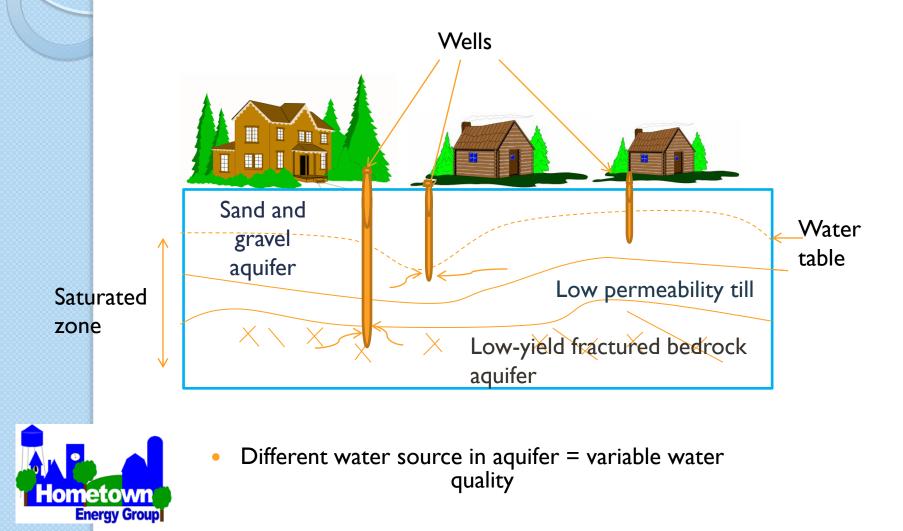
Evaluation of Water Quality Monitoring Programs and Statistical Analysis Tools to be utilized in Shale Development

> Uni Blake Environmental Affairs Hometown Energy Group Prepared for: USEPA Hydraulic Fracturing Workshop Case Studies


Overview

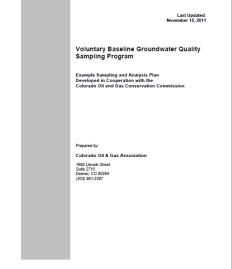
- Groundwater monitoring is complex
- Current baseline monitoring strategies
- Background monitoring programs
- Suggested Shale
 Monitoring program

Complex/Variability Baseline Water Quality

Data Objective

- Sample sizes enough for comparison "before and after"
 - Abrupt changes (blowouts, casing failures)
 - Long term changes (seeps, surface spills)
 - Pre-existing issues
- Representative of groundwater/surface water quality

Data Objectives

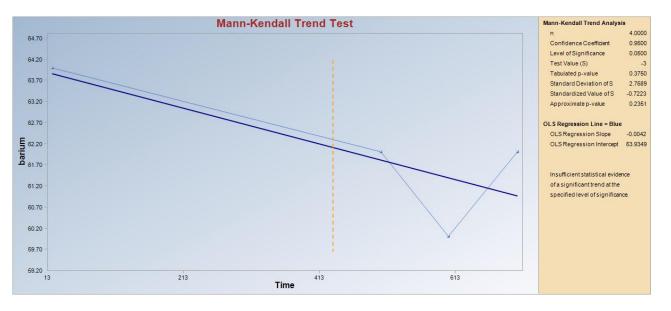

Current Monitoring Strategies

2.3 Sampling Procedures

- Baseline groundwater samples must be collected **any time** prior to the setting of the oil and gas
- A **second** sample will be collected from each groundwater feature no later than one year after
- well completion.....

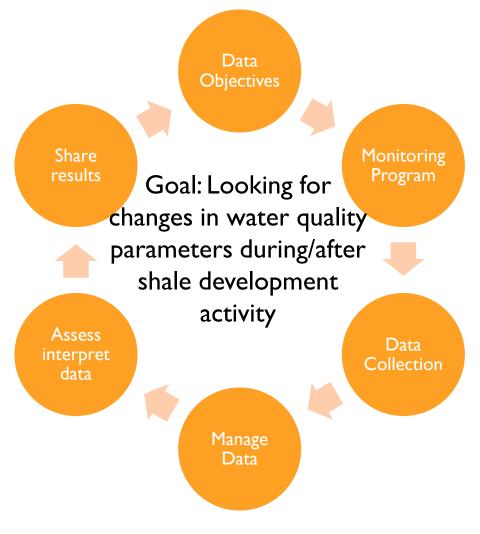
ometown

 Post-completion samples must be collected every two years while wells are actively being drilled and completed on a pad, and within one year following completion of the final well on the pad.



Energy Group <u>http://region8water.colostate.edu/PDFs/Factsheet%20COGA-sample-analysis-Plan.pdf</u>

Data Objectives


Current Monitoring Strategies

Not enough data points

Shale Monitoring Program

Data Analysis

- Ideal: No trends
- Linear, linear with breakpoint, step changes (abrupt)
- HVHF related activity
- Historical

Data Objectives

Short-term Intra-Well Variability in Methane Concentrations from Domestic Well Waters in Northeastern Pennsylvania

> NANCY PEES COLEMAN, Ph.D. Environmental Consultants Oklahoma City, OK

> > DEBBY MCELREATH Chesapeake Operating, Inc. Oklahoma City, OK

Environmental Consultants

Natural variation in the concentration of methane and other well quality parameters.

