

Northmont Business Park ♦ 1955 Evergreen Boulevard, Suite 300 ♦ Duluth, GA 30096 ♦ (678) 775-3080 ♦ FAX (678) 775-3138

August 4, 2004

Mr. Benjamin Franco On-Scene Coordinator U.S. Environmental Protection Agency, Region 4 61 Forsyth Street, SW, 11th Floor Atlanta, Georgia 30303

Subject:

CERCLA Emergency Response Action Report

Bio-Labs, Inc.

Conyers, Rockdale County, Georgia EPA Contract No. 68-W-00-120 TDD No. 4T-04-05-B-006

Dear Mr. Franco:

The Tetra Tech EM Inc. (TtEMI) Superfund Technical Assessment and Response Team (START) is submitting five electronic copies of the CERCLA Emergency Response Action Report detailing activities conducted at Bio-Labs, Inc. This report summarizes field activities conducted at the site during the emergency response on May 25-26, 2004.

If you have any questions or need additional copies of the report, please contact me at (678) 775-3083 or Steve Pierce at (678) 775-3100.

Sincerely,

Neil Daniell, MS

START Project Manager

Enclosures (2)

cc: Matthew Monsees, EPA Project Officer

Don Rigger, EPA Emergency Response Section Chief (letter only)

R. Steve Pierce, START Leader (letter only)

John Mitchell, START Emergency Response Team Leader (letter only)

START File

CERCLA EMERGENCY RESPONSE ACTION REPORT BIO-LABS, INC. CONYERS, ROCKDALE COUNTY, GEORGIA EPA CONTRACT NO. 68-W-00-120 TDD NO. 4T-04-05-B-006

Prepared for

U.S. ENVIRONMENTAL PROTECTION AGENCY Region 4, Emergency Response and Removal Branch 61 Forsyth Street, SW, 11th Floor Atlanta, Georgia 30303

Prepared by

Tetra Tech EM Inc.
Superfund Technical Assessment and Response Team Region 4
1955 Evergreen Blvd, Suite 300
Duluth, Georgia 30096

CERCLA EMERGENCY RESPONSE ACTION REPORT BIO-LABS, INC. CONYERS, ROCKDALE COUNTY, GEORGIA

Revision 0

Prepared for

U.S. ENVIRONMENTAL PROTECTION AGENCY Region 4 Atlanta, Georgia 30303

Contract No. : 68-W-00-120
TDD No. : 4T-04-05-B-006
Date Prepared : August 4, 2004
EPA Task Monitor : Ben Franco

Reviewed by:

Telephone No. : (404) 562-8743
Prepared by : Tetra Tech EM Inc.

START Project Manager : Neil Daniell Telephone No. : (678) 775-3083

Prepared by:

Neil Daniell

John Mitchell

START Project Manager START Technical Reviewer

R. Steve Pierce START Leader

CONTENTS

Sect	<u>ion</u> <u>Page</u>
1.0	INTRODUCTION
2.0	SITE BACKGROUND1
3.0	EMERGENCY RESPONSE ACTIVITIES
4.0	CONCLUSIONS
App	<u>bendix</u>
A	LOGBOOK
В	PHOTOGRAPHIC LOG
C	TABLE OF WITNESSES
D	AIR MONITORING DATA
	FIGURES
<u>Figu</u>	<u>Page</u>
1	SITE LOCATION MAP2
2	SITE I AVOLIT MAP

1.0 INTRODUCTION

This report has been prepared under the provisions of Technical Direction Document (TDD)

No. 4T-02-07-B-006, which the U.S. Environmental Protection Agency Region 4 (EPA) assigned to the

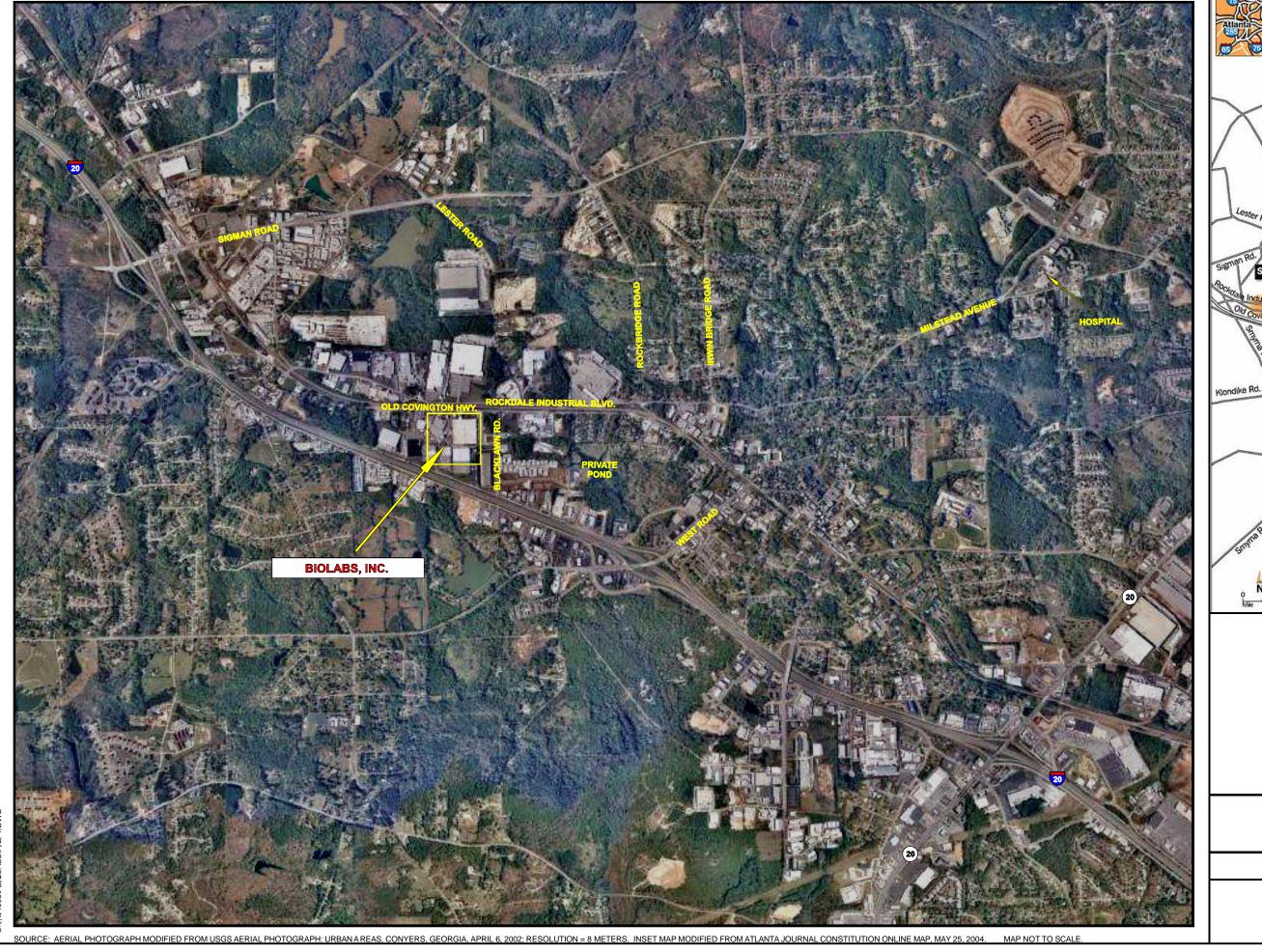
Tetra Tech EM Inc. (TtEMI) Region 4 Superfund Technical Assessment and Response Team (START) under

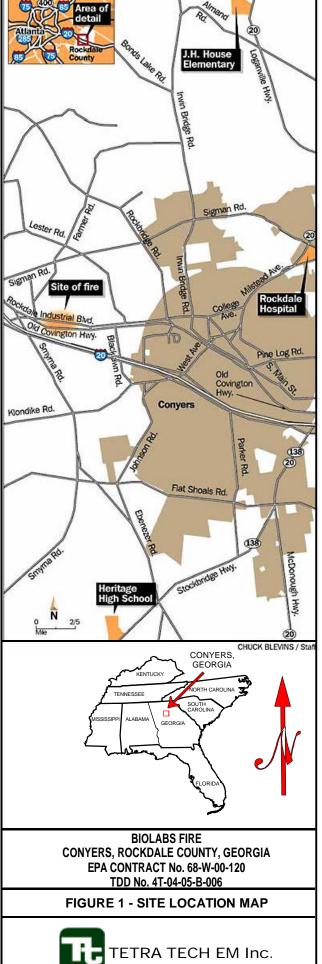
contract No. 68-W-00-120. The overall scope of this TDD, monitored by On-Scene Coordinator Benjamin

Franco, was to provide technical assistance during emergency response activities at the Bio-Labs, Inc., fire

near Conyers, Rockdale County, Georgia. Specific elements of the TDD included providing air monitoring,

conducting multimedia sampling, documenting on-site conditions and activities with logbook notes


(Appendix A) and photographs (Appendix B), and preparing a final report.


