges of thickly vegetated seagrass beds presumably for protection (Sea-Stats, 2000). Young-of-the-year fish (juveniles less than 1 year old) move in and out of backwater channels and canals as they develop. By the end of their first year, fish are about 35 centimeters (cm)

(13-14 inches) in length and will remain in the estuary for up to 4 years, where they may reach a size of perhaps 75 cm (30 inches). They will then move out of the estuary and return to inshore areas to spawn, thus repeating the cycle.

Red drum are not long-distance travelers and tend to remain in the same geographical area in which they were spawned (Sea-Stats, 2000). In tagging studies conducted along Florida's Gulf Coast, 50 to 85 percent of fish were recaptured within six miles of their original release site.

The diet of red drum changes as the fish grows (Texas Parks and Wildlife, 2000). The fish are generally bottom feeders, but will feed in the water column when the opportunity arises. Juvenile fish feed primarily on marine worms, shrimp, and small crabs. As the fish grow older, they feed on shrimp, larger crabs, and small fish. A phenomenon called "tailing" occurs when red drum feed in shallow water with their head down in the grass and tail exposed to the air.

Life history of the red drum is similar to the life history of the black drum (*Pogonias cromis*) except that diet of the black drum consists of a higher percentage of mollusks (e.g. mussels and oysters). Indeed, non-reproducing hybrids of the two species have been produced and stocked in Texas (Howells and Garrett, 1992).

#### G.2 Diamondback Terrapin (Malaclemys terrapin)

The diamondback terrapin is the only turtle species found exclusively in brackish coastal marshes and occurs from Massachusetts to Texas (Wood, 1995).

Male terrapins average from 10 to 14 cm in length; whereas females tend to be larger (15 to 24 cm in length) and more abundant than males (Behler and King, 1979; Wood, 1995). The maximum life span of terrapins is not known (Wood, 1995). In a laboratory study of the feeding habits and growth of terrapins (Allen and Littleford, 1955), animals of mixed sexes averaged 9.0 cm in length and 0.14 kg in weight at the end of their second year.

The diamondback terrapin is a highly aquatic species, and occurs out of water for an extended period of time only when nesting (Behler and King, 1979; Wood, 1995). Females typically lay from 4 to 18 pinkish-white eggs in July (Behler and King, 1979),

although more than one clutch may be produced during the nesting season (Wood, 1995). Nests are 12.5- to 15- cm cavities dug at the sandy edges of marshes and dunes above the high-tide line. Terrapins hibernate within and below the intertidal zone of the marsh, singularly or in groups, from November to March (Wood, 1995). Terrapins do not exhibit site fidelity, often using local habitats for short periods and then moving on to other sites (Seigel, 1993).

The diamondback terrapin is capable of foraging aquatically in the upper reaches of the marsh during high tides, although food accessibility, rather than food availability, may be a limiting factor for terrapins in areas of high tidal variability (Tucker et al., 1995). In a South Carolina study (Tucker et al., 1995), 76 to 79 percent of the dietary volume of terrapins was marsh periwinkles, while crabs (including fiddler crabs and blue crabs), barnacles, and clams constituted the remainder of the diet. These authors concluded that diamondback terrapins are clearly prominent, but unrecognized, macro-consumers in salt marsh ecosystems.

#### G.3 Red-Winged Blackbird (Agelaius phoeniceus)

The red-winged blackbird is found from Canada to the West Indies and Costa Rica (Peterson, 1980). In Georgia, it is a year-round resident, with a territory that may range from 0.07 hectares (ha) (0.17 acres; Case and Hewitt, 1963) to 0.30 ha (0.74 acres; Nero, 1956). It is primarily a marsh bird, but will nest near virtually any body of water and occasionally breeds in upland pastures.

Adult male blackbirds average 0.064 kg in weight, while the female averages 0.042 kg (Clench and Leberman, 1978).

A pair of red-winged blackbirds raises two or three broods per season, building a new nest for each brood (Bull and Farrand, 1977). Nests are well-formed cups built from marsh grasses or reeds attached to growing marsh vegetation or, alternatively, built in bushes in the marsh. Each clutch consists of an average of from three to five young. Blackbird chicks may spend 12 days in the egg and 10 additional days as a nestling (Daniel, 1957). Males obtain adult plumage after about 1 year (Gill, 1990).

Red-winged blackbirds feed primarily on insects, small fruits, seeds and small aquatic life (Peterson, 1980). Insects are the dominant food item during the breeding season (Orians, 1980).

#### G.4 Clapper rail (Rallus longirostris)

The clapper rail is found primarily along the east coast if the United States from New Hampshire south to the Florida Keys and then to the Caribbean islands and along the Gulf Coast to Texas (U.S. Geological Survey [USGS], 2000). There is also a west coast population that extends from San Francisco Bay to Mexico. Southern populations, as in Georgia, are year-round residents, while northern populations winter in the southern part of their breeding range.

Adult clapper rails average from between 32 to 41 cm in length and between 0.16 to 0.40 kg in weight (USGS, 2000). Males average about 20 percent larger than females. The maximum recorded age of a clapper rail is 7 years and 6 months (Edelman and Conway, 1998).

Clapper rails are solitary ground nesters in salt, brackish, and freshwater marshes, as well as in mangrove swamps (USGS, 2000). A typical clutch consists of from 7 to 11 buff or olive-buff eggs in a basket-shaped nest of aquatic vegetation or tidal wrack hidden on a firm bank or under a small bush. Young rails are extremely precocial (Ehrlich et al., 1988).

Cumbee, et al (2008) reported a mean home range of clapper rails in the LCP estuary area as 1.2 ha or approximately 3 acres.

Clapper rails are opportunistic omnivores (Hear, 1982), but prefer crustaceans if available (USGS, 2000). In a study of rails from the Atlantic and Gulf coasts (Heard, 1982), crabs, mostly fiddler crabs, were the dominant prey (71 percent of diet, based on occurrence in stomachs) during the warmer months when they were available. During this time, insects were also eaten (10 percent of diet). In the colder months, snails became a major part of the diet. Fish remains were also part of the diet (1.6 percent occurrence).

#### G.5 Green Heron (Butorides striatus)

The green heron is found from the northwestern United States and Canada south to northern South America (Peterson, 1980). Along the southeastern coast of the United States, including Georgia, it is a year-round resident. It is the most widely distributed of all herons, and occurs near brooks, ponds, and marshes, whether freshwater or marine. Its territory may range from 1 ha (2.5 acres) to 3.3 ha (8 acres) during the breeding season (Palmer, 1962).

Adult green herons are approximately 45 cm in length and range from about 0.20 to 0.25 kg in weight (University of Guelph, 2000). Males and females are similar in size.

Green herons are usually solitary nesters; although the species may nest in colonies of up to about 30 pairs, sometimes with other herons or grackles (Pough, 1951). Low shrubs or marsh hummocks may be the nesting site, but the site need not be near water. The nest is a frail, unlined flat platform of loose sticks. The four or five eggs placed in the nest area are pale, glaucous green.

Diet of green herons has been reported (Palmer, 1962) to consist of 44 percent fish, 21 percent insects, 24 percent spiders and miscellaneous invertebrates, and 1 percent crustaceans.

#### G.6 Marsh Rabbit (Sylvilagus palustris)

The marsh rabbit is restricted to the Coastal Plain of extreme southeastern Virginia southwestward to southern Alabama (Georgia Museum Natural History, 2001a). It also occurs throughout Florida and on the larger barrier islands of North Carolina.

Adult marsh rabbits weigh about 1 kg – or 2 to 3 pounds (lbs) (Palmer, 1954). They range in length from 40 to 45 cm (Georgia Museum, 2001a).

Marsh rabbits breed throughout the year (Georgia Museum Natural History, 2001a). A mature female may produce five or six litters per year. After a 30- to 31-day gestation period, three to five young are born in a nest located in a shallow depression on the ground and made of dried grasses lined with the soft under-fur of the female. Young remain in the nest until they are weaned and may reach sexual maturity within a year.

Marsh rabbits are nocturnal, foraging at night for food (Georgia Museum Natural History, 2001a). Diet of rabbits consists strictly of vegetation, which may include cane, cattails, rushes, and the leaves and twigs of woody plants.

#### G.7 Raccoon (*Procyon lotor*)

The raccoon is ubiquitous throughout the United States and also occurs throughout Mexico and Central America (Kaufmann, 1982). Although adaptable to nearly all environments, it prefers wetland sites associated with rivers, streams, marshes, swamps, and lakes (Georgia Museum Natural History, 2001b).

Adult female raccoons in Alabama have been reported (Jognson, 1970) to exhibit a mean weight of 3.7 kg (8 lb). Other size measurements have been reported (Georgia Museum Natural History, 2001b) as from 5.4 to 11.8 kg (12 to 26 lb) in weight and from 71.1 to 83.8 cm in total length.

Raccoons breed from December to June, with peak breeding occurring in February and March (Georgia Museum Natural History, 2001b). A litter of from one to seven young is born about 2 months later. Young raccoons (termed kits) are weaned at from 10 to 12 weeks of age, at which time they begin to travel on foraging trips with their mother. Raccoons reach sexual maturity in the spring following their birth.

Raccoons are omnivores, feeding on whatever is available during a given season (Georgia Museum Natural History, 2001b). Their diet may include fruits, berries, nuts, acorns, insects, crayfish, crabs, fishes, turtle eggs, birds and their eggs, and small mammals. In a study conducted on St Catherines Island, Georgia (Harman and Stains, 1979), the dominant food of raccoons was fiddler crabs, which constituted from 57 to 89 percent of the volume of total animal food depending on season of the year. Other foods included unknown species of crabs and fishes.

#### **G.8** River Otter (*Lutra canadensis*)

The river otter occurs throughout most of the United States and Canada (Georgia Museum Natural History, 2001c). It ranges widely along rivers, streams, swamps, and marshes. An individual otter may move from 77 to 97 kilometers (km) (48 to 60 miles) along a waterway in a season, although average movement is from 5 to 16 km (3 to 10 miles). In a Texas coastal marsh, the home range of adult female otters has been

reported (Foy, 1984) to be 295 ha (730 acres), as compared to just 195 ha of available marsh at the LCP Site. Otters typically live for 5 to 7 years in the wild (Georgia Museum Natural History, 2001c).

Adult female river otters in Georgia have been reported (Lauhachinda, 1978) to exhibit a mean weight of 6.7 kg (15 lb). Other size measurements have been reported (Georgia Museum Natural History, 2001c) as from 5 to 10.4 kg (11 to 23 lb) in weight and from 0.9 to 1.2 m in total length.

River otters mate in late winter and early spring (Georgia Museum Natural History, 2001c). After mating, a delay of about 290 to 380 days occurs before development of the embryos begins. Gestation takes 60 to 63 days after embryos are implanted in the uterus. In March or April, one to six young (termed kits) are born in a leaf- and grass-lined den constructed in an old muskrat lodge, abandoned burrow, or hollow tree close to a water source. The young remain with the female until the breeding season after their birth. River otters are capable of breeding when they reach 2 years of age.

River otters are primarily piscivores, with 80 percent of their diet consisting of various families of fishes (Twill, 1974). Other food items included crustaceans, amphibians, and birds. Otters (Erlanger, 1968) appear to prefer larger fishes (15 to 17 cm) over smaller fishes (<15 cm).

#### References

- Allen, J., and Littleford, R. 1955. Observations on the feeding habits and growth of immature diamondback terrapins. *Herpetologica* 11: 77-80
- Behler, J., and King, F. 1979. The Audubon Society field guide to North American reptiles and amphibians, Alfred A. Knopf. New York, NY. 743 pp.
- Bull, J., and Farrand, J. Jr. 1977. The Audubon society field guide to North American birds, eastern region. Alfred A. Knopf. New York, NY.
- Case, N. A, and Hewitt, O.H. 1963. Nesting and productivity of the red-winged blackbird in relation to habitat. <u>In</u>: The living bird. Second annual conference of the Cornell Laboratory of Ornithology. Cornell Univ. Press. Ithaca, NY. pp. 7-20.
- Clench, M., and Leberman, R. 1978. Weights of 151 species of Pennsylvania birds analyzed by month, age, and sex. Bull. Carnegie Mus. Nat. Hist. 5.
- Cumbee, J.C., Gains, K.F., Mills, G.L., Garvin, N., Stephens, W.L., Novak, J.M. and Brisbin, I.L. 2008. Clapper rail as indicators of mercury and PCB bioavailability in a Georgia saltmarsh system. *Ecotoxicology* 17: 485-494.
- Daniel, J., 1957. An embryological comparison of the domestic fowl and the red-winged blackbird. *Auk.* 74: 340-358.
- Edelman, W., and Conway, C.. 1998. Clapper rail <u>In</u>: The birds of North America (A. Poole and F. Gill, Eds.). No. 340. 32 pp.
- Enrlich, P., Dobkin, D., and Wheye, D. 1988. The birders handbook. Simon & Schuster. New York, NY. 785 pp.
- Erlinge, S. 1968. Food studies on captive otters Lutra lutra L. Oikos 19(2): 259-270.
- Foy, M. 1984. Seasonal movement, home range, and habitat use of river otter in southeastern Texas. (Master's Thesis). Texas A& M Univ. College Station, TX.

- Gill, F. 1990. Ornithology. H. Freeman and Co. New York, NY. 660 pp.
- Georgia Museum of Natural History. 2001a Mammals: *Sylvilagus palustris*. Internet. 2 pp.
- Georgia Museum of Natural History. 2001b. Mammals: raccoon. Internet. 2 pp.
- Georgia Museum of Natural History. 200lc. Mammals: Otter. Internet. 2 pp.
- Harman, D., and Stains, H.. 1979. The raccoon (*Procyon lotor*) on St. Catherines Island, Georgia: 5 winter, spring, and summer food habits. *Amer. Mus. Nat. Hist.* 2679: pp 1-24.
- Heard, R. 1982. Observations on the food and food habits of clapper rails (*Rallus longirostris Boddaert*) from tidal marshes along the east and gulf coasts of the United States. *Gulf Res.* Rep. 7 (2): 125-135.
- Howells, R., and Garrett, G. 1992. Status of some exotic sport fishes in Texas waters. *Tex. J. Sci.* 44 (3): 317 -324.
- Johnson, A. 1970. Biology of the raccoon (*Procyon lotor varius* Nelson and Goldman) in Alabama. Bull. 402. Alabama Cooperative Wildlife Research Unit. Auburn Univ.
- Kaufmann, J. 1982. Raccoon and allies. <u>In</u>: Wild mammals of North America (J. Chapman and G. Feldhamer, Eds.). John Hopkins Univ. Press. Baltimore, MD. pp. 567-585.
- Lauhachinda, V. 1978. Live history of the river otter in Alabama with emphasis on food habits (Ph. D. Thesis). Univ. of Alabama. Tuscaloosa, AL.
- Nero, R. 1956. A behavior study of the red-winged blackbird. II Territoriality. Wilson Bull. 68: 129-150.
- Orians, G. 1980. Some adaptations of marsh-nesting birds. Princeton Univ. Press. Princeton, NJ.

- Palmer, R. 1962. Handbook of North American birds. Vol. 1. Yale Univ. Press. New Haven, CT.
- Peterson, R. T. 1980. A field guide to the birds. Houghton Mifflin Co. Boston, MA. 384 pp.
- Pough, R. 1951. Audubon water bird guide. Doubleday & Co. Garden City, NY. 352 pp.
- Sea-Stats. 2000. Red drum. Florida Fish & Wildlife Conservation Commission. Florida Marine Research Institute. Tallahassee, FL. 4 pp.
- Seigel, R. 1993. Apparent long-term decline in diamondback terrapin populations at the Kennedy Space Center, Florida. *Herpetol. Rev.* 24: 102-103.
- Texas Parks and Wildlife. 2000. The red drum in Texas. Internet. Texas Parks and Wildlife. Austin, TX. 4 pp.
- Toweill, D. 1974. Winter food habits of river otters in western Oregon. *J. Wildl. Manage.* 38 (1): 107-111.
- Tucker, A., FitzSimmons, N., and Gibbons, J. 1995. Resource partitioning by the estuarine turtle *Malaclemys terrapin*: trophic, spatial, and temporal foraging constraints. *Herpetologica* 51 (2): 167-181.
- U. S. Geological Survey. 2000. Biological and ecotoxicological characteristics of terrestrial vertebrate species residing in estuaries: clapper rail. Internet. Washington, DC. 7 pp.
- University of Guelph. 2000. Green heron, Butorides striatus. Internet. 1 pp.
- Wood, R. 1995. Diamondback terrapin. <u>In</u>: Living resources of the Delaware estuary (L. Dove and R. Nyman, Eds.). Delaware Estuary Program. pp. 229-304.

#### APPENDIX H

WORKSHEETS FOR FINFISH AND WILDLIFE FOOD-WEB EXPOSURE MODELS FOR ESTUARY AT LCP SITE

#### A. Wildlife Worksheet

1. The basic equation used to calculate HQs for wildlife is:

### HQ: {[(CF1 x P1) + (... x ...) + (CF4 x P4)] [FIR] + [CS] [SIR] + [CW] [WIR] } {TUF} {AUF} / BW

with CF1, ..., CF4 = mean concentrations of COPC in food items of wildlife (mg/kg, dry wt); P1, ..., P4 = percentage of each food item in diet of wildlife (total for all food items = 1); FIR = food ingestion rate (kg dry wt / day); CS = mean concentration of COPC in sediment (mg/kg, dry wt); SIR = sediment ingestion rate (kg dry wt / day); CW = mean concentration of COPC in water (mg / L); WIR = water ingestion rate (L / day); TUF = time-use factor; AUF = area-use factor; BW = body weight of wildlife (kg / wet wt); and TRV = toxicity reference value (mg / kg BW / day.

- 2. HQs were not developed for PAHs because a previous investigation (CDR Environmental Specialists and GeoSyntec Consultants, 2001) indicated that PAHs were almost never detected in evaluated prey of wildlife and were demonstrated not to be hazardous in worst-case examples.
- 3. Estimated environmental exposure (EEE) of wildlife to COPC was derived by the following processes:
  - a. EEE of wildlife to COPC was determined for all exposure areas i.e., Eastern Creek, Main Canal, Purvis Creek,
     Western Creek Complex, Domains 1 through 4, Blythe Island, and Troup Creek Reference.
     In addition, Area A is included which is comprised of Eastern Creek, Main Canal, and Western Creek complex
  - b. Mean and 95UCL Concentrations of COPC in various environmental media were derived from the following sources:

• Surface water: Table 4-2a

• Surface sediment: Table 4-3a (with methylmercury based on mean relationship in Figure 8)

• Cordgrass: Table 4-6a

• Insects: CDR Environmental Specialists and GeoSyntec Consultants, 2001

Fiddler crabs: Table 4-8a
Blue crabs: Table 4-9a
Mummichogs: Table 4-10a
Silver perch: Table 4-11a

- c. Concentrations of COPC in sediment and blue crabs from Purvis Creek are based on mean values for North and South Purvis Creek
- d. The strategy for determining body burdens of the various forms of mercury in food items of wildlife was as follows:
  - The mean concentration of total mercury in a food item from a particular area (i. e., domain or creek) was identified from the above-referenced tables.
  - Methylmercury body burden in a food item from a particular area was determined as the product of the mean concentration of total mercury in that food item and the <u>overall</u> (all areas considered collectively) percentage (%) of total mercury in the form of methylmercury. These percentages were -1) cordgrass: 9.93%; 2) insects: 56%; 3) fiddler crabs: 68%; 4) blue crabs: 100%; 5) mummichogs: 90%; and 6) silver perch: 100%.
  - Body burden of inorganic mercury in a food item from a particular area was derived by subtracting methylmercury body burden from mean total mercury concentration.
- e. Concentration of a COPC in a food item from one evaluated area was extrapolated to another area(s) if the food item was not represented in the latter area(s). This occasionally occurred for all food items except cordgrass..
- f. The diet of a wildlife species in a particular area was altered from its hypothetical diet if one (or more) of its hypothetical food items was not collected (was not present) in the area. In these cases, diet was proportionately shifted to remaining food items. This shift occurred in several areas for the following wildlife --
  - Diamondback terrapin: 90% fiddler crabs and 10% mummichogs to 100% fiddler crabs
  - Red-winged blackbird: 90% insects and 10% fiddler crabs to 100% fiddler crabs
  - Clapper rail: 85% fiddler crabs, 10% insects, and 5% mummichogs to 90% fiddler crabs and 10% mummichogs
  - River otter: 30% mummichogs, 50% silver perch, 10% fiddler crabs, and 10% blue crabs **to** 60% silver perch, 20% fiddler crabs, and 20% blue crabs
- g. Exposure of wildlife to COPC in water was determined for water from either Troup Creek (for the reference purposes) or the site (grand mean values) since data were not available for fresh-water sources of water.
- h. Evaluated, but undetected, COPC in all environmental media (food items, sediment, and water) were assigned 1/2 of their detection limits.
- i. TUFs and AUFs for wildlife were assumed to be unity (1) except in the cases of AUFs for the raccoon and river otter.

Table H-1. Estimated Exposure Concentrations - Diamondback terrapin (Malaclemys terrapin)

	Conc FC	Fraction FC	Conc	Fraction Mc	Food IR	Conc	Sed IR	Conc Water	Water	Time UF	Area UF	Body Weight	Estimated Exposure	T NOAEL	RV LOAEL	Hazard NOAEL	Quotient LOAEL
COPC Methyl Mercury	(mg/kg)		(mg/kg)		(kg/day)	(mg/kg)	(kg/day)	(mg/L)	(L/day)			(kg)	(mg/kgBW/day)	(mg/kg	BW/day)	HQ	HQ
Locations Reference			1	1			1			1		, ,					
UCL95 Mean	0.03 0.03	0.9 0.9	0.10 0.08	0.10 0.10	0.00059 0.00059	0.0001 0.0001	0.000027 0.000027	1.00E-07 5.00E-08	0.000	1.0 1.0	1.0 1.0	0.14 0.14	0.00017 0.00014	0.5 0.5	5 5	0.0003 0.0003	0.00003 0.00003
<b>Domain 1</b> UCL95 Mean	0.69 0.65	0.9 0.9	1.40 0.78	0.10 0.10	0.00059 0.00059	0.009 0.004	0.000027 0.000027	9.60E-07 7.00E-07	0.000	1.0 1.0	1.0 1.0	0.14 0.14	0.0032 0.0028	0.5 0.5	5 5	0.006 0.006	0.0006 0.0006
Domain 2 UCL95 Mean	0.21 0.19	0.9 0.9	0.32 0.26	0.10 0.10	0.00059 0.00059	0.005 0.003	0.000027 0.000027	9.60E-07 7.00E-07	0.000 0.000	1.0 1.0	1.0 1.0	0.14 0.14	0.0009 0.0008	0.5 0.5	5 5	0.002 0.002	0.0002 0.0002
Domain 3 UCL95 Mean	0.20 0.18	0.9 0.9	0.35 0.32	0.10 0.10	0.00059 0.00059	0.002 0.002	0.000027 0.000027	9.60E-07 7.00E-07	0.000 0.000	1.0 1.0	1.0 1.0	0.14 0.14	0.0009 0.0008	0.5 0.5	5 5	0.002 0.002	0.0002 0.0002
<b>Domain 4</b> UCL95 Mean	0.16 0.15	0.9 0.9	0.22 0.18	0.10 0.10	0.00059 0.00059	0.001 0.001	0.000027 0.000027	9.60E-07 7.00E-07	0.000 0.000	1.0 1.0	1.0 1.0	0.14 0.14	0.0007 0.0006	0.5 0.5	5 5	0.001 0.001	0.0001 0.0001
Purvis Creek UCL95 Mean	0.10 0.09	0.9 0.9	0.22 0.18	0.10 0.10	0.00059 0.00059	0.001 0.001	0.000027 0.000027	9.60E-07 7.00E-07	0.000 0.000	1.0 1.0	1.0 1.0	0.14 0.14	0.0005 0.0004	0.5 0.5	5 5	0.001 0.001	0.0001 0.0001
<i>Main Canal</i> UCL95 Mean	0.41 0.39	0.9 0.9	0.70 0.52	0.10 0.10	0.00059 0.00059	0.007 0.006	0.000027 0.000027	9.60E-07 7.00E-07	0.000 0.000	1.0 1.0	1.0 1.0	0.14 0.14	0.0019 0.0017	0.5 0.5	5 5	0.004 0.003	0.0004 0.0003
<b>Eastern Creek</b> UCL95 Mean	0.57 0.54	0.9 0.9	1.83 0.64	0.10 0.10	0.00059 0.00059	0.020 0.016	0.000027 0.000027	9.60E-07 7.00E-07	0.000	1.0 1.0	1.0 1.0	0.14 0.14	0.0029 0.0023	0.5 0.5	5 5	0.006 0.005	0.0006 0.0005
<b>Western Creek Complex</b> UCL95 Mean	0.21 0.19	0.9 0.9	0.32 0.26	0.10 0.10	0.00059 0.00059	0.003 0.002	0.000027 0.000027	9.60E-07 7.00E-07	0.000 0.000	1.0 1.0	1.0 1.0	0.14 0.14	0.0009 0.0008	0.5 0.5	5 5	0.002 0.002	0.0002 0.0002
<b>Area A</b> UCL95 Mean	0.57 0.54	0.9 0.9	1.40 0.78	0.10 0.10	0.00059 0.00059	0.011 0.010	0.000027 0.000027	9.60E-07 7.00E-07	0.000	1.0 1.0	1.0 1.0	0.14 0.14	0.0028 0.0024	0.5 0.5	5 5	0.006 0.005	0.0006 0.0005
<b>Blythe Island</b> UCL95 Mean	0.14 0.13	0.9 0.9	0.15 0.14	0.10 0.10	0.00059 0.00059	0.0003 0.0002	0.000027 0.000027	9.60E-07 7.00E-07	0.000 0.000	1.0 1.0	1.0 1.0	0.14 0.14	0.0006 0.0005	0.5 0.5	5 5	0.001 0.001	0.0001 0.0001
Aroclor 1268 Location																	
Reference UCL95 Mean	0.38 0.22	0.9 0.9	0.22 0.15	0.10 0.10	0.00059 0.00059	0.08 0.05	0.000027 0.000027	0.00060 0.00042	0.000	1.0	1.0	0.14 0.14	0.0015 0.0009	0.32 0.32	3.2 3.2	0.005 0.003	0.0005 0.0003
<b>Domain 1</b> UCL95 Mean	2.49	0.9	0.156 0.087	0.10 0.10	0.00059 0.00059	23.43 11.45	0.000027 0.000027	0.00038 0.00030	0.000	1.0	1.0	0.14 0.14	0.0140 0.0107	0.32 0.32	3.2 3.2	0.04 0.03	0.004 0.003
Domain 2 UCL95 Mean	1.15	0.9	2.13	0.10 0.10	0.00059 0.00059	5.05	0.000027 0.000027	0.00038 0.00030	0.000	1.0	1.0	0.14 0.14	0.0062 0.0054	0.32 0.32	3.2 3.2	0.02 0.02	0.002 0.002
<b>Domain 3</b> UCL95 Mean	0.93 0.81	0.9	3.29 2.87	0.10 0.10	0.00059 0.00059	2.08 1.67	0.000027 0.000027	0.00038 0.00030	0.000	1.0	1.0 1.0	0.14 0.14	0.0053 0.0046	0.32 0.32	3.2 3.2	0.02 0.01	0.002 0.001
<b>Domain 4</b> UCL95 Mean	0.71 0.61	0.9 0.9	1.22 1.01	0.10 0.10	0.00059 0.00059	1.36 1.14	0.000027 0.000027	0.00038 0.00030	0.000	1.0	1.0	0.14 0.14	0.0035 0.0030	0.32 0.32	3.2 3.2	0.01 0.01	0.001 0.001
Purvis Creek UCL95 Mean	0.98 0.73	0.9	1.22 1.01	0.10 0.10	0.00059 0.00059	5.07 3.78	0.000027 0.000027	0.00038 0.00030	0.000	1.0	1.0	0.14 0.14	0.0052 0.0039	0.32 0.32	3.2 3.2	0.02 0.01	0.002 0.001
Main Canal UCL95 Mean	3.26 2.86	0.9 0.9	5.06 4.28	0.10 0.10	0.00059 0.00059	41.71 27.64	0.000027 0.000027	0.00038 0.00030	0.000 0.000	1.0	1.0 1.0	0.14 0.14	0.0225 0.0180	0.32 0.32	3.2 3.2	0.07 0.06	0.007 0.006
Eastern Creek UCL95 Mean	2.75 2.49	0.9	7.27 6.06	0.10 0.10	0.00059 0.00059	65.28 49.57	0.000027 0.000027	0.00038 0.00030	0.000	1.0	1.0 1.0	0.14 0.14	0.0261 0.0216	0.32 0.32	3.2 3.2	0.08 0.07	0.008
Western Creek Complex UCL95 Mean	1.15	0.9	2.13 1.62	0.10 0.10 0.10	0.00059 0.00059	3.84	0.000027 0.000027	0.00038 0.00030	0.000	1.0	1.0	0.14	0.0060 0.0053	0.32 0.32	3.2	0.02 0.02	0.002
Area A UCL95 Mean	2.75	0.9	6.42 5.58	0.10 0.10 0.10	0.00059 0.00059	40.14 32.78	0.000027 0.000027	0.00038 0.00030	0.000	1.0	1.0	0.14 0.14	0.0209 0.0181	0.32 0.32	3.2	0.07 0.06	0.007 0.006
<b>Blythe Island</b> UCL95 Mean	0.24 0.22	0.9 0.9	0.84 0.72	0.10 0.10	0.00059 0.00059	0.25 0.20	0.000027 0.000027	0.00038 0.00030	0.000 0.000	1.0 1.0	1.0 1.0	0.14 0.14	0.0013 0.0012	0.32 0.32	3.2 3.2	0.004 0.004	0.0004 0.0004
Lead																	
Location  Reference UCL95	0.84	0.9	1.43	0.10	0.00059	20.41	0.000027	0.0100	0.000	1.0	1.0	0.14	0.0077	0.28	2.8	0.03	0.003
Mean  Domain 1  UCL95	0.71	0.9	0.87	0.10	0.00059	17.64	0.000027	0.0057	0.000	1.0	1.0	0.14	0.0065	0.28	2.8	0.02	0.002
Mean <b>Domain 2</b> UCL95	7.93 0.56	0.9	1.26	0.10	0.00059	31.02 63.03	0.000027	0.0013	0.000	1.0	1.0	0.14	0.0363	0.28	2.8	0.13	0.013
Mean <b>Domain 3</b> UCL95	3.34	0.9	0.93	0.10	0.00059	40.85 132.5	0.000027	0.0013	0.000	1.0	1.0	0.14	0.0102	0.28	2.8	0.04	0.004
Mean <b>Domain 4</b> UCL95	0.57	0.9	2.41	0.10	0.00059	90.72	0.000027	0.0013	0.000	1.0	1.0	0.14	0.0265	0.28	2.8	0.09	0.009
Mean Purvis Creek UCL95	0.53	0.9	0.43	0.10	0.00059	21.66	0.000027	0.0013	0.000	1.0	1.0	0.14	0.0064	0.28	2.8	0.02	0.002
Mean  Main Canal  UCL95	0.92	0.9	0.65	0.10	0.00059	23.08	0.000027	0.0016	0.000	1.0	1.0	0.14	0.0088	0.28	2.8	0.03	0.003
Mean Eastern Creek	1.45	0.9	0.46	0.10	0.00059	26.07	0.000027	0.0013	0.000	1.0	1.0	0.14	0.0107	0.28	2.8	0.04	0.004
UCL95 Mean Western Creek Complex	7.58 5.21	0.9	0.863	0.10	0.00059	41.5 35.71	0.000027	0.0016 0.0013	0.000	1.0	1.0	0.14	0.0371 0.0269	0.28	2.8	0.13 0.10	0.013
UCL95 Mean <i>Area A</i>	0.56 0.52	0.9 0.9	1.26 0.93	0.10 0.10	0.00059 0.00059	30.1 28.98	0.000027 0.000027	0.0016 0.0013	0.000	1.0 1.0	1.0 1.0	0.14 0.14	0.0085 0.0080	0.28 0.28	2.8 2.8	0.03 0.03	0.003 0.003
UCL95 Mean <i>Blythe Island</i>	7.58 5.21	0.9 0.9	0.76 0.62	0.10 0.10	0.00059 0.00059	34.05 31	0.000027 0.000027	0.0016 0.0013	0.000 0.000	1.0 1.0	1.0 1.0	0.14 0.14	0.0356 0.0260	0.28 0.28	2.8 2.8	0.13 0.09	0.013 0.009
UCL95 Mean	0.54 0.504	0.9 0.9	0.29 0.25	0.10 0.10	0.00059 0.00059	18.26 16.50	0.000027 0.000027	0.0016 0.0013	0.000 0.000	1.0 1.0	1.0 1.0	0.14 0.14	0.0057 0.0052	0.28 0.28	2.8 2.8	0.02 0.02	0.002 0.002
Notes: COPC - Chemical of Potential																	

COPC - Chemical of Potential Concern

Conc - Concentration FC - Fiddler Crab Mc - Mummichog IR - Ingestion Rate Sed - Sediment

UF - Use Factor NOAEL - No Observed Adverse Effect Level LOAEL - Lowest Observed Adverse Effect Level

HQ - Hazard Quotient

Table H-2. Estimated Exposure Concentrations - Red-winged blackbird (Agelaius phoeniceus)

			•	-	•	•		1				•		1	-		
	Conc	Fraction	Conc	Fraction	Food	Conc	Sed	Conc	Water	Time	Area	Body	Estimated		RV •		Quotient
0000	Insects	Insects	FC	FC	IR (log/day)	Sed	IR ((/-l)	Water	IR	UF	UF	Weight	Exposure	NOAEL	LOAEL	NOAEL	LOAEL
COPC	(mg/kg)		(mg/kg)		(kg/day)	(mg/kg)	(kg/day)	(mg/L)	(L/day)			(kg)	(mg/kgBW/day)	(mg/kg	BW/day)	HQ	HQ
Methyl Mercury  Locations																	
Reference																	
UCL95	0.018	0.9	0.03	0.10	0.0086	0.0001	0.00017	1.00E-07	0.0065	1.0	1.0	0.037	0.0046	0.02	0.06	0.23	0.08
Mean	0.018	0.9	0.03	0.10	0.0086	0.0001	0.00017	5.00E-08	0.0065	1.0	1.0	0.037	0.0044	0.02	0.06	0.22	0.07
Domain 1		•	•		•	•						•					-
UCL95	0.018	0.9	0.69	0.10	0.0086	0.009	0.00017	9.60E-07	0.0065	1.0	1.0	0.037	0.0199	0.02	0.06	1.00	0.33
Mean	0.018	0.9	0.65	0.10	0.0086	0.004	0.00017	7.00E-07	0.0065	1.0	1.0	0.037	0.0188	0.02	0.06	0.94	0.31
Domain 2 UCL95	0.018	0.9	0.21	0.10	0.0086	0.005	0.00017	9.60E-07	0.0065	1.0	1.0	0.037	0.0087	0.02	0.06	0.43	0.14
Mean	0.018	0.9	0.21	0.10	0.0086	0.003	0.00017	7.00E-07	0.0065	1.0	1.0	0.037	0.0087	0.02	0.06	0.43	0.14
Domain 3	0.010	0.0	0.10	0.10	0.0000	0.000	0.00011	7.002 07	0.0000	1.0	1.0	0.007	0.0002	0.02	0.00	0.11	0.11
UCL95	0.018	0.9	0.20	0.10	0.0086	0.002	0.00017	9.60E-07	0.0065	1.0	1.0	0.037	0.0084	0.02	0.06	0.42	0.14
Mean	0.018	0.9	0.18	0.10	0.0086	0.002	0.00017	7.00E-07	0.0065	1.0	1.0	0.037	0.0080	0.02	0.06	0.40	0.13
Domain 4		_	_														
UCL95	0.018	0.9	0.16	0.10	0.0086	0.001	0.00017	9.60E-07	0.0065	1.0	1.0	0.037	0.0076	0.02	0.06	0.38	0.13
Mean	0.018	0.9	0.15	0.10	0.0086	0.001	0.00017	7.00E-07	0.0065	1.0	1.0	0.037	0.0072	0.02	0.06	0.36	0.12
Purvis Creek UCL95	0.018	0.9	0.10	0.10	0.0086	0.001	0.00017	9.60E-07	0.0065	1.0	1.0	0.037	0.0060	0.02	0.06	0.30	0.10
Mean	0.018	0.9	0.10	0.10	0.0086	0.001	0.00017	7.00E-07	0.0065	1.0	1.0	0.037	0.0058	0.02	0.06	0.29	0.10
Main Canal																	
UCL95	0.018	0.9	0.41	0.10	0.0086	0.007	0.00017	9.60E-07	0.0065	1.0	1.0	0.037	0.0134	0.02	0.06	0.67	0.22
Mean	0.018	0.9	0.39	0.10	0.0086	0.006	0.00017	7.00E-07	0.0065	1.0	1.0	0.037	0.0128	0.02	0.06	0.64	0.21
Eastern Creek		T	T		1	1				ı	1	1		1			
UCL95	0.018	0.9	0.57	0.10	0.0086	0.020	0.00017	9.60E-07	0.0065	1.0	1.0	0.037	0.0171	0.02	0.06	0.86	0.29
Mean Western Creek Complex	0.018	0.9	0.54	0.10	0.0086	0.016	0.00017	7.00E-07	0.0065	1.0	1.0	0.037	0.0163	0.02	0.06	0.82	0.27
UCL95	0.018	0.9	0.21	0.10	0.0086	0.003	0.00017	9.60E-07	0.0065	1.0	1.0	0.037	0.0087	0.02	0.06	0.43	0.14
Mean	0.018	0.9	0.19	0.10	0.0086	0.002	0.00017	7.00E-07	0.0065	1.0	1.0	0.037	0.0082	0.02	0.06	0.41	0.14
Area A																	
UCL95	0.018	0.9	0.57	0.10	0.0086	0.011	0.00017	9.60E-07	0.0065	1.0	1.0	0.037	0.0171	0.02	0.06	0.85	0.28
Mean	0.018	0.9	0.54	0.10	0.0086	0.010	0.00017	7.00E-07	0.0065	1.0	1.0	0.037	0.0163	0.02	0.06	0.81	0.27
Blythe Island UCL95	0.018	0.9	0.14	0.10	0.0086	0.0003	0.00017	9.60E-07	0.0065	1.0	1.0	0.037	0.0071	0.02	0.06	0.35	0.12
Mean	0.018	0.9	0.14	0.10	0.0086	0.0003	0.00017	7.00E-07	0.0065	1.0	1.0	0.037	0.0068	0.02	0.06	0.34	0.12
										Į.	ı.			L	<u>U</u>		
Inorganic Mercury																	
Location																	
Reference	0.040	0.0	0.00	0.40	0.0000	0.40	0.00017	0.000047	0.0005			0.007	0.0040	0.45	0.00	0.04	0.04
UCL95 Mean	0.018 0.018	0.9 0.9	0.02 0.01	0.10 0.10	0.0086 0.0086	0.10 0.08	0.00017	0.000017 0.000008	0.0065 0.0065	1.0 1.0	1.0 1.0	0.037 0.037	0.0046 0.0044	0.45 0.45	0.90 0.90	0.01 0.01	0.01 0.00
Domain 1	0.010	0.0	0.01	0.10	0.0000	0.00	0.00017	0.000000	0.0000	1.0	1.0	0.007	0.0044	0.40	0.50	0.01	0.00
UCL95	0.018	0.9	0.33	0.10	0.0086	11.501	0.00017	0.000057	0.0065	1.0	1.0	0.037	0.0642	0.45	0.90	0.14	0.07
Mean	0.018	0.9	0.30	0.10	0.0086	4.846	0.00017	0.000044	0.0065	1.0	1.0	0.037	0.0331	0.45	0.90	0.07	0.04
Domain 2				T			1	1		ı	1		1		_	1	
UCL95	0.018	0.9	0.10	0.10	0.0086	5.839	0.00017	0.000057	0.0065	1.0	1.0	0.037	0.0329	0.45	0.90	0.07	0.04
Mean  Domain 3	0.018	0.9	0.09	0.10	0.0086	3.850	0.00017	0.000044	0.0065	1.0	1.0	0.037	0.0235	0.45	0.90	0.05	0.03
UCL95	0.018	0.9	0.09	0.10	0.0086	2.225	0.00017	0.000057	0.0065	1.0	1.0	0.037	0.0162	0.45	0.90	0.04	0.02
Mean	0.018	0.9	0.09	0.10	0.0086	1.881	0.00017	0.000044	0.0065	1.0	1.0	0.037	0.0144	0.45	0.90	0.03	0.02
Domain 4																	
UCL95	0.018	0.9	0.08	0.10	0.0086	1.067	0.00017	0.000057	0.0065	1.0	1.0	0.037	0.0105	0.45	0.90	0.02	0.01
Mean	0.018	0.9	0.07	0.10	0.0086	0.631	0.00017	0.000044	0.0065	1.0	1.0	0.037	0.0083	0.45	0.90	0.02	0.01
Purvis Creek UCL95	0.019	0.9	0.04	0.40	0.0086	1.53	0.00017	0.000057	0.0065	1.0	1.0	0.027	0.0119	O 4E	0.00	0.03	0.04
Mean	0.018 0.018	0.9	0.04	0.10 0.10	0.0086	1.53 1.22	0.00017	0.000057	0.0065	1.0	1.0 1.0	0.037 0.037	0.0119 0.0103	0.45 0.45	0.90 0.90	0.03 0.02	0.01 0.01
Main Canal	0.010	0.0	0.01	0.10	0.0000	1.22	0.00011	0.000011	0.0000	1.0	1.0	0.007	0.0100	0.10	0.00	0.02	0.01
UCL95	0.018	0.9	0.20	0.10	0.0086	8.72	0.00017	0.000057	0.0065	1.0	1.0	0.037	0.0484	0.45	0.90	0.11	0.05
Mean	0.018	0.9	0.18	0.10	0.0086	7.39	0.00017	0.000044	0.0065	1.0	1.0	0.037	0.0420	0.45	0.90	0.09	0.05
Eastern Creek		T	T		1	1				ı	1	1		1			
UCL95	0.018 0.018	0.9	0.27 0.25	0.10	0.0086	25.02	0.00017 0.00017	0.000057 0.000044	0.0065 0.0065	1.0	1.0	0.037 0.037	0.1250 0.1028	0.45	0.90	0.28 0.23	0.14
Mean Western Creek Complex	0.018	0.9	0.25	0.10	0.0086	20.26	0.00017	0.000044	0.0065	1.0	1.0	0.037	0.1028	0.45	0.90	0.23	0.11
UCL95	0.018	0.9	0.10	0.10	0.0086	3.31	0.00017	0.000057	0.0065	1.0	1.0	0.037	0.0213	0.45	0.90	0.05	0.02
Mean	0.018	0.9	0.09	0.10	0.0086	2.75	0.00017	0.000044	0.0065	1.0	1.0	0.037	0.0185	0.45	0.90	0.04	0.02
Area A					_	_					_						
UCL95	0.018	0.9	0.27	0.10	0.0086	14.04	0.00017	0.000057	0.0065	1.0	1.0	0.037	0.0745	0.45	0.90	0.17	0.08
Mean	0.018	0.9	0.25	0.10	0.0086	11.99	0.00017	0.000044	0.0065	1.0	1.0	0.037	0.0647	0.45	0.90	0.14	0.07
Blythe Island UCL95	0.018	0.9	0.07	0.10	0.0086	0.39	0.00017	0.000057	0.0065	1.0	1.0	0.037	0.0071	0.45	0.90	0.02	0.04
Mean	0.018	0.9	0.07	0.10	0.0086	0.39	0.00017	0.000057	0.0065	1.0	1.0 1.0	0.037	0.0071	0.45 0.45	0.90	0.02	0.01 0.01
	3.010	0.0	2.00	30	2,0000	3.50	2.30017	2.200017	2.0000			2.007	3.0000	50	5.55	0.01	

Table H-2. Estimated Exposure Concentrations - Red-winged blackbird (Agelaius phoeniceus)

I	Conc	Fraction	Conc	Fraction	Food	Conc	Sed	Conc	Water	Time	Area	Body	Estimated		RV		Quotient
0000	Insects	Insects	FC	FC	IR	Sed	IR	Water	IR	UF	UF	Weight	Exposure	NOAEL	LOAEL	NOAEL	LOAEL
COPC	(mg/kg)		(mg/kg)		(kg/day)	(mg/kg)	(kg/day)	(mg/L)	(L/day)			(kg)	(mg/kgBW/day)	(mg/kgl	BW/day)	HQ	HQ
Aroclor 1268 Location																	
Reference																	
UCL95	0.018	0.9	0.38	0.10	0.0086	0.08	0.00017	0.00060	0.0065	1.0	1.0	0.037	0.0131	1.3	3.9	0.01	0.003
Mean	0.018	0.9	0.22	0.10	0.0086	0.05	0.00017	0.00042	0.0065	1.0	1.0	0.037	0.0092	1.3	3.9	0.01	0.002
Domain 1			ı	1	1			- I		1						1	
UCL95	0.018	0.9	2.49	0.10	0.0086	23.43	0.00017	0.00038	0.0065	1.0	1.0	0.037	0.1694	1.3	3.9	0.13	0.043
Mean  Domain 2	0.018	0.9	2.22	0.10	0.0086	11.45	0.00017	0.00030	0.0065	1.0	1.0	0.037	0.1080	1.3	3.9	0.08	0.028
UCL95	0.018	0.9	1.15	0.10	0.0086	5.05	0.00017	0.00038	0.0065	1.0	1.0	0.037	0.0538	1.3	3.9	0.04	0.01
Mean	0.018	0.9	1.06	0.10	0.0086	3.75	0.00017	0.00030	0.0065	1.0	1.0	0.037	0.0457	1.3	3.9	0.04	0.01
Domain 3																	
UCL95	0.018	0.9	0.93	0.10	0.0086	2.08	0.00017	0.00038	0.0065	1.0	1.0	0.037	0.0350	1.3	3.9	0.03	0.009
Mean	0.018	0.9	0.81	0.10	0.0086	1.67	0.00017	0.00030	0.0065	1.0	1.0	0.037	0.0303	1.3	3.9	0.02	0.008
Domain 4 UCL95	0.018	0.9	0.71	0.10	0.0086	1.36	0.00017	0.00038	0.0065	1.0	1.0	0.037	0.0266	1.3	3.9	0.02	0.007
Mean	0.018	0.9	0.61	0.10	0.0086	1.14	0.00017	0.00030	0.0065	1.0	1.0	0.037	0.0232	1.3	3.9	0.02	0.007
Purvis Creek																	
UCL95	0.018	0.9	0.98	0.10	0.0086	5.07	0.00017	0.00038	0.0065	1.0	1.0	0.037	0.0499	1.3	3.9	0.04	0.01
Mean	0.018	0.9	0.73	0.10	0.0086	3.78	0.00017	0.00030	0.0065	1.0	1.0	0.037	0.0381	1.3	3.9	0.03	0.01
Main Canal	0.040	0.0	2.20	0.40	0.0000	11 71	0.00047	0.00000	0.0065	4.0	4.0	0.007	0.0740	4.0	2.0	0.04	0.07
UCL95 Mean	0.018 0.018	0.9	3.26 2.86	0.10	0.0086 0.0086	41.71 27.64	0.00017 0.00017	0.00038	0.0065 0.0065	1.0	1.0	0.037 0.037	0.2712 0.1973	1.3	3.9 3.9	0.21 0.15	0.07 0.05
Eastern Creek	0.010	0.0	2.00	5.10	0.0000	27.04	0.00017	0.00000	0.0000	1.0	1.0	0.007	0.1070	1.0	0.0	0.10	5.55
UCL95	0.018	0.9	2.75	0.10	0.0086	65.28	0.00017	0.00038	0.0065	1.0	1.0	0.037	0.3677	1.3	3.9	0.28	0.09
Mean	0.018	0.9	2.49	0.10	0.0086	49.57	0.00017	0.00030	0.0065	1.0	1.0	0.037	0.2894	1.3	3.9	0.22	0.07
Western Creek Complex			1									1					
UCL95	0.018 0.018	0.9	1.15	0.10	0.0086 0.0086	3.84	0.00017	0.00038	0.0065	1.0	1.0	0.037	0.0482	1.3 1.3	3.9 3.9	0.04 0.03	0.01 0.01
Mean <i>Area A</i>	0.016	0.9	1.06	0.10	0.0066	3.18	0.00017	0.00030	0.0065	1.0	1.0	0.037	0.0430	1.3	3.9	0.03	0.01
UCL95	0.018	0.9	2.75	0.10	0.0086	40.14	0.00017	0.00038	0.0065	1.0	1.0	0.037	0.2522	1.3	3.9	0.19	0.06
Mean	0.018	0.9	2.49	0.10	0.0086	32.78	0.00017	0.00030	0.0065	1.0	1.0	0.037	0.2123	1.3	3.9	0.16	0.05
Blythe Island			1	T	1					1		ı					
UCL95	0.018	0.9	0.24	0.10	0.0086	0.25	0.00017	0.00038	0.0065	1.0	1.0	0.037	0.0105	1.3	3.9	0.01	0.003
Mean	0.018	0.9	0.22	0.10	0.0086	0.20	0.00017	0.00030	0.0065	1.0	1.0	0.037	0.0099	1.3	3.9	0.01	0.003
Lead																	
Location																	
Reference																	
UCL95	0.018	0.9	0.84	0.10	0.0086	20.41	0.00017	0.0100	0.0065	1.0	1.0	0.037	0.1188	3.85	11.3		0.01
Mean A	0.018		0.71	0.10	0.0086	17.64	0.00017	0.0057	0.0065	1.0	1.0	0.037	0.1023	3.85		0.03	
Domain 1		0.9	0.71											3.65	11.3	0.03 0.03	0.01
	0.018			0.10	0.0086	40.73		0.0016	0.0065	1.0	1.0	0.037	0.4434			0.03	0.01
UCL95	0.018 0.018	0.9	10.85	0.10 0.10	0.0086 0.0086	40.73 31.02	0.00017	0.0016 0.0013	0.0065 0.0065	1.0 1.0	1.0 1.0	0.037 0.037	0.4434 0.3308	3.85	11.3	0.03	
				0.10 0.10	0.0086 0.0086	40.73 31.02		0.0016 0.0013	0.0065 0.0065	1.0 1.0	1.0 1.0	0.037 0.037	0.4434 0.3308			0.03	0.01
UCL95 Mean		0.9	10.85				0.00017							3.85	11.3	0.03	0.01
UCL95 Mean <b>Domain 2</b> UCL95 Mean	0.018	0.9 0.9	10.85 7.93	0.10	0.0086	31.02	0.00017 0.00017	0.0013	0.0065	1.0	1.0	0.037	0.3308	3.85 3.85	11.3 11.3	0.03 0.12 0.09	0.01 0.04 0.03
UCL95 Mean <b>Domain 2</b> UCL95 Mean <b>Domain 3</b>	0.018 0.018 0.018	0.9 0.9 0.9 0.9	10.85 7.93 0.56 0.52	0.10 0.10 0.10	0.0086 0.0086 0.0086	31.02 63.03 40.85	0.00017 0.00017 0.00017 0.00017	0.0013 0.0016 0.0013	0.0065 0.0065 0.0065	1.0 1.0 1.0	1.0 1.0 1.0	0.037 0.037 0.037	0.3308 0.3067 0.2038	3.85 3.85 3.85 3.85	11.3 11.3 11.3 11.3	0.03 0.12 0.09 0.08 0.05	0.01 0.04 0.03 0.03 0.02
UCL95 Mean  Domain 2 UCL95 Mean  Domain 3 UCL95	0.018 0.018 0.018	0.9 0.9 0.9 0.9	10.85 7.93 0.56 0.52	0.10 0.10 0.10 0.10	0.0086 0.0086 0.0086	31.02 63.03 40.85	0.00017 0.00017 0.00017 0.00017	0.0013 0.0016 0.0013	0.0065 0.0065 0.0065	1.0 1.0 1.0	1.0 1.0 1.0	0.037 0.037 0.037	0.3308 0.3067 0.2038 0.6905	3.85 3.85 3.85 3.85 3.85	11.3 11.3 11.3 11.3	0.03 0.12 0.09 0.08 0.05	0.01 0.04 0.03 0.03 0.02
UCL95 Mean <b>Domain 2</b> UCL95 Mean <b>Domain 3</b>	0.018 0.018 0.018	0.9 0.9 0.9 0.9	10.85 7.93 0.56 0.52	0.10 0.10 0.10	0.0086 0.0086 0.0086	31.02 63.03 40.85	0.00017 0.00017 0.00017 0.00017	0.0013 0.0016 0.0013	0.0065 0.0065 0.0065	1.0 1.0 1.0	1.0 1.0 1.0	0.037 0.037 0.037	0.3308 0.3067 0.2038	3.85 3.85 3.85 3.85	11.3 11.3 11.3 11.3	0.03 0.12 0.09 0.08 0.05	0.01 0.04 0.03 0.03 0.02
UCL95 Mean  Domain 2 UCL95 Mean  Domain 3 UCL95 Mean	0.018 0.018 0.018	0.9 0.9 0.9 0.9	10.85 7.93 0.56 0.52	0.10 0.10 0.10 0.10	0.0086 0.0086 0.0086	31.02 63.03 40.85	0.00017 0.00017 0.00017 0.00017	0.0013 0.0016 0.0013	0.0065 0.0065 0.0065	1.0 1.0 1.0 1.0 1.0	1.0 1.0 1.0	0.037 0.037 0.037	0.3308 0.3067 0.2038 0.6905	3.85 3.85 3.85 3.85 3.85	11.3 11.3 11.3 11.3	0.03 0.12 0.09 0.08 0.05	0.01 0.04 0.03 0.03 0.02
UCL95 Mean  Domain 2 UCL95 Mean  Domain 3 UCL95 Mean  Domain 4 UCL95 Mean	0.018 0.018 0.018 0.018	0.9 0.9 0.9 0.9 0.9	10.85 7.93 0.56 0.52 3.34 2.11	0.10 0.10 0.10 0.10	0.0086 0.0086 0.0086 0.0086	31.02 63.03 40.85 132.5 90.72	0.00017 0.00017 0.00017 0.00017 0.00017	0.0013 0.0016 0.0013 0.0016 0.0013	0.0065 0.0065 0.0065 0.0065	1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0	0.037 0.037 0.037 0.037	0.3308 0.3067 0.2038 0.6905 0.4699	3.85 3.85 3.85 3.85 3.85 3.85	11.3 11.3 11.3 11.3 11.3	0.03 0.12 0.09 0.08 0.05 0.18 0.12	0.01 0.04 0.03 0.03 0.02 0.06 0.04
UCL95 Mean  Domain 2 UCL95 Mean  Domain 3 UCL95 Mean  Domain 4 UCL95 Mean  Purvis Creek	0.018 0.018 0.018 0.018 0.018 0.018	0.9 0.9 0.9 0.9 0.9 0.9	10.85 7.93 0.56 0.52 3.34 2.11 0.57 0.53	0.10 0.10 0.10 0.10 0.10 0.10 0.10	0.0086 0.0086 0.0086 0.0086 0.0086 0.0086	31.02 63.03 40.85 132.5 90.72 22.88 21.66	0.00017 0.00017 0.00017 0.00017 0.00017 0.00017	0.0013 0.0016 0.0013 0.0016 0.0013 0.0016 0.0013	0.0065 0.0065 0.0065 0.0065 0.0065 0.0065	1.0 1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0 1.0	0.037 0.037 0.037 0.037 0.037 0.037	0.3308 0.3067 0.2038 0.6905 0.4699 0.1224 0.1158	3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85	11.3 11.3 11.3 11.3 11.3 11.3	0.03 0.12 0.09 0.08 0.05 0.18 0.12 0.03 0.03	0.01 0.04 0.03 0.02 0.06 0.04 0.01
UCL95 Mean  Domain 2 UCL95 Mean  Domain 3 UCL95 Mean  Domain 4 UCL95 Mean  Purvis Creek UCL95	0.018 0.018 0.018 0.018 0.018 0.018 0.018	0.9 0.9 0.9 0.9 0.9 0.9	10.85 7.93 0.56 0.52 3.34 2.11 0.57 0.53	0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	0.0086 0.0086 0.0086 0.0086 0.0086 0.0086	31.02 63.03 40.85 132.5 90.72 22.88 21.66	0.00017 0.00017 0.00017 0.00017 0.00017 0.00017 0.00017	0.0013 0.0016 0.0013 0.0016 0.0013 0.0016 0.0013	0.0065 0.0065 0.0065 0.0065 0.0065 0.0065	1.0 1.0 1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0 1.0	0.037 0.037 0.037 0.037 0.037 0.037 0.037	0.3308 0.3067 0.2038 0.6905 0.4699 0.1224 0.1158	3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85	11.3 11.3 11.3 11.3 11.3 11.3 11.3	0.03 0.12 0.09 0.08 0.05 0.18 0.12 0.03 0.03 0.04	0.01 0.04 0.03 0.03 0.02 0.06 0.04 0.01 0.01
UCL95 Mean  Domain 2 UCL95 Mean  Domain 3 UCL95 Mean  Domain 4 UCL95 Mean  Purvis Creek	0.018 0.018 0.018 0.018 0.018 0.018	0.9 0.9 0.9 0.9 0.9 0.9	10.85 7.93 0.56 0.52 3.34 2.11 0.57 0.53	0.10 0.10 0.10 0.10 0.10 0.10 0.10	0.0086 0.0086 0.0086 0.0086 0.0086 0.0086	31.02 63.03 40.85 132.5 90.72 22.88 21.66	0.00017 0.00017 0.00017 0.00017 0.00017 0.00017	0.0013 0.0016 0.0013 0.0016 0.0013 0.0016 0.0013	0.0065 0.0065 0.0065 0.0065 0.0065 0.0065	1.0 1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0 1.0	0.037 0.037 0.037 0.037 0.037 0.037	0.3308 0.3067 0.2038 0.6905 0.4699 0.1224 0.1158	3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85	11.3 11.3 11.3 11.3 11.3 11.3	0.03 0.12 0.09 0.08 0.05 0.18 0.12 0.03 0.03	0.01 0.04 0.03 0.02 0.06 0.04 0.01
UCL95 Mean  Domain 2 UCL95 Mean  Domain 3 UCL95 Mean  Domain 4 UCL95 Mean  Purvis Creek  UCL95 Mean	0.018 0.018 0.018 0.018 0.018 0.018 0.018	0.9 0.9 0.9 0.9 0.9 0.9	10.85 7.93 0.56 0.52 3.34 2.11 0.57 0.53	0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	0.0086 0.0086 0.0086 0.0086 0.0086 0.0086	31.02 63.03 40.85 132.5 90.72 22.88 21.66	0.00017 0.00017 0.00017 0.00017 0.00017 0.00017 0.00017	0.0013 0.0016 0.0013 0.0016 0.0013 0.0016 0.0013	0.0065 0.0065 0.0065 0.0065 0.0065 0.0065	1.0 1.0 1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0 1.0	0.037 0.037 0.037 0.037 0.037 0.037 0.037	0.3308 0.3067 0.2038 0.6905 0.4699 0.1224 0.1158	3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85	11.3 11.3 11.3 11.3 11.3 11.3 11.3	0.03 0.12 0.09 0.08 0.05 0.18 0.12 0.03 0.03 0.04	0.01 0.04 0.03 0.03 0.02 0.06 0.04 0.01 0.01
UCL95 Mean  Domain 2 UCL95 Mean  Domain 3 UCL95 Mean  Domain 4 UCL95 Mean  Purvis Creek UCL95 Mean  Main Canal UCL95 Mean	0.018 0.018 0.018 0.018 0.018 0.018 0.018	0.9 0.9 0.9 0.9 0.9 0.9 0.9	10.85 7.93 0.56 0.52 3.34 2.11 0.57 0.53	0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	0.0086 0.0086 0.0086 0.0086 0.0086 0.0086 0.0086	31.02 63.03 40.85 132.5 90.72 22.88 21.66	0.00017 0.00017 0.00017 0.00017 0.00017 0.00017 0.00017 0.00017	0.0013 0.0016 0.0013 0.0016 0.0013 0.0016 0.0013	0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065	1.0 1.0 1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0 1.0 1.0	0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037	0.3308 0.3067 0.2038 0.6905 0.4699 0.1224 0.1158 0.1350 0.1054	3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85	11.3 11.3 11.3 11.3 11.3 11.3 11.3	0.03 0.12 0.09 0.08 0.05 0.18 0.12 0.03 0.03 0.04 0.03	0.01 0.04 0.03 0.03 0.02 0.06 0.04 0.01 0.01 0.01
UCL95 Mean  Domain 2 UCL95 Mean  Domain 3 UCL95 Mean  Domain 4 UCL95 Mean  Purvis Creek UCL95 Mean  Main Canal UCL95 Mean  Eastern Creek	0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018	0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	10.85 7.93 0.56 0.52 3.34 2.11 0.57 0.53 1.07 0.92	0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	0.0086 0.0086 0.0086 0.0086 0.0086 0.0086 0.0086 0.0086	31.02 63.03 40.85 132.5 90.72 22.88 21.66 23.08 17.41 28.07 26.07	0.00017 0.00017 0.00017 0.00017 0.00017 0.00017 0.00017 0.00017 0.00017	0.0013 0.0016 0.0013 0.0016 0.0013 0.0016 0.0013 0.0016 0.0013	0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037	0.3308 0.3067 0.2038 0.6905 0.4699 0.1224 0.1158 0.1350 0.1054 0.1742 0.1575	3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85	11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3	0.03 0.12 0.09 0.08 0.05 0.18 0.12 0.03 0.03 0.04 0.03 0.05	0.01 0.04 0.03 0.02 0.06 0.04 0.01 0.01 0.01 0.01 0.01 0.01
UCL95 Mean  Domain 2 UCL95 Mean  Domain 3 UCL95 Mean  Domain 4 UCL95 Mean  Purvis Creek UCL95 Mean  Main Canal UCL95 Mean  Eastern Creek UCL95	0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018	0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	10.85 7.93 0.56 0.52 3.34 2.11 0.57 0.53 1.07 0.92 1.77 1.45	0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	0.0086 0.0086 0.0086 0.0086 0.0086 0.0086 0.0086 0.0086	31.02 63.03 40.85 132.5 90.72 22.88 21.66 23.08 17.41 28.07 26.07	0.00017 0.00017 0.00017 0.00017 0.00017 0.00017 0.00017 0.00017 0.00017 0.00017	0.0013 0.0016 0.0013 0.0016 0.0013 0.0016 0.0013 0.0016 0.0013	0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037	0.3308 0.3067 0.2038 0.6905 0.4699 0.1224 0.1158 0.1350 0.1054 0.1742 0.1575	3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85	11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3	0.03 0.12 0.09 0.08 0.05 0.18 0.12 0.03 0.03 0.04 0.03 0.05 0.04	0.01 0.04 0.03 0.02 0.06 0.04 0.01 0.01 0.01 0.01 0.01 0.01 0.01
UCL95 Mean  Domain 2 UCL95 Mean  Domain 3 UCL95 Mean  Domain 4 UCL95 Mean  Purvis Creek UCL95 Mean  Main Canal UCL95 Mean  Eastern Creek UCL95 Mean	0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018	0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	10.85 7.93 0.56 0.52 3.34 2.11 0.57 0.53 1.07 0.92	0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	0.0086 0.0086 0.0086 0.0086 0.0086 0.0086 0.0086 0.0086	31.02 63.03 40.85 132.5 90.72 22.88 21.66 23.08 17.41 28.07 26.07	0.00017 0.00017 0.00017 0.00017 0.00017 0.00017 0.00017 0.00017 0.00017	0.0013 0.0016 0.0013 0.0016 0.0013 0.0016 0.0013 0.0016 0.0013	0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037	0.3308 0.3067 0.2038 0.6905 0.4699 0.1224 0.1158 0.1350 0.1054 0.1742 0.1575	3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85	11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3	0.03 0.12 0.09 0.08 0.05 0.18 0.12 0.03 0.03 0.04 0.03 0.05	0.01 0.04 0.03 0.02 0.06 0.04 0.01 0.01 0.01 0.01 0.01 0.01
UCL95 Mean  Domain 2 UCL95 Mean  Domain 3 UCL95 Mean  Domain 4 UCL95 Mean  Purvis Creek UCL95 Mean  Main Canal UCL95 Mean  Eastern Creek UCL95	0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018	0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	10.85 7.93 0.56 0.52 3.34 2.11 0.57 0.53 1.07 0.92 1.77 1.45	0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	0.0086 0.0086 0.0086 0.0086 0.0086 0.0086 0.0086 0.0086	31.02 63.03 40.85 132.5 90.72 22.88 21.66 23.08 17.41 28.07 26.07	0.00017 0.00017 0.00017 0.00017 0.00017 0.00017 0.00017 0.00017 0.00017 0.00017	0.0013 0.0016 0.0013 0.0016 0.0013 0.0016 0.0013 0.0016 0.0013	0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037	0.3308 0.3067 0.2038 0.6905 0.4699 0.1224 0.1158 0.1350 0.1054 0.1742 0.1575	3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85	11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3	0.03 0.12 0.09 0.08 0.05 0.18 0.12 0.03 0.03 0.04 0.03 0.05 0.04	0.01 0.04 0.03 0.02 0.06 0.04 0.01 0.01 0.01 0.01 0.01 0.02 0.01
UCL95 Mean  Domain 2 UCL95 Mean  Domain 3 UCL95 Mean  Domain 4 UCL95 Mean  Purvis Creek UCL95 Mean  Main Canal UCL95 Mean  Eastern Creek UCL95 Mean  Western Creek Complex	0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018	0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	10.85 7.93 0.56 0.52 3.34 2.11 0.57 0.53 1.07 0.92 1.77 1.45	0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10	0.0086 0.0086 0.0086 0.0086 0.0086 0.0086 0.0086 0.0086 0.0086	31.02 63.03 40.85 132.5 90.72 22.88 21.66 23.08 17.41 28.07 26.07 41.5 35.71	0.00017 0.00017 0.00017 0.00017 0.00017 0.00017 0.00017 0.00017 0.00017 0.00017	0.0013 0.0016 0.0013 0.0016 0.0013 0.0016 0.0013 0.0016 0.0013 0.0016 0.0013	0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037	0.3308  0.3067 0.2038  0.6905 0.4699  0.1224 0.1158  0.1350 0.1054  0.1742 0.1575  0.3709 0.2892	3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85	11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3	0.03  0.12 0.09  0.08 0.05  0.18 0.12  0.03 0.03  0.04 0.03  0.04 0.05 0.04	0.01  0.04 0.03  0.03 0.02  0.06 0.04  0.01 0.01 0.01 0.01 0.02 0.01 0.03 0.03 0.03
UCL95 Mean  Domain 2 UCL95 Mean  Domain 3 UCL95 Mean  Domain 4 UCL95 Mean  Purvis Creek UCL95 Mean  Main Canal UCL95 Mean  Eastern Creek UCL95 Mean  Western Creek Complex UCL95 Mean  Western Creek Complex UCL95 Mean	0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018	0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	10.85 7.93  0.56 0.52  3.34 2.11  0.57 0.53  1.07 0.92  1.77 1.45  7.58 5.21  0.56 0.52	0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10	0.0086 0.0086 0.0086 0.0086 0.0086 0.0086 0.0086 0.0086 0.0086 0.0086 0.0086	31.02 63.03 40.85 132.5 90.72 22.88 21.66 23.08 17.41 28.07 26.07 41.5 35.71	0.00017 0.00017 0.00017 0.00017 0.00017 0.00017 0.00017 0.00017 0.00017 0.00017 0.00017	0.0013  0.0016 0.0013  0.0016 0.0013  0.0016 0.0013  0.0016 0.0013  0.0016 0.0013	0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037	0.3308  0.3067 0.2038  0.6905 0.4699  0.1224 0.1158  0.1350 0.1054  0.1742 0.1575  0.3709 0.2892  0.1554 0.1492	3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85	11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3	0.03  0.12 0.09  0.08 0.05  0.18 0.12  0.03  0.03  0.04 0.03  0.04 0.04  0.008	0.01  0.04 0.03  0.02  0.06 0.04  0.01 0.01  0.01 0.01  0.02 0.01  0.03 0.03 0.03  0.01 0.01
UCL95 Mean  Domain 2 UCL95 Mean  Domain 3 UCL95 Mean  Domain 4 UCL95 Mean  Purvis Creek UCL95 Mean  Main Canal UCL95 Mean  Eastern Creek UCL95 Mean  Western Creek Complex UCL95 Mean  Western Creek Complex UCL95 Mean	0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018	0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	10.85 7.93  0.56 0.52  3.34 2.11  0.57 0.53  1.07 0.92  1.77 1.45  7.58 5.21  0.56 0.52	0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10	0.0086 0.0086 0.0086 0.0086 0.0086 0.0086 0.0086 0.0086 0.0086 0.0086 0.0086	31.02 63.03 40.85 132.5 90.72 22.88 21.66 23.08 17.41 28.07 26.07 41.5 35.71 30.1 28.98	0.00017 0.00017 0.00017 0.00017 0.00017 0.00017 0.00017 0.00017 0.00017 0.00017 0.00017 0.00017	0.0013  0.0016 0.0013  0.0016 0.0013  0.0016 0.0013  0.0016 0.0013  0.0016 0.0013  0.0016 0.0013	0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0	0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037	0.3308  0.3067 0.2038  0.6905 0.4699  0.1224 0.1158  0.1350 0.1054  0.1742 0.1575  0.3709 0.2892  0.1554 0.1492	3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85	11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3	0.03  0.12 0.09  0.08 0.05  0.18 0.12  0.03  0.03  0.04 0.03  0.04 0.04  0.09	0.01  0.04 0.03  0.03 0.02  0.06 0.04  0.01 0.01 0.01 0.02 0.01 0.03 0.03 0.03 0.03  0.01 0.01 0.0
UCL95 Mean  Domain 2 UCL95 Mean  Domain 3 UCL95 Mean  Domain 4 UCL95 Mean  Purvis Creek UCL95 Mean  Main Canal UCL95 Mean  Eastern Creek UCL95 Mean  Western Creek Complex UCL95 Mean  Western Creek Complex UCL95 Mean  Western Creek Complex UCL95 Mean  UCL95 Mean	0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018	0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	10.85 7.93  0.56 0.52  3.34 2.11  0.57 0.53  1.07 0.92  1.77 1.45  7.58 5.21  0.56 0.52	0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10	0.0086 0.0086 0.0086 0.0086 0.0086 0.0086 0.0086 0.0086 0.0086 0.0086 0.0086	31.02 63.03 40.85 132.5 90.72 22.88 21.66 23.08 17.41 28.07 26.07 41.5 35.71	0.00017 0.00017 0.00017 0.00017 0.00017 0.00017 0.00017 0.00017 0.00017 0.00017 0.00017	0.0013  0.0016 0.0013  0.0016 0.0013  0.0016 0.0013  0.0016 0.0013  0.0016 0.0013	0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037	0.3308  0.3067 0.2038  0.6905 0.4699  0.1224 0.1158  0.1350 0.1054  0.1742 0.1575  0.3709 0.2892  0.1554 0.1492	3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85	11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3	0.03  0.12 0.09  0.08 0.05  0.18 0.12  0.03  0.03  0.04 0.03  0.04 0.04  0.008	0.01  0.04 0.03  0.02  0.06 0.04  0.01 0.01  0.01 0.01  0.02 0.01  0.03 0.03 0.03  0.01 0.01
UCL95 Mean  Domain 2 UCL95 Mean  Domain 3 UCL95 Mean  Domain 4 UCL95 Mean  Purvis Creek UCL95 Mean  Main Canal UCL95 Mean  Eastern Creek UCL95 Mean  Western Creek Complex UCL95 Mean  Western Creek Complex UCL95 Mean  Blythe Island	0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018	0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	10.85 7.93  0.56 0.52  3.34 2.11  0.57 0.53  1.07 0.92  1.77 1.45  7.58 5.21  0.56 0.52	0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10	0.0086 0.0086 0.0086 0.0086 0.0086 0.0086 0.0086 0.0086 0.0086 0.0086 0.0086	31.02 63.03 40.85 132.5 90.72 22.88 21.66 23.08 17.41 28.07 26.07 41.5 35.71 30.1 28.98	0.00017 0.00017 0.00017 0.00017 0.00017 0.00017 0.00017 0.00017 0.00017 0.00017 0.00017 0.00017 0.00017	0.0013  0.0016 0.0013  0.0016 0.0013  0.0016 0.0013  0.0016 0.0013  0.0016 0.0013  0.0016 0.0013	0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0	0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037	0.3308  0.3067 0.2038  0.6905 0.4699  0.1224 0.1158  0.1350 0.1054  0.1742 0.1575  0.3709 0.2892  0.1554 0.1492  0.3367 0.2675	3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85	11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3	0.03  0.12 0.09  0.08 0.05  0.18 0.12  0.03  0.03  0.04 0.03  0.04 0.04  0.09 0.07	0.01  0.04 0.03  0.03 0.02  0.06 0.04  0.01 0.01  0.01 0.01  0.02 0.01  0.03 0.03 0.03  0.01 0.01 0.01  0.01
UCL95 Mean  Domain 2 UCL95 Mean  Domain 3 UCL95 Mean  Domain 4 UCL95 Mean  Purvis Creek UCL95 Mean  Main Canal UCL95 Mean  Eastern Creek UCL95 Mean  Western Creek Complex UCL95 Mean  Western Creek Complex UCL95 Mean  Western Creek Complex UCL95 Mean  UCL95 Mean	0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018	0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	10.85 7.93  0.56 0.52  3.34 2.11  0.57 0.53  1.07 0.92  1.77 1.45  7.58 5.21  0.56 0.52  7.58 5.21	0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10	0.0086 0.0086 0.0086 0.0086 0.0086 0.0086 0.0086 0.0086 0.0086 0.0086 0.0086 0.0086 0.0086	31.02 63.03 40.85 132.5 90.72 22.88 21.66 23.08 17.41 28.07 26.07 41.5 35.71 30.1 28.98	0.00017 0.00017 0.00017 0.00017 0.00017 0.00017 0.00017 0.00017 0.00017 0.00017 0.00017 0.00017	0.0013  0.0016 0.0013  0.0016 0.0013  0.0016 0.0013  0.0016 0.0013  0.0016 0.0013  0.0016 0.0013	0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0	0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037	0.3308  0.3067 0.2038  0.6905 0.4699  0.1224 0.1158  0.1350 0.1054  0.1742 0.1575  0.3709 0.2892  0.1554 0.1492	3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85	11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3	0.03  0.12 0.09  0.08 0.05  0.18 0.12  0.03  0.03  0.04 0.03  0.04 0.04  0.09	0.01  0.04 0.03  0.03 0.02  0.06 0.04  0.01 0.01 0.01 0.02 0.01 0.03 0.03 0.03 0.03  0.01 0.01 0.0

