Molecular methods for detecting and quantifying cyanobacteria

> Donna Francy and Erin Stelzer U.S. Geological Survey Ohio Water Science Center

Harmful Algal Blooms

 HABs are caused by cyanobacteria (*Microcystis*, *Planktothrix*, and *Anabaena*) that produce toxins such as microcystin

- Many factors can trigger toxin production
- Methods are needed to understand the potential for toxin production, what triggers toxin production, and provide an early warning
 - Molecular methods
 - Optical sensor measurements

Molecular method

Quantitative polymerase chain reaction (qPCR)

- Looks for a specific genetic sequence in a specific type of microorganism
- Makes copies of the sequence so that it can be detected and quantified

Microcystin Toxin Production

- Toxic strains contain microcystin synthetase (mcy) gene clusters in their genome.
- General and genus-specific qPCR assays have been created using the mcyE gene at the USGS Ohio Lab

DNA vs. RNA

- DNA-based methods reveal the presence of the toxin gene.
- RNA-based methods can detect the cyanobacteria that are taking the first step in actively expressing the gene to produce the toxin.

qPCR cyanobacterial assays

Applied on four levels

- 1. Total Cyanobacteria
- 2. Total *Microcystis*
- 3. Genus-specific DNA *mcy*E assays for *Microcystis*, *Planktothrix*, and *Anabaena*
- 4. Genus-specific RNA *mcy*E assays for above genera

Optical sensor measurements

- Measure algal pigments based on fluorescence
- Chlorophyll—total phytoplankton abundance
- Phycocyanin—cyanobacterial abundance

Pictures from YSI

Two current USGS studies in Ohio

- DNA and RNA methods comparison in samples from Maumee Bay State Park Lakeside Beach—2012
 - Quantified variability of the assays
 - Investigated holding times for RNA analyses
 - Determined relations between DNA and RNA results
- Using tools to better understand and predict harmful cyanobacterial algal blooms in Lake Erie and Ohio inland lakes—2013–2015

Maumee Bay State Park Lakeside Beach 2012

- Eleven samples from mid June to late August
 - All samples collected from one location at Lakeside Beach
- Analyzed for:
 - Microcystin by ELISA (Kansas Organic Geochemistry Research Lab)
 - DNA-based qPCR assays
 - RNA-based qRT-PCR assays

Funded by Ohio Lake Erie Protection Fund and USGS

NASA satellite photo from October 5th, 2011

Hold time for RNA analyses

Sample date	Microcystis toxin mcyE at time 2 hours	Microcystis toxin mcyE at time 24 hours	Log difference
6/26/2012	<166	<166	ND
7/10/2012	1,200	<166	>0.86
7/24/2012	870	450	0.29
7/31/2012	2,400	1,400	0.23
8/9/2012	310	760	-0.39
8/14/2012	780	180 E	0.64
8/22/2012	1,200	<166	>0.86
8/29/2012	7,600	6,300	0.08
		Average log difference	>0.37

DNA and **RNA** methods comparison

DNA-based qPCR assays - MBSP 2012 8 18 16 log concentration (copies/100 mL) Total cyanobacteria 14 6 Total Microcystis 12 10 8 6 6 Microcystis toxin mcyE Planktothrix 3 toxin mcyE 2 4 × Microcystin by FLISA 1 2 X 0 0 6/10 6/20 7/30 8/9 8/19 8/29 9/8 6/30 7/10 7/20 sampling date

DNA measures presence of the toxin gene.

RNA measures first step towards expression of the toxin gene.

Tools to understand and predict HABs 2013–2015

- At Ohio beaches, understand how the community of the bloom progresses
 - From nontoxic to toxic strains
 - From unexpressed to expressed genes
- Determine relations between toxin concentrations and environmental and water-quality variables to help support predictive capabilities for HABs
- Determine if molecular assays and optical sensors can be used as early warning indicators

Project team and funding

- USGS Kansas Water Science Center
- University of Toledo and Erie County Health Dept sampling at Maumee Bay and Sandusky Bay sites
- USEPA—data sharing at Harsha Lake
- USACE—algal classification by FlowCam imaging particle analyzer
- Clark County Combined Health District—Buck Creek SP
- Ohio Dept of Natural Resources and Ohio EPA technical advisors

Funded by Ohio Water Development Authority and USGS

Phase 1-2013

- General survey of 8 beaches
- Sampling from weekly to monthly from April–Oct
- Nutrients, toxins, physical and algal pigment measurements, phytoplankton, cyanobacteria by qPCR, environmental data

Bay View, Sandusky Bay

Harsha Lake

Phase 2—2014

- More frequent sampling at 3 sites where early warning indicators are promising
 - Significant relations between qPCR results, optical sensor readings, phytoplankton, and (or) toxin concentrations
 - Patterns in these and water quality and environmental factors
- Understand temporal changes in community structure and toxins

Questions?

For more information contact:

Donna Francy 614-430-7769 dsfrancy@usgs.gov Erin Stelzer 614-430-7730 eastelzer@usgs.gov

http://oh.water.usgs.gov/ Microbiology program