2.0 SITE BACKGROUND

Bio-Labs, Inc. (Bio-Labs), is a pool and spa care company located in Conyers, Georgia, about 30 miles east of Atlanta (see Figure 1). Site-specific geographic coordinates are latitude 33° 39'27" north and longitude 84° 0'33" west (Appendix D); the local address is 1700 Old Covington Highway, Conyers, Rockdale County, Georgia. On May 25, 2004, a fire broke out in Plant 14 Warehouse (Figure 2), a building that housed approximately 12.5 million pounds of pool chemicals and oxidizers (Federal Emergency Management Agency [FEMA] National Situation Report, May 26, 2004) (EPA Region 4 Pollution Report, Final) (see Figure 2). The local Rockdale County fire department responded to the blaze after a local police officer contacted the police dispatch.

Local authorities implemented a mandatory evacuation of residences and businesses within a 1.5-mile radius of the incident and urged voluntary evacuation of residents north of US Interstate 20 (I-20). Secondary roads adjacent to and leading into the affected area were closed, and I-20 was opened and closed intermittently as winds shifted. The Georgia Emergency Management Agency (GEMA) notified 21 counties in northeast and central Georgia about the plume and advised of them of plume modeling and air monitoring results. Temporary flight restrictions were put into effect by the Federal Aviation Administration.

GEMA, Environmental Protection Division (EPD) of the Georgia Department of Natural Resources, EPA, and the Agency for Toxic Substances and Disease Registry (ATSDR) responded to the scene (Appendix C). EPA contacted TtEMI START and requested that they responded to the scene to provide air monitoring and technical assistance.

APPROXIMATE SCALE 1 inch = 2,346 feet

SOURCE: MODIFIED FROM USGS AERIAL PHOTOGRAPH: URBAN AREAS, ATLANTA, GEORGIA, APRIL 6, 2002. RESOLUTION = 2 METERS.

BIOLABS FIRE CONYERS, ROCKDALE COUNTY, GEORGIA EPA CONTRACT No. 68-W-00-120 TDD No. 4T-04-05-B-006

FIGURE 1 - SITE LAYOUT MAP

3.0 EMERGENCY RESPONSE ACTIVITIES

At the request of EPA, TtEMI START responded to the fire at the Bio-Labs facility on May 26, 2004. Team member Neil Daniell arrived at the scene at approximately 0845 hours and met with OSC Franco and OSC Rick Jardine. The OSCs briefed TtEMI START on the situation, and START Daniell began coordinating and mobilizing START resources for the response. A second TtEMI START team consisting Alan Whitt and Rich Kaiser arrived at the scene approximately 30 minutes later. The group briefly discussed site activities and began calibrating air monitoring equipment necessary to provide air monitoring support. Donna Majewski, Bio-Labs corporate representative, indicated that possible airborne contaminants were chlorine, hydrochloric acid, and hydrogen bromide. However, Ms. Majewski suspected that hydrogen bromide might not be present because the portion of the plant that should have contained bromide compounds had burned earlier in the morning.

TtEMI START performed both general and contaminant-specific air monitoring. General air monitoring was conducted using a Draegar MiniWarn 4-gas meter. The 4-gas meter measures percent oxygen, percent lower explosive limit (LEL), hydrogen sulfide, and carbon monoxide. TtEMI START conducted contaminant-specific air monitoring using MDA Scientific single-point monitors (SPM). SPMs were used to measure chlorine and hydrochloric acid.

Initial air monitoring of the plume was conducted by two teams because of the size of the plume and the need to find the outer reaches of the plume. The plume direction during initial air monitoring (1050 hours) was east and parallel to I-20 on the south and Old Covington Highway to the north. START Whitt and Kaiser, along with OSC Jardine, formed Team 1 and mobilized eastward down I-20 toward the eastern edge of the plume. Team 1 monitored for percent oxygen, percent LEL, hydrogen sulfide, carbon monoxide, chlorine, and hydrochloric acid. START Daniell formed Team 2 and mobilized eastward down Old Covington Highway toward the downtown district of Conyers and the evacuated areas. Team 2 monitored for chlorine.

The results of the initial monitoring indicated that hazardous atmospheres where not present outside of the visible plume (Table 1, Appendix D). Oxygen, percent LEL, hydrogen sulfide, and carbon monoxide were not detected at levels of concern. Team 1 did not detect chlorine or hydrochloric acid at any point along the eastern edge of the plume, beginning at Georgia Highway 20 and moving eastward to Georgia Highway 11. Team 1 also did not detect chorine or hydrochloric acid along the southern edge of the plume and south of I-20. Team 2 found that chlorine gas was present in the plume above the NIOSH recommended exposure limit (REL). The REL for chlorine was exceeded along Old Covington Highway near Blacklawn Road. However, chlorine gas was not detected above the REL between West Road and Georgia Highway 20.

After the initial air monitoring results, the air monitoring teams returned to the staging area and met with a TtEMI START DiDi Fung and Bess Blyler (Team 3) at approximately 1300 hours. START Blyler and Fung brought additional EPA equipment that could be used to detect other compounds in the plume. The teams discussed the results of the initial sampling episode and decided to expand the search for other compounds based on compounds known to be present in the facility. Also, the group decided to concentrate air monitoring activities on the areas closest to the facility due to minimal levels detected beyond West Road.

TtEMI START calibrated the additional air monitoring equipment and set up six SPMs to monitor for hydrogen bromide, phosgene, hydrochloric acid, and chlorine. Team 2 and Team 3 combined to monitor the plume near the facility for hydrogen bromide, phosgene, hydrochloric acid, and chlorine. Team 1 went to check on a complaint in a nearby county and monitored for hydrochloric acid and chlorine. During the second monitoring event, the plume direction was initially east of the facility and then shifted toward the northeast. The thickest portion of the plume was initially near Blacklawn Road and 3rd Avenue SW, and the plume later migrated toward Lester Road and Rockdale Industrial Boulevard.

The results of the second air monitoring event indicated that hazardous concentrations were present in the plume (Appendix D). In the thickest portions of the plume, TtEMI START detected hydrogen bromide, and hydrochloric acid at concentrations above the PEL, and chlorine was detected at concentrations above the short-term exposure limit (STEL). Phosgene was detected by TtEMI START but at concentrations lower than the PEL. In the thinner portions of the plume, chlorine gas was detected at levels less than the REL. Outside of the plume, TtEMI START did not detect any compounds; however, the group noted a chlorine odor even when the levels were well below the PEL, thus indicating a low odor threshold for chlorine. No compounds were detected south of I-20 or between West Road and Georgia Highway 20, and Team 1 did not detect any compounds in the adjacent county. In addition, no compounds were detected at the Rockdale County Hospital and TtEMI START detected along Milstead Avenue.

During the second air monitoring event, runoff water was observed flowing from the Bio-Labs facility and into a storm water drain along Blacklawn Road (Figure 2). TtEMI START tested the water with pH paper and found the pH to be approximately zero. The outfall of the storm water drain was traced to a private pond on VFW Drive (Figure 2). Water flowing into the pond had a pH of zero (west side of VFW), and water in the pond had a pH of approximately 4 to 5. Further into the pond, the water had a pH of approximately 6. EPA and EPD were notified of the situation.

As night approached, support equipment and personnel were brought in to assist with air monitoring. The new equipment included single-gas monitors to detect hydrogen sulfide, hydrogen cyanide, and chlorine.

Cooler temperatures tend to cause vapors to linger closer to the ground, so TtEMI START expanded the air monitoring search based on data published in the Canadian Builders Digest, CBD-144, <u>Toxic Gases and Vapours Produced at Fires</u>. In addition, the U.S. Coast Guard (USCG) Gulf Strike Team (GST) was brought in to assist with air monitoring.

TtEMI START calibrated the additional air monitoring equipment and set up six SPMs to monitor for hydrogen bromide, phosgene, hydrochloric acid, and chlorine. Specific areas monitored during the third air monitoring event included the Rockdale County Hospital, Highway 138 North, Highway 20 North, House Elementary School, Lakeview Estates, and the Rocky Ridge Road area. These locations were discussed during an incident command conference call with EPA, GEMA, the Centers for Disease Control, and health department personnel. Teams 1, 2, and 3 combined to monitor north of Sigman Road and in the area that the plume was predicted to migrate. The USCG GST was stationed at the Rockdale County Hospital throughout the night. During the third monitoring event, the plume direction continued to be northeast of the facility, and the thickest portion of the plume was located near Lester Road and Rockdale Industrial Boulevard.

The results of the third air monitoring event indicated that no hazardous gases were present north of Sigman Road (Appendix D). However, hazardous concentrations continued to be present in the plume but at levels lower than previously detected. In addition, fewer compounds were detected inside the plume. In the thickest portions of the plume, TtEMI START detected chlorine at concentrations above the REL and hydrogen cyanide above the National Institute of Occupational Safety and Health (NIOSH) recommended exposure limits (REL). Hydrogen sulfide was detected in the plume at concentrations greater than three times background levels, but below the REL.

During the early morning hours of May 26, 2004, concern was raised about communities east of Conyers. The plume direction had begun to migrate to the east, so monitoring efforts were shifted eastward toward Covington. The results of the air monitoring in the Covington area indicated that chlorine was present at levels near the PEL. However, no other compounds were detected.

On the morning of May 26, 2004, TtEMI START did a sweep of both areas (east and northeast of the facility) impacted by the plume. The results of the monitoring efforts indicated that low levels of chlorine and hydrogen cyanide were east of the Bio-Labs facility along Blacklawn Road. No compounds were detected along VFW Drive, and no compounds were detected north of Old Covington Highway. In addition, no compounds were detected along Highway 20 or in the neighborhoods west of Highway 20.