COPC - Chemical of Potential Concern

Conc - Concentration
FC - Fiddler Crab
IR - Ingestion Rate
Sed - Sediment
UF - Use Factor

NOAEL - No Observed Adverse Effect Level LOAEL - Lowest Observed Adverse Effect Level

HQ - Hazard Quotient

Table H-3. Estimated Exposure Concentrations - Clapper Rail (Rallus longirostris)

	Conc	Fraction	Conc	Fraction	Conc	Fraction	Food	Conc	Sed	Conc	Water	Time	Area	Body	Estimated		۲V		Quotient
conc	FC	FC	Insects	Insects	Mc	Mc	IR (top/des)	Sed	IR (top/des)	Water	IR (L(d=:)	UF	UF	Weight	Exposure	NOAEL	LOAEL	NOAEL	LOAEL
COPC Methyl Mercury	(mg/kg)	ļ.	(mg/kg)		(mg/kg)		(kg/day)	(mg/kg)	(kg/day)	(mg/L)	(L/day)			(kg)	(mg/kgBW/day)	(mg/kgE	3W/day)	HQ	HQ
Locations																			
Reference																			
UCL95	0.03	0.85	0.02	0.10	0.10	0.05	0.025	0.0001	0.0025	1.00E-07	0.025	1.0	1.0	0.28	0.0032	0.02	0.06	0.16	0.05
Mean	0.03	0.85	0.02	0.10	0.08	0.05	0.025	0.0001	0.0025	5.00E-08	0.025	1.0	1.0	0.28	0.0026	0.02	0.06	0.13	0.04
Domain 1																			
UCL95 Mean	0.69	0.85 0.85	0.02	0.10	1.40 0.78	0.05	0.025 0.025	0.009 0.004	0.0025 0.0025	9.60E-07 7.00E-07	0.025	1.0	1.0	0.28	0.0592 0.0527	0.02	0.06	2.96 2.64	0.99
Domain 2	0.00	0.00	0.02	0.10	0.70	0.00	0.020	0.004	0.0020	7.00L 07	0.020	1.0	1.0	0.20	0.0027	0.02	0.00	2.04	0.00
UCL95	0.21	0.85	0.02	0.10	0.32	0.05	0.025	0.005	0.0025	9.60E-07	0.025	1.0	1.0	0.28	0.0176	0.02	0.06	0.88	0.29
Mean	0.19	0.85	0.02	0.10	0.26	0.05	0.025	0.003	0.0025	7.00E-07	0.025	1.0	1.0	0.28	0.0158	0.02	0.06	0.79	0.26
Domain 3				ı		1										i			
UCL95	0.20 0.18	0.85	0.02	0.10	0.35	0.05	0.025	0.002	0.0025	9.60E-07	0.025	1.0	1.0	0.28	0.0167	0.02	0.06	0.84	0.28
Mean  Domain 4	0.18	0.85	0.02	0.10	0.32	0.05	0.025	0.002	0.0025	7.00E-07	0.025	1.0	1.0	0.28	0.0156	0.02	0.06	0.78	0.26
UCL95	0.16	0.85	0.02	0.10	0.22	0.05	0.025	0.001	0.0025	9.60E-07	0.025	1.0	1.0	0.28	0.0135	0.02	0.06	0.68	0.23
Mean	0.15	0.85	0.02	0.10	0.18	0.05	0.025	0.001	0.0025	7.00E-07	0.025	1.0	1.0	0.28	0.0123	0.02	0.06	0.62	0.21
Purvis Creek				•															,
UCL95	0.10	0.85	0.02	0.10	0.22	0.05	0.025	0.001	0.0025	9.60E-07	0.025	1.0	1.0	0.28	0.0084	0.02	0.06	0.42	0.14
Mean Main Canal	0.09	0.85	0.02	0.10	0.18	0.05	0.025	0.001	0.0025	7.00E-07	0.025	1.0	1.0	0.28	0.0077	0.02	0.06	0.38	0.13
UCL95	0.41	0.85	0.02	0.10	0.70	0.05	0.025	0.007	0.0025	9.60E-07	0.025	1.0	1.0	0.28	0.0348	0.02	0.06	1.74	0.58
Mean	0.39	0.85	0.02	0.10	0.52	0.05	0.025	0.006	0.0025	7.00E-07	0.025	1.0	1.0	0.28	0.0320	0.02	0.06	1.60	0.53
Eastern Creek				•															
UCL95	0.57	0.85	0.02	0.10	1.83	0.05	0.025	0.020	0.0025	9.60E-07	0.025	1.0	1.0	0.28	0.0518	0.02	0.06	2.59	0.86
Mean Western Creek Complex	0.54	0.85	0.02	0.10	0.64	0.05	0.025	0.016	0.0025	7.00E-07	0.025	1.0	1.0	0.28	0.0439	0.02	0.06	2.20	0.73
UCL95	0.21	0.85	0.02	0.10	0.32	0.05	0.025	0.003	0.0025	9.60E-07	0.025	1.0	1.0	0.28	0.0176	0.02	0.06	0.88	0.29
Mean	0.19	0.85	0.02	0.10	0.26	0.05	0.025	0.002	0.0025	7.00E-07	0.025	1.0	1.0	0.28	0.0158	0.02	0.06	0.79	0.26
Area A				•															
UCL95	0.57	0.85	0.02	0.10	1.40	0.05	0.025	0.011	0.0025	9.60E-07	0.025	1.0	1.0	0.28	0.0499	0.02	0.06	2.49	0.83
Mean	0.54	0.85	0.02	0.10	0.78	0.05	0.025	0.010	0.0025	7.00E-07	0.025	1.0	1.0	0.28	0.0445	0.02	0.06	2.23	0.74
Blythe Island UCL95	0.14	0.85	0.02	0.10	0.15	0.05	0.025	0.0003	0.0025	9.60E-07	0.025	1.0	1.0	0.28	0.0117	0.02	0.06	0.58	0.19
Mean	0.13	0.85	0.02	0.10	0.14	0.05	0.025	0.0003	0.0025	7.00E-07	0.025	1.0	1.0	0.28	0.0106	0.02	0.06	0.53	0.18
			•	•															
Inorganic Mercury																			
Location																			
Reference UCL95	0.02	0.85	0.02	0.10	0.01	0.05	0.025	0.10	0.0025	0.000017	0.025	1.0	1.0	0.28	0.0023	0.45	0.90	0.01	0.003
Mean	0.02	0.85	0.02	0.10	0.01	0.05	0.025	0.10	0.0025	0.000017	0.025	1.0	1.0	0.28	0.0023	0.45	0.90	0.004	0.003
Domain 1																			
UCL95	0.33	0.85	0.02	0.10	0.16	0.05	0.025	11.501	0.0025	0.000057	0.025	1.0	1.0	0.28	0.1283	0.45			
Mean	0.30	0.85	0.02	0.10	0.09	0.05	0.025	4.846	0.0025	0.000044			4.0	0.28		0.45	0.90	0.29	0.14
Domain 2 UCL95	0.10	0.85	0.02						0.0020	0.000044	0.025	1.0	1.0	0.20	0.0669	0.45	0.90	0.29 0.15	0.14 0.07
Mean	0.10	0.65			0.04	0.05		E 930								0.45	0.90	0.15	0.07
Domain 3		0.85		0.10	0.04	0.05	0.025	5.839 3.850	0.0025	0.000057	0.025	1.0	1.0	0.28	0.0600	0.45	0.90	0.15	0.07
		0.85	0.02	0.10	0.04 0.03	0.05 0.05		5.839 3.850								0.45	0.90	0.15	0.07
UCL95	0.09	0.85	0.02	0.10	0.03	0.05	0.025 0.025 0.025	3.850 2.225	0.0025 0.0025 0.0025	0.000057 0.000044 0.000057	0.025 0.025 0.025	1.0 1.0	1.0	0.28 0.28	0.0600 0.0415 0.0272	0.45 0.45 0.45	0.90 0.90 0.90	0.15 0.13 0.09	0.07 0.07 0.05
UCL95 Mean			0.02	0.10	0.03	0.05	0.025 0.025	3.850	0.0025 0.0025	0.000057 0.000044	0.025 0.025	1.0	1.0	0.28	0.0600 0.0415	0.45 0.45 0.45	0.90 0.90 0.90	0.15 0.13 0.09	0.07 0.07 0.05
UCL95 Mean <i>Domain 4</i>	0.09	0.85 0.85	0.02 0.02 0.02	0.10 0.10 0.10	0.03 0.04 0.04	0.05 0.05 0.05	0.025 0.025 0.025 0.025	3.850 2.225 1.881	0.0025 0.0025 0.0025 0.0025	0.000057 0.000044 0.000057 0.000044	0.025 0.025 0.025 0.025	1.0 1.0 1.0	1.0 1.0 1.0 1.0	0.28 0.28 0.28 0.28	0.0600 0.0415 0.0272 0.0237	0.45 0.45 0.45 0.45	0.90 0.90 0.90 0.90	0.15 0.13 0.09 0.06 0.05	0.07 0.07 0.05 0.03 0.03
UCL95 Mean <i>Domain 4</i> UCL95	0.09	0.85 0.85	0.02 0.02 0.02 0.02	0.10 0.10 0.10 0.10	0.03 0.04 0.04 0.02	0.05 0.05 0.05	0.025 0.025 0.025 0.025 0.025	2.225 1.881 1.067	0.0025 0.0025 0.0025 0.0025 0.0025	0.000057 0.000044 0.000057 0.000044 0.000057	0.025 0.025 0.025 0.025 0.025	1.0 1.0 1.0	1.0 1.0 1.0 1.0	0.28 0.28 0.28 0.28	0.0600 0.0415 0.0272 0.0237	0.45 0.45 0.45 0.45 0.45 0.45	0.90 0.90 0.90 0.90	0.15 0.13 0.09 0.06 0.05	0.07 0.07 0.05 0.03 0.03
UCL95 Mean <i>Domain 4</i>	0.09	0.85 0.85	0.02 0.02 0.02	0.10 0.10 0.10	0.03 0.04 0.04	0.05 0.05 0.05	0.025 0.025 0.025 0.025	3.850 2.225 1.881	0.0025 0.0025 0.0025 0.0025	0.000057 0.000044 0.000057 0.000044	0.025 0.025 0.025 0.025	1.0 1.0 1.0	1.0 1.0 1.0 1.0	0.28 0.28 0.28 0.28	0.0600 0.0415 0.0272 0.0237	0.45 0.45 0.45 0.45	0.90 0.90 0.90 0.90	0.15 0.13 0.09 0.06 0.05	0.07 0.07 0.05 0.03 0.03
UCL95 Mean Domain 4 UCL95 Mean	0.09 0.09 0.08 0.07	0.85 0.85 0.85 0.85	0.02 0.02 0.02 0.02	0.10 0.10 0.10 0.10	0.03 0.04 0.04 0.02 0.02 0.02	0.05 0.05 0.05 0.05 0.05	0.025 0.025 0.025 0.025 0.025 0.025	2.225 1.881 1.067 0.631	0.0025 0.0025 0.0025 0.0025 0.0025 0.0025	0.000057 0.000044 0.000057 0.000044 0.000057 0.000044	0.025 0.025 0.025 0.025 0.025 0.025 0.025	1.0 1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0 1.0	0.28 0.28 0.28 0.28 0.28 0.28	0.0600 0.0415 0.0272 0.0237	0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	0.90 0.90 0.90 0.90	0.15 0.13 0.09 0.06 0.05	0.07 0.07 0.05 0.03 0.03
UCL95 Mean Domain 4 UCL95 Mean Purvis Creek UCL95 Mean	0.09 0.09 0.08 0.07	0.85 0.85 0.85 0.85	0.02 0.02 0.02 0.02 0.02	0.10 0.10 0.10 0.10 0.10	0.03 0.04 0.04 0.02 0.02	0.05 0.05 0.05 0.05 0.05	0.025 0.025 0.025 0.025 0.025 0.025	2.225 1.881 1.067 0.631	0.0025 0.0025 0.0025 0.0025 0.0025	0.000057 0.000044 0.000057 0.000044 0.000057 0.000044	0.025 0.025 0.025 0.025 0.025 0.025	1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0 1.0	0.28 0.28 0.28 0.28 0.28	0.0600 0.0415 0.0272 0.0237 0.0156 0.0113	0.45 0.45 0.45 0.45 0.45 0.45 0.45	0.90 0.90 0.90 0.90 0.90 0.90	0.15 0.13 0.09 0.06 0.05 0.03	0.07 0.07 0.05 0.03 0.03 0.03
UCL95 Mean Domain 4 UCL95 Mean Purvis Creek UCL95 Mean Main Canal	0.09 0.09 0.08 0.07 0.04 0.04	0.85 0.85 0.85 0.85 0.85	0.02 0.02 0.02 0.02 0.02 0.02	0.10 0.10 0.10 0.10 0.10 0.10 0.10	0.03 0.04 0.04 0.02 0.02 0.02 0.02	0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025	2.225 1.881 1.067 0.631 1.53 1.22	0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025	0.000057 0.000044 0.000057 0.000044 0.000057 0.000044 0.000057 0.000044	0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025	1.0 1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0 1.0 1.0	0.28 0.28 0.28 0.28 0.28 0.28 0.28	0.0600 0.0415 0.0272 0.0237 0.0156 0.0113 0.0173 0.0143	0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	0.90 0.90 0.90 0.90 0.90 0.90 0.90	0.15 0.13 0.09 0.06 0.05 0.03 0.03 0.04 0.03	0.07 0.07 0.05 0.03 0.03 0.02 0.01 0.02 0.02
UCL95 Mean Domain 4 UCL95 Mean Purvis Creek UCL95 Mean Mean Mean Mean Mun Canal UCL95	0.09 0.09 0.08 0.07 0.04 0.04	0.85 0.85 0.85 0.85 0.85 0.85	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10	0.03 0.04 0.04 0.02 0.02 0.02 0.02	0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025	3.850  2.225  1.881  1.067  0.631  1.53  1.22  8.72	0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025	0.000057 0.000044 0.000057 0.000044 0.000057 0.000044 0.000057 0.000044	0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025	1.0 1.0 1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28	0.0600 0.0415 0.0272 0.0237 0.0156 0.0113 0.0173 0.0143	0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90	0.15 0.13 0.09 0.06 0.05 0.03 0.03 0.04 0.03	0.07 0.07 0.05 0.03 0.03 0.02 0.01 0.02 0.02
UCL95 Mean Domain 4 UCL95 Mean Purvis Creek UCL95 Mean Main Canal	0.09 0.09 0.08 0.07 0.04 0.04	0.85 0.85 0.85 0.85 0.85	0.02 0.02 0.02 0.02 0.02 0.02	0.10 0.10 0.10 0.10 0.10 0.10 0.10	0.03 0.04 0.04 0.02 0.02 0.02 0.02	0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025	2.225 1.881 1.067 0.631 1.53 1.22	0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025	0.000057 0.000044 0.000057 0.000044 0.000057 0.000044 0.000057 0.000044	0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025	1.0 1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0 1.0 1.0	0.28 0.28 0.28 0.28 0.28 0.28 0.28	0.0600 0.0415 0.0272 0.0237 0.0156 0.0113 0.0173 0.0143	0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	0.90 0.90 0.90 0.90 0.90 0.90 0.90	0.15 0.13 0.09 0.06 0.05 0.03 0.03 0.04 0.03	0.07 0.07 0.05 0.03 0.03 0.02 0.01 0.02 0.02
UCL95 Mean Domain 4 UCL95 Mean Purvis Creek UCL95 Mean Mean Main Canal UCL95 Mean	0.09 0.09 0.08 0.07 0.04 0.04	0.85 0.85 0.85 0.85 0.85 0.85	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10	0.03 0.04 0.04 0.02 0.02 0.02 0.02	0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025	3.850  2.225  1.881  1.067  0.631  1.53  1.22  8.72	0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025	0.000057 0.000044 0.000057 0.000044 0.000057 0.000044 0.000057 0.000044	0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025	1.0 1.0 1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28	0.0600 0.0415 0.0272 0.0237 0.0156 0.0113 0.0173 0.0143	0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90	0.15 0.13 0.09 0.06 0.05 0.03 0.03 0.04 0.03	0.07 0.07 0.05 0.03 0.03 0.02 0.01 0.02 0.02
UCL95 Mean Domain 4 UCL95 Mean Purvis Creek UCL95 Mean Main Canal UCL95 Mean Eastern Creek UCL95 Mean	0.09 0.09 0.08 0.07 0.04 0.04 0.20	0.85 0.85 0.85 0.85 0.85 0.85 0.85	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	0.03 0.04 0.04 0.02 0.02 0.02 0.02 0.08 0.08	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025	2.225 1.881 1.067 0.631 1.53 1.22 8.72 7.39	0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025	0.000057 0.000044 0.000057 0.000044 0.000057 0.000044 0.000057 0.000044 0.000057	0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025	1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28	0.0600 0.0415 0.0272 0.0237 0.0156 0.0113 0.0173 0.0143 0.0932 0.0803	0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90	0.15 0.13 0.09 0.06 0.05 0.03 0.03 0.04 0.03 0.21 0.18	0.07 0.07 0.05 0.03 0.03 0.02 0.01 0.02 0.02 0.02 0.01
UCL95 Mean Domain 4 UCL95 Mean Purvis Creek UCL95 Mean Main Canal UCL95 Mean Eastern Creek UCL95 Mean Eastern Creek UCL95 Mean Western Creek Complex	0.09 0.09 0.08 0.07 0.04 0.04 0.20 0.18	0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	0.03 0.04 0.04 0.02 0.02 0.02 0.02 0.08 0.06	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025	2.225 1.881 1.067 0.631 1.53 1.22 8.72 7.39	0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025	0.000057 0.000044 0.000057 0.000044 0.000057 0.000044 0.000057 0.000044 0.000057 0.000044 0.000057 0.000044	0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28	0.0600 0.0415 0.0272 0.0237 0.0156 0.0113 0.0173 0.0143 0.0932 0.0803 0.2449 0.2006	0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90	0.15 0.13 0.09 0.06 0.05 0.03 0.03 0.04 0.03 0.21 0.18 0.54 0.45	0.07 0.07 0.05 0.03 0.03 0.02 0.01 0.02 0.02 0.10 0.09
UCL95 Mean Domain 4 UCL95 Mean Purvis Creek UCL95 Mean Main Canal UCL95 Mean Eastern Creek UCL95 Mean Eastern Creek UCL95 Mean Western Creek Complex UCL95	0.09 0.09 0.08 0.07 0.04 0.04 0.20 0.18	0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	0.03 0.04 0.04 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025	2.225 1.881 1.067 0.631 1.53 1.22 8.72 7.39 25.02 20.26	0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025	0.000057 0.000044 0.000057 0.000044 0.000057 0.000044 0.000057 0.000044 0.000057 0.000044 0.000057 0.000044	0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28	0.0600 0.0415 0.0272 0.0237 0.0156 0.0113 0.0173 0.0143 0.0932 0.0803 0.2449 0.2006	0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90	0.15 0.13 0.09 0.06 0.05 0.03 0.03 0.04 0.03 0.18 0.54 0.45	0.07 0.07 0.05 0.03 0.03 0.02 0.01 0.02 0.02 0.02 0.10 0.09 0.27 0.27
UCL95 Mean Domain 4 UCL95 Mean Purvis Creek UCL95 Mean Main Canal UCL95 Mean Eastern Creek UCL95 Mean Eastern Creek UCL95 Mean Western Creek Complex	0.09 0.09 0.08 0.07 0.04 0.04 0.20 0.18	0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	0.03 0.04 0.04 0.02 0.02 0.02 0.02 0.08 0.06	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025	2.225 1.881 1.067 0.631 1.53 1.22 8.72 7.39	0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025	0.000057 0.000044 0.000057 0.000044 0.000057 0.000044 0.000057 0.000044 0.000057 0.000044 0.000057 0.000044	0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28	0.0600 0.0415 0.0272 0.0237 0.0156 0.0113 0.0173 0.0143 0.0932 0.0803 0.2449 0.2006	0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90	0.15 0.13 0.09 0.06 0.05 0.03 0.03 0.04 0.03 0.21 0.18 0.54 0.45	0.07 0.07 0.05 0.03 0.03 0.02 0.01 0.02 0.02 0.10 0.09
UCL95 Mean Domain 4 UCL95 Mean Purvis Creek UCL95 Mean Main Canal UCL95 Mean Eastern Creek UCL95 Mean Western Creek Complex UCL95 Mean	0.09 0.09 0.08 0.07 0.04 0.04 0.20 0.18	0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	0.03 0.04 0.04 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025	2.225 1.881 1.067 0.631 1.53 1.22 8.72 7.39 25.02 20.26	0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025	0.000057 0.000044 0.000057 0.000044 0.000057 0.000044 0.000057 0.000044 0.000057 0.000044 0.000057 0.000044	0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28	0.0600 0.0415 0.0272 0.0237 0.0156 0.0113 0.0173 0.0143 0.0932 0.0803 0.2449 0.2006	0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90	0.15 0.13 0.09 0.06 0.05 0.03 0.03 0.04 0.03 0.18 0.54 0.45	0.07 0.07 0.05 0.03 0.03 0.02 0.01 0.02 0.02 0.02 0.10 0.09 0.27 0.27
UCL95 Mean Domain 4 UCL95 Mean Purvis Creek UCL95 Mean Main Canal UCL95 Mean Eastern Creek UCL95 Mean Western Creek Complex UCL95 Mean Western Creek Complex UCL95 Mean Area A	0.09 0.08 0.07 0.04 0.04 0.20 0.18 0.27 0.25	0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	0.03 0.04 0.04 0.02 0.02 0.02 0.02 0.08 0.06 0.20 0.070	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025	2.225 1.881 1.067 0.631 1.53 1.22 8.72 7.39 25.02 20.26	0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025	0.000057 0.000044 0.000057 0.000044 0.000057 0.000044 0.000057 0.000044 0.000057 0.000044 0.000057 0.000044	0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28	0.0600 0.0415 0.0272 0.0237 0.0156 0.0113 0.0173 0.0143 0.0932 0.0803 0.2449 0.2006	0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90	0.15 0.13 0.09 0.06 0.05 0.03 0.03 0.03 0.04 0.03 0.21 0.18 0.54 0.45 0.08	0.07 0.07 0.05 0.03 0.03 0.02 0.01 0.02 0.02 0.10 0.09 0.27 0.22
UCL95 Mean Domain 4 UCL95 Mean Purvis Creek UCL95 Mean Main Canal UCL95 Mean Eastern Creek UCL95 Mean Mean Mean Mean Mean Mean Mean Mean	0.09 0.09 0.08 0.07 0.04 0.04 0.20 0.18 0.27 0.25 0.10 0.09	0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10	0.03  0.04  0.04  0.02  0.02  0.02  0.02  0.08  0.06  0.20  0.070  0.04  0.03	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025	2.225 1.881 1.067 0.631 1.53 1.22 7.39 25.02 20.26 3.31 2.75	0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025	0.000057 0.000044 0.000057 0.000044 0.000057 0.000044 0.000057 0.000044 0.000057 0.000044 0.000057 0.000044	0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28	0.0600 0.0415 0.0272 0.0237 0.0156 0.0113 0.0173 0.0143 0.0932 0.0803 0.2449 0.2006 0.0374 0.0317	0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90	0.15 0.13 0.09 0.06 0.05 0.03 0.03 0.04 0.03 0.21 0.18 0.54 0.45 0.08 0.07	0.07 0.07 0.05 0.03 0.03 0.02 0.01 0.02 0.02 0.02 0.02 0.10 0.09 0.27 0.22 0.04 0.04
UCL95 Mean Domain 4 UCL95 Mean Purvis Creek UCL95 Mean Main Canal UCL95 Mean Eastern Creek UCL95 Mean UCL95 Mean UCL95 Mean UCL95 Mean Area A UCL95 Mean Blythe Island UCL95	0.09 0.08 0.07 0.04 0.04 0.20 0.18 0.27 0.25 0.10 0.09	0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	0.03  0.04  0.04  0.02  0.02  0.02  0.08  0.06  0.20  0.070  0.04  0.03	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025	2.225 1.881 1.067 0.631 1.53 1.22 8.72 7.39 25.02 20.26 3.31 2.75 14.04 11.99	0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025	0.000057 0.000044 0.000057 0.000044 0.000057 0.000044 0.000057 0.000044 0.000057 0.000044 0.000057 0.000044 0.000057 0.000044	0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28	0.0600 0.0415 0.0272 0.0237 0.0156 0.0113 0.0173 0.0143 0.0932 0.0803 0.2449 0.2006 0.0374 0.0317	0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90	0.15 0.13 0.09 0.06 0.05 0.03 0.03 0.03 0.04 0.04 0.05 0.18 0.54 0.45 0.08 0.07	0.07 0.07 0.05 0.03 0.03 0.02 0.01 0.02 0.02 0.02 0.10 0.09 0.27 0.22 0.04 0.04 0.16 0.14
UCL95 Mean Domain 4 UCL95 Mean Purvis Creek UCL95 Mean Main Canal UCL95 Mean Eastern Creek UCL95 Mean Mean Mean Mean Mean Mean Mean Mean	0.09 0.09 0.08 0.07 0.04 0.04 0.20 0.18 0.27 0.25 0.10 0.09	0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10	0.03  0.04  0.04  0.02  0.02  0.02  0.02  0.08  0.06  0.20  0.070  0.04  0.03	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025	2.225 1.881 1.067 0.631 1.53 1.22 7.39 25.02 20.26 3.31 2.75	0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025	0.000057 0.000044 0.000057 0.000044 0.000057 0.000044 0.000057 0.000044 0.000057 0.000044 0.000057 0.000044	0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28	0.0600 0.0415 0.0272 0.0237 0.0156 0.0113 0.0173 0.0143 0.0932 0.0803 0.2449 0.2006 0.0374 0.0317	0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90	0.15 0.13 0.09 0.06 0.05 0.03 0.03 0.04 0.03 0.21 0.18 0.54 0.45 0.08 0.07	0.07 0.07 0.05 0.03 0.03 0.02 0.01 0.02 0.02 0.02 0.02 0.10 0.09 0.27 0.22 0.04 0.04

Table H-3. Estimated Exposure Concentrations - Clapper Rail (Rallus longirostris)

	Conc	Fraction	Conc	Fraction	Conc	Fraction	Food	Conc	Sed	Conc	Water	Time	Area	Body	Estimated	TF			Quotient
0000	FC	FC	Insects	Insects	Mc	Mc	IR (L.)	Sed	IR (L.)	Water	IR	UF	UF	Weight	Exposure	NOAEL	LOAEL	NOAEL	LOAEL
COPC	(mg/kg)		(mg/kg)		(mg/kg)		(kg/day)	(mg/kg)	(kg/day)	(mg/L)	(L/day)			(kg)	(mg/kgBW/day)	(mg/kgE	BW/day)	HQ	HQ
Aroclor 1268 Location																			
Reference																			
UCL95	0.38	0.85	0.08	0.10	0.22	0.05	0.025	0.08	0.0025	0.00060	0.025	1.0	1.0	0.28	0.0313	1.3	3.9	0.02	0.01
Mean	0.22	0.85	0.08	0.10	0.15	0.05	0.025	0.05	0.0025	0.00042	0.025	1.0	1.0	0.28	0.0186	1.3	3.9	0.01	0.005
Domain 1																			
UCL95	2.49	0.85	0.08	0.10	6.42	0.05	0.025	23.43	0.0025	0.00038	0.025	1.0	1.0	0.28	0.4276	1.3	3.9	0.33	0.11
Mean	2.22	0.85	0.08	0.10	5.58	0.05	0.025	11.45	0.0025	0.00030	0.025	1.0	1.0	0.28	0.2964	1.3	3.9	0.23	0.08
Domain 2																			
UCL95	1.15 1.06	0.85	0.08	0.10	2.13	0.05	0.025	5.05	0.0025	0.00038	0.025	1.0	1.0	0.28	0.1426	1.3	3.9	0.11	0.04
Mean  Domain 3	1.06	0.85	0.08	0.10	1.62	0.05	0.025	3.75	0.0025	0.00030	0.025	1.0	1.0	0.28	0.1219	1.3	3.9	0.09	0.03
UCL95	0.93	0.85	0.08	0.10	3.29	0.05	0.025	2.08	0.0025	0.00038	0.025	1.0	1.0	0.28	0.1046	1.3	3.9	0.08	0.03
Mean	0.81	0.85	0.08	0.10	2.87	0.05	0.025	1.67	0.0025	0.00030	0.025	1.0	1.0	0.28	0.0899	1.3	3.9	0.07	0.02
Domain 4																			
UCL95	0.71	0.85	0.08	0.10	1.22	0.05	0.025	1.36	0.0025	0.00038	0.025	1.0	1.0	0.28	0.0722	1.3	3.9	0.06	0.02
Mean	0.61	0.85	0.08	0.10	1.01	0.05	0.025	1.14	0.0025	0.00030	0.025	1.0	1.0	0.28	0.0617	1.3	3.9	0.05	0.02
Purvis Creek																			
UCL95	0.98	0.85	0.08	0.10	1.22	0.05	0.025	5.07	0.0025	0.00038	0.025	1.0	1.0	0.28	0.1259	1.3	3.9	0.10	0.03
Mean Main Canal	0.73	0.85	0.08	0.10	1.01	0.05	0.025	3.78	0.0025	0.00030	0.025	1.0	1.0	0.28	0.0943	1.3	3.9	0.07	0.02
Wain Canai UCL95	3.26	0.85	0.08	0.10	5.06	0.05	0.025	41.71	0.0025	0.00038	0.025	1.0	1.0	0.28	0.6432	1.3	3.9	0.49	0.16
Mean	2.86	0.85	0.08	0.10	4.28	0.05	0.025	27.64	0.0025	0.00030	0.025	1.0	1.0	0.28	0.4837	1.3	3.9	0.49	0.10
Eastern Creek																			
UCL95	2.75	0.85	0.08	0.10	7.27	0.05	0.025	65.28	0.0025	0.00038	0.025	1.0	1.0	0.28	0.8248	1.3	3.9	0.63	0.21
Mean	2.49	0.85	0.08	0.10	6.06	0.05	0.025	49.57	0.0025	0.00030	0.025	1.0	1.0	0.28	0.6593	1.3	3.9	0.51	0.17
Western Creek Complex																			
UCL95	1.15	0.85	0.08	0.10	2.13	0.05	0.025	3.84	0.0025	0.00038	0.025	1.0	1.0	0.28	0.1318	1.3	3.9	0.10	0.03
Mean <i>Area A</i>	1.06	0.85	0.08	0.10	1.62	0.05	0.025	3.18	0.0025	0.00030	0.025	1.0	1.0	0.28	0.1168	1.3	3.9	0.09	0.03
UCL95	2.75	0.85	0.08	0.10	6.42	0.05	0.025	40.14	0.0025	0.00038	0.025	1.0	1.0	0.28	0.5965	1.3	3.9	0.46	0.15
Mean	2.49	0.85	0.08	0.10	5.58	0.05	0.025	32.78	0.0025	0.00030	0.025	1.0	1.0	0.28	0.5073	1.3	3.9	0.39	0.13
Blythe Island																			
UCL95	0.24	0.85	0.08	0.10	0.84	0.05	0.025	0.25	0.0025	0.00038	0.025	1.0	1.0	0.28	0.0249	1.3	3.9	0.02	0.01
Mean	0.22	0.85	0.08	0.10	0.72	0.05	0.025	0.20	0.0025	0.00030	0.025	1.0	1.0	0.28	0.0224	1.3	3.9	0.02	0.01
Lead Location																			
Reference																			
UCL95	0.84	0.9	1.40	0.05	1.43	0.05	0.024	20.41	0.00048	0.0100	0.023	1.0	1.0	0.20	0.1578	3.85	11.3	0.04	0.01
Mean	0.71	0.9	1.40	0.05	0.87	0.05	0.024	17.64	0.00048	0.0057	0.023	1.0	1.0	0.20	0.1333	3.85	11.3	0.03	0.01
Domain 1																			
UCL95	10.85	0.9	1.40	0.05	0.76	0.05	0.024	40.73	0.00048	0.0016	0.023	1.0	1.0	0.20	1.2827	3.85	11.3	0.33	0.11
Mean	7.93	0.9	1.40	0.05	0.62	0.05	0.024	31.02	0.00048	0.0013	0.023	1.0	1.0	0.20	0.9432	3.85	11.3	0.24	0.08
Domain 2 UCL95	0.56	0.9	1.40	0.05	1.26	0.05	0.024	63.03	0.00048	0.0016	0.023	1.0	1.0	0.20	0.2279	3.85	11.3	0.06	0.02
Mean	0.52	0.9	1.40	0.05	0.93	0.05	0.024	40.85	0.00048	0.0013	0.023	1.0	1.0	0.20	0.1683	3.85	11.3	0.04	0.01
Domain 3																		-	
UCL95	3.34	0.9	1.40	0.05	30.7	0.05	0.024	132.5	0.00048	0.0016	0.023	1.0	1.0	0.20	0.8715	3.85	11.3	0.23	0.08
Mean	2.11	0.9	1.40	0.05	2.41	0.05	0.024	90.72	0.00048	0.0013	0.023	1.0	1.0	0.20	0.4686	3.85	11.3	0.12	0.04
Domain 4																			
UCL95	0.57	0.9	1.40	0.05	0.65	0.05	0.024	22.88	0.00048	0.0016	0.023	1.0	1.0	0.20	0.1290	3.85	11.3	0.03	0.01
Mean  Purvis Creek	0.53	0.9	1.40	0.05	0.43	0.05	0.024	21.66	0.00048	0.0013	0.023	1.0	1.0	0.20	0.1204	3.85	11.3	0.03	0.01
UCL95	1.07	0.9	1.40	0.05	0.65	0.05	0.024	23.08	0.00048	0.0016	0.023	1.0	1.0	0.20	0.1834	3.85	11.3	0.05	0.02
Mean	0.92	0.9	1.40	0.05	0.43	0.05	0.024	17.41	0.00048	0.0013	0.023	1.0	1.0	0.20	0.1523	3.85	11.3	0.04	0.01
Main Canal																			
UCL95	1.77	0.9	1.40	0.05	0.55	0.05	0.024	28.07	0.00048	0.0016	0.023	1.0	1.0	0.20	0.2704	3.85	11.3	0.07	0.02
Mean	1.45	0.9	1.40	0.05	0.46	0.05	0.024	26.07	0.00048	0.0013	0.023	1.0	1.0	0.20	0.2305	3.85	11.3	0.06	0.02
Eastern Creek																			
UCL95	7.58	0.9	1.40	0.05	0.86	0.05	0.024	41.5	0.00048	0.0016	0.023	1.0	1.0	0.20	0.9320	3.85	11.3	0.24	0.08
Mean Western Creek Complex	5.21	0.9	1.40	0.05	0.68	0.05	0.024	35.71	0.00048	0.0013	0.023	1.0	1.0	0.20	0.6610	3.85	11.3	0.17	0.06
UCL95	0.56	0.9	1.40	0.05	1.26	0.05	0.024	30.1	0.00048	0.0016	0.023	1.0	1.0	0.20	0.1489	3.85	11.3	0.04	0.01
Mean	0.52	0.9	1.40	0.05	0.93	0.05	0.024	28.98	0.00048	0.0013	0.023	1.0	1.0	0.20	0.1489	3.85	11.3	0.04	0.01
Area A																			
UCL95	7.58	0.9	1.40	0.05	0.76	0.05	0.024	34.05	0.00048	0.0016	0.023	1.0	1.0	0.20	0.9135	3.85	11.3	0.24	0.08
Mean	5.21	0.9	1.40	0.05	0.62	0.05	0.024	31	0.00048	0.0013	0.023	1.0	1.0	0.20	0.6494	3.85	11.3	0.17	0.06
Blythe Island																			
UCL95	0.54 0.504	0.9	1.40	0.05	0.29	0.05	0.024	18.26 16.50	0.00048	0.0016	0.023	1.0	1.0	0.20	0.1125	3.85 3.85	11.3 11.3	0.03	0.01
Mean	0.304	0.9	1.40	0.05	0.25	0.05	0.024	10.50	0.00048	0.0013	0.023	1.0	1.0	0.20	0.1041	3.83	11.3	0.03	0.009

Notes:
COPC - Chemical of Potential Concern
Conc - Concentration
FC - Fiddler Crab
Mc - Mummichog
IR - Ingestion Rate
Sed - Sediment
UF - Use Factor

UF - Use Factor

NOAEL - No Observed Adverse Effect Level

LOAEL - Lowest Observed Adverse Effect Level

HQ - Hazard Quotient

UCL95 - 95th Upper Confidence of the Mean

Table H-4. Estimated Exposure Concentrations - Green Heron (Butorides striatus)

								•											
	Conc	Fraction	Conc	Fraction	Conc	Fraction	Food	Conc	Sed	Conc	Water	Time	Area	Body	Estimated	TF	٦V	Hazard	Quotient
	Mc	Mc	BC	BC	FC	FC	IR	Sed	IR	Water	IR	UF	UF	Weight	Exposure	NOAEL	LOAEL	NOAEL	LOAEL
COPC	(mg/kg)		(mg/kg)		(mg/kg)		(kg/day)	(mg/kg)	(kg/day)	(mg/L)	(L/day)			(kg)	(mg/kgBW/day)	(mg/kgE	3W/day)	HQ	HQ
Methyl Mercury																			
Locations																			
Reference UCL95	0.10	0.9	0.19	0.05	0.034	0.05	0.024	0.0001	0.00048	1.00E-07	0.023	1.0	1.0	0.20	0.0121	0.02	0.06	0.61	0.20
Mean	0.10	0.9	0.15	0.05	0.034	0.05	0.024	0.0001	0.00048	5.00E-07	0.023	1.0	1.0	0.20	0.0097	0.02	0.06	0.49	0.20
Domain 1	0.00	0.0	0.10	0.00	0.02.	0.00	0.02	0.000.	0.000.0	0.002 00	0.020			0.20	0.0001	0.02	0.00	0.10	5.10
UCL95	1.40	0.9	1.78	0.05	0.69	0.05	0.024	0.009	0.00048	9.60E-07	0.023	1.0	1.0	0.20	0.1660	0.02	0.06	8.30	2.77
Mean	0.78	0.9	1.59	0.05	0.65	0.05	0.024	0.004	0.00048	7.00E-07	0.023	1.0	1.0	0.20	0.0977	0.02	0.06	4.88	1.63
Domain 2		1											1						
UCL95	0.32	0.9	1.78	0.05	0.21	0.05	0.024	0.005	0.00048	9.60E-07	0.023	1.0	1.0	0.20	0.0465	0.02	0.06	2.33	0.78
Mean	0.26	0.9	1.59	0.05	0.19	0.05	0.024	0.003	0.00048	7.00E-07	0.023	1.0	1.0	0.20	0.0388	0.02	0.06	1.94	0.65
Domain 3 UCL95	0.35	0.9	1.78	0.05	0.20	0.05	0.024	0.002	0.00048	9.60E-07	0.023	1.0	1.0	0.20	0.0497	0.02	0.06	2.48	0.83
Mean	0.32	0.9	1.59	0.05	0.20	0.05	0.024	0.002	0.00048	7.00E-07	0.023	1.0	1.0	0.20	0.0457	0.02	0.06	2.46	0.75
Domain 4															0.0.00				
UCL95	0.22	0.9	1.78	0.05	0.16	0.05	0.024	0.001	0.00048	9.60E-07	0.023	1.0	1.0	0.20	0.0354	0.02	0.06	1.77	0.59
Mean	0.18	0.9	1.59	0.05	0.15	0.05	0.024	0.001	0.00048	7.00E-07	0.023	1.0	1.0	0.20	0.0299	0.02	0.06	1.49	0.50
Purvis Creek																			
UCL95	0.22	0.9	1.78	0.05	0.10	0.05	0.024	0.001	0.00048	9.60E-07	0.023	1.0	1.0	0.20	0.0350	0.02	0.06	1.75	0.58
Mean Main Canal	0.18	0.9	1.59	0.05	0.09	0.05	0.024	0.001	0.00048	7.00E-07	0.023	1.0	1.0	0.20	0.0295	0.02	0.06	1.48	0.49
UCL95	0.70	0.9	1.78	0.05	0.41	0.05	0.024	0.007	0.00048	9.60E-07	0.023	1.0	1.0	0.20	0.0888	0.02	0.06	4.44	1.48
Mean	0.70	0.9	1.59	0.05	0.39	0.05	0.024	0.007	0.00048	7.00E-07	0.023	1.0	1.0	0.20	0.0681	0.02	0.06	3.40	1.13
Eastern Creek																			
UCL95	1.83	0.9	1.78	0.05	0.57	0.05	0.024	0.020	0.00048	9.60E-07	0.023	1.0	1.0	0.20	0.2118	0.02	0.06	10.59	3.53
Mean	0.64	0.9	1.59	0.05	0.54	0.05	0.024	0.016	0.00048	7.00E-07	0.023	1.0	1.0	0.20	0.0819	0.02	0.06	4.10	1.37
Western Creek Complex																			
UCL95	0.32 0.26	0.9	1.78	0.05	0.21	0.05	0.024	0.003	0.00048	9.60E-07	0.023	1.0	1.0	0.20	0.0465	0.02	0.06	2.33	0.78 0.65
Mean Area A	0.26	0.9	1.59	0.05	0.19	0.05	0.024	0.002	0.00048	7.00E-07	0.023	1.0	1.0	0.20	0.0388	0.02	0.06	1.94	0.05
UCL95	1.40	0.9	1.78	0.05	0.57	0.05	0.024	0.011	0.00048	9.60E-07	0.023	1.0	1.0	0.20	0.1653	0.02	0.06	8.27	2.76
Mean	0.78	0.9	1.59	0.05	0.54	0.05	0.024	0.010	0.00048	7.00E-07	0.023	1.0	1.0	0.20	0.0970	0.02	0.06	4.85	1.62
Blythe Island																			
UCL95	0.15	0.9	1.78	0.05	0.14	0.05	0.024	0.0003	0.00048	9.60E-07	0.023	1.0	1.0	0.20	0.0277	0.02	0.06	1.39	0.46
Mean	0.14	0.9	1.59	0.05	0.13	0.05	0.024	0.0002	0.00048	7.00E-07	0.023	1.0	1.0	0.20	0.0254	0.02	0.06	1.27	0.42
Inorganic Mercury	-																		
Location																			
Reference																			
UCL95	0.01	0.9	0.00	0.05	0.02	0.05	0.024	0.10	0.00048	0.000017	0.023	1.0	1.0	0.20	0.0016	0.45	0.90	0.003	0.002
Mean	0.01	0.9	0.00	0.05	0.01	0.05	0.024	0.08	0.00048	0.000008	0.023	1.0	1.0	0.20	0.0013	0.45	0.90	0.003	0.001
Domain 1																			
UCL95	0.16	0.9	0.00	0.05	0.33	0.05	0.024	11.501	0.00048	0.000057	0.023	1.0	1.0	0.20	0.0464	0.45	0.90	0.10	0.05
Mean <i>Domain</i> 2	0.09	0.9	0.00	0.05	0.30	0.05	0.024	4.846	0.00048	0.000044	0.023	1.0	1.0	0.20	0.0228	0.45	0.90	0.05	0.03
UCL95	0.04	0.9	0.00	0.05	0.10	0.05	0.024	5.839	0.00048	0.000057	0.023	1.0	1.0	0.20	0.0189	0.45	0.90	0.04	0.02
Mean	0.03	0.9	0.00	0.05	0.09	0.05	0.024	3.850	0.00048	0.000044	0.023	1.0	1.0	0.20	0.0130	0.45	0.90	0.03	0.01
Domain 3																			
UCL95	0.04	0.9	0.00	0.05	0.09	0.05	0.024	2.225	0.00048	0.000057	0.023	1.0	1.0	0.20	0.0098	0.45	0.90	0.02	0.01
Mean	0.04	0.9	0.00	0.05	0.09	0.05	0.024	1.881	0.00048	0.000044	0.023	1.0	1.0	0.20	0.0093	0.45	0.90	0.02	0.01
<b>Domain 4</b> UCL95	0.02	0.9	0.00	0.05	0.08	0.05	0.024	1.067	0.00048	0.000057	0.023	1.0	1.0	0.20	0.0052	0.45	0.90	0.01	0.006
Mean	0.02	0.9	0.00	0.05	0.08	0.05	0.024	0.631	0.00048	0.000057	0.023	1.0	1.0	0.20	0.0052	0.45	0.90	0.01	0.006
Purvis Creek	0.02	0.0	5.50	3.50	3.07	3.00	3.024	3.001	2.30040					3.20	3.55 /6	55	2.00	0.01	
UCL95	0.02	0.9	0.00	0.05	0.04	0.05	0.024	1.53	0.00048	0.000057	0.023	1.0	1.0	0.20	0.0061	0.45	0.90	0.01	0.01
Mean	0.02	0.9	0.00	0.05	0.04	0.05	0.024	1.22	0.00048	0.000044	0.023	1.0	1.0	0.20	0.0058	0.45	0.90	0.01	0.01
Main Canal														<u> </u>					
UCL95	0.08	0.9	0.00	0.05	0.20	0.05	0.024	8.72	0.00048	0.000057	0.023	1.0	1.0	0.20	0.0308	0.45	0.90	0.07	0.03
Mean <b>Eastern Creek</b>	0.06	0.9	0.00	0.05	0.18	0.05	0.024	7.39	0.00048	0.000044	0.023	1.0	1.0	0.20	0.0253	0.45	0.90	0.06	0.03
UCL95	0.20	0.9	0.00	0.05	0.27	0.05	0.024	25.02	0.00048	0.000057	0.023	1.0	1.0	0.20	0.0833	0.45	0.90	0.19	0.09
Mean	0.070	0.9	0.00	0.05	0.25	0.05	0.024	20.26	0.00048	0.000044	0.023	1.0	1.0	0.20	0.0577	0.45	0.90	0.13	0.06
Western Creek Complex																			
UCL95	0.04	0.9	0.00	0.05	0.10	0.05	0.024	3.31	0.00048	0.000057	0.023	1.0	1.0	0.20	0.0129	0.45	0.90	0.03	0.01
Mean	0.03	0.9	0.00	0.05	0.09	0.05	0.024	2.75	0.00048	0.000044	0.023	1.0	1.0	0.20	0.0104	0.45	0.90	0.02	0.01
Area A	0.40	0.0	0.00	0.05	0.07	0.05	0.001	14.04	0.00040	0.000057	0.000	4.0	4.0	0.00	0.0500	0.45	0.00	0.40	0.00
UCL95 Mean	0.16 0.09	0.9	0.00	0.05 0.05	0.27 0.25	0.05 0.05	0.024 0.024	14.04 11.99	0.00048	0.000057 0.000044	0.023	1.0	1.0	0.20	0.0526 0.0400	0.45 0.45	0.90	0.12	0.06 0.04
Blythe Island	0.09	0.9	0.00	0.05	0.25	0.05	0.024	11.33	0.00046	0.000044	0.023	1.0	1.0	0.20	0.0400	0.40	0.80	0.09	0.04
UCL95	0.02	0.9	0.00	0.05	0.07	0.05	0.024	0.39	0.00048	0.000057	0.023	1.0	1.0	0.20	0.0030	0.45	0.90	0.01	0.003
Mean	0.02	0.9	0.00	0.05	0.06	0.05	0.024	0.30	0.00048	0.000044	0.023	1.0	1.0	0.20	0.0029	0.45	0.90	0.01	0.003
										·	·			· <u></u>				·	_

Table H-4. Estimated Exposure Concentrations - Green Heron (Butorides striatus)

15. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. Mg. 19. M			1	1	1	1	1	1		1		1	,	1	1					-
Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Cont		Conc				Conc	Fraction	Food		Sed	Conc	Water	Time		Body	Estimated		1		
Note   Part	0000		Mc		BC		FC						UF	UF		· ·		1		1
Column		(mg/kg)		(тід/кд)		(mg/kg)		(kg/day)	(mg/kg)	(kg/day)	(mg/L)	(∟/day)	<u>I</u>		(Kg)	(mg/kgBW/day)	(mg/kgl	ovv/day)	HQ	HQ
Page																				
Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Math				1									1							
Normal 19	UCL95	0.22	0.9	0.30	0.05	0.38	0.05	0.024	0.08	0.00048	0.00060	0.023	1.0	1.0	0.20	0.0281	1.3	3.9	0.02	0.007
Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   S	Mean	0.15	0.9				0.05	0.024		0.00048			1			0.0185			0.01	
Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Se	Domain 1																			
Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page	UCL95	6.42	0.9	1.88	0.05	2.49	0.05	0.024	23.43	0.00048	0.00038	0.023	1.0	1.0	0.20	0.7759	1.3	3.9	0.60	0.20
	Mean	5.58	0.9	1.61	0.05	2.22	0.05	0.024	11.45	0.00048	0.00030	0.023	1.0	1.0	0.20	0.6531	1.3	3.9	0.50	0.17
Part	Domain 2																			
Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Comp																				
		1.62	0.9	1.61	0.05	1.06	0.05	0.024	3.75	0.00048	0.00030	0.023	1.0	1.0	0.20	0.2000	1.3	3.9	0.15	0.05
Marchane   1		3 29	0.9	1.88	0.05	0.93	0.05	0.024	2.08	0.00048	0.00038	0.023	1.0	1.0	0.20	0.3772	1.3	3.9	0.29	0.10
Common	Mean												<b>†</b>							
Section   1,0   0,0   1,10   0,0   1,10   0,0   1,10   0,00   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000	Domain 4																			
Procedage   1	UCL95	1.22	0.9	1.88	0.05	0.71	0.05	0.024	1.36	0.00048	0.00038	0.023	1.0	1.0	0.20	0.1506	1.3	3.9	0.12	0.04
March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   Marc	Mean	1.01	0.9	1.61	0.05	0.61	0.05	0.024	1.14	0.00048	0.00030	0.023	1.0	1.0	0.20	0.1252	1.3	3.9	0.10	0.03
Marchan   10	Purvis Creek																			
Marchange	UCL95	<del>                                     </del>																		
Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Mathematical   Math	Mean	1.01	0.9	1.61	0.05	0.73	0.05	0.024	3.78	0.00048	0.00030	0.023	1.0	1.0	0.20	0.1322	1.3	3.9	0.10	0.03
Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Mart		F 00	0.0	4.00	0.05	2.20	0.05	0.024	11 71	0.00040	0.00000	0.000	1.0	1.0	0.20	0.6775	4.0	2.0	0.50	0.47
Section Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Contro													<b>†</b>							
Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carl	Eastern Creek	7.20	0.0	1.01	5.05	2.00	5.55	0.024	21.04	0.00040	0.00000	0.020	1.0	1.0	5.20	0.0004	1.5	5.5	0.70	0.14
Newton Concess Complex   21	UCL95	7.27	0.9	1.88	0.05	2.75	0.05	0.024	65.28	0.00048	0.00038	0.023	1.0	1.0	0.20	0.9697	1.3	3.9	0.75	0.25
	Mean	6.06	0.9	1.61	0.05	2.49	0.05	0.024	49.57	0.00048	0.00030	0.023	1.0	1.0	0.20	0.7981	1.3	3.9	0.61	0.20
Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   M	Western Creek Complex																			
No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.	UCL95		0.9	1.88	0.05	1.15	0.05	0.024	3.84	0.00048	0.00038	0.023	1.0	1.0	0.20	0.2575	1.3	3.9	0.20	0.07
Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   Mathem   M	Mean	1.62	0.9	1.61	0.05	1.06	0.05	0.024	3.18	0.00048	0.00030	0.023	1.0	1.0	0.20	0.1986	1.3	3.9	0.15	0.05
Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   Memory   M		0.40	0.0	4.00	0.05	0.75	0.05	0.004	40.44	0.00040	0.00000	0.000	4.0	4.0	0.00	0.0475	4.0	0.0	0.00	0.04
Styles Falland													1							
		3.30	0.9	1.01	0.03	2.43	0.03	0.024	32.70	0.00040	0.00030	0.023	1.0	1.0	0.20	0.7039	1.5	3.9	0.54	0.10
Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Cont	UCL95	0.84	0.9	1.88	0.05	0.24	0.05	0.024	0.25	0.00048	0.00038	0.023	1.0	1.0	0.20	0.1041	1.3	3.9	0.08	0.03
Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia	Mean	0.72	0.9	1.61	0.05	0.22	0.05	0.024	0.20	0.00048	0.00030	0.023	1.0	1.0	0.20	0.0893	1.3	3.9	0.07	0.02
Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia   Columbia																				
	Lead																			
				ı	ı			1		1			1	1	1			ı		
Mean		1.42	0.0	4.04	0.05	0.04	0.05	0.024	20.44	0.00048	0.0100	0.000	1.0	1.0	0.20	0.2240	2.05	11.0	0.06	0.00
Domain 1	Mean																			
	Domain 1	0.07	0.0	0.10	0.00	0	0.00	0.02		0.000.0	0.0001	0.020			0.20	0.1.100	0.00	11.0	0.01	0.01
Domain 2   1.26	UCL95	0.76	0.9	1.21	0.05	10.85	0.05	0.024	40.73	0.00048	0.0016	0.023	1.0	1.0	0.20	0.2524	3.85	11.3	0.07	0.02
1.00   1.26   0.9	Mean	0.62	0.9	0.82	0.05	7.93	0.05	0.024	31.02	0.00048	0.0013	0.023	1.0	1.0	0.20	0.1941	3.85	11.3	0.05	0.02
Mean Onair 3	Domain 2																			
Decision   3	UCL95																			
June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June   June	Mean	0.93	0.9	0.82	0.05	0.52	0.05	0.024	40.85	0.00048	0.0013	0.023	1.0	1.0	0.20	0.2067	3.85	11.3	0.05	0.02
Mean		30.7	0.0	1 21	0.05	3 3/1	0.05	0.024	132.5	0.00048	0.0016	0.023	1.0	1.0	0.20	3 6611	3 95	11.3	0.95	0.32
Decimin   Company   Comp	Mean																			
UCL95	Domain 4		0.0	3.02	3.00		3.00		-02	2.30340	2.0010	3.020			3.20	21.007	2.00	5	55	0.01
Purvis Creek    CLUS   0.65	UCL95	0.65	0.9	1.21	0.05	0.57	0.05	0.024	22.88	0.00048	0.0016	0.023	1.0	1.0	0.20	0.1360	3.85	11.3	0.04	0.01
UCL95 0.65 0.9 1.21 0.05 1.07 0.05 0.024 23.08 0.00048 0.0016 0.023 1.0 1.0 0.20 0.1395 3.85 11.3 0.04 0.01  Mean 0.43 0.9 0.82 0.05 0.92 0.05 0.024 17.41 0.00048 0.0013 0.023 1.0 1.0 0.20 0.0988 3.85 11.3 0.03 0.01  Main Canal 0.45 0.9 1.21 0.05 1.77 0.05 0.024 28.07 0.00048 0.0016 0.023 1.0 1.0 0.20 0.1448 3.85 11.3 0.04 0.01  Mean 0.46 0.9 0.82 0.05 1.45 0.05 0.024 26.07 0.00048 0.0016 0.023 1.0 1.0 0.20 0.1448 3.85 11.3 0.04 0.01  Eastern Creek 1.05 0.86 0.9 1.21 0.05 7.58 0.05 0.024 41.5 0.00048 0.0016 0.023 1.0 1.0 0.20 0.1245 3.85 11.3 0.06 0.02  Mean 0.68 0.9 0.82 0.05 5.21 0.05 0.024 35.71 0.00048 0.0016 0.023 1.0 1.0 0.20 0.1955 3.85 11.3 0.05 0.02  Mean 0.93 0.9 0.82 0.05 0.56 0.05 0.024 30.1 0.00048 0.0016 0.023 1.0 1.0 0.20 0.1915 3.85 11.3 0.06 0.02  Mean 0.93 0.9 0.82 0.05 0.56 0.05 0.024 28.98 0.00048 0.0016 0.023 1.0 1.0 0.20 0.2191 3.85 11.3 0.06 0.02  Mean 0.93 0.9 0.82 0.05 0.52 0.05 0.024 28.98 0.00048 0.0013 0.023 1.0 1.0 0.20 0.2191 3.85 11.3 0.06 0.02  Mean 0.93 0.9 0.82 0.05 0.52 0.05 0.024 28.98 0.00048 0.0016 0.023 1.0 1.0 0.20 0.2191 3.85 11.3 0.06 0.02  Mean 0.93 0.9 0.82 0.05 0.52 0.05 0.024 34.05 0.00048 0.0016 0.023 1.0 1.0 0.20 0.2167 3.85 11.3 0.06 0.02  Mean 0.93 0.9 0.82 0.05 0.52 0.05 0.024 34.05 0.00048 0.0016 0.023 1.0 1.0 0.20 0.2167 3.85 11.3 0.06 0.02  Mean 0.62 0.9 0.82 0.05 5.21 0.05 0.024 34.05 0.00048 0.0016 0.023 1.0 1.0 0.20 0.2167 3.85 11.3 0.06 0.02  Mean 0.62 0.9 0.82 0.05 5.21 0.05 0.024 31 0.00048 0.0016 0.023 1.0 1.0 0.20 0.2167 3.85 11.3 0.06 0.02  Mean 0.62 0.9 0.82 0.05 5.21 0.05 0.024 31 0.00048 0.0016 0.023 1.0 1.0 0.20 0.2167 3.85 11.3 0.06 0.02  Mean 0.62 0.9 0.82 0.05 5.21 0.05 0.024 31 0.00048 0.0016 0.023 1.0 1.0 0.020 0.01777 3.85 11.3 0.06 0.02  Mean 0.62 0.9 0.9 1.21 0.05 0.54 0.05 0.024 31 0.00048 0.0016 0.023 1.0 1.0 0.020 0.01777 3.85 11.3 0.06 0.02  Mean 0.62 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	Mean	0.43	0.9	0.82	0.05	0.53	0.05	0.024	21.66	0.00048	0.0013	0.023	1.0	1.0	0.20	0.1067	3.85	11.3	0.03	0.009
Mean	Purvis Creek												ļ							
Main Canal  UCL95  0.55  0.9  1.21  0.05  1.77  0.05  0.024  28.07  0.00048  0.0016  0.023  1.0  1.0  0.020  0.1448  3.85  11.3  0.04  0.01  0.020  0.1448  3.85  11.3  0.04  0.01  0.020  0.1448  3.85  11.3  0.03  0.01  0.021  0.01  0.020  0.1260  3.85  11.3  0.03  0.01  0.021  0.021  0.021  0.022  0.024  0.024  0.023  0.024  0.024  0.023  0.024  0.023  0.024  0.023  0.024  0.023  0.024  0.023  0.024  0.023  0.024  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.02	UCL95												<b>†</b>							
UCL95 0.55 0.9 1.21 0.05 1.77 0.05 0.024 28.07 0.0048 0.0016 0.023 1.0 1.0 0.20 0.1448 3.85 11.3 0.04 0.01 Mean 0.46 0.9 0.82 0.05 1.45 0.05 0.024 26.07 0.0048 0.0013 0.023 1.0 1.0 0.20 0.1260 3.85 11.3 0.03 0.01 Eastern Creek  UCL95 0.86 0.9 1.21 0.05 7.58 0.05 0.024 41.5 0.00048 0.0016 0.023 1.0 1.0 0.20 0.2454 3.85 11.3 0.06 0.02 Mean 0.68 0.9 0.82 0.05 5.21 0.05 0.024 35.71 0.00048 0.0013 0.023 1.0 1.0 0.20 0.1265 3.85 11.3 0.06 0.02 Mean 0.93 0.9 0.82 0.05 0.52 0.05 0.024 30.1 0.00048 0.0016 0.023 1.0 1.0 0.20 0.1782 3.85 11.3 0.06 0.02 Mean 0.93 0.9 0.82 0.05 0.52 0.05 0.024 28.98 0.00048 0.0016 0.023 1.0 1.0 0.20 0.1782 3.85 11.3 0.06 0.02 Mean 0.062 0.99 0.99 1.21 0.05 7.58 0.05 0.024 34.05 0.0048 0.0016 0.023 1.0 1.0 0.20 0.2167 3.85 11.3 0.06 0.02 Mean 0.062 0.99 0.82 0.05 5.21 0.05 0.024 34.05 0.0048 0.0016 0.023 1.0 1.0 0.20 0.2167 3.85 11.3 0.06 0.02 Mean 0.062 0.99 0.82 0.05 5.21 0.05 0.024 34.05 0.0048 0.0016 0.023 1.0 1.0 0.20 0.2167 3.85 11.3 0.06 0.02 Mean 0.062 0.99 0.82 0.05 5.21 0.05 0.024 34.05 0.0048 0.0016 0.023 1.0 1.0 0.20 0.2167 3.85 11.3 0.06 0.02 Mean 0.062 0.99 0.82 0.05 5.21 0.05 0.024 34.05 0.0048 0.0016 0.023 1.0 1.0 0.20 0.2167 3.85 11.3 0.06 0.02 Mean 0.062 0.99 0.82 0.05 5.21 0.05 0.024 34.05 0.0048 0.0016 0.023 1.0 1.0 0.20 0.2167 3.85 11.3 0.06 0.02 Mean 0.062 0.99 0.82 0.05 5.21 0.05 0.024 34.05 0.0048 0.0016 0.023 1.0 1.0 0.20 0.2167 3.85 11.3 0.06 0.02 Mean 0.062 0.99 0.82 0.05 5.21 0.05 0.024 34.05 0.0048 0.0016 0.023 1.0 1.0 0.20 0.2167 3.85 11.3 0.05 0.02 Mean 0.062 0.99 0.99 1.21 0.05 0.54 0.05 0.024 34.05 0.0048 0.0016 0.023 1.0 1.0 0.20 0.01777 3.85 11.3 0.05 0.02 Mean 0.062 0.99 0.99 1.21 0.05 0.54 0.05 0.024 34.05 0.0048 0.0016 0.023 1.0 1.0 1.0 0.20 0.0858 3.85 11.3 0.05 0.02 0.02 0.02 0.02 0.02 0.02 0.02	Mean Mein Canal	0.43	0.9	0.82	0.05	0.92	0.05	0.024	17.41	0.00048	0.0013	0.023	1.0	1.0	0.20	0.0988	3.85	11.3	0.03	0.01
Mean 0.46 0.9 0.82 0.05 1.45 0.05 0.024 26.07 0.00048 0.0013 0.023 1.0 1.0 0.20 0.1260 3.85 11.3 0.03 0.01  Eastern Creek  JCL95 0.86 0.9 1.21 0.05 7.58 0.05 0.024 41.5 0.00048 0.0016 0.023 1.0 1.0 0.20 0.2454 3.85 11.3 0.06 0.02  Mean 0.68 0.9 0.82 0.05 5.21 0.05 0.024 35.71 0.00048 0.0013 0.023 1.0 1.0 0.20 0.2454 3.85 11.3 0.06 0.02  Western Creek Complex  JCL95 1.26 0.9 1.21 0.05 0.56 0.05 0.024 30.1 0.00048 0.0016 0.023 1.0 1.0 0.20 0.2454 3.85 11.3 0.06 0.02  Mean 0.93 0.9 0.82 0.05 0.52 0.05 0.024 30.1 0.00048 0.0016 0.023 1.0 1.0 0.20 0.2491 3.85 11.3 0.06 0.02  Area A  JCL95 0.76 0.9 1.21 0.05 7.58 0.05 0.024 34.05 0.00048 0.0016 0.023 1.0 1.0 0.20 0.2191 3.85 11.3 0.05 0.02  Mean 0.62 0.9 0.82 0.05 5.21 0.05 0.024 34.05 0.00048 0.0016 0.023 1.0 1.0 0.20 0.2167 3.85 11.3 0.06 0.02  Mean 0.62 0.9 0.82 0.05 5.21 0.05 0.024 31 0.00048 0.0016 0.023 1.0 1.0 0.20 0.2167 3.85 11.3 0.06 0.02  Mean 0.62 0.9 0.82 0.05 5.21 0.05 0.024 31 0.00048 0.0016 0.023 1.0 1.0 0.20 0.2167 3.85 11.3 0.06 0.02  Mean 0.62 0.9 0.82 0.05 5.21 0.05 0.024 31 0.00048 0.0016 0.023 1.0 1.0 0.20 0.2167 3.85 11.3 0.05 0.02  Mean 0.62 0.9 0.82 0.05 0.54 0.05 0.024 31 0.00048 0.0016 0.023 1.0 1.0 0.20 0.0858 3.85 11.3 0.05 0.02  Mean 0.62 0.9 0.82 0.05 0.54 0.05 0.024 31 0.00048 0.0016 0.023 1.0 1.0 0.20 0.0858 3.85 11.3 0.05 0.02  Mean 0.62 0.9 0.82 0.05 0.54 0.05 0.024 31 0.00048 0.0016 0.023 1.0 1.0 0.20 0.0858 3.85 11.3 0.05 0.02		0.55	0.0	1 21	0.05	1 77	0.05	0.024	28 07	0.00049	0.0016	0.022	1.0	1.0	0.20	0 1449	2 QF	11 2	0.04	0.01
Seastern Creek																				
UCL95  0.86  0.9  1.21  0.05  7.58  0.05  0.024  41.5  0.00048  0.0016  0.023  1.0  1.0  0.020  0.2454  3.85  11.3  0.06  0.02  0.025  0.026  0.027  0.027  0.027  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.028  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038	Eastern Creek	0.70	0.0	5.02	5.05	1.70	5.55	0.024	20.01	0.00040	0.0010	0.020	1.0	1.0	5.20	5.1200	5.55	11.0	0.03	0.01
Mean	UCL95	0.86	0.9	1.21	0.05	7.58	0.05	0.024	41.5	0.00048	0.0016	0.023	1.0	1.0	0.20	0.2454	3.85	11.3	0.06	0.02
1.26   0.9   1.21   0.05   0.56   0.05   0.024   30.1   0.0048   0.0016   0.023   1.0   1.0   0.20   0.2191   3.85   11.3   0.06   0.02     Mean   0.93   0.9   0.82   0.05   0.52   0.05   0.024   28.98   0.0048   0.0013   0.023   1.0   1.0   0.20   0.1782   3.85   11.3   0.05   0.02     Area A	Mean																			
Mean 0.93 0.9 0.82 0.05 0.52 0.05 0.024 28.98 0.0048 0.0013 0.023 1.0 1.0 0.20 0.1782 3.85 11.3 0.05 0.02  Area A  JCL95 0.76 0.9 1.21 0.05 7.58 0.05 0.024 34.05 0.0048 0.0016 0.023 1.0 1.0 0.20 0.2167 3.85 11.3 0.06 0.02  Mean 0.62 0.9 0.82 0.05 5.21 0.05 0.024 31 0.00048 0.0013 0.023 1.0 1.0 0.20 0.1777 3.85 11.3 0.05 0.02  Blythe Island  JCL95 0.29 0.9 1.21 0.05 0.54 0.05 0.024 18.26 0.00048 0.0016 0.023 1.0 1.0 0.20 0.0858 3.85 11.3 0.02 0.008	Western Creek Complex																			
Area A  UCL95  0.76  0.9  1.21  0.05  7.58  0.05  0.024  34.05  0.0048  0.0016  0.023  1.0  1.0  0.020  0.2167  3.85  11.3  0.06  0.02  0.02  0.1777  3.85  11.3  0.05  0.02  0.05  0.02  0.05  0.02  0.05  0.02  0.05  0.02  0.05  0.02  0.05  0.02  0.05  0.02  0.05  0.06  0.07  0.07  0.07  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08  0.08	UCL95				0.05			0.024	30.1		0.0016	0.023	<b>†</b>	1.0	0.20	0.2191	3.85	11.3	0.06	0.02
UCL95 0.76 0.9 1.21 0.05 7.58 0.05 0.024 34.05 0.0048 0.0016 0.023 1.0 1.0 0.20 0.2167 3.85 11.3 0.06 0.02  Wean 0.62 0.9 0.82 0.05 5.21 0.05 0.024 31 0.00048 0.0013 0.023 1.0 1.0 0.20 0.1777 3.85 11.3 0.05 0.02  Blythe Island  UCL95 0.29 0.9 1.21 0.05 0.54 0.05 0.024 18.26 0.00048 0.0016 0.023 1.0 1.0 0.20 0.0858 3.85 11.3 0.02 0.008	Mean	0.93	0.9	0.82	0.05	0.52	0.05	0.024	28.98	0.00048	0.0013	0.023	1.0	1.0	0.20	0.1782	3.85	11.3	0.05	0.02
Mean 0.62 0.9 0.82 0.05 5.21 0.05 0.024 31 0.0048 0.0013 0.023 1.0 1.0 0.20 0.1777 3.85 11.3 0.05 0.02  Blythe Island  JCL95 0.29 0.9 1.21 0.05 0.54 0.05 0.024 18.26 0.0048 0.0016 0.023 1.0 1.0 0.20 0.0858 3.85 11.3 0.02 0.008	Area A			4.01	0.0-		0.0=	0.00	0	0.000:-	0.00:-	0.05-	<u> </u>			0.010-	0.05		2.2-	0.05
Blythe Island UCL95  0.29  0.9  1.21  0.05  0.54  0.05  0.024  18.26  0.00048  0.0016  0.023  1.0  1.0  0.20  0.0858  3.85  11.3  0.02  0.008													<b>†</b>							
JCL95 0.29 0.9 1.21 0.05 0.54 0.05 0.024 18.26 0.00048 0.0016 0.023 1.0 1.0 0.20 0.0858 3.85 11.3 0.02 0.008	Mean Blythe Island	0.62	0.9	0.82	0.05	5.21	0.05	U.U24	31	U.UUU48	υ.0013	0.023	1.0	1.0	0.20	U.1//7	3.85	11.3	0.05	0.02
	1 -	0.29	0.9	1.21	0.05	0.54	0.05	0.024	18.26	0,00048	0,0016	0.023	1.0	1.0	0.20	0.0858	3.85	11.3	0.02	0.008
	Mean												1							1
						-	-					-			-		-			

COPC - Chemical of Potential Concern

Conc - Concentration
Mc - Mummichog
BC - Blue Crab
FC - Fiddler Crab
IR - Ingestion Rate
Sed - Sediment
UF - Use Factor

NOAEL - No Observed Adverse Effect Level LOAEL - Lowest Observed Adverse Effect Level

HQ - Hazard Quotient

Table H-5. Estimated Exposure Concentrations - Marsh rabbit (Sylvilagus palustris)

	Conc	Fraction	Food	Conc	Sed	Conc	Water	Time	Area	Body	Estimated		RV		Quotient
COPC	Cordgrass (mg/kg)	Cordgrass	IR (kg/day)	Sed (mg/kg)	IR (kg/day)	Water (mg/L)	IR (L/day)	UF	UF	Weight (kg)	Exposure (mg/kgBW/day)	NOAEL (mg/kgl	LOAEL BW/day)	NOAEL HQ	LOAEL HQ
Methyl Mercury	(mg/kg)		(kg/day)	(IIIg/kg)	(kg/day)	(IIIg/L)	(L/uay)			(kg)	(Hig/kgbvv/day)	(mg/kgi	5vv/uay)	TIQ	ΠQ
Locations															
Reference															
UCL95	0.001	1	0.088	0.0001	0.0018	1.00E-07	0.099	1.0	1.0	1.00	0.00005	0.075	0.15	0.001	0.0004
Mean  Domain 1	0.0005	1	0.088	0.0001	0.0018	5.00E-08	0.099	1.0	1.0	1.00	0.00004	0.075	0.15	0.001	0.0003
UCL95	0.02	1	0.088	0.009	0.0018	9.60E-07	0.099	1.0	1.0	1.00	0.00189	0.075	0.15	0.03	0.01
Mean	0.01	1	0.088	0.004	0.0018	7.00E-07	0.099	1.0	1.0	1.00	0.00085	0.075	0.15	0.01	0.006
Domain 2		1	T		T	1				1	1				
UCL95	0.01	1	0.088	0.005	0.0018	9.60E-07	0.099	1.0	1.0	1.00	0.00079	0.075	0.15	0.01	0.005
Mean  Domain 3	0.005	'	0.088	0.003	0.0018	7.00E-07	0.099	1.0	1.0	1.00	0.00043	0.075	0.15	0.006	0.003
UCL95	0.004	1	0.088	0.002	0.0018	9.60E-07	0.099	1.0	1.0	1.00	0.00038	0.075	0.15	0.005	0.003
Mean	0.004	1	0.088	0.002	0.0018	7.00E-07	0.099	1.0	1.0	1.00	0.00033	0.075	0.15	0.004	0.002
Domain 4	0.000	,	2 222	0.004	2 2242	0.005.05			4.0	4.00	2 2222		0.45	0.004	0.000
UCL95 Mean	0.003	1	0.088	0.001 0.001	0.0018 0.0018	9.60E-07 7.00E-07	0.099	1.0	1.0	1.00	0.00030 0.00025	0.075 0.075	0.15 0.15	0.004 0.003	0.002 0.002
Purvis Creek	0.003	'	0.000	0.001	0.0010	7.00L-07	0.099	1.0	1.0	1.00	0.00023	0.073	0.15	0.003	0.002
UCL95	0.002	1	0.088	0.001	0.0018	9.60E-07	0.099	1.0	1.0	1.00	0.00022	0.075	0.15	0.003	0.001
Mean	0.002	1	0.088	0.001	0.0018	7.00E-07	0.099	1.0	1.0	1.00	0.00019	0.075	0.15	0.003	0.001
<i>Main Canal</i> UCL95	0.075	1	0.000	0.007	0.0049	0.605.07	0.000	1.0	1.0	1.00	0.00665	0.075	0.45	0.00	0.04
Mean	0.075	1	0.088	0.007 0.006	0.0018 0.0018	9.60E-07 7.00E-07	0.099	1.0	1.0	1.00	0.00665 0.00130	0.075 0.075	0.15 0.15	0.09 0.02	0.04 0.009
Eastern Creek	0.010	· ·	0.000	0.000	0.0010	7.002 07	0.000	1.0	1.0	1.00	0.00100	0.070	0.10	0.02	0.000
UCL95	0.014	1	0.088	0.020	0.0018	9.60E-07	0.099	1.0	1.0	1.00	0.00130	0.075	0.15	0.02	0.009
Mean	0.008	1	0.088	0.016	0.0018	7.00E-07	0.099	1.0	1.0	1.00	0.00075	0.075	0.15	0.01	0.005
Western Creek Complex UCL95	0.01	1	0.088	0.003	0.0018	9.60E-07	0.099	1.0	1.0	1.00	0.00078	0.075	0.15	0.01	0.005
Mean	0.005	1	0.088	0.003	0.0018	7.00E-07	0.099	1.0	1.0	1.00	0.00078	0.075	0.15	0.01	0.003
Area A	1										0.000.10				
UCL95	0.014	1	0.088	0.011	0.0018	9.60E-07	0.099	1.0	1.0	1.00	0.00129	0.075	0.15	0.02	0.009
Mean	0.008	1	0.088	0.010	0.0018	7.00E-07	0.099	1.0	1.0	1.00	0.00074	0.075	0.15	0.01	0.005
Blythe Island UCL95	0.003	1	0.088	0.0003	0.0018	9.60E-07	0.099	1.0	1.0	1.00	0.00026	0.075	0.15	0.003	0.002
Mean	0.003	1	0.088	0.0003	0.0018	7.00E-07	0.099	1.0	1.0	1.00	0.00020	0.075	0.15	0.003	0.002
Inorganic Mercury															
Location		1	ı	ı	ı					1				1	1
Reference UCL95	0.006	1	0.088	0.10	0.0018	0.000017	0.099	1.0	1.0	1.00	0.00067	0.05	0.5	0.01	0.001
Mean	0.004	1	0.088	0.08	0.0018	0.0000017	0.099	1.0	1.0	1.00	0.00051	0.05	0.5	0.01	0.001
Domain 1															
UCL95	0.19	1	0.088	11.501	0.0018	0.000057	0.099	1.0	1.0	1.00	0.03767	0.05	0.5	0.75	0.08
Mean <b>Domain 2</b>	0.09	1	0.088	4.846	0.0018	0.000044	0.099	1.0	1.0	1.00	0.01638	0.05	0.5	0.33	0.03
UCL95	0.08	1	0.088	5.839	0.0018	0.000057	0.099	1.0	1.0	1.00	0.01759	0.05	0.5	0.35	0.04
Mean	0.04	1	0.088	3.850	0.0018	0.000044	0.099	1.0	1.0	1.00	0.01079	0.05	0.5	0.22	0.02
Domain 3															
UCL95	0.04	1	0.088	2.225	0.0018	0.000057	0.099	1.0	1.0	1.00	0.00747	0.05	0.5	0.15	0.01
Mean <b>Domain 4</b>	0.03	1	0.088	1.881	0.0018	0.000044	0.099	1.0	1.0	1.00	0.00640	0.05	0.5	0.13	0.01
UCL95	0.031	1	0.088	1.067	0.0018	0.000057	0.099	1.0	1.0	1.00	0.00462	0.05	0.5	0.09	0.009
Mean	0.025	1	0.088	0.631	0.0018	0.000044	0.099	1.0	1.0	1.00	0.00338	0.05	0.5	0.07	0.007
Purvis Creek															
UCL95	0.022	1	0.088	1.53	0.0018	0.000057	0.099	1.0	1.0	1.00	0.00474	0.05	0.5	0.09	0.009
Mean <i>Main Canal</i>	0.019	1	0.088	1.22	0.0018	0.000044	0.099	1.0	1.0	1.00	0.00389	0.05	0.5	0.08	0.008
UCL95	0.684	1	0.088	8.72	0.0018	0.000057	0.099	1.0	1.0	1.00	0.07585	0.05	0.5	1.52	0.15
Mean	0.132	1	0.088	7.39	0.0018	0.000044	0.099	1.0	1.0	1.00	0.02497	0.05	0.5	0.50	0.05
Eastern Creek													_		
UCL95	0.131	1	0.088	25.02	0.0018	0.000057	0.099	1.0	1.0	1.00	0.05653	0.05	0.5	1.13	0.11
Mean	0.074	'	0.068	20.26	0.0018	0.000044	0.099	1.0	1.0	1.00	0.04303	0.05	0.5	0.86	0.09
Western Creek Complex	0.00	1	0.088	3.31	0.0018	0.000057	0.099	1.0	1.0	1.00	0.01303	0.05	0.5	0.26	0.03
Western Creek Complex UCL95	0.08			1	0.0040	0.000044	0.099	1.0	1.0	1.00	0.00882	0.05	0.5	0.18	0.02
-	0.08	1	0.088	2.75	0.0018	0.000044									
UCL95 Mean <i>Area A</i>	0.04														
UCL95 Mean <i>Area A</i> UCL95	0.04	1	0.088	14.04	0.0018	0.000057	0.099	1.0	1.0	1.00	0.03677	0.05	0.5	0.74	0.07
UCL95 Mean Area A UCL95 Mean	0.04						0.099	1.0	1.0	1.00	0.03677 0.02814	0.05 0.05	0.5 0.5	0.74 0.56	0.07 0.06
UCL95 Mean <i>Area A</i> UCL95	0.04	1	0.088	14.04	0.0018	0.000057									
UCL95 Mean Area A UCL95 Mean Blythe Island	0.04 0.131 0.074	1 1	0.088 0.088	14.04 11.99	0.0018 0.0018	0.000057 0.000044	0.099	1.0	1.0	1.00	0.02814	0.05	0.5	0.56	0.06

Table H-5. Estimated Exposure Concentrations - Marsh rabbit (Sylvilagus palustris)

	0	Facation	Faad	0	0-4	0	\\/-t	Time	A	Death	Fatingated	-	D) /	Ussand	O t
	Conc Cordgrass	Fraction Cordgrass	Food IR	Conc Sed	Sed IR	Conc Water	Water IR	Time UF	Area UF	Body Weight	Estimated Exposure	NOAEL	RV LOAEL	NOAEL	Quotient LOAEL
COPC	(mg/kg)	Coragraco	(kg/day)	(mg/kg)	(kg/day)	(mg/L)	(L/day)	0.	O.	(kg)	(mg/kgBW/day)		BW/day)	HQ	HQ
Aroclor 1268														•	•
Location									,						
Reference			2 222		2 22 4 2	0.00000	2 222			4.00	0.04000	0.00			0.00
UCL95 Mean	0.20 0.13	1	0.088	0.08	0.0018 0.0018	0.00060 0.00042	0.099	1.0 1.0	1.0	1.00	0.01806 0.01193	0.03	0.3	0.60 0.40	0.06 0.04
Domain 1	0.13	'	0.000	0.03	0.0018	0.00042	0.099	1.0	1.0	1.00	0.01193	0.03	0.3	0.40	0.04
UCL95	0.55	1	0.088	23.43	0.0018	0.00038	0.099	1.0	1.0	1.00	0.09044	0.03	0.3	3.01	0.30
Mean	0.26	1	0.088	11.45	0.0018	0.00030	0.099	1.0	1.0	1.00	0.04361	0.03	0.3	1.45	0.15
<b>Domain 2</b> UCL95	0.20	1	0.088	5.05	0.0018	0.00038	0.099	1.0	1.0	1.00	0.02655	0.03	0.2	0.89	0.09
Mean	0.20	1	0.088	3.75	0.0018	0.00030	0.099	1.0	1.0	1.00	0.02655	0.03	0.3	0.69	0.09
Domain 3	0.10		0.000	00	0.00.0	0.00000	0.000				0.020.0	0.00	0.0	0.0.	0.01
UCL95	0.12	1	0.088	2.08	0.0018	0.00038	0.099	1.0	1.0	1.00	0.01452	0.03	0.3	0.48	0.05
Mean	0.09	1	0.088	1.67	0.0018	0.00030	0.099	1.0	1.0	1.00	0.01103	0.03	0.3	0.37	0.04
<i>Domain 4</i> UCL95	0.15	1	0.088	1.36	0.0018	0.00038	0.099	1.0	1.0	1.00	0.01578	0.03	0.3	0.53	0.05
Mean	0.13	1	0.088	1.14	0.0018	0.00030	0.099	1.0	1.0	1.00	0.01055	0.03	0.3	0.35	0.03
Purvis Creek															
UCL95	0.22	1	0.088	5.07	0.0018	0.00038	0.099	1.0	1.0	1.00	0.02827	0.03	0.3	0.94	0.09
Mean	0.11	1	0.088	3.78	0.0018	0.00030	0.099	1.0	1.0	1.00	0.01677	0.03	0.3	0.56	0.06
<i>Main Canal</i> UCL95	0.24	1	0.088	41.71	0.0018	0.00038	0.099	1.0	1.0	1.00	0.09588	0.03	0.3	3.20	0.32
Mean	0.14	1	0.088	27.64	0.0018	0.00030	0.099	1.0	1.0	1.00	0.06237	0.03	0.3	2.08	0.21
Eastern Creek															
UCL95	0.31	1	0.088	65.28	0.0018	0.00038	0.099	1.0	1.0	1.00	0.14465	0.03	0.3	4.82	0.48
Mean <b>Western Creek Complex</b>	0.18	1	0.088	49.57	0.0018	0.00030	0.099	1.0	1.0	1.00	0.10536	0.03	0.3	3.51	0.35
UCL95	0.20	1	0.088	3.84	0.0018	0.00038	0.099	1.0	1.0	1.00	0.02436	0.03	0.3	0.81	0.08
Mean	0.15	1	0.088	3.18	0.0018	0.00030	0.099	1.0	1.0	1.00	0.01912	0.03	0.3	0.64	0.06
Area A															
UCL95 Mean	0.31 0.18	1	0.088	40.14 32.78	0.0018 0.0018	0.00038	0.099	1.0 1.0	1.0	1.00	0.09939 0.07514	0.03	0.3	3.31 2.50	0.33 0.25
Blythe Island	0.10	'	0.000	32.70	0.0016	0.00030	0.099	1.0	1.0	1.00	0.07314	0.03	0.3	2.50	0.25
UCL95	0.04	1	0.088	0.25	0.0018	0.00038	0.099	1.0	1.0	1.00	0.00393	0.03	0.3	0.13	0.01
Mean	0.03	1	0.088	0.20	0.0018	0.00030	0.099	1.0	1.0	1.00	0.00283	0.03	0.3	0.09	0.009
Land															
Lead Location															
Reference															
UCL95	2.15	1	0.088	20.41	0.0018	0.0100	0.099	1.0	1.0	1.00	0.22693	8	80	0.03	0.003
Mean	1.60	1	0.088	17.64	0.0018	0.0057	0.099	1.0	1.0	1.00	0.17276	8	80	0.02	0.002
<i>Domain 1</i> UCL95	2.88	1	0.088	40.73	0.0018	0.0016	0.099	1.0	1.0	1.00	0.32726	8	80	0.04	0.004
Mean	2.50	1	0.088	31.02	0.0018	0.0013	0.099	1.0	1.0	1.00	0.32720	8	80	0.03	0.003
Domain 2															
UCL95	2.74	1	0.088	63.03	0.0018	0.0016	0.099	1.0	1.0	1.00	0.35438	8	80	0.04	0.004
Mean <b>Domain 3</b>	1.95	1	0.088	40.85	0.0018	0.0013	0.099	1.0	1.0	1.00	0.24553	8	80	0.03	0.003
UCL95	5.12	1	0.088	132.5	0.0018	0.0016	0.099	1.0	1.0	1.00	0.68878	8	80	0.09	0.009
Mean	3.51	1	0.088	90.72	0.0018	0.0013	0.099	1.0	1.0	1.00	0.47257	8	80	0.06	0.006
Domain 4	2 :-		0.557	00.5	0.05.1	0.05::	0.000				0.04554			2 - :	0.55
UCL95 Mean	3.12 1.98	1	0.088	22.88 21.66	0.0018 0.0018	0.0016 0.0013	0.099	1.0	1.0	1.00	0.31608 0.21362	8	80 80	0.04 0.03	0.004 0.003
Purvis Creek	1.30	'	0.000	21.00	0.0010	0.0013	0.038	1.0	1.0	1.00	0.21302	U	00	0.03	0.003
UCL95	3.07	1	0.088	23.08	0.0018	0.0016	0.099	1.0	1.0	1.00	0.31186	8	80	0.04	0.004
Mean	2.02	1	0.088	17.41	0.0018	0.0013	0.099	1.0	1.0	1.00	0.20914	8	80	0.03	0.003
<i>Main Canal</i> UCL95	4.16	1	0.088	28.07	0.0018	0.0016	0.099	1.0	1.0	1.0	0.41703	8	80	0.05	0.005
Mean	3.33	1	0.088	26.07	0.0018	0.0016	0.099	1.0	1.0	1.0	0.41703	8	80	0.05	0.005
Eastern Creek				<u> </u>											
UCL95	2.97	1	0.088	41.5	0.0018	0.0016	0.099	1.0	1.0	1.0	0.33648	8	80	0.04	0.004
Mean	2.47	1	0.088	35.71	0.0018	0.0013	0.099	1.0	1.0	1.0	0.28212	8	80	0.04	0.004
Western Creek Complex UCL95	2.74	1	0.088	30.1	0.0018	0.0016	0.099	1.0	1.0	1.0	0.29511	8	80	0.04	0.004
Mean	1.95	1	0.088	28.98	0.0018	0.0013	0.099	1.0	1.0	1.0	0.22416	8	80	0.03	0.004
Area A															
UCL95	2.97	1	0.088	34.05	0.0018	0.0016	0.099	1.0	1.0	1.0	0.32307	8	80	0.04	0.004
Mean	2.47	1	0.088	31	0.0018	0.0013	0.099	1.0	1.0	1.0	0.27364	8	80	0.03	0.003
Blythe Island UCL95	1.56	1	0.088	18.26	0.0018	0.0016	0.099	1.0	1.0	1.0	0.17031	8	80	0.02	0.002
Mean	1.08	1	0.088	16.50	0.0018	0.0013	0.099	1.0	1.0	1.0	0.17031	8	80	0.02	0.002

COPC - Chemical of Potential Concern

Conc - Concentration IR - Ingestion Rate Sed - Sediment UF - Use Factor

NOAEL - No Observed Adverse Effect Level LOAEL - Lowest Observed Adverse Effect Level

HQ - Hazard Quotient

Table H-6. Estimated Exposure Concentrations - Raccoon (Procyon lotor)

	Ι	l =	Ι .									T							
	Conc FC	Fraction FC	Conc BC	Fraction BC	Conc Mc	Fraction Mc	Food IR	Conc Sed	Sed IR	Conc Water	Water IR	Time UF	Area UF	Body Weight	Estimated Exposure	TF NOAEL	RV LOAEL	Hazard NOAEL	Quotient LOAEL
COPC	(mg/kg)	10	(mg/kg)	ВС	(mg/kg)	IVIC	(kg/day)	(mg/kg)	(kg/day)	(mg/L)	(L/day)	01	01	(kg)	(mg/kgBW/day)	(mg/kgE		HQ	HQ
Methyl Mercury	( 3 3/	l	( 3 3/		( 3 3)		( 3.11)	( 3 3)	( 3 ),	( 3 /	( , )	1	l	( 3)	( 3 3 111)	( 3 3	,,,		
Locations																			
Reference			1							<b>.</b>					I				
UCL95 Mean	0.034 0.027	0.45 0.45	0.19 0.15	0.45 0.45	0.10	0.10	0.20 0.20	0.0001 0.0001	0.019	1.00E-07 5.00E-08	0.320 0.320	1.0	0.3	3.70 3.70	0.0018 0.0014	0.075 0.075	0.15	0.02	0.012
Domain 1	0.021	0.43	0.10	0.40	0.00	0.10	0.20	0.0001	0.013	3.00L 00	0.020	1.0	0.5	5.70	0.0014	0.073	0.10	0.02	0.003
UCL95	0.69	0.45	1.78	0.45	1.40	0.10	0.20	0.009	0.019	9.60E-07	0.320	1.0	0.3	3.70	0.0203	0.075	0.15	0.27	0.135
Mean	0.65	0.45	1.59	0.45	0.78	0.10	0.20	0.004	0.019	7.00E-07	0.320	1.0	0.3	3.70	0.0176	0.075	0.15	0.23	0.117
Domain 2	0.24	0.45	1 70	0.45	0.22	0.10	0.20	0.005	0.010	0.605.07	0.220	1.0	0.2	2.70	0.0150	0.075	0.15	0.20	0.10
UCL95 Mean	0.21 0.19	0.45 0.45	1.78 1.59	0.45 0.45	0.32 0.26	0.10	0.20	0.005 0.003	0.019	9.60E-07 7.00E-07	0.320	1.0	0.3	3.70 3.70	0.0150 0.0134	0.075 0.075	0.15 0.15	0.20 0.18	0.10 0.09
Domain 3	0.13	0.40	1.00	0.45	0.20	0.10	0.20	0.005	0.013	7.002-07	0.020	1.0	0.5	3.70	0.0134	0.073	0.10	0.10	0.03
UCL95	0.20	0.45	1.78	0.45	0.35	0.10	0.20	0.002	0.019	9.60E-07	0.320	1.0	0.3	3.70	0.0150	0.075	0.15	0.20	0.10
Mean	0.18	0.45	1.59	0.45	0.32	0.10	0.20	0.002	0.019	7.00E-07	0.320	1.0	0.3	3.70	0.0134	0.075	0.15	0.18	0.09
Domain 4	0.40	0.45	4.70	0.45	0.00	0.40	0.00	0.004	0.040	0.005.07	0.000	4.0	0.0	0.70	0.0445	0.075	0.45	0.40	0.40
UCL95 Mean	0.16 0.15	0.45 0.45	1.78 1.59	0.45 0.45	0.22 0.18	0.10	0.20	0.001 0.001	0.019	9.60E-07 7.00E-07	0.320 0.320	1.0	0.3	3.70 3.70	0.0145 0.0130	0.075 0.075	0.15 0.15	0.19 0.17	0.10 0.09
Purvis Creek	0.15	0.40	1.00	0.45	0.10	0.10	0.20	0.001	0.013	7.002-07	0.020	1.0	0.5	3.70	0.0130	0.073	0.10	0.17	0.03
UCL95	0.10	0.45	1.78	0.45	0.22	0.10	0.20	0.001	0.019	9.60E-07	0.320	1.0	0.3	3.70	0.0141	0.075	0.15	0.19	0.09
Mean	0.09	0.45	1.59	0.45	0.18	0.10	0.20	0.001	0.019	7.00E-07	0.320	1.0	0.3	3.70	0.0126	0.075	0.15	0.17	0.08
Main Canal	0.44	0.45	4.70	0.45	0.70	0.40	0.20	0.007	0.010	0.605.07	0.300	1.0	0.0	2.70	0.0474	0.075	0.15	0.22	0.11
UCL95 Mean	0.41	0.45 0.45	1.78 1.59	0.45 0.45	0.70 0.52	0.10	0.20	0.007 0.006	0.019	9.60E-07 7.00E-07	0.320	1.0	0.3	3.70 3.70	0.0171 0.0153	0.075 0.075	0.15	0.23	0.11 0.10
Eastern Creek	0.00	5.75	1.00	5.40	5.02	5.10	3.20	5.000	5.010		3.020	1.5	0.0	3.70	3.0100	3.070	5.10	5.20	3.13
UCL95	0.57	0.45	1.78	0.45	1.83	0.10	0.20	0.020	0.019	9.60E-07	0.320	1.0	0.3	3.70	0.0201	0.075	0.15	0.27	0.13
Mean	0.54	0.45	1.59	0.45	0.64	0.10	0.20	0.016	0.019	7.00E-07	0.320	1.0	0.3	3.70	0.0166	0.075	0.15	0.22	0.11
Western Creek Complex UCL95	0.21	0.45	1.78	0.45	0.32	0.10	0.20	0.003	0.019	9.60E-07	0.320	1.0	0.3	3.70	0.0150	0.075	0.15	0.20	0.10
Mean	0.21	0.45	1.78	0.45	0.32	0.10	0.20	0.003	0.019	7.00E-07	0.320	1.0	0.3	3.70	0.0134	0.075	0.15	0.20	0.10
Area A					0.20		0.20	0.00							0.0.0	0.0.0			
UCL95	0.57	0.45	1.78	0.45	1.40	0.10	0.20	0.011	0.019	9.60E-07	0.320	1.0	0.3	3.70	0.0194	0.075	0.15	0.26	0.13
Mean	0.54	0.45	1.59	0.45	0.78	0.10	0.20	0.010	0.019	7.00E-07	0.320	1.0	0.3	3.70	0.0168	0.075	0.15	0.22	0.11
Blythe Island UCL95	0.14	0.45	1.78	0.45	0.15	0.10	0.20	0.0003	0.019	9.60E-07	0.320	1.0	0.3	3.70	0.0143	0.075	0.15	0.19	0.10
Mean	0.13	0.45	1.59	0.45	0.13	0.10	0.20	0.0003	0.019	7.00E-07	0.320	1.0	0.3	3.70	0.0128	0.075	0.15	0.17	0.09
Inorganic Mercury																			
Location		1											1						
Reference UCL95	0.02	0.45	0.00	0.45	0.01	0.10	0.20	0.10	0.019	0.000017	0.320	1.0	0.3	3.70	0.0003	0.05	0.5	0.01	0.001
Mean	0.01	0.45	0.00	0.45	0.01	0.10	0.20	0.08	0.019	0.000008	0.320	1.0	0.3	3.70	0.0002	0.05	0.5	0.004	0.0004
Domain 1																			
UCL95	0.33	0.45	0.00	0.45	0.16	0.10	0.20	11.501	0.019	0.000057	0.320	1.0	0.3	3.70	0.0204	0.05	0.5	0.41	0.04
Mean <i>Domain 2</i>	0.30	0.45	0.00	0.45	0.09	0.10	0.20	4.846	0.019	0.000044	0.320	1.0	0.3	3.70	0.0098	0.05	0.5	0.20	0.02
UCL95	0.10	0.45	0.00	0.45	0.04	0.10	0.20	5.839	0.019	0.000057	0.320	1.0	0.3	3.70	0.0098	0.05	0.5	0.20	0.02
Mean	0.09	0.45	0.00	0.45	0.03	0.10	0.20	3.850	0.019	0.000044	0.320	1.0	0.3	3.70	0.0066	0.05	0.5	0.13	0.01
Domain 3																			
UCL95	0.09	0.45	0.00	0.45	0.04	0.10	0.20	2.225	0.019	0.000057	0.320	1.0	0.3	3.70	0.0041	0.05	0.5	0.08	0.008
Mean  Domain 4	0.09	0.45	0.00	0.45	0.04	0.10	0.20	1.881	0.019	0.000044	0.320	1.0	0.3	3.70	0.0036	0.05	0.5	0.07	0.007
UCL95	0.08	0.45	0.00	0.45	0.02	0.10	0.20	1.067	0.019	0.000057	0.320	1.0	0.3	3.70	0.0023	0.05	0.5	0.05	0.005
Mean	0.07	0.45	0.00	0.45	0.02	0.10	0.20	0.631	0.019	0.000044	0.320	1.0	0.3	3.70	0.0015	0.05	0.5	0.03	0.003
Purvis Creek									0 - :	0.0		<u> </u>							
UCL95 Mean	0.04	0.45 0.45	0.00	0.45 0.45	0.02	0.10	0.20	1.53 1.22	0.019	0.000057 0.000044	0.320 0.320	1.0	0.3	3.70 3.70	0.0027 0.0022	0.05 0.05	0.5	0.05	0.005 0.004
Main Canal	0.04	0.40	0.00	0.40	0.02	0.10	0.20	1.22	0.019	0.000044	0.320	1.0	0.3	3.10	0.0022	บ.บอ	0.0	0.04	0.004
UCL95	0.20	0.45	0.00	0.45	0.08	0.10	0.20	8.72	0.019	0.000057	0.320	1.0	0.3	3.70	0.0150	0.05	0.5	0.30	0.03
Mean	0.18	0.45	0.00	0.45	0.06	0.10	0.20	7.39	0.019	0.000044	0.320	1.0	0.3	3.70	0.0128	0.05	0.5	0.26	0.03
Eastern Creek	0.07	0.45	0.00	0.45	0.00	0.40	0.00	25.00	0.040	0.00005	0.000	4.0	0.0	0.70	0.0400	0.05	2.5	0.00	0.00
UCL95 Mean	0.27 0.25	0.45 0.45	0.00	0.45 0.45	0.20 0.070	0.10	0.20 0.20	25.02 20.26	0.019	0.000057 0.000044	0.320 0.320	1.0	0.3	3.70 3.70	0.0408 0.0332	0.05 0.05	0.5	0.82	0.08
Western Creek Complex	0.20	0.40	0.00	0.40	0.070	0.10	0.20	20.20	0.018	0.000044	0.020	1.0	0.3	3.10	0.0002	0.00	0.5	0.00	0.07
UCL95	0.10	0.45	0.00	0.45	0.04	0.10	0.20	3.31	0.019	0.000057	0.320	1.0	0.3	3.70	0.0059	0.05	0.5	0.12	0.01
Mean	0.09	0.45	0.00	0.45	0.03	0.10	0.20	2.75	0.019	0.000044	0.320	1.0	0.3	3.70	0.0049	0.05	0.5	0.10	0.01
Area A	2.0-	0.1-	0.0-	C 1=	6.1-	C 1-	0.0-	44.5	0.01-	0.000	0.05-		2.5		0.000-	0.05		0.15	0.05
UCL95 Mean	0.27 0.25	0.45 0.45	0.00	0.45 0.45	0.16 0.09	0.10	0.20	14.04 11.99	0.019	0.000057 0.000044	0.320 0.320	1.0	0.3	3.70 3.70	0.0239 0.0204	0.05 0.05	0.5	0.48	0.05 0.04
Blythe Island	0.25	0.40	0.00	0.40	0.09	0.10	0.20	11.33	0.019	0.000044	0.320	1.0	0.3	3.10	0.0204	บ.บอ	0.0	U. <del>4</del> 1	0.04
UCL95	0.07	0.45	0.00	0.45	0.02	0.10	0.20	0.39	0.019	0.000057	0.320	1.0	0.3	3.70	0.0011	0.05	0.5	0.02	0.002
Mean	0.06	0.45	0.00	0.45	0.02	0.10	0.20	0.30	0.019	0.000044	0.320	1.0	0.3	3.70	0.0009	0.05	0.5	0.02	0.002
·																			

Table H-6. Estimated Exposure Concentrations - Raccoon (Procyon lotor)

		[		F	0	F	F	0	0.1	0	14/	T		I 5. 1	F.C.		2) /		0 15 1
	Conc FC	Fraction FC	Conc BC	Fraction BC	Conc Mc	Fraction Mc	Food IR	Conc Sed	Sed IR	Conc Water	Water IR	Time UF	Area UF	Body Weight	Estimated Exposure	TF NOAEL	LOAEL	NOAEL	Quotient LOAEL
COPC	(mg/kg)		(mg/kg)		(mg/kg)		(kg/day)	(mg/kg)	(kg/day)	(mg/L)	(L/day)			(kg)	(mg/kgBW/day)	(mg/kgE		HQ	HQ
Aroclor 1268																			
Location		ſ	1									1	1	Г	1				
Reference UCL95	0.38	0.45	0.30	0.45	0.22	0.10	0.20	0.08	0.019	0.00060	0.320	1.0	0.3	3.70	0.0055	0.03	0.3	0.18	0.018
Mean	0.38	0.45	0.30	0.45	0.22	0.10	0.20	0.05	0.019	0.00042	0.320	1.0	0.3	3.70	0.0039	0.03	0.3	0.10	0.016
Domain 1												_							
UCL95	2.49	0.45	1.88	0.45	6.42	0.10	0.20	23.43	0.019	0.00038	0.320	1.0	0.3	3.70	0.0784	0.03	0.3	2.61	0.26
Mean	2.22	0.45	1.61	0.45	5.58	0.10	0.20	11.45	0.019	0.00030	0.320	1.0	0.3	3.70	0.0546	0.03	0.3	1.82	0.18
Domain 2 UCL95	1.15	0.45	1.88	0.45	2.13	0.10	0.20	5.05	0.019	0.00038	0.320	1.0	0.3	3.70	0.0334	0.03	0.3	1.11	0.11
Mean	1.06	0.45	1.61	0.45	1.62	0.10	0.20	3.75	0.019	0.00030	0.320	1.0	0.3	3.70	0.0279	0.03	0.3	0.93	0.09
Domain 3																			
UCL95	0.93	0.45	1.88	0.45	3.29	0.10	0.20	2.08	0.019	0.00038	0.320	1.0	0.3	3.70	0.0291	0.03	0.3	0.97	0.10
Mean  Domain 4	0.81	0.45	1.61	0.45	2.87	0.10	0.20	1.67	0.019	0.00030	0.320	1.0	0.3	3.70	0.0249	0.03	0.3	0.83	0.08
UCL95	0.71	0.45	1.88	0.45	1.22	0.10	0.20	1.36	0.019	0.00038	0.320	1.0	0.3	3.70	0.0230	0.03	0.3	0.77	0.08
Mean	0.61	0.45	1.61	0.45	1.01	0.10	0.20	1.14	0.019	0.00030	0.320	1.0	0.3	3.70	0.0196	0.03	0.3	0.65	0.07
Purvis Creek																			
UCL95 Mean	0.98 0.73	0.45 0.45	1.88 1.61	0.45 0.45	1.22 1.01	0.10	0.20 0.20	5.07 3.78	0.019 0.019	0.00038	0.320	1.0	0.3	3.70 3.70	0.0307 0.0245	0.03	0.3	1.02 0.82	0.10 0.08
Main Canal	0.13	0.40	1.01	0.40	1.01	0.10	0.20	3.10	0.018	0.00030	U.32U	1.0	0.3	3.10	0.0240	0.03	0.3	0.02	0.08
UCL95	3.26	0.45	1.88	0.45	5.06	0.10	0.20	41.71	0.019	0.00038	0.320	1.0	0.3	3.70	0.1100	0.03	0.3	3.67	0.37
Mean	2.86	0.45	1.61	0.45	4.28	0.10	0.20	27.64	0.019	0.00030	0.320	1.0	0.3	3.70	0.0821	0.03	0.3	2.74	0.27
Eastern Creek UCL95	2.75	0.45	1.88	0.45	7.27	0.10	0.20	65.28	0.019	0.00038	0.320	1.0	0.3	3.70	0.1462	0.03	0.3	4.87	0.49
Mean	2.75	0.45	1.88	0.45	6.06	0.10	0.20	49.57	0.019	0.00038	0.320	1.0	0.3	3.70	0.1462	0.03	0.3	3.87	0.49
Western Creek Complex			-									_							
UCL95	1.15	0.45	1.88	0.45	2.13	0.10	0.20	3.84	0.019	0.00038	0.320	1.0	0.3	3.70	0.0315	0.03	0.3	1.05	0.10
Mean A	1.06	0.45	1.61	0.45	1.62	0.10	0.20	3.18	0.019	0.00030	0.320	1.0	0.3	3.70	0.0270	0.03	0.3	0.90	0.09
Area A UCL95	2.75	0.45	1.88	0.45	6.42	0.10	0.20	40.14	0.019	0.00038	0.320	1.0	0.3	3.70	0.1060	0.03	0.3	3.53	0.35
Mean	2.49	0.45	1.61	0.45	5.58	0.10	0.20	32.78	0.019	0.00030	0.320	1.0	0.3	3.70	0.0895	0.03	0.3	2.98	0.30
Blythe Island																			
UCL95	0.24 0.22	0.45 0.45	1.88	0.45 0.45	0.84	0.10	0.20	0.25 0.20	0.019	0.00038	0.320	1.0 1.0	0.3	3.70	0.0172	0.03	0.3	0.57	0.06
Mean	0.22	0.45	1.61	0.45	0.72	0.10	0.20	0.20	0.019	0.00030	0.320	1.0	0.3	3.70	0.0148	0.03	0.3	0.49	0.05
Lead		l	l				l					I	I	1					
Location		1																	
Reference	0.04	0.45	4.04	0.45	4.40	0.40	0.00	00.44	0.040	0.0400	0.000	4.0	0.0	0.70	0.0700	•		0.000	0.004
UCL95 Mean	0.84 0.71	0.45 0.45	4.21 0.73	0.45 0.45	1.43 0.87	0.10	0.20	20.41 17.64	0.019	0.0100	0.320	1.0	0.3	3.70 3.70	0.0709 0.0392	8	80 80	0.009	0.001 0.0005
Domain 1				0.10			0.20								0.000	,		0.000	0.0000
UCL95	10.85	0.45	1.21	0.45	0.76	0.10	0.20	40.73	0.019	0.0016	0.320	1.0	0.3	3.70	0.1520	8	80	0.02	0.002
Mean <i>Domain 2</i>	7.93	0.45	0.82	0.45	0.62	0.10	0.20	31.02	0.019	0.0013	0.320	1.0	0.3	3.70	0.1127	8	80	0.01	0.001
UCL95	0.56	0.45	1.21	0.45	1.26	0.10	0.20	63.03	0.019	0.0016	0.320	1.0	0.3	3.70	0.1121	8	80	0.01	0.001
Mean	0.52	0.45	0.82	0.45	0.93	0.10	0.20	40.85	0.019	0.0013	0.320	1.0	0.3	3.70	0.0743	8	80	0.009	0.001
Domain 3																			
UCL95 Mean	3.34 2.11	0.45 0.45	1.21 0.82	0.45 0.45	30.7 2.41	0.10	0.20 0.20	132.5 90.72	0.019	0.0016 0.0013	0.320	1.0 1.0	0.3	3.70 3.70	0.2871 0.1651	8	80 80	0.04	0.004 0.002
Domain 4	4.11	0.40	0.0∠	0.40	2.41	0.10	0.20	3U.1Z	0.018	0.0013	U.32U	1.0	0.3	3.10	0.1001	0	ου	0.02	0.002
UCL95	0.57	0.45	1.21	0.45	0.65	0.10	0.20	22.88	0.019	0.0016	0.320	1.0	0.3	3.70	0.0493	8	80	0.006	0.001
Mean	0.53	0.45	0.82	0.45	0.43	0.10	0.20	21.66	0.019	0.0013	0.320	1.0	0.3	3.70	0.0440	8	80	0.005	0.001
Purvis Creek UCL95	1.07	0.45	1.21	0.45	0.65	0.10	0.20	23.08	0.019	0.0016	0.320	1.0	0.3	3.70	0.0533	8	80	0.007	0.001
Mean	0.92	0.45	0.82	0.45	0.65	0.10	0.20	17.41	0.019	0.0018	0.320	1.0	0.3	3.70	0.0533	8	80	0.007	0.001
Main Canal																-			
UCL95	1.77	0.45	1.21	0.45	0.55	0.10	0.20	28.07	0.019	0.0016	0.320	1.0	0.3	3.70	0.0659	8	80	0.008	0.001
Mean <b>Eastern Creek</b>	1.45	0.45	0.82	0.45	0.46	0.10	0.20	26.07	0.019	0.0013	0.320	1.0	0.3	3.70	0.0575	8	80	0.007	0.001
UCL95	7.58	0.45	1.21	0.45	0.86	0.10	0.20	41.5	0.019	0.0016	0.320	1.0	0.3	3.70	0.1295	8	80	0.02	0.002
Mean	5.21	0.45	0.82	0.45	0.68	0.10	0.20	35.71	0.019	0.0013	0.320	1.0	0.3	3.70	0.1002	8	80	0.01	0.001
Western Creek Complex																			
UCL95	0.56	0.45	1.21	0.45	1.26	0.10	0.20	30.1	0.019	0.0016	0.320	1.0 1.0	0.3	3.70 3.70	0.0614 0.0560	8	80 80	0.008	0.001
Mean <i>Area A</i>	0.52	0.45	0.82	0.45	0.93	0.10	0.20	28.98	0.019	0.0013	0.320	1.0	0.3	3.70	0,0000	ŏ	80	0.007	0.001
UCL95	7.58	0.45	1.21	0.45	0.76	0.10	0.20	34.05	0.019	0.0016	0.320	1.0	0.3	3.70	0.1179	8	80	0.01	0.001
Mean	5.21	0.45	0.82	0.45	0.62	0.10	0.20	31	0.019	0.0013	0.320	1.0	0.3	3.70	0.0928	8	80	0.01	0.001
Blythe Island	0.51	0.45	4.04	0.45	0.00	0.40	0.00	40.00	0.040	0.0040	0.000	4.0	0.0	0.70	0.0444	0	00	0.005	0.004
UCL95 Mean	0.54 0.50	0.45 0.45	1.21 0.82	0.45 0.45	0.29 0.25	0.10	0.20	18.26 16.50	0.019	0.0016 0.0013	0.320	1.0	0.3	3.70 3.70	0.0414 0.0355	8	80 80	0.005 0.004	0.001 0.0004
	0.50	0.70	J.UZ	J.7J	J. <u>2</u> J	0.10	J.20	10.00	0.013	0.0010	0.020	1.0	0.5	5.70	5.0555	U	00	5.004	0.0004

COPC - Chemical of Potential Concern

COPC - Chemical of Po Conc - Concentration FC - Fiddler Crab BC - Blue Crab Mc - Mummichog IR - Ingestion Rate Sed - Sediment UF - Use Factor

NOAEL - No Observed Adverse Effect Level LOAEL - Lowest Observed Adverse Effect Level

HQ - Hazard Quotient

Table H-7. Estimated Exposure Concentrations - River otter (Lutra canadensis)

Table H-7. Estillateu	Ехрози	c oone	, intration	3 - Itivoi	otto: (Et	atra carr	auchisis	,													
	Conc	Fraction	Conc	Fraction	Conc	Fraction	Conc	Fraction	Food	Conc	Sed	Conc	Water	Time	Area	Body	Estimated		RV		Quotient
CODO	Mc	Mc	S Perch	S Perch	FC (====(1:==)	FC	BC	BC	IR (log/dec)	Sed	IR (log/dec)	Water	IR (L(d=v)	UF	UF	Weight	Exposure	NOAEL /ma/ka	LOAEL	NOAEL	LOAEL
COPC Methyl Mercury	(mg/kg)		(mg/kg)		(mg/kg)		(mg/kg)		(kg/day)	(mg/kg)	(kg/day)	(mg/L)	(L/day)			(kg)	(mg/kgBW/day)	(mg/kg	BW/day)	HQ	HQ
Locations																					
Reference																					
UCL95	0.10	0.30	0.33	0.50	0.034	0.10	0.19	0.10	0.33	0.0001	0.015	1.00E-07	0.55	1.0	0.57	6.70	0.00610	0.075	0.15	0.08	0.04
Mean	0.08	0.30	0.29	0.50	0.027	0.10	0.15	0.10	0.33	0.0001	0.015	5.00E-08	0.55	1.0	0.57	6.70	0.00524	0.075	0.15	0.07	0.03
<b>Domain 1</b> UCL95	1.40	0.30	1.85	0.50	0.69	0.10	1.78	0.10	0.33	0.009	0.015	9.60E-07	0.55	1.0	0.03	6.70	0.00235	0.075	0.15	0.03	0.02
Mean	0.78	0.30	1.60	0.50	0.65	0.10	1.59	0.10	0.33	0.004	0.015	7.00E-07	0.55	1.0	0.03	6.70	0.00186	0.075	0.15	0.02	0.01
Domain 2		1	1				1		1	1	1	1		1			1		1		1
UCL95	0.32 0.26	0.30	1.85	0.50 0.50	0.21	0.10 0.10	1.78 1.59	0.10	0.33	0.005	0.015	9.60E-07 7.00E-07	0.55 0.55	1.0	0.18	6.70	0.01082	0.075 0.075	0.15	0.14	0.07
Mean  Domain 3	0.26	0.30	1.60	0.50	0.19	0.10	1.59	0.10	0.33	0.003	0.015	7.00E-07	0.55	1.0	0.18	6.70	0.00936	0.075	0.15	0.12	0.06
UCL95	0.35	0.30	1.85	0.50	0.20	0.10	1.78	0.10	0.33	0.002	0.015	9.60E-07	0.55	1.0	0.21	6.70	0.01270	0.075	0.15	0.17	0.08
Mean	0.32	0.30	1.60	0.50	0.18	0.10	1.59	0.10	0.33	0.002	0.015	7.00E-07	0.55	1.0	0.21	6.70	0.01110	0.075	0.15	0.15	0.07
Domain 4	0.00	0.00	4.05	0.50	0.40	0.40	4.70	0.40	0.00	0.004	0.045	0.005.07	0.55	4.0	0.57	0.70	0.00007	0.075	0.45	0.44	0.00
UCL95 Mean	0.22 0.18	0.30	1.85 1.60	0.50 0.50	0.16 0.15	0.10	1.78 1.59	0.10	0.33	0.001	0.015 0.015	9.60E-07 7.00E-07	0.55 0.55	1.0	0.57 0.57	6.70 6.70	0.03327 0.02886	0.075 0.075	0.15 0.15	0.44 0.38	0.22 0.19
Purvis Creek																					
UCL95	0.22	0.30	1.85	0.50	0.10	0.10	1.78	0.10	0.33	0.001	0.015	9.60E-07	0.55	1.0	0.08	6.70	0.00465	0.075	0.15	0.06	0.03
Mean Main Const	0.18	0.30	1.60	0.50	0.09	0.10	1.59	0.10	0.33	0.001	0.015	7.00E-07	0.55	1.0	0.08	6.70	0.00403	0.075	0.15	0.05	0.03
<i>Main Canal</i> UCL95	0.70	0.30	1.85	0.50	0.41	0.10	1.78	0.10	0.33	0.007	0.015	9.60E-07	0.55	1.0	0.002	6.70	0.00013	0.075	0.15	0.002	0.001
Mean	0.52	0.30	1.60	0.50	0.39	0.10	1.59	0.10	0.33	0.006	0.015	7.00E-07	0.55	1.0	0.002	6.70	0.00011	0.075	0.15	0.002	0.001
Eastern Creek					$\perp$											$\perp$					
UCL95 Mean	1.83 0.64	0.30	1.85 1.60	0.50 0.50	0.57 0.54	0.10	1.78 1.59	0.10	0.33	0.020 0.016	0.015 0.015	9.60E-07 7.00E-07	0.55 0.55	1.0	0.006	6.70 6.70	0.00051 0.00036	0.075 0.075	0.15 0.15	0.007 0.005	0.003 0.002
Western Creek Complex	0.04	0.30	1.00	0.50	0.54	0.10	1.59	0.10	0.55	0.010	0.013	7.002-07	0.55	1.0	0.000	0.70	0.00030	0.073	0.13	0.003	0.002
UCL95	0.32	0.30	1.85	0.50	0.21	0.10	1.78	0.10	0.33	0.003	0.015	9.60E-07	0.55	1.0	0.003	6.70	0.00018	0.075	0.15	0.002	0.001
Mean	0.26	0.30	1.60	0.50	0.19	0.10	1.59	0.10	0.33	0.002	0.015	7.00E-07	0.55	1.0	0.003	6.70	0.00016	0.075	0.15	0.002	0.001
<i>Area A</i> UCL95	1.40	0.30	1.85	0.50	0.57	0.10	1.78	0.10	0.33	0.011	0.015	9.60E-07	0.55	1.0	0.011	6.70	0.00086	0.075	0.15	0.011	0.006
Mean	0.78	0.30	1.60	0.50	0.54	0.10	1.59	0.10	0.33	0.010	0.015	7.00E-07	0.55	1.0	0.011	6.70	0.00068	0.075	0.15	0.009	0.005
Blythe Island																					
UCL95	0.15	0.30	1.85	0.50	0.14	0.10	1.78	0.10	0.33	0.0003	0.015	9.60E-07	0.55	1.0	0.57	6.70	0.03262	0.075	0.15	0.43	0.22
Mean	0.14	0.30	1.60	0.50	0.13	0.10	1.59	0.10	0.33	0.0002	0.015	7.00E-07	0.55	1.0	0.57	6.70	0.02847	0.075	0.15	0.38	0.19
Inorganic Mercury  Location									I.										I	1	
Reference																					
UCL95	0.01	0.30	0.33	0.50	0.02	0.10	0.00	0.10	0.33	0.10	0.015	0.000017	0.55	1.0	0.57	6.70	0.004913	0.05	0.5	0.10	0.01
Mean <b>Domain 1</b>	0.01	0.30	0.29	0.50	0.01	0.10	0.00	0.10	0.33	0.08	0.015	0.000008	0.55	1.0	0.57	6.70	0.004288	0.05	0.5	0.09	0.009
UCL95	0.16	0.30	1.85	0.50	0.33	0.10	0.00	0.10	0.33	11.501	0.015	0.000057	0.55	1.0	0.03	6.70	0.00226	0.05	0.5	0.05	0.005
Mean	0.09	0.30	1.60	0.50	0.30	0.10	0.00	0.10	0.33	4.846	0.015	0.000044	0.55	1.0	0.03	6.70	0.00159	0.05	0.5	0.03	0.003
Domain 2	0.04	0.00	4.05	0.50	0.40	0.40	0.00	0.40	0.00	5.000	0.045	0.000057	0.55	4.0	0.40	0.70	0.04075	0.05	0.5	0.04	0.004
UCL95 Mean	0.04	0.30	1.85 1.60	0.50 0.50	0.10	0.10	0.00	0.10	0.33	5.839 3.850	0.015 0.015	0.000057 0.000044	0.55 0.55	1.0	0.18 0.18	6.70 6.70	0.01075 0.00880	0.05 0.05	0.5 0.5	0.21 0.18	0.021 0.018
Domain 3						-		-													
UCL95	0.04	0.30	1.85	0.50	0.09	0.10	0.00	0.10	0.33	2.225	0.015	0.000057	0.55	1.0	0.21	6.70	0.01082	0.05	0.5	0.22	0.022
Mean <b>Domain 4</b>	0.04	0.30	1.60	0.50	0.09	0.10	0.00	0.10	0.33	1.881	0.015	0.000044	0.55	1.0	0.21	6.70	0.00938	0.05	0.5	0.19	0.019
UCL95	0.02	0.30	1.85	0.50	0.08	0.10	0.00	0.10	0.33	1.067	0.015	0.000057	0.55	1.0	0.57	6.70	0.02773	0.05	0.5	0.55	0.055
Mean	0.02	0.30	1.60	0.50	0.07	0.10	0.00	0.10	0.33	0.631	0.015	0.000044	0.55	1.0	0.57	6.70	0.02367	0.05	0.5	0.47	0.047
Purvis Creek	0.55	0.55	4.55	0	0.51	0 : 0	0.55	0.10	0.00	4	0.0:-	0.00000	0	4.5	0.00	0 ==	0.00000	0.00		0.00	0.000
UCL95 Mean	0.02	0.30	1.85 1.60	0.50 0.50	0.04	0.10	0.00	0.10	0.33	1.53 1.22	0.015 0.015	0.000057 0.000044	0.55 0.55	1.0	0.08	6.70 6.70	0.00396 0.00342	0.05	0.5 0.5	0.08	0.008
Main Canal	0.02	0.30	1.00	0.30	0.04	0.10	0.00	5.10	0.00	1.44	0.010	0.000044	0.00	1.0	0.00	0.10	0.00042	0.00	0.0	0.07	0.007
UCL95	0.08	0.30	1.85	0.50	0.20	0.10	0.00	0.10	0.33	8.72	0.015	0.000057	0.55	1.0	0.002	6.70	0.00013	0.05	0.5	0.003	0.0003
Mean	0.06	0.30	1.60	0.50	0.18	0.10	0.00	0.10	0.33	7.39	0.015	0.000044	0.55	1.0	0.002	6.70	0.00012	0.05	0.5	0.002	0.0002
Eastern Creek UCL95	0.20	0.30	1.85	0.50	0.27	0.10	0.00	0.10	0.33	25.02	0.015	0.000057	0.55	1.0	0.006	6.70	0.00064	0.05	0.5	0.01	0.001
Mean	0.070	0.30	1.60	0.50	0.25	0.10	0.00	0.10	0.33	20.26	0.015	0.000037	0.55	1.0	0.006	6.70	0.00052	0.05	0.5	0.01	0.001
Western Creek Complex																					
UCL95	0.04	0.30	1.85	0.50	0.10	0.10	0.00	0.10	0.33	3.31	0.015	0.000057	0.55	1.0	0.003	6.70	0.00016	0.05	0.5	0.003	0.0003
Mean <i>Area A</i>	0.03	0.30	1.60	0.50	0.09	0.10	0.00	0.10	0.33	2.75	0.015	0.000044	0.55	1.0	0.003	6.70	0.00014	0.05	0.5	0.003	0.0003
UCL95	0.16	0.30	1.85	0.50	0.27	0.10	0.00	0.10	0.33	14.04	0.015	0.000057	0.55	1.0	0.011	6.70	0.00089	0.05	0.5	0.018	0.0018
Mean	0.09	0.30	1.60	0.50	0.25	0.10	0.00	0.10	0.33	11.99	0.015	0.000044	0.55	1.0	0.011	6.70	0.00076	0.05	0.5	0.015	0.0015
Blythe Island	0.00	0.00	4.05	0.50	0.07	0.10	0.00	0.10	0.00	0.00	0.015	0.00005	0.55	4.0	0.57	0.70	0.00000	0.05	0.5	0.5050	0.05055
UCL95 Mean	0.02	0.30	1.85 1.60	0.50 0.50	0.07	0.10	0.00	0.10	0.33	0.39	0.015 0.015	0.000057 0.000044	0.55 0.55	1.0	0.57 0.57	6.70 6.70	0.02680 0.02316	0.05	0.5 0.5	0.5359 0.4631	0.05359 0.04631
	0.02	0.30	1.00	0.30	0.00	0.10	0.00	5.10	0.00	0.00	0.010	0.000044	0.00	1.0	0.01	0.10	0.02010	0.00	0.0	0.7031	0.04031
						•	•	•						•	•	•	•				

 ${\bf Table~H-7.~Estimated~Exposure~Concentrations~-~River~otter~(\textit{Lutra canadensis})}$ 

