Home Menu

Climate Change Indicators

Climate Change Indicators: Ocean Acidity

Share Icon
Reddit Share Icon

This indicator describes changes in the chemistry of the ocean that relate to the amount of carbon dioxide dissolved in the water.

  • Line graphs showing levels of dissolved carbon dioxide and pH measurements at three ocean stations from 1983 to 2015.
    Download Data  Download Image 
     
     

    This figure shows the relationship between changes in ocean carbon dioxide levels (measured in the left column as a partial pressure—a common way of measuring the amount of a gas) and acidity (measured as pH in the right column). The data come from two observation stations in the North Atlantic Ocean (Canary Islands and Bermuda) and one in the Pacific (Hawaii). The up-and-down pattern shows the influence of seasonal variations.

    Data sources: Bates, 2016;5 González-Dávila, 2012;6 Dore, 20157
    Web update: August 2016

Key Points

  • Measurements made over the last few decades have demonstrated that ocean carbon dioxide levels have risen in response to increased carbon dioxide in the atmosphere, leading to an increase in acidity (that is, a decrease in pH) (see Figure 1).
  • Historical modeling suggests that since the 1880s, increased carbon dioxide has led to lower aragonite saturation levels in the oceans around the world, which makes it more difficult for certain organisms to build and maintain their skeletons and shells (see Figure 2).
  • The largest decreases in aragonite saturation have occurred in tropical waters (see Figure 2); however, decreases in cold areas may be of greater concern because colder waters typically have lower aragonite saturation levels to begin with.4

References

1. Calculated from numbers in the IPCC Fifth Assessment Report. From 1750 to present: total human emissions of 545 Pg C and ocean uptake of 155 Pg C. Source: IPCC (Intergovernmental Panel on Climate Change). 2013. Climate change 2013: The physical science basis. Working Group I contribution to the IPCC Fifth Assessment Report. Cambridge, United Kingdom: Cambridge University Press. www.ipcc.ch/report/ar5/wg1.

2. Wootton, J.T., C.A. Pfister, and J.D. Forester. 2008. Dynamic patterns and ecological impacts of declining ocean pH in a high-resolution multi-year dataset. P. Natl. Acad. Sci. USA 105(48):18848–18853.

3. Bednaršek, N., G.A. Tarling, D.C.E. Bakker, S. Fielding, E.M. Jones, H.J. Venables, P. Ward, A. Kuzirian, B. Lézé, R.A. Feely, and E.J. Murphy. 2012. Extensive dissolution of live pteropods in the Southern Ocean. Nat. Geosci. 5:881–885.

4. Feely, R.A., S.C. Doney, and S.R. Cooley. 2009. Ocean acidification: Present conditions and future changes in a high-CO2 world. Oceanography 22(4):36–47.

5. Bates, N.R. 2016 update to data originally published in: Bates, N.R., M.H. Best, K. Neely, R. Garley, A.G. Dickson, and R.J. Johnson. 2012. Indicators of anthropogenic carbon dioxide uptake and ocean acidification in the North Atlantic Ocean. Biogeosciences 9:2509–2522.

6. González-Dávila, M. 2012 update to data originally published in: González-Dávila, M., J.M. Santana-Casiano, M.J. Rueda, and O. Llinás. 2010. The water column distribution of carbonate system variables at the ESTOC site from 1995 to 2004. Biogeosciences 7:3067–3081.

7. Dore, J. 2015 update to data originally published in: Dore, J.E., R. Lukas, D.W. Sadler, M.J. Church, and D.M. Karl. 2009. Physical and biogeochemical modulation of ocean acidification in the central North Pacific. Proc. Natl. Acad. Sci. USA 106:12235–12240.

8. Woods Hole Oceanographic Institution. 2016 update to data originally published in: Feely, R.A., S.C. Doney, and S.R. Cooley. 2009. Ocean acidification: Present conditions and future changes in a high-CO2 world. Oceanography 22(4):36–47.

9. Recreated from Environment Canada. 2008. The pH scale. www.ec.gc.ca/eau-water/default.asp?lang=En&n=FDF30C16-1.

10. IPCC (Intergovernmental Panel on Climate Change). 2014. Climate change 2014: Impacts, adaptation, and vulnerability. Working Group II contribution to the IPCC Fifth Assessment Report. Cambridge, United Kingdom: Cambridge University Press. www.ipcc.ch/report/ar5/wg2

11. Feely, R.A., S.C. Doney, and S.R. Cooley. 2009. Ocean acidification: Present conditions and future changes in a high-CO2 world. Oceanography 22(4):36–47.

12. Feely, R.A., S.C. Doney, and S.R. Cooley. 2009. Ocean acidification: Present conditions and future changes in a high-CO2 world. Oceanography 22(4):36–47.


Printer-friendly PDF of all text and figures

Learn about other indicators in this section

Ocean Heat Sea Surface Temperature Sea Level Land Loss Along the Atlantic Coast Coastal Flooding Ocean Acidity