After the air monitoring sweep was completed, EPD requested that air monitoring be done along the private pond and the outfall from the pond. A major fish kill had resulted from the runoff entering the pond, and EPD was overseeing sampling of the pond. TtEMI START mobilized to the area and began air monitoring for hydrogen cyanide, hydrogen bromide, hydrogen chloride, chlorine, and phosgene. The results of the air monitoring event found that no compounds were present around the pond or along the outfall from the pond. Upon completion of air monitoring around the pond and the outfall, TtEMI START demobilized from the site.

According to the National Oil and Hazardous Substances Contingency Plan (NCP), 40 CFR 300.415 (b)(1), at any release where the lead agency determines that the release poses a threat to public health or welfare or the environment, the lead agency make take any appropriate removal action to abate, prevent, minimize, stabilize, mitigate, or eliminate the release or the threat of release. Based on 40 CFR 300.415 (b)(1) and the analytical data collected for this site, future work at the Bio-Labs site may occur at the discretion of EPA's OSC.

4.0 CONCLUSIONS

On the morning of May 25, 2004, Plant 14 Warehouse on the Bio-Labs facility in Conyers, Georgia, caught fire. Local authorities implemented a mandatory evacuation for residences and businesses within a 1.5-mile radius of the incident and urged voluntary evacuation of residents north of US Interstate 20 (I-20). GEMA, Georgia EPD, EPA, and ATSDR responded to the scene, and EPA requested that TtEMI START provide air monitoring and technical assistance.

Tetra Tech mobilized to the Bio-Labs site and provided 35 hours of continuous support for the emergency response. Initial air monitoring of the plume was conducted by two teams because of the size of the plume and the need to find the outer reaches of the plume. The results of the initial monitoring indicated that hazardous atmospheres where not present outside of the visible plume. Chlorine gas and hydrochloric acid vapors were not detected at any point along the eastern edge of the plume, beginning at Georgia Highway 20 and moving eastward to Georgia Highway 11. TtEMI START also did not detect chlorine and hydrochloric acid along the southern edge of the plume or south of I-20. Chlorine gas was present in the plume above the OSHA PEL and above the STEL in the immediate area of the facility. The PEL was exceeded between West Road and the facility, and the STEL was exceeded in a valley along VFW Drive near 3rd Avenue SW. However, chlorine gas was not detected between West Road and Georgia Highway 20.

After the initial air monitoring results, TtEMI START brought in additional EPA equipment that could be used to detect other compounds in the plume. The teams discussed the results of the initial sampling episode and decided to expand the search for other compounds based compounds present in the facility. The results of the second air monitoring event indicated that hazardous concentrations were present in the plume. In the thickest portions of the plume, TtEMI START detected hydrogen bromide, chlorine, and hydrochloric acid at concentrations above the PEL. Phosgene was detected by TtEMI START but at concentrations than the PEL. Only low levels of chlorine were detected immediately outside of the plume, and the level of chlorine detected was not above the PEL. No compounds were detected by TtEMI START south of I-20, at the Rockdale County Hospital, between West Road and Georgia Highway 20, or in the adjacent county.

During the second air monitoring event, runoff water was observed flowing from the Bio-Labs compound and into a storm water drain along Blacklawn Road. The outfall of the storm water drain was traced to a private pond on VFW Drive, where the water flowing into the pond had a pH of zero (west side of VFW) and water in the pond had a pH of approximately 4 to 5. TtEMI START notified EPA and the Georgia EPD of the situation.

During the early morning hours of May 26, 2004, concern was raised about communities east of Conyers. The results of the air monitoring in the Covington area indicated that chlorine was present at levels near the PEL. However, no other compounds were detected. On the morning of May 26, 2004, TtEMI START did a sweep of both areas (east and northeast of the facility) impacted by the plume and found low levels of chlorine and hydrogen cyanide east of the Bio-Labs facility along Blacklawn Road. No compounds were detected along VFW Drive, and no compounds were detected north of Old Covington Highway. In addition, no compounds were detected along Highway 20.

After the air monitoring sweep was completed, EPD requested that air monitoring be done along the private pond and the outfall from the pond. TtEMI START mobilized to the area and began air monitoring for hydrogen cyanide, hydrogen bromide, hydrogen chloride, chlorine, and phosgene. The results of the air monitoring event found that no compounds were present around the pond or along the outfall from the pond. Upon completion of air monitoring around the pond and the outfall, TtEMI START demobilized from the site. Based on 40 CFR 300.415 (b)(1) and the analytical data collected for this site, future work at the Bio-Labs site may occur at the discretion of the EPA OSC.

APPENDIX A

LOGBOOK NOTES

(17 Pages)

CONTENTS

PAGE	REFERENCE ,	DATE
STA	RT personne 5/25/04	
	· Alan Whitt	<u></u> .
	Rich Kaiser	
	: Neil Doniell	
	· Didi Fung	
	Be 55 Blyle-	<u> </u>
ŧ .	Tiffery Messier	-
	· Charle Parker	
		:
-		!
	<u> </u>	
		<u> </u>
	* .	<u> </u>
f		
		

ALL-WEATHER HORIZONTAL LINE BOOK

Name Convers	Chemical Firm	e
"610MO		·
	· · · · · · · · · · · · · · · · · · ·	
Phone		and the second s
Mark at		
	· .	
unique paper created to sh	"Rite in the Rain" All-Weat ned water and enhance the wr for recording critical field data noil or an all-weather pen.	itten image. It is widely
Specifications for this book:	*-	

Polydura Cover Item No. 390N

Ite:n No. 390NF

20.6 70 Dz; LEL 0.0, He5 0925 NOW DAYING ARRIVED ONS ... 0945 ARMYS @ BIOLOD FIRE 1.0 pm HCC 4 CC - 0.20pm GPS COORDENATOS 33 ACTOO OWNER By GRESST CAPES CHENNESSE 0 84 00 45 WEST & Coxagent, GA, sam for co of such MOVENE "HOT Spetts) WE'll SUL- UP TO ENOUITOR For CHEONERS HEL 1113 STOTION DAY | 33° 37 YEN WORD SC 55 W ALMONIAN 0-0 LEC 296 % OF 1050 BARKGIND O.DOGM HOLK USENE O. Oppm CULONOUS & HCC CHORELE CECOD % 02 20.50%, CO 0.0 ppm MOVERIG TO EXIT # 98 Mgs 1.0 ppm. Exmont (TO) BYGEN MONTHERE. 1121 EXIT#90 STOTIONIONY RESOLUTE C.C.O. Q - 20, 2, co-0.0 1075 DOWN PUNTOUS TO DRIVE 168-00 ; HCC & CHEARSON O.O ppm. I-20 S. BEGEN MONTOPIENG 33 36 34N, 013 53 02 W SKIT 90 - PRISTERIES ESCH-CONTENUING TO SXIT # 28 5x1+# 98 1131 GRAD ON AND DRESTREAMS NOT Exit #52 - Bachenous on Al 3-30-30-05-20-5 CD-0.0 ppm 165-00 ppm INTRUMBATT HCC (CC-0.0 ppm 11:02 STATIONAMY ROSADENE AT Shilvary GP1 33 36 40 N OF) 45 52W

Remove Full Face. Atmosphere CO-0.0ppm He &-0.0pm Hack a oppos IS CLEARENG. MOVERLE TO GPS: 33 33'34 N Ex17 #101 083°30'02 W 1038 - RECoy RESOLUTE (SPA-Rock) EPO (RECK) TOLES CONF CONT DY THES DOT TO BXIT #98 DEFORT MOVE TEMS. GPA purenous Maps TO 8 811 # 101 STORE Employeer REPORTED DADE BARRET THE A.M. DOWNTOWN MADESON - REPORTER! 1942 STATIONARY REDUXES (EXITERIOI) CEC-0.0; 02-20.9, CO-00, 1/28-0.0 LSC-00 02-20-7 60,30 Herter- 0,0 ppm HES-3.0; HOLECK-00 pon GASI 33 3632 N; OP3 38 15 W GB: 30 36 34N; 883 41 58 W EPA (Rick) OK CONFORMEROS CIAH HEADING GAST ON 5-20 1254 HEAD TO RESIDENCE 1396 COUNTER TO MADOSONE. WILL CONSIDER TO JUNEST EGIPTE ENDIVIOUSE COMPLOSENT INVESTERMENT & TIPLES Add to trom Sorly" A.M. RESOLUGI 1802 Appres @ 1386 Copper Dr. U.T REST AREA 1205 MESOS NRS 1 LEC- 0.0; 02-20.9, CO-0 PPA Back on THE ROM _ CONTERINS 1210 425-00ppm; Hata-00ppm ON I-20 GAST TO MAPSSONO GPS: 33 25 24 N, 083 27 10 W 1304 Deposer 1386 CEDAL DR. 1220 ATTRIVE EN MADESON (BOLT#113) PRUBULD COMPARANT ZAOUR O 08-2 89-62 6 1312 Roman TO EPA (RECK) - DECEME TO Hosp Back to Comman POST (Paracess) & Mil Bonne O use 0.0 02-20.9 ~