	Conc	Fraction	Conc	Fraction	Conc	Fraction	Conc	Fraction	Food	Conc	Sed	Conc	Water	Time	Area	Body	Estimated	Т	RV	Hazard	Quotient
	Mc	Mc	S Perch	S Perch	FC	FC	BC	BC	IR	Sed	IR	Water	IR	UF	UF	Weight	Exposure	NOAEL	LOAEL	NOAEL	LOAEL
COPC	(mg/kg)		(mg/kg)		(mg/kg)		(mg/kg)		(kg/day)	(mg/kg)	(kg/day)	(mg/L)	(L/day)			(kg)	(mg/kgBW/day)	(mg/kgl	BW/day)	HQ	HQ
Aroclor 1268 Location																					
Reference																					
UCL95	0.22	0.30	0.23	0.50	0.38	0.10	0.30	0.10	0.33	0.08	0.015	0.00060	0.55	1.0	0.57	6.70	0.00712	0.03	0.3	0.237	0.0237
Mean <b>Domain 1</b>	0.15	0.30	0.19	0.50	0.22	0.10	0.13	0.10	0.33	0.05	0.015	0.00042	0.55	1.0	0.57	6.70	0.00500	0.03	0.3	0.167	0.0167
UCL95	6.42	0.30	7.05	0.50	2.49	0.10	1.88	0.10	0.33	23.43	0.015	0.00038	0.55	1.0	0.03	6.70	0.01027	0.03	0.3	0.34	0.034
Mean	5.58	0.30	5.67	0.50	2.22	0.10	1.61	0.10	0.33	11.45	0.015	0.00030	0.55	1.0	0.03	6.70	0.00800	0.03	0.3	0.27	0.027
Domain 2	0.40	0.00	7.05	0.50	4.45	0.40	4.00	0.40	0.00	5.05	0.045	2 22222	0.55	4.0	0.40	0.70	0.04404	0.00	0.0	4.00	0.400
UCL95 Mean	2.13 1.62	0.30	7.05 5.67	0.50 0.50	1.15 1.06	0.10	1.88	0.10	0.33	5.05 3.75	0.015 0.015	0.00038	0.55 0.55	1.0	0.18	6.70 6.70	0.04164 0.03333	0.03	0.3	1.39	0.139 0.111
Domain 3												0.0000				••					
UCL95	3.29	0.30	7.05	0.50	0.93	0.10	1.88	0.10	0.33	2.08	0.015	0.00038	0.55	1.0	0.21	6.70	0.05056	0.03	0.3	1.69	0.169
Mean <b>Domain 4</b>	2.87	0.30	5.67	0.50	0.81	0.10	1.61	0.10	0.33	1.67	0.015	0.00030	0.55	1.0	0.21	6.70	0.04152	0.03	0.3	1.38	0.138
UCL95	1.22	0.30	7.05	0.50	0.71	0.10	1.88	0.10	0.33	1.36	0.015	0.00038	0.55	1.0	0.57	6.70	0.11827	0.03	0.3	3.94	0.39
Mean	1.01	0.30	5.67	0.50	0.61	0.10	1.61	0.10	0.33	1.14	0.015	0.00030	0.55	1.0	0.57	6.70	0.09580	0.03	0.3	3.19	0.319
Purvis Creek UCL95	1.22	0.30	7.05	0.50	0.98	0.10	1.88	0.10	0.33	5.07	0.015	0.00038	0.55	1.0	0.08	6.70	0.01737	0.03	0.3	0.58	0.058
Mean	1.01	0.30	5.67	0.50	0.98	0.10	1.61	0.10	0.33	3.78	0.015	0.00038	0.55	1.0	0.08	6.70	0.01737	0.03	0.3	0.58	0.058
Main Canal																					
UCL95	5.06	0.30	7.05 5.67	0.50 0.50	3.26	0.10	1.88	0.10	0.33	41.71 27.64	0.015	0.00038	0.55	1.0	0.002	6.70	0.00073	0.03	0.3	0.02	0.002
Mean <i>Eastern Creek</i>	4.28	0.30	5.67	0.50	2.86	0.10	1.61	0.10	0.33	27.64	0.015	0.00030	0.55	1.0	0.002	6.70	0.00057	0.03	0.3	0.02	0.002
UCL95	7.27	0.30	7.05	0.50	2.75	0.10	1.88	0.10	0.33	65.28	0.015	0.00038	0.55	1.0	0.006	6.70	0.00270	0.03	0.3	0.09	0.009
Mean	6.06	0.30	5.67	0.50	2.49	0.10	1.61	0.10	0.33	49.57	0.015	0.00030	0.55	1.0	0.006	6.70	0.00216	0.03	0.3	0.07	0.007
Western Creek Complex UCL95	2.13	0.30	7.05	0.50	1.15	0.10	1.88	0.10	0.33	3.84	0.015	0.00038	0.55	1.0	0.003	6.70	0.00069	0.03	0.3	0.02	0.002
Mean	1.62	0.30	5.67	0.50	1.06	0.10	1.61	0.10	0.33	3.18	0.015	0.00030	0.55	1.0	0.003	6.70	0.00055	0.03	0.3	0.02	0.002
Area A	0.40	0.00	7.05	0.50	0.75	0.40	4.00	0.40	0.00	10.11	0.045	2 22222	0.55	4.0	0.044	0.70	0.00440	0.00	0.0	0.44	0.044
UCL95 Mean	6.42 5.58	0.30	7.05 5.67	0.50 0.50	2.75 2.49	0.10	1.88	0.10	0.33	40.14 32.78	0.015 0.015	0.00038	0.55 0.55	1.0	0.011	6.70 6.70	0.00419 0.00347	0.03	0.3	0.14	0.014 0.012
Blythe Island	0.00	0.00	0.07	0.00	2.40	0.10	1.01	0.10	0.00	02.70	0.010	0.00000	0.00	1.0	0.011	0.70	0.00047	0.00	0.0	0.12	0.012
UCL95	0.84	0.30	7.05	0.50	0.24	0.10	1.88	0.10	0.33	0.25	0.015	0.00038	0.55	1.0	0.57	6.70	0.11232	0.03	0.3	3.74	0.374
Mean	0.72	0.30	5.67	0.50	0.22	0.10	1.61	0.10	0.33	0.20	0.015	0.00030	0.55	1.0	0.57	6.70	0.09106	0.03	0.3	3.04	0.304
Lead			I	ı															l		
Location																					
Reference UCL95	1.43	0.30	0.23	0.50	0.84	0.10	4.21	0.10	0.33	20.41	0.015	0.0100	0.55	1.0	0.57	6.70	0.05596	8	80	0.007	0.0007
Mean	0.87	0.30	0.22	0.50	0.71	0.10	0.73	0.10	0.33	17.64	0.015	0.0057	0.55	1.0	0.57	6.70	0.03723	8	80	0.005	0.0007
Domain 1								1			1								1		
UCL95 Mean	0.76 0.62	0.30	0.50 0.40	0.50 0.50	10.85 7.93	0.10	1.21 0.82	0.10	0.33	40.73 31.02	0.015 0.015	0.0016 0.0013	0.55 0.55	1.0	0.03	6.70 6.70	0.00523 0.00395	8	80 80	0.0007	0.00007
Domain 2	0.02	0.50	0.40	0.50	7.95	0.10	0.02	0.10	0.55	31.02	0.013	0.0013	0.55	1.0	0.03	0.70	0.00033	0	00	0.0003	0.00003
UCL95	1.26	0.30	0.50	0.50	0.56	0.10	1.21	0.10	0.33	63.03	0.015	0.0016	0.55	1.0	0.18	6.70	0.03256	8	80	0.004	0.0004
Mean <b>Domain 3</b>	0.93	0.30	0.40	0.50	0.52	0.10	0.82	0.10	0.33	40.85	0.015	0.0013	0.55	1.0	0.18	6.70	0.02192	8	80	0.003	0.0003
UCL95	30.7	0.30	0.50	0.50	3.34	0.10	1.21	0.10	0.33	132.5	0.015	0.0016	0.55	1.0	0.21	6.70	0.16488	8	80	0.02	0.002
Mean	2.41	0.30	0.40	0.50	2.11	0.10	0.82	0.10	0.33	90.72	0.015	0.0013	0.55	1.0	0.21	6.70	0.05525	8	80	0.007	0.001
Domain 4 UCL95	0.65	0.30	0.50	0.50	0.57	0.10	1.21	0.10	0.33	22.88	0.015	0.0016	0.55	1.0	0.57	6.70	0.04676	8	80	0.006	0.0006
Mean	0.43	0.30	0.40	0.50	0.53	0.10	0.82	0.10	0.33	21.66	0.015	0.0013	0.55	1.0	0.57	6.70	0.04073	8	80	0.005	0.0005
Purvis Creek																					
UCL95	0.65	0.30	0.50	0.50	1.07	0.10	1.21	0.10	0.33	23.08	0.015	0.0016	0.55	1.0	0.08	6.70	0.00680	8	80	0.0008	0.00008
Mean <i>Main Canal</i>	0.43	0.30	0.40	0.50	0.92	0.10	0.82	0.10	0.33	17.41	0.015	0.0013	0.55	1.0	0.08	6.70	0.00511	8	80	0.0006	0.00006
UCL95	0.55	0.30	0.50	0.50	1.77	0.10	1.21	0.10	0.33	28.07	0.015	0.0016	0.55	1.0	0.002	6.70	0.00020	8	80	0.00002	0.000002
Mean	0.46	0.30	0.40	0.50	1.45	0.10	0.82	0.10	0.33	26.07	0.015	0.0013	0.55	1.0	0.002	6.70	0.00017	8	80	0.00002	0.000002
Eastern Creek UCL95	0.86	0.30	0.50	0.50	7.58	0.10	1.21	0.10	0.33	41.5	0.015	0.0016	0.55	1.0	0.006	6.70	0.00097	8	80	0.0001	0.00001
Mean	0.68	0.30	0.40	0.50	5.21	0.10	0.82	0.10	0.33	35.71	0.015	0.0013	0.55	1.0	0.006	6.70	0.00078	8	80	0.0001	0.00001
Western Creek Complex	400	0.00	0.50	0.50	0.50	0.10	40:	0.10	0.00	00:	0.04=	0.0015	0.55	1.0	0.000	0.70	0.00000			0.00001	0.00000
UCL95 Mean	1.26 0.93	0.30	0.50 0.40	0.50 0.50	0.56 0.52	0.10	1.21 0.82	0.10	0.33	30.1 28.98	0.015 0.015	0.0016 0.0013	0.55 0.55	1.0	0.003	6.70 6.70	0.00032 0.00029	8	80 80	0.00004	0.000004
Area A	3.50	3.50	30	5.55	3.02	30	3.52	30	3.00	_5.56	2.010	2.0010	3.00		2.000	3 0	2.00020			2.30004	2.30004
UCL95	0.76	0.30	0.50	0.50	7.58	0.10	1.21	0.10	0.33	34.05	0.015	0.0016	0.55	1.0	0.011	6.70	0.00158	8	80	0.0002	0.00002
Mean <i>Blythe Island</i>	0.62	0.30	0.40	0.50	5.21	0.10	0.82	0.10	0.33	31	0.015	0.0013	0.55	1.0	0.011	6.70	0.00130	8	80	0.0002	0.00002
UCL95	0.29	0.30	0.50	0.50	0.54	0.10	1.21	0.10	0.33	18.26	0.015	0.0016	0.55	1.0	0.57	6.70	0.03775	8	80	0.005	0.0005
Mean	0.25	0.30	0.40	0.50	0.50	0.10	0.82	0.10	0.33	16.50	0.015	0.0013	0.55	1.0	0.57	6.70	0.03254	8	80	0.004	0.0004
	_	_				_	_	_			_		_		_	_		_		_	

COPC - Chemical of Potential Concern

Conc - Concentration Mc - Mummichog S Perch - Silver Perch FC - Fiddler Crab BC - Blue Crab IR - Ingestion Rate Sed - Sediment

UF - Use Factor NOAEL - No Observed Adverse Effect Level LOAEL - Lowest Observed Adverse Effect Level

HQ - Hazard Quotient
UCL95 - 95th Upper Confidence of the Mean

#### B. Finfish Worksheet

The viability of finfish utilizing the estuarine system was evaluated using food-web exposure models available from the scientific literature (Evans and Engel, 1994; Gobas, 1993). The only COPC evaluated with these models were methylmercury and Aroclor 1268, since these are the only COPC with the potential to significantly bioaccumulate in the aquatic food-web.

Methylmercury exposure and bioaccumulation in higher trophic level finfish were evaluated using the "Lavaca Bay model" (Evans and Engel, 1994). Aroclor 1268 exposure and bioaccumulation were evaluated using the "Gobas Model" (Gobas, 1993). Both models were originally intended to "sub-model" transfer of chemicals from abiotic media (i.e., sediment and surface water) to trophic levels of the aquatic food web. Because more detailed site-specific data were available for the LCP estuary, such as concentrations of COPC in prey items, both models were modified from their original form in order to make use of measured rather than "sub-modeled" data. A brief discussion of each model is provided below. Both models are based on environmental data generated from 2000 to 2006.

#### **Lavaca Bay Methylmercury Model**

The Lavaca Bay model is described in detail in *Mercury bioaccumulation in finfish and shellfish from Lavaca Bay, Texas: Descriptive models and annotated bibliography* (Evans and Engel, 1994)¹. The primary pathway for methylmercury exposure in the Lavaca Bay model is the transfer and bioaccumulation of chemicals through the aquatic food web. Uptake of methylmercury via ingestion of contaminated sediment and through the skin and gills is assumed to be insignificant. The uncertainties associated with this assumption are discussed in detail in the Evans and Engel report.

The original Lavaca Bay model provides estimates of tissue concentrations of methylmercury in red drum based on total mercury concentrations in sediment. For application to the LCP estuary, the original model was based on measured concentrations (dry weight) of methylmercury in mummichogs, fiddler crabs, and blue

1

¹ A spreadsheet containing the model calculations was provided to Honeywell Consultants by Dr. Tom Dillon of NOAA.

crabs. These measured tissue concentrations were converted to wet weight using conversion factors of 25% for mummichogs and 30% for fiddler crabs and blue crabs.

Another modification applied to the original model was the incorporation of a growth term, as suggested by Evans and Engel (1994). When Evans and Engel compared modeled tissue concentrations of methylmercury from their model to actual biomonitoring data from the Lavaca Bay system, the modeled concentrations were considerably higher than the highest measured concentrations in red drum. As a result, the authors suggested the incorporation of a term to represent growth of fish in the model. The inputs and equations used in application of the Lavaca Bay model to the LCP estuary are provided on Table 1.

The Lavaca Bay model (as modified) calculates a bioaccumulation factor (BAF) that is the ratio of the uptake of methylmercury from food and its reduction via excretion and growth. This BAF is multiplied by the total methyl mercury concentration in the diet of red drum to yield a wet weight concentration of methylmercury in the fish. It should be noted that the incorporation of the previously mentioned growth term for modeled tissue concentrations of the red drum results in an approximate 10-fold reduction in the BAF (45.71 without the growth term, 4.78 with the growth term). This has a similar impact on resulting HQs.

The results (output) of the LCP model are presented in Table 1. Mean and 95UCL estimated tissue concentrations of methylmercury in higher trophic level fish feeding on mummichogs (40% of diet), fiddler crabs (30%), and blue crabs (30%) in the LCP estuary are (expressed in terms of wet wt): 0.87 mg/kg and 0.98 mg/kg, respectively, when a growth term is incorporated in the model. Without the growth term, mean and 95UCL tissue concentrations are approximately 10-fold higher.

At the Troup Creek reference location, mean and 95UCL methylmercury tissue concentrations are estimated to be 0.11 and 0.14 mg/kg (wet wt), respectively, when a growth term is included in the model.

## **Gobas Aroclor 1268 Model**

The Gobas model is described in detail in *A model for predicting the bioaccumulation of hydrophobic organic chemicals in aquatic food-webs: Application to Lake Ontario* (Gobas, 1993). An executable file containing this model is available online at <a href="http://www.rem.sfu.ca/toxicology/models.htm">http://www.rem.sfu.ca/toxicology/models.htm</a>. The primary pathways for chemical exposure in the model are transfer and bioaccumulation of chemical concentrations through the food web and uptake from water via the gills. Elimination of chemicals occurs via metabolism, excretion, and growth. As with the Lavaca Bay model, ingestion of contaminated sediment and uptake through the skin are assumed to be insignificant.

The original Gobas model, which was originally developed for fish in the Great Lakes ecosystem, has been modified for use with the red drum in one major way. The original Gobas model provides for estimates of tissue concentrations of chemicals in some prey of fishes (benthic invertebrates) to be based on chemical characteristics of sediment. For application in the LCP estuary, the original model was modified to employ measured concentrations (dry weight) of Aroclor 1268 in all prey of higher trophic level fish: mummichogs, fiddler crabs, and blue crabs. These measured tissue concentrations were converted to wet weight using conversion factors of 25% for mummichogs and 30% for fiddler crabs and blue crabs.

This finfish model directly reflects the original Gobas model by evaluating uptake of Aroclor 1268 from water via gills of the fish, as well as by uptake from prey. Water-related uptake is based on the percentage of total Aroclor 1268 in water ( $C_{WT}$ ) that occurs in the bioavailable form of dissolved chemical ( $C_{WD}$ ).  $C_{WD}$  is classically estimated (Clark et al., 1990) through use of  $K_{PW}$  (a coefficient that describes partitioning of organic chemicals between water and its suspended solids).  $K_{PW}$ , in turn, is predicated on an estimate of the percent of organic carbon that is characteristic of suspended solids ( 8 OC_{SS}). Because  8 OC_{SS} was not measured in the LCP estuary, three different modeling approaches were employed to estimate  $C_{WD}$ . In Approach 1 (Table 2), percent ( 8 ) organic carbon in sediment from the estuary was employed as a substitute for  8 OC_{SS}. In Approach 2 (Table 3), use of  8 OC_{SS} was avoided by employing an equation (Bergen et al., 1993) for directly estimating  $K_{PW}$ . In Approach 3 (Table 4), an even more direct procedure was employed, in which  $C_{WD}$  was estimated by a simple relationship reported by Gobas (1993).

Approaches 1 and 2 (Tables 2 and 3) generate similar model output ( $C_{RD}$ ) for both site and reference conditions, which serves to validate use of site-specific sediment data, in lieu of suspended solids data, for addressing organic content in Approach 1.

Approach 3 (Table 4) generates substantially higher values for  $C_{RD}$  from the LCP estuary than the other approaches. This may be because the relationship reported by Gobas (1993) –  $C_{WD}$  = ( $C_{WT}$ ) (0.5) – is based on  $C_{WT}$  being derived for centrifuged water (Oliver and Nilmi, 1988), in which a substantial amount of solids would be removed.  $C_{WT}$  for the LCP model was based on un-centrifuged water, which would likely generate a correction value lower than 0.5 and a lower estimate of  $C_{WD}$ . Any bias associated with water-related uptake of Aroclor 1268 in Approach 3 is limited because of the dominant role of food-related uptake in fishes, as has been noted for organic chemicals by Clark et al. (1990) and Oliver and Nilmi (1988).

In all three approaches,  $C_{RD}$  values for reference conditions may be artifacts associated with the use of high input values for Aroclor 1268 in water and prey of red drum – i. e., use of the 1/2 detection-limit protocol in the many cases when Aroclor 1268 was not detected in these media.

#### References

Bergen, B. J., W. G. Nelson, and R. J. Pruell. 1993. Partitioning of polychlorinated biphenyl congeners in the seawater of New Bedford Harbor, Massachusetts. Environmental Toxicology and Chemistry 27: 938-942.

Clark, K.E., F. A. P. C. Gobas, and D. Mackay. 1990. Model of organic chemical uptake and clearance by fish from food and water. Environmental Science and Technology 24 (8):1203-1213.

Evans, D. W., and D. W. Engel. 1994. Bioaccumulation in finfish and shellfish from Lavaca Bay, Texas: descriptive models and annotated bibliography. NOAA Technical Memorandum NMFS-SEFSC-348. May, 1994. NTIS Publication No. PB94187267.

- Gobas, F.A.P.C. 1993. A model for predicting the bioaccumulation of hydrophobic organic chemicals in aquatic food-webs: application to Lake Ontario. Ecological Modelling 69:1-17.
- Gobas, F.A.P.C., and D. Mackay. 1987. Dynamics of hydrophobic organic chemical bioconcentration in fish. Environmental Toxicology and Chemistry 6: 495-504.
- Morrison, H. A., F. A. P. C Gobas, R. Lazar, D. M. Whittle, and G. D. Haffner. 1997. Development and verification of a benthic/pelagic food web bioaccumulation model for PCB congeners in western Lake Erie. Environmental Science and Technology 31: 3267-3273.
- Oliver, B. G., and A. J. Nilmi. 1988. Trophodynamic analysis of polychlorinated biphenyl congeners and other chlorinated hydrocarbons in the Lake Ontario ecosystem. Environmental Science and Technology 22: 388-397.
- Veith, G. D, D. L. DeFoe, and B. B. Bergstredt. 1979. Measuring and estimating the bioconcentration factor of chemicals in fish. Journal of the Fisheries Board of Canada 36:1040.

Table 1.__ Parameters and calculations employed in Lavaca Bay mercury model applied to bioaccumulation of methylmercury in higher trophic level finfish from the LCP estuary

					LCP	Estuary	Troup Cree	k Reference
Symbol	Description	Units	Formula/rationale	Source	Mean	95UCL	Mean	95UCL
			Chemical Inputs for Model					
CF _{1D}	Conc. in mummichogs	mg/kg (dry wt)	Site-specific value	2000 - 2007 sampling (MeHg = 90% of tHg) ^a	0.23	0.29	0.08	0.10
$CF_{1W}$		mg/kg (wet wt)	25% of CF ₁	Assumption	0.058	0.073	0.020	0.025
%P ₁	Percent mummichogs in diet	%	40%	Assumption		(	).40	
CF _{2D}	Conc. in fiddler crabs	mg/kg (dry wt)	Site-specific value	2000 - 2007 sampling (MeHg = 67% of tHg) ^b	0.17	0.18	0.027	0.032
$CF_{2W}$		mg/kg (wet wt)	30% of CF ₂	Assumption	0.051	0.054	0.0081	0.010
$^{\text{WP}_2}$	Percent fiddler crabs in diet	%	30%	Assumption		(	).30	
CF _{3D}	Conc. in blue crabs	mg/kg (dry wt)	Site-specific value	2000 - 2007 sampling (MeKg = 100% of tHg) ^C	1.59	1.78	0.15	0.19
CF _{3W}		mg/kg (wet wt)	30% of CF ₃	Assumption	0.477	0.534	0.045	0.057
%P ₃	Percent blue crabs in diet	%	30%	Assumption		(	).30	
$CF_T$	Total conc. in diet	mg/kg (wet wt)	$CF_T = ([CF_{1W}] [\%P_1]) + ([CF_{2W}] [\%P_2]) + ([CF_W] [\%P_3])$	Site-specific calculation	0.181	0.205	0.024	0.030
			Metabolic Assumptions and Constant	s for Model				
BW	Weight of red drum	g	Assumption	Evans and Engel (1994)		2	,000	
FIR	Food ingestion rate	g diet/g red drum/day	Assumption	Evans and Engel (1994)		(	).02	
а	Food assimilation efficiency	unitless	Assumption	Evans and Engel (1994)			0.8	
К	Fecal excretion rate (MeHg)	g diet/g red drum/day	Assumption	Evans and Engel (1994)		0.0	00035	
G	Growth rate	g diet/g red drum/day	Assumption	Evans and Engel (1994)		0	.003	
$BAF_{NG}$	Bioaccumulation factor w/o gro	wth	$BAF_{NG} = (FIR) (a) / K$	Evans and Engel (1994)		4	5.71	
$BAF_G$	Bioaccumulation factor w growt	th	$BAF_G = (FIR) (a) / K + G$	Evans and Engel (1994)		2	1.78	
			Output for Model					
$C_{RDNG}$	Conc. in red drum w/o growth	mg/kg MeHg (wet wt)	$C_{RDNG} = (BAF_{NG}) (CF_{T})$	Evans and Engel (1994)	8.3	9.4	1.1	1.4
$C_RDG$	Conc. in red drum w growth	mg/kg MeHg (wet wt)	$C_{RDG} = (BAF_G) (CF_T)$	Evans and Engel (1994)	0.87	0.98	0.11	0.14

^aSources of body burdens (concentrations) of methylmercury in mummichogs (CF_{1D}) are derived from:

[•] LCP estuary mean and 95UCLs from Table 4-10a in main report.

b Sources of body burdens (concentrations) of methylmercury in fiddler crabs (CF_{2D}) are derived from:

[•] LCP estuary mean value: Table 4-8a in main report.

^CSources of body burdens (concentrations) of methylmercury in blue crabs (CF_{3D}) are derived from:

[•] LCP estuary mean value: Table 4-9a in main report.

Table 2.__ Parameters and calculations employed in Gobas PCB Model applied to bioaccumulation of Aroclor 1268 in higher trophic level finfish from the LCP estuary -- Approach 1

					LCP e	stuary	Troup Cree	k Reference
Symbol	Description	Units	Formula/rationale	Source	Mean	95UCL	Mean	95UCL
			Chemical/Physical Inputs for Model					
CF _{1D}	Conc. in mummichogs	μg/kg (dry wt)	Site-specific value	2000 - 2007 sampling ^a	1,570	1,880	150	220
CF _{1W}		μg/kg (wet wt)	25% of CF ₁		393	470	38	55
%P ₁	Percent mummichogs in diet	%	40%	Assumption			40	
CF _{2D}	Conc. in fiddler crabs	μg/kg (dry wt)	Site-specific value	2000 - 2007 sampling ^b	770	890	220	380
CPF _W %P ₂	Percent fiddler crabs in diet	μg/kg (wet wt)	30% of CF ₂ 30%	Accumption	231	267	30	114
		%		Assumption C	1.010			
CF _{3D}	Conc. in blue crabs	μg/kg (dry wt)	Site-specific value 30% of CF ₃	2000 - 2007 sampling ^c	1,610	1,880	130	300
CF _{3W} %P ₃	Percent blue crabs in diet	μg/kg (wet wt) %	30% of CF ₃	Assumption	483	564	39	90
CF _T	Total conc. in diet	μg/kg (wet wt)	$CF_T = ([CF_{1W}] [\%P_1]) + ([CF_{2W}] [\%P_2]) + ([CF_W] [\%P_3])$	Site-specific calculation	371	437	46.5	83.2
C _{WT}	Total conc. in water	μg/L	Site-specific value	2000 - 2007 sampling ^d	0.26	0.26	0.0018	0.0018
$C_{WD}$	Dissolved conc. in water	μg/L	$C_{WD} = C_{WT} / 1 + (K_{PW})$ (SS)	Clark et al. (1990)	0.020	0.008	0.00019	0.00016
SS	Suspended solids	kg/L	Site-specific value	2000 sampling e	0.000039	0.00010	0.000037	0.000037
%OC _{SS}	% organic carbon in SS	%	Site-specific estimate	2000 - 2007 sampling ^f	0.0484	0.0531	0.0359	0.0440
K _{PW}	SS/water partition coeff.	L/kg	$K_{PW} = (\%OC_{SS}) (K_{OW})$	Clark et al. (1990)	300,000	330,000	230,000	280,000
K _{ow}	Octanol/water partition coeff.	L/kg	Value for Aroclor 1260	Veith et al. (1979)			0,000	
OW	Parametric (1971)	g	Metabolic Assumptions for Model				-,	
$G_V$	Gill ventilation rate	L/day	Value for rainbow trout	Gobas and Mackay (1987)		1	43	
$E_D$	Uptake efficiency gut diffusion	unitless	Assumption	Gobas (1993)		0.	.50	
Ew	Uptake efficiency gill diffusion	unitless	Assumption	Morrison et al. (1997)		0.	.75	
$V_F$ (BW)	Wet weight of red drum	kg	Assumption	Evans and Engal (1994)			2	
$V_{L}$	Lipid content of red drum	kg	10% of BW (value for trout/perch)	Morrison et al. (1997)		0	.2	
$F_D(FIR)$	Food ingestion rate	kg food/day	2% of BW/day	Evans and Engal (1994)		0.0	040	
			Rate Constants for Model					
$\mathbf{k}_1$	Gill uptake rate	L/kg red drum/day	3	Gobas (1993)		53.	625	
$k_2$	Gill elimination rate	L/day	$k_2 = 1 / ([V_L/Q_W][K_{OW}]) + (V_L/Q_L)$	Gobas (1993)		0.00	0106	
$\mathbf{k}_{D}$	Dietary uptake rate	kg food/kg red drum/day	$k_D = (E_D) (FIR) / BW$	Gobas (1993)		0.0	010	
$k_{E}$	Fecal excretion rate	kg faeces/kg red drum/day	$k_{E} = (0.25) (k_{D})$	Gobas (1993)		0.00	0375	
$k_{M}$	Metabolic transformation rate	L/day	Estimation	Gobas (1993)		-	0	
$k_{G}$	Growth	kg	$k_G = (0.00251) (BW^{-0.2}), at 25^{\circ}C$	Gobas (1993)		0.00	0219	-
${\sf Q}_{\sf w}$	Transport parameter (aqueous phase of red drum)	L/day	$Q_W = (88.3) (BW^{0.6})$	Gobas (1993)		13	3.8	
$Q_L$	Transport parameter (lipid phase of red drum)	L/day	~100x smaller than $\mathbf{Q}_{\mathbf{W}}$	Gobas (1993)		1.	34	
			Output for Model					
$C_{RD}$	Conc. in red drum	μg/kg (wet wt)	$C_{RD}$ =([ $k_1$ ] [ $C_{WD}$ ]) + ([ $k_D$ ] [ $CF_T$ ]) / $k_2$ + $k_E$ + $k_M$ + $k_G$	Gobas (1993)	796	791	79	139

 $^{^{\}rm a}$ Sources of body burdens (concentrations) of Aroclor 1268 in mummichogs (CF  $_{\rm 1D}$ ) are as follows:

 $^{\rm d}$ Sources of total concentrations of Aroclor 1268 in water ( ${\rm C_{WT}}$ ) are as follows:

• LCP estuary grand mean and 95UCL value: Table4-2a in main report.

[•] LCP estuary grand mean value and 95UCL: Table 4-10a in main report.

^bSources of body burdens (concentrations) of Aroclor 1268 in fiddler crabs (CF_{2D}) are as follows:

[•] LCP estuary grand mean and 95UCL value: Table 4-8a in main report.

^eSources of suspended solids (SS) content of water are as follows

⁽CDR Environmental Specialists and GeoSyntec Consultants, 2001):

[•] LCP estuary mean value: mean of 49 values (outlier of 0.0076 excluded)

[•] LCP estuary maximum value: maximum of 49 values (outlier of 0.0076 excluded)

[•]Troup Creek mean and maximum value: only one value reported

 $^{^{\}rm C}$ Sources of body burdens (concentrations) of Aroclor 1268 in blue crabs (CF  $_{\rm 3D}$ ) are as follows:

[•] LCP estuary grand mean and 95UCLvalue: Table 4-9a in main report.

The values for %OC_{SS} are estimates derived from values for sediment:

[•] LCP estuary grand mean and 95UCL value: Table 7a in main report.

Table 3.__ Parameters and calculations employed in Gobas PCB Model applied to bioaccumulation of Aroclor 1268 in higher trophic level finfish from the LCP estuary -- Approach 2

					LCP e	stuary	Troup Cree	k Reference
Symbol	Description	Units	Formula/rationale	Source	Mean	95UCL	Mean	95UCL
			Chemical/Physical Inputs for Model					
CF _{1D}	Conc. in mummichogs	μg/kg (dry wt)	Site-specific value	2000 - 2007 sampling ^a	1,570	1,880	150	220
CF _{1W}	Parameter and the second state of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second	μg/kg (wet wt)	25% of CF ₁		393	470	38	55
%P ₁	Percent mummichogs in diet	%	40%	Assumption			).40	
CF _{2D}	Conc. in fiddler crabs	μg/kg (dry wt)	Site-specific value	2000 - 2007 sampling ^b	770	890	220	380
CPF _W	Descrit fieldles andre in diet	μg/kg (wet wt)	30% of CF ₂		231	267	66	114
%P ₂	Percent fiddler crabs in diet	%	30%	Assumption			0.30	
CF _{3D}	Conc. in blue crabs	μg/kg (dry wt)	Site-specific value	2000 - 2007 sampling ^c	1,610	1,880	130	300
CF₃w %P₃	Percent blue crabs in diet	μg/kg (wet wt) %	$30\%$ of CF $_3$ $30\%$	 Assumption	483	564	39	90
CF _T	Total conc. in diet	μg/kg (wet wt)	$CF_T = ([CF_{1W}] [\%P_1]) + ([CF_{2W}] [\%P_2]) + ([CF_W] [\%P_3])$	Site-specific calculation	371	437	46.5	83.2
C _{WT}	Total conc. in water		Site-specific value	2000 - 2007 sampling d	0.26	0.26	0.0018	0.0018
$C_{WD}$	Dissolved conc. in water	μg/L μg/L	$C_{WD} = C_{WT} / 1 + (K_{PW}) (SS)$	Clark et al. (1990)	0.20	0.20	0.0018	0.00018
SS	Suspended solids	kg/L	Site-specific value	2000 sampling ^e	0.000039	0.00010	0.000037	0.000037
	•		·	Bergen et al. (1993) ^f	0.00000			0.000001
K _{PW}	SS/water partition coeff.	L/kg	$\log K_{PW} = (0.688) (\log K_{OW}) + 1.074$ ; antilog determined	-			5,000	
K _{OW}	Octanol/water partition coeff.	L/kg	Value for Aroclor 1260	Veith et al. (1979)		6,30	00,000	
C	Cill ventilation rate	I /dov	Metabolic Assumptions for Model	Cohoo and Maakay (1007)			143	
G _V	Gill ventilation rate	L/day	Value for rainbow trout	Gobas and Mackay (1987)				
E _D	Uptake efficiency gut diffusion	unitless	Assumption	Gobas (1993)			).50 ).75	
$E_W$ $V_F$ (BW)	Uptake efficiency gill diffusion Wet weight of red drum	unitless	Assumption Assumption	Morrison et al. (1997) Evans and Engal (1994)			2	
V _F (BVV)	Lipid content of red drum	kg	10% of BW (value for trout/perch)	Morrison et al. (1997)			0.2	
	·	kg		, ,			.040	
F _D (FIR)	Food ingestion rate	kg food/day	2% of BW/day	Evans and Engal (1994)		U.	.040	
	0.11		Rate Constants for Model	0.1 (4000)			205	1
k₁	Gill uptake rate	L/kg red drum/day	$k_1 = (E_W) (G_V) / BW$	Gobas (1993)			3.625	
$k_2$	Gill elimination rate	L/day	$k_2 = 1 / ([V_L/Q_W][K_{OW}]) + (V_L/Q_L)$	Gobas (1993)		0.00	00106	
$k_D$	Dietary uptake rate	kg food/kg red drum/day	$k_D = (E_D) (FIR) / BW$	Gobas (1993)		0.	.010	
$k_{E}$	Fecal excretion rate	kg faeces/kg red drum/day	$k_{E} = (0.25) (k_{D})$	Gobas (1993)		0.0	00375	
$\mathbf{k}_{M}$	Metabolic transformation rate	L/day	Estimation	Gobas (1993)			0	
$k_{G}$	Growth	kg	$k_G = (0.00251) (BW^{-0.2}), at 25^{\circ}C$	Gobas (1993)		0.0	0219	
$Q_{\rm w}$	Transport parameter (aqueous phase of red drum)	L/day	$Q_W = (88.3) (BW^{0.6})$	Gobas (1993)		1:	33.8	
$Q_L$	Transport parameter (lipid phase of red drum)	L/day	~100x smaller than $Q_W$	Gobas (1993)		1	.34	
			Output for Model					
$C_{RD}$	Conc. in red drum	μg/kg (wet wt)	$C_{RD} = ([k_1] [C_{WD}]) + ([k_D] [CF_T]) / k_2 + k_E + k_M + k_G$	Gobas (1993)	714	763	78	138

^aSources of body burdens (concentrations) of Aroclor 1268 in mummichogs (CF_{1D}) are as follows:

(CDR Environmental Specialists and GeoSyntec Consultants, 2001):

- LCP estuary mean value: mean of 49 values (outlier of 0.0076 excluded)
- LCP estuary maximum value: maximum of 49 values (outlier of 0.0076 excluded)
- •Troup Creek mean and maximum value: only one value reported

[•] LCP estuary grand mean and 95UCL value: Table 4-10a in main report.

 $^{^{\}rm b}$ Sources of body burdens (concentrations) of Aroclor 1268 in fiddler crabs (CF $_{\rm 2D}$ ) are as follows:

[•] LCP estuary grand mean and 95UCL value: Table 4-8a in main report.

 $^{^{\}rm C}$ Sources of body burdens (concentrations) of Aroclor 1268 in blue crabs (CF $_{\rm 3D}$ ) are as follows:

[•] LCP estuary grand mean and 95UCL value: Table 4-9a in main report.

 $^{^{\}rm d}$ Sources of total concentrations of Aroclor 1268 in water ( ${\rm C_{WT}}$ ) are as follows:

[•] LCP estuary grand mean and 95UCL value: Table 4-2a in main report.

^eSources of suspended solids (SS) content of water are as follows

^fThe value for K_{PW} is based the equation derived by Bergen et al. (1993) for several PCB congeners (including CD118) evaluated in seawater of New Bedford Harbor, Massachusetts.

Table 4.__ Parameters and calculations employed in Gobas PCB Model applied to bioaccumulation of Aroclor 1268 in higher trophic level finfish from the LCP estuary -- Approach 3

	the LCP estuary Approach 3				LCP 6	estuary	Troup Cree	k Reference
Symbol	Description	Units	Formula/rationale	Source	Mean	95UCL	Mean	95UCL
			Chemical/Physical Inputs for Model					
CF _{1D}	Conc. in mummichogs	μg/kg (dry wt)	Site-specific value	2000 - 2007 sampling ^a	1,570	1,880	150	220
CF _{1W}		μg/kg (wet wt)	25% of CF ₁	<del></del>	393	470	38	55
%P ₁	Percent mummichogs in diet	%	40%	Assumption		0	.40	
$CF_{2D}$	Conc. in fiddler crabs	μg/kg (dry wt)	Site-specific value	2000 - 2007 sampling ^b	770	890	220	380
$CPF_W$		μg/kg (wet wt)	30% of CF ₂		231	267	66	114
%P ₂	Percent fiddler crabs in diet	%	30%	Assumption		0	.30	
CF _{3D}	Conc. in blue crabs	μg/kg (dry wt)	Site-specific value	2000 - 2007 sampling ^c	1,610	1,880	130	300
CF _{3W}		μg/kg (wet wt)	30% of CF ₃		483	564	39	90
NP_3	Percent blue crabs in diet	%	30%	Assumption		0	.30	
$CF_T$	Total conc. in diet	μg/kg (wet wt)	$CF_T = ([CF_{1W}] [\%P_1]) + ([CF_{2W}] [\%P_2]) + ([CF_W] [\%P_3])$	Site-specific calculation	371	437	46.5	83.2
$C_{WT}$	Total conc. in water	μg/L	Site-specific value	2000 - 2007 sampling ^d	0.26	0.26	0.0018	0.0018
$C_{WD}$	Dissolved conc. in water	μg/L	Assumption $(C_{WT})$ (0.5)	Gobas (1993) ^e	0.13	0.13	0.0009	0.0009
$K_OW$	Octanol/water partition coeff.	L/kg	Value for Aroclor 1260	Veith et al. (1979)		6,30	00,000	
			Metabolic Assumptions for Model					
$G_V$	Gill ventilation rate	L/day	Value for rainbow trout	Gobas and Mackay (1987)		1	43	
$E_D$	Uptake efficiency gut diffusion	unitless	Assumption	Gobas (1993)		0	.50	
$E_W$	Uptake efficiency gill diffusion	unitless	Assumption	Morrison et al. (1997)		0	.75	
√ _F (BW)	Wet weight of red drum	kg	Assumption	Evans and Engal (1994)			2	
$V_{L}$	Lipid content of red drum	kg	10% of BW (value for trout/perch)	Morrison et al. (1997)		(	0.2	
F _D (FIR)	Food ingestion rate	kg food/day	2% of BW/day	Evans and Engal (1994)		0.	040	
			Rate Constants for Model					
$\mathbf{k}_1$	Gill uptake rate	L/kg red drum/day	$k_1 = (E_W) (G_V) / BW$	Gobas (1993)		53	.625	
$k_2$	Gill elimination rate	L/day	$k_2 = 1 / ([V_L/Q_W] [K_{OW}]) + (V_L/Q_L)$	Gobas (1993)		0.00	00106	
$\mathbf{k}_{D}$	Dietary uptake rate	kg food/kg red drum/day	$k_D = (E_D) (FIR) / BW$	Gobas (1993)		0.	010	
$k_{E}$	Fecal excretion rate	kg faeces/kg red drum/day	$k_{E} = (0.25) (k_{D})$	Gobas (1993)		0.0	0375	
$k_{M}$	Metabolic transformation rate	L/day	Estimation	Gobas (1993)			0	
$k_{G}$	Growth	kg	$k_G = (0.00251) (BW^{-0.2}), at 25^{\circ}C$	Gobas (1993)		0.0	0219	
$Q_{w}$	Transport parameter (aqueous phase of red drum)	L/day	$Q_W = (88.3) (BW^{0.6})$	Gobas (1993)		1;	33.8	
$Q_{L}$	Transport parameter (lipid phase of red drum)	L/day	~100x smaller than Q _W	Gobas (1993)		1	.34	
			Output for Model					
$C_RD$	Conc. in red drum	μg/kg (wet wt)	$C_{RD} = ([k_1] [C_{WD}]) + ([k_D] [CF_T]) / k_2 + k_E + k_M + k_G$	Gobas (1993)	1,767	1,876	85	146

 $^{^{\}rm a}$ Sources of body burdens (concentrations) of Aroclor 1268 in mummichogs (CF  $_{\rm 1D}$ ) are as follows:

[•] LCP estuary grand mean and 95UCL value: Table 4-10a in main report

 $^{^{\}mathrm{b}}$ Sources of body burdens (concentrations) of Aroclor 1268 in fiddler crabs (CF  $_{\mathrm{2D}}$ ) are as follows:

[•] LCP estuary grand mean and 95UCL value: Table 4-8a in main report.

 $^{^{\}rm d}$ Sources of total concentrations of Aroclor 1268 in water (C  $_{
m WT}$ ) are as follows:

[•] LCP estuary grand mean and 95UCL value: Table 4-2a in main report.

^f The values for  $K_{PW}$  are based on the relationship identified and used by Gobas (1993) for water in Lake Ontario and a  $K_{OW}$  value (log  $K_{OW}$ ) of 6.6.

 $^{^{\}rm C}$ Sources of body burdens (concentrations) of Aroclor 1268 in blue crabs (CF  $_{\rm 3D}$ ) are as follows:

[•] LCP estuary grand mean and 95UCL value: Table 4-9a in main report.

## **APPENDIX I**

SPECIAL SEDIMENT STUDIES FOR ESTUARY AT LCP SITE
I.1 Apparent Effects Threshold (AET) Study
I.2 Purvis Creek and Domain 4 Study

## Appendix I

## SPECIAL SEDIMENT STUDIES FOR ESTUARY AT LCP SITE

Two studies designed to address specific issues are described in this appendix.

## I.1 Apparent Effects Threshold (AET) Study

The first of these studies was conducted in 2006 to develop site-specific apparent effects thresholds (AETs) and sediment effect concentrations (SECs) for chemicals of potential concern (COPC) and selected metals in surface sediment of the estuary. Interpreted results of this study are presented in Section 4.5 of this document. This appendix illustrates locations of sediment sampling stations employed in the study – locations in the Main Canal (Figure 5), Eastern Creek (Figure 6), and Western Creek Complex (Figure 7) – and presents resulting chemical data in a format that facilitates an understanding of chemical characteristics along the headwater-to-mouth gradient of these water bodies (Table 1).

The highest concentrations of total mercury and Aroclor 1268 in the Main Canal are characteristic of the upper and middle stretches of the canal (down to about Station 20, located near the mouth of the Eastern Creek). However, relatively low levels of the two chemicals occurred at the extreme headwaters of the canal (Stations 48- 50). For the Eastern Creek, highest concentrations of total mercury and Aroclor 1268 also tended to occur in the upper and middle parts of the creek (down to perhaps Station 32), although relatively high levels of Aroclor 1268 occurred at more downstream locations (Stations 26, 23, and 19). In the Western Creek Complex (the most western branch), concentrations of total mercury and Aroclor 1268 were substantially lower than in the Main Canal and Eastern Creek, and a headwater-to-mouth gradient was not apparent. Concentrations of total PAHs in all three water bodies were generally less than 1 mg/kg, with higher levels occasionally present in all three bodies.

## I.2 Purvis Creek and Domain 4 Study

This study was conducted in 2005 to evaluate the extent to which North Purvis Creek could be distinguished from the southern stretch of the creek in terms of concentrations of COPC in surface sediment; and, also, if the western part of Domain 4 (primarily flooded by water

from the Turtle River) exhibited lower levels of COPC in surface sediment than the eastern part of the domain (primarily flooded by water from Purvis Creek).

Sediment sampling stations for North and South Purvis Creek are illustrated in, respectively, Figures 5a and 5b. Mean concentrations of all COPC were higher in North Purvis Creek (Table 2); and, in the cases of total mercury and lead, the 95% confidence interval (CI) for the two stretches of creek did not overlap. These distribution patterns for COPC may reflect a net "up-creek" transport of the chemicals in the creek.

For Domain 4, sediment sampling stations are illustrated in Figure 6. Mean concentrations of all COPC were, as expected, lower in the western domain than in the eastern domain. In the case of Aroclor 1268, the 95% CI for the two parts of the domain did not overlap.

•

Table 1.__ Chemical data generated in selected areas of LCP estuary during 2006 to generate apparent effects thresholds (AETs) and sediment effect concentrations (SECs) for surface sediment a,b

Sampling loca	ation			Chem	ical concentr	ation in sedi	ment (mg/kg	j, dry wt)		
(From headwa to mouth)		Total Mercury	Aroclor 1268	Lead	Total PAHs	Cadmium	Copper	Nickel	Silver	Zinc
					MAIN CANA	<u>L</u>				
MC50		0.37	1.5	3.9	0.229	0.032	1.29	1.26	0.016	8
MC49		0.40	1.5	4.4	0.429	0.037	1.58	1.31	0.016	9
MC48		0.20	1.0	5.8	0.104	0.036	1.76	1.85	0.015	9.9
MC47		29	54	42	0.714	0.233	28.2	20.2	0.291	106
MC46		35	280	42	0.955	0.296	20	20.2	0.22	88.5
MC45		29	140	29	0.744	0.182	15.9	12.9	0.206	71.4
MC44		6.2	55	41	0.454	0.244	18.8	21	0.188	76.9
MC43		1.2	8.1	68	16.683	0.137	11.2	12.7	0.079	58
MC42		13	18	31	0.396	0.2	20.1	15.8	0.323	93
MC41		22	9.2	32	0.420	0.201	19.4	16	0.256	95
MC40		8.9	19	33	0.371	0.21	14.3	14.1	0.246	84.8
MC39		5.3	37	31	0.517	0.219	13.1	13.1	0.199	79.6
MC38		4.3	21	29	0.435	0.184	12.7	14.5	0.169	84.3
MC37		5.3	76	31	0.769	0.228	13.9	15.3	0.16	79.3
MC36		6.7	150	40	0.849	0.28	16.2	17.7	0.134	36.3
MC35		8.3	11	30	0.457	0.199	18.8	16.7	0.134	56.3
MC34		8.0	10	30	0.405	0.193	14.8	17.1	0.243	81.3
MC33		11	12	31	0.403	0.193	18.5	15.1	0.275	79
MC32		5.8	16	34	0.657	0.197	13.6	13.1	0.275	90
MC31		5.6	23	34 29	0.633	0.202		14.6	0.172	90 87
							14.6			
MC30		40	32	24	0.394	0.168	10.1	10.2	0.125	91.4
MC29		1.5	4.8	12	0.184	0.095	5.63	6.57	0.064	77.1
MC28		12	20	28	0.630	0.193	14	13.2	0.297	74.5
MC27		9.4	34	35	0.642	0.248	17.3	17.8	0.354	66.8
MC26		7.6	68	33	0.858	0.222	13.8	15.5	0.202	71.6
MC25		6.3	18	41	0.729	0.218	13.9	14.4	0.178	80.5
MC24		22	570	34	3.764	0.255	14.8	10.7	0.229	67.6
MC23		4.7	28	28	0.501	0.206	12.4	13.6	0.179	75.3
MC22		10	110	32	0.658	0.246	14.3	15.9	0.188	75.3
MC21		3.0	18	24	0.589	0.203	11.3	11.9	0.127	71.1
MC20		18	360	38	2.238	0.266	16.4	12.5	0.215	76.4
MC19		24	33	29	0.569	0.237	20.7	13.5	0.309	78.9
MC18		4.6	30	14	0.719	0.107	5.45	5.32	0.071	31.8
MC17		8.4	14	14	0.391	0.099	5.82	7.09	0.066	35.1
MC16		3.0	19	13	0.433	0.078	5.06	6.12	0.065	32.4
MC15		3.1	26	25	0.599	0.211	10.4	12.3	0.133	59.1
MC14		9.0	39	27	0.363	0.251	12.4	11.6	0.238	70.3
MC13		13	32	41	0.648	0.156	11.6	10.8	0.183	57.4
MC12		3.6	13	29	0.525	0.246	14.6	16.4	0.274	77
MC11		28	15	30	0.612	0.224	19.1	15.7	0.277	78.3
MC10		1.3	4.1	21	0.389	0.198	12.1	13.3	0.142	85.5
MC9		2.6	11	22	0.516	0.179	10.9	12.1	0.147	75
MC8		3.0	11	23	0.859	0.2	12	12.8	0.15	78.7
MC7		3.6	21	24	0.761	0.207	11.7	12.4	0.143	80.8
MC6		0.77	1.8	25	0.343	0.21	12.8	15.1	0.146	97.1
MC5		2.1	8.3	23	0.479	0.212	12	12.2	0.141	77.2
MC4		2.8	20	22	1.010	0.168	9.29	8.64	0.105	59.2
MC3		1.7	8.2	42	0.490	0.181	10.7	11.9	0.118	73.5
MC2		2.6	15	25	0.682	0.175	10.5	10.6	0.122	67.1
MC1		3.4	20	27	0.761	0.189	10.6	10.4	0.131	71.2
	Range:	0.20-40	1.0-570	3.9-68	0.104-16.683	0.032-0.296	1.29-28.2	1.26-21	0.015-0.354	8-106
	Mean:	9.21	50.95	28.4	0.982	0.192	13.01	12.72	0.176	69.74
	95% CI:	6.47-11.95	22.54-79.36	25.3-31.5	0.320-1.644	0 175-0 209	11.54-14.48	11 47-13 97	0 153-0 199	63.49-75

Table 1.__ Continued

Sampling location Chemical concentration in sediment (mg/kg, dry wt)										
(From headwa to mouth)	ters	Total Mercury	Aroclor 1268	Lead	Total PAHs	Cadmium	Copper	Nickel	Silver	Zinc
				<u>E</u> .	ASTERN CRE	<u>EK</u>				
EC50		2.5	1.7	5.7	0.126	0.054	2.38	2.85	0.027	14.5
EC49		5.6	2.9	240	38	0.16	17.3	14.8	0.095	79.5
EC48		28	26	100	1.100	0.304	18.9	17.6	0.184	75.5
EC47		4.5	4.0	25	0.728	0.17	10	11.1	0.12	51.4
EC13		11	3.7	34	0.318	0.178	11.5	10.6	0.125	51.2
EC46		0.26	0.27	16	0.060	0.114	6.01	11.5	0.066	47.1
EC12		0.044	0.0074	14	0.0065	0.141	5.64	10.2	0.046	33
EC45		0.28	0.15	13	0.037	0.103	4.71	8.6	0.054	38.7
EC11		1.5	1.9	16	0.986	0.121	5.52	8.25	0.053	30.8
EC44		13	43	27	0.351	0.183	11.6	8.74	0.262	64.6
EC10		26	120	40	0.588	0.255	16.3	13.4	0.257	81.3
EC43		2.4	9.5	9.1	0.240	0.074	3.28	3.14	0.052	22.5
EC9		13	26	43	0.626	0.182	15	16.6	0.233	90.1
EC8		61	59	39	0.648	0.22	25.3	17	0.387	96.3
EC42		11	28	27	2.534	0.164	9.92	10.4	0.137	56.1
EC7		76	150	33	0.575	0.196	20.1	14.3	0.137	86.5
EC41		17	38	27	0.608	0.187	13.8	9.35	0.299	71.7
EC6		110	420	45	1.243	0.187	19.9	18	0.299	98.7
EC5		42	380	48	3.735	0.283	21.8	16.1	0.403	92.8
EC40		140	24	37	0.538	0.239	17	13.9	0.412	71.3
EC40			19	25	0.536		11.9	11.5	0.304	71.3
EC3		6.5 19		25 28	0.616	0.198 0.183				
			17 28	26 27			13.1 12.2	13.5 12.2	0.193	90.5 67
EC39		6.8			0.359	0.184			0.158	
EC2		74	16	23	0.566	0.143	9.66	10.3	0.164	58.6
EC38		6.2	15	21	0.474	0.136	9.16	10.1	0.1	50.5
EC37		110	44	38	0.715	0.221	16.8	14.4	0.413	73.3
EC36		4.3	39	23	0.809	0.151	9.02	10.2	0.143	56
EC35		20	30	34	0.420	0.243	17	13.3	0.357	89.9
EC1		21	90	49	0.997	0.263	19	17.7	0.154	61.1
EC34		50	11	52	0.750	0.177	13.6	11.7	0.202	63
EC33		14	120	36	0.636	0.253	15.6	14.8	0.306	85
EC32		30	330	32	0.883	0.226	14.9	13.9	0.198	72
EC31		8.7	36	26	0.638	0.177	9.84	8.97	0.141	57.8
EC30		5.1	11	30	0.483	0.176	13.3	14.9	0.14	70.9
EC29		4.1	13	25	0.546	0.188	11.3	13.8	0.106	63.9
EC28		5.3	12	27	0.305	0.162	12.1	14	0.143	62.1
EC27		3.5	14	11	0.420	0.059	3.94	4.48	0.047	22.5
EC26		17	110	36	0.878	0.244	18.1	14.3	0.224	65.8
EC25		11	44	15	0.343	0.094	5.27	5.34	0.063	24.3
EC24		2.6	15	13	0.568	0.079	4.3	4.66	0.038	20.5
EC23		13	130	36	0.910	0.265	16	15.6	0.184	64.1
EC22		4.5	17	57	5.560	0.175	12.9	12.6	0.131	60.5
EC21		3.0	16	26	0.507	0.219	12.6	14.3	0.127	83.3
EC20		6.4	11	31	0.434	0.221	14.2	14.8	0.156	75.3
EC19		4.7	110	28	1.527	0.191	11.8	11.8	0.151	53.3
EC18		4.6	20	18	1.335	0.08	4.95	5.19	0.064	26.4
EC17	'	0.79	15	8.7	0.380	0.052	2.69	2.5	0.03	15.1
EC16		0.77	12	28	0.774	0.163	9.41	11.1	0.092	44.9
EC15		5.0	12	34	0.670	0.184	14.9	14.2	0.185	76.7
EC14		5.6	17	31	0.555	0.238	15.9	14.4	0.225	88.9
-	Range:	0.044-140	0.0074-420	5.7-240	0.0065-38	0.052-0.304	2.38-25.3	2.5-18	0.027-0.463	14.5-98
	Mean:	20.65	54.24	34.1	1.552	0.179	12.23	11.74	0.175	61.52

Table 1.__ Continued

Sampling location Chemical concentration in sediment (mg/kg, dry wt)										
(From headwa to mouth)		Total Mercury	Aroclor 1268	Lead	Total PAHs	Cadmium	Copper	Nickel	Silver	Zinc
				WESTE	RN CREEK C	OMPLEX				
WC1		1.2	0.62	26	6.197	0.209	15.4	13.7	0.144	77.3
WC2		1.3	0.63	24	1.509	0.208	14.4	14.8	0.155	76
WC3		1.4	0.78	27	11	0.248	16	15.8	0.158	78.8
WC4		4.8	4.1	33	0.896	0.295	14.7	13.5	0.147	70.9
WC50		16	11	34	1.324	0.32	17.7	14.1	0.239	85.7
WC5		3.8	15	38	0.659	0.336	17.3	14.8	0.178	78.5
WC49		0.20	1.0	35	1.103	0.213	13.7	11.2	0.137	69.2
WC48		5.5	4.3	36	7.813	0.302	15	12.5	0.151	70.3
WC47		0.88	0.023	35	0.449	0.169	15.4	15.6	0.135	77.9
WC46		0.089	0.0079	52	0.878	0.148	15.2	16.1	0.118	72.4
WC45		7.8	2.2	34	0.428	0.255	18.8	18.4	0.287	88.7
WC44		0.35	0.16	39	0.525	0.157	15	16.1	0.119	79
WC43		15	13	34	0.629	0.251	17.8	15.6	0.26	78.9
WC42		3.8	5.5	36	0.230	0.376	18.2	18.5	0.192	93.8
WC41		12	4.2	33	0.354	0.245	16.5	15.4	0.132	81
WC40		0.50	2.5	45	0.400	0.277	19.1	21.9	0.13	70.7
WC39		1.7	2.5	42	0.151	0.288	19.9	25.6	0.174	79.5
WC38		13	0.33	37	0.414	0.236	18.4	22.1	0.171	65.9
WC37		5.2	0.35	38	0.414	0.201	18.7	21.8	0.171	69.3
WC36		2.3	2.4	37	0.420	0.261	17.5	23.2	0.136	83.2
WC35		13	4.9	32	0.586	0.259	16.6	17.8	0.173	68.8
WC34		12	0.76	40	0.300	0.239	18.8	17.0	0.192	61.2
WC34		1.8	1.7	27	0.413	0.294	15.6	18.4	0.179	88.3
WC32		1.1	1.7	27 25	0.162	0.206	15.4	18.2	0.162	77.9
WC32		2.6	2.4	34	0.163	0.17	17.8	19.6	0.146	72.1
WC30		4.0	4.3				12.2	12.5		
WC29		1.5	2.0	24	0.242 0.138	0.196	15.3	16.6	0.195 0.17	77.6 79.7
WC29		2.1	3.5	28	0.136	0.213 0.252		15.7	0.17	79.7 79.7
				29			14.5			
WC27		1.6	2.1	30	0.207	0.201	15.2	17.2	0.172	83.8
WC26		2.0	1.7	29	0.515	0.2	13.4	15.2	0.191	71
WC25		1.8	3.1	26	0.318	0.22	13.1	13.4	0.192	74.7
WC24		3.3	4.5	27	0.404	0.264	13.7	12.7	0.272	70.9
WC23		2.0	3.8	32	0.424	0.266	14.4	16.2	0.17	75.6
WC22		1.9	6.9	31	0.400	0.251	13.5	15.1	0.141	69.1
WC21		1.7	4.8	47	0.340	0.359	18.4	19.9	0.16	63.4
WC20		1.5	2.4	30	0.268	0.242	13.1	14	0.181	67
WC19		1.5	1.8	27	0.287	0.255	13.2	13.3	0.28	73.1
WC18		1.1	2.1	30	0.294	0.239	15.5	18.4	0.158	77.1
WC17		6.7	25	52	0.314	0.363	22.4	25.1	0.142	74.2
WC16		2.8	20	40	0.396	0.279	16.6	19.9	0.17	76.4
WC15		1.8	2.5	36	0.317	0.262	16.8	20.3	0.294	87.9
WC14		1.5	5.2	25	0.310	0.153	11.8	14	0.176	59
WC13		0.92	2.2	31	0.246	0.238	15.2	18.9	0.155	79.6
WC12		1.6	2.4	28	0.360	0.229	13.9	16.5	0.295	77.3
WC11		0.52	0.75	25	0.276	0.209	13.1	16	0.155	84.6
WC10		1.2	1.4	24	0.272	0.211	11.9	13.3	0.141	72.1
WC9		1.3	1.7	26	0.318	0.223	12.9	15.1	0.164	85.3
WC8		1.0	7.0	34	0.360	0.362	14.5	15.2	0.142	80.5
WC6		2.1	1.9	27	0.323	0.229	13.9	16.4	0.237	81.6
WC7		0.95	1.8	27	0.365	0.195	13.7	16.3	0.157	82.1
	Range:	0.089-16	0.0079-25	24-52	0.138-11	0.148-0.376	11.8-22.4	11.2-25.6	0.118-0.295	59-93.8
	Mean:	3.51	3.92	32.7	0.912	0.247	15.62	16.80	0.182	76.37

^aSelected areas of the LCP estuary are the Main Canal (MC), Eastern Creek (EC), and Western Creek Complex (WC). Surface sediment (0 - 15 cm in depth) from these areas was collected during the period of October 22 - 25, 2006.

^bNon-detected concentrations of COPC (primarily PAHs) were assigned a value of 1/2 of detection limit.

⁻ Yellow shaded cells represent values that exceed the Threshold Effect Concentrations (TEC) for each COPC (Lead: 41 mg/kg; Total PAHs: 0.8 mg/kg; Cadmium: 0.68 mg/kg; Copper: 18.7 mg/kg; Nickel: 15.9 mg/kg; Silver: 0.73 mg/kg; Zinc: 124 mg/kg; Mercury: 1.4 mg/kg; Aroclor-1268: 3.2 mg/kg) From Table 4-3b and MacDonald (2006).

⁻ Red shaded cells represent values that exceed the Probable Effect Concentrations (PEC) for each COPC (Lead: 60 mg/kg; Total PAHs: 1.5 mg/kg; Cadmium: 4.21 mg/kg; Copper: 108 mg/kg; Nickel: 42.8 mg/kg; Zinc: 271 mg/kg; Mercury: 3.2 mg/kg; Aroclor-1268 12.8 mg/kg From Table 4-3b and MacDonald (2006).

Table 2.__Physical and chemical data for surface sediment in selected areas of LCP estuary during 2005 (all measurements in dry weight)^{a,b}

		Total organic				Total
Sampling location	Silt and clay (%)	carbon (%)	Total mercury (mg/kg)	Aroclor 1268 (mg/kg)	Lead (mg/kg)	PAHs (mg/kg)
		P	URVIS CREEK			
orth Purvis Creek						
	04.0	2.0	0.40	0.0005	04	0.00
1 2	84.3 11.4	3.6 0.50	0.12 0.93	0.0005 4.8	21 6.2	0.08 0.20
3	98.7	5.5	3	20	35	1.31
4	63.5	4.0	1.3	3.0	20	1.00
5	97.2	4.7	2.6	5.2	28	1.22
6	95.5	5.2	2.4	16	31	1.01
7	54.4	2.7	0.64	0.83	20	0.48
8	69.3	0.32	0.11	0.012	18	0.01
9	9.9	0.48	0.98	3.2	7.9	0.15
10	6.8	0.27	0.30	0.83	3.4	0.10
11	96.4	5.4	2.9	28	34	1.29
12	12.2	2.3	0.54	1.4	4.9	0.34
13	98.5	5.1	4.2	3.2	34	0.93
14	97.6	2.8	2.0	4.2	32	0.94
15	92.9	3.8	2.5	4.1	31	0.80
16 17	75.1 93.7	3.1 4.4	2.2 2.3	4.3	28 32	1.48
18	93. <i>1</i> 92.1	2.5	4.6	3.7 9.8	32 31	0.99 0.88
19	92.1	5.1	2.2	2.6	34	1.59
20	4.0	0.090	0.19	0.15	3.2	0.08
21	1.7	0.096	0.13	0.095	2.0	0.09
22	66.2	3.3	6.8	3.8	34	1.67
23	36.2	2.2	1.4	2.8	17	0.73
24	4.3	0.64	1.8	0.15	3.9	0.23
25	8.3	0.40	2.8	0.14	6.4	0.33
Range:	1.7 - 98.7	0.090 - 5.5	0.11 - 6.8	0.0005 - 28	2.0 - 35	0.01 - 1.67
Mean:	58.49	2.74	1.96	4.89	20.7	0.716
95% CI:	42.41-74.57	1.95-3.53	1.30-2.62	2.08-7.70	15.6-25.8	0.496 - 0.93
outh Purvis Creek						
1	11.0	0.46	0.020	0.0005	2.6	0.01
2	40.0	1.9	0.020 1.9	0.0005 13	3.6 16	0.01 0.60
3	56.3	2.5	0.043	0.028	12	0.04
4	81.0	2.5	2.6	18	29	1.09
5	97.9	4.6	0.10	0.17	17	7.21
6	15.5	0.57	3.4	9.2	9.8	0.97
7	11.6	0.73	0.0071	0.0005	3.2	0.02
8	88.8	5.3	0.79	2.1	22	1.58
9	33.0	2.2	1.1	9.0	11	1.49
10	54.2	3.8	1.9	13	21	0.88
11	79.3	3.5	1.1	4.8	18	1.26
12	49.4	2.9	1.3	9.9	18	0.97
13	13.5	0.61	0.31	3.0	5.4	0.22
14	16.7	0.37	0.013	0.0005	3.5	0.02
15	23.8	0.77	0.078	0.17	5.5	0.07
16	18.5	0.51	0.68	5.0	4.6	0.31
17	11.5	0.33	0.32	2.5	3.6	0.21
18 10	18.5 95.0	0.46	0.15	0.41	26 24	3.25
19 20	95.0 16.5	0.60 1.0	0.66 0.27	2.2 1.3	24 6.5	0.91 0.41
20	14.3	0.42	0.27	0.64	6.5 4.7	0.41
22	28.1	0.42	0.17	0.0005	4.7 6.1	0.22
23	9.0	0.82	0.14	0.501	3.2	0.02
24	8.9	3.8	0.24	1.7	3.4	0.31
25	95.7	1.6	0.39	1.0	24	1.05
Range:	8.9 - 97.9	0.24 - 5.3	0.0017 - 3.4	0.0005 - 18	3.2 - 29	0.01 - 7.21
Mean:	39.52	1.70	0.71	3.91	12.0	0.930
95% CI:	26.34-52.70	1.07-2.33	0.34-1.08	1.81-6.01	8.5-15.5	0.311 - 1.54
GRAND MEAN:	49.00	2.22	1.34	4.40	16.4	0.823

Table 2.__ Continued

	Silt and clay	Total organic carbon	Total mercury	Aroclor 1268	Lead	Total PAHs
Sampling station	(%)	(%)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
			DOMAIN 4			
astern domain						
inundated by Purvis	Creek)					
32	97.7	5.1	2.6	3.9	29	0.93
33	85.5	3.3	3.3	2.4	17	0.30
34	97.7	3.9	1.0	2.1	26	0.45
35	91.5	6.6	2.1	2.4	25	0.78
41	89.4	9.4	1.3	1.7	27	0.44
42	82.0	9.6	1.8	2.8	29	0.41
45	91.9	4.6	1.2	3.3	32	1.27
46	87.2	13	0.32	0.61	26	0.59
47	97.1	3.2	0.57	1.1	26	0.49
48	87.0	5.6	4.6	2.6	35	1.19
49	97.4	7.8	0.77	4.0	53	0.94
50	73.5	7.4	1.8	2.4	28	0.36
Range:	73.5 - 97.7	3.2 - 13	0.32 - 4.6	0.61 - 4.0	17 - 53	0.30 - 1.27
Mean:	89.83	6.62	1.78	2.44	29.4	0.679
95% CI:	85.13-94.53	4.74-8.50	0.99-2.57	1.80-3.08	23.9-34.9	0.467 - 0.89
Vestern domain						
nundated by Turtle	River)					
26	96.9	7.9	0.77	0.90	27	0.76
27	94.8	7.7	1.8	2.2	28	0.83
28	89.9	8.1	0.92	1.1	27	0.75
29	89.0	6.6	0.98	1.6	26	1.57
30	76.6	7.9	1.2	1.2	26	0.66
31	92.7	9.5	0.63	0.86	27	0.48
36	96.6	8.0	0.82	0.92	27	0.38
37	75.9	6.3	0.65	0.71	27	0.37
38	93.2	13	0.51	0.74	26	0.88
39	90.2	8.8	0.44	0.34	24	0.43
40	85.5	6.2	0.51	0.66	27	0.56
43	78.2	8.5	0.88	0.80	26	0.39
44	95.3	4.8	1.0	0.77	27	0.64
Range:	75.9 - 96.9	4.8 - 13	0.44 - 1.8	0.34 - 2.2	24 - 28	0.37 - 1.57
Mean:	88.83	7.95	0.85	0.98	26.5	0.669
95% CI:	84.28-93.38	6.76-9.14	0.63-1.07	0.69-1.27	25.9-27.1	0.473 - 0.86
GRAND MEAN: (both parts of dom	89.33 nain)	7.28	1.32	1.71	28	0.674

^aSurface sediment (0 - 15 cm in depth) in each evaluated area was collected during the period of October 20 - 24, 2005.

