Climate Change Adaptation Resource Center (ARC-X)

Adaptation Actions for Water Utilities

The adaptation strategies provided below are intended to inform and assist communities in identifying potential alternatives. They are illustrative and are presented to help communities consider possible ways to address anticipated current and future climate threats to contaminated site management.

On this page:
Case study available = Case Study available
 

Adaptation Actions

 

Construct New Infrastructure

Increase System Efficiency

  • Improve energy efficiency and optimization of operations

    Water utilities are one of the major consumers of electricity in the United States. With future electricity demand forecasted to grow, localized energy shortages may be experienced. Energy efficiency measures will save in energy costs and make utilities less vulnerable to electricity shortfalls due to high demand or service disruptions from natural disasters.

  • Finance and facilitate systems to recycle water

    Recycling greywater frees up more finished water for other uses, expanding supply and decreasing the need to discharge into receiving waters. Receiving water quality limitations may increase due to more frequent droughts. Therefore, to limit wastewater discharges, use of reclaimed water in homes and businesses should be encouraged.

  • Practice conjunctive useCase study available

    Conjunctive use involves the coordinated, optimal use of both surface water and groundwater, both intra- and inter-annually. Aquifer storage and recovery is a form of conjunctive use. For example, a utility may store some fraction of surface water flows in aquifers during wet years and withdraw this water during dry years when the river flow is low. Depending on whether natural or artificial aquifer recharge is employed, the required infrastructure may include percolation basins and injection wells.

Model Climate Risk

Modify Land Use

  • Acquire and manage ecosystems

    Intact natural ecosystems have many benefits for utilities: reducing sediment and nutrient inputs into source water bodies, regulating runoff and streamflow, buffering against flooding and reducing storm surge impacts and inundation on the coasts (e.g., mangroves, saltwater marshes, wetlands). Utilities can also work with regional floodplain managers and appropriate stakeholders to explore non-structural flood management techniques in the watershed. Protecting, acquiring and managing ecosystems in buffer zones along rivers, lakes, reservoirs and coasts can be cost-effective measures for flood control and water quality management.

  • Implement green infrastructure on site and in municipalitiesCase study available

    Green infrastructure can help reduce runoff and stormwater flows that may otherwise exceed system capacity. Examples of green infrastructure include: bio-retention areas (rain gardens), low impact development methods, green roofs, swales (depressions to capture water) and the use of vegetation or pervious materials instead of impervious surfaces.

  • Implement watershed management

    Watershed management includes a range of policy and technical measures. These generally focus on preserving or restoring vegetated land cover in a watershed and managing stormwater runoff. These changes help mimic natural watershed hydrology, increasing groundwater recharge, reducing runoff and improving the quality of runoff.

  • Integrate flood management and modeling into land use planningCase study available

    It is critical that future water utility infrastructure be planned and built in consideration of future flood risks. Infrastructure can be built in areas that do not have a high risk of future flooding. Alternately, appropriate flood management plans can be implemented that involve 'soft' adaptation measures such as conserving natural ecosystems or 'hard' measures such as dikes and flood walls.

  • Study response of nearby wetlands to storm surge events

    Coastal wetlands act as buffers to storm surge. Protecting and understanding the ability of existing wetlands to provide protection for coastal infrastructure in the future is important considering projected sea-level rise and possible changes in storm severity.

  • Update fire models and practice fire management plans

    Fire frequency and severity may change in the future, therefore it is important to develop, practice and regularly update management plans to reduce fire risk. Controlled burns, and invasive plant control help to reduce risk in wildfire-prone areas.

Modify Water Demand

  • Encourage and support practices to reduce water use at local power plants

    The electricity sector withdraws the greatest amount of water in the United States, compared with other sectors. Any efforts to reduce water usage by utilities (e.g., closed-loop water circulation systems or dry cooling for the turbines) will increase available water supply. For example, utilities may provide reclaimed water to electric utilities for electricity generation.

  • Model and reduce agricultural and irrigation water demand

    Agriculture represents the second largest user of water in the United States in terms of withdrawals. In order to forecast and plan for future water supply needs, agricultural (irrigation) demand must be projected, particularly in drought-prone areas. For example, to reduce agricultural water demand, utilities can work with farmers to adopt advanced micro-irrigation technology (e.g., drip irrigation).

  • Model future regional electricity demand

    The electricity sector represents the largest user of water in the United States in terms of withdrawals. In order to forecast future water supply needs, changes in electricity demand related to climate change must be projected.

  • Practice water conservation and demand management

    An effective and low-cost method of meeting increased water supply needs is to implement water conservation programs that will cut down on waste and inefficiencies. Public outreach is an essential component of any water conservation program. Outreach communications typically include: basic information on household water usage, the best time of day to undertake water-intensive activities and information on access to water efficient household appliances such as low-flow toilets, showerheads and front-loading washers. Education and outreach can also be targeted to different sectors (i.e., commercial, institutional, industrial, public sectors). Effective conservation programs in the community include those that provide rebates or help install water meters, water-conserving appliances, toilets and rainwater harvesting tanks.

Monitor Operational Capabilities

  • Conduct stress testing on wastewater treatment biological systems to assess tolerance to heat

    Increased surface water temperature may require changes to wastewater treatment systems, as microbial species used may react differently in warmer environments. Stress testing involves subjecting biological systems or bench-top simulations of systems to elevated temperatures and monitoring the impacts on treatment processes.

  • Manage reservoir water quality

    Changes in precipitation and runoff timing, coupled with higher temperatures due to climate change, may lead to diminished reservoir water quality. Reservoir water quality can be maintained or improved by a combination of watershed management, to reduce pollutant runoff and promote groundwater recharge and reservoir management methods, such as lake aeration.

  • Monitor and inspect the integrity of existing infrastructure

    Monitoring is a critical component of establishing a measure of current conditions, detecting deterioration in physical assets and evaluating when the necessary adjustments need to be made to prolong infrastructure lifespan.

  • Monitor current weather conditions

    A better understanding of weather conditions provides a utility with the ability to recognize possible changes in climate change and then identify the subsequent need to alter current operations to ensure resilient supply and services. Observations of precipitation, temperature and storm events are particularly important for improving models of projected water quality and quantity.

  • Monitor flood events and drivers

    Understanding and modeling the conditions that result in flooding is an important part of projecting how climate change may drive change in future flood occurrence. Monitoring data for sea level, precipitation, temperature and runoff can be incorporated into flood models to improve predictions. Current flood magnitude and frequency of storm events represent a baseline for considering potential future flood conditions.

  • Monitor surface water conditionsCase study available

    Understanding surface water conditions and the factors that alter quantity and quality is an important part of projecting how climate change may impact water resources. Monitoring data for discharge, snowmelt, reservoir or stream level, upstream runoff, streamflow, in-stream temperature and overall water quality can be incorporated into models of projected supply or receiving water quality.

  • Monitor vegetation changes in watersheds

    Changes in vegetation alter the runoff that enters surface water bodies and the risk of wildfire to facilities within the watershed. Monitoring vegetation changes can be conducted by ground cover surveys, aerial photography or by relying on the research from local conservation groups and universities.

Plan for Climate Change

Repair and Retrofit Facilities

Top of Page


Source Documents

These strategies are adapted from existing EPA, CDC and other federal resources. Please view these strategies in the context provided by the primary source document:

Top of Page


Disclaimer

The adaptation strategies provided are intended to inform and assist communities in identifying potential alternatives. They are illustrative and are presented to help communities consider possible ways to address anticipated current and future climate threats to contaminated site management. Read the full disclaimer.

Top of Page