1351 'Bark I-20 proposiock @ CONTINUE TO COMMISSIO POST 5x17 #98 Back @ Comm. POST. DWATTENG Loc 00, 9-209 CO-0 Sppm H25-00 ppm fice & CL-0.0 ppm NEW ADDITIONAL INSTRUCTIONS @P5-33, 36 45 N, 083 44 43 W EQUIPMENT: SPM mfg by: Andra Parery econo / Hazy & HOT 1633 4 FERRA BEGIN NEW MOUTHER MISSION OF 1411 5KIT #84 OU I ZOWSST RESOURCES GTOTI DROSMY) 15th rep flee & ce - 0.0 ppm LEC-00, 02-209, CO-00 pour 1646 GBS 33 40 31 M H25-00 ppm; HCC tcc 0.0 ppm 08402 16 W GAS: 33 38 09 N; 083 38 32 W CL. O. 24 pp CORPTENUS W TOWORD COMMIND POST. 1549 THEL 2.20 PPM 1648/ Ce-0.4/ ppm 1420 84.T #80 @ I-20 W G85 33 40 27 M STATIONORY REMOTRIGES: 084 02 07 W LEC-0.0; 02-20.9, CO-2ppm 4125-0.0 ppm HCL +CL-0.0ppm 455000 GB(3) 40 27 N GPS: 33 39 34 N; OPY OI 17 W 084 01 48 W HCL 0.0 qc-0.08 ppm 1424 STOTIONION REPOSING LEC-0. 02-20.9 CO-2 ppu 2 Nei Dona I He5 - 0.0 ppm Her ker-asppin GP 5 1 33 40 08 N; OFY 62 24 W >

0.08 ppm HCC 0:00 pm $\mathcal{C}_{\mathcal{L}}$ CL O-12 ppm HCC O. O. APM 1496 FRONT Briver rd. (fines CA.) 1658 G15: 33 40 28 N [1818] GAS: 33 40 20N OPY OI 47 W 671 50 PRO ce popo ppu CL: O. O PPM ~ ANOUN HCLI O.Dppm tel 0.0 ppm & RockBassof 1022 Gps: 33 % 38 N CL O-oppn W55 50 180 HCL 0-0 ppm CL - 0,17 ppm /1840/ DESCOVERED LOW pt RUNOT HEL 0-90 ppm 33 40 17 N 084 P223 W MISSION #3 1750/ GPS: 33 4037AL PY 021FW Blacklagar. Bislow facely HCL 0-65.7 (154 WATER RIO ACROST PARK LOT, THRONGE CL 0.61 0.95 GRAST FEWERD 1.50+ 1850 TEST VFW LOW 33 40 14 N HCL 150+ ppm 84 22 04 W INLET - LOW PHN 1.0 CL +50+ 150+ ppn + BROWENS DA ENTRAINS O CALE 1-2 GP) 33 4028N el ory of 15 M or mean 6 Coles AR 5 THE Q NOTE + 550 DNR - THOP III BANK VACTORAL

time. OSC's & START GP5: 33 41 OPN, 84 0 (272 W) Daniell in meetings. CL: O. D. ppm START Blyle- a Messive HCL D-Opper Messier updating our monitring data base, (KINGSTON) GPS: 33 41 14N OFR 0123 W 200 2130 Currently START onsite EL: 80-07 pm TRUTHE Blyler, Porker, Fing, Messierd HCL: 0.0 ppm. Doniell, Osca stilling 1927 meetings. Coast Guard GPS: 33°41 ZDN 094° 61' 1910 SIGHAN on site 5-person team. CL ! 0.08 ppm TO 0-09 ppm BUTHE BUTHE Weather currently, world + Days HCL: 0.00 ppm At No at this time, dork night have over moon. 17729 Enwish B" CL: 0.12 ppm -> 0.08 ppm 23:31 - PREPARE to DEPART SITE, WELLOWN LICE: 0.0 ppm to obtain More READINGS BEGEN RETURN TO COMMIND POST · POESS & CHARLIE 1936 | Roman to Common, fort · R. Saedine - Dioli Fung · H. Daniells, T. MESSIER START AION Whilf & Rich T. Poud. Kaiser offsit. START C. Porterk 23:35 - DEPART SITE, 1St STOP T. Messic Fonsite. HOSPITAL. 2000 BEE OSC'S on site currently K. Jones, B. Franco, R. Jardine, & T. Byrd. No Air monitoring at this B. Blila

			CHITTER PERIMETER OF PLUME						
	HCL CL	PhogeNE HBr HCM	HS (Hydrogen Sulfide)	LOCATION/TIME					
eller				IRMIN/Signa					
				(CLOUD Phum)					
				@ 23:55					
				NO READINE					
		April 1		·					
		Notho	3	ROCKDALE HOSP.					
			· .	@ 23:55					
				NO READINGS					
			3	- · · · · · · · · · · · · · · · · · · ·					
				Signa/Walnut					
and the second of the second o	0 0	0 00		20-138 24:06					
				intersection (
	:			33 40 N					
		· · · · · · · · · · · · · · · · · · ·	' die O	W					
en e			No.	NO READINGS					
		J. Hell	,						
)						
300 d									
			<u> </u>						
per training to the second sec									

23:55- aprive @ ROCKDAUS 24:19 4 MILES ON WALLUT GROVE, GIRONG ODDR, HOGPITAL -NO READINGS 0:00 PPM R. SORDINE MOB TO INFORM HOSPITTOL ADMINI. 24:20 - 138E - WHITE RO OF CGIGET-UP TO OBTAIN GTRONE ODER READINGS -HO READINGS O.DOPPIM 23:58- SET-UP IN UPPER PARKING 37° 42' 04" N LOT, NO READINGS acquiRED 83°56' 89" W START WEDNESDAY May 26, 2004 24:02 - DEPART HOSPITAL, TO BEGAN 24:22-LEST ONGO WHITE RD ROUTE _ 24:06 - BEGAN ON GAZON SLIENT ODER, HOREADINGS ON OUTER EDGE OF PLUME. NO READINGS KEGIDENTAL AREA. 24:08- PROCEED JCT 138(E) LEFT @ WALNUT GROVE FO 24:29- INTERSECTION OF BLOCK! FOR APPOLIT PIMIZE B WHITE ST. OBJERVED READINGS DOOR. 24:13 Pagging OVER YELLOW 24:30 INTERSECTIONS OF KIVER Q. G. MILES PROM, WHITE/HIGHTOWEZ (W) INTERPRETION OPPLATION NO READINGS DEFINED D.OOM & WALAROY GROVE & 37 47 60 N 83 67 94 W 33 41. 2804 AL of milanel 8357.7143 W NO REPUDINGS , GLORERODOR

GA HWY 20 (5) - YELLOW RIVER TILL IN REGIDENAL ACEA. 24:52 -35° 41 54" 24:35 2100 WANTERED FIRE GTATION 83° 91' 81" #5 (NO EZADINGS) NO READINGS 0.00 PDM 24:37 - INTERSECTION HIGHTOWER 24:57 - MILGREAD / SIGNAN RA(L (NO READ O. OOPPN) GA20 33° 44'27" 83° 59' 53" 01:31 - PROCEED TO MOVE CLOSER NO READINGS DOOPPM to PLUME. TO GATHER 24:29 PROCEED @(L) ON GAZO HWY 31. PT. PEADINGS O. Covington/ Main St. ENTERINE, HEADING COMMERCIAL AREA 24:43 - J. H. HOUSE SCHOOL ELEM. 01:36- PLUME MOVED TO EFFE NO READINGS D.DOPPM IRWIN Br./ Main St. *43 43 3(* 84 00 37 STRONG ODOR 33 40 44 H AMERICA RED CROSS Station MM.5 (Diagner RELIF Station) 84 6/ 48 W PROCFED INTO PLUNE-24.46-PROCEED ON HWY GAZOCS) GTRONG ODDE

24.33- FRUETI) ON MITTE GI.

01:42 ROCKBRIDGE/MAIN deopped O.DOPPM BURNING OF BLDG. OCROSS STREET 1.3 HCN Highley - INDUSTRIAL PORK D.O.HEL 02:00 - PROCEED BACK INTO 0.0 PHOS. PLUMER 02:04 MAIN/ ITTEL O.O HBA 2.0 Hy Cyxide HCAL 7.6 PPM-5.5 PPM 0.80 CL (PM) CL 1.50+ppM 45 CL (Darials) HBR O. O PPM Pho. O.D ppM 01 10:45 LithorNA LiGATING HCL - O.O POM HCN GYN1. 2.1-2.7 4CN - 44 ppm - 5 CL, 79 PPM SPM. 33 40 46 CL. 50 (DONIEUS) 94 02 30 Dl M: 48 CL 1.20 PPM RR on Naint 02:09 37 40 45 HBR- O. ODDAM Rho-12.0 PPM PLUME DUE EAST CL - 0.0 ppM * High of Plumb 33 40 45 @ America Lighting 84 02:02 ELECTRIC GIRONG ODOR