From Table 4-3b.

^bNon-detected concentrations of COPC (primarily PAHs) were assigned a value of 1/2 of detection limit.

⁻ Yellow shaded cells represent values that exceed the Threshold Effect Concentrations (TEL) for each COPC (Lead: 41 mg/kg; Total PAHs: 0.8 mg/kg; Mercury 1.4; Aroclor 1268: 3.2 mg/kg)

⁻ Red shaded cells represent values that exceed the Probable Effect Concentrations (PEL) for each COPC (Lead: 60 mg/kg; Total PAHs: 1.5 mg/kg; Mercury: 3.2 mg/kg; and Aroclor: 12 mg/kg).

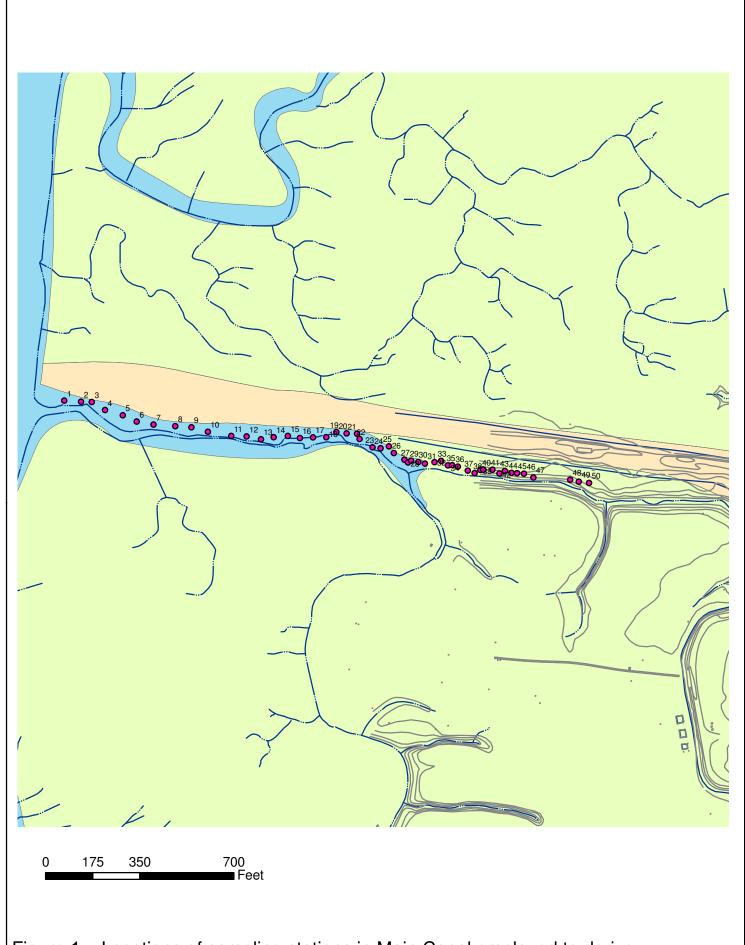



Figure 1._ Locations of sampling stations in Main Canal employed to derive apparent effects thresholds (AETs) for chemicals of potential concern (COPC) in surface sediment of estuary at LCP Site

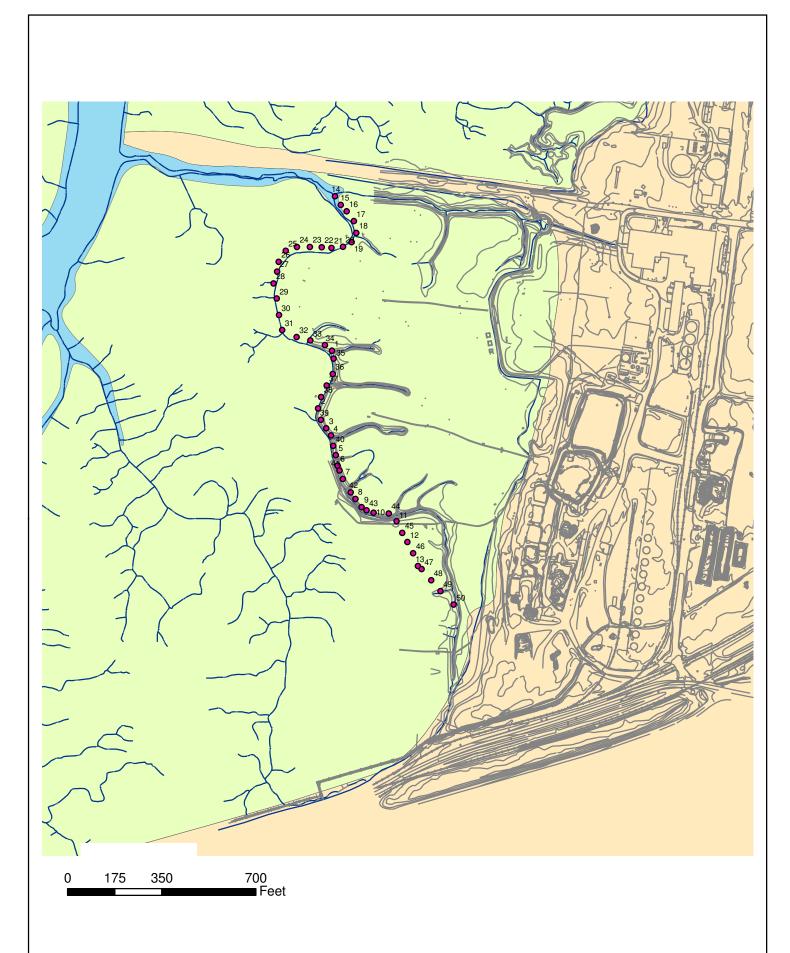



Figure 2._ Locations of sampling stations in Eastern Creek employed to derive apparent effects thresholds (AETs) for chemicals of potential concern (COPC) in surface sediment of estuary at LCP Site

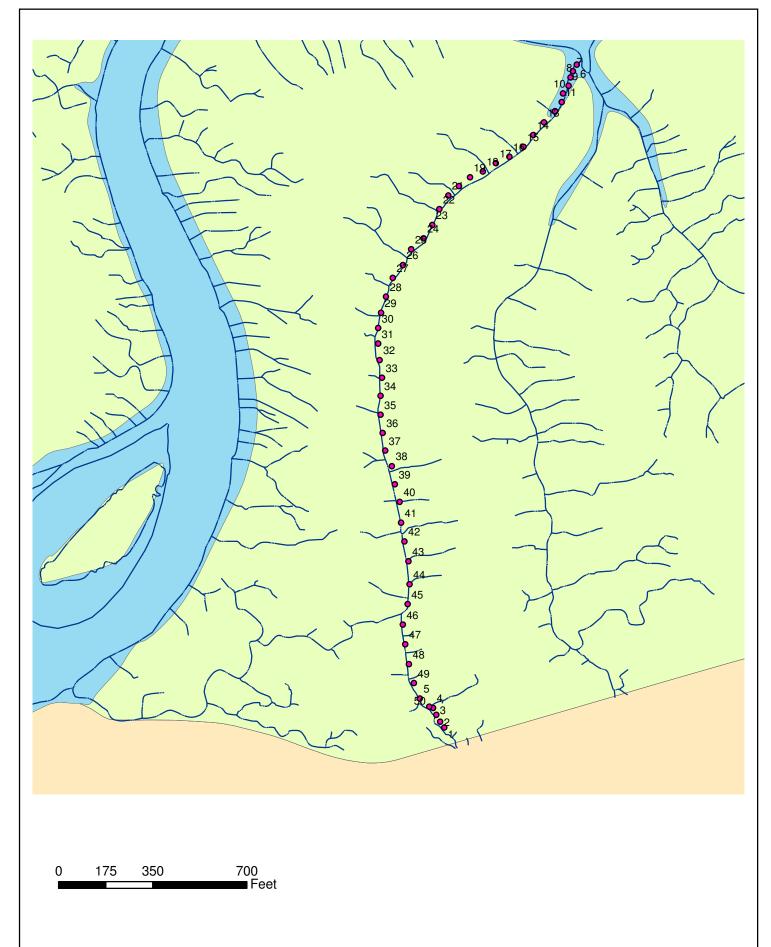



Figure 3_ Locations of sampling stations in Western Creek Complex employed to derive apparent effects thresholds (AETs) for chemicals of potential concern (COPC) in surface sediment of estuary at LCP Site

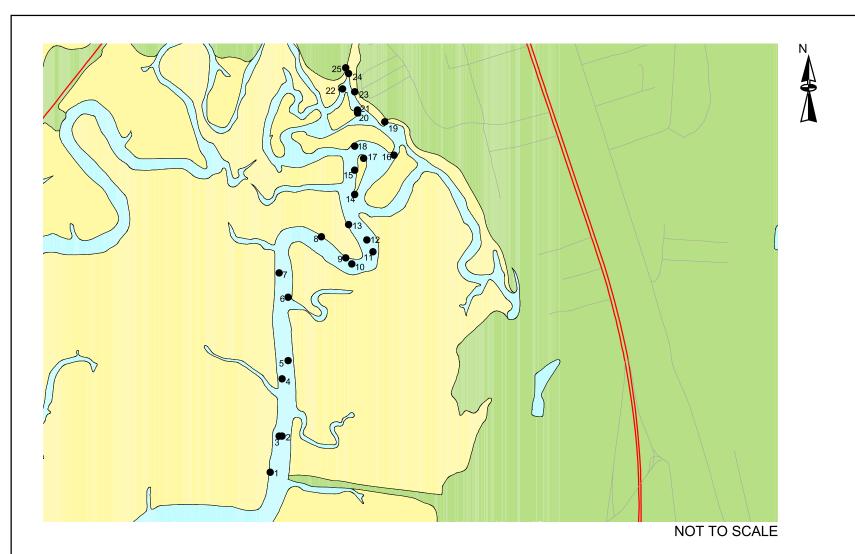



Figure 4 - Locations of sampling stations in special statistically based study of surface sediment of Upper Purvis Creek at LCP Site

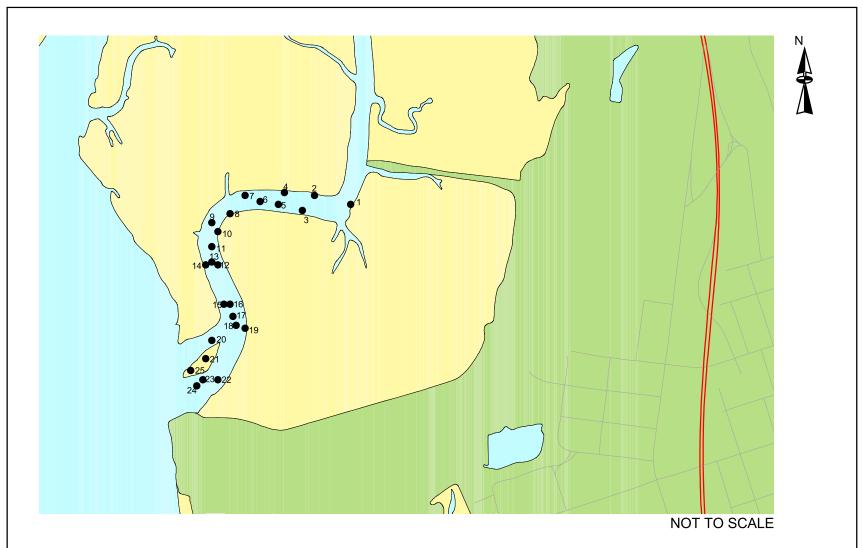
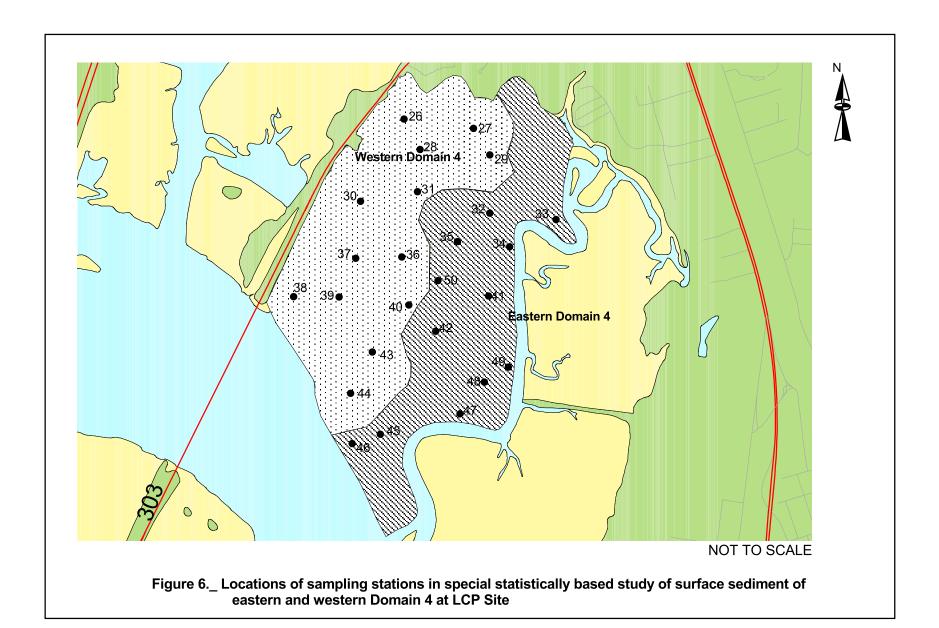




Figure 5 _ Locations of sampling stations in special statistically based study of surface sediment of Lower Purvis Creek at LCP Site



## APPENDIX J

INDEPENDENT (OTHER) ECOLOGICAL INVESTIGATIONS
OF ESTUARY AT LCP SITE
J.1 Reports
J.2 Scientific Papers

## Appendix J

# Independent (other) Ecological Investigations of Estuary at LCP Chemicals Superfund Site

Many of the following reports and scientific papers address ecological conditions in the estuary at the LCP Chemical Superfund Site (Site) <u>before</u> remediation occurred in the Marsh Grid and parts of the Main Canal and Eastern Creek during 1998 and 1999. Consequently, these early studies typically address ecological exposure to higher concentrations of chemicals of potential concern (COPC) than characterized under the present baseline.

## J.1 Reports

The first three of these reports were prepared by the U. S. Environmental Protection Agency (EPA) and address environmental conditions and ecological exposure at the Site during 1995 (Sprenger *et al.*, 1997). The last report (PTI and CDR Environmental Specialists, 1998) addresses site conditions in 1996.

## J.1.1 Acute Sediment Toxicity

Acute toxicity tests (10-day tests) were conducted with brown shrimp (*Penaeus vannamei*), amphipods (*Leptocheirus plumulosus*), and Japanese medaka (*Oryzias latipes*) embryos exposed to sediment collected during May and July 1995 at four locations near the Main Canal and Eastern Creek of the LCP Site. Maximum reported concentrations of mercury, Aroclor 1268, and lead in sediment were 230, 150, and 75 milligrams per kilogram (mg/kg) (dry weight [dw]), respectively. Tests with control and reference sediments were also performed.

Results of the brown shrimp test revealed no statistically significant differences (P <0.05) in survival of shrimp exposed to test sediments (including control and reference sediments). Mean survival of shrimp exposed to sediment from the Site ranged from 97 to 100 percent, as contrasted to control and reference survival of 97 and 94 percent, respectively. In addition, no behavioral differences were observed for shrimp exposed to any of the test sediments.

Results of the amphipod test also indicated the absence of statistically significant differences (P <0.05) in survival and the absence of behavioral differences in organisms exposed to test sediments. Mean survival of amphipods exposed to sediment from the Site ranged from 63 to 92 percent, as contrasted to control and reference survival of 90 and 78 percent, respectively.

The Japanese medaka embryo test documented slightly lower survival (89 to 90 percent) in organisms exposed to three of four sediments from the Site, as compared to 100 percent survival for the other site sediment, control sediment, and reference sediment. Hatching of embryos was delayed in all test sediments except the control. In addition, embryonic lesions occurred at a higher frequency in site sediments (2 to 8 lesions) vs. reference sediment (1 lesion) and control sediment (0 lesions). The authors (Sprenger *et al.*, 1997) noted that the observed lesions are "consistent" with lesions known to be associated with dioxins, furans, polychlorinated biphenyls (PCBs), and, possibly, mercury.

#### J.1.2 Chemical Body Burdens and Histopathology of Diamondback Terrapins

Eight mature diamondback terrapins (*M. terrapin*) were collected in the marsh at the Site during May and July 1995, when females were actively nesting. Food items found in the guts of the terrapins consisted of fiddler crabs and marsh periwinkles. Although body burdens (concentrations) of mercury and Aroclor 1268 were evaluated in the carcasses, brains, livers, eggs, and hatchlings of the terrapins, emphasis was directed at the eggs and hatchlings of three female terrapins.

These three female terrapins were characterized by the following mean concentrations of mercury and Aroclor 1268 in their eggs (expressed as dw):

- Female 1 (BD1): 0.87 mg/kg mercury and 29.7 mg/kg Aroclor 1268;
- Female 2 (DD4): 2.2 mg/kg mercury and 28.6 mg/kg Aroclor 1268; and
- Female 3 (DD5): 4.6 mg/kg mercury and 480 mg/kg Aroclor 1268.

Although eggs from Female 2 did not hatch, eggs from the other females – which contained higher concentrations of mercury (Female 3) and Aroclor 1268 (Females 1

and 3) – did hatch. In this same study, histopathological examinations of terrapins did not indicate any degeneration or abnormality known to be associated with COPC.

#### J.1.3 Chemical Body Burdens and Histopathology of Clapper Rails

Seven clapper rails (*R. longirostris*) averaging 276.6 grams (g) in wet weight (ww) were collected from the southern part of the Site during July 1995. Although body burdens (concentrations) of mercury and Aroclor 1268 were evaluated in the carcasses, livers, breast muscle, and feathers of the birds, only mercury in livers was associated with a level reported to be harmful to birds.

The mean mercury concentration in livers of the seven birds was 3.84 mg/kg (ww). (The mean concentration of Aroclor 1268 was 25.2 mg/kg [dw]). This body burden of mercury was reported to be orders-of-magnitude lower than liver concentrations referenced in the scientific literature for mortality of red-winged blackbirds (126.5 mg/kg) and grackles (54.5 mg/kg). However, in the case of white-tailed eagles, mortality was cited in the scientific literature at mercury thresholds in livers that ranged from 4.6 to 91 mg/kg. (All mercury levels in livers of birds are expressed in terms of wet weight.)

In this same study, histopathological examinations did not indicate specific toxicity or specific uniform degeneration of tissues of clapper rails. In particular, myelin sheath and axonal degeneration, characteristic of mercury toxicity, were not observed except in one case, which was reported to be a possible artifact. Also, liver necrosis and fatty change, typical of PCB toxicity, were not noted.

## J.1.4 Wading Bird Survey

PTI and CDR Environmental Specialists (1998) conducted a wading bird study (consisting of 40 aerial flights) at the Site during the period of June through mid-December 1996. A parallel study was also conducted at a reference site (Hawkins Creek, located west of Cumberland Island in Camden County, Georgia).

Six species of wading birds were observed at both sites. Great egrets (*Casmerodius albus*), snowy egrets (*Egretta thula*), and wood storks were most commonly observed. Great blue herons (*Ardea herodia*) were consistently present, but in low numbers.

White ibis (*Eudocimous albus*) and little blue herons (*Egretta caerulea*) were occasionally observed in high numbers, but their presence during surveys was infrequent.

The three dominant wading bird species (great egrets, snowy egrets, and wood storks), and all six species combined, were present in significantly higher numbers during low tides than high tides at both sites. The birds used tidal creeks almost exclusively, with few observations recorded in the vegetated marsh. Wood storks were typically found in the smaller intertidal creeks, the confluence of those creeks with larger-order creeks, and mud flat openings at the origins of first-order creeks.

Most wading birds were observed at the extreme northern boundary of the Site (including tributaries of the Turtle River), far distant from the areas of greatest concentrations of COPC.

## J.2 Scientific Papers

The scientific papers reviewed in this document pertain to the toxicological properties of Aroclor 1268, a generally uncommon PCB that is associated with the LCP Facility, and the toxicity of chemicals present at the Site (including COPC) to various types of aquatic biota.

#### J.2.1 General Toxicological Properties of Aroclor 1268

The dominant PCB at the Site is Aroclor 1268, whose toxicological properties have not been as extensively investigated as other Aroclors (in particular, Aroclor 1254). Aroclor 1268 is a highly chlorinated (68 percent chlorine), superhydrophobic PCB that is extremely stable and slow to degrade. Aroclor 1268 is one of only two Aroclors (the other being Aroclor 1270) to exist in its unaltered form as a solid, as contrasted to a viscous liquid (Aroclor 1254), mobile oil (Aroclors 1221, 1232, 1242, and 1248), or sticky resin (Aroclors 1260 and 1262). A general conclusion reached in the scientific literature is that ecological risk posed by mid-weight chlorinated Aroclors (1242, 1248, and 1254) is greater than the risk associated with extremely low- or high-weight chlorinated Aroclors (1221 and 1268).

The following embedded table (EPA, Region 4; 2008) reviews dioxin-like toxicity of Aroclor 1268 as compared to Aroclor 1254, an Aroclor on which PCB toxicity reference values (TRVs) presented in this document for fishes and mammals are based:

	Relative Potency (REP) of Aroclor 1268 vs. Aroclor 1254											
for Fish	for Fishes, Birds, and Mammals Based on Dioxin-Like Total Toxic Equivalents (TEQs)											
	(EPA – Region 4, 2008; from Burkhard and Lukasewycz, 2008)											
						Relativ	e Poteno	cy (REP) of				
	Aroclor 125	34	,	Aroclor 12	68	Aroclo	r 1268 v	s. Aroclor				
	1254											
Fishes	Fishes Birds Mammals Fishes Birds Mammals Fishes Birds Mammals											
4.18E-07	4.18E-07											

The following table (from Villeneuve *et al.*, 2001) presents results of *in vitro* bioassays conducted with Aroclors 1254 and 1268 in comparison to the dioxin 2,3,7,8-tetrachlorodibenzo-*p*-dioxin (TCDD).

Relative Potency (REP) of A	Relative Potency (REP) of Aroclor 1268 vs. Aroclor 1254 for Fishes and Mammals Based									
on Comparison to 2,3,7,8-Tetrachlorodibenzo- <i>p</i> -Dioxin (TCDD) in <i>In Vitro</i> Bioassays										
(from Villeneuve et al., 2001)										
In Vitro Bioassay  Aroclor 1254  Aroclor 1268  Relative Potency (REP) of Aroclor 1268 vs. Aroclor 1254										
	Fish	nes								
Desert topminnow PLHC-1 hematoma cells	<1.8 x 10 ⁻⁴	<5.3 x 10 ⁻⁶	~0.029							
	Mam	mals								
Rat H4IIE-EROD hematoma cells <2.8 x 10 ⁻⁵ <8.3 x 10 ⁻⁷ ~0.030										
Rat H4IIE-luc hematoma cells	<4.6 x 10 ⁻⁵	<1.4 x 10 ⁻⁶	~0.030							
Rat H4IIE-wt hematoma cells	<3.8 x 10 ⁻⁵	<1.1 x 10 ⁻⁶	~0.029							

Villeneuve *et al.* (2001) reported that the efficacy (magnitude of response) of the two Aroclors was insufficient to permit quantitative REP estimates. However, qualitative estimates of REP of the two Aroclors for mammals appear similar to those generated by

Burkhard and Lukasewycz (2008). For fishes the REP suggested by Villeneuve *et al.* (2001) for Aroclor 1268 vs. Aroclor 1254 is about 5 percent of the value derived by Burkhard and Lukasewycz (2008).

The REP factors referenced above indicate that Aroclor 1268 is substantially less toxic to biota than Aroclor 1254. However, dioxin-like toxicity is only a measure of the extent to which dioxin-like congeners (non-ortho and mono-ortho coplanar PCBs) bind with and disrupt the aryl hydrocarbon (Ah) receptor in cells of organisms, resulting in toxicological responses that include dermal toxicity, immunotoxicity, carcinogenicity, and adverse effects on endocrine, development, and reproduction functions.

Modes of toxicity other than that affecting the Ah receptor include effects on calcium (Ca²⁺) homeostasis and subsequent neurotoxic effects caused by congeners such as di*ortho* non-coplanar PCBs, which have the potential to be evaluated by a Neurotoxic Equivalent (NEQ) scheme being developed by Simon *et al.* (2007). These authors noted that the congeners present in Aroclor 1268, in addition to possessing a low Ah receptor binding affinity, have a limited ability to interfere with Ca²⁺— dependent intracellular signaling pathways. The authors also stated that reduced PCB toxicity to fishes, birds, and mammals has been observed at the extremes of mean mixtures of chlorination (i.e., lowly and highly chlorinated Aroclors). They specifically concluded that Aroclor 1268 is approximately 22x less toxic than Aroclor 1254 in terms of NEQs.

Several uncertainties characterize the degree to which Aroclor 1268 is less toxic than Aroclor 1254 to biota. Chlorinated naphthalenes have been identified in PCBs (Ruzo *et al.*, 1976) and can affect the Ah receptor. However, the World Health Organization (WHO) has not established TEQ factors for these chemicals. Also, the relative potency of the two Aroclors after weathering in the environment is uncertain. In particular, the octa-, nona- and deca-PCB congeners in Aroclor 1268 are especially resistant to weathering. Some of these congeners, in particular di-*ortho* congeners, have relatively little affinity for the Ah receptor, but may have non-dioxin-like toxicity (Sajwan *et al.* 2008).

# J.2.2 Toxicity Studies of Site Chemicals to Aquatic Biota Prior to Remediation of Parts of the Estuary

The following studies were conducted before remediation of parts of the estuary during 1998 and 1999. Consequently, results of these studies could be considered to represent "worst case" environmental conditions in the estuary that no longer characterize the present baseline for the estuary.

## A. Effects of Mercury and PCBs on Lower-Trophic-Level Biota

This paper (Wall et al., 2001) addressed the health of cordgrass (Spartina alterniflora), microbes (primarily fungal standing crop), and grass shrimp (Palaemonetes pugio) sampled in the LCP estuary during June 1997. Sediment, cord grass, and microbes were collected along two transects reflecting low and high marsh elevations, as well as low and high concentrations of chemicals. Sediment was analyzed for total mercury, methylmercury, and PCBs. Primary production of cord grass was assessed by a variety of methods including measurement of peroxidase (POD) activity, and fungal biomass was determined by ergosterol analysis. Grass shrimp were collected at three stations along a tidal creek at the Site and evaluated for length, female weight, brood size (number of eggs), brood mass, individual egg mass, and mean egg area. In addition to samples of sediment and biota collected from the site, samples were obtained from a reference location at Cross River (CR).

Results of this study caused the authors to conclude that "despite high levels of contamination at the LCP Site [the] results provided only suggestive evidence for impacts on organisms at lower trophic levels." The authors additionally reported that "despite high contaminant levels, [there were] few biological differences between the LCP and CR Sites, with the exception of a possible alteration in [grass shrimp] reproduction." The authors suggested that only "subtle" indications of toxicity were observed because of limited bioavailability of pollutants in sediment (due to low redox levels and high levels of sulfides and organic carbon).

The authors' reference to possible alteration in reproduction of grass shrimp is based on results of six measurements reported for shrimp, which are presented in the following embedded table:

The importance of fungi to the health of estuaries and their good health in the LCP estuary were also addressed by Newall *et al.* (2000), who noted the value of ascomycetous fungi in the decomposition of shoots of smooth cordgrass (*S. alterniflora*), which subsequently are the base of important estuarine food webs. These fungi were reported as appearing as resistant to potentially toxic pollutants at the Site as the cordgrass itself. The authors speculated that unless fungal and plant resistance mechanisms have the potential to degrade any assimilated toxins, the toxins may have the potential to be transferred into estuarine food webs.

Measure	Measurement Endpoints for Grass Shrimp in LCP Estuary										
and Reference Location (Wall et al., 2001)											
	LCP Estuary	Reference (CR) Location									
Grass Shrimp Measurement	Sediment concentration (mg/kg, dw; mean and standard deviation) Hg:18.4 ± 21.9 sd; PCBs: 46.0 ± 52.7	Sediment concentration (mg/kg, dw; mean and standard deviation) (Hg:0.49 ± 0.08; PCBs: 0.32 ± 0.07)	Statistical Significance (P Value)								
Length (mm)	35.2	32.7	0.0003								
Female mass (g)	0.087	0.065	0.0001								
Brood size (# eggs)	302.7	289.0	>0.05								
Brood mass (mg)	16.3	16.3	>0.05								
Individual egg mass (mg)	0.054	0.056	>0.05								
Mean egg area (mm²)	0.37	0.34	>0.05								

<u>Note</u>: Four of the differences between the two areas are not statistically significant and both of the remaining differences (length of shrimp and female mass) appear to be advantageous to shrimp from the LCP Site

#### B. Effects of Mercury and PCBs on the Benthic Invertebrate Community

This paper (Horne *et al.*, 1999) addressed the effects of total mercury, PCBs (primarily Aroclor 1268), and other COPC on the benthic invertebrate community of the LCP estuary. Sediment and benthos sampling was performed in May 1995 at four locations at the Site and at an off-site reference location (Troup Creek). The four site locations consisted of a station adjacent to the LCP Outfall (Station 4), a station in a tributary draining the outfall lagoon area (Station 3; in or by the LCP Ditch), a station

approximately 50 meters (m) west of the outfall lagoon area (Station 2; also, in or by the LCP Ditch), and a station about 330 m west of the lagoon area (Station 1; in or by the Eastern Creek). Sediment was collected with either a trowel or a 10-centimeter (cm) hand bucket auger (the latter device employed when sampling under water). Benthos (macrofauna) were collected with a 3-cm-diameter core sampler inserted into about 5 cm of sediment, with 10 replicate samples taken at each of the five locations (including the reference location) within a 1-m² area.

Sediment obtained from the above-referenced locations, in addition to being analyzed for total mercury and Aroclor 1268, was evaluated for toxicity to amphipods (*L. plumulosus*) in 14-day exposures during which survival, sediment avoidance, and other behavioral abnormalities were monitored. Finally, fiddler crabs (*Uca.* spp.) collected from the reference location and Stations 1, 2, and 3, as well as marsh periwinkles (*Littorina* sp.) obtained from the reference location and Station 2, were evaluated for body burdens of total mercury and Aroclor 1268.

Mean body burdens of total mercury and Aroclor 1268 in fiddler crabs and marsh periwinkles indigenous to the Site were always greater than body burdens of reference organisms. Maximum mean concentration of mercury in fiddler crabs was 2.6 mg/kg dw, while highest mean level of Aroclor 1268 was 43 mg/kg dw.

The sediment toxicity tests were reported as indicating no acute toxicity to amphipods across sampling stations. Specifically, mean survival of amphipods exposed to reference sediment was 78 percent; while survival at site stations was 92 percent (Station 1), 83 percent (Station 2), 68 percent (Station 3), and 63 percent (Station 4). These differences were not statistically significant at P = 0.05; and there was no statistically significant correlation (r values) between survival of organisms and concentrations of contaminants in sediment (P = 0.05). In addition, behavioral abnormalities of amphipods were not observed for any station.

In the major study of the benthic invertebrate community, the authors reported that "density estimates of individual species between sampling locations showed no consistent patterns in response to pollutants [in sediment]." However, they also reported contamination-related shifts in percentage representation of macrobenthos at

higher taxonomic levels – i.e., in annelid and nematode species – as indicated in the following embedded table (abstracted from Figure 2 in Horne *et al.*, 1999).

The authors interpreted the above-presented data as reflecting dominance by oligochaetes and nematodes in uncontaminated areas, shifting to dominance by polychaetes in moderately to highly contaminated areas. The authors also reported the following statistically significant associations: 1) mercury concentration in sediment negatively related to oligochaete (P < 0.05) and nematode (P < 0.001) abundance, but positively related to polychaete abundance (P < 0.001); 2) Aroclor 1268 concentration in sediment negatively related to nematode abundance (P < 0.001), but positively related to polychaete abundance (P < 0.001); and 3) total organic carbon (TOC) content of sediment negatively related to nematode abundance (P < 0.001), but positively related to oligochaete abundance (P < 0.005).

Taxonomic Characteristics of Macrobenthos in LCP Estuary									
and Reference Location (Horne et al., 1999)									
		Stations in LCP Estuary							
		(chemicals in sediment; dw)							
			Station 2						
			LCP Ditch; 50	Station 3					
	Reference	Station 1	m from	LCP Ditch;					
	Location –	Eastern	outfall	near outfall	Station 4				
	Troup Creek	Creek	lagoon	lagoon	LCP Outfall				
	(total Hg: 0.1	(total Hg: 34	(total Hg: 15	(total Hg: 90	(total Hg:				
Macrobenthos	mg/kg;	mg/kg;	mg/kg;	mg/kg;	170 mg/kg;				
Taxonomic	A1268: 0.1	A1268: 2.3	A1268: 56	A1268: 70	A1268: 150				
Group	mg/kg; TOC:	mg/kg; TOC:	mg/kg; TOC:	mg/kg; TOC:	mg/kg; TOC:				
	3.6%; all dw)	4.2%)	1.3%)	1.7%)	0.78%)				
Oligochaete	45.50%	25.98%	12.19%	36.05%	18.72%				
Polychaete	32.90%	22.29%	85.15%	56.15%	77.14%				
Nematode	12.34%	51.07%	1.57%	5.98%	3.42%				
Insect	5.14%	0.37%	0.24%		0.18%				
Crustacea	2.57%	0.30%	0.85%	1.63%	0.54%				
Gastropod	1.54%			0.18%					
Note: A1268 refers to Aroclor 1268. TOC refers to total organic carbon.									

In addition to reported contamination-related shifts in percentage representation of macrobenthos at higher taxonomic levels, the percentage of benthos surface feeders was positively associated with mercury and Aroclor 1268 concentrations in sediment

(P < 0.001 in both cases), while the percentage of subsurface feeders was positively related to TOC content of sediment (P < 0.01). Percentage of surface and subsurface feeders in sediment at the various stations are provided in the following embedded table.

In conclusion, the authors stated "Based on the results of this study, it can be concluded that shifts in community composition and trophic structure are observed in the study marsh, and that these shifts appear to increase with increasing PCB and mercury loading."

Feeding Habits of Macrobenthos in LCP Estuary									
and Reference Location (Horne et al., 1999)									
		Stations in LCP Estuary							
Feeding Habits of Macrobenthos	Reference Location – Troup Creek	Station 1 Eastern Creek	Station 2 LCP Ditch; 50 m from outfall lagoon	Station 3 LCP Ditch; near outfall lagoon	Station 4 - - LCP Outfall				
Subsurface Feeder	56.30%	63.25%	16.75%	51.92%	22.60%				
Surface Feeder	42.90%	36.14%	83.13%	48.08%	77.21%				

#### C. Toxicity of Sediment and Pore Water

This paper (Winger *et al.*, 1993) addressed the toxicity of sediment and pore water collected from the LCP estuary during 1990. Twelve (12) sampling stations were initially evaluated in the study. Sediment and pore water obtained from two (2) of these stations (Stations 6 and 7; located within 10 m of each other near the mouth of the drainage canal from the Site) were judged from reconnaissance toxicity screening to be highly toxic. Sediment and pore water from these two (2) stations were then evaluated for acute (10-day) toxicity to amphipods (*Hyallella azteca*); and pore water was assessed for toxicity to photoluminescent bacteria (*Photobacterium phosphoreum*).

Amphipods were reported to have experienced no mortality when exposed to sediment, but a significantly lower feeding rate (leaf consumption) at P < 0.05, as compared to a "control reference." Differences in feeding rates were illustrated in a figure from which exact differences could not be determined, but rates appear to have ranged from about

0.7 to 0.8 milligrams (mg)/animal/day for site sediment to 1.1 mg/animal/day for the "control reference."

Amphipods exposed to pore water from site sediment experienced mortality ranging from about 50 to 75 percent, as contrasted to approximately 5 percent for the "control reference," a difference that was statistically significant (P < 0.05). In addition, leaf feeding rates were significantly lower (P < 0.05) for site sediment (P < 0.05). In the mg/animal/day), as compared to the "control reference" (P < 0.05) for site sediment (P < 0.05). In the case of the bacterial tests with pore water of sediment from Stations 6 and 7, median effective concentrations (EC50s) ranged from slightly greater than 0 percent to about 15 percent of pore water sample. No control (or reference) tests were performed; however, EC50 values associated with pore waters evaluated in the reconnaissance screening ranged as high as 100 percent.

Chemical concentrations in evaluated sediment (Stations 6 and 7) were: total mercury: 17.8-24.7~mg/kg (dw), PCBs: 67-95~mg/kg, lead: 45.0-63.0~mg/kg, and total Polycyclic Aromatic Hydrocarbons (PAHs): 1.4-3.0~mg/kg. Cadmium, chromium, copper, nickel and zinc were present at concentrations of 0.4-0.5, 87-118, 14-18, 13-17, and 63-78.6~mg/kg, respectively. The authors attributed toxicity of sediment to PCBs and, possibly, methylmercury, because acid-volatile sulfide (AVS) concentrations in sediment ( $21-45~\mu mol/g$ ) exceeded comparable levels of total metals, rendering them biologically unavailable.

## D. Bioaccumulation of Aroclor 1268 (First Paper)

This paper (Kannan *et al.*, 1998) addressed bioaccumulation of congeners of Aroclor 1268 by blue crabs (*Callinectes sapidus*), fishes, terrapins (*M. terrapin*), and birds collected from the LCP estuary during 1995 (terrapins and birds) and 1997 (blue crabs and fishes). Fishes evaluated were silver perch (*Bairdiella chrysoura*), spotted seatrout (*Cynoscion nebulosus*), and striped mullet (*Mugil cephalus*). Birds assessed were mottled ducks (*Anas fulvigula*), boat-tailed grackles (*Quiscalus major*), red-winged blackbirds (*A. phoeniceus*), and clapper rails (*R. longirostrus*).

Mean, lipid-normalized concentrations of total PCBs in biota (presented in order of increasing concentrations, ww) followed by coefficients of determination (r²) for relative proportion of major PCB congeners in Aroclor 1268 vs. biota were:

- Clapper rail (liver): 9.4 micrograms per gram ( $\mu g/g$ ) ( $r^2 = 0.86$ ),
- Diamondback terrapin (liver): 13  $\mu$ g/g ( $r^2 = 0.98$ ),
- Spotted seatrout (muscle):  $56.4 \mu g/g$  ( $r^2 = 0.89$ ),
- Boat-tailed grackle (liver): 75.5  $\mu$ g/g ( $r^2 = 0.95$ ),
- Mottled duck breast (muscle): 135  $\mu$ g/g ( $r^2 = 0.91$ ),
- Blue crab (hepatopancreas): 197  $\mu$ g/g ( $r^2 = 0.68$ ),
- Silver perch (muscle): 203  $\mu$ g/g ( $r^2 = 0.80$ ),
- Striped mullet (muscle): 283  $\mu$ g/g ( $r^2$  = 0.95), and
- Red-winged blackbird (carcass): 387  $\mu$ g/g ( $r^2 = 0.87$ ).

The authors reported that bioaccumulation was less than would be predicted based on the octanol-water partition coefficient (K_{OW}) relationship, supporting the hypothesis that these congeners have restricted membrane permeability. They also noted that concentrations of non-ortho coplanar congeners in the hepatopancreas of blue crabs were 7 to 8 orders-of-magnitude less than total PCB concentrations. The authors concluded that, despite notable concentrations of total PCBs in biota, the toxic equivalents (TEQs) for dioxin-like non- and mono-ortho coplanar PCBs in biota were minimal.

## E. Bioaccumulation of Aroclor 1268 (Second Paper)

This paper (Maruya and Lee, 1998) addressed bioaccumulation of congeners of Aroclor 1268 in three trophic levels of the local food web – grass shrimp (*P. pugio*), spotted seatrout (*C. nebulosus*), and striped mullet (*M. cephalus*) – collected from Purvis Creek during 1996.

Mean, lipid-normalized concentrations of total PCBs in biota were (in order of increasing concentrations, ww) – grass shrimp (whole body): 17  $\mu$ g/g; spotted seatrout (muscle): 41  $\mu$ g/g; and striped mullet (whole body): 160  $\mu$ g/g.

Mean biota-sediment accumulation factors (BSAFs) for all PCBs were 0.28, 0.81, and 3.1 for grass shrimp, spotted seatrout, and striped mullet, respectively. BSAFs were negatively correlated ( $P \le 0.05$ ) with  $K_{OW}$  for all three species. This correlation was believed to be characteristic of extremely hydrophobic PCBs, such as Aroclor 1268, which have been demonstrated to exhibit declining bioavailability with increasing hydrophobicity for  $Cl_7 - Cl_{10}$  homologs.

Mean trophic transfer factors ( $TTF_{lipid}$ ) decreased with increased trophic level, being 12 for the shrimp – mullet coupling, 2.9 for the shrimp – seatrout coupling, and 0.26 for the mullet – seatrout combination. Individual  $TTF_{lipid}$  were two to three times higher for  $Cl_7$  and  $Cl_8$  homologs that were substituted at all four *ortho* positions, suggesting a difference in PCB retention by biota based on chlorine substitution patterns.

#### F. Food/Foraging Habits and Mercury Concentrations in Wood Storks

This paper (Gariboldi *et al.*, 2001) documented mercury concentrations in wood stork nestlings (*Mycteria americana*) from one colony in South Carolina and four colonies in Georgia during the years of 1997, 1998, and 1999. The colony in South Carolina (Buckfield Colony) is located in eastern South Carolina and is surrounded (< 5 kilometers [km]) by a variety of freshwater and saltwater foraging wetlands. The colonies in

Georgia included two inland colonies (Chew Mill Pond Colony in east-central Georgia and Blackwater Colony in south central Georgia), in which foraging of parent storks is restricted to freshwater sites. The remaining Georgia colonies are coastal colonies in which both freshwater and brackish/marine habitats are available for foraging. One of these colonies is the Harris Neck Colony, which is located on the Harris Neck National Wildlife Refuge in a low industrial area in McIntosh County. The other coastal colony is the St. Simons colony, which is located near the industrialized city of Brunswick, Georgia.

The embedded table on the following page presents concentrations of mercury in tissues of wood stork nestlings from the various colonies during 1997 to 1999:

M	ean Mercury Concentra	ations in Tissues	of Wood Stork Ne	stlings
	(Ga	riboldi <i>et al.,</i> 200	01)	
	Colony _	M	lercury Concentratio	ns
Year	(region)	Blood	Down	Feathers
	(region)	(μg/g ww)	(μg/g dw)	(μg/g dw)
	Blackwater (inland)	0.35	3.87	3.53
1997	Chew Mill (inland)	0.47	4.64	5.67
1337	Harris Neck (coastal)	0.13	2.05	1.51
	Buckfield (coastal)	0.53	3.49	4.59
	Chew Mill (inland)	0.51	5.13	5.25
1998	Harris Neck (coastal)	0.29	3.61	3.54
	St. Simons (coastal)	0.46	4.92	5.64
	Blackwater (inland)	0.34	3.68	4.37
1999	Chew Mill (inland)	0.47	4.40	4.46
	Harris Neck (coastal)	0.10	1.16	1.23

The next embedded table documents reproductive success in several of the wood stork colonies during 1997 to 1999:

	Reproductive Success of Wood Storks (Gariboldi et al., 2001)									
	Che	Chew Mill (inland)			Harris Neck (coastal)			imons (coasta	al)	
	No.	Mean no.		No.	Mean no.		No.	Mean no.		
	nests	of	Stand.	nests	of	Stand.	nests	of	Stand.	
Year	monitor-	fledglings/	dev.	monitor-	fledglings/	dev.	monitor-	fledglings/	dev.	
	ed	nest		ed	nest		ed	nest		
1997	24	1.4	0.8	166	0.7	0.8	37	1.1	1.0	
1998	26	1.4	1.1	110	2.3	1.1	39	2.7	0.6	
1999	26	1.5	1.1	55	1.0	1.0				

<u>Note</u>: The freshwater wetlands of the wood stork colony at St. Simons "dried" in 1999 and the colony was not inhabited by wood storks.

The authors of this paper noted that prey in freshwater systems typically have higher body burdens of mercury than prey in marine systems, which explains the generally greater concentrations of mercury (sometimes almost all methylmercury) observed in nestlings from inland colonies. They speculated that the "somewhat" higher levels of

mercury found at the St. Simons' colony in 1998 could be related to mercury pollution associated with the LCP Site and utilization of freshwater wetlands as foraging habitats. The authors also noted that wood storks typically forage within 10 to 15 km (6.2-9.3 miles) of their colony. (The St. Simons' colony is located in the northern part of St. Simons Island in a freshwater impoundment containing four islands and is at least 20 km [12.4 miles] from the Site.) The authors commented that, at the colonies that they evaluated, forage items were a more important source of mercury to nestling storks than maternal transfer. Finally, the authors emphasized that the reproductive success data (the greatest success for all evaluated colonies during all evaluated years occurred at the St. Simons colony in 1998) suggest that the benefits of a greater prey base (from freshwater wetlands utilized in wet years) may outweigh the potential adverse effects of increased mercury exposure.

J.2.2.2 Studies Conducted after Remediation of Estuary. The following two studies address the effects of mercury and Aroclor 1268 on mummichogs (Fundulus heteroclitus) and effects of the same COPC on mineral chemistry of bones of clapper rails (R. longirostris). The former study was a laboratory-based toxicity study in which mummichogs obtained from an uncontaminated location were fed contaminated food. Consequently, results of this study (body burdens of mercury and Aroclor 1268 in fish) are relevant to body burdens of fish both before and after remediation at the Site. The latter study was a field-based study conducted in 2000 and pertains primarily to the post-remediation ecological baseline.

#### A. Reproductive and Transgenerational Effects of Methylmercury and Aroclor 1268 on Mummichogs

This paper (Matta *et al.*, 2001) addressed the toxicological effects of mercury (methylmercury) and Aroclor 1268 in contaminated food fed to adult mummichogs (F. heteroclitus) on those fish (the  $F_0$  generation) and succeeding  $F_1$  and  $F_2$  generations of fish. A total of 13 possible toxicological responses of fish were measured for fish exposed to methylmercury and for fish exposed to Aroclor 1268 – for  $F_0$  fish: survival, weight, fecundity, and fertilization success; for  $F_1$  fish: hatching success, larval survival, weight, sex ratio, abnormal gonads, fecundity, and fertilization success; and for  $F_2$  fish: hatching success and larval survival. Of these 26 toxicological measurements, only 5

measurements were characterized by a statistically significant difference (P = 0.05) as compared to control fish.

Aroclor 1268 in food was generally highly bioavailable and high whole body burdens (up to 15 mg/kg) were accumulated in  $F_0$  fish. However, the only statistically significant difference between treatment and control fish was an increase in growth of the  $F_1$  generation beginning at whole body burdens in parent ( $F_0$ ) fish between 0.34 and 1.3 mg/kg (which equates to a maximum acceptable toxicant concentration [MATC] or geometric mean of 0.66 mg/kg).

Exposure of fish to methylmercury (up to body burdens of 12 mg/kg) caused the following statistically significant effects between treatment and control fish:

- Increased mortality of male  $F_0$  fish at methylmercury body burdens between 0.20 and 0.47 mg/kg (MATC = 0.30 mg/kg), possibly occurring as a result of behavioral alterations,
- Increased weight of  $F_1$  fish at egg concentration of < 0.02 mg/kg, which corresponds to a body burden for parent ( $F_0$ ) fish between 0.20 and 0.47 mg/kg (MATC = 0.31 mg/kg),
- Altered sex ratios of  $F_1$  fish (fewer females at moderate body burdens and fewer males at highest body burdens) at egg concentration of 0.01 mg/kg, which corresponds to a body burden for parent ( $F_0$ ) fish between 0.44 and 1.1 mg/kg (MATC = 0.70 mg/kg), and
- Reduced fertilization success of  $F_1$  fish at egg concentration of 0.63 mg/kg, or body burden of parent ( $F_0$ ) fish between 1.0 to 12 mg/kg (MATC = 3.5 mg/kg).

No statistically significant toxicological effects attributable to mercury occurred in  $F_2$  fish.

The authors of this paper did not specify whether concentrations of methylmercury and Aroclor 1268 in eggs and whole bodies of fish are expressed in terms of dry weight or wet weight; however, wet-weight measurements are more likely. If this is the case, the lowest MATCs for methylmercury and Aroclor 1268 in bodies of parent ( $F_0$ ) fish are, respectively, 0.30 and 0.66 mg/kg wet weight. If it is additionally assumed that the solids content of mummichogs is 25 percent, these wet-weight MATC values convert to

1.2 mg/kg (dry weigh) methylmercury and 2.6 mg/kg (dw) Aroclor 1268. Reference to a later table presented in this document (Table 14) indicates that the highest mean body burden of total mercury measured in mummichogs from the LCP estuary over the 2000-2006 time period was only 0.94 mg/kg (dw). In the case of Aroclor 1268, mean body burdens of mummichogs exceeded the MATC value of 2.6 mg/kg (dw) in the Main Canal (4.14 mg/kg) and Eastern Creek (5.53 mg/kg). However, it is doubtful if increased growth of mummichogs (the only toxicological effect documented for Aroclor 1268 in this paper) is a serious and reproducible toxicological phenomenon.

## B. Effects on Mineral Chemistry of Clapper Rail Bones from *In Ova* Exposure to Mercury and PCBs

This paper (Rodriguez-Navarro *et al.*, 2006) addressed mineral chemistry of bones of clapper rail hatchlings (*R. longirostris*) that developed from eggs collected from the marsh at the LCP Site and at a reference location on Blythe Island during 2000. This study was a logical "follow up" of a previous study that identified reduced shell thickness and anomalous microstructure of egg shells of clapper rails from the LCP marsh (Rodriguez-Navarro *et al.*, 2002). The authors of that study speculated that the effects on egg shells may be related to concentrations of specific metals (e. g., magnesium, copper, zinc, lead, and mercury).

In the latest study, exposure to contaminants in the LCP marsh did not affect the length or weight of leg bones of clapper rails. However, bone maturation was accelerated as evidenced by a higher calcium/phosphorous ratio and lower carbonate and acid-phosphate content. The authors noted the difficulty in determining the specific toxicant(s) that caused these effects, although they specifically referenced organochlorides other than PCBs (e. g., dioxins) and heavy metals including mercury.

#### References

- Aleiandro, B. RN., Romanek, C.S., Alvarez-Lloret, P., and Gaines, K.F. 2006. Effect of *in ova* exposure to PCBs and Hg on clapper rail bone mineral chemistry from a contaminated salt marsh in coastal Georgia. *Environ. Sci. Technol.* 40: 4936-4942.
- Burkhard, L. P., and Lukasewycz, M.T. 2008. Toxicity equivalency values for polychlorinated biphenyl mixtures. *Environ. Toxicol. Chem.* 27(3): 529-534.
- Gariboldi, J. C., Bryan, A.L. Jr., and Jagoe, C.H. 2001. Annual and regional variation in mercury concentrations in wood stork nestlings. *Environ. Toxicol. Chem.* 20 (7): 1551-1556.
- Horne, M., Finley, N., and Sprenger, M. 1999. Polychlorinated biphenyl- and mercury-associated alterations on benthic invertebrate community structure in a contaminated salt marsh in southeast Georgia. *Arch. Environ. Contam. Toxicol.* 37: 317-325
- Kannan, K., Nakata, H., Stafford, R., Mason, G., Tanabe, S., and Giesy, J.P. 1998. Bioaccumulation and toxic potential of extremely hydrophobic polychlorinated biphenyl congeners in biota collected at a superfund site contaminated with Aroclor 1268. *Environ. Sci. Technol.* 32 (9): 1214-1221.
- Maruya, K., and Lee, R. 1998. Biota-sediment accumulation and trophic transfer factors for extremely hydrophobic polychlorinated biphenyls. *Environ. Toxicol. Chem.* 17 (12): 2463-2469.
- Matta, M. B., Linse, J., Cairncross, C., Francendese, L., and Kocan, R.M. 2001. Reproductive and transgenerational effects of methylmercury or Aroclor 1268 on *Fundulus heteroclitus*. *Environ*. *Toxicol*. *Chem*. 20 (2): 327-335.
- Newell, S., Wall, V. and Maruya, A. 2000. Fungal biomass in saltmarsh grass blades at two contaminated sites. *Arch. Environ. Contam. Toxicol.* 38 (3): 268-273.

- PTI and CDR Environmental Specialists. 1998. Ecological risk assessment of the marsh area of the LCP Chemical Site in Brunswick, Georgia. Volumes I and II. Naples, Florida.
- Rodriguez-Navarro, A. B., Gaines, K.F., Romanek, C.S., and Masson, G.R. 2002. Mineralization of clapper rail eggshell from a contaminated salt marsh system.Arch. *Environ. Contam. Toxicol.* 43 (4): 449-460.
- Rodriguez-Navarro, A. B., Romanek, C.S., Alvarez-Lloret, P., and Gaines, K.F. 2006. Effect if *in ova* exposure to PCBs and Hg on clapper rail bone mineral chemistry from a contaminated salt marsh in coastal Georgia. *Environ. Sci. Technol.* 40: 4936-4942.
- Ruzo, L., Jones, D., Safe, S., and Hutzinger, O. 1976. Metabolism of chlorinated naphthalenes. *J. Agri. Food Chem.* 24(3): 581-583.
- Sajwan, K. S., Kurunthachalam, S.K., Weber-Goeke, M.A., Weber-Snapp, S., Gibson, C., and Loganathan, B.G. 2008. Extremely hydrophobic Aroclor 1268 and residues of polybrominated diphenly esters (PBDEs) in marsh sediment collected from Superfund Site in Brunswick, Georgia. *Mar. Pollut. Bull.* 56: 1353-1376.
- Simon, T., Britt, J.K., and James, R.C. 2007. Development of a neurotoxic equivalence scheme of relative potency for assessing the risk of PCB mixtures. *Regulat. Toxicol. Pharmacol.* 48 (2):148-170.
- Sprenger, M., Finley, N., and Huston, M. 1997. Ecological assessment ecological risk evaluation of the salt marsh and adjacent areas at the LCP Superfund Site, Brunswick, Georgia. Final report. Vol. 1 and 2. April, 1997. U. S. EPA, Edison, NJ.
- U. S. Environmental Protection Agency Region 4. 2008. Baseline ecological risk assessment for the estuary at the LCP Chemical Site, Brunswick, Georgia. Document sent from S. Jones (Region 4) to M. Kamilow (Honeywell). 11 pp.

- Villeneuve, D. L., Khim, J.S., Kannan, K., and Giesy, J.P. 2001. In vitro response of fish and mammalian cells to complex mixtures of polychlorinated naphthalenes, polychlorinated biphenyls, and polycyclic aromatic hydrocarbons. *Aquat. Toxicol.* 54: 125-141.
- Wall, V., Alberts, J., Moore, D., Newell, S., Pattanayek, M., and Pennings, S. 2001. The effect of mercury and PCBs on organisms from lower trophic levels of a Georgia marsh. *Arch. Environ. Contam. Toxicol.* 40: 10-17.
- Winger, P., Lasier, P., and Geitner, H. 1993. Toxicity of sediments and pore water from Brunswick Estuary, Georgia. *Contam. Tox.* 371-376.