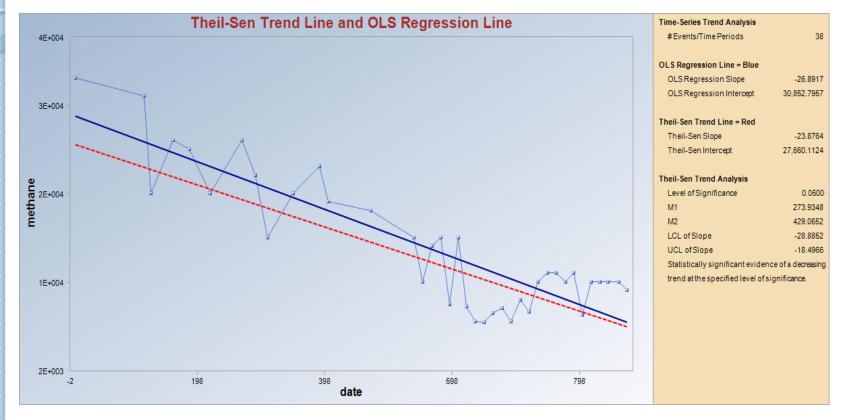
Dissolved Methane Data for Wells #1 to 7

- Range of concentrations: <0.026 11.8 mg/L
 No or one detected methane concentration in Wells # 4 a
 - $_{\odot}\,$ No or one detected methane concentration in Wells #4 and 5
- Ranges within a single well:
 - \circ Well #2: 0.134 11.8 mg/L (mean 5.78 mg/L)
 - Well #7: 0.034 7.06 mg/L (mean 0.34 mg/L)
 ★ The maximum value, 7.06 mg/L, is a statistical outlier (p = 0.01)
- Range of day-to-day change in concentration:
 - Well #2: 0.4 6.81 mg/L
 - Well #7: 0 6.96 mg/L
- Range of coefficients of variation: 0 0.449
- Virtually no ethane, ethene or propane detected
- Range of concentrations consistent with Boyer et al, 2011: 0.0011 – 58.30 mg/L

Chesapeake

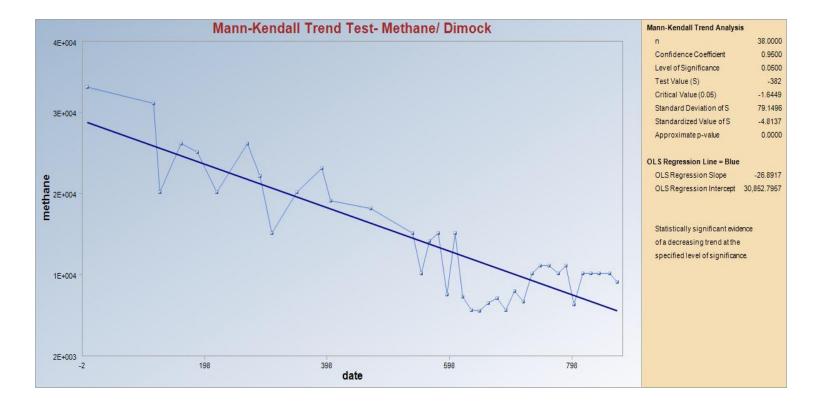
Environmental

Data Management


- Organize and store data (databases, spreadsheets)
- Determine data quality
- Document assumptions and methods

Analytical Tools/Methods

- Cost
- Reliability
- Technical Support
- Non-parametric Trends
 - Sen Slope / Kendall Theil
 - Seasonal Kendall Test
 - Wilcoxon-Mann Whitney Step Trend
- Regressions



Methane Trend Analysis ProUCL 4.1 Time Series

Methane Trend Analysis ProUCL 4.1 Mann-Kendall

Considerations

- Good & Enough data (QA/QC)
- Support industry (affordability) and landowner (convenience)objectives
- Limit parameters assessed- (look for indicators like methane, barium, chloride, strontium etc.)
- Limit collection points
- Integrate all monitoring efforts
 - Manage water quality in a tier system of data quality
 - Who maintains the data? Who pays?

References

- Hirsch R.M., J.R. Slack and R.A. Smith, 1982. Techniques of Trend Analysis for Monthly Water Quality Data. Water Resources Research, Vol. 18 (1) pp. 107-121 February.
- Coleman, Nancy P., and Debby McElreath. "Short-term Intra-Well Variability in Methane Concentrations from Domestic Well Waters in Northeastern Pennsylvania." (April 2011)
- Hirsch, Robert M. "Statistical Methods And Sampling Design For Estimating Step Trends In Surface-Water Quality." Journal of the American Water Resources Association24.3 (1988): 493-503.
- Hirsch R.M., R.B. Alexander, and R.A. Smith 1991. Selection of Methods for the Detection and Estimation of Trends in Water Quality. Water Resources Research, Vol. 27(5), pp. 803-813 May.