US. 55- 1601 DIOLAB KEADINGS OF CC

to Conjust Covington NE and has RISEN to OHEOR LOCAL SCHOOL'S 02:18 PACTIV Package Co. BIC THEY ARE STILL IN HCAL 0.0 - 1.3 ppm acon on. 04:22 EX#93 OFF I-20E 01.35-150 @ HWY 142 MORTHRITET / ROCKY FICEP 02:33 37 36,66 04:24 CL-0.00 87 49 58" HBR-0.00 @ EXXON St. FLASH FLOOD Phog- 0.00 HC- D.4 HB=0.00 1492-6.0 HCM-0.00-0.05 00-00 33 41 49 84 01 15 HCI O'.O HON O.O arth of Evacuation Pho. 0.0 LEGIDENTIAL HBR O.D FARMER/IRWIN/ BridgE 04:30- E142 3342 15 840194 0.00 NO PECTITIONS 04:33 D 78 W (GR) 12 TOWARD Covington

04:59 814 (EMORY St.) 124 BG- EMBRY ST. PALMER STONE ELEM. 33 36 15 GCHOOL-90 5/85 33 36 90 HCM , 8 ppM 83 52 04 HCM, 5 ppM 174A3 819 MM 10 37 95 44 15-10 Back 835252 05:10 Back ON SITE, Conducted HON, 5 ppM MEETING EXPLAIN GHIFT CHANGES, and durites 04:47 819 MM - 2 MILES FOR NEXT CREW. 835291 05:30 - LORGED INFORMATIONS @ BEH PAINT BODY onto spettoghet of cause vacations. SHOP. MONITORING WILL Continue Tuntil other 04.55 81 N MM-12 NEF NOTIPED 33 36 60 63 52 01

O-derect · Data RAM 6-10 Mg · CL - 7.2PPM 07:23 MAIN/IRNIA D - DETECT DT: DO - DEPART COMMAND POST 07:28 - PROGRESSING DOWN P.F. ROCKDALE adjacENT D7:05 - BIOLAB- 1601 INDUSTRIAL 33 40 67 O-DETECT 84 02 38 07:30 EXITERED DOWNTOWN O- NO DETECT CONVEYES & - DETECT 07:31 Main/MILSTERD AVE 07:08 - LESTER /INDUSTRIAL POCKDALE COMPHOUSE 33 40 46 1515 KEAVE 84 02 43 CL - 13 PPM O-DETECT HCN MM.1 07:37-COLLEDG - SPRINGWOOD 1171 - 1421 STRONG ODOR 07:11 RR-E OF LESTER D- DETECT Pactiv 07:40 - COAST QUARD (a) HOSPITAL CL . 22 HCN MB 1.5 CALLED W/ 96 Mg particlate HE GROVE 'W/ HOSPITAL ADDMIN TRONG DOOR and they decided to their A.C. page on, due 10 Vinal BRUIPMENET

	07:42 LAKEVIEN / MC CORDS CORNER	00,36 - WEN / 3'2
	1251 -> 1125 ->	NO DETECT, DOOR
	GIRONIG ODOR, OUTTER EDER	
	OF PLUME (REGIDENTIAL)	08:37 1650 WEST ST.
	O-DETECT	.25 CL
		4.8 AB HCN-
	07:48 Conyel Station Pegislentico	. 55 CL
	- Phine encouping aren.	· · · · · · · · · · · · · · · · · · ·
		08:14 1.5 Head BLACKLAUN / DCO
	08:08 - MHN. VIEN - ICWIN BRIDGE	08:44 1.5 Heat BLACKLAUNT/1000 .89 CL COV
	O-DECTIONS	
		08:46 DEGWOOD/BLACKLAWI
	08:11 GIGMA - GIGMA F	08:46 DUGWOOD/BLACKLAW
	O-DECTION	
		08:51 HCH - 3.5
	08:16 - ROCKDACE HOP.	DIRECTLY IN FRONT
	D. DETECT, PROCEDING	OF BIOLAB.
	down Milerad	
		09:33 - COAST GRARD (Ed) GOTHERED
	WIND SHIFT 5	LAST READING 6-9 particlass
	leg par	BREAKING, COUN EQUIPTEMENT
		to MOB TO ROOKDAGE CO.
	11.8.12	COULTACISE, to GET- UP
	e Went to	
		AIR MONTORING
101		

1900 SIMI SCHENUISC, MITCHELL, 10:45- GTART PERGONNER, & EPA AND KAISER ARRIVED. START MITCHELL DERGONNEL ALONG W/ ONE TAKES MESSIER AND PARKER LATER TO Coast Guard depart START OFFICE. COMMAND POST to gaTHER STANT SCHENDER, KAISER, AND WHITT MEXT ROUND OF AIR ARE STAGED TO ASSIST OSCS FETNGOLD MONITORING READUNGS. AND BASS TO MONITOR A CRUSTA (ATMOSPHERE ABOVE CREEK, TO BE EXACT) 10:30- GPORE W/ C. GUARD Ed FOR THE FOLLOWING GATED USING SPM a RoakdalE CourTHOUSE INSTRUMENTS : NO NEW ADDITIONAL INFORMATION · PIPSGENE WAG OBTAINED. · HCN · HBr 11:00 OGC-SpurLING OFF-SITE · 17 CI to attend MEETING W/ THERE WILL BE THREE SAMPLING POINTS: OTHER OFFICIALS TO GATHER. 1. ON TANYARD BRANCH BETOW VEW LAKES INFORMATION OF STATIS TO 9/1E. AND ABOUT IO. 2. ON TANYARD BRANCH SOUTH OF IZO. 12:00 ARC-PUBLIC HEALTH OFFICAL 3. ON ALMAND CREEK NEAR FLAT SHOWS ROAD, SOUTH OF WHERE TANYARD BRANCH INFORMS US OF THE LIMITS. DISCHARGES INTO ALMAND CREEK. TO RELEASE AT EACH SAMPLING POINT, THE VAPOR WILL BE MEASURED AT TWO SEPARATE POINTS: N. Daniel

A JUST ABOVE CREEK GEVER	, ≌>	·				1	July 1	V-6-	Andrew Stanford Stanford		
& BROTTONG ZONE ABOVE CLEEK.					4	7×X)				
(FACE LEVEL)							,				
				-							
) ATA			ABL	E						
SAMPLING PHOTO SAMPLING			AIR -	000	VCEN;	ROT	ZNOS				
POINT NO. LO CATTON	1 time	PHOSGEN	& (PPB)	WATER C	SONE SONE	H CI WATEN LEVEZ	(PPM)	HB WATER	F (PPM) BRUMTHE BRUMTHE	rear majar	areanne Eone
16 º 1 Below dame at VW= Lake (typ. tonyard)	11610	0	0	0	0	0	0	0	0	0	0
· 2 S of IZO Tanyard	1625	0	0	0	0	0	0	0	0	0	0
Branch		_	_	~		-	-	-	_	-	-
· 3 N of Flat Shoals, Tanyard	1642	0	0	0	0	0	O	0	0	0	\c
1_Branch		-		·	_		_	p+10=-	•	•	:
(GID) IZTURMENTANI JALOTT (DAA					SPINE AT	iless.	·		د خاسان نیز برسون		SPINE
4, VIASUS ISSS ROCHDARY BLVD.	1805	<u></u>	0	13000	1.1 THON	Classical)	٥		0		7.11
5. PIVERSITEZ	1747	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0) desired to	0	المحير	Ö	-	0		ا ا ا
(BAST AND NORTH PERIMETERS)	1851	-	0		ن	, soling	0	.,,,,,,,,,	0		0.12
16,5TAGING ARUA	1741	32	0		0		ပ		CALEREN	صيحر	0
	· — —								REST AND COT		
								\	PPM)	~~	-
7. BALLIFIELDS, EQUITY MAIN (MAY NO LECTON FIELDS)	1830	<i></i>	0		0	====	0	===*	0	201	U
			\								

Nov Mat Shoals are dead, some were seen alive.

APPENDIX B

PHOTOGRAPHIC LOG

(11 Pages)

(Original photographs and negatives are on file at the Tetra Tech EM Inc. START office)

OFFICIAL PHOTOGRAPH NO. 1 U.S. ENVIRONMENTAL PROTECTION AGENCY

Subject: Smoke plume originating from Plant Warehouse 14. Note: Old Covington Highway is

in the lower right portion of the photograph.

Location: Bio-Labs, Inc.

Conyers, Rockdale County, Georgia

Orientation: Northwest

TDD Number: 4T-04-05-B-006 **Date:** May 25, 2004

Photographer: John Spink, Atlanta Journal

Constitution Online

OFFICIAL PHOTOGRAPH NO. 2 U.S. ENVIRONMENTAL PROTECTION AGENCY

Subject: Firefighters dousing Plant 14 Warehouse with water. Note: Old Covington Highway

(top of photograph) and Rockdale Industrial Boulevard (extreme top) are shown in the

background.

Location: Bio-Labs, Inc.

Conyers, Rockdale County, Georgia

Orientation: Northeast

TDD Number: 4T-04-05-B-006 **Date:** May 25, 2004

Photographer: Staff, Atlanta Journal Constitution

Online

OFFICIAL PHOTOGRAPH NO. 3 U.S. ENVIRONMENTAL PROTECTION AGENCY

Subject: Firefighters using ladder trucks to spray water on the fire.

Location: Bio-Labs, Inc.

Conyers, Rockdale County, Georgia

Orientation: East

TDD Number: 4T-04-05-B-006 **Date:** May 25, 2004

Photographer: Phil Skinner, Atlanta Journal

Constitution Online

OFFICIAL PHOTOGRAPH NO. 4 U.S. ENVIRONMENTAL PROTECTION AGENCY

Subject: Smoke plume parallel to Interstate 20 (foreground).