#### **APPENDIX K**

#### SUPPORTING DATA FOR DEVELOPMENT OF BIOACCUMULATION FACTORS

- K.1 Raw Data Mercury and Aroclor 1268 in Fiddler Crab and Sediment
- K.2 Mummichog Data for Each Polygon
- K.3 Bioaccumulation Factor for Blue Crab Data
- K.4 Bioaccumulation Factor for Finfish
- K.5 Bioaccumulation Factor for Cordgrass Data

# Appendix K-1 Raw Data Mercury and Aroclor 1268 in Fiddler Crab and Sediment

#### Raw Data Mercury in Fiddler Crab 5NOAAG polygon

Location	Sample ID	Year	Matrix	Parameter	res05
5-NOAA-G	04294-FC-NOAA5-1	2004	Fiddler Crab	Mercury	0.33000
5-NOAA-G	04294-FC-NOAA5-2	2004	Fiddler Crab	Mercury	0.45000
5-NOAA-G	04294-FC-NOAA5-3	2004	Fiddler Crab	Mercury	0.30000
5-NOAA-G	04296-FC-NOAA5-4	2004	Fiddler Crab	Mercury	0.47000
5-NOAA-G	04296-FC-NOAA5-5	2004	Fiddler Crab	Mercury	0.34000
5-NOAA-G	04296-FC-NOAA5-6	2004	Fiddler Crab	Mercury	0.35000
5-NOAA-G	04296-FC-NOAA5-7	2004	Fiddler Crab	Mercury	0.48000
M-102	04301-FC-M102-1	2004	Fiddler Crab	Mercury	0.34000
M-102	04301-FC-M102-2	2004	Fiddler Crab	Mercury	0.36000
M-102	04301-FC-M102-3	2004	Fiddler Crab	Mercury	0.47000
M-102	04301-FC-M102-4	2004	Fiddler Crab	Mercury	0.32000
M-102	04301-FC-M102-5	2004	Fiddler Crab	Mercury	0.40000
M-102	04301-FC-M102-6	2004	Fiddler Crab	Mercury	0.33000
M-102	04301-FC-M102-7	2004	Fiddler Crab	Mercury	0.26000
5-NOAA-G	05298-FC-NOAA-5-R1	2005	Fiddler crab	Mercury	0.22654
5-NOAA-G	05298-FC-NOAA-5-R2	2005	Fiddler crab	Mercury	0.19608
5-NOAA-G	05298-FC-NOAA-5-R3	2005	Fiddler crab	Mercury	0.32787
5-NOAA-G	05298-FC-NOAA-5-R4	2005	Fiddler crab	Mercury	0.27027
5-NOAA-G	05298-FC-NOAA-5-R5	2005	Fiddler crab	Mercury	0.22727
5-NOAA-G	05298-FC-NOAA-5-R6	2005	Fiddler crab	Mercury	0.27972
5-NOAA-G	05298-FC-NOAA-5-R7	2005	Fiddler crab	Mercury	0.21472
M-102	05299-FC-M-102-R1	2005	Fiddler crab	Mercury	0.18293
M-102	05299-FC-M-102-R2	2005	Fiddler crab	Mercury	0.15152
M-102	05299-FC-M-102-R3	2005	Fiddler crab	Mercury	0.14925
M-102	05299-FC-M-102-R4	2005	Fiddler crab	Mercury	0.17857
M-102	05299-FC-M-102-R5	2005	Fiddler crab	Mercury	0.15291
M-102	05299-FC-M-102-R6	2005	Fiddler crab	Mercury	0.18237
M-102	05299-FC-M-102-R7	2005	Fiddler crab	Mercury	0.19355
5-NOAA-G	06291-NOAA-5-G-FC-R1	2006	Fiddler Crab	Mercury	0.33815
5-NOAA-G	06291-NOAA-5-G-FC-R2	2006	Fiddler Crab	Mercury	0.27485
5-NOAA-G	06291-NOAA-5-G-FC-R3	2006	Fiddler Crab	Mercury	0.27994
5-NOAA-G	06291-NOAA-5-G-FC-R4	2006	Fiddler Crab	Mercury	0.32733
5-NOAA-G	06291-NOAA-5-G-FC-R5	2006	Fiddler Crab	Mercury	0.30291
5-NOAA-G	06291-NOAA-5-G-FC-R6	2006	Fiddler Crab	Mercury	0.36691
5-NOAA-G	06291-NOAA-5-G-FC-R7	2006	Fiddler Crab	Mercury	0.41844
5-NOAA-G	07289-NOAA-5-FC-R1	2007	Fiddler Crab	Mercury	0.15587
5-NOAA-G	07289-NOAA-5-FC-R2	2007	Fiddler Crab	Mercury	0.18698
5-NOAA-G	07289-NOAA-5-FC-R3	2007	Fiddler Crab	Mercury	0.34627
				Average	0.29293

#### Raw Data Mercury in Sediment 5NOAAG polygon

Location	Year	Matrix	Parameter	res05
5-NOAA-G	2004	sediment	Mercury	0.9800
5-NOAA-G	2005	sediment	Mercury	1.9400
5-NOAA-G	2006	sediment	Mercury	1.9000
5-NOAA-G	2007	sediment	Mercury	0.3560
C-4	2000	sediment	Mercury	2.7200
C-4	2002	sediment	Mercury	4.2000
C-4	2003	sediment	Mercury	4.0000
C-4	2004	sediment	Mercury	1.7000
C-5	2000	sediment	Mercury	11.5000
C-5	2002	sediment	Mercury	11.0000
C-5	2003	sediment	Mercury	10.0000
C-5	2004	sediment	Mercury	2.1000
C-5	2005	sediment	Mercury	1.1000
C-5	2006	sediment	Mercury	7.0300
C-5	2007	sediment	Mercury	2.6700
M-102	2004	sediment	Mercury	0.4000
M-102	2005	sediment	Mercury	0.7360
M-26	2000	sediment	Mercury	1.6600
SD-01	2003	sediment	Mercury	3.9000
SD-02	2003	sediment	Mercury	1.7000
SD-03	2003	sediment	Mercury	5.3000
SD-04	2003	sediment	Mercury	1.7000
SD-05	2003	sediment	Mercury	3.2000
SD-06	2003	sediment	Mercury	5.5000
SD3M-2	2004	sediment	Mercury	0.7100
SDMC-AET-1	2006	sediment	Mercury	3.4100
SDMC-AET-10	2006	sediment	Mercury	1.2900
SDMC-AET-2	2006	sediment	Mercury	2.5700
SDMC-AET-3	2006	sediment	Mercury	1.7400
SDMC-AET-4	2006	sediment	Mercury	2.7800
SDMC-AET-5	2006	sediment	Mercury	2.1400
SDMC-AET-6	2006	sediment	Mercury	0.7720
SDMC-AET-7	2006	sediment	Mercury	3.6100
SDMC-AET-8	2006	sediment	Mercury	3.0000
SDMC-AET-9	2006	sediment	Mercury	2.6400
			Average	3.1987

#### Raw Data Aroclor 1268 in Fiddler Crab 5NOAAG polygon

Location	Sample ID	Year Matrix	Parameter	res05 R Mod
5-NOAA-G	04294-FC-NOAA5-1	2004 Fiddler Crab	Aroclor-1268	3.00000
5-NOAA-G	04294-FC-NOAA5-2	2004 Fiddler Crab	Aroclor-1268	7.41935
5-NOAA-G	04294-FC-NOAA5-3	2004 Fiddler Crab	Aroclor-1268	17.00000
5-NOAA-G	04296-FC-NOAA5-4	2004 Fiddler Crab	Aroclor-1268	1.81250
5-NOAA-G	04296-FC-NOAA5-5	2004 Fiddler Crab	Aroclor-1268	4.82759
5-NOAA-G	04296-FC-NOAA5-6	2004 Fiddler Crab	Aroclor-1268	1.33333
5-NOAA-G	04296-FC-NOAA5-7	2004 Fiddler Crab	Aroclor-1268	1.21212
M-102	04301-FC-M102-1	2004 Fiddler Crab	Aroclor-1268	0.17241 U
M-102	04301-FC-M102-2	2004 Fiddler Crab	Aroclor-1268	0.29310 U
M-102	04301-FC-M102-3	2004 Fiddler Crab	Aroclor-1268	0.20000 U
M-102	04301-FC-M102-4	2004 Fiddler Crab	Aroclor-1268	0.24138 U
M-102	04301-FC-M102-5	2004 Fiddler Crab	Aroclor-1268	0.20690 U
M-102	04301-FC-M102-6	2004 Fiddler Crab	Aroclor-1268	0.25000 U
M-102	04301-FC-M102-7	2004 Fiddler Crab	Aroclor-1268	0.32258 U
5-NOAA-G	05298-FC-NOAA-5-R1	2005 Fiddler crab	Aroclor-1268	0.90615
5-NOAA-G	05298-FC-NOAA-5-R2	2005 Fiddler crab	Aroclor-1268	0.58824
5-NOAA-G	05298-FC-NOAA-5-R3	2005 Fiddler crab	Aroclor-1268	1.04918
5-NOAA-G	05298-FC-NOAA-5-R4	2005 Fiddler crab	Aroclor-1268	1.72297
5-NOAA-G	05298-FC-NOAA-5-R5	2005 Fiddler crab	Aroclor-1268	0.97403
5-NOAA-G	05298-FC-NOAA-5-R6	2005 Fiddler crab	Aroclor-1268	1.67832
5-NOAA-G	05298-FC-NOAA-5-R7	2005 Fiddler crab	Aroclor-1268	3.37423
M-102	05299-FC-M-102-R1	2005 Fiddler crab	Aroclor-1268	0.57927
M-102	05299-FC-M-102-R2	2005 Fiddler crab	Aroclor-1268	0.39394 J
M-102	05299-FC-M-102-R3	2005 Fiddler crab	Aroclor-1268	0.56716
M-102	05299-FC-M-102-R4	2005 Fiddler crab	Aroclor-1268	0.59524
M-102	05299-FC-M-102-R5	2005 Fiddler crab	Aroclor-1268	0.33639
M-102	05299-FC-M-102-R6	2005 Fiddler crab	Aroclor-1268	0.66869
M-102	05299-FC-M-102-R7	2005 Fiddler crab	Aroclor-1268	0.45161
5-NOAA-G	06291-NOAA-5-G-FC-R1	2006 Fiddler Crab	Aroclor-1268	0.75145
5-NOAA-G	06291-NOAA-5-G-FC-R2	2006 Fiddler Crab	Aroclor-1268	1.04790
5-NOAA-G	06291-NOAA-5-G-FC-R3	2006 Fiddler Crab	Aroclor-1268	0.76696
5-NOAA-G	06291-NOAA-5-G-FC-R4	2006 Fiddler Crab	Aroclor-1268	0.81081
5-NOAA-G	06291-NOAA-5-G-FC-R5	2006 Fiddler Crab	Aroclor-1268	0.71197
5-NOAA-G	06291-NOAA-5-G-FC-R6	2006 Fiddler Crab	Aroclor-1268	0.75540
5-NOAA-G	06291-NOAA-5-G-FC-R7	2006 Fiddler Crab	Aroclor-1268	1.24113
5-NOAA-G	07289-NOAA-5-FC-R1	2007 Fiddler Crab	Aroclor-1268	0.54441
5-NOAA-G	07289-NOAA-5-FC-R2	2007 Fiddler Crab	Aroclor-1268	0.44321
5-NOAA-G	07289-NOAA-5-FC-R3	2007 Fiddler Crab	Aroclor-1268	0.50746
			Average	1.57256

#### Raw Data Aroclor 1268 in Sediment 5NOAAG polygon

Location	Year	Matrix	Parameter	res05
C-4	2002	sediment	Mercury	21.0000
C-5	2002	sediment	Mercury	19.0000
C-4	2003	sediment	Mercury	9.9000
C-5	2003	sediment	Mercury	24.0000
SD-01		sediment	Mercury	6.4000
SD-02		sediment	Mercury	6.6000
SD-03		sediment	Mercury	6.2000
SD-04		sediment	Mercury	3.0000
SD-05		sediment	Mercury	5.1000
SD-06		sediment	Mercury	1.3000
C-4		sediment	Mercury	4.0000
C-5	2004	sediment	Mercury	12.0000
5-NOAA-G	2004	sediment	Mercury	4.7000
SD3M-2	2004	sediment	Mercury	0.9500
M-102	2004	sediment	Mercury	1.1000
M-102	2005	sediment	Mercury	1.9000
5-NOAA-G	2005	sediment	Mercury	18.0000
C-5	2005	sediment	Mercury	4.2000
C-5	2006	sediment	Mercury	31.0000
5-NOAA-G	2006	sediment	Mercury	18.0000
SDMC-AET-1	2006	sediment	Mercury	20.0000
SDMC-AET-10	2006	sediment	Mercury	4.1000
SDMC-AET-2	2006	sediment	Mercury	15.0000
SDMC-AET-3	2006	sediment	Mercury	8.2000
SDMC-AET-4	2006	sediment	Mercury	20.0000
SDMC-AET-5	2006	sediment	Mercury	8.3000
SDMC-AET-6	2006	sediment	Mercury	1.8000
SDMC-AET-7	2006	sediment	Mercury	21.0000
SDMC-AET-8	2006	sediment	Mercury	11.0000
SDMC-AET-9		sediment	Mercury	11.0000
C-5		sediment	Mercury	10.0000
5-NOAA-G	2007	sediment	Mercury	0.6200
C-4		sediment	Mercury	2.4000
C-5	2000	sediment	Mercury	3.7000
M-26	2000	sediment	Mercury	1.9000
			Average	9.6391

#### Raw Data Mercury in Fiddler Crab 6NOAAG polygon

Location	Sample ID	Year	Matrix	Parameter	res05
6-NOAA-G	04293-FC-NOAA6-1	2004	Fiddler Crab	Mercury	0.22000
6-NOAA-G	04293-FC-NOAA6-2	2004	Fiddler Crab	Mercury	0.30000
6-NOAA-G	04293-FC-NOAA6-3	2004	Fiddler Crab	Mercury	0.30000
6-NOAA-G	04293-FC-NOAA6-4	2004	Fiddler Crab	Mercury	0.28000
6-NOAA-G	04293-FC-NOAA6-5	2004	Fiddler Crab	Mercury	0.22000
6-NOAA-G	04293-FC-NOAA6-6	2004	Fiddler Crab	Mercury	0.23000
6-NOAA-G	04293-FC-NOAA6-7	2004	Fiddler Crab	Mercury	0.31000
6-NOAA-G	05298-FC-NOAA-6-R1	2005	Fiddler crab	Mercury	0.17606
6-NOAA-G	05298-FC-NOAA-6-R2	2005	Fiddler crab	Mercury	0.17668
6-NOAA-G	05298-FC-NOAA-6-R3	2005	Fiddler crab	Mercury	0.19608
				Average	0.24088

#### Raw Data Mercury in Sediment 6NOAAG polygon

Location	Sample ID	Year	Matrix	Parameter	res05
SD2M-16	04288-SD2M-16	2004	sediment	Mercury	0.63000
SD2M-5	04288-SD2M-5	2004	sediment	Mercury	0.27000
SD2M-3	04289-SD2M-3	2004	sediment	Mercury	0.83000
6-NOAA-G	04294-NOAA6	2004	sediment	Mercury	0.84000
6-NOAA-G	05292-NOAA-6-G	2005	sediment	Mercury	0.70700
6-NOAA-G	06292-NOAA-6-G	2006	SEDIMENT	Mercury	0.41200
6-NOAA-G	07289-NOAA-6	2007	sediment	Mercury	0.85300
				Average	0.64886

#### Raw Data Aroclor 1268 in Fiddler Crab 6NOAAG polygon

Location	Sample ID	Year	Matrix	Parameter	res05
6-NOAA-G	04293-FC-NOAA6-1	2004	Fiddler Crab	Aroclor-1268	0.2500
6-NOAA-G	04293-FC-NOAA6-2	2004	Fiddler Crab	Aroclor-1268	0.3036
6-NOAA-G	04293-FC-NOAA6-3	2004	Fiddler Crab	Aroclor-1268	0.2593
6-NOAA-G	04293-FC-NOAA6-4	2004	Fiddler Crab	Aroclor-1268	0.1897
6-NOAA-G	04293-FC-NOAA6-5	2004	Fiddler Crab	Aroclor-1268	0.3036
6-NOAA-G	04293-FC-NOAA6-6	2004	Fiddler Crab	Aroclor-1268	0.2931
6-NOAA-G	04293-FC-NOAA6-7	2004	Fiddler Crab	Aroclor-1268	0.2593
6-NOAA-G	05298-FC-NOAA-6-R1	2005	Fiddler crab	Aroclor-1268	0.3873
6-NOAA-G	05298-FC-NOAA-6-R2	2005	Fiddler crab	Aroclor-1268	0.5654
6-NOAA-G	05298-FC-NOAA-6-R3	2005	Fiddler crab	Aroclor-1268	0.7843
				Average	0.3595

#### Raw Data Aroclor 1268 in Sediment 6NOAAG polygon

Location	Sample ID	Year	Matrix	Parameter	res05
SD2M-16	04288-SD2M-16	2004	Sediment	Aroclor-1268	2.5000
SD2M-5	04288-SD2M-5	2004	Sediment	Aroclor-1268	0.6800
SD2M-3	04289-SD2M-3	2004	Sediment	Aroclor-1268	0.9100
6-NOAA-G	04294-NOAA6	2004	Sediment	Aroclor-1268	0.8600
6-NOAA-G	05292-NOAA-6-G	2005	Sediment	Aroclor-1268	1.2000
6-NOAA-G	06292-NOAA-6-G	2006	Sediment	Aroclor-1268	0.6500
6-NOAA-G	07289-NOAA-6	2007	Sediment	Aroclor-1268	1.2000
				Average	1.1429

#### Raw Data Mercury in Fiddler Crab 7NOAAG polygon

Location	Sample ID	Year	Matrix	Parameter	res05
7-NOAA-G	04293-FC-NOAA7-1	2004	Fiddler Crab	Mercury	0.71000
7-NOAA-G	04293-FC-NOAA7-2	2004	Fiddler Crab	Mercury	0.52000
7-NOAA-G	04293-FC-NOAA7-3	2004	Fiddler Crab	Mercury	0.74000
7-NOAA-G	04293-FC-NOAA7-4	2004	Fiddler Crab	Mercury	0.85000
7-NOAA-G	04293-FC-NOAA7-5	2004	Fiddler Crab	Mercury	0.58000
7-NOAA-G	04293-FC-NOAA7-6	2004	Fiddler Crab	Mercury	0.73000
7-NOAA-G	04293-FC-NOAA7-7	2004	Fiddler Crab	Mercury	0.82000
7-NOAA-G	05298-FC-NOAA-7-R1	2005	Fiddler crab	Mercury	0.21605
7-NOAA-G	05298-FC-NOAA-7-R2	2005	Fiddler crab	Mercury	0.16129
7-NOAA-G	05298-FC-NOAA-7-R3	2005	Fiddler crab	Mercury	0.21341
7-NOAA-G	05298-FC-NOAA-7-R4	2005	Fiddler crab	Mercury	0.23952
7-NOAA-G	05298-FC-NOAA-7-R5	2005	Fiddler crab	Mercury	0.21807
7-NOAA-G	05298-FC-NOAA-7-R6	2005	Fiddler crab	Mercury	0.22293
7-NOAA-G	05298-FC-NOAA-7-R7	2005	Fiddler crab	Mercury	0.15873
8-NOAA-G	04294-FC-NOAA8-1	2004	Fiddler Crab	Mercury	0.19000
8-NOAA-G	04294-FC-NOAA8-2	2004	Fiddler Crab	Mercury	0.20000
8-NOAA-G	04294-FC-NOAA8-3	2004	Fiddler Crab	Mercury	0.24000
8-NOAA-G	04294-FC-NOAA8-4	2004	Fiddler Crab	Mercury	0.19000
8-NOAA-G	04294-FC-NOAA8-5	2004	Fiddler Crab	Mercury	0.17000
8-NOAA-G	04294-FC-NOAA8-6	2004	Fiddler Crab	Mercury	0.15000
8-NOAA-G	04294-FC-NOAA8-7	2004	Fiddler Crab	Mercury	0.15000
8-NOAA-G	05298-FC-NOAA-8-R1	2005	Fiddler crab	Mercury	0.09804
8-NOAA-G	05298-FC-NOAA-8-R2	2005	Fiddler crab	Mercury	0.12821
8-NOAA-G	05298-FC-NOAA-8-R3	2005	Fiddler crab	Mercury	0.09772
8-NOAA-G	05298-FC-NOAA-8-R4	2005	Fiddler crab	Mercury	0.12862
8-NOAA-G	05298-FC-NOAA-8-R5	2005	Fiddler crab	Mercury	0.09585
8-NOAA-G	05298-FC-NOAA-8-R6	2005	Fiddler crab	Mercury	0.13652
8-NOAA-G	05298-FC-NOAA-8-R7	2005	Fiddler crab	Mercury	0.13559
8-NOAA-G	06292-NOAA-8-G-FC-R1	2006	Fiddler Crab	Mercury	0.20881
8-NOAA-G	06292-NOAA-8-G-FC-R2	2006	Fiddler Crab	Mercury	0.25510
8-NOAA-G	06292-NOAA-8-G-FC-R3	2006	Fiddler Crab	Mercury	0.26384
8-NOAA-G	06292-NOAA-8-G-FC-R4	2006	Fiddler Crab	Mercury	0.28212
8-NOAA-G	06292-NOAA-8-G-FC-R5	2006	Fiddler Crab	Mercury	0.28814
8-NOAA-G	06292-NOAA-8-G-FC-R6	2006	Fiddler Crab	Mercury	0.25488
8-NOAA-G	07289-NOAA-8-FC-R1	2007	Fiddler Crab	Mercury	0.13503
8-NOAA-G	07289-NOAA-8-FC-R2	2007	Fiddler Crab	Mercury	0.12287
8-NOAA-G	07289-NOAA-8-FC-R3	2007	Fiddler Crab	Mercury	0.17713
				Average	0.28320

#### Raw Data Mercury in Sediment 7NOAAG polygon

Location	Sample ID	Year	Matrix	Parameter	res05
7-NOAA-G	04294-NOAA7	2004	sediment	Mercury	0.8200
7-NOAA-G	05292-NOAA-7-G	2005	sediment	Mercury	0.6750
7-NOAA-G	06292-NOAA-7-G	2006	sediment	Mercury	0.5670
7-NOAA-G	07289-NOAA-7	2007	sediment	Mercury	0.7080
8-NOAA-G	04294-NOAA8	2004	sediment	Mercury	0.8600
8-NOAA-G	05292-NOAA-8-G	2005	sediment	Mercury	0.8660
8-NOAA-G	06292-NOAA-8-G	2006	sediment	Mercury	0.7430
8-NOAA-G	07289-NOAA-8	2007	sediment	Mercury	1.0200
C-12	C-12(S)	2000	sediment	Mercury	5.3400
C-12	05292-C-12	2005	sediment	Mercury	1.0300
C-13	C-13(S)	2000	sediment	Mercury	7.0000
C-13	02236-C-13	2002	sediment	Mercury	1.5000
C-13	03287-C-13	2003	sediment	Mercury	0.4800
C-13	04294-C-13	2004	sediment	Mercury	1.7000
C-13	05292-C-13	2005	sediment	Mercury	1.4300
C-14	C-14(S)	2000	sediment	Mercury	5.3600
C-14	05293-C-14	2005	sediment	Mercury	1.8000
M-27	M-27(S)	2000	sediment	Mercury	3.3000
M-27	02236-M-27	2002	sediment	Mercury	2.1000
M-27	03288-M-27	2003	sediment	Mercury	0.6400
M-27	04296-M-27	2004	sediment	Mercury	0.7600
SD2C-10	04286-SD2C-10	2004	sediment	Mercury	7.6000
SD2C-11	04287-SD2C-11	2004	sediment	Mercury	3.6000
SD2C-12	04287-SD2C-12	2004	sediment	Mercury	5.7000
SD2C-19	04287-SD2C-19	2004	sediment	Mercury	0.6200
SD2C-6	04286-SD2C-6	2004	sediment	Mercury	2.1000
SD2C-7	04286-SD2C-7	2004	sediment	Mercury	0.5800
SD2C-9	04286-SD2C-9	2004	sediment	Mercury	1.0000
SD2M-1	04288-SD2M-1	2004	sediment	Mercury	0.3900
SD2M-12	04288-SD2M-12	2004	sediment	Mercury	0.3800
SD2M-2	04288-SD2M-2	2004	sediment	Mercury	0.3600
SDWC-AET-10	06297-SDWC-AET-10	2006	sediment	Mercury	1.2200
SDWC-AET-11	06297-SDWC-AET-11	2006	sediment	Mercury	0.5180
SDWC-AET-12	06297-SDWC-AET-12	2006	sediment	Mercury	1.5900
SDWC-AET-13	06297-SDWC-AET-13	2006	sediment	Mercury	0.9210
SDWC-AET-14	06297-SDWC-AET-14	2006	sediment	Mercury	1.5000
SDWC-AET-15	06297-SDWC-AET-15	2006	sediment	Mercury	1.8500
SDWC-AET-16	06297-SDWC-AET-16	2006	sediment	Mercury	2.7600
SDWC-AET-17	06297-SDWC-AET-17	2006	sediment	Mercury	6.7200
SDWC-AET-18	06297-SDWC-AET-18	2006	sediment	Mercury	1.1400
SDWC-AET-19	06297-SDWC-AET-19	2006	sediment	Mercury	1.4900
SDWC-AET-20	06297-SDWC-AET-20	2006	sediment	Mercury	1.5300
SDWC-AET-21	06297-SDWC-AET-21	2006	sediment	Mercury	1.7100
SDWC-AET-7	06297-SDWC-AET-7	2006	sediment	Mercury	0.9540
SDWC-AET-8	06297-SDWC-AET-8	2006	sediment	Mercury	1.0200
SDWC-AET-9	06297-SDWC-AET-9	2006	sediment	Mercury	1.2900
				Average	1.8966

#### Raw Data Aroclor 1268 in Fiddler Crab 7NOAAG polygon

Location	Sample ID	Year	Matrix	Parameter	res05 R Mod
7-NOAA-G	04293-FC-NOAA7-1	2004	Fiddler Crab	Aroclor-1268	0.17857 U
7-NOAA-G	04293-FC-NOAA7-2	2004	Fiddler Crab	Aroclor-1268	0.17241 U
7-NOAA-G	04293-FC-NOAA7-3	2004	Fiddler Crab	Aroclor-1268	0.17241 U
7-NOAA-G	04293-FC-NOAA7-4	2004	Fiddler Crab	Aroclor-1268	0.16667 U
7-NOAA-G	04293-FC-NOAA7-5	2004	Fiddler Crab	Aroclor-1268	0.17857 U
7-NOAA-G	04293-FC-NOAA7-6	2004	Fiddler Crab	Aroclor-1268	0.16667 U
7-NOAA-G	04293-FC-NOAA7-7	2004	Fiddler Crab	Aroclor-1268	0.17241 U
7-NOAA-G	05298-FC-NOAA-7-R1	2005	Fiddler crab	Aroclor-1268	0.98765
7-NOAA-G	05298-FC-NOAA-7-R2	2005	Fiddler crab	Aroclor-1268	0.83871
7-NOAA-G	05298-FC-NOAA-7-R3	2005	Fiddler crab	Aroclor-1268	0.85366
7-NOAA-G	05298-FC-NOAA-7-R4	2005	Fiddler crab	Aroclor-1268	0.89820
7-NOAA-G	05298-FC-NOAA-7-R5	2005	Fiddler crab	Aroclor-1268	0.90343
7-NOAA-G	05298-FC-NOAA-7-R6	2005	Fiddler crab	Aroclor-1268	0.92357
7-NOAA-G	05298-FC-NOAA-7-R7	2005	Fiddler crab	Aroclor-1268	0.73016
8-NOAA-G	04294-FC-NOAA8-1	2004	Fiddler Crab	Aroclor-1268	0.33333 U
8-NOAA-G	04294-FC-NOAA8-2	2004	Fiddler Crab	Aroclor-1268	0.32258 U
8-NOAA-G	04294-FC-NOAA8-3	2004	Fiddler Crab	Aroclor-1268	0.33333 U
8-NOAA-G	04294-FC-NOAA8-4	2004	Fiddler Crab	Aroclor-1268	0.33333 U
8-NOAA-G	04294-FC-NOAA8-5	2004	Fiddler Crab	Aroclor-1268	0.32258 U
8-NOAA-G	04294-FC-NOAA8-6	2004	Fiddler Crab	Aroclor-1268	0.31250 U
8-NOAA-G	04294-FC-NOAA8-7	2004	Fiddler Crab	Aroclor-1268	0.32258 U
8-NOAA-G	05298-FC-NOAA-8-R1	2005	Fiddler crab	Aroclor-1268	1.20915
8-NOAA-G	05298-FC-NOAA-8-R2	2005	Fiddler crab	Aroclor-1268	1.12180
8-NOAA-G	05298-FC-NOAA-8-R3	2005	Fiddler crab	Aroclor-1268	1.30293
8-NOAA-G	05298-FC-NOAA-8-R4	2005	Fiddler crab	Aroclor-1268	1.06109
8-NOAA-G	05298-FC-NOAA-8-R5	2005	Fiddler crab	Aroclor-1268	1.21406
8-NOAA-G	05298-FC-NOAA-8-R6	2005	Fiddler crab	Aroclor-1268	1.29693
8-NOAA-G	05298-FC-NOAA-8-R7	2005	Fiddler crab	Aroclor-1268	1.38983
8-NOAA-G	06292-NOAA-8-G-FC-R1	2006	Fiddler Crab	Aroclor-1268	0.32881
8-NOAA-G	06292-NOAA-8-G-FC-R2	2006	Fiddler Crab	Aroclor-1268	0.24522
8-NOAA-G	06292-NOAA-8-G-FC-R3	2006	Fiddler Crab	Aroclor-1268	0.42345
8-NOAA-G	06292-NOAA-8-G-FC-R4	2006	Fiddler Crab	Aroclor-1268	0.62044
8-NOAA-G	06292-NOAA-8-G-FC-R5	2006	Fiddler Crab	Aroclor-1268	0.63241
8-NOAA-G	06292-NOAA-8-G-FC-R6	2006	Fiddler Crab	Aroclor-1268	0.48780
8-NOAA-G	07289-NOAA-8-FC-R1	2007	Fiddler Crab	Aroclor-1268	0.41916
8-NOAA-G	07289-NOAA-8-FC-R2	2007	Fiddler Crab	Aroclor-1268	0.51829
8-NOAA-G	07289-NOAA-8-FC-R3	2007	Fiddler Crab	Aroclor-1268	0.54878
				Average	0.60658

#### Raw Data Aroclor 1268 in Sediment 7NOAAG polygon

Location	Year	Sample ID	Matrix	Parameter	res05	R Mod
7-NOAA-G	2004	04294-NOAA7	sediment	Aroclor-1268	0.8400	
7-NOAA-G	2005	05292-NOAA-7-G	sediment	Aroclor-1268	1.0000	
7-NOAA-G	2006	06292-NOAA-7-G	SEDIMENT	Aroclor-1268	1.2000	D
7-NOAA-G	2007	07289-NOAA-7	sediment	Aroclor-1268	1.2000	D
8-NOAA-G	2004	04294-NOAA8	sediment	Aroclor-1268	0.5000	
8-NOAA-G	2005	05292-NOAA-8-G	sediment	Aroclor-1268	0.6100	
8-NOAA-G	2006	06292-NOAA-8-G	SEDIMENT	Aroclor-1268	0.4000	
8-NOAA-G	2007	07289-NOAA-8	sediment	Aroclor-1268	0.5100	
C-12	2000	C-12(S)	sediment	Aroclor-1268	0.4800	
C-12	2005	05292-C-12	sediment	Aroclor-1268	4.8000	
C-13	2000	C-13(S)	sediment	Aroclor-1268	0.7500	
C-13	2002	02236-C-13	sediment	Aroclor-1268	2.1000	
C-13	2003	03287-C-13	sediment	Aroclor-1268	1.3000	
C-13	2004	04294-C-13	sediment	Aroclor-1268	2.4000	
C-13	2005	05292-C-13	sediment	Aroclor-1268	1.3000	
C-14	2000	C-14(S)	sediment	Aroclor-1268	0.3000	
C-14	2005	05293-C-14	sediment	Aroclor-1268	7.3000	
M-27	2000	M-27(S)	sediment	Aroclor-1268	0.4700	
M-27	2002	02236-M-27	sediment	Aroclor-1268	2.6000	
M-27	2003	03288-M-27	sediment	Aroclor-1268	0.8700	
M-27	2004	04296-M-27	sediment	Aroclor-1268	1.3000	
SD2C-10	2004	04286-SD2C-10	sediment	Aroclor-1268	8.0000	
SD2C-11	2004	04287-SD2C-11	sediment	Aroclor-1268	1.3000	
SD2C-12	2004	04287-SD2C-12	sediment	Aroclor-1268	14.0000	
SD2C-19	2004	04287-SD2C-19	sediment	Aroclor-1268	1.4000	
SD2C-6	2004	04286-SD2C-6	sediment	Aroclor-1268	5.2000	
SD2C-7	2004	04286-SD2C-7	sediment	Aroclor-1268	1.1000	
SD2C-9	2004	04286-SD2C-9	sediment	Aroclor-1268	3.5000	
SD2M-1	2004	04288-SD2M-1	sediment	Aroclor-1268	0.5400	
SD2M-12	2004	04288-SD2M-12	sediment	Aroclor-1268	0.4200	
SD2M-2	2004	04288-SD2M-2	sediment	Aroclor-1268	0.3800	
SDWC-AET-10	2006	06297-SDWC-AET-10	SEDIMENT	Aroclor-1268	1.4000	D
SDWC-AET-11	2006	06297-SDWC-AET-11		Aroclor-1268	0.7500	D
SDWC-AET-12	2006	06297-SDWC-AET-12	SEDIMENT	Aroclor-1268	2.4000	D
SDWC-AET-13	2006	06297-SDWC-AET-13	SEDIMENT	Aroclor-1268	2.2000	D
SDWC-AET-14	2006	06297-SDWC-AET-14	SEDIMENT	Aroclor-1268	5.2000	D
SDWC-AET-15	2006	06297-SDWC-AET-15	SEDIMENT	Aroclor-1268	2.5000	D
SDWC-AET-16	2006	06297-SDWC-AET-16	SEDIMENT	Aroclor-1268	20.0000	D
SDWC-AET-17	2006	06297-SDWC-AET-17	SEDIMENT	Aroclor-1268	25.0000	D
SDWC-AET-18	2006	06297-SDWC-AET-18	SEDIMENT	Aroclor-1268	2.1000	D
SDWC-AET-19	2006	06297-SDWC-AET-19	SEDIMENT	Aroclor-1268	1.8000	D
SDWC-AET-20	2006	06297-SDWC-AET-20	SEDIMENT	Aroclor-1268	2.4000	D
SDWC-AET-21	2006	06297-SDWC-AET-21	SEDIMENT	Aroclor-1268	4.8000	
SDWC-AET-7	2006	06297-SDWC-AET-7	SEDIMENT	Aroclor-1268	1.8000	D
SDWC-AET-8	2006	06297-SDWC-AET-8	SEDIMENT	Aroclor-1268	7.0000	D
SDWC-AET-9	2006	06297-SDWC-AET-9	SEDIMENT	Aroclor-1268	1.7000	D
				Average	3.2417	

#### Raw Data Mercury in Fiddler Crab 9NOAAG polygon

Location	Sample ID	Year	Matrix	Parameter	res05
9-NOAA-G	04294-FC-NOAA9-1	2004	Fiddler Crab	Mercury	0.19000
9-NOAA-G	04294-FC-NOAA9-2	2004	Fiddler Crab	Mercury	0.17000
9-NOAA-G	04294-FC-NOAA9-3	2004	Fiddler Crab	Mercury	0.18000
9-NOAA-G	04294-FC-NOAA9-4	2004	Fiddler Crab	Mercury	0.22000
9-NOAA-G	04294-FC-NOAA9-5	2004	Fiddler Crab	Mercury	0.30000
9-NOAA-G	04294-FC-NOAA9-6	2004	Fiddler Crab	Mercury	0.16000
9-NOAA-G	04294-FC-NOAA9-7	2004	Fiddler Crab	Mercury	0.27000
9-NOAA-G	05298-FC-NOAA-9-R1	2005	Fiddler crab	Mercury	0.19934
9-NOAA-G	05298-FC-NOAA-9-R2	2005	Fiddler crab	Mercury	0.16502
9-NOAA-G	05298-FC-NOAA-9-R3	2005	Fiddler crab	Mercury	0.13158
9-NOAA-G	05298-FC-NOAA-9-R4	2005	Fiddler crab	Mercury	0.16447
9-NOAA-G	05298-FC-NOAA-9-R5	2005	Fiddler crab	Mercury	0.17668
9-NOAA-G	05298-FC-NOAA-9-R6	2005	Fiddler crab	Mercury	0.12698
9-NOAA-G	05298-FC-NOAA-9-R7	2005	Fiddler crab	Mercury	0.17606
6-NOAA-G	04293-FC-NOAA6-1	2004	Fiddler Crab	Mercury	0.22000
6-NOAA-G	04293-FC-NOAA6-2	2004	Fiddler Crab	Mercury	0.30000
6-NOAA-G	04293-FC-NOAA6-3	2004	Fiddler Crab	Mercury	0.30000
6-NOAA-G	04293-FC-NOAA6-4	2004	Fiddler Crab	Mercury	0.28000
6-NOAA-G	04293-FC-NOAA6-5	2004	Fiddler Crab	Mercury	0.22000
6-NOAA-G	04293-FC-NOAA6-6	2004	Fiddler Crab	Mercury	0.23000
6-NOAA-G	04293-FC-NOAA6-7	2004	Fiddler Crab	Mercury	0.31000
6-NOAA-G	05298-FC-NOAA-6-R1	2005	Fiddler crab	Mercury	0.17606
6-NOAA-G	05298-FC-NOAA-6-R2	2005	Fiddler crab	Mercury	0.17668
6-NOAA-G	05298-FC-NOAA-6-R3	2005	Fiddler crab	Mercury	0.19608
7-NOAA-G	04293-FC-NOAA7-1	2004	Fiddler Crab	Mercury	0.71000
7-NOAA-G	04293-FC-NOAA7-2	2004	Fiddler Crab	Mercury	0.52000
7-NOAA-G	04293-FC-NOAA7-3	2004	Fiddler Crab	Mercury	0.74000
7-NOAA-G	04293-FC-NOAA7-4	2004	Fiddler Crab	Mercury	0.85000
7-NOAA-G	04293-FC-NOAA7-5	2004	Fiddler Crab	Mercury	0.58000
7-NOAA-G	04293-FC-NOAA7-6	2004	Fiddler Crab	Mercury	0.73000
7-NOAA-G	04293-FC-NOAA7-7	2004	Fiddler Crab	Mercury	0.82000
7-NOAA-G	05298-FC-NOAA-7-R1	2005	Fiddler crab	Mercury	0.21605
7-NOAA-G	05298-FC-NOAA-7-R2	2005	Fiddler crab	Mercury	0.16129
7-NOAA-G	05298-FC-NOAA-7-R3	2005	Fiddler crab	Mercury	0.21341

Continued on next page

#### Raw Data Mercury in Fiddler Crab (Cont'd.) 9NOAAG polygon

Location	Sample ID	Year	Matrix	Parameter	res05
7-NOAA-G	05298-FC-NOAA-7-R4	2005	Fiddler crab	Mercury	0.23952
7-NOAA-G	05298-FC-NOAA-7-R5	2005	Fiddler crab	Mercury	0.21807
7-NOAA-G	05298-FC-NOAA-7-R6	2005	Fiddler crab	Mercury	0.22293
7-NOAA-G	05298-FC-NOAA-7-R7	2005	Fiddler crab	Mercury	0.15873
8-NOAA-G	04294-FC-NOAA8-1	2004	Fiddler Crab	Mercury	0.19000
8-NOAA-G	04294-FC-NOAA8-2	2004	Fiddler Crab	Mercury	0.20000
8-NOAA-G	04294-FC-NOAA8-3	2004	Fiddler Crab	Mercury	0.24000
8-NOAA-G	04294-FC-NOAA8-4	2004	Fiddler Crab	Mercury	0.19000
8-NOAA-G	04294-FC-NOAA8-5	2004	Fiddler Crab	Mercury	0.17000
8-NOAA-G	04294-FC-NOAA8-6	2004	Fiddler Crab	Mercury	0.15000
8-NOAA-G	04294-FC-NOAA8-7	2004	Fiddler Crab	Mercury	0.15000
8-NOAA-G	05298-FC-NOAA-8-R1	2005	Fiddler crab	Mercury	0.09804
8-NOAA-G	05298-FC-NOAA-8-R2	2005	Fiddler crab	Mercury	0.12821
8-NOAA-G	05298-FC-NOAA-8-R3	2005	Fiddler crab	Mercury	0.09772
8-NOAA-G	05298-FC-NOAA-8-R4	2005	Fiddler crab	Mercury	0.12862
8-NOAA-G	05298-FC-NOAA-8-R5	2005	Fiddler crab	Mercury	0.09585
8-NOAA-G	05298-FC-NOAA-8-R6	2005	Fiddler crab	Mercury	0.13652
8-NOAA-G	05298-FC-NOAA-8-R7	2005	Fiddler crab	Mercury	0.13559
8-NOAA-G	06292-NOAA-8-G-FC-R1	2006	Fiddler Crab	Mercury	0.20881
8-NOAA-G	06292-NOAA-8-G-FC-R2	2006	Fiddler Crab	Mercury	0.25510
8-NOAA-G	06292-NOAA-8-G-FC-R3	2006	Fiddler Crab	Mercury	0.26384
8-NOAA-G	06292-NOAA-8-G-FC-R4	2006	Fiddler Crab	Mercury	0.28212
8-NOAA-G	06292-NOAA-8-G-FC-R5	2006	Fiddler Crab	Mercury	0.28814
8-NOAA-G	06292-NOAA-8-G-FC-R6	2006	Fiddler Crab	Mercury	0.25488
8-NOAA-G	07289-NOAA-8-FC-R1	2007	Fiddler Crab	Mercury	0.13503
8-NOAA-G	07289-NOAA-8-FC-R2	2007	Fiddler Crab	Mercury	0.12287
8-NOAA-G	07289-NOAA-8-FC-R3	2007	Fiddler Crab	Mercury	0.17713
				Average	0.25438

#### Raw Data Mercury in Sediment 9NOAAG polygon

Location	Sample ID	Year	Matrix	Parameter	res05
6-NOAA-G	04294-NOAA6	2004	sediment	Mercury	0.8400
6-NOAA-G	05292-NOAA-6-G	2005	sediment	Mercury	0.7070
6-NOAA-G	06292-NOAA-6-G	2006	sediment	Mercury	0.4120
6-NOAA-G	07289-NOAA-6	2007	sediment	Mercury	0.8530
7-NOAA-G	04294-NOAA7	2004	sediment	Mercury	0.8200
7-NOAA-G	05292-NOAA-7-G	2005	sediment	Mercury	0.6750
7-NOAA-G	06292-NOAA-7-G	2006	sediment	Mercury	0.5670
7-NOAA-G	07289-NOAA-7	2007	sediment	Mercury	0.7080
8-NOAA-G	04294-NOAA8	2004	sediment	Mercury	0.8600
8-NOAA-G	05292-NOAA-8-G	2005	sediment	Mercury	0.8660
8-NOAA-G	06292-NOAA-8-G	2006	sediment	Mercury	0.7430
8-NOAA-G	07289-NOAA-8	2007	sediment	Mercury	1.0200
9-NOAA-G	04294-NOAA9	2004	sediment	Mercury	0.5600
9-NOAA-G	05291-NOAA-9-G	2005	sediment	Mercury	0.9350
9-NOAA-G	06290-NOAA-9-G	2006	sediment	Mercury	0.4030
9-NOAA-G	07289-NOAA-9	2007	sediment	Mercury	0.8620
C-12	C-12(S)	2000	sediment	Mercury	5.3400
C-12	05292-C-12	2005	sediment	Mercury	1.0300
C-13	C-13(S)	2000	sediment	Mercury	7.0000
C-13	02236-C-13	2002	sediment	Mercury	1.5000
C-13	03287-C-13	2003	sediment	Mercury	0.4800
C-13	04294-C-13	2004	sediment	Mercury	1.7000
C-13	05292-C-13	2005	sediment	Mercury	1.4300
C-15	C-15(S)	2000	sediment	Mercury	3.3600
C-15	02236-C-15	2002	sediment	Mercury	1.3000
C-15	03287-C-15	2003	sediment	Mercury	2.4000
C-15	03288-C-15	2003	sediment	Mercury	2.8000
C-15	04294-C-15	2004	sediment	Mercury	1.2000
C-15	05297-C-15	2005	sediment	Mercury	2.1100
C-15	06290-C-15	2006	sediment	Mercury	0.4560
C-15	07289-C-15	2007	sediment	Mercury	1.8200
M-27	M-27(S)	2000	sediment	Mercury	3.3000
M-27	02236-M-27	2002	sediment	Mercury	2.1000
M-27	03288-M-27	2003	sediment	Mercury	0.6400
M-27	04296-M-27	2004	sediment	Mercury	0.7600
SD2C-6	04286-SD2C-6	2004	sediment	Mercury	2.1000
SD2C-7	04286-SD2C-7	2004	sediment	Mercury	0.5800
SD2C-8	04286-SD2C-8	2004	sediment	Mercury	0.3800
SD2M-16	04288-SD2M-16	2004	sediment	Mercury	0.6300
SD2M-2	04288-SD2M-2	2004	sediment	Mercury	0.3600
SD2M-3	04289-SD2M-3	2004	sediment	Mercury	0.8300
SD2M-5	04288-SD2M-5	2004	sediment	Mercury	0.2700
SDWC-AET-10	06297-SDWC-AET-10	2006	sediment	Mercury	1.2200
SDWC-AET-6	06297-SDWC-AET-6	2006	sediment	Mercury	2.1000
SDWC-AET-7 SDWC-AET-8	06297-SDWC-AET-7 06297-SDWC-AET-8	2006	sediment sediment	Mercury	0.9540
SDWC-AET-8 SDWC-AET-9	06297-SDWC-AET-9	2006 2006	sediment	Mercury Mercury	1.0200 1.2900
ODWO-ALI-3	00297-0DVVO-AL1-9	2000	Sediment	Average	1.3679
				Average	1.5073

#### Raw Data Aroclor 1268 in Fiddler Crab 9NOAAG polygon

Location	Sample ID	Year	Matrix	Parameter	res05	R Mod
9-NOAA-G	04294-FC-NOAA9-1	2004	Fiddler Crab	Aroclor-1268	1.62069	
9-NOAA-G	04294-FC-NOAA9-2	2004	Fiddler Crab	Aroclor-1268	1.17857	
9-NOAA-G	04294-FC-NOAA9-3	2004	Fiddler Crab	Aroclor-1268	1.60000	
9-NOAA-G	04294-FC-NOAA9-4	2004	Fiddler Crab	Aroclor-1268	1.79310	
9-NOAA-G	04294-FC-NOAA9-5	2004	Fiddler Crab	Aroclor-1268	0.96429	
9-NOAA-G	04294-FC-NOAA9-6	2004	Fiddler Crab	Aroclor-1268	0.73333	
9-NOAA-G	04294-FC-NOAA9-7	2004	Fiddler Crab	Aroclor-1268	0.83333	
9-NOAA-G	05298-FC-NOAA-9-R1	2005	Fiddler crab	Aroclor-1268	0.99668	
9-NOAA-G	05298-FC-NOAA-9-R2	2005	Fiddler crab	Aroclor-1268	1.28713	
9-NOAA-G	05298-FC-NOAA-9-R3	2005	Fiddler crab	Aroclor-1268	0.52632	
9-NOAA-G	05298-FC-NOAA-9-R4	2005	Fiddler crab	Aroclor-1268	0.88816	
9-NOAA-G	05298-FC-NOAA-9-R5	2005	Fiddler crab	Aroclor-1268	0.81272	
9-NOAA-G	05298-FC-NOAA-9-R6	2005	Fiddler crab	Aroclor-1268	1.49206	
9-NOAA-G	05298-FC-NOAA-9-R7	2005	Fiddler crab	Aroclor-1268	1.05634	
6-NOAA-G	04293-FC-NOAA6-1	2004	Fiddler Crab	Aroclor-1268	0.25000	U
6-NOAA-G	04293-FC-NOAA6-2	2004	Fiddler Crab	Aroclor-1268	0.30357	U
6-NOAA-G	04293-FC-NOAA6-3	2004	Fiddler Crab	Aroclor-1268	0.25926	U
6-NOAA-G	04293-FC-NOAA6-4	2004	Fiddler Crab	Aroclor-1268	0.18966	
6-NOAA-G	04293-FC-NOAA6-5	2004	Fiddler Crab	Aroclor-1268	0.30357	
6-NOAA-G	04293-FC-NOAA6-6	2004	Fiddler Crab	Aroclor-1268	0.29310	
6-NOAA-G	04293-FC-NOAA6-7	2004	Fiddler Crab	Aroclor-1268	0.25926	U
6-NOAA-G	05298-FC-NOAA-6-R1	2005	Fiddler crab	Aroclor-1268	0.38732	
6-NOAA-G	05298-FC-NOAA-6-R2	2005	Fiddler crab	Aroclor-1268	0.56537	J
6-NOAA-G	05298-FC-NOAA-6-R3	2005	Fiddler crab	Aroclor-1268	0.78431	
7-NOAA-G	04293-FC-NOAA7-1	2004	Fiddler Crab	Aroclor-1268	0.17857	U
7-NOAA-G	04293-FC-NOAA7-2	2004	Fiddler Crab	Aroclor-1268	0.17241	U
7-NOAA-G	04293-FC-NOAA7-3	2004	Fiddler Crab	Aroclor-1268	0.17241	
7-NOAA-G	04293-FC-NOAA7-4	2004	Fiddler Crab	Aroclor-1268	0.16667	U
7-NOAA-G	04293-FC-NOAA7-5	2004	Fiddler Crab	Aroclor-1268	0.17857	U
7-NOAA-G	04293-FC-NOAA7-6	2004	Fiddler Crab	Aroclor-1268	0.16667	
7-NOAA-G	04293-FC-NOAA7-7	2004	Fiddler Crab	Aroclor-1268	0.17241	U
7-NOAA-G	05298-FC-NOAA-7-R1	2005	Fiddler crab	Aroclor-1268	0.98765	
7-NOAA-G	05298-FC-NOAA-7-R2	2005	Fiddler crab	Aroclor-1268	0.83871	
7-NOAA-G	05298-FC-NOAA-7-R3	2005	Fiddler crab	Aroclor-1268	0.85366	
7-NOAA-G	05298-FC-NOAA-7-R4	2005	Fiddler crab	Aroclor-1268	0.89820	
7-NOAA-G	05298-FC-NOAA-7-R5	2005	Fiddler crab	Aroclor-1268	0.90343	
7-NOAA-G	05298-FC-NOAA-7-R6	2005	Fiddler crab	Aroclor-1268	0.92357	
7-NOAA-G	05298-FC-NOAA-7-R7	2005	Fiddler crab	Aroclor-1268	0.73016	
8-NOAA-G	04294-FC-NOAA8-1	2004	Fiddler Crab	Aroclor-1268	0.33333	_
8-NOAA-G	04294-FC-NOAA8-2	2004	Fiddler Crab	Aroclor-1268	0.32258	U

continued on next page

### Raw Data Aroclor 1268 in Fiddler Crab (Cont'd.) 9NOAAG polygon

Location	Sample ID	Year	Matrix	Parameter	res05 R Mod
8-NOAA-G	04294-FC-NOAA8-3	2004	Fiddler Crab	Aroclor-1268	0.33333 U
8-NOAA-G	04294-FC-NOAA8-4	2004	Fiddler Crab	Aroclor-1268	0.33333 U
8-NOAA-G	04294-FC-NOAA8-5	2004	Fiddler Crab	Aroclor-1268	0.32258 U
8-NOAA-G	04294-FC-NOAA8-6	2004	Fiddler Crab	Aroclor-1268	0.31250 U
8-NOAA-G	04294-FC-NOAA8-7	2004	Fiddler Crab	Aroclor-1268	0.32258 U
8-NOAA-G	05298-FC-NOAA-8-R1	2005	Fiddler crab	Aroclor-1268	1.20915
8-NOAA-G	05298-FC-NOAA-8-R2	2005	Fiddler crab	Aroclor-1268	1.12180
8-NOAA-G	05298-FC-NOAA-8-R3	2005	Fiddler crab	Aroclor-1268	1.30293
8-NOAA-G	05298-FC-NOAA-8-R4	2005	Fiddler crab	Aroclor-1268	1.06109
8-NOAA-G	05298-FC-NOAA-8-R5	2005	Fiddler crab	Aroclor-1268	1.21406
8-NOAA-G	05298-FC-NOAA-8-R6	2005	Fiddler crab	Aroclor-1268	1.29693
8-NOAA-G	05298-FC-NOAA-8-R7	2005	Fiddler crab	Aroclor-1268	1.38983
8-NOAA-G	06292-NOAA-8-G-FC-R1	2006	Fiddler Crab	Aroclor-1268	0.32881
8-NOAA-G	06292-NOAA-8-G-FC-R2	2006	Fiddler Crab	Aroclor-1268	0.24522
8-NOAA-G	06292-NOAA-8-G-FC-R3	2006	Fiddler Crab	Aroclor-1268	0.42345
8-NOAA-G	06292-NOAA-8-G-FC-R4	2006	Fiddler Crab	Aroclor-1268	0.62044
8-NOAA-G	06292-NOAA-8-G-FC-R5	2006	Fiddler Crab	Aroclor-1268	0.63241
8-NOAA-G	06292-NOAA-8-G-FC-R6	2006	Fiddler Crab	Aroclor-1268	0.48780
8-NOAA-G	07289-NOAA-8-FC-R1	2007	Fiddler Crab	Aroclor-1268	0.41916
8-NOAA-G	07289-NOAA-8-FC-R2	2007	Fiddler Crab	Aroclor-1268	0.51829
8-NOAA-G	07289-NOAA-8-FC-R3	2007	Fiddler Crab	Aroclor-1268	0.54878
				Average	0.68560

#### Raw Data Aroclor 1268 in Sediment 9NOAAG polygon

Location	Sample ID	Year	Matrix	Parameter	res05	R Mod
6-NOAA-G	04294-NOAA6	2004	sediment	Aroclor-1268	0.8600	
6-NOAA-G	05292-NOAA-6-G	2005	sediment	Aroclor-1268	1.2000	
6-NOAA-G	06292-NOAA-6-G	2006	sediment	Aroclor-1268	0.6500	
6-NOAA-G	07289-NOAA-6	2007	sediment	Aroclor-1268	1.2000	D
7-NOAA-G	04294-NOAA7	2004	sediment	Aroclor-1268	0.8400	
7-NOAA-G	05292-NOAA-7-G	2005	sediment	Aroclor-1268	1.0000	
7-NOAA-G	06292-NOAA-7-G	2006	sediment	Aroclor-1268	1.2000	D
7-NOAA-G	07289-NOAA-7	2007	sediment	Aroclor-1268	1.2000	D
8-NOAA-G	04294-NOAA8	2004	sediment	Aroclor-1268	0.5000	
8-NOAA-G	05292-NOAA-8-G	2005	sediment	Aroclor-1268	0.6100	
8-NOAA-G	06292-NOAA-8-G	2006	sediment	Aroclor-1268	0.4000	
8-NOAA-G	07289-NOAA-8	2007	sediment	Aroclor-1268	0.5100	
9-NOAA-G	04294-NOAA9	2004	sediment	Aroclor-1268	1.3000	
9-NOAA-G	05291-NOAA-9-G	2005	sediment	Aroclor-1268	3.3000	
9-NOAA-G	06290-NOAA-9-G	2006	sediment	Aroclor-1268	0.6200	
9-NOAA-G	07289-NOAA-9	2007	sediment	Aroclor-1268	2.7000	D
C-12	C-12(S)	2000	sediment	Aroclor-1268	0.4800	
C-12	05292-C-12	2005	sediment	Aroclor-1268	4.8000	
C-13	C-13(S)	2000	sediment	Aroclor-1268	0.7500	
C-13	02236-C-13	2002	sediment	Aroclor-1268	2.1000	
C-13	03287-C-13	2003	sediment	Aroclor-1268	1.3000	
C-13	04294-C-13	2004	sediment	Aroclor-1268	2.4000	
C-13	05292-C-13	2005	sediment	Aroclor-1268	1.3000	
C-15	C-15(S)	2000	sediment	Aroclor-1268	0.0990	J
C-15	02236-C-15	2002	sediment	Aroclor-1268	2.8000	
C-15	03287-C-15	2003	sediment	Aroclor-1268	2.8000	
C-15	03288-C-15	2003	sediment	Aroclor-1268	0.7900	
C-15	04294-C-15	2004	sediment	Aroclor-1268	2.8000	
C-15	05297-C-15	2005	sediment	Aroclor-1268	6.8000	
C-15	06290-C-15	2006	sediment	Aroclor-1268	1.0000	D
C-15	07289-C-15	2007	sediment	Aroclor-1268	2.5000	D
M-27	M-27(S)	2000	sediment	Aroclor-1268	0.4700	
M-27	02236-M-27	2002	sediment	Aroclor-1268	2.6000	
M-27	03288-M-27	2003	sediment	Aroclor-1268	0.8700	
M-27	04296-M-27	2004	sediment	Aroclor-1268	1.3000	
SD2C-6	04286-SD2C-6	2004	sediment	Aroclor-1268	5.2000	
SD2C-7	04286-SD2C-7	2004	sediment	Aroclor-1268	1.1000	
SD2C-8	04286-SD2C-8	2004	sediment	Aroclor-1268	0.5700	
SD2M-16	04288-SD2M-16	2004	sediment	Aroclor-1268	2.5000	
SD2M-2	04288-SD2M-2	2004	sediment	Aroclor-1268	0.3800	
SD2M-3	04289-SD2M-3	2004	sediment	Aroclor-1268	0.9100	
SD2M-5	04288-SD2M-5	2004	sediment	Aroclor-1268	0.6800	
SDWC-AET-10	06297-SDWC-AET-10	2006	sediment	Aroclor-1268	1.4000	D
SDWC-AET-6	06297-SDWC-AET-6	2006	sediment	Aroclor-1268	1.9000	
SDWC-AET-7	06297-SDWC-AET-7	2006	sediment	Aroclor-1268	1.8000	
SDWC-AET-8	06297-SDWC-AET-8	2006	sediment	Aroclor-1268	7.0000	
SDWC-AET-9	06297-SDWC-AET-9	2006	sediment	Aroclor-1268	1.7000	
				Average	1.7274	

#### Raw Data Aroclor 1268 in Fiddler Crab 9NOAAG polygon

Location	Sample ID	Year	Matrix	Parameter	res05	R Mod
9-NOAA-G	04294-FC-NOAA9-1	2004	Fiddler Crab	Aroclor-1268	1.62069	
9-NOAA-G	04294-FC-NOAA9-2	2004	Fiddler Crab	Aroclor-1268	1.17857	
9-NOAA-G	04294-FC-NOAA9-3	2004	Fiddler Crab	Aroclor-1268	1.60000	
9-NOAA-G	04294-FC-NOAA9-4	2004	Fiddler Crab	Aroclor-1268	1.79310	
9-NOAA-G	04294-FC-NOAA9-5	2004	Fiddler Crab	Aroclor-1268	0.96429	
9-NOAA-G	04294-FC-NOAA9-6	2004	Fiddler Crab	Aroclor-1268	0.73333	
9-NOAA-G	04294-FC-NOAA9-7	2004	Fiddler Crab	Aroclor-1268	0.83333	
9-NOAA-G	05298-FC-NOAA-9-R1	2005	Fiddler crab	Aroclor-1268	0.99668	
9-NOAA-G	05298-FC-NOAA-9-R2	2005	Fiddler crab	Aroclor-1268	1.28713	
9-NOAA-G	05298-FC-NOAA-9-R3	2005	Fiddler crab	Aroclor-1268	0.52632	
9-NOAA-G	05298-FC-NOAA-9-R4	2005	Fiddler crab	Aroclor-1268	0.88816	
9-NOAA-G	05298-FC-NOAA-9-R5	2005	Fiddler crab	Aroclor-1268	0.81272	
9-NOAA-G	05298-FC-NOAA-9-R6	2005	Fiddler crab	Aroclor-1268	1.49206	
9-NOAA-G	05298-FC-NOAA-9-R7	2005	Fiddler crab	Aroclor-1268	1.05634	
6-NOAA-G	04293-FC-NOAA6-1	2004	Fiddler Crab	Aroclor-1268	0.25000	U
6-NOAA-G	04293-FC-NOAA6-2	2004	Fiddler Crab	Aroclor-1268	0.30357	U
6-NOAA-G	04293-FC-NOAA6-3	2004	Fiddler Crab	Aroclor-1268	0.25926	U
6-NOAA-G	04293-FC-NOAA6-4	2004	Fiddler Crab	Aroclor-1268	0.18966	U
6-NOAA-G	04293-FC-NOAA6-5	2004	Fiddler Crab	Aroclor-1268	0.30357	U
6-NOAA-G	04293-FC-NOAA6-6	2004	Fiddler Crab	Aroclor-1268	0.29310	U
6-NOAA-G	04293-FC-NOAA6-7	2004	Fiddler Crab	Aroclor-1268	0.25926	U
6-NOAA-G	05298-FC-NOAA-6-R1	2005	Fiddler crab	Aroclor-1268	0.38732	
6-NOAA-G	05298-FC-NOAA-6-R2	2005	Fiddler crab	Aroclor-1268	0.56537	J
6-NOAA-G	05298-FC-NOAA-6-R3	2005	Fiddler crab	Aroclor-1268	0.78431	
7-NOAA-G	04293-FC-NOAA7-1	2004	Fiddler Crab	Aroclor-1268	0.17857	U
7-NOAA-G	04293-FC-NOAA7-2	2004	Fiddler Crab	Aroclor-1268	0.17241	U
7-NOAA-G	04293-FC-NOAA7-3	2004	Fiddler Crab	Aroclor-1268	0.17241	U
7-NOAA-G	04293-FC-NOAA7-4	2004	Fiddler Crab	Aroclor-1268	0.16667	U
7-NOAA-G	04293-FC-NOAA7-5	2004	Fiddler Crab	Aroclor-1268	0.17857	U
7-NOAA-G	04293-FC-NOAA7-6	2004	Fiddler Crab	Aroclor-1268	0.16667	U
7-NOAA-G	04293-FC-NOAA7-7	2004	Fiddler Crab	Aroclor-1268	0.17241	U
7-NOAA-G	05298-FC-NOAA-7-R1	2005	Fiddler crab	Aroclor-1268	0.98765	
7-NOAA-G	05298-FC-NOAA-7-R2	2005	Fiddler crab	Aroclor-1268	0.83871	
7-NOAA-G	05298-FC-NOAA-7-R3	2005	Fiddler crab	Aroclor-1268	0.85366	
7-NOAA-G	05298-FC-NOAA-7-R4	2005	Fiddler crab	Aroclor-1268	0.89820	
7-NOAA-G	05298-FC-NOAA-7-R5	2005	Fiddler crab	Aroclor-1268	0.90343	
7-NOAA-G	05298-FC-NOAA-7-R6	2005	Fiddler crab	Aroclor-1268	0.92357	
7-NOAA-G	05298-FC-NOAA-7-R7	2005	Fiddler crab	Aroclor-1268	0.73016	
8-NOAA-G	04294-FC-NOAA8-1	2004	Fiddler Crab	Aroclor-1268	0.33333	U

Continued on next page

### Raw Data Aroclor 1268 in Fiddler Crab (Cont'd.) 9NOAAG polygon

Location	Sample ID	Year	Matrix	Parameter	res05 R Mod
8-NOAA-G	04294-FC-NOAA8-2	2004	Fiddler Crab	Aroclor-1268	0.32258 U
8-NOAA-G	04294-FC-NOAA8-3	2004	Fiddler Crab	Aroclor-1268	0.33333 U
8-NOAA-G	04294-FC-NOAA8-4	2004	Fiddler Crab	Aroclor-1268	0.33333 U
8-NOAA-G	04294-FC-NOAA8-5	2004	Fiddler Crab	Aroclor-1268	0.32258 U
8-NOAA-G	04294-FC-NOAA8-6	2004	Fiddler Crab	Aroclor-1268	0.31250 U
8-NOAA-G	04294-FC-NOAA8-7	2004	Fiddler Crab	Aroclor-1268	0.32258 U
8-NOAA-G	05298-FC-NOAA-8-R1	2005	Fiddler crab	Aroclor-1268	1.20915
8-NOAA-G	05298-FC-NOAA-8-R2	2005	Fiddler crab	Aroclor-1268	1.12180
8-NOAA-G	05298-FC-NOAA-8-R3	2005	Fiddler crab	Aroclor-1268	1.30293
8-NOAA-G	05298-FC-NOAA-8-R4	2005	Fiddler crab	Aroclor-1268	1.06109
8-NOAA-G	05298-FC-NOAA-8-R5	2005	Fiddler crab	Aroclor-1268	1.21406
8-NOAA-G	05298-FC-NOAA-8-R6	2005	Fiddler crab	Aroclor-1268	1.29693
8-NOAA-G	05298-FC-NOAA-8-R7	2005	Fiddler crab	Aroclor-1268	1.38983
8-NOAA-G	06292-NOAA-8-G-FC-R1	2006	Fiddler Crab	Aroclor-1268	0.32881
8-NOAA-G	06292-NOAA-8-G-FC-R2	2006	Fiddler Crab	Aroclor-1268	0.24522
8-NOAA-G	06292-NOAA-8-G-FC-R3	2006	Fiddler Crab	Aroclor-1268	0.42345
8-NOAA-G	06292-NOAA-8-G-FC-R4	2006	Fiddler Crab	Aroclor-1268	0.62044
8-NOAA-G	06292-NOAA-8-G-FC-R5	2006	Fiddler Crab	Aroclor-1268	0.63241
8-NOAA-G	06292-NOAA-8-G-FC-R6	2006	Fiddler Crab	Aroclor-1268	0.48780
8-NOAA-G	07289-NOAA-8-FC-R1	2007	Fiddler Crab	Aroclor-1268	0.41916
8-NOAA-G	07289-NOAA-8-FC-R2	2007	Fiddler Crab	Aroclor-1268	0.51829
8-NOAA-G	07289-NOAA-8-FC-R3	2007	Fiddler Crab	Aroclor-1268	0.54878
				Average	0.68560

#### Raw Data Aroclor 1268 in Sediment 9NOAAG polygon

Location	Sample ID	Year	Matrix	Parameter	res05	R Mod
6-NOAA-G	04294-NOAA6	2004	sediment	Aroclor-1268	0.8600	
6-NOAA-G	05292-NOAA-6-G	2005	sediment	Aroclor-1268	1.2000	
6-NOAA-G	06292-NOAA-6-G	2006	SEDIMENT	Aroclor-1268	0.6500	
6-NOAA-G	07289-NOAA-6	2007	sediment	Aroclor-1268	1.2000	D
7-NOAA-G	04294-NOAA7	2004	sediment	Aroclor-1268	0.8400	
7-NOAA-G	05292-NOAA-7-G	2005	sediment	Aroclor-1268	1.0000	
7-NOAA-G	06292-NOAA-7-G	2006	SEDIMENT	Aroclor-1268	1.2000	
7-NOAA-G	07289-NOAA-7	2007	sediment	Aroclor-1268	1.2000	D
8-NOAA-G	04294-NOAA8	2004	sediment	Aroclor-1268	0.5000	
8-NOAA-G	05292-NOAA-8-G	2005	sediment	Aroclor-1268	0.6100	
8-NOAA-G	06292-NOAA-8-G	2006	SEDIMENT	Aroclor-1268	0.4000	
8-NOAA-G	07289-NOAA-8	2007	sediment	Aroclor-1268	0.5100	
9-NOAA-G	04294-NOAA9	2004	sediment	Aroclor-1268	1.3000	
9-NOAA-G	05291-NOAA-9-G	2005	sediment	Aroclor-1268	3.3000	
9-NOAA-G	06290-NOAA-9-G	2006	SEDIMENT	Aroclor-1268	0.6200	
9-NOAA-G	07289-NOAA-9	2007	sediment	Aroclor-1268	2.7000	D
C-12	C-12(S)	2000	sediment	Aroclor-1268	0.4800	
C-12	05292-C-12	2005	sediment	Aroclor-1268	4.8000	
C-13	C-13(S)	2000	sediment	Aroclor-1268	0.7500	
C-13	02236-C-13	2002	sediment	Aroclor-1268	2.1000	
C-13	03287-C-13	2003	sediment	Aroclor-1268	1.3000	
C-13	04294-C-13	2004	sediment	Aroclor-1268	2.4000	
C-13	05292-C-13	2005	sediment	Aroclor-1268	1.3000	
C-15	C-15(S)	2000	sediment	Aroclor-1268	0.0990	J
C-15	02236-C-15	2002	sediment	Aroclor-1268	2.8000	
C-15	03287-C-15	2003	sediment	Aroclor-1268	2.8000	
C-15	03288-C-15	2003	sediment	Aroclor-1268	0.7900	
C-15	04294-C-15	2004	sediment	Aroclor-1268	2.8000	
C-15	05297-C-15	2005	sediment	Aroclor-1268	6.8000	
C-15	06290-C-15	2006	SEDIMENT	Aroclor-1268	1.0000	
C-15	07289-C-15	2007	sediment	Aroclor-1268	2.5000	D
M-27	M-27(S)	2000	sediment	Aroclor-1268	0.4700	
M-27	02236-M-27	2002	sediment	Aroclor-1268	2.6000	
M-27	03288-M-27	2003	sediment	Aroclor-1268	0.8700	
M-27	04296-M-27	2004	sediment	Aroclor-1268	1.3000	
SD2C-6	04286-SD2C-6	2004	sediment	Aroclor-1268	5.2000	
SD2C-7	04286-SD2C-7	2004	sediment	Aroclor-1268	1.1000	
SD2C-8	04286-SD2C-8	2004	sediment	Aroclor-1268	0.5700	
SD2M-16	04288-SD2M-16	2004	sediment	Aroclor-1268	2.5000	
SD2M-2	04288-SD2M-2	2004	sediment	Aroclor-1268	0.3800	
SD2M-3	04289-SD2M-3	2004	sediment	Aroclor-1268	0.9100	
SD2M-5	04288-SD2M-5	2004	sediment	Aroclor-1268	0.6800	
SDWC-AET-10	06297-SDWC-AET-10	2006	SEDIMENT	Aroclor-1268	1.4000	
SDWC-AET-6	06297-SDWC-AET-6	2006	SEDIMENT	Aroclor-1268	1.9000	
SDWC-AET-7	06297-SDWC-AET-7	2006	SEDIMENT	Aroclor-1268	1.8000	
SDWC-AET-8	06297-SDWC-AET-8	2006	SEDIMENT	Aroclor-1268	7.0000	
SDWC-AET-9	06297-SDWC-AET-9	2006	SEDIMENT	Aroclor-1268	1.7000	
				Average	1.7274	

## Raw Data Aroclor 1268 in Fiddler Crab M-25 polygon

Location	Sample ID	Year	Matrix	Parameter	res05 R Mod
M-25	03323-FC-M25-R1	2003	Fiddler Crab	Aroclor-1268	1.40000
M-25	03323-FC-M25-R2	2003	Fiddler Crab	Aroclor-1268	2.20000
M-25	03323-FC-M25-R3	2003	Fiddler Crab	Aroclor-1268	1.10000
M-25	03323-FC-M25-R4	2003	Fiddler Crab	Aroclor-1268	1.90000
M-25	03323-FC-M25-R5	2003	Fiddler Crab	Aroclor-1268	2.10000
M-25	03323-FC-M25-R6	2003	Fiddler Crab	Aroclor-1268	1.80000
M-25	03323-FC-M25-R7	2003	Fiddler Crab	Aroclor-1268	2.30000
M-25	04293-FC-M25-1	2004	Fiddler Crab	Aroclor-1268	1.53333
M-25	04293-FC-M25-2	2004	Fiddler Crab	Aroclor-1268	1.33333
M-25	04293-FC-M25-3	2004	Fiddler Crab	Aroclor-1268	1.62500
M-25	04293-FC-M25-4	2004	Fiddler Crab	Aroclor-1268	2.29630
M-25	04295-FC-M25-5	2004	Fiddler Crab	Aroclor-1268	1.12903
M-25	04295-FC-M25-6	2004	Fiddler Crab	Aroclor-1268	1.51613
M-25	04295-FC-M25-7	2004	Fiddler Crab	Aroclor-1268	2.06452
M-25	05295-M-25-FC-R1	2005	Fiddler crab	Aroclor-1268	4.26829
M-25	05295-M-25-FC-R2	2005	Fiddler crab	Aroclor-1268	3.30330
M-25	05295-M-25-FC-R3	2005	Fiddler crab	Aroclor-1268	2.81250
M-25	05295-M-25-FC-R4	2005	Fiddler crab	Aroclor-1268	4.45104
M-25	05295-M-25-FC-R5	2005	Fiddler crab	Aroclor-1268	4.12088
M-25	05295-M-25-FC-R6	2005	Fiddler crab	Aroclor-1268	4.57143
M-25	05295-M-25-FC-R7	2005	Fiddler crab	Aroclor-1268	4.26829
M-25	06291-M-25-FC-R1	2006	Fiddler Crab	Aroclor-1268	2.41042
M-25	06291-M-25-FC-R2	2006	Fiddler Crab	Aroclor-1268	4.37500 D
M-25	06291-M-25-FC-R3	2006	Fiddler Crab	Aroclor-1268	4.34783 D
M-25	06291-M-25-FC-R4	2006	Fiddler Crab	Aroclor-1268	5.50459 D
M-25	06291-M-25-FC-R5	2006	Fiddler Crab	Aroclor-1268	4.83384 D
M-25	06291-M-25-FC-R6	2006	Fiddler Crab	Aroclor-1268	5.28053 D
M-25	06291-M-25-FC-R7	2006	Fiddler Crab	Aroclor-1268	7.39437 D
M-25	07290-M-25-FC-R1	2007	Fiddler Crab	Aroclor-1268	1.58055
M-25	07290-M-25-FC-R2	2007	Fiddler Crab	Aroclor-1268	2.18354
M-25	07290-M-25-FC-R3	2007	Fiddler Crab	Aroclor-1268	2.35119
M-25	25-FC R1	2002	Fiddler Crab	Aroclor-1268	2.60000
M-25	25-FC R2	2002	Fiddler Crab	Aroclor-1268	2.90000
M-25	25-FC R3	2002	Fiddler Crab	Aroclor-1268	2.80000
M-25	25-FC R4	2002	Fiddler Crab	Aroclor-1268	3.10000
M-25	M-25(M)_10/10/2000_Fiddler Crab-R1	2000	Fiddler Crab	Aroclor-1268	2.10000
M-25	M-25(M)_10/10/2000_Fiddler Crab-R2	2000	Fiddler Crab	Aroclor-1268	2.20000
M-25	M-25(M)_10/10/2000_Fiddler Crab-R3	2000	Fiddler Crab	Aroclor-1268	1.80000
M-25	M-25(M)_10/10/2000_Fiddler Crab-R4	2000	Fiddler Crab	Aroclor-1268	2.00000
				Average	2.86808

## Raw Data Aroclor 1268 in Sediment M-25 polygon

Location	Sample ID	Year	Matrix	Parameter	res05 R Mod
M-25	M-25(S)	2000	sediment	Aroclor-1268	0.6600
M-25	02234-M-25	2002	sediment	Aroclor-1268	39.0000
M-25	03287-M-25	2003	sediment	Aroclor-1268	3.3000
M-25	04295-M-25	2004	sediment	Aroclor-1268	1.7000
M-25	05291-M-25	2005	sediment	Aroclor-1268	88.0000
M-25	06291-M-25	2006	sediment	Aroclor-1268	1.2000 D
M-25	07290-M-25	2007	sediment	Aroclor-1268	1.1000 D
SD-19	03293-SD-19	2003	sediment	Aroclor-1268	0.2800
SD-20	03293-SD-20	2003	sediment	Aroclor-1268	0.2600
SD-21	03293-SD-21	2003	sediment	Aroclor-1268	1.4000
SDMC-AET-47	06295-SDMC-AET-47	2006	sediment	Aroclor-1268	54.0000 D
SDMC-AET-48	06295-SDMC-AET-48	2006	sediment	Aroclor-1268	1.0000 D
SDMC-AET-49	06295-SDMC-AET-49	2006	sediment	Aroclor-1268	1.5000 D
SDMC-AET-50	06295-SDMC-AET-50	2006	sediment	Aroclor-1268	1.5000 D
				Average	13.9214

#### Raw Data Mercury in Fiddler Crab M-100 polygon

Location	Sample ID	Year	Matrix	Parameter	res05
M-103	0290-M-103-FC-R1	2006	Fiddler Crab	Mercury	0.15615
M-103	0290-M-103-FC-R2	2006	Fiddler Crab	Mercury	0.19302
M-103	0290-M-103-FC-R3	2006	Fiddler Crab	Mercury	0.16084
M-103	0290-M-103-FC-R4	2006	Fiddler Crab	Mercury	0.33506
M-103	0290-M-103-FC-R5	2006	Fiddler Crab	Mercury	0.21201
M-100	04299-FC-M100-1	2004	Fiddler Crab	Mercury	0.22000
M-100	04299-FC-M100-2	2004	Fiddler Crab	Mercury	0.23000
M-100	04299-FC-M100-3	2004	Fiddler Crab	Mercury	0.20000
M-100	04299-FC-M100-4	2004	Fiddler Crab	Mercury	0.19000
M-100	04299-FC-M100-5	2004	Fiddler Crab	Mercury	0.24000
M-100	04299-FC-M100-6	2004	Fiddler Crab	Mercury	0.23000
M-100	04299-FC-M100-7	2004	Fiddler Crab	Mercury	0.29000
M-103	04301-FC-M103-1	2004	Fiddler Crab	Mercury	0.23000
M-103	04301-FC-M103-2	2004	Fiddler Crab	Mercury	0.41000
M-103	04301-FC-M103-3	2004	Fiddler Crab	Mercury	0.20000
M-103	04301-FC-M103-4	2004	Fiddler Crab	Mercury	0.24000
M-103	04301-FC-M103-5	2004	Fiddler Crab	Mercury	0.19000
M-103	04301-FC-M103-6	2004	Fiddler Crab	Mercury	0.35000
M-103	04301-FC-M103-7	2004	Fiddler Crab	Mercury	0.24000
M-100	05299-FC-M-100-R1	2005	Fiddler crab	Mercury	0.25316
M-100	05299-FC-M-100-R2	2005	Fiddler crab	Mercury	0.18519
M-100	05299-FC-M-100-R3	2005	Fiddler crab	Mercury	0.21084
M-100	05299-FC-M-100-R4	2005	Fiddler crab	Mercury	0.24691
M-100	05299-FC-M-100-R5	2005	Fiddler crab	Mercury	0.21605
M-100	05299-FC-M-100-R6	2005	Fiddler crab	Mercury	0.25641
M-100	05299-FC-M-100-R7	2005	Fiddler crab	Mercury	0.26667
M-103	05299-FC-M-103-R1	2005	Fiddler crab	Mercury	0.20588
M-103	05299-FC-M-103-R2	2005	Fiddler crab	Mercury	0.21875
M-103	05299-FC-M-103-R3	2005	Fiddler crab	Mercury	0.19802
M-103	05299-FC-M-103-R4	2005	Fiddler crab	Mercury	0.21084
M-100	06290-M-100-FC-R1	2006	Fiddler Crab	Mercury	0.29590
M-100	06290-M-100-FC-R2	2006	Fiddler Crab	Mercury	0.45768
M-100	06290-M-100-FC-R3	2006	Fiddler Crab	Mercury	0.35216
M-100	06290-M-100-FC-R4	2006	Fiddler Crab	Mercury	0.33584
M-100	06290-M-100-FC-R5	2006	Fiddler Crab	Mercury	0.44444
				Average	0.25348

#### Raw Data Mercury in Sediment M-100 polygon

Location	Sample ID	Year	Matrix	Parameter	res05
C-14	C-14(S)	2000	sediment	Mercury	5.3600
C-14	05293-C-14	2005	sediment	Mercury	1.8000
C-36	C-36(S)	2000	sediment	Mercury	0.9320
C-36	05297-C-36	2005	sediment	Mercury	1.9200
C-36	06290-C-36	2006	sediment	Mercury	1.0900
M-100	04299-M-100	2004	sediment	Mercury	1.0000
M-100	05292-M-100	2005	sediment	Mercury	6.8200
M-100	06290-M-100	2006	sediment	Mercury	1.4900
M-103	04301-M-103	2004	sediment	Mercury	0.6500
M-103	05291-M-103	2005	sediment	Mercury	0.1320
M-103	06290-M-103	2006	sediment	Mercury	1.0700
M-44	M-44(S)	2000	sediment	Mercury	1.5100
M-44	05292-M-44	2005	sediment	Mercury	1.2000
SD3M-12	04297-SD3M-12	2004	sediment	Mercury	3.8000
SD3M-15	04297-SD3M-15	2004	sediment	Mercury	1.7000
SD3M-21	04295-SD3M-21	2004	sediment	Mercury	0.5800
SD-UPC-C10	05295-SD-UPC-C10	2005	sediment	Mercury	0.3000
SD-UPC-C11	05295-SD-UPC-C11	2005	sediment	Mercury	2.9300
SD-UPC-C12	05295-SD-UPC-C12	2005	sediment	Mercury	0.5430
SD-UPC-C13	05297-SD-UPC-C13	2005	sediment	Mercury	4.2500
SD-UPC-C8	05295-SD-UPC-C8	2005	sediment	Mercury	0.1090
SD-UPC-C9	05295-SD-UPC-C9	2005	sediment	Mercury	0.9820
				Average	1.8258

#### Raw Data Aroclor 1268 in Fiddler Crab M-100 polygon

Location	Sample ID	Year	Matrix	Parameter	res05 R Mod
M-103	0290-M-103-FC-R1	2006	Fiddler Crab	Aroclor-1268	0.73090
M-103	0290-M-103-FC-R2	2006	Fiddler Crab	Aroclor-1268	0.76190
M-103	0290-M-103-FC-R3	2006	Fiddler Crab	Aroclor-1268	0.80906
M-103	0290-M-103-FC-R4	2006	Fiddler Crab	Aroclor-1268	1.27490
M-103	0290-M-103-FC-R5	2006	Fiddler Crab	Aroclor-1268	1.09541
M-100	04299-FC-M100-1	2004	Fiddler Crab	Aroclor-1268	0.32258 U
M-100	04299-FC-M100-2	2004	Fiddler Crab	Aroclor-1268	0.28333 U
M-100	04299-FC-M100-3	2004	Fiddler Crab	Aroclor-1268	0.33333 U
M-100	04299-FC-M100-4	2004	Fiddler Crab	Aroclor-1268	0.31250 U
M-100	04299-FC-M100-5	2004	Fiddler Crab	Aroclor-1268	0.33333 U
M-100	04299-FC-M100-6	2004	Fiddler Crab	Aroclor-1268	0.33333 U
M-100	04299-FC-M100-7	2004	Fiddler Crab	Aroclor-1268	0.28333 U
M-103	04301-FC-M103-1	2004	Fiddler Crab	Aroclor-1268	0.31250 U
M-103	04301-FC-M103-2	2004	Fiddler Crab	Aroclor-1268	0.37037 U
M-103	04301-FC-M103-3	2004	Fiddler Crab	Aroclor-1268	0.66667
M-103	04301-FC-M103-4	2004	Fiddler Crab	Aroclor-1268	0.91429
M-103	04301-FC-M103-5	2004	Fiddler Crab	Aroclor-1268	0.61538
M-103	04301-FC-M103-6	2004	Fiddler Crab	Aroclor-1268	1.29167
M-103	04301-FC-M103-7	2004	Fiddler Crab	Aroclor-1268	1.03333
M-100	05299-FC-M-100-R1	2005	Fiddler crab	Aroclor-1268	1.36076
M-100	05299-FC-M-100-R2	2005	Fiddler crab	Aroclor-1268	1.79012
M-100	05299-FC-M-100-R3	2005	Fiddler crab	Aroclor-1268	1.65663
M-100	05299-FC-M-100-R4	2005	Fiddler crab	Aroclor-1268	1.85185
M-100	05299-FC-M-100-R5	2005	Fiddler crab	Aroclor-1268	1.94444
M-100	05299-FC-M-100-R6	2005	Fiddler crab	Aroclor-1268	2.69231
M-100	05299-FC-M-100-R7	2005	Fiddler crab	Aroclor-1268	2.93333
M-103	05299-FC-M-103-R1	2005	Fiddler crab	Aroclor-1268	0.91176
M-103	05299-FC-M-103-R2	2005	Fiddler crab	Aroclor-1268	0.75000
M-103	05299-FC-M-103-R3	2005	Fiddler crab	Aroclor-1268	1.18812
M-103	05299-FC-M-103-R4	2005	Fiddler crab	Aroclor-1268	1.65663
M-100	06290-M-100-FC-R1	2006	Fiddler Crab	Aroclor-1268	0.63091
M-100	06290-M-100-FC-R2	2006	Fiddler Crab	Aroclor-1268	0.84639
M-100	06290-M-100-FC-R3	2006	Fiddler Crab	Aroclor-1268	0.96346
M-100	06290-M-100-FC-R4	2006	Fiddler Crab	Aroclor-1268	1.29693
M-100	06290-M-100-FC-R5	2006	Fiddler Crab	Aroclor-1268	1.95402
				Average	1.04302

#### Raw Data Aroclor 1268 in Sediment M-100 polygon

Location	Sample ID	Year	Matrix	Parameter	res05	R Mod
C-14	C-14(S)	2000	sediment	Aroclor-1268	0.3000	
C-14	05293-C-14	2005	sediment	Aroclor-1268	7.3000	
C-36	C-36(S)	2000	sediment	Aroclor-1268	0.5900	
C-36	05297-C-36	2005	sediment	Aroclor-1268	3.7000	
C-36	06290-C-36	2006	sediment	Aroclor-1268	1.4000	D
M-100	04299-M-100	2004	sediment	Aroclor-1268	1.2000	
M-100	05292-M-100	2005	sediment	Aroclor-1268	8.4000	
M-100	06290-M-100	2006	sediment	Aroclor-1268	1.4000	D
M-103	04301-M-103	2004	sediment	Aroclor-1268	1.0000	
M-103	05291-M-103	2005	sediment	Aroclor-1268	0.1500	
M-103	06290-M-103	2006	sediment	Aroclor-1268	0.5900	
M-44	M-44(S)	2000	sediment	Aroclor-1268	0.5700	
M-44	05292-M-44	2005	sediment	Aroclor-1268	1.9000	
SD3M-12	04297-SD3M-12	2004	sediment	Aroclor-1268	2.4000	
SD3M-15	04297-SD3M-15	2004	sediment	Aroclor-1268	3.9000	
SD3M-21	04295-SD3M-21	2004	sediment	Aroclor-1268	0.6400	
SD-UPC-C10	05295-SD-UPC-C10	2005	sediment	Aroclor-1268	0.8300	
SD-UPC-C11	05295-SD-UPC-C11	2005	sediment	Aroclor-1268	28.0000	
SD-UPC-C12	05295-SD-UPC-C12	2005	sediment	Aroclor-1268	1.4000	
SD-UPC-C13	05297-SD-UPC-C13	2005	sediment	Aroclor-1268	3.2000	
SD-UPC-C8	05295-SD-UPC-C8	2005	sediment	Aroclor-1268	0.0120	J
SD-UPC-C9	05295-SD-UPC-C9	2005	sediment	Aroclor-1268	3.2000	
				Average	3.2765	

#### Raw Data Mercury in Fiddler Crab M-104 polygon

Location	Sample ID	Year	Matrix	Parameter	res05
M-101	04299-FC-M101-1	2004	Fiddler Crab	Mercury	0.34000
M-101	04299-FC-M101-2	2004	Fiddler Crab	Mercury	0.49000
M-101	04299-FC-M101-3	2004	Fiddler Crab	Mercury	0.36000
M-101	04299-FC-M101-4	2004	Fiddler Crab	Mercury	0.41000
M-101	04299-FC-M101-5	2004	Fiddler Crab	Mercury	0.46000
M-101	04299-FC-M101-6	2004	Fiddler Crab	Mercury	0.40000
M-101	04299-FC-M101-7	2004	Fiddler Crab	Mercury	0.41000
M-104	04301-FC-M104-1	2004	Fiddler Crab	Mercury	0.27000
M-104	04301-FC-M104-2	2004	Fiddler Crab	Mercury	0.29000
M-104	04301-FC-M104-3	2004	Fiddler Crab	Mercury	0.30000
M-104	04301-FC-M104-4	2004	Fiddler Crab	Mercury	0.25000
M-104	04301-FC-M104-5	2004	Fiddler Crab	Mercury	0.39000
M-104	04301-FC-M104-6	2004	Fiddler Crab	Mercury	0.39000
M-104	04301-FC-M104-7	2004	Fiddler Crab	Mercury	0.26000
M-101	05299-FC-M-101-R1	2005	Fiddler crab	Mercury	0.15723
M-101	05299-FC-M-101-R2	2005	Fiddler crab	Mercury	0.15337
M-101	05299-FC-M-101-R3	2005	Fiddler crab	Mercury	0.19108
M-101	05299-FC-M-101-R4	2005	Fiddler crab	Mercury	0.18987
M-101	05299-FC-M-101-R5	2005	Fiddler crab	Mercury	0.16393
M-101	05299-FC-M-101-R6	2005	Fiddler crab	Mercury	0.18519
M-101	05299-FC-M-101-R7	2005	Fiddler crab	Mercury	0.20761
M-104	05299-FC-M-104-R1	2005	Fiddler crab	Mercury	0.12500
M-104	05299-FC-M-104-R2	2005	Fiddler crab	Mercury	0.13029
M-104	05299-FC-M-104-R3	2005	Fiddler crab	Mercury	0.09524
M-104	05299-FC-M-104-R4	2005	Fiddler crab	Mercury	0.09967
M-104	05299-FC-M-104-R5	2005	Fiddler crab	Mercury	0.11194
M-104	05299-FC-M-104-R6	2005	Fiddler crab	Mercury	0.10724
M-104	05299-FC-M-104-R7	2005	Fiddler crab	Mercury	0.12658
M-104	06290-M-104-FC-R1	2006	Fiddler Crab	Mercury	0.31684
M-104	06290-M-104-FC-R2	2006	Fiddler Crab	Mercury	0.21797
M-104	06290-M-104-FC-R3	2006	Fiddler Crab	Mercury	0.31503
M-104	06290-M-104-FC-R4	2006	Fiddler Crab	Mercury	0.26792
M-104	06290-M-104-FC-R5	2006	Fiddler Crab	Mercury	0.26190
M-104	06290-M-104-FC-R6	2006	Fiddler Crab	Mercury	0.29595
M-104	06290-M-104-FC-R7	2006	Fiddler Crab	Mercury	0.36103
				Average	0.26003

### Raw Data Mercury in Sediment M-104 polygon

Location	Sample ID	Year	Matrix	Parameter	res05
A-C	02235-A-C	2002	sediment	Mercury	2.6000
A-C	03288-A-C	2003	sediment	Mercury	3.4000
A-C	04295-A-C	2004	sediment	Mercury	0.7900
A-M	02235-A-M	2002	sediment	Mercury	0.6100
A-M	03288-A-M	2003	sediment	Mercury	2.1000
A-M	04295-A-M	2004	sediment	Mercury	1.1000
C-101	04299-C-101	2004	sediment	Mercury	0.5300
C-32	C-32(S)	2000	sediment	Mercury	1.2900
C-32	05292-C-32	2005	sediment	Mercury	0.4760
M-101	04299-M-101	2004	sediment	Mercury	0.5500
M-101	05291-M-101	2005	sediment	Mercury	4.7200
M-104	04301-M-104	2004	sediment	Mercury	0.6900
M-104	05291-M-104	2005	sediment	Mercury	1.6500
M-104	06290-M-104	2006	SEDIMENT	Mercury	0.5970
M-39	M-39(S)	2000	sediment	Mercury	0.6070
M-46	M-46(S)	2000	sediment	Mercury	0.6880
M-46	02236-M-46	2002	sediment	Mercury	0.6100
M-46	03287-M-46	2003	sediment	Mercury	0.5900
M-46	04295-M-46	2004	sediment	Mercury	0.3800
SD3M-14	04296-SD3M-14	2004	sediment	Mercury	0.7800
SD3M-16	04295-SD3M-16	2004	sediment	Mercury	0.5700
SD3M-22	04296-SD3M-22	2004	sediment	Mercury	0.7500
SD3M-25	04296-SD3M-25	2004	sediment	Mercury	0.8800
SD-UPC-C2	05295-SD-UPC-C2	2005	sediment	Mercury	0.9270
SD-UPC-C3	05295-SD-UPC-C3	2005	sediment	Mercury	2.9600
SD-UPC-C4	05295-SD-UPC-C4	2005	sediment	Mercury	1.2800
SD-UPC-C5	05295-SD-UPC-C5	2005	sediment	Mercury	2.6200
				Average	1.2869

### Raw Data Aroclor 1268 in Fiddler Crab M-104 polygon

Location	Sample ID	Year	Matrix	Parameter	res05 R Mod
M-101	04299-FC-M101-1	2004	Fiddler Crab	Aroclor-1268	0.33333 U
M-101	04299-FC-M101-2	2004	Fiddler Crab	Aroclor-1268	0.17241 U
M-101	04299-FC-M101-3	2004	Fiddler Crab	Aroclor-1268	0.18519 U
M-101	04299-FC-M101-4	2004	Fiddler Crab	Aroclor-1268	0.17241 U
M-101	04299-FC-M101-5	2004	Fiddler Crab	Aroclor-1268	0.17857 U
M-101	04299-FC-M101-6	2004	Fiddler Crab	Aroclor-1268	0.16667 U
M-101	04299-FC-M101-7	2004	Fiddler Crab	Aroclor-1268	0.37037 U
M-104	04301-FC-M104-1	2004	Fiddler Crab	Aroclor-1268	0.17241 U
M-104	04301-FC-M104-2	2004	Fiddler Crab	Aroclor-1268	0.16129 U
M-104	04301-FC-M104-3	2004	Fiddler Crab	Aroclor-1268	0.17857 U
M-104	04301-FC-M104-4	2004	Fiddler Crab	Aroclor-1268	0.18519 U
M-104	04301-FC-M104-5	2004	Fiddler Crab	Aroclor-1268	0.18519 U
M-104	04301-FC-M104-6	2004	Fiddler Crab	Aroclor-1268	0.22727 U
M-104	04301-FC-M104-7	2004	Fiddler Crab	Aroclor-1268	0.34483 U
M-101	05299-FC-M-101-R1	2005	Fiddler crab	Aroclor-1268	0.34591
M-101	05299-FC-M-101-R2	2005	Fiddler crab	Aroclor-1268	0.49080 J
M-101	05299-FC-M-101-R3	2005	Fiddler crab	Aroclor-1268	0.28025
M-101	05299-FC-M-101-R4	2005	Fiddler crab	Aroclor-1268	0.34810
M-101	05299-FC-M-101-R5	2005	Fiddler crab	Aroclor-1268	0.45902
M-101	05299-FC-M-101-R6	2005	Fiddler crab	Aroclor-1268	0.46296
M-101	05299-FC-M-101-R7	2005	Fiddler crab	Aroclor-1268	0.76125
M-104	05299-FC-M-104-R1	2005	Fiddler crab	Aroclor-1268	0.87500
M-104	05299-FC-M-104-R2	2005	Fiddler crab	Aroclor-1268	0.61889
M-104	05299-FC-M-104-R3	2005	Fiddler crab	Aroclor-1268	1.07937
M-104	05299-FC-M-104-R4	2005	Fiddler crab	Aroclor-1268	0.36545
M-104	05299-FC-M-104-R5	2005	Fiddler crab	Aroclor-1268	1.19403
M-104	05299-FC-M-104-R6	2005	Fiddler crab	Aroclor-1268	0.67024
M-104	05299-FC-M-104-R7	2005	Fiddler crab	Aroclor-1268	0.47468
M-104	06290-M-104-FC-R1	2006	Fiddler Crab	Aroclor-1268	0.25253
M-104	06290-M-104-FC-R2	2006	Fiddler Crab	Aroclor-1268	0.24837
M-104	06290-M-104-FC-R3	2006	Fiddler Crab	Aroclor-1268	0.49020
M-104	06290-M-104-FC-R4	2006	Fiddler Crab	Aroclor-1268	0.29693
M-104	06290-M-104-FC-R5	2006	Fiddler Crab	Aroclor-1268	0.53968
M-104	06290-M-104-FC-R6	2006	Fiddler Crab	Aroclor-1268	0.64189
M-104	06290-M-104-FC-R7	2006	Fiddler Crab	Aroclor-1268	0.84559
				Average	0.42214

### Raw Data Aroclor 1268 in Sediment M-104 polygon

Location	Sample ID	Year	Matrix	Parameter	res05
A-C	02235-A-C	2002	sediment	Aroclor-1268	4.1000
A-C	03288-A-C	2003	sediment	Aroclor-1268	0.7300
A-C	04295-A-C	2004	sediment	Aroclor-1268	1.3000
A-M	02235-A-M	2002	sediment	Aroclor-1268	0.6100
A-M	03288-A-M	2003	sediment	Aroclor-1268	0.8400
A-M	04295-A-M	2004	sediment	Aroclor-1268	1.1000
C-101	04299-C-101	2004	sediment	Aroclor-1268	0.9700
C-32	C-32(S)	2000	sediment	Aroclor-1268	0.6300
C-32	05292-C-32	2005	sediment	Aroclor-1268	0.9500
M-101	04299-M-101	2004	sediment	Aroclor-1268	2.0000
M-101	05291-M-101	2005	sediment	Aroclor-1268	8.6000
M-104	04301-M-104	2004	sediment	Aroclor-1268	1.4000
M-104	05291-M-104	2005	sediment	Aroclor-1268	1.7000
M-104	06290-M-104	2006	sediment	Aroclor-1268	0.7400
M-39	M-39(S)	2000	sediment	Aroclor-1268	0.2700
M-46	M-46(S)	2000	sediment	Aroclor-1268	0.1700
M-46	02236-M-46	2002	sediment	Aroclor-1268	0.7000
M-46	03287-M-46	2003	sediment	Aroclor-1268	0.6600
M-46	04295-M-46	2004	sediment	Aroclor-1268	0.6600
SD3M-14	04296-SD3M-14	2004	sediment	Aroclor-1268	0.5400
SD3M-16	04295-SD3M-16	2004	sediment	Aroclor-1268	0.8000
SD3M-22	04296-SD3M-22	2004	sediment	Aroclor-1268	0.8500
SD3M-25	04296-SD3M-25	2004	sediment	Aroclor-1268	0.5800
SD-UPC-C2	05295-SD-UPC-C2	2005	sediment	Aroclor-1268	4.8000
SD-UPC-C3	05295-SD-UPC-C3	2005	sediment	Aroclor-1268	20.0000
SD-UPC-C4	05295-SD-UPC-C4	2005	sediment	Aroclor-1268	3.0000
SD-UPC-C5	05295-SD-UPC-C5	2005	sediment	Aroclor-1268	5.2000
				Average	2.3667

### Raw Data Mercury in Fiddler Crab M-108 polygon

Location	Sample ID	Year	Matrix	Parameter	res05 R Mo	d
M-108	04300-FC-M108-1	2004	Fiddler Crab	Mercury	0.48000	
M-108	04300-FC-M108-2	2004	Fiddler Crab	Mercury	0.36000	
M-108	04300-FC-M108-3	2004	Fiddler Crab	Mercury	0.37000	
M-108	04300-FC-M108-4	2004	Fiddler Crab	Mercury	0.26000	
M-108	04300-FC-M108-5	2004	Fiddler Crab	Mercury	0.32000	
M-108	04300-FC-M108-6	2004	Fiddler Crab	Mercury	0.28000	
M-108	04300-FC-M108-7	2004	Fiddler Crab	Mercury	0.36000	
M-108	05300-FC-M-108-R1	2005	Fiddler crab	Mercury	0.05917	
M-108	05300-FC-M-108-R2	2005	Fiddler crab	Mercury	0.06154	
M-108	05300-FC-M-108-R3	2005	Fiddler crab	Mercury	0.08876	
M-108	05300-FC-M-108-R4	2005	Fiddler crab	Mercury	0.08523	
M-108	05300-FC-M-108-R5	2005	Fiddler crab	Mercury	0.14493	
M-108	05300-FC-M-108-R6	2005	Fiddler crab	Mercury	0.14706	
M-108	05300-FC-M-108-R7	2005	Fiddler crab	Mercury	0.11834	
M-108	06292-M-108-FC-R1	2006	Fiddler Crab	Mercury	0.21806	
M-108	06292-M-108-FC-R2	2006	Fiddler Crab	Mercury	0.24396	
M-108	06292-M-108-FC-R3	2006	Fiddler Crab	Mercury	0.22508	
M-108	06292-M-108-FC-R4	2006	Fiddler Crab	Mercury	0.19610	
M-108	06292-M-108-FC-R5	2006	Fiddler Crab	Mercury	0.24803	
M-108	06292-M-108-FC-R6	2006	Fiddler Crab	Mercury	0.22915	
M-108	06292-M-108-FC-R7	2006	Fiddler Crab	Mercury	0.22098	
				Average	0.22459	

### Raw Data Mercury in Sediment M-108 polygon

Location	Sample ID	Year	Matrix	Parameter	res05 R Mod
C-104	04299-C-104	2004	sediment	Mercury	0.5100
C-104	05299-C-104	2005	sediment	Mercury	1.9000
C-104	06289-C-104	2006	sediment	Mercury	0.2760
M-108	04300-M-108	2004	sediment	Mercury	0.0100 U
M-108	05299-M-108	2005	sediment	Mercury	0.3700
M-108	06289-M-108	2006	sediment	Mercury	0.4570
SD5M-12	04294-SD5M-12	2004	sediment	Mercury	0.3300
SD5M-27	04294-SD5M-27	2004	sediment	Mercury	0.2200
SD5M-5	04295-SD5M-5	2004	sediment	Mercury	0.3000
				Average	0.4859

### Raw Data Aroclor 1268 in Fiddler Crab M-108 polygon

Location	Sample ID	Year	Matrix	Parameter	res05 R Mod
M-108	04300-FC-M108-1	2004	Fiddler Crab	Aroclor-1268	0.16129 U
M-108	04300-FC-M108-2	2004	Fiddler Crab	Aroclor-1268	0.16667 U
M-108	04300-FC-M108-3	2004	Fiddler Crab	Aroclor-1268	0.16129 U
M-108	04300-FC-M108-4	2004	Fiddler Crab	Aroclor-1268	0.15625 U
M-108	04300-FC-M108-5	2004	Fiddler Crab	Aroclor-1268	0.15152 U
M-108	04300-FC-M108-6	2004	Fiddler Crab	Aroclor-1268	0.15625 U
M-108	04300-FC-M108-7	2004	Fiddler Crab	Aroclor-1268	0.16129 U
M-108	05300-FC-M-108-R1	2005	Fiddler crab	Aroclor-1268	0.26923
M-108	05300-FC-M-108-R2	2005	Fiddler crab	Aroclor-1268	0.22462
M-108	05300-FC-M-108-R3	2005	Fiddler crab	Aroclor-1268	0.24260
M-108	05300-FC-M-108-R4	2005	Fiddler crab	Aroclor-1268	0.31250
M-108	05300-FC-M-108-R5	2005	Fiddler crab	Aroclor-1268	0.22899
M-108	05300-FC-M-108-R6	2005	Fiddler crab	Aroclor-1268	0.32353
M-108	05300-FC-M-108-R7	2005	Fiddler crab	Aroclor-1268	0.32544
M-108	06292-M-108-FC-R1	2006	Fiddler Crab	Aroclor-1268	0.11037
M-108	06292-M-108-FC-R2	2006	Fiddler Crab	Aroclor-1268	0.10403
M-108	06292-M-108-FC-R3	2006	Fiddler Crab	Aroclor-1268	0.12871
M-108	06292-M-108-FC-R4	2006	Fiddler Crab	Aroclor-1268	0.14286
M-108	06292-M-108-FC-R5	2006	Fiddler Crab	Aroclor-1268	0.12500
M-108	06292-M-108-FC-R6	2006	Fiddler Crab	Aroclor-1268	0.13220
M-108	06292-M-108-FC-R7	2006	Fiddler Crab	Aroclor-1268	0.18182
				Average	0.18888

### Raw Data Aroclor 1268 in Sediment M-108 polygon

Location	Sample ID	Year	Matrix	Parameter	res05 R Mod
C-104	04299-C-104	2004	sediment	Aroclor-1268	0.6700
C-104	05299-C-104	2005	sediment	Aroclor-1268	0.0440 J
C-104	06289-C-104	2006	sediment	Aroclor-1268	0.2100
M-108	04300-M-108	2004	sediment	Aroclor-1268	0.0275 U
M-108	05299-M-108	2005	sediment	Aroclor-1268	0.4100
M-108	06289-M-108	2006	sediment	Aroclor-1268	0.1500
SD5M-12	04294-SD5M-12	2004	sediment	Aroclor-1268	0.1200
SD5M-27	04294-SD5M-27	2004	sediment	Aroclor-1268	0.4200
SD5M-5	04295-SD5M-5	2004	sediment	Aroclor-1268	0.2500
				Average	0.2557

### Raw Data Mercury in Fiddler Crab M-204 polygon

Location	Sample ID	Year	Matrix	Parameter	res05
M-204	05301-FC-M-204-R1	2005	Fiddler Crab	Mercury	0.25237
M-204	05301-FC-M-204-R2	2005	Fiddler Crab	Mercury	0.28391
M-204	05301-FC-M-204-R3	2005	Fiddler Crab	Mercury	0.24922
M-204	05301-FC-M-204-R4	2005	Fiddler Crab	Mercury	0.27607
M-204	05301-FC-M-204-R5	2005	Fiddler Crab	Mercury	0.30211
M-204	05301-FC-M-204-R6	2005	Fiddler Crab	Mercury	0.26946
M-204	05301-FC-M-204-R7	2005	Fiddler Crab	Mercury	0.30100
M-204	06290-M-204-FC-R1	2006	Fiddler Crab	Mercury	0.39726
M-204	06290-M-204-FC-R2	2006	Fiddler Crab	Mercury	0.31212
M-204	06290-M-204-FC-R3	2006	Fiddler Crab	Mercury	0.30382
M-204	06290-M-204-FC-R4	2006	Fiddler Crab	Mercury	0.27716
M-204	06290-M-204-FC-R5	2006	Fiddler Crab	Mercury	0.41993
M-204	06290-M-204-FC-R6	2006	Fiddler Crab	Mercury	0.38361
M-204	06290-M-204-FC-R7	2006	Fiddler Crab	Mercury	0.45645
				Average	0.32032

### Raw Data Mercury in Sediment M-204 polygon

Location	Sample ID	Year	Matrix	Parameter	res05
C-200	05304-C-200	2005	sediment	Mercury	4.4300
C-34	C-34(S)	2000	sediment	Mercury	1.5500
C-34	05292-C-34	2005	sediment	Mercury	2.4500
C-34	06290-C-34	2006	sediment	Mercury	8.3700
C-34	07289-C-34	2007	sediment	Mercury	7.7200
FS-AREA1	05302-FS-AREA1	2005	sediment	Mercury	0.6860
FS-AREA1	06289-FS-AREA-1	2006	sediment	Mercury	1.0700
FS-AREA1	07290-FS-AREA-1	2007	sediment	Mercury	1.1000
M-204	05301-M-204	2005	sediment	Mercury	1.3900
M-204	06290-M-204	2006	sediment	Mercury	0.9330
M-41	M-41(S)	2000	sediment	Mercury	3.1700
M-41	05292-M-41	2005	sediment	Mercury	2.8600
M-41	06290-M-41	2006	sediment	Mercury	1.7600
				Average	2.8838

### Raw Data Aroclor 1268 in Fiddler Crab M-204 polgon

Location	Sample ID	Year	Matrix	Parameter	res05	R Mod
M-204	05301-FC-M-204-R1	2005	Fiddler Crab	Aroclor-1268	0.69401	
M-204	05301-FC-M-204-R2	2005	Fiddler Crab	Aroclor-1268	0.72555	
M-204	05301-FC-M-204-R3	2005	Fiddler Crab	Aroclor-1268	0.77882	
M-204	05301-FC-M-204-R4	2005	Fiddler Crab	Aroclor-1268	0.67485	
M-204	05301-FC-M-204-R5	2005	Fiddler Crab	Aroclor-1268	0.78550	
M-204	05301-FC-M-204-R6	2005	Fiddler Crab	Aroclor-1268	0.77844	
M-204	05301-FC-M-204-R7	2005	Fiddler Crab	Aroclor-1268	0.96990	
M-204	06290-M-204-FC-R1	2006	Fiddler Crab	Aroclor-1268	0.33219	
M-204	06290-M-204-FC-R2	2006	Fiddler Crab	Aroclor-1268	0.37037	
M-204	06290-M-204-FC-R3	2006	Fiddler Crab	Aroclor-1268	0.57325	
M-204	06290-M-204-FC-R4	2006	Fiddler Crab	Aroclor-1268	0.27336	
M-204	06290-M-204-FC-R5	2006	Fiddler Crab	Aroclor-1268	0.60498	
M-204	06290-M-204-FC-R6	2006	Fiddler Crab	Aroclor-1268	0.59016	
M-204	06290-M-204-FC-R7	2006	Fiddler Crab	Aroclor-1268	1.35889	
				Average	0.67930	

### Raw Data Aroclor 1268 in Sediment M-204 polygon

Location	Sample ID	Year	Matrix	Parameter	res05 R Mod
C-200	05304-C-200	2005	sediment	Aroclor-1268	8.2000
C-34	C-34(S)	2000	sediment	Aroclor-1268	0.0590 J
C-34	05292-C-34	2005	sediment	Aroclor-1268	2.7000
C-34	06290-C-34	2006	sediment	Aroclor-1268	9.0000 D
C-34	07289-C-34	2007	sediment	Aroclor-1268	6.5000 D
FS-AREA1	05302-FS-AREA1	2005	sediment	Aroclor-1268	1.3000
FS-AREA1	06289-FS-AREA-1	2006	sediment	Aroclor-1268	0.9200
FS-AREA1	07290-FS-AREA-1	2007	sediment	Aroclor-1268	0.6300
M-204	05301-M-204	2005	sediment	Aroclor-1268	2.7000
M-204	06290-M-204	2006	sediment	Aroclor-1268	0.8100
M-41	M-41(S)	2000	sediment	Aroclor-1268	0.5200
M-41	05292-M-41	2005	sediment	Aroclor-1268	2.8000
M-41	06290-M-41	2006	sediment	Aroclor-1268	1.5000 D
				Average	2.8953

### Raw Data Mercury in Fiddler Crab TC polygon

Location	Sample ID	Year	Matrix	Parameter	res05 R Mod
TC-M	03289-FC-M-TC-1	2003	Fiddler Crab	Mercury	0.0430
TC-M	03289-FC-M-TC-5	2003	Fiddler Crab	Mercury	0.0250
TC-M	03290-FC-M-TC-2	2003	Fiddler Crab	Mercury	0.0320
TC-M	03290-FC-M-TC-3	2003	Fiddler Crab	Mercury	0.0350
TC-M	03290-FC-M-TC-4	2003	Fiddler Crab	Mercury	0.0330
TC-M	04295-FC-TC-1	2004	Fiddler Crab	Mercury	0.0330
TC-M	04295-FC-TC-2	2004	Fiddler Crab	Mercury	0.0330
TC-M	04295-FC-TC-3	2004	Fiddler Crab	Mercury	0.0240
TC-M	04295-FC-TC-4	2004	Fiddler Crab	Mercury	0.0250
TC-M	04295-FC-TC-5	2004	Fiddler Crab	Mercury	0.0270
TC-M	04295-FC-TC-6	2004	Fiddler Crab	Mercury	0.0380
TC-M	04295-FC-TC-7	2004	Fiddler Crab	Mercury	0.0220
TC-C	05300-FC-TC-R1	2005	Fiddler crab	Mercury	0.0619
TC-C	05300-FC-TC-R2	2005	Fiddler crab	Mercury	0.0299
TC-C	05300-FC-TC-R3	2005	Fiddler crab	Mercury	0.0296
TC-C	05300-FC-TC-R4	2005	Fiddler crab	Mercury	0.0294
TC-C	05300-FC-TC-R5	2005	Fiddler crab	Mercury	0.0560
TC-C	05300-FC-TC-R6	2005	Fiddler crab	Mercury	0.0595
TC-C	05300-FC-TC-R7	2005	Fiddler crab	Mercury	0.0683
TC-M	06292-TC-M-FC-R1	2006	Fiddler Crab	Mercury	0.0851
TC-M	06292-TC-M-FC-R2	2006	Fiddler Crab	Mercury	0.0893
TC-M	06292-TC-M-FC-R3	2006	Fiddler Crab	Mercury	0.0930
TC-M	06292-TC-M-FC-R4	2006	Fiddler Crab	Mercury	0.0980
TC-M	06292-TC-M-FC-R5	2006	Fiddler Crab	Mercury	0.1281
TC-M	06292-TC-M-FC-R6	2006	Fiddler Crab	Mercury	0.0925
TC-M	06292-TC-M-FC-R7	2006	Fiddler Crab	Mercury	0.1151
TC-M	07291-TC-M-FC-R1	2007	Fiddler Crab	Mercury	0.0562
TC-M	07291-TC-M-FC-R2	2007	Fiddler Crab	Mercury	0.0783
TC-M	07291-TC-M-FC-R3	2007	Fiddler Crab	Mercury	0.0386
TC-C	TC-FC R1	2002	Fiddler Crab	Mercury	0.0100 U
TC-C	TC-FC R2	2002	Fiddler Crab	Mercury	0.0270
TC-C	TC-FC R3	2002	Fiddler Crab	Mercury	0.0320
TC-C	TC-FC R4	2002	Fiddler Crab	Mercury	0.0300
TC-C	TC-FC R5	2002	Fiddler Crab	Mercury	0.0350
				Average	0.0504

### Raw Data Mercury in Sediment TC polygon

Location	Sample ID	Year	Matrix	Parameter	res05 R Mod
TC-C	02235-TC-C	2002	sediment	Mercury	0.0380
TC-C	03289-TC-C	2003	sediment	Mercury	0.0440
TC-C	04295-TC-C	2004	sediment	Mercury	0.0260
TC-C	05300-TC-C	2005	sediment	Mercury	0.0921
TC-C	06291-TC-C	2006	sediment	Mercury	0.0742
TC-C	07291-TC-C	2007	sediment	Mercury	0.1180
TC-C(S)	TC-C(S)_10/13/2000_sediment	2000	sediment	Mercury	0.0520 B*
TC-M	02235-TC-M	2002	sediment	Mercury	0.0940
TC-M	03289-TC-M	2003	sediment	Mercury	0.0760
TC-M	04295-TC-M	2004	sediment	Mercury	0.0480
TC-M	05300-TC-M	2005	sediment	Mercury	0.1970
TC-M	06291-TC-M	2006	sediment	Mercury	0.0889
TC-M	07291-TC-M	2007	sediment	Mercury	0.0814
TC-M(S)	TC-M(S)	2000	sediment	Mercury	0.1200 *
. ,	• •			Average	0.0821

### Raw Data Aroclor 1268 in Fiddler Crab TC polygon

Location	Sample ID	Year	Matrix	Parameter	res05 R Mod
TC-M	03289-FC-M-TC-1	2003	Fiddler Crab	Aroclor-1268	0.34500 U
TC-M	03289-FC-M-TC-5	2003	Fiddler Crab	Aroclor-1268	1.20000
TC-M	03290-FC-M-TC-2	2003	Fiddler Crab	Aroclor-1268	0.30500 U
TC-M	03290-FC-M-TC-3	2003	Fiddler Crab	Aroclor-1268	1.80000
TC-M	03290-FC-M-TC-4	2003	Fiddler Crab	Aroclor-1268	1.30000
TC-M	04295-FC-TC-1	2004	Fiddler Crab	Aroclor-1268	0.19355 U
TC-M	04295-FC-TC-2	2004	Fiddler Crab	Aroclor-1268	0.28333 U
TC-M	04295-FC-TC-3	2004	Fiddler Crab	Aroclor-1268	0.20000 U
TC-M	04295-FC-TC-4	2004	Fiddler Crab	Aroclor-1268	0.22581 U
TC-M	04295-FC-TC-5	2004	Fiddler Crab	Aroclor-1268	0.33333 U
TC-M	04295-FC-TC-6	2004	Fiddler Crab	Aroclor-1268	0.29310 U
TC-M	04295-FC-TC-7	2004	Fiddler Crab	Aroclor-1268	0.33333 U
TC-C	05300-FC-TC-R1	2005	Fiddler crab	Aroclor-1268	0.01703 U
TC-C	05300-FC-TC-R2	2005	Fiddler crab	Aroclor-1268	0.04940 U
TC-C	05300-FC-TC-R3	2005	Fiddler crab	Aroclor-1268	0.02515 U
TC-C	05300-FC-TC-R4	2005	Fiddler crab	Aroclor-1268	0.02500 U
TC-C	05300-FC-TC-R5	2005	Fiddler crab	Aroclor-1268	0.01681 U
TC-C	05300-FC-TC-R6	2005	Fiddler crab	Aroclor-1268	0.02530 U
TC-C	05300-FC-TC-R7	2005	Fiddler crab	Aroclor-1268	0.01655 U
TC-M	06292-TC-M-FC-R1	2006	Fiddler Crab	Aroclor-1268	0.02006 J
TC-M	06292-TC-M-FC-R2	2006	Fiddler Crab	Aroclor-1268	0.02240 J
TC-M	06292-TC-M-FC-R3	2006	Fiddler Crab	Aroclor-1268	0.01706 J
TC-M	06292-TC-M-FC-R4	2006	Fiddler Crab	Aroclor-1268	0.01871 J
TC-M	06292-TC-M-FC-R5	2006	Fiddler Crab	Aroclor-1268	0.01376 J
TC-M	06292-TC-M-FC-R6	2006	Fiddler Crab	Aroclor-1268	0.01993 J
TC-M	06292-TC-M-FC-R7	2006	Fiddler Crab	Aroclor-1268	0.01164 JP
TC-M	07291-TC-M-FC-R1	2007	Fiddler Crab	Aroclor-1268	0.00302 U
TC-M	07291-TC-M-FC-R2	2007	Fiddler Crab	Aroclor-1268	0.00302 U
TC-M	07291-TC-M-FC-R3	2007	Fiddler Crab	Aroclor-1268	0.01297 J
TC-C	TC-FC R1	2002	Fiddler Crab	Aroclor-1268	0.02500 U
TC-C	TC-FC R2	2002	Fiddler Crab	Aroclor-1268	0.02500 U
TC-C	TC-FC R3	2002	Fiddler Crab	Aroclor-1268	0.50000
TC-C	TC-FC R4	2002	Fiddler Crab	Aroclor-1268	0.02500 U
TC-C	TC-FC R5	2002	Fiddler Crab	Aroclor-1268	0.17000
				Average	0.23163

### Raw Data Aroclor 1268 in Sediment TC polygon

Location	Sample ID	Year	Matrix	Parameter	res05 R Mod
TC-C	02235-TC-C	2002	sediment	Aroclor-1268	0.0250 U
TC-C	03289-TC-C	2003	sediment	Aroclor-1268	0.1000 U
TC-C	04295-TC-C	2004	sediment	Aroclor-1268	0.0320 U
TC-C	05300-TC-C	2005	sediment	Aroclor-1268	0.0150 U
TC-C	06291-TC-C	2006	sediment	Aroclor-1268	0.0260
TC-C	07291-TC-C	2007	sediment	Aroclor-1268	0.0650 J,D
TC-C(S)	TC-C(S)_10/13/2000_sediment	2000	sediment	Aroclor-1268	0.0445 U
TC-M	02235-TC-M	2002	sediment	Aroclor-1268	0.0250 U
TC-M	03289-TC-M	2003	sediment	Aroclor-1268	0.1650 U
TC-M	04295-TC-M	2004	sediment	Aroclor-1268	0.0335 U
TC-M	05300-TC-M	2005	sediment	Aroclor-1268	0.0900 J
TC-M	06291-TC-M	2006	sediment	Aroclor-1268	0.0290
TC-M	07291-TC-M	2007	sediment	Aroclor-1268	0.0290
TC-M(S)	TC-M(S)	2000	sediment	Aroclor-1268	0.0315 U
				Average	0.0508

Appendix K-2

Mummichog Data for Each Polygon

Appendix K-2a: Mummichog Tissue Data for Each Polygon

Appendix K-2b: Mummichog Sediment Data for Each Polygon

#### Appendix 2a.__Mummichog Tissue Data for Each Polygon

All data averages are listed in **Bold** 

	C-5				C-9		
Mercury	Aroclor 1268	Lead	%Lipid	Mercury	Aroclor 1268	Lead	%Lipid
0.54000	5.70000	0.59000	12.30000	0.45000	3.50000	0.36000	14.70000
0.54000	9.10000	0.54999	12.70000	0.49000	4.30000	0.42999	12.70000
0.90999	2.78261	0.37000		0.56000	2.90000	0.43999	24.50000
0.21097	3.03798	0.54852		0.61999	5.65217	0.12500	
0.53941	3.56847	0.37551		0.75999	1.90909	0.24999	
0.21367	2.43590	0.37393		0.87999	3.00000	0.26999	
0.31396	3.37838	0.29279		0.39682	4.76191	0.37500	
0.26508	2.54310	0.68534		0.36585	6.09756	0.37601	
0.22478	5.55556	0.23504		0.55147	8.45588	0.37500	
0.50205	4.52675	0.21810		0.59523	5.95238	1.21429	
0.48192	6.02410	0.26907		0.52083	2.41667	0.18333	
0.50607	4.85830	0.36842		0.57851	2.39669	0.16528	
0.69999	4.00000	0.50000		1.28854	4.34783	0.31620	
0.75000	3.90000	0.50000		0.66917	8.64662	0.21428	
0.47999	3.90000	1.00000		0.75697	6.37450	0.25099	
2.10000	3.10000	0.50000		1.00000	2.30000	2.40000	
0.57987	4.27570	0.46104	12.50000	0.62000	18.00000	1.30000	
				1.70000	2.10000	2.30000	
				9.10000	12.00000	1.80000	
				0.77999	2.60000	1.10000	
	C-6			0.70999	0.94999	0.85000	
Mercury	Aroclor 1268	Lead	%Lipid	0.83999	1.20000	1.00000	
0.70999	6.80000	0.31000	10.00000	1.10152	4.99370	0.73161	17.30000
0.69000	11.00000	0.37999	20.40000				
0.73000	6.10000	0.51999					
1.40000	2.91304	0.25999					
1.50000	3.31818	0.12499			C-13		
1.10000	4.16667	0.12499		Mercury	Aroclor 1268	Lead	%Lipid
0.65573	6.96721	0.37499		0.18999	0.99999	1.10000	12.30000
0.63197	5.94796	0.48760		0.20000	1.40000	0.61999	9.80000
0.49808	8.04598	0.22727		0.12999	1.50000	0.65000	12.40000
0.94214	20.24794	0.31250		0.40999	1.66667	0.12499	
0.63636	5.37190	0.19921		0.30999	1.43478	0.12500	
0.91666	5.83333	0.27667		0.35999	1.54545	0.12499	
0.33984	12.50000	0.24150		0.19762	0.83003	0.37549	
		4 00000		0.16949	3.26271	0.37500	
1.30040	9.09091	1.80000					
1.30040 0.72075	9.09091 12.83019	1.50000		0.21367	0.81196	0.64102	
					0.81196 2.10000		
0.72075	12.83019	1.50000		0.21367		0.64102	
0.72075 1.50000	12.83019 8.10000	1.50000 1.10000		0.21367 0.37999	2.10000	0.64102 2.20000	
0.72075 1.50000 1.40000	12.83019 8.10000 8.00000	1.50000 1.10000 1.00000		0.21367 0.37999 0.56000	2.10000 3.30000	0.64102 2.20000 1.90000	
0.72075 1.50000 1.40000 0.77999	12.83019 8.10000 8.00000 7.70000	1.50000 1.10000 1.00000 1.05000		0.21367 0.37999 0.56000 0.34000	2.10000 3.30000 3.00000	0.64102 2.20000 1.90000 1.20000	
0.72075 1.50000 1.40000 0.77999 0.43000	12.83019 8.10000 8.00000 7.70000 1.40000	1.50000 1.10000 1.00000 1.05000		0.21367 0.37999 0.56000 0.34000 0.27000	2.10000 3.30000 3.00000 0.37000	0.64102 2.20000 1.90000 1.20000 1.05000	

	C-39	1			C-100		
Mercury	Aroclor 1268	, Lead	%Lipid	Mercury	Aroclor 1268	Lead	%Lipid
0.36585	6.50407	0.37499	9.50000	0.41999	2.13636	0.29999	7.90000
0.53278	3.27869	0.68067	11.90000	0.36999	2.25000	0.12499	7.10000
0.45081	2.90984	1.08299	10.80000	0.37000	2.72000	0.12500	8.20000
0.39621	2.26891	1.45106	10.40000	0.24999	3.50000	0.37500	
0.33402	1.45228	0.79600		0.25423	5.50848	0.37500	
0.31319	2.59574	0.42187		0.25641	3.37607	0.37393	
0.42400	2.28000	0.43089		0.29399	3.13305	0.27038	
0.69531	3.90625	1.30000		0.23776	2.27468	0.36480	
0.45121	3.29268	1.50000		0.25291	2.08333	0.37500	
0.50999	1.60000	1.50000		0.30059	2.99800	0.29823	7.73333
0.50999	8.25000	1.00000					
0.30999	1.10000	0.85999					
0.25999	1.52000	0.85999					
0.54999	2.47826	1.48760			C-102		
0.24999	1.50000	0.50420		Mercury	Aroclor 1268	Lead	%Lipid
0.41322	3.59504	2.03659		0.25000	1.17391	0.29999	8.80000
0.50420	1.80672	2.11618		0.20000	1.04348	0.12500	7.80000
0.18008	1.86992	2.08871		0.15999	0.56818	0.39999	7.10000
0.13817	1.57676	0.68595		0.25641	1.75214	0.37393	
0.12499	1.41129	0.96943		0.17094	1.58120	0.37606	
0.37809	2.80992	0.83673		0.22222	0.71111	0.44444	
0.29694	3.10044	2.10000		0.20993	1.13834	0.33657	7.90000
0.29591	2.28571	1.80000					
0.50999	0.43000	2.10000					
0.40000	4.10000	70.00000					
0.10000	2.10000	6.50000			C-103		
0.33000	1.10000	1.50000		Mercury	Aroclor 1268	Lead	%Lipid
0.33000 0.36000	1.10000 0.69999	1.50000 0.49382		Mercury 0.16000	Aroclor 1268 0.95833	<b>Lead</b> 0.27999	%Lipid 7.40000
0.36000	0.69999	0.49382		0.16000	0.95833	0.27999	7.40000
0.36000 0.41999	0.69999 0.57999	0.49382 0.71548		0.16000 0.17000	0.95833 0.66666	0.27999 0.12499	7.40000 9.00000
0.36000 0.41999 0.37613	0.69999 0.57999 3.00411	0.49382 0.71548 0.50826		0.16000 0.17000 0.17999	0.95833 0.66666 0.65384	0.27999 0.12499 0.12499	7.40000 9.00000 2.30000
0.36000 0.41999 0.37613 0.29707	0.69999 0.57999 3.00411 2.92887	0.49382 0.71548 0.50826 0.76587		0.16000 0.17000 0.17999 0.12692	0.95833 0.66666 0.65384 1.11111	0.27999 0.12499 0.12499 0.21367	7.40000 9.00000 2.30000 14.00000
0.36000 0.41999 0.37613 0.29707 0.32479	0.69999 0.57999 3.00411 2.92887 2.31405	0.49382 0.71548 0.50826 0.76587 0.71146		0.16000 0.17000 0.17999 0.12692 0.09629	0.95833 0.66666 0.65384 1.11111 0.86419	0.27999 0.12499 0.12499 0.21367 0.37448	7.40000 9.00000 2.30000 14.00000 11.40000
0.36000 0.41999 0.37613 0.29707 0.32479 0.33412	0.69999 0.57999 3.00411 2.92887 2.31405 2.50000	0.49382 0.71548 0.50826 0.76587		0.16000 0.17000 0.17999 0.12692 0.09629 0.10585	0.95833 0.66666 0.65384 1.11111 0.86419 1.00418	0.27999 0.12499 0.12499 0.21367 0.37448 0.37656	7.40000 9.00000 2.30000 14.00000
0.36000 0.41999 0.37613 0.29707 0.32479 0.33412 0.50592	0.69999 0.57999 3.00411 2.92887 2.31405 2.50000 2.84585	0.49382 0.71548 0.50826 0.76587 0.71146		0.16000 0.17000 0.17999 0.12692 0.09629 0.10585 0.09918	0.95833 0.66666 0.65384 1.11111 0.86419 1.00418 0.69672	0.27999 0.12499 0.12499 0.21367 0.37448 0.37656 0.13934	7.40000 9.00000 2.30000 14.00000 11.40000
0.36000 0.41999 0.37613 0.29707 0.32479 0.33412 0.50592 0.26285	0.69999 0.57999 3.00411 2.92887 2.31405 2.50000 2.84585 1.95918	0.49382 0.71548 0.50826 0.76587 0.71146 0.74693	10.65000	0.16000 0.17000 0.17999 0.12692 0.09629 0.10585 0.09918 0.09576	0.95833 0.66666 0.65384 1.11111 0.86419 1.00418 0.69672 0.59322	0.27999 0.12499 0.12499 0.21367 0.37448 0.37656 0.13934 0.19491	7.40000 9.00000 2.30000 14.00000 11.40000
0.36000 0.41999 0.37613 0.29707 0.32479 0.33412 0.50592	0.69999 0.57999 3.00411 2.92887 2.31405 2.50000 2.84585	0.49382 0.71548 0.50826 0.76587 0.71146	10.65000	0.16000 0.17000 0.17999 0.12692 0.09629 0.10585 0.09918 0.09576 0.11295	0.95833 0.66666 0.65384 1.11111 0.86419 1.00418 0.69672 0.59322 0.56680	0.27999 0.12499 0.12499 0.21367 0.37448 0.37656 0.13934 0.19491 0.40890	7.40000 9.00000 2.30000 14.00000 11.40000
0.36000 0.41999 0.37613 0.29707 0.32479 0.33412 0.50592 0.26285	0.69999 0.57999 3.00411 2.92887 2.31405 2.50000 2.84585 1.95918	0.49382 0.71548 0.50826 0.76587 0.71146 0.74693	10.65000	0.16000 0.17000 0.17999 0.12692 0.09629 0.10585 0.09918 0.09576 0.11295 0.31999	0.95833 0.66666 0.65384 1.11111 0.86419 1.00418 0.69672 0.59322 0.56680 0.60000	0.27999 0.12499 0.12499 0.21367 0.37448 0.37656 0.13934 0.19491 0.40890 0.12500	7.40000 9.00000 2.30000 14.00000 11.40000
0.36000 0.41999 0.37613 0.29707 0.32479 0.33412 0.50592 0.26285	0.69999 0.57999 3.00411 2.92887 2.31405 2.50000 2.84585 1.95918	0.49382 0.71548 0.50826 0.76587 0.71146 0.74693	10.65000	0.16000 0.17000 0.17999 0.12692 0.09629 0.10585 0.09918 0.09576 0.11295 0.31999 0.21999	0.95833 0.66666 0.65384 1.11111 0.86419 1.00418 0.69672 0.59322 0.56680 0.60000 0.66666	0.27999 0.12499 0.12499 0.21367 0.37448 0.37656 0.13934 0.19491 0.40890 0.12500 0.12499	7.40000 9.00000 2.30000 14.00000 11.40000
0.36000 0.41999 0.37613 0.29707 0.32479 0.33412 0.50592 0.26285	0.69999 0.57999 3.00411 2.92887 2.31405 2.50000 2.84585 1.95918 2.51299	0.49382 0.71548 0.50826 0.76587 0.71146 0.74693	10.65000	0.16000 0.17000 0.17999 0.12692 0.09629 0.10585 0.09918 0.09576 0.11295 0.31999 0.21999 0.28999	0.95833 0.66666 0.65384 1.11111 0.86419 1.00418 0.69672 0.59322 0.56680 0.60000 0.66666 0.65217	0.27999 0.12499 0.12499 0.21367 0.37448 0.37656 0.13934 0.19491 0.40890 0.12500 0.12499 0.12500	7.40000 9.00000 2.30000 14.00000 11.40000
0.36000 0.41999 0.37613 0.29707 0.32479 0.33412 0.50592 0.26285 <b>0.36874</b>	0.69999 0.57999 3.00411 2.92887 2.31405 2.50000 2.84585 1.95918 <b>2.51299</b>	0.49382 0.71548 0.50826 0.76587 0.71146 0.74693 3.36138		0.16000 0.17000 0.17999 0.12692 0.09629 0.10585 0.09918 0.09576 0.11295 0.31999 0.21999 0.28999 0.12295	0.95833 0.66666 0.65384 1.11111 0.86419 1.00418 0.69672 0.59322 0.56680 0.60000 0.66666 0.65217 0.94262	0.27999 0.12499 0.12499 0.21367 0.37448 0.37656 0.13934 0.19491 0.40890 0.12500 0.12499 0.12500 0.16393	7.40000 9.00000 2.30000 14.00000 11.40000
0.36000 0.41999 0.37613 0.29707 0.32479 0.33412 0.50592 0.26285 <b>0.36874</b>	0.69999 0.57999 3.00411 2.92887 2.31405 2.50000 2.84585 1.95918 2.51299	0.49382 0.71548 0.50826 0.76587 0.71146 0.74693 3.36138	%Lipid	0.16000 0.17000 0.17999 0.12692 0.09629 0.10585 0.09918 0.09576 0.11295 0.31999 0.21999 0.28999 0.12295 0.12448	0.95833 0.66666 0.65384 1.11111 0.86419 1.00418 0.69672 0.59322 0.56680 0.60000 0.66666 0.65217 0.94262 1.95021	0.27999 0.12499 0.12499 0.21367 0.37448 0.37656 0.13934 0.19491 0.40890 0.12500 0.12500 0.12500 0.16393 0.16597	7.40000 9.00000 2.30000 14.00000 11.40000
0.36000 0.41999 0.37613 0.29707 0.32479 0.33412 0.50592 0.26285 <b>0.36874</b> Mercury 0.16000	0.69999 0.57999 3.00411 2.92887 2.31405 2.50000 2.84585 1.95918 2.51299  C-48  Aroclor 1268 0.97000	0.49382 0.71548 0.50826 0.76587 0.71146 0.74693 3.36138	<b>%Lipid</b> 8.00000	0.16000 0.17000 0.17999 0.12692 0.09629 0.10585 0.09918 0.09576 0.11295 0.31999 0.21999 0.28999 0.12295 0.12448 0.12765	0.95833 0.66666 0.65384 1.11111 0.86419 1.00418 0.69672 0.59322 0.56680 0.60000 0.66666 0.65217 0.94262 1.95021 0.89361	0.27999 0.12499 0.12499 0.21367 0.37448 0.37656 0.13934 0.19491 0.40890 0.12500 0.12499 0.12500 0.16393 0.16597 0.17021	7.40000 9.00000 2.30000 14.00000 11.40000
0.36000 0.41999 0.37613 0.29707 0.32479 0.33412 0.50592 0.26285 <b>0.36874</b> Mercury 0.16000 0.14999	0.69999 0.57999 3.00411 2.92887 2.31405 2.50000 2.84585 1.95918 2.51299  C-48  Aroclor 1268 0.97000 1.10000	0.49382 0.71548 0.50826 0.76587 0.71146 0.74693 3.36138 Lead 0.46000 0.37000	%Lipid 8.00000 7.00000	0.16000 0.17000 0.17999 0.12692 0.09629 0.10585 0.09918 0.09576 0.11295 0.31999 0.21999 0.28999 0.12295 0.12448 0.12765 0.11302	0.95833 0.66666 0.65384 1.11111 0.86419 1.00418 0.69672 0.59322 0.56680 0.60000 0.66666 0.65217 0.94262 1.95021 0.89361 0.63025	0.27999 0.12499 0.12499 0.21367 0.37448 0.37656 0.13934 0.19491 0.40890 0.12500 0.12499 0.12500 0.16393 0.16597 0.17021 0.28991	7.40000 9.00000 2.30000 14.00000 11.40000
0.36000 0.41999 0.37613 0.29707 0.32479 0.33412 0.50592 0.26285 <b>0.36874</b> Mercury 0.16000 0.14999 0.14999	0.69999 0.57999 3.00411 2.92887 2.31405 2.50000 2.84585 1.95918 2.51299  C-48  Aroclor 1268 0.97000 1.10000 1.20000	0.49382 0.71548 0.50826 0.76587 0.71146 0.74693 3.36138 6 Lead 0.46000 0.37000 0.55999	<b>%Lipid</b> 8.00000	0.16000 0.17000 0.17999 0.12692 0.09629 0.10585 0.09918 0.09576 0.11295 0.31999 0.21999 0.28999 0.12295 0.12448 0.12765 0.11302 0.11694	0.95833 0.66666 0.65384 1.11111 0.86419 1.00418 0.69672 0.59322 0.56680 0.60000 0.66666 0.65217 0.94262 1.95021 0.89361 0.63025 0.50847	0.27999 0.12499 0.12499 0.21367 0.37448 0.37656 0.13934 0.19491 0.40890 0.12500 0.12499 0.12500 0.16393 0.16597 0.17021 0.28991 0.47457	7.40000 9.00000 2.30000 14.00000 11.40000
0.36000 0.41999 0.37613 0.29707 0.32479 0.33412 0.50592 0.26285 <b>0.36874</b> Mercury 0.16000 0.14999 0.14999 0.26000	0.69999 0.57999 3.00411 2.92887 2.31405 2.50000 2.84585 1.95918 2.51299  C-48  Aroclor 1268 0.97000 1.10000 1.20000 1.33333	0.49382 0.71548 0.50826 0.76587 0.71146 0.74693 3.36138 5. Lead 0.46000 0.37000 0.55999 0.12499	%Lipid 8.00000 7.00000	0.16000 0.17000 0.17999 0.12692 0.09629 0.10585 0.09918 0.09576 0.11295 0.31999 0.21999 0.28999 0.12295 0.12448 0.12765 0.11302 0.11694 0.14915	0.95833 0.66666 0.65384 1.11111 0.86419 1.00418 0.69672 0.59322 0.56680 0.60000 0.66666 0.65217 0.94262 1.95021 0.89361 0.63025 0.50847 0.42372	0.27999 0.12499 0.12499 0.21367 0.37448 0.37656 0.13934 0.19491 0.40890 0.12500 0.12499 0.12500 0.16393 0.16597 0.17021 0.28991 0.47457 0.22033	7.40000 9.00000 2.30000 14.00000 11.40000 10.30000
0.36000 0.41999 0.37613 0.29707 0.32479 0.33412 0.50592 0.26285 <b>0.36874</b> Mercury 0.16000 0.14999 0.14999 0.26000 0.30999	0.69999 0.57999 3.00411 2.92887 2.31405 2.50000 2.84585 1.95918 2.51299  C-48  Aroclor 1268 0.97000 1.10000 1.20000 1.33333 1.50000	0.49382 0.71548 0.50826 0.76587 0.71146 0.74693 3.36138 6 Lead 0.46000 0.37000 0.55999 0.12499 0.26000	%Lipid 8.00000 7.00000	0.16000 0.17000 0.17999 0.12692 0.09629 0.10585 0.09918 0.09576 0.11295 0.31999 0.21999 0.28999 0.12295 0.12448 0.12765 0.11302 0.11694	0.95833 0.66666 0.65384 1.11111 0.86419 1.00418 0.69672 0.59322 0.56680 0.60000 0.66666 0.65217 0.94262 1.95021 0.89361 0.63025 0.50847	0.27999 0.12499 0.12499 0.21367 0.37448 0.37656 0.13934 0.19491 0.40890 0.12500 0.12499 0.12500 0.16393 0.16597 0.17021 0.28991 0.47457	7.40000 9.00000 2.30000 14.00000 11.40000
0.36000 0.41999 0.37613 0.29707 0.32479 0.33412 0.50592 0.26285 <b>0.36874</b> Mercury 0.16000 0.14999 0.14999 0.26000 0.30999 0.22999	0.69999 0.57999 3.00411 2.92887 2.31405 2.50000 2.84585 1.95918 2.51299  C-48  Aroclor 1268 0.97000 1.10000 1.20000 1.33333 1.50000 1.13636	0.49382 0.71548 0.50826 0.76587 0.71146 0.74693 3.36138 6 Lead 0.46000 0.37000 0.55999 0.12499 0.26000 0.28999	%Lipid 8.00000 7.00000	0.16000 0.17000 0.17999 0.12692 0.09629 0.10585 0.09918 0.09576 0.11295 0.31999 0.21999 0.28999 0.12295 0.12448 0.12765 0.11302 0.11694 0.14915	0.95833 0.66666 0.65384 1.11111 0.86419 1.00418 0.69672 0.59322 0.56680 0.60000 0.66666 0.65217 0.94262 1.95021 0.89361 0.63025 0.50847 0.42372	0.27999 0.12499 0.12499 0.21367 0.37448 0.37656 0.13934 0.19491 0.40890 0.12500 0.12499 0.12500 0.16393 0.16597 0.17021 0.28991 0.47457 0.22033	7.40000 9.00000 2.30000 14.00000 11.40000 10.30000
0.36000 0.41999 0.37613 0.29707 0.32479 0.33412 0.50592 0.26285 <b>0.36874</b> Mercury 0.16000 0.14999 0.14999 0.26000 0.30999 0.22999 0.25531	0.69999 0.57999 3.00411 2.92887 2.31405 2.50000 2.84585 1.95918 2.51299  C-48  Aroclor 1268  0.97000 1.10000 1.20000 1.33333 1.50000 1.13636 0.68085	0.49382 0.71548 0.50826 0.76587 0.71146 0.74693 3.36138 6 Lead 0.46000 0.37000 0.55999 0.12499 0.26000 0.28999 0.37499	%Lipid 8.00000 7.00000	0.16000 0.17000 0.17999 0.12692 0.09629 0.10585 0.09918 0.09576 0.11295 0.31999 0.21999 0.28999 0.12295 0.12448 0.12765 0.11302 0.11694 0.14915	0.95833 0.66666 0.65384 1.11111 0.86419 1.00418 0.69672 0.59322 0.56680 0.60000 0.66666 0.65217 0.94262 1.95021 0.89361 0.63025 0.50847 0.42372	0.27999 0.12499 0.12499 0.21367 0.37448 0.37656 0.13934 0.19491 0.40890 0.12500 0.12499 0.12500 0.16393 0.16597 0.17021 0.28991 0.47457 0.22033	7.40000 9.00000 2.30000 14.00000 11.40000 10.30000
0.36000 0.41999 0.37613 0.29707 0.32479 0.33412 0.50592 0.26285 <b>0.36874</b> Mercury 0.16000 0.14999 0.26000 0.30999 0.22999 0.25531 0.17543	0.69999 0.57999 3.00411 2.92887 2.31405 2.50000 2.84585 1.95918 2.51299  C-48  Aroclor 1268 0.97000 1.10000 1.20000 1.33333 1.50000 1.13636 0.68085 1.18421	0.49382 0.71548 0.50826 0.76587 0.71146 0.74693 3.36138 6 Lead 0.46000 0.37000 0.55999 0.12499 0.26000 0.28999 0.37499 0.37499	%Lipid 8.00000 7.00000	0.16000 0.17000 0.17999 0.12692 0.09629 0.10585 0.09918 0.09576 0.11295 0.31999 0.21999 0.28999 0.12295 0.12448 0.12765 0.11302 0.11694 0.14915	0.95833 0.66666 0.65384 1.11111 0.86419 1.00418 0.69672 0.59322 0.56680 0.60000 0.66666 0.65217 0.94262 1.95021 0.89361 0.63025 0.50847 0.42372	0.27999 0.12499 0.12499 0.21367 0.37448 0.37656 0.13934 0.19491 0.40890 0.12500 0.12499 0.12500 0.16393 0.16597 0.17021 0.28991 0.47457 0.22033	7.40000 9.00000 2.30000 14.00000 11.40000 10.30000
0.36000 0.41999 0.37613 0.29707 0.32479 0.33412 0.50592 0.26285 <b>0.36874</b> Mercury 0.16000 0.14999 0.26000 0.30999 0.22999 0.25531 0.17543 0.17543	0.69999 0.57999 3.00411 2.92887 2.31405 2.50000 2.84585 1.95918 2.51299  C-48  Aroclor 1268 0.97000 1.10000 1.20000 1.33333 1.50000 1.13636 0.68085 1.18421 0.74561	0.49382 0.71548 0.50826 0.76587 0.71146 0.74693 3.36138 6 Lead 0.46000 0.37000 0.55999 0.12499 0.26000 0.28999 0.37499	%Lipid 8.00000 7.00000	0.16000 0.17000 0.17999 0.12692 0.09629 0.10585 0.09918 0.09576 0.11295 0.31999 0.21999 0.28999 0.12295 0.12448 0.12765 0.11302 0.11694 0.14915	0.95833 0.66666 0.65384 1.11111 0.86419 1.00418 0.69672 0.59322 0.56680 0.60000 0.66666 0.65217 0.94262 1.95021 0.89361 0.63025 0.50847 0.42372	0.27999 0.12499 0.12499 0.21367 0.37448 0.37656 0.13934 0.19491 0.40890 0.12500 0.12499 0.12500 0.16393 0.16597 0.17021 0.28991 0.47457 0.22033	7.40000 9.00000 2.30000 14.00000 11.40000 10.30000
0.36000 0.41999 0.37613 0.29707 0.32479 0.33412 0.50592 0.26285 <b>0.36874</b> Mercury 0.16000 0.14999 0.26000 0.30999 0.22999 0.25531 0.17543	0.69999 0.57999 3.00411 2.92887 2.31405 2.50000 2.84585 1.95918 2.51299  C-48  Aroclor 1268 0.97000 1.10000 1.20000 1.33333 1.50000 1.13636 0.68085 1.18421	0.49382 0.71548 0.50826 0.76587 0.71146 0.74693 3.36138 6 Lead 0.46000 0.37000 0.55999 0.12499 0.26000 0.28999 0.37499 0.37499	%Lipid 8.00000 7.00000	0.16000 0.17000 0.17999 0.12692 0.09629 0.10585 0.09918 0.09576 0.11295 0.31999 0.21999 0.28999 0.12295 0.12448 0.12765 0.11302 0.11694 0.14915	0.95833 0.66666 0.65384 1.11111 0.86419 1.00418 0.69672 0.59322 0.56680 0.60000 0.66666 0.65217 0.94262 1.95021 0.89361 0.63025 0.50847 0.42372	0.27999 0.12499 0.12499 0.21367 0.37448 0.37656 0.13934 0.19491 0.40890 0.12500 0.12499 0.12500 0.16393 0.16597 0.17021 0.28991 0.47457 0.22033	7.40000 9.00000 2.30000 14.00000 11.40000 10.30000