Location: Bio-Labs, Inc.

Conyers, Rockdale County, Georgia

Orientation: North

TDD Number: 4T-04-05-B-006 **Date:** May 25, 2004

Photographer: John Spink, Atlanta Journal Constitution

Online

OFFICIAL PHOTOGRAPH NO. 5 U.S. ENVIRONMENTAL PROTECTION AGENCY

Subject: Upwind view of the smoke plume.

Location: Bio-Labs, Inc.

Conyers, Rockdale County, Georgia

Orientation: Northwest

TDD Number: 4T-04-05-B-006 **Date:** May 25, 2004

Photographer: John Spinks, Atlanta

Journal Constitution

OFFICIAL PHOTOGRAPH NO. 6 U.S. ENVIRONMENTAL PROTECTION AGENCY

Subject: Upwind view of the plume as seen from the Bernie Bourdon Bridge.

Location: Bio-Labs, Inc.

Conyers, Rockdale County, Georgia

Orientation: Southwest

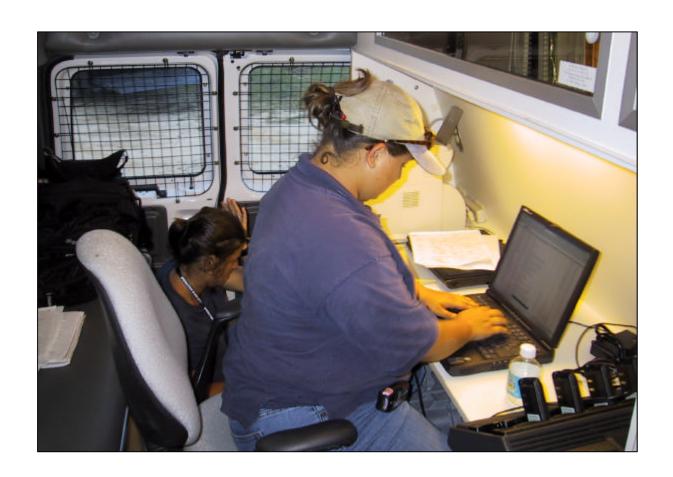
TDD Number: 4T-04-05-B-006 **Date:** May 25, 2004

Photographer: John Spink, Atlanta Journal Constitution

Online

OFFICIAL PHOTOGRAPH NO. 7 U.S. ENVIRONMENTAL PROTECTION AGENCY

Subject: Color changes in the smoke plume.


Location: Bio-Labs, Inc.

Conyers, Rockdale County, Georgia

Orientation: Southeast

TDD Number: 4T-04-05-B-006 **Date:** May 25, 2004

Photographer: Staff, Atlanta Journal Constitution

OFFICIAL PHOTOGRAPH NO. 8 U.S. ENVIRONMENTAL PROTECTION AGENCY

Subject: TtEMI START managing data collected during the response

Location: Bio-Labs, Inc.

Conyers, Rockdale County, Georgia

Orientation: Not applicable

TDD Number: 4T-04-05-B-006 **Date:** May 25, 2004

Photographer: Charles Parker, **Witness:** Bess Blyler

Tetra Tech EM Inc. (TtEMI)

TtEMI

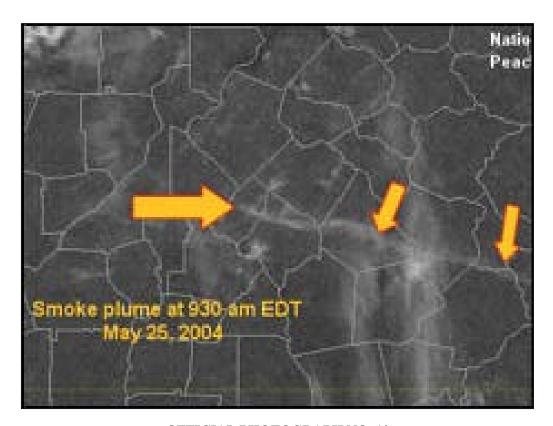
OFFICIAL PHOTOGRAPH NO. 9 U.S. ENVIRONMENTAL PROTECTION AGENCY

Subject: Air monitoring equipment set up for collecting data from the plume. Note: Addition

air monitoring equipment used by START and EPA is inside the vehicle, with the

intake hoses deployed outside of the vehicle.

Location: Bio-Labs, Inc.


Conyers, Rockdale County, Georgia

Orientation: Not applicable

TDD Number: 4T-04-05-B-006 Date: May 25, 2004

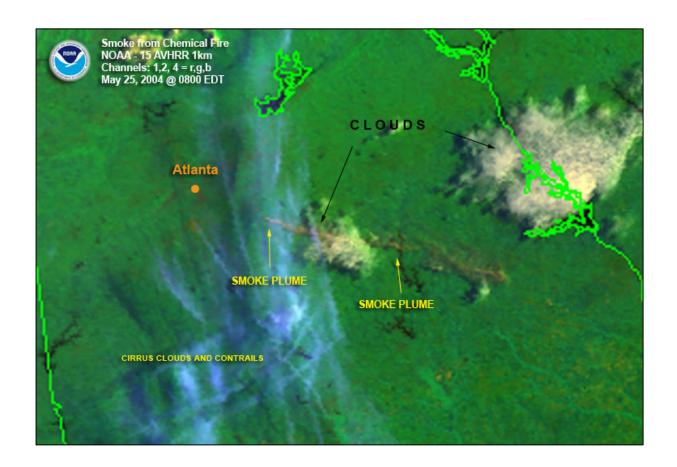
Photographer: Charles Parker, Witness: Bess Blyler, **TtEMI**

TtEMI

OFFICIAL PHOTOGRAPH NO. 10 U.S. ENVIRONMENTAL PROTECTION AGENCY

Subject: GOES Satellite image of the smoke plume.

Location: Bio-Labs, Inc.


Conyers, Rockdale County, Georgia

Orientation: Not applicable

TDD Number: 4T-04-05-B-006 **Date:** May 25, 2004

Photographer: National Weather Service,

Peachtree City, Georgia

OFFICIAL PHOTOGRAPH NO. 11 U.S. ENVIRONMENTAL PROTECTION AGENCY

Subject: One kilometer spatial resolution satellite image of the smoke plume. Note: the smoke

plume is well over 100 miles long from the origination point.

Location: Bio-Labs, Inc.

Conyers, Rockdale County, Georgia

Orientation: Not Applicable

TDD Number: 4T-04-05-B-006 **Date:** May 25, 2004

Photographer: National Oceanic and Atmospheric Administration,

National Climatic Data Center

APPENDIX C TABLE OF WITNESSES

(1 Page)

TABLE OF WITNESSES

Bio-Labs Site

Conyers, Rockdale County, Georgia

Benjamin Franco, On-Scene Coordinator
Rick Jardine, On-Scene Coordinator
Steve Spurlin, On-Scene Coordinator
Katrina Jones, On-Scene Coordinator
Terrance Byrd, On-Scene Coordinator
Brook Bass, On-Scene Coordinator
Amy Feingold, On-Scene Coordinator
U.S. Environmental Protection Agency, Region 4
Emergency Response and Removal Branch
61 Forsyth Street, SW, 11th Floor
Atlanta, Georgia 30303
(404) 562-8767

Neil Daniell, START Project Manager

Alan Whitt

Rich Kaiser

Didi Fung

Bess Blyler

Charles Parker

Tiffany Messier

John Schendel

Superfund Technical Assessment and Response Team, Region 4

Tetra Tech EM Inc.

1955 Evergreen Blvd, Suite 300

Duluth, Georgia 30096

(678) 775-3080

APPENDIX D AIR MONITORING DATA

(7 Pages)

			Air Monitoring Data for Bio-Lab Fire in C	onvers. Ge	eorgia.				
			The Madellion ing Dum for Dio 2mo 2 no in	Analyte Readings					
Sample Time	Latitude	Longitude	Street Address	HBr (ppm)	Phosgene (ppb)	Cl (ppm)	HCl (ppm)	HCN (ppm)	H2S (ppm)
			Tuesday, May 25, 2004		T				
1050 - 1300			Old Covington Hwy & Blacklawn	-	-	0.53		-	-
1050	N33 40 4.4	W84 01 28.0	West SW Ave & West SW Circle	-	-	0.26		-	-
1100	N33 76 20	W84 00 45	Exit 82	-	-	0	1	-	-
1113	N33 37 42	W83 56 55	Exit 98	-	-	0	0	-	-
1121	N33 36 34	W83 53 02	Continue to exit 98	-	-	0	0	-	-
1131	N33 36 40	W83 45 58	Continue to exit 98	-	-	0	0	-	-
1142	N33 36 34	W83 41 58	Exit 101	-	-	0	0	-	-
1220	N33 33 34	W83 30 02	Exit 113	-	-	0	0	-	-
1237	N33 35 37	W83 28 15	Downtown Madison	-	-	0	0	-	-
1050 - 1300	N33 39 54.7	W84 01 40.7	West Ave. at Chevron Station	-	-	0.31	-	-	-
1050 - 1300	N33 39 57.5	W84 01 35.9	West Ave. First National Bank	-	-	0.24	-	-	-
1050 - 1300	N33 39 55	W84 01 40.7	Dogwood Drive	-	-	0.18	-	-	-
1050 - 1300	N33 39 58.9	W84 01 34.3	West Ave. at Family Dollar	-	-	0.1	-	-	-
1050 - 1300	N33 39 56.7	W84 01 37.8	West Ave. at Piggly Wiggly	-	-	0.14	-	-	-
1050 - 1300	NA	NA	West Ave. & I-20	-	-	0.09	-	-	-
1050 - 1300	NA	NA	Dogwood Drive and Taylor Street	-	-	0.31	-	-	-
1050 - 1300	N33 39 37.8	W84 01 22	Dogwood Drive and Bryant Street	-	-	0	-	-	-
1050 - 1300	NA	NA	Dogwood Drive and Harley	-	-	0	-	-	-
1050 - 1300	N33 38 10.3	W83 58 38.4	Dogwood Drive and Glen Rd	-	-	0	-	-	-
1050 - 1300	N33 19 11.6	W84 00 21.5	Highway 138 and Citgo Station	-	-	0	-	-	ı
1050 - 1300			Old Covington Hwy and Gees Mill Rd	-	-	0	-	-	-

 $\begin{array}{lll} \mbox{HBr = Hydrogen Bromide} & \mbox{HBr PEL = 3 parts per million} \\ \mbox{HCl = Hydrochloric Acid} & \mbox{HCl PEL = 5 parts per million} \\ \mbox{HCN = Hydrogen Cyanide} & \mbox{HCN PEL = 4.7 parts per million} \\ \mbox{H}_2\mbox{S = Hydrogen Sulfide} & \mbox{H}_2\mbox{S TWA = 10 parts per million} \\ \mbox{Cl PEL = 5 parts per million} \\ \mbox{Phosgene TWA = 0.1 parts per billion} \\ \end{array}$

ppm = parts per million ppb = parts per billion

+ = concentrations exceeded saturation point of instrument

** = dectected concentrations fluctuated at reporting location

Air Monitoring Data for Bio-Lab Fire in Conyers, Georgia.										
			The resulting Sum for 210 2100 file in	Analyte Readings						
Sample Time	Latitude	Longitude	Street Address	HBr (ppm)	Phosgene (ppb)	Cl (ppm)	HCl (ppm)	HCN (ppm)	H2S (ppm)	
1302	N33 35 24	W83 27 10	1386 Cedar Drive	-	-	0	0			
1320	N33 40 57.4	W84 00 2.3	Rockdale Hospital	0	0	0	-	-	-	
1331	N33 40 59.1	W84 00 3.2	Sigman Rd & Milstead	0	0	0	-	-	-	
1334	N33 41 15.4	W83 59 49.7	Broad & Hwy 20	0	0	0	-	-	-	
1345	N33 40 27.8	W84 00 53.7	Milstead & College	0	0	0	-	-	-	
1347 - 07:31	N33 40 54.9	W83 59 37.0	Milstead & Main (Rockdale Court House)	0	0	0	-	-	-	
1351	N34 36 45	W83 44 43	Exit 98	-	-	0	0			
1353	N33 40 8.49	W84 01 21.4	West Ave & Green Street (Old Covington)	0	0	1.4	-	-	-	
1402	NA	NA	New Subdivision (Bridal Bridge Walk)	0	0	1.47	-	-	-	
1403	N33 39 54	W84 01 41.6	Dogwood Dr & West Ave	0	0	0.2	-	-	-	
1410	N33 40 16	W84 02 05	VFW Drive toward 3rd Ave (By VFW Lake)	0.6	0	1.48	-	-	-	
1410	N33 40 16	W84 02 05	VFW Drive toward 3rd Ave (By VFW Lake)	0.4	0	1.48 - 0.66**	-	-	-	
1410	N33 40 16	W84 02 05	VFW Drive toward 3rd Ave (By VFW Lake)	0	0	1.48 - 0.66**	-	-	-	
1411	N33 40 18.7	W84 01 56.6	VFW Drive toward 1st Ave (By VFW Lake)	0	0	0.22 - 0.30**	-	-	-	
1411	N33 38 09	W83 58 32	Exit 84	-	-	0	0			
1420	N33 40 15.3	W84 02 22.2	Blacklawn & Olympic	1	0	0	-	-	-	
1420	N33 39 34	W84 01 17	Exit 80	-	-	0	0			
1421	N33 40 15	W84 02 09	Olympic Culdesac	1.2	0	0.17	-	-	-	
1422	N33 40 21	W84 02 22	Blacklawn behind Bio-Labs	9	0	1.5	-	-	-	
1424	N33 40 08	W84 02 24	-	-	-	0	0			
1424	N33 40 08	W84 02 24	-	-	-	0.24	0			
1428	N33 40 21	W84 02 22	Blacklawn at behind Bio-Labs	5.4	17	1.5	-	-	-	

HBr = Hydrogen Bromide HCl = Hydrochloric Acid HCN = Hydrogen Cyanide H₂S = Hydrogen Sulfide Cl = Chlorine HBr PEL = 3 parts per million HCl PEL = 5 parts per million HCN PEL = 4.7 parts per million H₂S TWA = 10 parts per million Cl PEL = 5 parts per million Phosgene TWA = 0.1 parts per billion ppm = parts per million ppb = parts per billion

+ = concentrations exceeded saturation point of instrument ** = dectected concentrations fluctuated at reporting location

Air Monitoring Data for Bio-Lab Fire in Conyers, Georgia.										
				Analyte Readings						
Sample Time	Latitude	Longitude	Street Address	HBr (ppm)	Phosgene (ppb)	Cl (ppm)	HCl (ppm)	HCN (ppm)	H2S (ppm)	
1511	N33 39 55.4	W84 01 43	Iris & Klondike	0	0	-	-	-	-	
1559	N33 39 5.7	W83 59 7.1	Old Covington Hwy & Command Post	0	0	-	-	-	-	
1600	NA	NA	Fire & Rescue Water Tower	0	0	-	-	-	-	
1637	NA	NA	East on Rockdale Industrial	0	0	-	-	-	-	
1645	N33 40 31	W83 40 21	(Entering Plume)	9	21	0.42	0.9			
1645	N33 40 31	W83 40 21	(Entering Plume)	2.2	26	-	-	-	-	
1646	N33 40 28	W84 02 15.5	Lester & Rockdale	0	0	0	-	-	-	
1646	N33 40 27.6	W84 02 11.5	Rockdale Industrial	4.1	0	0.21	-	-	-	
1646	N33 40 31	W84 02 16	-	-	-	0	0			
1647	N33 40 27.1	W84 01 58.7	Rockdale Industrial	9	0	0.21	-	-	-	
1648	N33 40 27.1	W84 01 48.7	Rockdale Industrial	1.1	0	0.09	-	-	-	
1648	N33 40 27	W84 02 07	-	-	-	0.61	2.2			
1648			Lester & Rockdale Industrial	-	-	0.41	_	-	-	
1648			Rockdale Industrial "American Electric"	-	-	0.29	-	-	-	
1648			Rockdale Industrial "American Electric"	-	-	0.42	-	-	-	
1648	N33 40 39.7	W84 01 46.6	Harvel & Rockbridge	-	-	0.09	-	-	-	
1650	N33 40 27	W84 01 48	-	-	-	0.08	0			
1651	N33 40 27.4	W84 01 46.5	Rockdale Industrial & Rockbridge & Main	1	0	0.08	-	-	-	
1652	N33 40 39.7	W84 01 46.6	Rockbridge & Harvel	0	0	0.5	-	-	-	
1653	N33 40 39	W84 01 47	-	-	-	0.12	0			
1654	N33 40 39.7	W84 01 46.6	Rockbridge & Harvel	1.3	0	-		-	-	
1657	N33 40 27	W84 01 46.6	Rockbridge into Plume	9	20	1.45		-	-	

HBr = Hydrogen Bromide HCl = Hydrochloric Acid HCN = Hydrogen Cyanide H₂S = Hydrogen Sulfide Cl = Chlorine HBr PEL = 3 parts per million HCl PEL = 5 parts per million HCN PEL = 4.7 parts per million H₂S TWA = 10 parts per million Cl PEL = 5 parts per million Phosgene TWA = 0.1 parts per billion ppm = parts per million ppb = parts per billion

+ = concentrations exceeded saturation point of instrument ** = dectected concentrations fluctuated at reporting location