#### Appendix 2a.__Mummichog Tissue Data for Each Polygon

All data averages are listed in **Bold** 

	C-204	•			T-C		
Mercury	Aroclor 1268	Lead	%Lipid	Mercury	Aroclor 1268	Lead	%Lipid
0.43650	4.36508	0.37500	11.70000	0.04699	0.43500	0.49000	5.80000
0.32653	1.59184	0.37551	9.40000	0.09999	0.47499	0.48999	7.80000
0.32128	2.97189	0.37550	10.10000	0.08300	0.43500	0.62999	
0.36290	6.45161	0.37499	12.00000	0.18000	0.20833	0.12499	
0.48387	5.24194	0.37499	12.60000	0.14999	0.29166	0.12499	
0.36734	7.75510	0.37551	17.00000	0.11999	0.21739	0.12500	
0.38307	4.72958	0.37525	12.13333	0.09216	0.05529	0.25106	
				0.13636	0.01659	0.12396	
				0.16736	0.01652	0.19246	
				0.04255	0.06382	0.19087	
	C-C			0.05826	0.05371	0.16326	
Mercury	Aroclor 1268	Lead	%Lipid	0.06652	0.04016	0.19999	
0.12999	1.10000	0.57999	6.60000	0.12489	0.04564	5.90000	
0.10999	1.40000	0.43999	8.30000	0.08979	0.08979	1.15000	
0.12999	1.10000	0.47999		0.08255	0.07659	1.30000	
0.17999	0.63636	0.38999		0.03400	0.20500	1.60000	
0.17000	0.85000	0.81000		0.04399	0.22500	1.20000	
0.10999	0.47619	0.26999		0.04500	0.22500	1.80000	
0.20161	1.20968	0.24193		0.10000	0.02500	0.50000	
0.12875	1.03004	0.17167		0.14000	0.02500		
0.24896	1.70125	0.37551		0.10999	0.02500		
0.10299	0.89743	0.44017		0.11999	0.02500		
0.07442	0.77625	0.48401		0.09697	0.14889	0.87140	6.80000
0.10886	0.59071	0.22362					
0.27000	2.40000	2.10000					
0.15120	1.08984	0.53899	7.45000				

D-C									
Mercury	Aroclor 1268	Lead	%Lipid						
0.17316	1.42857	0.37445	6.20000						
0.12820	1.41026	0.37393	7.20000						
0.17167	1.41631	0.37553	6.70000						
0.11794	0.89743	0.51709							
0.13417	0.80168	0.73417							
0.09346	0.73469	0.59999							
0.13643	1.11482	0.49586	6.70000						

Data averages are listed in **Bold** 

	C-5					C-6	
Mercury	Aroclor 1268	Lead	TOC	Mercury	Aroclor 1268	Lead	TOC
11.00000	19.00000	21.00000	4.4	48.000	19.00	20.00	2.70
10.00000	24.00000	24.00000	3.2	80.000	19.00	47.00	3.70
2.10000	12.00000	28.00000	4	11.000	41.00	27.00	5.20
1.10000	4.20000	25.80000	3.72	86.600	69.00	42.10	4.58
7.03000	31.00000	40.90000	4.72000	8.750	25.00	31.90	6.56
2.67000	10.00000	20.40000	4.92000	9.890	26.00	34.70	6.46
11.50000	3.70000	36.00000	6.5	8.510	17.00	27.40	5.15
4.20000	21.00000	24.00000	2.1	4.300	2.90	29.00	6.80
4.00000	9.90000	26.00000	3.4	7.560	7.00	30.00	6.30
1.70000	4.00000	29.00000	4.6	14.400	20.00	36.00	5.40
0.00005	2.40000	27.00000	4.7	109.000	0.05	45.00	6.70
2.72000	0.00050	0.00250	6.9	80.800	15.00	27.00	5.50
0.00001	0.36000	2.90000	4	7.140	3.40	28.00	5.00
0.03799	0.18000	4.80000	2.9	9.700	4.70	33.00	8.50
0.02999	0.08600	2.20000	3.3	11.500	20.00	34.00	5.30
0.02400	0.07900	1.10000	3.8	29.000	2.20	25.00	3.70
0.03200	1.90000	22.00000	2.8	13.000	65.00	20.00	6.30
1.66000	6.40000	26.60000	3.9	32.000	25.00	42.00	4.90
3.90000	6.60000	21.30000	2.8	3.200	5.20	29.00	5.40
1.70000	6.20000	30.50000	2.6 3.8	62.900	2.20	46.00	5.40 5.70
			3.6				
5.30000	3.00000	29.10000		46.000	92.00	27.00	3.80
1.70000	5.10000	40.90000	2.5	22.000	24.00	26.00	3.30
3.20000	1.30000	27.20000	3.8	3.000	10.00	46.00	3.30
5.50000	3.30000	24.80000	4	3.100	0.33	47.00	4.20
11.00000	1.10000	12.80000	4.4	5.680	16.00	29.50	3.44
3.40000	0.99000	13.70000	4.91	2.360	4.60	30.00	4.42
2.30000	1.30000	14.00000	3.80000	4.500	3.50	29.00	5.00
5.30000	9.80000	29.40000	3.79000	30.000	78.00	48.60	4.30
20.00000	10.00000	25.10000		9.600	1.60	39.90	3.90
7.90000	20.00000	42.30000		140.000	410.00	16.50	4.60
3.41000	4.10000	21.90000		17.000	57.00	13.90	4.10
1.29000	15.00000	22.90000		24.000	45.00	33.60	4.10
28.20000	13.00000	25.20000		17.000	33.00	23.30	4.60
3.60000	32.00000	23.80000		0.420	2.10	27.90	2.40
12.60000	39.00000	22.50000		31.000	71.00	20.60	5.70
8.97000	26.00000	21.90000		5.300	3.40	26.70	3.30
3.14000	19.00000	29.00000		0.069	0.33	25.40	2.80
3.01000	14.00000	25.40000		20.600	90.00	37.30	
8.39000	30.00000	43.60000		25.600	120.00	27.10	
4.63000	33.00000	11.80000		1.460	1.90	26.90	
23.80000	15.00000			0.044	0.01	9.13	
2.57000	8.20000			11.300	3.70	26.90	
1.74000	20.00000			74.000	16.00	12.60	
2.78000	8.30000			19.000	17.00	15.90	
2.14000	1.80000			6.230	15.00	25.10	
0.77200	21.00000			6.810	28.00	48.20	
3.61000	11.00000			6.530	19.00	44.80	
3.00000	11.00000			145.000	240.00	32.60	
2.64000	4.70000			17.300	38.00	38.80	
0.98000	18.00000			11.200	28.00	42.90	
1.94000	18.00000			2.440	9.50		
1.90000	0.62000			12.600	43.00		
0.35600				0.277	0.15		
4.83910	11.18491	23.02006	3.95214	0.257	0.27		
				4.490	4.00		
				41.600	380.00		
				109.000	420.00		
				75.700	150.00		
				61.400	59.00		
				12.700	26.00		
				27.73028	49.15063	31.06460	4.786756757
				21.13028	49.15063	31.06460	4./86/36/5

Data averages are listed in **Bold** 

		C-9			C-13	ł	
Mercury	Aroclor 1268	Lead	TOC	Mercury	Aroclor 1268	Lead	TOC
13.000	460.000	28.0	3.40	1.50000	2.1000	31.0	4.90
15.000	0.600	46.0	3.60	0.47999	1.3000	23.0	3.60
4.200	16.000	29.0	4.40	1.70000	2.4000	26.0	4.60
2.710	5.400	20.2	2.46	1.43000	1.3000	22.7	4.18
3.020	17.000	32.5	5.06	7.00000	0.7500	27.0	5.10
1.100	3.500	201.0	4.73	1.03000	4.8000	32.2	4.71
1.130	0.220	43.0	2.60	5.34000	0.4800	26.0	5.50
6.100	23.000	18.0	2.70	1.80000	7.3000	31.7	2.22
8.000	3.500	21.0	1.40	5.36000	0.3000	27.0	5.00
8.500	19.000	19.0	3.70	1.30000	2.8000	32.0	4.30
4.390	20.000	22.0	1.80	2.40000	2.8000	23.0	3.20
8.500	39.000	12.0	1.30	2.80000	0.7900	28.0	3.50
2.000	3.300	24.0	3.90	1.20000	2.8000	28.0	4.20
1.200	1.700	14.0	1.30	2.11000	6.8000	25.3	4.48
6.600	88.000	69.9	7.86	0.45600	1.0000	25.8	4.22
0.782	1.200	21.3	3.48	1.82000	2.5000	22.0	4.76
0.806	1.100	21.1	2.53	3.36000	0.0990	23.0	4.50
0.759	0.660	16.0	2.00	2.10000	2.6000	34.0	4.80
2.600	9.500	13.0	2.00	0.63999	0.8700	22.0	3.70
2.200	0.790	31.0	3.70	0.75999	1.3000	27.0	4.80
2.500	4.100	32.0	3.90	3.30000	0.4700	26.0	4.70
6.600	15.000	28.0	5.80	0.83999	0.8600	29.0	5.20
1.130	9.400	31.2	3.74	0.70700	1.2000	26.1	6.44
0.659	3.800	24.7	5.58	0.41200	0.6500	27.5	6.33
1.320	1.000	26.0	5.30	0.85300	1.2000	20.7	5.74
5.200	12.000	25.0	3.60	0.81999	0.8400	25.0	6.40
14.000	6.300	28.0	3.60	0.67500	1.0000	24.4	7.16
5.400	21.000	28.0	2.90	0.56700	1.2000	26.0	6.65
2.280	1.400	28.0	7.30	0.70800	1.2000	19.3	7.27
22.200	300.000	36.4	5.67	0.86000	0.5000	22.0	9.50
1.150	8.600	28.3	5.82	0.86599	0.6100	27.0	12.00
2.460	2.400	24.0	6.60	0.74300	0.4000	27.4	7.99
7.400	9.600	30.7	3.40	1.02000	0.5100	20.2	10.80
12.000	1.800	33.9	3.60	0.56000	1.3000	28.0	3.40
20.000	1.300	27.8	3.90	0.93500	3.3000	29.3	4.20
55.000	2.000	8.7	3.50	0.40300	0.6200	17.8	3.23
3.700	0.280	17.7	4.60	0.86200	2.7000	25.8	3.75
4.200	1.100	27.7	4.10	2.10000	5.2000	29.0	4.80
2.200	0.940	30.8	2.90	0.57999	1.1000	18.0	4.20
3.600	2.200	25.8	4.10	0.37999	0.5700	16.0	4.10
8.970	17.000	56.7	6.90	1.00000	3.5000	24.0	4.30
3.140	12.000	36.2	4.43	0.36000	0.2600	12.0	5.90
3.010	12.000	11.0	7.13	0.50999	0.2600	11.0	8.60
8.390	15.000	27.0	8.50	0.37999	0.4200	14.0	5.60
4.630	20.000	25.4		0.40000	0.7000	19.0	5.20
23.800	110.000	29.5		0.38999	0.5400	16.0	6.70
17.800	11.000	25.6		0.37999	0.4200	14.0	5.60
2.990	16.000	31.9		0.62999	2.5000	21.0	5.10
10.200	17.000	36.2		0.36000	0.3800	15.0	6.00
4.660	130.000	51.8		0.82999	0.9100	16.0	7.00
9.450	14.000	33.8		0.27000	0.6800	15.0	5.40
12.400	12.000	23.3		0.28999	0.0465	13.0	
1.470	13.000	38.3		1.22000	1.4000	24.3	
39.600	11.000	20.6		0.51800	0.7500	25.3	
5.570	36.000	26.7		1.59000	2.4000	27.7	
5.790	330.000	37.3		0.92100	2.2000	31.2	
11.400	120.000	27.1		1.50000	5.2000	25.3	
7.950	11.000	26.9		1.85000	2.5000	35.6	
8.280	30.000	9.1		2.76000	20.0000	40.3	
6.740	39.000	26.9		6.72000	25.0000	51.6	
5.300	44.000	12.6		1.14000	2.1000	29.6	
4.260	15.000	15.9		1.49000	1.8000	27.1	
5.340	28.000	25.1		2.10000	1.9000	27.0	
8.940	240.000	28.0		0.95400	1.8000	27.1	
21.700	38.000	567.0		1.02000	7.0000	34.2	
13.400	28.000	31.6		1.29000	1.7000	25.9	
1.240	9.500	765.0		1.41894	2.37705	24.9	5.40254902
6.170	43.000						
29.200	0.150						
35.100	0.270						
29.000	4.000						
2.900	1.500						
0.852	1.000						
2.600	1.500						
1.500	1.100	40 400:-	4.40000000				
8.39117	33.98280	49.12313	4.108863636				

#### Appendix K-2b.__Mummichog Sediment Data for Each Polgon

Data averages are listed in **Bold** 

C-39				C-45			
Mercury	Aroclor 1268	Lead	TOC	Mercury	Aroclor 1268	Lead	TOC
3.22000	3.50000	118.0	8.25	0.23999	1.90000	18.00000	4.40
3.43000	3.00000	220.0	1.35	0.62000	0.69999	17.00000	3.00
2.48000	0.54000	184.0	6.77	0.30000	0.95999	13.00000	4.30
2.46000	1.10000	94.7	5.00	0.24500	0.61000	20.30000	3.33
2.01000	1.20000	79.9	6.71	0.56600	0.79000	26.40000	4.92
4.60000	1.50000	1100.0	9.10	0.14600	0.06100	15.00000	4.60
2.20000	0.58000	27.0	5.70	1.51000	0.57000	27.00000	5.70
2.10000	0.51000	30.0	6.70	0.54000	0.87000	22.00000	5.60
1.52000	0.32000	49.0	6.70	0.98600	0.76000	24.90000	7.95
0.77800	0.15000	46.0	5.60	0.40000	0.69999	19.00000	0.00
0.04810	0.01800	14.0	5.00	0.34000	0.21999	15.00000	6.40
0.61000	0.18000	24.0	5.00	0.46999	0.33000	15.00000	5.60
2.36000	0.40000	57.0	6.00	1.19000	0.33000	32.10000	4.65
1.56000	0.35000	39.0	5.70	0.57400	1.10000	26.10000	3.24
6.36000	0.54000	97.0	7.00	0.40000	0.07000	12.00000	8.40
0.10000	0.14000	16.0	0.91	1.88000	13.00000	21.40000	3.75
0.34000	0.31999	50.0	0.94	1.09000	4.80000	18.50000	3.51
0.04399	0.03050	8.9	0.48	1.89000	13.00000	15.80000	1.94
0.24300	0.01300	419.0	4.33	0.04289	0.02800	11.50000	2.53
0.09719	0.05900	27.8	1.63	2.60000	18.00000	29.20000	2.46
0.27100	0.02300	1590.0	11.60	0.10199	0.17000	16.90000	4.61
0.07869	0.01500	17.0	0.90	3.35000	9.20000	9.80000	0.57
2.45000	2.70000	48.7	4.26	0.00711	0.00750	3.22000	0.73
8.37000	9.00000	160.0	4.55	0.78700	2.10000	22.40000	5.33
7.72000	6.50000	102.0	3.84	1.09000	9.00000	11.00000	2.16
1.55000	0.05900	63.0	3.80	0.85464	3.17106	18.50080	3.987316
4.91000	2.00000	99.8	9.34				
1.77000	0.82000	58.2	6.86				
5.31000	2.70000	71.0	8.93				
2.90000	0.32000	56.0	8.20		C-10	00	
3.58000	1.20000	58.0	5.71	Mercury	Aroclor 1268	Lead	TOC
1.89000	0.62000	25.0	6.10	3.30000	3.60000	23.00000	4.70
0.11800	0.04300	14.0	0.66	4.31000	5.60000	33.00000	2.99
2.86000	2.80000	48.4	6.74	2.51000	3.30000	33.40000	5.25
1.76000	1.50000	40.8	6.76	1.20000	1.90000	28.20000	4.89
3.17000	0.52000	91.0	6.10	1.51000	0.57000	27.00000	5.70
1.18000	1.60000	79.6	0.01	1.00000	1.20000	17.00000	6.30
0.38999	0.44999	12.0	9.30	6.82000	8.40000	36.20000	8.06
0.18999	0.18000	16.0	3.10	1.49000	1.40000	26.00000	7.84
0.68999	0.40000	17.0	6.70	3.80000	2.40000	29.00000	5.20
0.54000	0.82999	18.0	6.10	1.70000	3.90000	33.00000	5.50
0.80000	0.85000	15.0	8.00	1.60000	3.00000	32.00000	5.30
0.92000	1.60000	10.0	7.00	0.57999	0.63999	16.00000	6.20
0.68599	1.30000	32.0	3.48	0.77999	1.90000	30.00000	5.60
1.07000	0.92000	44.2	2.43	3.29000	2.40000	17.00000	0.00
1.10000	0.63000	44.3	1.88	0.30000	0.83000	3.44000	0.27
2.17000	2.30000	387.0	5.86	2.93000	28.00000	33.60000	5.41
1.07000	0.85000	275.0	7.69	0.54299	1.40000	4.87000	0.23
0.93200	1.20000	143.0	5.23	4.25000	3.20000	33.60000	5.08
0.75999	0.52000	1190.0	3.85	1.99000	4.20000	32.30000	2.78
3.57000	2.00000	177.0	7.71	2.47000	4.10000	31.00000	3.85
3.53000	1.40000	106.0	7.39	2.18000	4.30000	27.70000	3.07
2.01665	1.19809	150.19808	5.364383846	2.28000	3.70000	31.70000	4.38
				0.10899	0.01200	18.10000	0.32
				0.98199	3.20000	7.89000	0.48
				2.16350	3.88133	25.20833	4.1418625

	C-1		<b>TOO</b>		C-(		<b>TOO</b>
Mercury	0.72000	Lead	<b>TOC</b> 4.70	Mercury	Aroclor 1268	Lead	TOC
0.73000 1.47000	3.10000	15.00000 29.90000	4.70 4.06	0.41999 0.15000	0.21000 0.14000	14.00000 13.00000	4.10 3.60
0.61300	0.45000	25.60000	4.29	0.62999	0.70999	29.00000	4.60
0.15999	0.18000	3.90000	8.50	0.58799	1.20000	24.40000	6.23
1.99000	0.56000	24.20000	5.44	0.52200	0.60000	26.80000	5.92
0.37200	0.19000	26.80000	5.48	0.79000	1.50000	11.00000	6.00
0.99000	1.60000	20.00000	4.70	0.62000	0.79000	28.00000	4.40
0.41999	0.05500	12.00000	6.80	0.33000	0.54000	25.00000	5.70
1.82000	2.20000	27.50000	7.66	0.54000	0.87000	22.00000	5.60
0.91699	1.10000	26.60000	8.12	0.98600	0.76000	24.90000	7.95
0.97500	1.60000	26.40000	6.57	0.37000	0.06500	13.00000	8.00
0.83999	1.90000	23.00000	6.70	0.95499	0.77000	27.00000	4.77
0.63200	0.86000	27.30000	9.52	1.19000	0.33000	32.10000	4.65
2.56000	3.90000	29.40000	5.13	0.32100	0.61000	26.00000	12.60
0.66000	0.28000	15.00000	6.20	0.60085	0.64964	22.58571	6.008571429
1.00993	1.24633	22.17333	6.258				
	C-1	03		Mercury	D-0 Aroclor 1268	: Lead	тос
Mercury	Aroclor 1268	Lead	TOC	0.55000	1.20000	18.00000	5.00
0.15999	0.18000	3.90000	8.50	0.56000	0.87000	22.00000	3.20
1.99000	0.56000	24.20000	5.44	0.68000	0.87999	27.00000	4.30
0.37200	0.19000	26.80000	5.48	1.87000	3.90000	35.50000	5.68
0.50999	0.67000	23.00000	4.60	1.22000	0.64000	23.30000	5.21
1.90000	0.04400	25.70000	3.68	0.02999	0.73000	13.00000	4.90
0.27600	0.21000	17.30000	3.47	1.00000	0.81999	24.00000	3.80
0.01000	0.02750	2.60000	0.34	0.30000	0.37999	24.00000	5.00
0.37000	0.41000	21.60000	6.03	0.37000	0.06500	13.00000	8.00
0.45700	0.15000	19.60000	6.90	0.25000 0.50999	0.05500	12.00000	7.20
0.07999 0.18000	0.06500 0.23999	13.00000 14.00000	5.30 7.30	0.82499	0.30000 0.92000	28.00000 27.30000	5.30 8.00
0.18000	0.10999	10.00000	5.40	0.65100	0.71000	27.30000	6.28
0.20000	0.14000	18.00000	5.10	0.50599	0.74000	25.70000	12.80
0.04399	0.04000	10.00000	4.80	0.43900	0.34000	24.20000	8.83
0.05200	0.03400	6.20000	1.80	0.50599	0.66000	26.60000	6.21
0.20000	0.18000	18.00000	5.40	1.80000	2.80000	28.80000	9.64
0.23000	0.18000	12.00000	7.70	0.88300	0.80000	26.00000	8.54
0.21999	0.18999	20.00000	7.50	0.95499	0.77000	27.00000	4.77
0.12999	0.10000	7.70000	14.00	0.40000	2.40000	12.00000	8.40
0.40058	0.19581	15.45263	5.723157895	1.81000	0.06000	28.40000	7.37
				0.18999	0.07000	16.00000	7.30
				0.74113	0.91409	23.14091	6.624090909
Mercury	Aroclor 1268	Lead	тос				
2.20000	4.90000	31.60000	0.00				
2.45000	2.70000	48.70000	4.26		T-0		
8.37000	9.00000	160.00000	4.55	Mercury	Aroclor 1268	Lead	TOC
7.72000	6.50000	102.00000	3.84	0.03799	0.02500	14.00000	2.60
1.55000	0.05900	63.00000	3.80	0.04399	0.10000	9.40000	1.30
4.43000 2.86000	8.20000 2.80000	154.00000 48.40000	0.02 6.74	0.02600 0.09210	0.03200 0.01500	8.00000 16.60000	1.80 2.88
1.76000	1.50000	40.80000	6.76	0.07419	0.02600	17.40000	3.00
3.17000	0.52000	91.00000	6.10	0.11800	0.06500	17.70000	3.60
1.39000	2.70000	27.90000	4.30	0.05200	0.04450	12.00000	0.00
0.93300	0.81000	26.40000	7.78	0.09399	0.02500	24.00000	4.10
0.68599	1.30000	32.00000	3.48	0.07599	0.16500	21.00000	4.20
1.07000	0.92000	44.20000	2.43	0.04800	0.03350	13.00000	4.00
1.10000	0.63000	44.30000	1.88	0.19699	0.09000	22.90000	6.03
2.83493	3.03850	65.30714	3.995611429	0.08890	0.02900	27.10000	5.04
				0.08140	0.02900	19.90000	4.72
				0.11999	0.03150	24.00000	0.00
				0.08211	0.05075	17.64286	3.090971429

### Appendix K-3

Bioaccumulation Factors for Blue Crab Data Appendix K-3a: Blue Crab Wholebody Mercury Data Appendix K-3b: Blue Crab Wholebody A-1268 Data

#### Appendix K-3a.__Blue Crab Wholebody Murcury

Yearly Averages are listed in **Bold** 

2000	2002	2003	2004	2005	2006		Tissue I	Data
UPC	UPC	UPC	UPC-F+C	UPC	UPC	1.50	2.09	
1.50	1.80	1.80	0.31	1.37	0.38	2.50	1.23	
2.50	1.90	0.93	3.00	1.61	0.24	1.90	1.60	
1.90	1.70	3.10	2.54	1.04	0.38	1.20	0.96	
1.20	0.98	1.20	2.83	1.45	0.25	1.50	1.30	
1.50	0.80	1.40	6.10	2.03	0.28	1.20	2.00	
1.20	0.07	1.90	1.15	0.72	0.30	2.20	2.20	
2.20	0.07	0.86	0.98	1.78	0.35	1.80	2.20	
1.71	1.05	1.60	2.42	1.43	0.31	1.90	1.80	
						1.70	0.64	
						0.98	0.97	
2007	2000	2002	2003	2004	2005	0.80	1.30	
PC	LPC	LPC	LPC	LPC-F+C	LPC	0.07	0.78	
1.69	1.60	0.64	2.50	1.38	0.48	0.07	0.99	
1.88	0.96	0.97	0.74	4.10	0.91	1.80	1.40	
1.17	1.30	1.30	3.60	1.59	1.39	0.93	0.74	
3.00	2.00	0.78	0.59	3.50	1.28	3.10	2.50	
0.71	2.20	0.99	0.84	6.30	1.17	1.20	0.74	
2.09	2.20	1.40	1.30	4.20	0.85	1.40	3.60	
1.23	1.80	0.74	0.76	2.98	1.14	1.90	0.59	
1.68	1.72	0.97	1.48	3.44	1.03	0.86	0.84	
						0.31	1.30	
						3.00	0.76	
2006	2000	2002	2003	2004	2005	2.54	1.38	
LPC	TC-C	TC-C	TC-C	TC-C	TC-C	2.83	4.10	
0.15	0.18	0.05	0.05	0.37	0.19	6.10	1.59	
0.22	0.03	0.06	0.08	0.27	0.14	1.15	3.50	
0.44	0.07	0.19	0.01	0.45	0.16	0.98	6.30	
0.60	0.08	0.22	0.04	0.49	0.09	1.37	4.20	
0.11	0.04	0.33	0.27	0.26	0.21	1.61	2.98	
0.33	0.05	0.08	0.01	0.33	0.26	1.04	0.48	
0.61	0.03	0.07	0.06		0.14	1.45	0.91	
					0.17	2.03	1.39	
0.35	0.07	0.14	0.07	0.36	0.17	0.72	1.28	
						1.78	1.17	
						0.38	0.85	
2000	2005	2006	2007			0.24	1.14	
CR-C	CR-C	TC-C	TC-C			0.38	0.15	
0.10	0.12	0.18	0.13	•		0.25	0.22	
0.05	0.28	0.12	0.15			0.28	0.44	
0.08	0.12	0.11	0.17			0.30	0.60	
0.05	0.19	0.09	0.05			0.35	0.11	
0.07	0.18	0.33	0.11			1.69	0.33	
0.16	0.17	0.07	0.18			1.88	0.61	
0.04	0.12	0.15	0.25			1.17		
0.09	0.18	0.15	0.15			3.00	1.48	AVG
						0.71	91	Count

### Appendix K-3b.__Blue Crab Wholebody A-1268 Data

Yearly Averages are listed in **Bold** 

2000	2002	2003	2004	2005	2006	2007	All T	issue Data
<u>UPC</u>	UPC	UPC	UPC-F+C	UPC	UPC	PC	0.90	1.57
0.90	1.50	1.70	1.97	0.37	1.69	0.58	0.48	1.00
0.48	2.50	2.20	1.06	0.44	0.56	0.71	0.54	0.56
0.54	2.30	2.10	7.41	0.42	0.77	0.75	0.81	0.80
0.81	1.50	1.90	2.48	0.59	0.56	1.92	1.30	1.20
1.30	2.10	4.70	2.19	0.71	0.21	1.57	0.84	0.76
0.84	1.90	3.70	0.38	0.29	4.15	1.00	0.50	0.98
0.50	1.80	3.00	1.71	0.89	0.55	0.56	1.50	0.56
0.77	1.94	2.76	2.46	0.53	1.21	1.01	2.50	0.25
							2.30	0.32
							1.50	2.30
2000	2002	2003	2004	2005	2006		2.10	1.90
LPC	LPC	LPC	LPC-F+C	LPC	LPC		1.90	2.40
0.80	2.30	2.60	1.12	0.62	0.54		1.80	1.40
1.20	1.90	7.90	3.27	0.12	0.40		1.70	2.80
0.76	2.40	5.00	3.57	0.25	0.60		2.20	3.60
0.98	1.40	4.00	1.71	1.27	0.36		2.10	2.30
0.56	2.80	1.70	1.71	0.19	0.25		1.90	2.60
0.25	3.60	2.20	5.11	0.15	1.52		4.70	7.90
0.32	2.30	1.80	1.83	0.47	0.50		3.70	5.00
0.70	2.39	3.60	2.62	0.44	0.60		3.00	4.00
							1.97	1.70
							1.06	2.20
2000	2002	2003	2004	2005	2006		7.41	1.80
TC-C	TC-C	TC-C	TC-C	TC-C	TC-C		2.48	1.12
0.165	0.025	0.225	0.19	0.016	0.010		2.19	3.27
0.140	0.025	0.140	0.17	0.026	0.010		0.38	3.57
0.140	0.025	0.165	0.20	0.010	0.026		1.71	1.71
0.120	0.025	0.225	0.21	0.010	0.010		0.37	1.71
0.165	0.025	0.130	0.31	0.010	0.040		0.44	5.11
0.145	0.025	2.000	0.16	0.010	0.004		0.42	1.83
0.200	0.025	0.130		0.010	0.010		0.59	0.62
				0.010			0.71	0.12
0.15	0.03	0.43	0.21	0.01	0.02		0.29	0.25
							0.89	1.27
							1.69	0.19
2007	2000	2005					0.56	0.15
TC-C	CR-C	CR-C	_				0.77	0.47
0.00264	0.145	0.017					0.56	0.54
0.00673	0.275	0.016					0.21	0.40
0.00318	0.130	0.016					4.15	0.60
0.00355	0.205	0.017					0.55	0.36
0.00277	0.190	0.017					0.58	0.25
0.00311	0.330	0.017					0.71	1.52
0.03039	0.205	0.017					0.75	0.50
0.01	0.21	0.02					1.92	1.62 AVG
								91 Count

#### **Black Drum**

Sample ID	Location	Date	A-1268 mg/l	Mercury kg/dw	Sample ID	Location	Date	A-1268 mg/k	Mercury g/dw
03287-BD-PC-1	PC	10/17/2003	4.900	0.530	05295-BD-TC-R1	TC-C	10/22/2005	0.102	0.042
03287-BD-PC-4	PC	10/17/2003	4.200	0.670	05295-BD-TC-R2	TC-C	10/22/2005	0.115	0.088
03288-BD-PC-2	PC	10/17/2003	1.100	0.590	05295-BD-TC-R3	TC-C	10/22/2005	0.204	0.087
03288-BD-PC-3	PC	10/17/2003	3.600	0.530	05295-BD-TC-R4	TC-C	10/22/2005	0.072	0.123
03288-BD-PC-5	PC	10/17/2003	4.000	0.750	05295-BD-TC-R5	TC-C	10/22/2005	0.060	0.138
03288-BD-PC-6	PC	10/17/2003	1.800	0.420	05295-BD-TC-R6	TC-C	10/22/2005	0.100	0.087
03288-BD-PC-7	PC	10/17/2003	2.200	0.900	05295-BD-TC-R0 05295-BD-TC-R7	TC-C	10/22/2005	0.100	0.087
03288-BD-PC-8	PC	10/17/2003	1.200	0.510	05295-BD-TC-R8	TC-C	10/22/2005	0.093	0.069
U3200-DD-PC-0	PC	Mean			05295-DD-1C-R6	10-0			
		Weari	2.88	0.61			Mean	0.106	0.097
04293-BD-PC-1-C+F	PC	10/19/2004	3.677	2.280	06291-TC-BD-R1	TC-C	10/18/2006	0.127	0.091
04293-BD-PC-2-C+F	PC	10/19/2004	1.788	1.420	06291-TC-BD-R1	TC-C	10/18/2006	0.127	0.031
04293-BD-PC-3-C+F	PC	10/19/2004	1.836	0.820	06291-TC-BD-R3	TC-C	10/18/2006	0.106	0.177
04293-BD-PC-4-C+F	PC	10/19/2004	6.091	1.810	06291-TC-BD-R3	TC-C	10/18/2006	0.100	0.146
04293-BD-PC-5-C+F	PC	10/19/2004	2.550	1.420	06291-TC-BD-R5	TC-C	10/18/2006	0.003	0.056
04299-BD-PC-6-C+F	PC	10/25/2004	8.509	1.420	06291-TC-BD-R6	TC-C	10/18/2006	0.030	0.030
04299-BD-PC-7-C+F	PC	10/25/2004	6.361	1.420	06291-TC-BD-R0	TC-C	10/18/2006	0.070	0.007
04299-BD-PC-8-C+F	PC	10/25/2004	11.757	3.280	06291-TC-BD-R7	TC-C	10/18/2006	0.012	0.101
04299-DD-FC-0-C+F	FC	Mean	5.32	1.74	00291-1C-DD-R0	10-0	Mean	0.089	0.109 <b>0.114</b>
		Weari	3.32	1.74			Weari	0.009	0.114
05292-BD-PC-R1	PC	10/19/2005	12.698	0.913					
05292-BD-PC-R2	PC	10/19/2005	10.266	0.875	05298-BD-CR-R1	CR-C	10/25/2005	0.016	0.034
05292-BD-PC-R3	PC	10/19/2005	6.400	0.880	05298-BD-CR-R2	CR-C	10/25/2005	0.017	0.036
05292-BD-PC-R4	PC	10/19/2005	5.702	1.535	05298-BD-CR-R3	CR-C	10/25/2005	0.017	0.034
05292-BD-PC-R5	PC	10/19/2005	6.224	0.705	05298-BD-CR-R4	CR-C	10/25/2005	0.017	0.067
05292-BD-PC-R6	PC	10/19/2005	6.773	0.717	05298-BD-CR-R5	CR-C	10/25/2005	0.016	0.070
05292-BD-PC-R7	PC	10/19/2005	7.874	0.669	05298-BD-CR-R6	CR-C	10/25/2005	0.017	0.036
05292-BD-PC-R8	PC	10/19/2005	6.198	0.620	05298-BD-CR-R7	CR-C	10/25/2005	0.017	0.040
03232-DD-1 O-10	10	Mean	7.77	0.86	05298-BD-CR-R8	CR-C	10/25/2005	0.017	0.040
		moun		0.00	00200 BB OK 10	OI C	Mean	0.017	0.045
06290-PC-BD-R1	PC	10/17/2006	5.200	0.736				0.0	0.0-10
06290-PC-BD-R2	PC	10/17/2006	5.118	0.421					
06290-PC-BD-R3	PC	10/17/2006	2.130	0.570					
06290-PC-BD-R4	PC	10/17/2006	5.603	0.448					
06290-PC-BD-R5	PC	10/17/2006	5.929	0.542					
06290-PC-BD-R6	PC	10/17/2006	3.878	0.622					
06290-PC-BD-R7	PC	10/17/2006	9.170	0.568					
06290-PC-BD-R8	PC	10/17/2006	1.447	0.374					
		Mean	4.81	0.54					
07269-PC-BD-R2	PC	9/26/2007	9.353	1.241					
07276-PC-BD-R1	PC	10/3/2007	6.691	0.807					
07291-PC-BD-R3	PC	10/18/2007	2.033	0.606					
07291-PC-BD-R4	PC	10/18/2007	4.851	0.937					
07291-PC-BD-R5	PC	10/18/2007	2.421	0.618					
07291-PC-BD-R6	PC	10/18/2007	10.359	1.159					
07291-PC-BD-R7	PC	10/18/2007	5.243	0.906					
07291-PC-BD-R8	PC	10/18/2007	1.679	0.706					
		Mean	5.33	0.87					
PC-BD-R1	PC	8/29/2002	2.600	0.440					
PC-BD-R2	PC	8/30/2002	12.000	0.580					
PC-BD-R3	PC	8/30/2002	7.600	0.350					
PC-BD-R4	PC	8/30/2002	9.900	0.350					
PC-BD-R5	PC	8/30/2002	2.500	0.390					
PC-BD-R6	PC	8/30/2002	18.000	0.560					
PC-BD-R7	PC	9/9/2002	2.800	0.310					
PC-BD-R8	PC	9/9/2002	3.100	0.320					
		Mean	7.31	0.41					
Donata	Dominio Control	40/40/2022	F F00	4.400					
Purvis	Purvis Creek		5.500	1.100					
Purvis	Purvis Creek		2.800	0.750					
		Mean	4.150	0.925					

Maximum Lead Conc 2.2

#### **Red Drum**

Sample ID	Location	Date		Mercury kg/dw	Sample ID	Location	Date		Mercury kg/dw
03287-RD-PC-3	PC	10/17/2003	1.000	0.640	05297-RD-TC-R1	TC-C	10/24/2005	0.105	0.544
03287-RD-PC-4	PC	10/17/2003	1.100	0.590	05297-RD-TC-R2	TC-C	10/24/2005	0.172	0.234
03287-RD-PC-5	PC	10/17/2003	1.100	0.300	05297-RD-TC-R3	TC-C	10/24/2005	0.061	0.866
03288-RD-PC-1	PC	10/17/2003	0.970	1.300	05297-RD-TC-R4	TC-C	10/24/2005	0.191	0.239
03288-RD-PC-2	PC	10/17/2003	1.000	0.380	05297-RD-TC-R5	TC-C	10/24/2005	0.082	0.661
03288-RD-PC-6	PC	10/17/2003	1.000	1.200			Mean		0.509
03288-RD-PC-7	PC	10/17/2003	0.980	0.300				···	0.000
03288-RD-PC-8	PC	10/17/2003	0.980	0.680	07296-TC-RD-R1	TC-C	10/23/2007	0.049	0.155
00200112100	. 0	Mean		0.674	07296-TC-RD-R2	TC-C	10/23/2007	0.062	0.116
		moun	1.010	0.014	07296-TC-RD-R3	TC-C	10/23/2007	0.053	0.207
04293-RD-PC-1-C+F	PC	10/19/2004	0.372	0.890	07296-TC-RD-R4	TC-C	10/23/2007	0.067	0.104
04293-RD-PC-2-C+F	PC	10/19/2004	1.717	3.500	07296-TC-RD-R5	TC-C	10/23/2007	0.058	0.124
04293-RD-PC-3-C+F	PC	10/19/2004	1.300	2.210	07296-TC-RD-R6	TC-C	10/23/2007	0.037	0.101
04293-RD-PC-4-C+F	PC	10/19/2004	2.443	2.600	07296-TC-RD-R7	TC-C	10/23/2007	0.255	0.420
04293-RD-PC-5-C+F	PC	10/19/2004	1.232	2.600	07296-TC-RD-R8	TC-C	10/23/2007	0.073	0.081
04293-RD-PC-6-C+F	PC	10/19/2004	1.656	1.880			Mean	0.082	0.163
04293-RD-PC-7-C+F	PC	10/19/2004	0.913	1.840				0.002	
04293-RD-PC-8-C+F	PC	10/19/2004	2.767	2.400	05298-RD-CR-R1	CR-C	10/25/2005	0.016	0.182
		Mean		2.240					
05292-RD-PC-R1	PC	10/19/2005	1.000	0.704					
05292-RD-PC-R2	PC	10/19/2005	0.360	0.252					
05293-RD-PC-R3	PC	10/20/2005	0.162	0.332					
05293-RD-PC-R4	PC	10/20/2005	1.046	1.799					
05304-RD-PC-R5	PC	10/31/2005	0.220	0.386					
05304-RD-PC-R6	PC	10/31/2005	0.307	0.272					
05304-RD-PC-R7	PC	10/31/2005	1.364	0.871					
05304-RD-PC-R8	PC	10/31/2005	1.075	0.358					
		Mean	0.692	0.622					
06290-PC-RD-R1	PC	10/17/2006	8.759	2.029					
06290-PC-RD-R2	PC	10/17/2006	0.337	0.184					
06290-PC-RD-R3	PC	10/17/2006	1.439	0.864					
		Mean	3.512	1.026					
07276-PC-RD-R1	PC	10/3/2007	5.654	2.661					
07276-PC-RD-R2	PC	10/3/2007	1.692	1.612					
07276-PC-RD-R3	PC	10/3/2007	1.089	1.152					
07291-PC-RD-R4	PC	10/18/2007	1.585	1.321					
		Mean	2.505	1.686					
PC-RD-R1	PC	8/30/2002	0.180	0.220					
PC-RD-R2	PC	9/16/2002	0.800	0.970					
PC-RD-R3	PC	9/16/2002	0.720	0.890					
PC-RD-R4	PC	9/17/2002	0.390	0.810					
PC-RD-R5	PC	9/17/2002	1.700	0.920					
PC-RD-R6	PC	9/17/2002	2.300	0.930					
PC-RD-R7	PC	9/18/2002	1.800	1.200					
PC-RD-R8	PC	9/19/2002	1.300	0.560					
		Mean	1.149	0.812					

Maximum Lead Conc 0.24

#### Silver Perch

Sample ID	Location	Date		Mercury kg/dw	Sample ID	Location	Date		Mercury kg/dw
03287-SP-PC-1	PC	10/17/2003	3.9	1.4	Purvis Creek_Silver Perch-R1	Purvis Creek	10/10/2000	3.60	NA
03287-SP-PC-2	PC	10/17/2003	3.0	1.8	Purvis Creek_Silver Perch-R2	Purvis Creek	10/10/2000	3.20	2.40
03287-SP-PC-3	PC	10/17/2003	2.8	1.0	Purvis Creek_Silver Perch-R3	Purvis Creek	10/10/2000	0.70	3.20
03287-SP-PC-4	PC	10/17/2003	5.9	1.2	Purvis Creek_Silver Perch-R4	Purvis Creek	10/10/2000	5.30	3.20
03287-SP-PC-5	PC	10/17/2003	2.8	1.4	Purvis Creek_Silver Perch-R5	Purvis Creek	10/10/2000	0.35	0.54
03287-SP-PC-6	PC	10/17/2003	4.1	1.5	Purvis Creek_Silver Perch-R6	Purvis Creek		6.30	2.90
03287-SP-PC-7	PC	10/17/2003	4.3	2.4	Purvis Creek_Silver Perch-R7	Purvis Creek		3.70	2.40
03287-SP-PC-8	PC	10/17/2003	3.8	2.2	Purvis Creek_Silver Perch-R8	Purvis Creek		0.09	0.18
03207-3F-FC-0	FC	Mean	3.83	1.61	Fulvis Gleek_Sliver Felch-No	r divis Cieek	Mean		2.12
04293-SP-PC-1-C+F	PC	10/19/2004	6.405	4.10	05295-SP-TC-R1	TC-C	10/22/2005	0.078	0.261
04293-SP-PC-2-C+F	PC	10/19/2004	0.864	1.90	05295-SP-TC-R2	TC-C	10/22/2005	0.130	0.377
04293-SP-PC-3-C+F	PC	10/19/2004	9.667	3.00	05295-SP-TC-R3	TC-C	10/22/2005	0.105	0.304
04293-SP-PC-4-C+F	PC	10/19/2004	4.941	4.70	05295-SP-TC-R4	TC-C	10/22/2005	0.163	0.355
04293-SP-PC-5-C+F	PC	10/19/2004	16.588	2.08	05295-SP-TC-R5	TC-C	10/22/2005	NA	0.331
04293-SP-PC-6-C+F	PC	10/19/2004	6.717	2.13	05297-SP-TC-R6	TC-C	10/24/2005	0.174	0.249
04293-SP-PC-7-C+F	PC	10/19/2004		2.22	05297-SP-TC-R7	TC-C	10/24/2005	0.199	0.295
04293-SP-PC-8-C+F	PC	10/19/2004	1.037	0.62	05297-SP-TC-R8	TC-C	10/24/2005	0.211	0.394
0.1200 01 1 0 0 0 11	. 0	Mean	7.14	2.59	66267 61 16 18	100	Mean		0.321
05292-SP-PC-R1	PC	10/19/2005	2.551	0.986	06291-TC-SP-R1	TC-C	10/18/2006	0.251	0.601
05292-SP-PC-R2	PC	10/19/2005	3.274	0.676	06291-TC-SP-R2	TC-C	10/18/2006	0.100	0.159
05292-SP-PC-R3	PC	10/19/2005	3.007	0.654	06291-TC-SP-R3	TC-C	10/18/2006	0.101	0.228
05292-SP-PC-R4	PC	10/19/2005	3.185	0.796	06291-TC-SP-R4	TC-C	10/18/2006	0.192	0.345
05292-SP-PC-R5	PC	10/19/2005	1.826	1.079	06291-TC-SP-R5	TC-C	10/18/2006	0.129	0.312
05292-SP-PC-R6	PC	10/19/2005	4.068	0.983	06291-TC-SP-R6	TC-C	10/18/2006	0.107	0.178
05292-SP-PC-R7	PC	10/19/2005	1.073	0.657	06291-TC-SP-R7	TC-C	10/18/2006	0.116	0.142
05292-SP-PC-R8	PC	10/19/2005	3.537	0.804	06291-TC-SP-R8	TC-C	10/18/2006	0.182	0.422
00202 01 1 0 110	. 0	Mean	2.81	0.83	00201 10 01 10	100	Mean		0.298
06289-PC-SP-R1	PC	10/16/2006	3.846	1.369	07296-TC-SP-R1	TC-C	10/23/2007	0.084	0.339
06289-PC-SP-R2	PC	10/16/2006	1.522	0.493	07296-TC-SP-R2	TC-C	10/23/2007	0.131	0.185
06289-PC-SP-R3	PC	10/16/2006	0.603	0.521	07296-TC-SP-R3	TC-C	10/23/2007	0.109	0.385
06289-PC-SP-R4	PC	10/16/2006	8.865	4.007	07296-TC-SP-R4	TC-C	10/23/2007	0.236	0.498
06289-PC-SP-R5	PC	10/16/2006	1.179	0.923	07296-TC-SP-R5	TC-C	10/23/2007	0.067	0.279
06289-PC-SP-R6	PC	10/16/2006	4.833	1.420	07296-TC-SP-R6	TC-C	10/23/2007	0.118	0.412
06289-PC-SP-R7	PC	10/16/2006	4.641	2.308	07296-TC-SP-R7	TC-C	10/23/2007	0.174	0.322
06289-PC-SP-R8	PC	10/16/2006	3.745	0.929	07296-TC-SP-R8	TC-C	10/23/2007	0.080	0.581
		Mean	3.65	1.50			Mean	0.125	0.375
07291-PC-SP-R1	PC	10/18/2007	1.234	0.630	TC-C_10/10/2000_Silver Perch-R1	TC-C	10/10/2000	0.205	0.110
07291-PC-SP-R2	PC	10/18/2007	1.270	1.210	TC-C_10/10/2000_Silver Perch-R2	TC-C	10/10/2000	0.066	0.130
07291-PC-SP-R3	PC	10/18/2007	1.318	1.981	TC-C_10/10/2000_Silver Perch-R3	TC-C	10/10/2000	0.450	0.150
07291-PC-SP-R4	PC	10/18/2007	3.438	1.259	TC-C_10/10/2000_Silver Perch-R4	TC-C	10/10/2000	0.260	0.200
07291-PC-SP-R5	PC	10/18/2007		1.781	TC-C_10/10/2000_Silver Perch-R5	TC-C	10/10/2000	0.190	0.180
07291-PC-SP-R6	PC	10/18/2007	6.090	1.881	TC-C_10/10/2000_Silver Perch-R6	TC-C	10/10/2000	0.650	0.150
07291-PC-SP-R7	PC	10/18/2007	1.242	0.904	TC-C_10/10/2000_Silver Perch-R7	TC-C	10/10/2000		0.150
07291-PC-SP-R8	PC	10/18/2007	10.323	2.490	TC-C_10/10/2000_Silver Perch-R8	TC-C	10/10/2000	0.430	0.140
		Mean	3.31	1.52				0.329	0.151
PC-SP-R1	PC	8/29/2002	17.0	0.77	05298-SP-CR-R1	CR-C	10/25/2005	0.046	0.131
PC-SP-R2	PC	8/29/2002	20.0	0.50	05298-SP-CR-R2	CR-C	10/25/2005	0.016	0.172
PC-SP-R3	PC	8/29/2002	10.0	0.76	05298-SP-CR-R3	CR-C	10/25/2005	0.016	0.126
PC-SP-R4	PC	8/29/2002	22.0	1.20	05298-SP-CR-R4	CR-C	10/25/2005	0.017	0.187
PC-SP-R5	PC	8/29/2002	22.0	0.90	05298-SP-CR-R5	CR-C	10/25/2005	0.016	0.168
PC-SP-R6	PC	8/29/2002	18.0	1.80	05298-SP-CR-R6	CR-C	10/25/2005	0.016	0.192
PC-SP-R7	PC	8/29/2002	14.0	1.90	05298-SP-CR-R7	CR-C	10/25/2005	0.051	0.181
PC-SP-R8	PC	8/29/2002	5.3	1.10	05298-SP-CR-R8	CR-C	10/25/2005	0.016	0.132
		Mean		1.12				0.024	0.161

Maximum Lead Conc 2.0

#### **Spotted Seatrout**

Sample ID	Location	Date		Mercury g/dw	Sample ID	Location	Date		Mercury kg/dw
03287-SS-PC-1	PC	10/17/2003	2.3	1.5	PC-SS-R1	PC	8/29/2002	2.5	0.40
03287-SS-PC-2	PC	10/17/2003	7.1	1.7	PC-SS-R2	PC	8/29/2002	16.0	0.82
03287-SS-PC-3	PC	10/17/2003	2.6	1.4	PC-SS-R3	PC	8/29/2002	3.7	1.40
03287-SS-PC-4	PC	10/17/2003	1.5	1.5	PC-SS-R4	PC	8/29/2002	10.0	1.00
03287-SS-PC-5	PC	10/17/2003	1.4	1.3	PC-SS-R5	PC	8/29/2002	4.5	1.50
03287-SS-PC-6	PC	10/17/2003	5.2	1.6	PC-SS-R6	PC	8/29/2002	3.7	1.10
03287-SS-PC-7	PC	10/17/2003	4.8	1.2	PC-SS-R7	PC	8/29/2002	2.5	0.38
03287-SS-PC-8	PC	10/17/2003	4.4	1.2	PC-SS-R8	PC	8/29/2002	3.6	0.61
		Mean	3.66	1.43			Mean	5.81	0.90
04299-SS-PC-1-C+F	PC	10/25/2004	8.696	4.50	Purvis Creek 10/10/2000	Purvis	10/10/2000	0.99	0.64
04299-SS-PC-2-C+F	PC	10/25/2004	8.973	4.10	Spotted Seatrout-R1				
04299-SS-PC-3-C+F	PC	10/25/2004	3.193	4.60	·				
04299-SS-PC-4-C+F	PC	10/25/2004	5.560	3.60	05295-SS-TC-R1	TC-C	10/22/2005	0.183	0.342
04299-SS-PC-5-C+F	PC	10/25/2004	11.370	4.70	05295-SS-TC-R2	TC-C	10/22/2005	0.206	0.257
04299-SS-PC-6-C+F	PC	10/25/2004	9.076	3.75	05295-SS-TC-R3	TC-C	10/22/2005	0.123	0.287
04299-SS-PC-7-C+F	PC	10/25/2004	5.095	5.30	05295-SS-TC-R4	TC-C	10/22/2005	0.118	0.447
04299-SS-PC-8-C+F	PC	10/25/2004	5.263	1.62	05297-SS-TC-R5	TC-C	10/24/2005	0.130	0.344
		Mean	7.15	4.02	05297-SS-TC-R6	TC-C	10/24/2005	0.171	0.266
					05297-SS-TC-R7	TC-C	10/24/2005	0.118	0.332
05292-SS-PC-R1	PC	10/19/2005	4.323	3.755	05297-SS-TC-R8	TC-C	10/24/2005	0.472	0.512
05292-SS-PC-R2	PC	10/19/2005	19.377	2.664			Mean	0.190	0.348
05292-SS-PC-R3	PC	10/19/2005	4.528	2.981					
05292-SS-PC-R4	PC	10/19/2005	6.410	3.889	06291-TC-SS-R1	TC-C	10/18/2006	0.018	0.194
05292-SS-PC-R5	PC	10/19/2005	5.814	1.705	06291-TC-SS-R2	TC-C	10/18/2006	0.061	0.330
05292-SS-PC-R6	PC	10/19/2005	1.027	2.586	06291-TC-SS-R3	TC-C	10/18/2006	0.122	0.476
05292-SS-PC-R7	PC	10/19/2005	4.651	2.016	06291-TC-SS-R4	TC-C	10/18/2006	0.107	0.257
05292-SS-PC-R8	PC	10/19/2005	6.303	3.025	06291-TC-SS-R5	TC-C	10/18/2006	0.318	0.272
		Mean	6.55	2.83	06291-TC-SS-R6	TC-C	10/18/2006	0.250	0.307
					06291-TC-SS-R7	TC-C	10/18/2006	0.270	0.238
06289-PC-SS-R1	PC	10/16/2006	0.788	0.639	06291-TC-SS-R8	TC-C	10/18/2006	0.287	0.373
06289-PC-SS-R2	PC	10/16/2006	1.551	2.008			Mean	0.179	0.306
06289-PC-SS-R3	PC	10/16/2006	8.796	3.509		<b></b> 00			
06289-PC-SS-R4	PC	10/16/2006	2.716	2.099	07296-TC-SS-R1	TC-C	10/23/2007	0.118	0.249
06289-PC-SS-R5	PC	10/16/2006	3.274	2.601	07296-TC-SS-R2	TC-C	10/23/2007	0.072	0.352
06289-PC-SS-R6	PC	10/16/2006	0.909	0.900	07296-TC-SS-R3	TC-C	10/23/2007	0.074	0.344
06290-PC-SS-R7	PC	10/17/2006	3.172	0.978	07296-TC-SS-R4	TC-C	10/23/2007	0.040	0.478
06290-PC-SS-R8	PC	10/17/2006	1.617	0.911	07296-TC-SS-R5	TC-C	10/23/2007	0.091	0.530
		Mean	2.85	1.71			Mean	0.079	0.391
07276-PC-SS-R1	PC	10/3/2007	1.229	4.364	05298-SS-CR-R1	CR-C	10/25/2005	0.016	0.079
07276-PC-SS-R2	PC	10/3/2007	10.843	2.631	05298-SS-CR-R2	CR-C	10/25/2005	0.016	0.078
07276-PC-SS-R3	PC	10/3/2007	1.130	1.400	05298-SS-CR-R3	CR-C	10/25/2005	0.017	0.083
07276-PC-SS-R4	PC	10/3/2007	3.025	2.050	05298-SS-CR-R4	CR-C	10/25/2005	0.017	0.082
07276-PC-SS-R5	PC	10/3/2007	1.892	4.595	05298-SS-CR-R5	CR-C	10/25/2005	0.017	0.122
07276-PC-SS-R6	PC	10/3/2007	5.747	2.061	05298-SS-CR-R6	CR-C	10/25/2005	0.016	0.153
07276-PC-SS-R7	PC	10/3/2007	5.702	3.798	05298-SS-CR-R7	CR-C	10/25/2005	0.017	0.156
07276-PC-SS-R8	PC	10/3/2007	2.407	2.681	05298-SS-CR-R8	CR-C	10/25/2005	0.016	0.110
		Mean	4.00	2.95			Mean	0.016	0.108

Maximum Lead Conc 1.6

Appendix K-4:__Bioaccumulation Factors for Finfishes Black Drum, Red Drum, Silver Perch, Spotted Seatrout, Striped Mullet

#### **Striped Mullet**

Sample ID	Location	Date	A-1268 mg/F	Mercury g/dw	Sample ID	Location	Date	A-1268 mg/	Mercury kg/dw
04299-SM-PC-1-C+F	PC	10/25/2004	17.554	0.190	05297-SM-TC-R1	TC-C	10/24/2005	0.010	0.167
04299-SM-PC-2-C+F	PC	10/25/2004	12.960	0.170	05297-SM-TC-R2	TC-C	10/24/2005	0.010	0.113
04299-SM-PC-3-C+F	PC	10/25/2004	12.222	0.240	05297-SM-TC-R3	TC-C	10/24/2005	0.053	0.033
04299-SM-PC-4-C+F	PC	10/25/2004	14.896	0.150	05297-SM-TC-R4	TC-C	10/24/2005	0.010	0.082
04299-SM-PC-5-C+F	PC	10/25/2004	9.714	0.170	05297-SM-TC-R5	TC-C	10/24/2005	0.202	0.042
04299-SM-PC-6-C+F	PC	10/25/2004	21.417	0.140	05297-SM-TC-R6	TC-C	10/24/2005	0.061	0.047
04299-SM-PC-7-C+F	PC	10/25/2004	12.262	0.310			Mean	0.058	0.081
04299-SM-PC-8-C+F	PC	10/25/2004	47.046	0.300					
		Mean	18.51	0.21	06291-TC-SM-R1	TC-C	10/18/2006	0.351	0.024
					06291-TC-SM-R2	TC-C	10/18/2006	0.443	0.024
05292-SM-PC-R1	PC	10/19/2005	1.473	0.140	06291-TC-SM-R3	TC-C	10/18/2006	0.311	0.024
05292-SM-PC-R2	PC	10/19/2005	10.682	0.170	06291-TC-SM-R4	TC-C	10/18/2006	0.267	0.026
05292-SM-PC-R3	PC	10/19/2005	19.436	0.200	06292-TC-SM-R5	TC-C	10/19/2006	0.205	0.030
05292-SM-PC-R4	PC	10/19/2005	8.667	0.130			Mean	0.315	0.026
05292-SM-PC-R5	PC	10/19/2005	1.172	0.320					
05292-SM-PC-R6	PC	10/19/2005	15.878	0.260	07296-TC-SM-R1	TC-C	10/23/2007	0.130	0.013
05292-SM-PC-R7	PC	10/19/2005	19.156	0.840	07296-TC-SM-R2	TC-C	10/23/2007	0.302	0.025
05292-SM-PC-R8	PC	10/19/2005	20.000	0.310			Mean	0.216	0.019
		Mean	12.06	0.30		00.0			
					05298-SM-CR-R1	CR-C	10/25/2005	0.017	0.017
06290-PC-SM-R1	PC	10/17/2006	0.036	0.125	05298-SM-CR-R2	CR-C	10/25/2005	0.016	0.033
06290-PC-SM-R2	PC	10/17/2006	10.289	0.208	05298-SM-CR-R3	CR-C	10/25/2005	0.017	0.019
06290-PC-SM-R3	PC	10/17/2006	8.824	0.282	05298-SM-CR-R4	CR-C	10/25/2005	0.016	0.015
06290-PC-SM-R4	PC PC	10/17/2006	6.769	0.200			Mean	0.016	0.021
06290-PC-SM-R5 06290-PC-SM-R6	PC	10/17/2006	15.339 16.529	0.207					
06290-PC-SM-R7	PC	10/17/2006	15.169	0.236					
		10/17/2006	1.588	0.195					
06290-PC-SM-R8	PC	10/17/2006 <b>Mean</b>	9.32	0.242 <b>0.21</b>					
07291-PC-SM-R1	PC	10/18/2007	4.473	0.128					
07291-PC-SM-R2	PC	10/18/2007	9.821	0.120					
07297-PC-SM-R3	PC	10/10/2007		0.104					
5.257 1 0 GW 110	. 0	Mean	12.45	0.16					

Maximum Lead Conc 3.2

## Appendix K-5 Bioaccumulation Factors for Cordgrass Data

Appendix K-5.__Cordgrass Data for Bioaccumulation Factors

Station	Date	Sediment Mercury	Cordgrass Mercury	Sediment A-1268	Cordgrass A-1268
M-201	10/25/2005	0.594	0.009	0.61	0.017
3-NOAA-G	10/25/2005	0.852	0.041	1.00	0.070
5-NOAA-G	10/25/2005	1.94	0.044	18.00	0.245
6-NOAA-G	10/25/2005	0.707	0.024	1.20	0.059
8-NOAA-G	10/25/2005	0.866	0.021	0.61	0.049
9-NOAA-G	10/25/2005	0.935	0.022	3.30	0.047
7-NOAA-G	10/25/2005	0.675	0.028	1.00	0.017
M-25	10/26/2005	6.600	0.101	88.00	0.221
M-AB	10/26/2005	29.300	0.453	8.40	0.614
M-100	10/26/2005	6.820	0.040	8.40	0.071
M-101	10/26/2005	4.720	0.054	8.60	0.073
M-102	10/26/2005	0.736	0.041	1.90	0.075
M-103	10/26/2005	0.132	0.050	0.15	0.100
M-104	10/26/2005	1.650	0.024	1.70	0.063
M-106	10/26/2005	0.342	0.030	0.34	0.016
M-202	10/27/2005	0.586	0.009	0.48	0.017
M-105	10/27/2005	0.986	0.014	0.76	0.016
M-107	10/27/2005	0.425	0.027	0.51	0.051
M-108	10/27/2005	0.370	0.013	0.41	0.016
M-28	10/27/2005	0.964	0.018	2.00	0.016
M-37	10/27/2005	4.910	0.047	2.00	0.091
TC-M	10/27/2005	0.197	0.007	0.09	0.016
M-203	10/28/2005	0.202	0.008	0.24	0.017
CR-M	10/28/2005	0.031	0.004	0.03	0.016
M-204	10/28/2005	1.390	0.029	2.70	0.058
M-200	10/31/2005	1.180	0.027	1.60	0.025
M-19	10/10/2000	0.213	0.037	0.14	0.143
M-22	10/10/2000	16.800	0.121	2.00	0.223
M-25	10/10/2000	0.759	0.158	0.66	0.117
M-26	10/10/2000	1.660	0.031	1.90	0.209
M-27	10/10/2000	3.300	0.018	0.47	0.167
M-28	10/10/2000	0.534	0.022	0.31	0.145
M-40	10/10/2000	0.118	0.044	0.04	0.109
M-42	10/10/2000	0.681	0.032	0.24	0.124
M-46	10/10/2000	0.688	0.028	0.17	0.137
				4.57	0.099 Mean
					0.022 BAF