			Air Monitoring Data for Bio-Lab Fire	e in Conyers, Ge	eorgia.					
				•	Analyte Readings					
Sample Time	Latitude	Longitude	Street Address	HBr (ppm)	Phosgene (ppb)	Cl (ppm)	HCl (ppm)	HCN (ppm)	H2S (ppm)	
1700	N33 40 28	W84 02 15.4	Lester & Rockbridge	9 – 3**	15 – 22**	0.42	-	-	-	
1700	N33 40 38	W84 02 22	-	-	-	0.17	0.9			
1700			Rockdale Industrial Park on Rockdale Industrial	-	-	1.45	_	-	-	
1700			Rockdale Industrial & Lester	-	-	0.42	_	-	-	
1747	N33 40 33	W84 02 18	1209 Lester Ave	9+	12	-	-	-	-	
1747	N33 40 33	W84 02 18	1209 Lester Ave	9+	21	-	-	-	1	
1749			Indian Blvd & Rockdale	9+	33	-	-			
1749			1209 Lester Ave	-	-	0.51	_			
1749			1209 Lester Ave	-	-	0.55	-			
1749			1209 Lester Ave	-	-	0.84	-			
1749			1209 Lester Ave	-	-	1.26	-			
1750	N33 40 33	W84 02 18	1209 Lester Ave	-	-	0.61	5.7			
1751	N33 40 28	W84 02 25	1555 Rockdale Industrial Blvd "VIASYS"	9+	21	-	-			
1751	N33 40 28	W84 02 25	1555 Rockdale Industrial Blvd "VIASYS"	9+	28	-	-			
1751	N33 40 28	W84 02 25	1555 Rockdale Industrial Blvd "VIASYS"	9+	31	-	-			
1753	N33 40 28	W84 02 25	1555 Rockdale Industrial Blvd "VIASYS"	-	-	1.5	15.0+			
1753	N33 40 28	W84 02 25	1555 Rockdale Industrial Blvd "VIASYS"	-	-	0.66	-			
1753	N33 40 28	W84 02 25	1555 Rockdale Industrial Blvd "VIASYS"	-	-	0.54	-			
1803			1601 Rockdale Industrial Blvd Bio-Labs DIST	-	-	1.5	-			
1811	N33 40 59	W84 01 49	1496 Rockbridge Fire Station #7	0	0	-	-			
1813	N33 40 59	W84 01 49	1496 Rockbridge Fire Station #7	-	-	0.06	-			
1813	N33 40 59	W84 01 49	1496 Rockbridge Fire Station #7	-	_	0.11	-			

HBr = Hydrogen Bromide HCl = Hydrochloric Acid HCN = Hydrogen Cyanide H₂S = Hydrogen Sulfide Cl = Chlorine HBr PEL = 3 parts per million HCl PEL = 5 parts per million HCN PEL = 4.7 parts per million H₂S TWA = 10 parts per million Cl PEL = 5 parts per million Phosgene TWA = 0.1 parts per billion

ppm = parts per million ppb = parts per billion

+ = concentrations exceeded saturation point of instrument ** = dectected concentrations fluctuated at reporting location

			Air Monitoring Data for Bio-Lab Fire in O	Conyers, Ge	orgia.				
				Analyte Readings					
Sample Time	Latitude	Longitude	Street Address	HBr (ppm)	Phosgene (ppb)	Cl (ppm)	HCl (ppm)	HCN (ppm)	H2S (ppm)
1813			Rockbridge Road & Sigman	-	-	0	-		
1814	N33 40 59	W84 01 49	-	-	-	0.08	0		
1817	N33 40 28	W84 01 47	Main & Rockbridge	0	0	-	-		
1817			Main and Ellington	0	0	-	-		
1817			Green & Ellington	0	0	-	-		
1818	N33 40 20	W84 01 47	-	-	-	0	0		
1820			Main & Rockdale Bridge Road	-	-	0	-		
1827			Green & Neemore	0	0	-	-		
1827			VFW & Dogwood	0	0	-	-		
1914			Irwin Bridge & Main	0	0	-	-		
1919			Irwin Bridge & Mountain View	0	0	-	-		
1920	N33 41 08	W84 01 27	-	-	-	0	0		
1920	N33 41 14	W84 01 23	Kingston and Irwin Bridge	0	0	0.07	0		
1923	N33 41 14	W84 01 23	Kingston and Irwin Bridge	-	-	0.06	_		
1926	N33 41 14	W84 01 23	Kingston and Irwin Bridge	-	-	0.06	_		
1926	N33 41 14	W84 01 23	Kingston and Irwin Bridge	-	-	0.09	_		
1927	N33 41 20	W84 01 19	Sigman and Irwin Bridge	0	0	0.08	0		
1929			Irwin Bridge and Kingston	-	-	0.12	0		
1929			Irwin Bridge and Kingston	-	-	0.08	0		
1929			Irwin Bridge and Kingston	-	-	0.08	_		
1929			Irwin Bridge and Kingston	-	-	0.11	-		
2336	N 33 32 18	W81 43 81	EPA Mobile Command Post	0	0	0	0	0	0
2356	N33 40 57.4	W84 00 2.3	Rockdale Hospital	0	0	0	0	0	0

HBr = Hydrogen Bromide HCl = Hydrochloric Acid HCN = Hydrogen Cyanide H₂S = Hydrogen Sulfide Cl = Chlorine HBr PEL = 3 parts per million HCl PEL = 5 parts per million HCN PEL = 4.7 parts per million H₂S TWA = 10 parts per million Cl PEL = 5 parts per million Phosgene TWA = 0.1 parts per billion

ppm = parts per million ppb = parts per billion

+ = concentrations exceeded saturation point of instrument ** = dectected concentrations fluctuated at reporting location

Air Monitoring Data for Bio-Lab Fire in Conyers, Georgia.										
			8	Analyte Readings						
Sample Time	Latitude	Longitude	Street Address	HBr (ppm)	Phosgene (ppb)	Cl (ppm)	HCl (ppm)	HCN (ppm)	H2S (ppm)	
	T	1	Wednesday May 26, 2004					T	T	
2408			Junction 138 East (3 miles East of Walnut Grove	0	0	0	0	0	0	
2413	N33 41 28	W83 57 71	Yellow River	0	0	0	0	0	0	
2420	N33 42 04	W83 57 89	138 East & White Road	0	0	0	0	0	0	
2430	N33 43 80	W83 57 94	White Road & West Hightower	0	0	0	0	0	0	
2437	N33 44 27	W83 59 53	Hightower & GA Hwy 20	0	0	0	0	0	0	
2443	N33 43 31	W84 00 37	J.H.House Elementary School @ Chandler Rd (Disaster Relief)	0	0	0	0	0	0	
2452	N33 41 54	W83 59 81	Ga. Hwy 20 South and Yellow River	0	0	0	0	0	0	
0136	N33 40 44	W84 01 48	Irwin Bridge & Main Street	0	0	0	0	0	0	
0142			Rockbridge & Main	0	0	0.845 **	0	1.3	2	
0145			Lithonia Lighting (Rockbridge & Main)	0	0	0.5 - 0.79**	0	2.1 - 2.7**	0	
0148	N33 40 45	W84 02 14	Railroad Crossing on Main Street	0	0	1.2	0	0	0	
0205	N33 40 45	W84 02 14	Railroad Crossing on Main Street	0	0	1.5		3.6 - 5.5 **	4.4 - 5**	
0209	N33 40 45	W84 02 02	American Electric Lighting	0	12	0	0	0	0	
0233	N33 41 49	W84 01 15	-	0	0	0	0	0.05	0	
0237	N33 42 15	W84 01 94	Farmer Rd & Irwin Bridge Road	0	0	0	0	0	0	
0404	N33 36 66	W83 49 58	Flash Floods Station	0	0	0	0	0.4	0	
0439	N33 36 15	W83 51 85	Emory Street	0	0	0	0	0.8	0	
0443	N33 45 44	W83 52 52	81 South at mile marker 10	0	0	0	0	0.5	0	
0447	N33 34 77	W83 52 91	81 South at milie marker 12 (B&H Body Shop)	0	0	0	0	0.7	0	
0459	N33 36 90	W83 52 04	Palmer Stone Elementary School	0	0	0	0	0.5	0	
07:05	N33 40 67	W84 02 38	1601 Rockdale Industrial Blvd	0	0	0	0	0	0	

HBr = Hydrogen Bromide HCl = Hydrochloric Acid HCN = Hydrogen Cyanide H₂S = Hydrogen Sulfide Cl = Chlorine HBr PEL = 3 parts per million HCl PEL = 5 parts per million HCN PEL = 4.7 parts per million H₂S TWA = 10 parts per million Cl PEL = 5 parts per million Phosgene TWA = 0.1 parts per billion ppm = parts per million ppb = parts per billion

+ = concentrations exceeded saturation point of instrument ** = dectected concentrations fluctuated at reporting location

	Air Monitoring Data for Bio-Lab Fire in Conyers, Georgia.											
				Analyte Readings								
				HBr	Phosgene		HCl					
Sample Time	Latitude	Longitude	Street Address	(ppm)	(ppb)	Cl (ppm)	(ppm)	HCN (ppm)	H2S (ppm)			
07:09	N33 40 46	W84 02 43	Lester and Industrial	0	0	0.13	0	0.13	0			

 $\begin{array}{lll} \mbox{HBr} = \mbox{Hydrogen Bromide} & \mbox{HBr PE} \\ \mbox{HCl} = \mbox{Hydrochloric Acid} & \mbox{HCl PE} \\ \mbox{HCN} = \mbox{Hydrogen Cyanide} & \mbox{HCN PI} \\ \mbox{H}_2\mbox{S} = \mbox{Hydrogen Sulfide} & \mbox{H}_2\mbox{S} \mbox{TW} \\ \mbox{Cl} = \mbox{Chlorine} & \mbox{Cl PEL} \end{array}$

HBr PEL = 3 parts per million HCl PEL = 5 parts per million HCN PEL = 4.7 parts per million H₂S TWA = 10 parts per million Cl PEL = 5 parts per million Phosgene TWA = 0.1 parts per billion

ppm = parts per million ppb = parts per billion

+ = concentrations exceeded saturation point of instrument ** = dectected concentrations fluctuated at reporting location